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Abstract 

Wall eye stock assessment 

The presence of a naturally occurring spawning stock of walleye (Sander vitreus) in 

the Buffalo River has gone undetected. This study sought to determine the extent of use of 

the Buffalo River by adult and juvenile walleye in 2006 and 2007 in order to assess the New 

York Department of Environmental Conservation's stocking efforts. Walleye were first 

stocked in 2004 and stocking continued in 2005 and 2006. A total of 29 walleye, mostly 

juveniles, were caught during the two year study period. None of the walleye were believed 

to be using the river to spawn. The source of these walleye is not known but genetic analysis 

is pending. The Buffalo River and tributaries have limited habitat potentially suitable to 

support walleye spawning. No physicochemical conditions were observed that would 

preclude some successful walleye spawning in the Buffalo River watershed, but habitat 

conditions are not suitable for larval survival during movements to Lake Erie. Mean 

zooplankton density during the walleye larval period ranged from 4 1 .0- 86.4 individuals/L 

in 2006 and 2007, with rotifers being the dominant taxon in both years: 78% and 86%. Mean 

density of zooplankton at the river confluence with Lake Erie ranged from 2 1 .8-25 . 1  

individuals/L in 2006 and 2007. Rotifers were the dominant taxon in 2007 (73%) and 

cyclopoid copepods ( 40%) and rotifers (25%) were the dominant taxa in 2006. While 

abundance of zooplankton was adequate for walleye fry feeding, the predominance of small­

bodied zooplankton was suboptimal. No ichthoplankton, including larval walleye, were 

caught during the study period despite intensive sampling. 
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Fish community comparison: 2006 vs. 1981-1982 

The Buffalo River, once a large industrial port for the City of Buffalo,  has gone 

through great environmental stresses over the years. Through the development of 

environmental regulations and decline of industry in the City of Buffalo,  the condition of the 

river has improved. The objective of this aspect of my thesis was to replicate a survey 

conducted in 1 98 1 - 1 982 (Makarewicz et al. 1 982), using electro-fishing and gill netting, to 

determint1 the extent of change in the fish community. The fish communities of the Buffalo 

River exhibited similarities and differences between the surveys. Simpson's diversity was 

high (0.89) in 1 98 1 - 1 982 and in 2006 (0.9 1 )  but community similarity was only 48 .3%. In 

2006, 5 1  species from 1 4  families were caught. In 1 98 1 ,  3 2 species from 1 0 families were 

caught. Twenty three species of fish captured in 2006 were not captured in 1 98 1 - 1 982. Four 

species caught in 1 98 1 - 1 982 were not caught in 2006. Centrarchidae ( 4 1 .4% ), Cyprinidae 

(20.7%), and Clupeidae ( 1 5 .5%) were the most commonly captured families in 2006. 

Cyprinidae (36.8%), Catostomidae ( 1 8 .0%), and Centrarchidae ( 1 7.4%) were the most 

prevalent fan1ilies in 1 98 1 .  Changes in the relative abundance of major families and the 

addition of many new species both indicate a change from a moderately pollution-tolerant to 

a less pollution-tolerant fish community during the 25 years between studies. 
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Introduction 

The open water, rocky shoals of Lake Erie support spawning stocks of the 

walleye (Sander vitreus). The use of these unprotected shoals by adult walleye has 

been an important factor leading to high variability in their recruitment success in the 

eastern basin of Lake Erie since the 1 960s (Einhouse 1 994). Exact causes of this 

variability are not well understood but may be due in part to excessive walleye 

mortality during early life stages, especially egg survival through the first winter 

(Mion et al . 1 998). Stochastic events are common in the basin and often cause 

extreme fluctuations in environmental conditions at these open water spawning sites. 

Wall eye eggs are dislodged by increased wave action from severe winds, causing 

substantial mortality (Roseman et al . 200 1 )  Thermal shock from extreme water 

temperature changes during spawning and incubation periods is also thought to cause 

high egg mortality (Busch et al. 1 975;  Koonce and Shuter 1 977). Development of 

walleye embryos is delayed when water temperatures increase slowly, leading to 

recruitment variability (Figure 1 )  due to longer exposure of severe weather events, 

siltation, abrasion and predation (Einhouse 1 994). 

Developing spawning stocks that use different limnological habitats, such as 

stream beds and lotic shoals or shores, may decrease the amount of recruitment 

variability in Lake Erie walleye stocks (Regier et al. 1 969). This idea led to the 

development of a stocking program by the New York Department of Environmental 

Conservation (NYDEC). The program is designed to create or enhance the walleye 

spawning activity in selected New York steams. Walleye spawning activity in streams 

1 



is very limited in Lake Erie' s eastern basin (Einhouse 1 994), especially when 

compared to the stream-spawning populations in the western basin (Jude 1 992). 

Historically river spawning was common amongst the Great Lakes walleye 

populations, but pollution, sedimentation, and damming destroyed or damaged many 

tributary systems (Schneider 1 977; Schneider and Leach 1 979; Feilder 2002). 

Common characteristics of these walleye spawning streams were used by the 

NYDEC to identify candidate streams for walleye introduction in New York State 

(Einhouse 1 994).  However, it is still unclear why some rivers support better walleye 

recruitment than others. 

By flowing into a warm, turbid, nutrient- rich embayment or estuary, the 

Buffalo River (Figure 2) was thought to share some of the habitat characteristics of 

the productive walleye spawning rivers such as the Maumee, Saginaw, Sandusky, and 

Thames Rivers (Haas and Thompson 1 997). Therefore, the Buffalo River was chosen 

by the NYDEC in 2003 as part of a plan to establish self-sustaining riverine 

populations of spawning walleye along the NYS shore of Lake Erie. This relatively 

large lotic system flows from the east into the eastern basin of Lake Erie just south of 

the Lake's outlet into the Niagara River (Figure 3) .  

Historically, the Buffalo River has been severely degraded by industrial and 

urbanized development (Sauer 1 979; Rossi 1 995;  Buffalo Niagara Riverkeeper 2005 ; 

Irvine et al . 1 990.) Poor water quality, contaminated sediment, and physical alteration 

led to the designation of the Buffalo River as an Area of Concern (AOC; see Figure 

3) in the mid- 1 980s (NYDEC 1 989). The AOC extends 9.4 river kilometers up the 
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Buffalo River from the mouth and includes the greatly compromised riparian 

corridor. The Buffalo River watershed is 1 1 39.6 km2 and contains 3 8  combined sewer 

outfalls and 45 inactive hazardous waste sites (Buffalo Niagara Riverkeeper 2005). 

Annual maintenance dredging and bulkheading is performed by the U.S Army Corps 

of Engineers to accommodate safe and convenient movement by Great Lakes cargo 

vessels (NYDEC 1 989). This activity has been ongoing since the 1 800s, causing 

negative impacts to fish and wildlife habitat (NYDEC 1989). Increasing the depth and 

width of the river channel greatly increased the residence time of pollutants and 

sewage that pass through the system (Kozuchowski et al. 1 993).  Signs of biological 

recovery in the river have been observed and documented (Diggins and Snyder 2003) 

but historical degradation persists, impeding further recovery of the system. 

Walleye stocking in the Buffalo River commenced in 2004 and continued 

through 2006 with annual fry and fingerling stocking planned for a 5-7 year period 

(Table 1). Walleye for stocking were reared at the NYDEC Chautauqua Hatchery 

using brood stock from Cattaraugus Creek. Cattaraugus Creek is stocked with fry and 

fingerling walleye annually and is perhaps the only true riverine stock along the Lake 

Erie shore in New York (NYDEC 2006). Cattaraugus Creek brood stock provides the 

most comparable genetics to what was once assumed to reside in the Buffalo River. 

Genetic analysis revealed that spawning walleye from Lake Erie's tributaries and 

offshore reefs are genetically divergent, suggesting spawning site philopatry (Stepien 

and Faber 1 998); tagging data reported by Todd and Haas ( 1993) further suggest 

adult walleye return to their natal grounds to spawn. 
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Although the success of establishing a fish species through stocking has a 

history of unpredictability (i .e . ,  ineffective or detrimental consequences) (Ellison and 

Franzin 1 992), it is a universal management tool for restoring populations. Low 

intensity, annual electrofishing surveys of potential walleye spawning sites were 

conducted by NYDEC in the Buffalo River but no juvenile or adult walleye, from 

stocked or natural origin, were found (NYDEC 2006). However, stocked walleye 

were not expected to return until 2007-08, based on known sexual maturity rates 

(male walleye generally mature at 2-4 years of age and >280 mm TL; females mature 

at 3 -6 years of age and >360 mm TL; McMahon et al. 1984). Accordingly, it was 

determined that sampling for walleye and knowledge of habitat requirements for 

developing young were insufficient to draw valid conclusions about the status of the 

NYDEC stocking plan for the Buffalo River. 

Walleye Restoration Studies 

The lack of information described above raised several important questions as 

to the fate of the walleye released into the Buffalo River. First, are adequate 

zooplankton populations available at critical times and locations (i .e . ,  river mouth) to 

support the growth and development of larval walleye? Secondly, do physical habitat 

conditions in the river (spawning substrate, dissolved oxygen, temperature, secchi 

transparency, velocity, pH) fall within the ranges presented in the national Habitat 

Suitability Index (HSI) for walleye (McMahon et al. 1 984) and thesis work by 

Christopher Lowie ( 1 998), which was later published (Lowie et al. 2001 )? Finally, 
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what i s  the extent of walleye presence in the river and i s  the presence the result of 

stocking efforts? In order to know if walleye restoration in the Buffalo River is l ikely 

to succeed or fail, there was a critical need to evaluate existing habitat conditions and 

the results ofNYDEC's stocking efforts to date. 

Fish Community Studies 

In addition to assessing the zooplankton, habitat parameters and the presence 

of walleye, I also examined the composition and diversity of the overall fish 

community in the Buffalo River. This work was designed to determine if  changes in 

the fish community have occurred in the 25  years since the river was first examined 

in 1 98 1  (Makarewicz et al. 1 982). With the decline of industry in the City of Buffalo, 

increased awareness of water pollution/ quality and public safety, and increased 

regulatory and monitoring efforts by the state and federal agencies, for example the 

Environmental Benefit Permit System (EBPS) and the State Pollution Discharge 

Elimination System (SPDES) (Buffalo Niagara Riverkeeper 2005), the water quality 

of the river has improved and therefore the fish community should have followed suit, 

but to what extent? A historical perspective may assist in educating and even 

modifying the attitudes and actions of the human population that interacts with the 

river and its fishery. In order to develop a greater understanding of the Buffalo River 

fish community and to supplement my walleye research, monthly fish surveys were 

conducted in the lower sections of the river to replicate the survey conducted by 
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Makarewicz et al . 1 982. In doing so, I tested the null hypothesis that the Buffalo 

River fish community of 2006 is not different from the community present in 1 98 1 .  

Study Area 

The geographic range of the project primarily focused on the lower 9.4 km 

section of the Buffalo River designated as the Area of Concern (AOC; Figure 2). 

This stretch of river ranges from the Buffalo River and Cazenovia Creek confluence 

to the mouth of the Buffalo River at Lake Erie. During the April-May period when 

walleye are likely to be spawning, sampling focused on suitable spawning habitats, as 

determined though preliminary surveys in the lower sections of Buffalo, Cayuga, and 

Cazenovia Creeks. The most upstream sites for sampling in Buffalo (Reach 16), 

Cayuga (Reach 20) and Cazenovia Creeks (Reach 9) were at their first impassible 

barriers (Figure 4 ) .  

Methods 

Physicochemical Data 

At all sampling locations dissolved oxygen (DO) and water temperature were 

measured. At sites located within the AOC, pH and secchi transparency also were 

measured. Water quality data was taken while smnpling for biota. DO (mg/L) and 

temperature (C0) were measured with a YSI meter at mid channel. DO was calibrated 

using the air saturation method as recommended by the manufacturer. At locations 

with depths > 3 m, measurements were taken at 3 m; at locations <3 m deep, 
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measurements were taken at one-half the water depth. A LaMotte Tracer Pocketester 

was used to measure pH and was calibrated before each use with a pH buffer of 4, 

following the manufacturer's recommendation. 

Water transparency was measured only during day trips with a 200-mm 

diameter secchi disc. Depths at deep sites were determined using the boat-mounted 

Garmin GPS fish finder and at shallow sites with a meter stick at mid-stream. 

Percentages of primary and secondary substrate types were estimated visually at 

potential spawning sites :  9, 1 0, 1 2-20 (Figure 4). Substrate was classified as sand/silt 

(<2 mm), gravel (2- 1 50 mm), cobble ( 1 5 1 -256 mm), or boulder (>256 mm) (Lowie et 

al. 200 1 ) . Stream velocity was measured at potential spawning sites with a Pigmy 

Gurly meter at �60% of the stream depth at mid-channel .  

Zooplankton 

Zooplankton samples were collected vertically, twice weekly, with a 63-J.lm 

Wisconsin net ( 1 3 0  mm diameter) from two weeks before (April 29, 2006 and March 

1 1  ,2007) until two weeks after (June 1 0, 2006 and June 2, 2007) predicted walleye 

fry emergence. Fry emergence was predicted by monitoring water temperatures and 

predicting the peak spawning period (Wolfert 1 98 1 , McMahon et a1 . 1 984 ) .  

Zooplankton samples were collected at sites 1 - 1 0  (Figure Sa), starting at the Buffalo 

River mouth and ending approximately 0.5 km upstream of the stocking location. 

Three vertical tows, taken at 25%, 50%, 75%> of the stream width, were composited 

and preserved in 4% formalin for 24 h then transferred to 70% ethanol. Zooplankton 
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were enumerated and classified into Rotifera, Cladocera, Calanoida, Calanoid nauplii, 

Cyclopoida, Cyclopoid nauplii, Oligochaeta, Chironomidae, and Dreissena veliger. 

Assuming filtration efficiency of 1 00%, zooplankton densities were calculated as the 

number of organisms/L using the formula provided by Wetzel and Likens ( 1 99 1 ) :  

C x V' 
V" x V"' , where 

C = nutnber of organisms counted 

V' = volume of the concentrated sample (L) 

V" = volume counted (L) 

V'" = volume of water through which net was towed (L) rc*r2*d 

r= radius of net opening 

d = depth 

Ichthyoplankton were collected with a Miller high speed sampler equipped 

with a flow meter to determine the volume of water filtered. The sampler was towed 

for 5 min behind a 4.5-m aluminum boat at various speeds (3 -6 km/h), as determined 

by a Garmin hand held GPS unit. Three samples were obtained from the five sites ( 1 ,  

5 ,  7 ,  8 ,  and 9 ;  Figure 5b), at 25%, 50%, 75% of the strean1 width. Composite 

sampling was chosen to sample both the littoral and pelagic portions of the river. 

These five sites were chosen to concentrate sampling effort in the upper portion of the 

river where fish stocking had occurred. By varying the sampler's speed, depressor 

weight and distance behind the boat, sampling depths varied from 0-4 m. Collection 
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of icthyoplankton occurred primarily at night because newly hatched walleye are 

photonegative (Bulkowski and Meade 1983), but several day trips were made as well . 

Ichthyoplankton were preserved in 4% formalin for 24 h then transferred to 70% 

ethanol, enumerated, and identified to the lowest possible taxonomic level (Auer 

1982). Weekly ichthyoplankton sampling began in late May 2006 after fry stocking 

and ended in mid July 2006 after fingerling stocking. No larval stocking and sampling 

took place in 2007 because of the NYDEC's emergency regulations put in place to 

control viral hemorrhagic septicemia (VHS). 

Walleye 

Adult Sampling-. During the non-spawning period (June 2006-March 2007, 

excluding the winter months ofNovember, December, January, and February when 

river access was limited due to ice conditions), boat electrofishing and gillnets were 

used to sample for adult and juvenile walleye. Sampling occurred monthly at sites 1-8 

(Figure 5c) using SUNY Brockport's electrofishing boat at twilight for 15 min. A 

circular pattern was used to fish both river banks and mid-channel habitat. At sites 

where depths were greater than 2 m (Figure 5c ), gillnets were set perpendicularly to 

the river bank (depending on the proximity to large vessel activities) and retrieved 

after 24 hours of soak time. Each gillnet had six, 8-m panels of gradually increasing 

mesh sizes ranging from 2 .5  to 10.2 em bar measure. The depths at which the nets 

were set are presented in Table 2 .  
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During the walleye spring spawning season of 2006 (April-May), sampling 

occurred upstream of the AOC to the first fish barrier (Figure 4), primarily at sites 

with suitable gravel and swift currents, two very important factors which influence 

the suitability of river spawning (McMahon et al. 1984), but also at some haphazardly 

selected sites .  Depending on accessibility, either boat or backpack electrofishing was 

used with run times of 15 min. At various times during the spring, a portable spotlight 

was used at night at several tributary sites (Figure 6) to observe if adult walleye were 

present in the streams.  Standing from a bridge or bank, I scanned the stream for 

several minutes looking for the reflection from walleyes '  eyes. 

Captured fish were identified to species ,  counted, and measured (fork length) 

to the nearest mm. When 30  individuals of one species were caught at a single site 

location, measurements were discontinued and only fish counts were recorded. All 

walleye were weighed, and scale and tissue samples (anterior dorsal fin) were 

collected for age determination and genetic analysis, respectively. Fin tissue was 

dried, placed in scale envelopes and sent to DEC Region 9 Fisheries Manager Don 

Einhouse. Scales samples were collected from behind the pectoral fins, dried and 

stored in scale envelopes .  Wall eye ages were determined by magnifying the scales on 

a projection microscope and counting the number of annuli. 

Predatory Impact on Fingerlings-. On the day after walleye fingerlings were 

released at the stocking location, known walleye predators (walleye, yellow perch, 

rock bass, largemouth bass and smallmouth bass; 

""'--'''"'""""""'""" for stomach analysis during a 15-min boat electrofishing survey at Site 
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7 (Figure 5c  ). Carnivorous fish > 100 mm long (total length) were frozen, returned to 

the lab,  and stomach contents were identified qualitatively under a dissecting 

microscope. 

Fish Community 

The Buffalo River fish community was examined by replicating protocols 

described in Makarewicz et al. ( 1982). Fish surveys were conducted at the same six 

locations (Sites 1-6, Figure 5c) in 2006 and 198 1 (Appendix 1 ) .  Two sites were added 

in 2006, one at the walleye stocking location (Site 7) and the other in Cazenovia 

Creek (Site 8 ;  Figure 5c ), to assess the presence of walleye upstream from the 

stocking site. Fish were collected by boat electroshocking and gillnets using the 

methods and during the months described above for adult walleye. Electrofishing 

differed in the important respects between 198 1 and 2006. 1) Different electro fishing 

units were used and the unit in 2006 was far more efficient than the one used in 198 1, 

which likely produced greater catch rates .  2) The standard unit of effort in 2006 was 

calculated as the number of fish caught during 15 min of power-on electrofishing, 

whereas in 198 1 it was the number fish caught along 65 m of shoreline. 3)  

Electrofishing was done at night in 2006 and during daylight in 198 1 .  Night 

electrofishing has been shown to produce more species, larger individuals, and higher 

abundance than electrofishing during the day (Johnson and Nielsen 1989). Assuming 

that fi sh in both years were caught in relation to their abundance, the general trends in 
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species composition and relative abundance should not be biased. Hence, the 

communities were compared by percent, not absolute, abundance. 

Data Analysis 

Zooplankton densities in 2006 and 2007 at sampling sites in the Buffalo River 

were compared with a paired t-test; the null hypothesis tested was that the mean 

differences between paired observations is zero (a= 0.05) .  Utilizing Microsoft Excel, 

a linear regression was calculated for the plot of log weight vs. log length of captured 

walleye. Predators' stomachs were analyzed by calculating the perrcentages of 

stomachs which contained walleye. Percent similarity of the 2006 and 198 1 fish 

communities was computed following Brower and Zar (1984). A Sign test used to 

determine if there was a significant difference in fish communities ( 198 1 vs. 2006) 

whose percent abundances were greater than 1 %. A two-tailed t-test evaluated the 

null hypothesis that the Simpson's diversity of the 2006 and 198 1 fish communities 

was not different (Brower and Zar 1984 ) .  Water quality parameters were compared 

using descriptive statistics: mean, standard error, and minimum and maximum values .  
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Results 

Physicochemical Data 

From April-October 2006, the average water temperature at sites 1-8 in the 

Buffalo River was 18 .3  ± 0 .9 °C (Table 3 ,  Figure 7). The minimum ( 1 1.3 °C) and 

maximum (26.3  °C) temperatures were observed on October 7 and July 15 . 

The average dissolved oxygen (DO) concentration at sites 1-8 in the Buffalo 

River was 7 .5 ± 0.3 mg/L (Table 3).  The minimum DO of 4.3 mg/L was observed on 

August 19 in the Buffalo Ship Canal (Site 6, Figures 4 & 5c ). The highest average 

DO, 10.9 mg/L, was measured on April 30 .  

Secchi depths throughout the study period ranged from 0. 1-2 . 1  m (Table 3 ,  

Figure 8) .  On average the secchi depth was 0 .82 ± 0. 1 m.  

pH measurements taken in May and June ranged from 7.5-8 .3 with an average 

of 7.9 ± 0.05 (Table 3 ,  Figure 9). 

Potential Spawning Tributaries-. During the spring spawning period in 2007, 

water temperatures in Buffalo, Cayuga, and Cazenovia Creeks averaged 9.9 ± 0.5 °C 

(Table 4). On March 26, water temperature averaged 7.4 °C, steadily warmed to an 

average of 1 1 .2 oc by April 26, and fell to 9.7 oc by April 29 (Table 4). Lake Erie' s  

water tetnperature o n  March 26, 2007 was 0 o c  and remained at 0 oc through April 

14. By April 29, Lake Erie' s  water temperature reached 1 .7  oc (NOAA 2009). 

The three streams were well oxygenated, with an average DO concentration of 

10.9 ±0.3 mg/L (Table 4) in the spring of 2007. Average DO concentrations ranged 

from 12.7 mg/L on March 26 to 9 .9 mg/L on April 14 (Table 4). 
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Stream velocities for the three creeks were fairly consistent, with no major 

rain events. Average stream velocity was 6 1 .0 ± 8 .0  em/sec and ranged from 27.4-

79.2 em/sec (Table 4). 

Zooplankton 

River-. Zooplankton densities varied greatly from April to June (Tables 5 & 

6), as indicated by large mean standard errors. In 2006 and 2007, total zooplankton 

densities (individuals/L) at the ten Buffalo River sites (Figure 5a) averaged 4 1 /L and 

86/L, respectively; the null hypothesis that the mean differences between paired 

observations is zero was accepted (P = 0 .3 3 1 ). During both years the zooplankton 

community in the river was dominated by rotifers:  31.9 ± 25 .4/L in 2006 and 74.4 ± 

62.9/L in 2007. In both years, the second most abundant zooplankter was cyclopoid 

copepods and their nauplii. Cladoceran densities were 2.2 ± 1 .0/L in 2006 and 0.4 ± 

0 .3/L in 2007. 

River Mouth-. In 2006 and 2007, mean zooplankton densities from April to 

June at the two sites at the mouth of the Buffalo River (Z1 and Z2; Figure 5a) were 

4.3 ± 2.4/L and 5 .2 ± 4.2/L (individuals/L), respectively; the null hypothesis that the 

mean differences between paired observations is zero was accepted (P = 0 .848; Table 

5) .  In both 2006 and 2007, rotifer densities were high, but they were the dominant 

taxon only in 2007. The dominant taxa at the river mouth were cyclopoid copepods 

(8 .8 ± 7 .6/L) and their nauplii (4 .3 ± 0 .6/L) in 2006 and rotifers ( 1 8 .4 ± 1 6.0/L) in 

2007 (Table 5) .  Cladocerans were moderately abundant in 2006 (2.2 ± 2 .2/L] but not 
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in 2007 (0 .4 ± 0 .4/L. Conversely, calanoid copepods were more abundant in 2007 

(2.3  2 .2/L) than in 2006 (0.9 ± 0.9/L (Table 5) .  

I chthyoplankton 

From April 29 through June 23,  2006 32 5-min tows for larval fish were 

completed at an average speed of 4.3 knots. A linear regression provided by the 

manufacturer (Appendix 2) was used to determine the volume of water filtered during 

each tow by the Miller Sampler. An estimated 1 2 1 .6 m3 of water was filtered at an 

average volume of 3 .8 m3 per tow. This effort caught no larval fish. However larval 

fish, believed to be bluegill and largemouth bass, were observed in the river. The only 

fishes caught during the larval sampling were sixteen adult emerald shiners on the 8-9 

May 2006 (Table 7). 

Walleye 

2006 Adult Survey-. During the 2006 sampling period, 29 walleye were 

captured at all AOC survey locations in the Buffalo River (Table 8). Twenty six were 

caught in the AOC, except site 5 (Figure 1 0), but none were caught upstream of the 

stocking location (site 7) or in adjacent Cazenovia Creek. The most productive 

location was site 2 which produced 1 3  walleye. One, 1 -year old fish was caught near 

the stocking location on June 1 4. June (N=9) and July (N=6) were the most 

productive sampling months (Table 8). During the presumed 2006 post-spawning 

period, three walleye were caught from May 26-29. Of the three caught, only one 
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(age-3) was old enough to be near maturity (ages 4-5). After examining the 

plumpness of the body and the size and rigidity of the genital papilla, it could not be 

determined if this fish had spawned or not. 

At the stocking location on June 1 0, three walleye fingerlings were found 

(Table 8), which almost certainly were from the previous day's  stocking. They were 

caught during a predator survey; based on their conditions they likely were 

regurgitated from one or more of the captured predators. These three walleye 

fingerlings were not included further in the analysis  unless stated otherwise. 

The dominant age group of captured walleye was age- l (N=15, Figure 1 1). 

Ten of the remaining eleven were ages 2 or 3 ;only one walleye was older than 4 

years. Based on reported ages of maturity (McMahon et al. 1984), only five of the 26 

walleye had the potential to be sexually mature. The age-4+ walleye caught in the 

Ship Canal (site 6) on October 9 was definitely old enough to be sexually mature. 

The relationship of walleye log weight to log length was strong (r2 = 0.991, 

Figure 12). Due to the limitations of the scales used, no weights were obtained for the 

largest and smallest walleye captured. 

Clipped fins from all walleye were given to the NYDEC for genetic analysis 

but the results are not yet available. After completion of the genetic analysis it should 

be possible determine if captured walleye were of stocked origin. 

2007 Adult Spawning Survey-. From March 30  to April 20, night-time 

spotlighting in sections of Cazenovia Creek (site 9),  Buffalo Creek (sites 15 and 16), 

Buffalo River (Harlem Road DEC Fishing Access Point), and Cayuga Creek (sites 17, 
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19, 20) (Figure 6) produced no observations of adult walleye. Prior to spotlighting, 

backpack electrofishing surveys conducted in Cazenovia (site 9), Buffalo (sites 15 & 

16), and Cayuga Creeks (sites 17  & 20) on the 27th and 291h of March also produced 

no walleye. Once the Buffalo River was accessible by boat, gillnet and electrofishing 

surveys at reaches 1 through 8 also caught no adult walleye from April 20-2 1. 

Beginning on April 26111 ,  and repeated on the 291h, boat electrofishing surveys in the 

Buffalo River (sites 10 & 12) and Cazenovia Creek (site 9) also caught no walleye. 

Despite observing spawning temperatures ( 9.3- 1 1.5 °C), substrate (gravel/cobble), 

and current (0.37-2.97 m/s) in Cazenovia, Buffalo, and Cayuga Creeks that appeared 

suitable for walleye spawning, as described by McMahon et al. ( 1984) and Lowie et 

al . (200 1 ), no walleye were caught or observed in the spring of 2007. 

Predatory Fish Stomach Contents-. Yell ow perch, rock bass, largemouth 

bass, and smallmouth bass are significant predators of stocked walleye in other 

systems 
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In 2007 no fish were allowed to be transported from one water body to 

another in New York State. Since stocked walleye were raised from the NYDEC' s  

Chautauqua Hatchery, no potentially infected brood stock walleye from Cattaraugus 

Creek were allowed into the hatchery facility. Thus, no walleye were stocked in the 

Buffalo River and no predator survey was conducted in 2007. 

Fish Community: April- October, 2006 vs. 1981 

In 2006, 4,269 fish representing 5 1  species from 14 families were caught; in 

198 1 ,  1 ,049 fish and 32  species from 10 families were caught (Table 9). Twenty-three 

species of fish captured in 2006 were not captured in 198 1 ;  conversely, four species 

caught in 198 1 were not caught in 2006 (Table 9). The four families caught in 2006 

but not in 198 1 were Petromyzontidae, Lepisosteidae, Atherinopsidae, and Gobiidae 

(an invasive family not present in Lake Erie in 198 1 ). The difference in total catch 

was due to electrofishing methodology (see Methods). 

Based on percentages of all species caught, the 198 1 and 2006 communities 

were only 48 .3% similar (Table 11 ) .  However, there was no significant difference (P 

> 0 .5 ,  Sign test) between years among the 18  species > 1 % abundance in one or both 

years (redhorse suckers, Moxostoma spp. ,  were combined). In sum, despite much 

greater species richness in 2006, the new species were not abundant enough to 

distinguish the communities statistically. 
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Simpson' s diversity was 0 .910 in 2006 and 0.890 in 198 1 (Table 1 1) .  These 

values were statistically different, but a difference of 0 .02 has no ecological meaning. 

In 2006, Centrarchidae (41 .4%), Cyprinidae (20 .7%), and Clupeidae (15 .4%) 

were the most abundant families caught (Table 9, Figure 13). Due to the extreme 

abundance of emerald shiners in the system, this species was not fully counted and is 

not included in the analysis. If emerald shiners had been fully counted, Cyprinidae 

likely would have been the most numerous family in 2006. Percidae (7. 7%) and 

Catostomidae (7 .6%) were moderately abundant in 2006. In 198 1, Cyprinidae was the 

most prevalent family (36.8%); Catostomidae (18 .0%) and Centrarchidae ( 17.4%) 

were the next most abundant families (Table 12, Figure 14). Percidae (8.8%), 

Ictaluridae (8 .8o/o), and Clupeidae (6 .5%) also were frequently caught. 

The species most commonly caught in 2006 (Figure 15) were gizzard shad 

(15 .3%),  largemouth bass (15 . 1%) and pumpkinseed ( 14.2%). In 198 1 ,  common carp 

(20.5%), white sucker ( 16.9 %) and pumpkinseed ( 11 .3%) were the most frequently 

caught (Figure 16). 

Discussion 

Are biological conditions in the Buffalo River adequate to support larval and 

fingerling walleye? 

Food supplies-. The critical period for walleye year-class success is the time 

between the fry and fingerling stages when post-larvae must switch from endogenous 

(maternal yolk sac) to exogenous (zooplankton) food supplies (Bulkley et al. 1976; 
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Roseman 1 997). When post-larval walleye were given a choice between large- and 

small-bodied zooplankton, they ate organisms considerably larger than the average 

size found in samples from their habitat (Haas and Thomas 1 997) .  In New York and 

Iowa, young walleye in May and June preferred cladocerans and copepods and rarely 

fed on moderately abundant rotifers and copepod nauplii (Houde 1 967; Bulkley et al. 

1 976). However, Hohn ( 1 966) observed planktonic diatoms to be the first food of 

pelagic walleye fry in western Lake Erie and Smith and Moyle ( 1 945) observed 

rotifers to be the most important early food of fry in rearing ponds. 

Despite considerable information on post-larval walleye feeding preferences 

in lakes and ponds, little information is available on their feeding preferences in 

rivers. Wall eye spawn in rivers that are shallow with swift currents; such systems do 

not typically support large zooplankton populations and walleye fry are quickly 

transported to a lake after they hatch. The Buffalo River is unique in that it is has a 

long history of environmental degradation which was compounded by the deepening 

and widening of the river, increasing residence time for drifting walleye fry. 

Haas and Thomas ( 1 997) examined five Great Lakes tributaries (Maumee, 

Thames, Saginaw, Clinton, and Huron) that share characteristics with the Buffalo 

River. Based primarily on zooplankton densities, three of the rivers were considered 

to be potentially productive walleye rivers (Maumee, Thames, Saginaw) and two 

were considered to have potentially poor conditions (Clinton, Huron). Overall 

zooplankton densities in the Buffalo River and Harbor (2 1 .8-86.4/L; Table 5) place it 

in the productive walleye river category (Appendix 3). The three potentially 
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productive walleye rivers had zooplankton densities of 12.2, 6.9, and 4.9/L, 

respectively, while the potentially unproductive rivers had less dense zooplankton 

populations (1 .5 -1 .  7 organisms/L ). Despite higher total zooplankton densities than the 

productive walleye rivers, I found no walleye fry in the Buffalo River. 

Singer et al. ( 1994) reported that the zooplankton community of the lower 

Buffalo River on May 29, 1992 was different from a Lake Erie control site but was as 

diverse as near shore habitats in Lake Erie. Singer et al. ( 1994) also reported high 

abundance of Copepoda (range: 25.0/L to 35 .6/L) but low abundances of large bodied 

zooplankton (Appendix 4). In both Singer et al. ' s  and my studies, total zooplankton 

densities appeared to be sufficient to support the growth and development of larval 

walleye but food quality was poor because small-bodied rotifers were the dominant 

taxon in the Buffalo River (Table 5 ,  Appendix 4). Houde ( 1967) showed that rotifers 

in Oneida Lake were rarely consumed by walleye fry. 

In late April and early-mid May of 2006 and 2007, densities of large bodied 

zooplankton were low but those of rotifers were high (Table 5). Cyclopoid nauplii 

were fairly abundant in the Buffalo River in 2006 (Table 5) but Bulkley et al. ( 1976) 

found very few nauplii in the stomachs of walleye fry in Clear Lake, Iowa; despite 

high abundance, fry ate fewer, larger zooplankton. Roseman (1997) examined the 

diets of age-0 walleye from Western Lake Erie in 1994 and 1995 and found that 

calanoid copepods and large bodied zooplankton accounted for nearly 60% of the 

dry-weight biomass. He found no diatoms or other phytoplankton in age-0 walleye 

diets, but observed stnall cladocerans, rotifers and nauplii in walleye stomachs 
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(usually less that 20% of the dry-weight biomass). Prey electivity data (Roseman 

1997) strongly suggested that pelagic age-0 walleye in Western Lake Erie in May and 

June consumed large bodied zooplankton in greater proportion than their presence in 

the zooplankton community. The infonnation presented above indicates that 

zooplankton densities in the Buffalo River are high enough to support larval walleye, 

but the low density of large zooplankton, such as cladocerans, may hinder the growth 

and development of larval walleye. 

Fingerling walleye also have been stocked in the Buffalo River (Table 1 ) .  

Except for regurgitated stomach contents of predators, I found no evidence of them 

immediately after stocking in 2006. However, the small nutnbers of age-0 and 1 

walleye I captured may suggest the survival of some fingerlings (or fry-this cannot 

be determined from my study) after earlier stockings. Fingerling walleye consume 

small fishes, and there is good evidence for abundant larval and sn1all fishes in the 

lower Buffalo River. I observed large numbers of adult emerald shiner and gizzard 

shad spawning in the river. The U.S Fish and Wildlife Service (Kozuchowski et al. 

1993) captured large nutnbers (N = 9,378) of larval fish in the river in May and June, 

particularly gizzard shad (35-75%) and sunfishes ( 4-20%) (Appendix 5). Although I 

did not catch any larval fish in 2006, I did observe schools of juvenile largemouth 

bass and bluegill along the banks of the Buffalo River by early June 2006, showing 

that these species use the river for spawning and are also potentially available as food 

for walleye fingerlings. 
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In 200 6 age-0 etnerald shiner abundance increased to near record levels in 

Lake Erie (Great Lakes Fishery Commission 2006). In the eastern basin of Lake Erie, 

emerald shiner (70%) and gizzard shad ( 16%) are the dominant forage fish for 

walleye (Great Lakes Fishery Commission 2006), consistent with tny observations of 

their availability in the Buffalo River in 2006. It appears that excellent forage fish 

populations are available for fingerling walleye in the lower Buffalo River and nearby 

Lake Erie. 

Predators-. Successful establishment of a walleye spawning population in 

the Buffalo River by stocking also depends on fry or fingerlings surviving a post­

stocking predator gauntlet in the river. Yell ow perch, rock bass, largemouth bass, and 

smallmouth bass are important predators of stocked walleye 

One of the major factors limiting the success of other walleye stocking 

programs, especially with walleye fry, has been predation pressure (Brooking et al. 

200 1 ;  McDonnell and Cornwell 2002). One strategy to reduce predation on 

fingerlings walleye has been to stock at night. A study conducted at Oneida Lake, NY 

reported a 30% reduction in walleye predation after stocking at night, especially by 

largemouth bass, smalltnouth bass and yellow perch (McDonnell and Cornwell 2002). 
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Are habitat conditions in the Buffalo River consistent with the HSI model for walleye? 

Dissolved oxygen-. Walleye typically inhabit water bodies with dissolved 

oxygen concentrations >3-5 mg/L (McMahon et al. 1 984; Lowie et al . 2001 ), with 

optimal concentrations for fry >5mg/L (McMahon et al. 1 984) During the potential 

spawning period from March through May, DO at the eight AOC sites in the Buffalo 

River ranged from 4 .3 - 1 0 .9 mg/L (average: 7 .5  ±_0.03 mg/L) (Table 3) .  DO levels 

below the NYS guideline (tninimum daily average shall not be less than 5 .0 mg/L and 

at no time below 4 .0  mg/L) within the dredged portion (AOC; sites 1 -6) of the study 

area have not been reported during these months (Irvine et al. (2005). The one time 

measurement of 4 .3  mg/L is not ideal for fry but is survivable. Also to be considered 

are the diel fluctuations in DO concentrations, as DO concentrations may dip below 

the optimal range, especially before sunrise. I measured DO during the day and night 

and did not find any evidence to suggest DO concentrations in the Buffalo River are 

not suitable for adult and juvenile walleye. 

Temperature-. Einhouse ( 1 994) indicated that water temperatures from 6 .7-

8 .9 oc are important at walleye spawning sites, although walleye have been observed 

spawning at much lower temperatures in western New York (Lowie et al. 200 1 ). 

Einhouse ( 1 994) is in agreement with McMahon et al. ( 1 984 ), who stated that optimal 

temperatures are 6-9 oc for fetiilization and 9-15 oc for incubation. During the 

anticipated walleye spawning period in the spring of 2007 (March-May), water 

temperatures from Buffalo Creek, Cayuga Creek, Cazenovia Creek ranged from 7 .4-
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1 1 .2 oc (average : 9.9 ± 1 .4 °C), slightly higher than the optimal range suggested by 

McMahon et al . 1 984. Optimal temperatures were recorded during late March but 

rose above the literature-based optimal range through April (Table 4). However, 

Lowie et al. (200 1 )  observed walleye spawning in a tributary of Chautauqua Lake at 

temperatures near 4 °C on approximately the same dates in 1 996 (April 3 -22) and 

1 997 (April 3 - 1 9) ;  they suggested that photoperiod rather than temperature maybe the 

primary cue for the timing of walleye spawning in western New York streams. 

Early in life walleye fry require temperatures similar to spawning walleye (8-

1 5  °C). However, the rate of warming in the spring is also an important factor. 

According to McMahon et al . ( 1 984), steady warming rates of 0.28°C/day are 

positively correlated with fry production. Spring warming rates in the tributaries of 

the Buffalo River averaged 0 . 1 1  °C/day. Spring warming rates are quite unpredictable 

and variable frotn year to year, and this variability is thought to play an important role 

in walleye recruitment variability (Busch et al. 1 975, Einhouse 1 994, Madenjian et al. 

1 996). Many years of data on spring warming rates in the tributaries would be needed 

to determine variability in the Buffalo River system. Once fry begin to feed 

independently, optimal temperatures for growth are near 22 °C; such temperatures 

were never recorded in the Buffalo River and Lake Erie during fry development 

season (Tables 3 and 4; Figure 7) 

Turbidity-. The Buffalo River watershed includes the southern half of the 

City of Buffalo, the second largest city in New York State, along with the heavily 

urbanized suburbs of central Erie County. To the south, the watershed is  more rural; 
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there are approximately 904 farms and 55 ,700 acres ofpastureland (USDA 2005). 

These types of land uses cause significant turbidity from storm water runoff and 

stream bank erosion (Buffalo Niagara Riverkeeper 2005). During rain events turbidity 

can reach 1 ,000 nephelometric turbidity units (NTU), enough to smother fish eggs 

(Buffalo Niagara Riverkeeper 2005); during dry periods turbidity can be relatively 

low ( <20 NTU) (Buffalo Niagara Riverkeeper 2005). A sechii disc was not used in 

the Buffalo River tributaries during my spring sampling in 2007 because of their 

shallow depths. Based on visual estimates, the water clarity was 1 -2 m, well above 

levels that impair walleye feeding ability (McMahon et al. 1 984). 

High turbidity in the Buffalo River has been suspected of contributing to 

impairments to fish and wildlife populations (Buffalo Niagara Riverkeeper 2005). 

Turbid conditions in the river are more likely to impact the feeding success of fry and 

fingerling walleye than adults. High turbidity in a river system have been shown to 

reduce reactive distances and foraging efficiency, to cause mechanical damage to gill 

tissues, and to obstruct interstitial spaces in gravel which reduces water flow and 

oxygen availability to eggs and fry, ultimately causing them to suffocate (Czesny et 

al . 200 1 ,  as cited by Sharma 2003) .  

pH . The optimum pH range for walleye, according to the HSI developed by 

McMahon et al. ( 1 984), is 6-9. The average pH in the river during the study period, 

7.9 ± 0.2), was quite constant and always within the range specified in the HSI. 

Substrate-. One of the key requirements for walleye spawning is a substrate 

of clean gravel or rubble (2 .5-5 em) . Spawning success is greatly reduced when eggs 
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are deposited over sand, mud, detritus or bedrock (McMahon et al. 1 984). Lowie et 

al . (200 1 )  only observed spawning walleye over gravel in Dewittville Creek (a 

tributary of Chautauqua Lake), further suggesting that walleye primarily select 

spawning habitat based on preferred substrate. In the Buffalo River and tributaries, 

clean gravel substrate is limited and soil erosion and sedimentation are continuous. 

The primary substrate of the lower Buffalo River is  a gray-black gyttja (Makarewicz 

et al. 1 982). Above the Ogden Street Bridge and below the Thruway Bridge (Figure 

4 ), the sediment is mostly sand and clay with a small proportion of rubble and gravel .  

Substrate in the tributaries is primarily shale bedrock (e.g. , site 20, Figure 4) .  

However, in litnited areas with swift current, such as site 1 6, gravel and rubble mixed 

with sand are present; these are suitable but not ideal spawning substrates for walleye. 

Stream Velocity-. According to McMahon et al. ( 1 984), optimal stream 

velocity for walleye spawning is 0.6-0.9 m/s and must be sufficient to transport fry 

downstream within 3-5 days. Instream velocities vary greatly as a result of numerous 

factors, including measurement locations, habitat types, precipitation, and stream 

width. Frotn March-May 2007, water velocities averaged 0 .6 1  ± 0 .08 m/s and ranged 

from 0.27- 0.82 m/s .  In Dewittville Creek, Lowie et al. (200 1 )  observed spawning 

walleye at stream velocities of 0 .2 1 - 1 .05 m/s. In sum, suitable velocities are available 

for walleye spawning in the Buffalo River and its tributaries. 

Physicochemical summary-. Except for a general lack of suitable spawning 

substrate, it appears that physicochemical conditions in the Buffalo River and its 

tributaries during the likely walleye spawning and fry migration season are generally 
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in accord with the walleye HSI (McMahon et al. 1 984) or observations in another 

western NYS stream (Lowie et al . 200 1 ) .  However, physicochemical conditions can 

vary considerably among years, a maj or reason why iteroparity is nearly universal 

among native Great Lakes fishes.  

Habitat suitability for walleye fry-. Productive walleye streams cannot be 

defined only by food supplies (which appear to be adequate for walleye fry and 

fingerlings in the Buffalo River), by ever-present predators, or by habitat conditions 

suitable for spawning adults. Habitat suitability for fry and fingerlings in the Buffalo 

River before they reach Lake Erie is critically important. 

Although cover (bank, emergent and submergent vegetation, and wood) was 

not measured in my study, walleye prefer extensive littoral areas in riverine systems 

(McMahon et al . 1 984). The Buffalo River is a highly altered system with minimal 

littoral areas due to past channelization and current dredging. Few walleye fry and 

fingerlings were caught after stocking during my study, perhaps suggesting that the 

river is not suitable as habitat for fry or fingerlings. 

The highest walleye embryo production in streatns has been observed on clean 

gravel and rubble; production is greatly reduced on sand (McMahon et al . 1 984 ). In 

the lower portion of the Buffalo River, clean gravel and rubble is non-existent; this 

substrate is rare in upper reaches where sand becomes more abundant. There are 

limited areas of clean gravel available for a restricted number of spawning walleye, 

but if numbers of walleye grow intra-specific competition for suitable sites would 

increase and or walleye would spawn over poor substrates. 
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Also required in all life stages of walleye is adequate cover (i .e. ,  boulders, 

logs, brush piles, and submerged vegetation), which is deemed to be ideal at 35-55% 

(McMahon et al. 1 984 ) .  Such habitat features are important in all sections of a river 

because they provide shade, concealment, and orientation (Ontario Ministry of 

Natural Resources 1 997). Past channelization and habitat alteration in the lower 

Buffalo River have virtually eliminated natural stream processes which would 

promote the development of natural cover. There is a need to quantify suitable cover 

in the Buffalo River and its tributaries and to consider restoration efforts. 

Are walleye caught in the Buffalo River a result of stocking efforts? 

During monthly electrofishing and gillnet surveys from June-October in 2006, 

26 walleye were captured; none were caught or observed during night-time 

electrofishing and spotlight surveys in tributaries during April-May 2007. Only one 

captured walleye was old enough to be of spawning age but it showed no obvious 

signs of maturity. My results were consistent with previous studies by the NYDEC 

and USFWS. Since 2003 the NYDEC has conducted annual electrofishing surveys at 

broad spatial and temporal scales which have yet to detect spawning-phase walleye 

(NYDEC 2006). In 1 993 , Buffalo State College and the USFWS caught many 

largemouth and smallmouth bass but no walleye after setting hoop nets at the mouth 

of the Buffalo River (Singer et al. 1 994). Makarewicz et al . ( 1 982) captured one 

walleye during a study that set gills nets and electrofished at 1 4  sites in the Buffalo 

River and Im1er Harbor each month from March-Decen1ber. Walleye captures began 
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to increase slightly in 1 99 1  when USFWS reported catching a "few" walleye (Table 

1 3) .  In 1 992 and 1 993 , the USFWS caught four and eight walleye, respectively 

(Kozuchowski et al. 1 993 , 1 994). The eight walleye caught from May-July in 1 992 

were at six river sites and one site in Cazenovia Creek; I caught 2 1  walleye from 

May-June 2006 at the same number of river sampling locations. 

The small increase in walleye captures over time is interesting in that walleye 

stocking began 2004. However, Lake Erie walleye populations fluctuate greatly from 

year to year so the increase could also be a result of good walleye year classes from 

Lake Erie spilling over into the river. The NYDEC Lake Erie gillnet assessment in 

2007 indicated that the overall abundance of walleye was below the long term 

average, yet the age composition was composed of mostly age 1 (2006), age 2 (2005), 

and age 4 (2003) walleye (NYDEC 2008). The assessment also indicated that 

yearling walleye catch rates in 2007 ranked the 2006 year class as above average and 

the sixth largest in this 27-year time series (NYDEC 2008). It is also interesting that 

in 1 992 three yolk-sac larval walleye were caught at the mouth of the Buffalo River 

on the 1 8th of May (Kozuchowski et al. 1 993) but none were caught up stream. 

Walleye may have spawned in the river and their larvae were drifting toward the lake 

or they may have come from the lake by wind driven currents. 

Successful populations of river-spawning walleye are genetically adapted to 

spawn in rivers (Strange and Stepien 2007; Stepien and Faber 1 998); this is why the 

NYDEC stocked the Buffalo River with walleye from Cattaraugus Creek. To 

determine the origin of the walleye I caught requires genetic analysis. Of the 29 
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walleye captured in 2006, it is very likely that the three fingerlings were stocked but 

the origins of the remaining 26 are undetermined. Tissue samples were given to the 

NYDEC and sent for genetic analysis but no results are available. 

Without genetic analysis there can be no certainty about the origin of the 

walleye captured in the Buffalo River but there is a correlation between their ages and 

the beginning of the stocking program in 2004. All but one (96. 1 %) of the captured 

walleye was between the ages of 0-3 . The strongest year classes observed were age- l 

(N= l 5) and age-0 (N=6); both year classes could have been stocked fish. Although 

there is no evidence of a spawning population, finding a few young walleye in the 

Buffalo River may indicate that the stocking program is contributing to the slightly 

increasing captures of walleye in the Buffalo River. 

The maj ority of the western and central walleye populations in Lake Erie 

mature sexually by age-4 (Madenj ian et al. 1 996), although Henderson and Nepszy 

( 1 994) argue that most females do not spawn until age-5 . If this is the situation for 

walleye stocked in the Buffalo River, adults were not expected to return to spawn 

until 2008 or 2009, similar to what happened after walleye stocking in Cattaraugus 

Creek. The stocking of walleye in Cattaraugus Creek began in 1 994 but spawning 

stock was not abundant until 1 998  (Appendix 6) (NYDEC 2006). These observations 

suggest that the DEC' s  stocking efforts in Cattaraugus Creek may be working but 

genetic studies revealed no statistically significant evidence that the walleye 

spawning in Cattaraugus Creek are mostly of stocked origin (Krausse 2002; Wilson 

2003 ; as cited by NYDEC 2006). No walleye were captured by the NYDEC in the 
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Buffalo River in 2008 and 2009, suggesting that stocking n1ay not be working as it 

has in Cattaraugus Creek. 

Based on previous river stocking programs where walleye fry were used, fry 

stocking in the Buffalo River may not be the best option. Genetic analysis and 

comparisons among fry and fingerling stockings have showed that fry contribute little 

to walleye populations in Iowa rivers (Iowa Department ofNatural Resources 200 1 ) . 

However, the drawback in the stocking of fingerlings is that they require more 

hatchery time and resources which may not be available now but might be an issue 

that could be addressed in the future. 

Has the fish community changed from 1981 to 2006? 

Since the biological survey conducted by Makarewicz et al . ( 1 982) there has 

been much effort to restore the ecological health of the Buffalo River (Buffalo 

Niagara Riverkeeper 2005). My adult fish surveys were designed to duplicate those of 

Makarewicz et al. to examine if and how the fish community may have changed after 

25 years of remediation efforts in the river. Fish species richness was substantially 

higher and pollution tolerance was somewhat lower in 2006 than in 1 98 1 -82, 

suggesting that Buffalo River fish con1munity is becoming healthier. 

Methodology Issues-. In 2006, 3 ,85 1 fish were caught and in 1 98 1  423 fish 

were caught by electrofishing. This dramatic difference is attributed to three factors: 

1 )  different electro fishing systems (homemade in 1 98 1 -82; professionally 
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manufactured in 2006), 2) differences in fishing effort (distance along shore in 1 98 1 -

82; 1 5  min of power on in 2006), and 3 )  time of day (day in 1 98 1 ,  night in 2006) . 

The same gillnets were used in 1 98 1 -82 and 2006. In 2006, 4 1 8  fish were 

caught; in 1 98 1 ,  626 were caught. Nets were set at the same locations with the same 

soak times in both studies. The similarity of total gillnet catches in the two studies 

further indicates that the dramatic difference in electrofishing catches described above 

was due to differences in equipment and effort. 

Species Caught-. The Buffalo River fish community is a combination of 

warmwater residents and cool- and coldwater migrants from Lake Erie (Kozuchowski 

et al. l 994; this study). I collected 5 1  species; 44 were native and seven were 

introduced /invasive). Makarewicz et al. ( 1 982) reported 32 species (28 native and 

four introduced/ invasive) . NYDEC ( 1 993) (as cited in Kozuchowski et al . 1 994) 

reported 24 species in 1 984, Adrian and Merckel (as cited in Kozuchowski et al. 1 994) 

reported 29 species in 1 988,  and the USFWS reported 33 and 35 species (larvae and 

adults) in 1 992 and 1 993 , respectively (Kozuchowski et al. 1 994). In all studies, no 

state or federally listed species were caught. 

Between 1 982 and 2007 1 8  additional fish species were reported. Species 

caught in 2006-07 that were not reported in from 1 98 1 -82 were brook silverside, 

bigmouth buffalo, golden redhorse, greater redhorse, silver redhorse, smallmouth 

buffalo, spotted sucker, green sunfish, white crappie, alewife, fathead minnow, mimic 

shiner, rudd, spotfin shiner, striped shiner, channel catfish, longnose gar, johnny 

darter, logperch, sea lamprey, brown trout, and round goby (Table 9). Of the species 
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listed above, bigmouth and smallmouth buffalo and spotted sucker are the most 

notable. Both buffalo species inhabit areas of the Lake Erie basin but have not been 

previously documented in the Buffalo River. The spotted sucker is interesting because 

until recently very few have been documented in the region. The few specimens that 

have been documented were from tributaries of Lake Ontario (personal 

communication, D. M. Carlson, NYDEC, Watertown, NY). The spotted sucker is 

found in eastern and central North America from the lower Great Lakes east to 

Pennsylvania (Fisheries and Oceans Canada 2009) but has not been reported in 

eastern Lake Erie. Due to the rarity of the species there is some concern about 

misidentification, but the specimen was identified by fellow graduate student Ross 

Abbett and me using two dichotomous keys. The round goby, from Eurasia, first 

appeared in the Great Lakes system in 1 990 and quickly spread. 

Despite the increase in species richness over time, four species caught in 

1 98 1 -82 were not caught in 2006-2007 (warmouth, trout-perch, Chinook salmon, and 

coho salmon). Studies following Makarewicz et al. ( 1 982) also found species that 

were not observed during n1y 2006-07 study. Adrian and Merckel (unpublished, as 

cited by Kozuchowski et al. 1 993) found larval bowfin in 1 988 .  In 1 992-93 , the 

USFWS collected burbot, rainbow smelt, river chub, and black bullhead 

(Kozuchowski et al . 1 993 ; Kozuchowski et al . 1 994 ). These differing results reflect 

temporal and spatial variability in fish distributions and sampling. 

Qualitative changes-. Understanding improvements in the quality of the 

Buffalo River fish community depends on the types of fishes present and their 
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relative abundance and pollution tolerance. Fish communities are good indicators of 

long term water quality and habitat conditions. The fish assemblage in 1 98 1 -82 

(Figure 1 6) was composed primarily of species moderately tolerant or tolerant to 

pollution (Meixler 2006). In 1 98 1 -82, common carp (20.5%) and white sucker 

( 1 6.9%), both pollution- and disturbance-tolerant, were the most common species 

caught (Figure 1 6) .  By 2006-07, the percentages of these tolerant species in fish 

catches dropped by factors of six and three, respectively (Figure 1 5) .  Similarly, the 

percentage of brown bullhead, another tolerant species, fell from 8 .8% to 1 .5o/o 

(Figure 1 6, Table 9). These reductions in pollution tolerant species, known for their 

high tumor and deformity rates in the Buffalo River (Diggins and Snyder 2003), are 

important signs of a healthier system. 

Conversely, in 1 98 1 -82 largemouth bass were only 0.4 % of the fish caught; 

their percentage increased to 1 5 . 1 %  in 2006-07 (Figure 1 5), the second tnost 

abundant species. Largemouth bass are considered to be moderately pollution tolerant 

but they also provide an important recreational fishery in the Buffalo River. 

Increasing recreational opportunities in the river is one of the objectives highlighted 

in the Buffalo River Remedial Action Plan (Buffalo Niagara Riverkeeper 2005) .  

Although their percentages were not much higher in 2006-07 than in 1 98 1 -82, 

another important recreational species more prevalent in the Buffalo River now is the 

steelhead which begin to migrate into the river in the fall and some remain until 

spring months. Increases in steelhead are attributed to stocking by the NYDEC. 
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Conclusions 

The economic importance of walleye in the Lake Erie fishery is substantial, 

providing a significant source of revenue to the states and provinces adjacent to Lake 

Erie (Great Lakes Fishery Commission 2005). This study helped NYDEC fishery 

managers better understand the potential the Buffalo River for walleye production. 

Through 2009 it does not appear that walleye stocking in the Buffalo River 

has produced a spawning run, as previous stocking may have done in Cattaraugus 

Creek. The primary reasons for this appear to be lack of suitable spawning habitat for 

adults and lack of protective habitat for stocked fry and fingerlings, both in the 

Buffalo River and its tributaries. It appears that substantial habitat restoration or 

enhancement will be required to re-establish walleye in the Buffalo River system. 

Habitat restoration or enhancement to improve spawning success would 

include management activities such as ceasing channelization and dredging upstream 

from the commercial area of Buffalo Harbor, engineering natural stream designs 

(meanders, plunge pools, riffles, and shoreline protection) and creating artificial 

spawning areas in tributaries, and using best management practices in the watershed 

and riparian zones to minimize erosion and reduce sediment loads. Habitat restoration 

in the lower river will be required to provide for the survival of stocked fry and 

fingerlings (preferred due to better survival probabilities), including adding bank 

cover, aquatic vegetation and woody debris,  plus creating shallows, for hiding. 

My study adds to a substantial, 25-year data set indicating that the long-term 

health of the fish community in the lower Buffalo River is improving, both in terms 
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of species richness and pollution tolerance (i.e . ,  n1ore, and relatively higher 

abundance of, less tolerant species) . It also provides a solid data set for managers and 

other stakeholders to evaluate further changes in the Buffalo River and to make 

decisions regarding its future uses. 

Recommendations 

1 .  Before engaging in a maj or fry or fingerling stocking effort in the Buffalo 

River, it is important to estimate their survival in two ways. 

a. Cage studies at the release site: How long do fry and fingerlings survive 

when predators are excluded but zooplankton and fish larvae are not? If 

the walleye do not survive for at least a few days (the time needed to reach 

Lake Erie), then inadequate food supplies probably will prevent their 

successful stocking in the Buffalo River. 

b .  Predator impacts :  If stocked fish do survive for a few days is cages, how 

long do they survive after release into the river? Such releases should be 

done at night followed by immediate and intense sampling for fry, 

fingerlings and predators. If released walleye are not found for at least a 

few days, then lack of cover and predator pressure probably will prevent 

successful stocking of walleye in the Buffalo River. The remaining 

alternative would be to stock huge numbers of walleye to attetnpt to 

overwhelm the functional responses of predators. 
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2. The Buffalo River Remedial Action Plan (Buffalo Niagara Riverkeeper 2005) 

addresses the need to protect, conserve, enhance, and restore the aquatic and 

terrestrial ecosystems associated with the Buffalo River. My study showed 

that aquatic ecosystem health is improving, as evidenced by greater species 

richness and lower proportions of pollution-tolerant species over time, but re­

establishing walleye almost certainly will require habitat restoration (i.e . ,  bank 

cover, shallow areas along shore with aquatic vegetation, in-stream wood, 

etc.) in the lower river to establish adequate cover so that fry and fingerlings 

have a chance to survive the passage to Lake Erie. 

3 .  The lower Buffalo River and selected sections o f  its tributaries should be 

sampled periodically, starting in the spring of 20 1 0, to determine (by genetic 

analysis if any are caught) if any adults from the 2004-2006 stockings are 

returning to the river. 
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Table 1 .  NYDEC walleye stocking summary, Buffalo River, NY. Stocking was 

suspended after 2006 due to NYDEC fish disease policy. 

Buffalo River Walleye Stocking Program* 

Year .E!:Y Fingerling 

2004 * *  1 05 ,000 28,200 

2005 6 1 ,000 24,900 

2006***  253 ,000 22,900 

Fingerling Mean Length 

1 .34 

1 .23 

1 .05 

*- All walleye from Cattaraugus Creek Egg Source 

* * - Surplus of 1 1 ,000 fry into Catt. Cr. 

* * * - surplus of 1 4,000 fry into Catt Cr. 
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Table 2. Approximate river depths where gillnets were deployed in 1 982 biological 

survey (Makarewicz et al . 1 982) and 2006 fish community survey (*added netting 

sites in 2006). 

1 981 Buffalo River Biological Survey 
Station # Depth (m) 

9 

1 0  

1 1  

1 2  

1 3  

1 4  

[7-8] 

[7-8] 

[7-8] 

[7-8] 

[2-3] 

[7-8] 

1v1akarewicz et al. ( 1 982) 

2006 Buffalo River Fish Survey 
Station # Site Name 

2006 Depth (m) 

9 Reach 1 [6-7] 

1 0  Reach 6 [5 .5-7] 

1 1  Reach 2 [6-8] 

1 2  Reach 3 [6-8] 

1 3  Reach 4 [4-7] 

1 4  Reach 6 [4.5-5 .5]  

Reach 7* [ 1 -2] 

Reach 8*  [ 1 -2] 
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Table 3 .  Water quality data for the Buffalo River, NY, April-October 2006. 

Temnerature 
DO (mg/L} (Co} Jill Secchi (m} 

Minimum 4.3 1 1 .3 7 .5 0 . 1 7  

Maximum 1 0.9 26.3 8.3 1 .75 

Average 7.5 (±0.3) 1 8 .3 (±0.9) 7 .9 (±0.05) 0 .82 (±0.9) 

Table 4 .  Water quality data for Buffalo, Cayuga and Cazenovia Creeks, spring 2007. 

Date Teml!erature {C0} DO {m21L} Stream Velocitv {cm/s} 

26-Mar-07 7.4 1 2 .7  48 .77 

27-Mar-07 8 .7  1 0.6  42.67 

29-Mar-07 1 0.6 1 1 .2 33 .53 

7-Apr-07 1 1  1 0.2 79.25 

14-Apr-07 1 0.7 9 .9 27.43 

26-Apr-07 1 1 .2 1 0.6  82.3 

29-Apr-07 9.7 1 1  48 .77 

Average 9.9 (±.5)  1 0 .9 (±.3)  6 1 .0 (±8 .0) 
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Table 5 .  Comparison of mean (SE) zooplankton densities (individuals/L) during the 

2006 and 2007 sampling seasons in the Buffalo River, NY (Z 1 through Z1 0) and at its 

confluence with Lake Erie (Z1 and Z2).  

Taxon River06 River07 Mouth06 Mouth07 

Rotifera 3 1 .9 (25 .4) 74.4 (62.9) 5 . 5  ( 1 .7) 1 8 .4 ( 1 6.0) 

Cladocera 2.2 ( 1 .0) 0 .35 (0.3) 2.2 ( 1 .6) 0.4 (0.4) 

Calanoida copepods 0 .7 (0. 5) 1.7 ( 1 .7) 0 .9 (0.9) 2.3 (2.2) 

Cyclopoida copepods 3 .4 (32 .2) 4.2 (3 .8) 8 .8  (7.6) 2 .2 ( 1 .8) 

Cyclopoida nauplii 2 .8  ( 1 .0) 5 .7  (3 .6) 4 .3 (0.6) 1 . 8 (0.7) 

Calanoida nauplii 0 .04 (0.03) 0.04 (0.04) 0.05 (0.03) 0.00 

Mean total zooplankton 4 1 .0 86.4 2 1 .8 25 . 1  

P (paired t-test) 0 .33 1 0.848 
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Table 6. Mean zooplankton densities (individuals/L) at the combined Buffalo River, ��y san1pling sites (Z1 through Z 1 0), spring 2006 
and 2007. 

2006 2007 

Auril- May- June- May- May- June-2-
29- 1 7- 10-2006 �006 Densitv 1 1- 23-2007 2007 2007 Density 

2006 2006 20o-7 
Taxa 

Rotifera 3 .9 9.2 82.7 31 .9 3 .5 1 9.8  1 99.9 74.4 

Cladocera 0 .8  1 .8 4.08 2.22 0.07 0 1 0.4 

Calanoida 0.02 1 .6 0 .5 0.7 0 0.06 4.9 1.7 
copepods 
Cyclopoida 0.4 2.05 7.7 3.4 0.07 0.7 1 1 .9 4.2 
copepods 
Cyclopoida nauplii 1 .9 1 .8 4 .8  2.8 1 , ,., .J .L, 1 2.7 5.7 

Calanoida nauplii 0.07 0.05 0 0.04 0. 1 0 0 0.04 

All Zooplankton 1 2 .4 34.3 9.106 1 .3 6 .6 56 .7 21 .6 
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Table 7 .  Larval fish catches in the Buffalo River, NY, spring 2006. 

Date Fish S[!ecies # Site # (Figure #} Time of Day 

4/29/2006 None Day 

4/30/2006 None Night 

5/1 /2006 None Day 

5/7/2007 None Day 
Adult Emerald 

Shiner (Notropis 
5/8/2007 atherinoides) 1 5  1 ,5 ,8 Night 

Adult Emerald 
Shiner (Notropis 

5/9/2007 atherinoides) 1 5 Night 

5/1 0/2007 None Day 
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Table 8 .  Summary of methods and biological data for juvenile and adult walleye collected in 
the Buffalo River in 2006-2007 . 

Buffalo River Wall eye 

ij_ Date Gear Site Length {mm) Weight {f!) Age 
1 26-May-06 ES 1 243 1 40 1 

2 28-May-06 ON 1 466 980 3 

3 29-May-06 ON 4 241 1 1 9 1 

4 1 0-Jun-06 ES 7 3 1  X 0 

5 1 0-Jun-06 ES 7 32 X 0 

6 1 0-Jun-06 ES 7 33  X 0 

7 1 4-Jun-06 ES 7 300 256 1 

8 1 5-Jun-06 ES 3 257 1 37 1 

9 1 5-Jun-06 ES 2 264 1 5 8  1 

1 0  1 5-Jun-06 ES 2 237 1 05 1 

1 1  1 5-Jun-06 ES 2 446 789 3 

1 2  1 6-Jun-06 ON 2 46 1 1 076 3 

1 3  1 6-Jun-06 ON 2 440 836 3 

1 4  1 6-Jun-06 ON 2 485 1 1 8 1  2 

1 5  1 6-Jun-06 ES 1 392 5 1 7  1 

1 6  1 3-Jul-06 ES 2 29 1 1 80 1 

1 7  1 4-Jul-06 ON 2 275 1 70 1 

1 8  1 4-Jul-06 ON 2 3 82 5 1 1  2 

1 9  1 5-Jul-06 GN 4 284 1 68 1 

20 1 5-Jul-06 ON 4 293 23 1 1 

2 1  1 5-Jul-06 GN 4 267 1 46 1 

22 1 7-Aug-06 ES 6 32 1  248 1 

23 1 7-Aug-06 ES 6 1 3 5  1 6  0 

24 1 7-Aug-06 ES 2 1 4 1  22 0 

25 1 7-Aug-06 ES 2 422 686 2 

26 1 7-Aug-06 ES 2 1 47 25 0 

27 24-Sep-06 ON 2 341  341  1 

28 25-Sep-06 ON 4 367 4 1 3  1 

29 9-0ct-06 ON 6 757 X >4 

ES= Electroshocking GN= Oillnet x= no weight taken 
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Table 9. List of fish species and their relative abundances in 2006 and 1 98 1  (Makarewicz et al. 1 982) in the Buffalo River, NY, April-
October. 

Communitv 2006-2007 Communitv 1981-1982 

% Ofo 
Family Common Name Latin Name Abundance Abundance Abundance Abundance Status 
Atherinopsidae brook silverside Labidesthes sicculus 29 0.68 0 0 N 
Catostomidae bigmouth buffalo Ictiobus cyprinellus 0.02 0 0 N 

golden redhorse Moxostoma erythrurum 5 8  1 .3 6  0 0 N 
greater redhorse Moxostoma valenciennesi 1 0.02 0 0 N 

northern hog sucker Hypenteium nigricans 1 6  0 .37 2 0 . 1 9  N 

Quill back Cariodes cyprinus 9 0.2 1 0 0 N 

shorthead redhorse Moxostoma macrolepidotum 1 6  0 .37 1 0  0.95 N 

silver redhorse Moxostoma anisurum 3 0 .07 0 0 N 
smallmouth buffalo Ictiobus bubalus 3 0.07 0 0 N 
spotted sucker Minytrema melanops 3 0.07 0 0 N 
white sucker Catostomus commersoni 2 1 5  5 .04 1 77 1 6.87  N 

Centrarchidae black crappie Pomoxis nigromaculatus 6 0 . 1 4  4 0 .38  N 
Bluegill Lepomis macrochirus 230 5 .3 9  2 0 . 1 9  N 
green sunfish Lepomis humilus 1 0.02 0 0 N 
largemouth bass Micropterus salmoides 643 1 5 .06 5 0.48 N 
p umpkinseed Lepomis gibbosus 606 1 4 .2 1 1 9 1 1 .34  N 
rock bass Ambloplites rupestris 1 84 4.3 1 29 2 .76 N 
smallmouth bass Micropterus dolomieui 8 1  1 .9 22 2 . 1 N 
warmouth Lepomis gulosus 0 0 2 0 . 1 9  N 
white crappie Pomoxis annularis 1 8  0.42 0 0 N 
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Table 9 cont. 
Clupediae alewife Alas a pseudoharengus 2 0.05 0 0 I 

gizzard shad Dorosoma cepedianum 655 1 5 .3 4  6 8  6.48 N 
Cyprinidae bluntnose minnow Pimephales notatus 2 1 1 4 .94 2 0 . 1 9  N 

common carp Cyprinus carpio 1 75 4 . 1  2 1 5  20.5 I 

common shiner Notropis cornutus 29 0.68 3 0.29 N 
emerald shiner Notropis atherinoides * * 3 5  3 .34  N 
fathead minnow Pimephales promelas 1 9  0.45 0 0 N 
golden shiner Notemigonus crysoleucas 53 1 .24 42 4 N 
goldfish Carassius auratus 1 0  0 .23 49 4.67 I 
mimic shiner Notropis volucellus 2 0.05 0 0 N 
rudd Scardinius erythrophthalmus 4 0 .09 0 0 I 
spotfin shiner Cyprinella spiloptera 2 0 .05 0 0 N 

spottail shiner Notropis hudsonius 362 8 .48 40 3 .8 1  N 

striped shiner Luxilus chrysocephalus 1 6  0 .37 0 0 N 
Esocidae muskellunge Esox masquinongy p p 2 0 . 1 9  N 

northern pike Esox lucius 9 0.2 1 1 0 . 1 N 
Gobiidae round goby Neogobius melanostomus 3 1  0 .73 0 0 I 
Ictaluridae brown bullhead Ictalurus nebulosus 60 1 .4 1  92 8.77 N 

channel catfish Ictalurus punctatus 2 1  0 .49 0 0 N 
stonecat Noturus jlavus p p 4 0.3 8 N 

Lepisosteidae longnose gar Lepisosteus osseus 2 0.05 0 0 N 
Moronidae white bass Marone chrysops 5 0. 1 2  2 0 . 1 9  N 

white perch Marone americana 94 2 .2 8 0 .76 N 
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Table 9 cont. 
Percidae johnny darter Etheostoma nigrum 4 0 .09 0 0 N 

logperch Percina caprodes 43 1 . 0 1  0 0 N 
walleye Sander vitreus 25 0 .59 3 0 .29 N 
yellow perch Perea jlavescens 256 6 89 8 .48 N 

Percopsidae trout perch Percopsis omiscomaycus 0 0 2 0 . 1 9  N 

Petromyzontidae sea lamprey Petromyzon marinus 1 0 .02 0 0 I 
Salmonidae brown trout Salmo trutta 1 0 .02 0 0 I 

Chinook salmon Oncorhynchus tshawytscha 0 0 1 0 . 1 
coho salmon Oncorhynchus kisutch 0 0 1 0 . 1 I 

lake trout Salvelinus namaycush 1 0 .02 1 0 . 1 N 

rainbow trout Oncorhynchus mykiss 29 0 . 68 3 0.29 N 

Sciaenidae freshwater drum Aplodinotus grunniens 24 0 .56  14  1 .33  N 
Total 4269 1049 
Species Richness 51 32 

*= Emerald Shiners not included in 2006-2007 tabulation, due to extr-eme abundance 

I= introduced or non native N= Native 

Spotted sucker identification pending confirmation with state rare fish specialist. 

54 



Table 1 0. Stomach contents of predatory fish caught on June 9, 2006 at the Buffalo River, 
NY stocking location one day after the release of fingerling walleye. 

Predator S�ecies Stomach Length {mm} 

1 Lmb NA 376 

2 Smb fish sp. 4 1 2  

3 Lmb 7- walleye 353 

4 Lmb fish sp. 342 

5 Lmb NA 338  

6 Smb NA 298 

7 Lmb 5- walleye 286 

8 Smb NA 1 95 

9 L1nb NA 3 1 5  

10  Lmb NA 257 

1 1  Lmb fish sp. 2 1 0  

12 Smb NA 1 56 

13 Lmb 1 walleye 207 

14  Smb 1 walleye 150 

15 Smb NA 1 42 
1 £  Lmb Annelida 206 J.,U 

1 7  Lmb Crayfish 1 98 

18  Lmb NA 1 93 

Smb= smallmouth bass 

Lmb= largemouth bass 

NA= Empty stomach 
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Table 1 1 . Ecological metrics for fish community comparisons in the Buffalo River, NY, in 2006 and 1 98 1 ,  April-October. 

Electroshockine: GHinet 1981  2006 

1981 2006 !2ID. 2006 Community Community 

Sum Total 423 385 1 626 4 1 8  1 049 4269 

Simpson's (Ds) 0.882 0.9 0 .8 1 9  0 .87 1 0 .890 0 .9 1 0  

Simpson's  t-calc 3 .87 4 .. 76 4 .304 

Richness 23 47 20 27 32 5 1  

Percent 
Similarity 55 . 8  58 . 1 48 .3  
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Table 1 2. Percentages of fish families present in the Buffalo River, NY in 1 98 1  and 2006. 

Family Percentages (Ranked in Descending Order) 

2006 1981 

Centrarchidae 4 1 .4 36 .8  Cyprinidae 

Cyprinidae 20.7 1 8  Catostomidae 

Clupediae 1 5 .4 1 7.4 Centrarchidae 

Percidae 7 .7 8 .8 Percidae 

Catostomidae 7 .6 8 . 8  Ictaluridae 

Moronidae 2.3 6.5 Clupediae 

Ictaluridae 1 .9 1 .3 Sciaenidae 

Gobiidae 0 .7 1 Moronidae 

Salmonidae 0 .7 0.6 Salmonidae 

Atherinopsidae 0 .7 0 .2 Percopsidae 

Sciaenidae 0 .6  0. 1 Esocidae 

Esocidae 0.2 0 Atherinopsidae 

Lepisosteidae 0.05 0 Gobiidae 

Petromyzontidae 0 .02 0 Lepisosteidae 

Percopsidae 0 0 Petromyzontidae 
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Table 1 3 . Comparisons among studies of walleye capture in the Buffalo River. 

1 98 1 -82 1 99 1  (May, 1 992(May- 1 993 (May- 2006-
(April- July, July) July) 2007(April-

October) October) October) 

Makarewicz NYDEC USFWS USFWS 1 993 This Survey 
et al. 1 982 1 993 1 992 

Kozuchowski Kozuchowski 
et al. 1 993 et al. l 994 

1 "Few" 4 8 29 
Gillnets and Electro fishing Plankton net Electro fishing Gillnets and 

electro fishing and seining and electro fishing 
electro fishing 
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Figure 1 .  Relative abundance of age- 1 walleye collected from the New York waters of Lake Erie, September-October 1 98 1 -
2005 (NYDEC 2005). 
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Figure 2. The Buffalo and Niagara River Basin (Buffalo Niagara Riverkeeper 2005). 
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Figure 3 .  Buffalo River Area o f  Concern (AOC) (Buffalo Niagara Riverkeeper 2005). 

6 1  



Figure 4. Buffalo River, Cazenovia Creek, Buffalo Creek, and Cayuga Creek fish sampling locations, 2006. Farthest upstream 
sampling locations : Reach 9 :  42°50'59 . 1 8"N, 78°48'3 1 .65 "W; Reach 1 6: 42°5 1 '5 1 .97"N, 78°46'46 . 1 3 "W; Reach 20: 42°52'59 .02"N, 
78°45'24.26"W. 

= Sites 1 -6 (also sampled by Makarewicz et al. 1 982); sites 7-8 (additional fish community sampling sites) in 2006. 

l!l = 2007 adult walleye sampling sites 
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Figure 5b. Buffalo River ichthyoplankton sampling locations, 2006. 
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Figure 5c.  Buffalo River fish sampling locations, 2006. Sites 1 -6 were also sampled by Makarewicz et al. ( 1 982). 
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Figure 6. Spring 2007 walleye spotlight survey locations: Buffalo River, Cazenovia Creek, Buffalo Creek, and Cayuga Creek. 
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Figure 7. Average water temperature (°C) and dissolved oxygen (mg/L) in the Buffalo River (Sites 1 -8), April-October 2006. 
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Figure 8 .  Average secchi depth (m) in the Buffalo River (Sites 1 -8), May-October 2006. 
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Figure 9. Average pH in the Buffalo River (Sites 1 -8), May-June 2006. 
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Figure 1 0. Sites in the Buffalo River in 2006-2007 where walleye were caught. None were caught upstream of site 7.  
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Figure 1 1 . Age distribution of walleye caught in the Buffalo River, 2006-2007 (excluding fingerlings) . 
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Figure 12 .  Plot of weight as a function of length for walleye caught in the Buffalo River, 2006-2007. 

72 



Moronidae, 2 . 3  

lctalu r idae, 1 . 9 

Cy prin idae, 

20. 7 

Clupeidae, 1 5 .4 

Rerc idae, 7 .  7 
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Figure 1 3 .  Percent abundance of the major fish families caught in the Buffalo River, NY, April-October 2006. 
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Sciaenidae 1 .  3 

Perc idae 8. 8 --\ 

M oron idae 0 , 

lcta luri dae 8. 8 

Cy pri n idae 20. 7  

Catostom idae 

1 8  
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1 7. 5  

Cl uepeidae 6. 5 

Figure 1 4. Percent abundance of the major fish families caught in the Buffalo River, 1\TY, April-October 1 98 1 .  
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Figure 1 5 .  Percentages (>4%) of the tnost frequently caught fish species in the Buffalo River, NY, April-October 2006. 
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Figure 1 6. Percentages (>4%) of the most frequently encountered fish species in the Buffalo River, NY, April-October, 1 98 1 .  
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Appendix 1 .  1 98 1  biological survey map of the Buffalo River, NY (Makarewicz et al. 1 982). 

77 



Appendix 2 .  Linear regression of the filtering capacity of Miller samplers, provided by the manufacturer, used to determine volume of 
water filtered. 
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Appendix 3 .  Zooplankton data for five Great Lakes tributaries (Haas and Thomas 1 997). 
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Appendix 4. Zooplankton densities (individuals/L) in the Buffalo River. Taken from the U.S Fish and Wildlife 1 993 Buffalo 
River Fish Assessment Summary for May 29, 1 992 (Singer et al. 1 994). 

Zooplankton counts 5 / 2 9 / 9 2  

con con 1 s  1d 2 s  2d 3 S  3 d  4 S  4d 
Copepoda 2 2 . 8  3 5 . 6  2 . 65 6 . 5 5 2 . 8 5 4 . 6  1 . 8 5 1 3 . 5 5 0 . 5  0 . 2 5 
Daphni idae 0 . 4  0 . 5 0 0 . 0 5 0 0 . 5 5 0 . 1  0 . 4 5  0 0 
Bosminidae 1 1 . 2  0 0 . 3 5 0 . 1 5 0 . 8 5 0 . 5  1 . 0 5 0 . 1  0 . 0 5 
Chydoridae 0 0 0 0 0 . 1  0 3 . 3 0 . 1  0 . 2  0 . 1 5 
Dre i s senid 0 . 1  0 . 2 0 . 2 5 0 . 1  0 . 0 5 0 . 0 5 0 0 . 0 5 0 0 
Other 0 . 2 0 . 1 0 0 0 0 0 . 0 5 0 . 0 5 0 0 

Total 2 4 . 5  3 7 . 6  2 . 9 7 . 0 5 3 . 15 6 . 0 5 5 . 8  1 5 . 2 5 0 . 8 0 . 4 5 
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Appendix 5 .  Larval fish in the Buffalo River. Taken from the U.S .  Fish and Wildlife Service 1 993 Buffalo River Fish 
Assessment Sutnmary (Kozuchowsi et al . 1 994 ) .  

, • Period o f  captu re a nd relative abundance of la rval fish i n  the Buffalo River durin g  1 992 a n d  1 993. 

pecies First Capture 1 Last Capture2 Peak Abundance Relative Abundance 

1 992 1 993 1 992 1 993 (for this study) 
1 992 1 993 

! 6-25 6- 1 7  7-9 * 7-8 mid-June to mid-Ju ly 1 . 1  % 0. 1 % 
shad 5- 1 8  6-9 7-9 i 7- 1 5  :t: late-May to beyond 35. 7 % ( 1 J 76.0 o/o ( 1 ) 

h 5-1 8 6-2 6- 1 9  6-2 ---- < 0. 1 % < 0. 1 % 
m carp 5-1 8 6-9 7-7 7- 1 5  :t: early-June to early-July 0.4 % 1 .5 % (3} 
s hine r  5-26 5-27 6-25 6-23 late-May to late-Ju ne < 0 . 1 % 0 . 1 % 

t s hiner 5-1 8  5-27 5- 1 8 6- 1 6  late-May to mid-June < 0 . 1 % 0 . 1 % 
d shiner --- 5-27 --- 6-9 ---- -- < 0. 1 % 
m s h i n e r  --- 5- 1 9  t --- 5-27 ---- -- < 0. 1 % 
� spp. 5-1 8 5-27 7-9 * 6- 1 5 l ate-May to late-Ju ne 0.7 % 0 . 2 % 
: k  --- 6-2 --- 6-9 ---- -- < 0. 1 % 
mcker --- 6-9 --- 6-9 ........... - -- < 0. 1 % 
!I catfish --- 6-30 --- 6-30 .., ___ -- < 0. 1 % 
rv sme lt 5-26 5-27 7-9 i 7-8 late-May to mid-July 1 1 . 6 % {3) 0.3 % ( 6) 
erch 6-1 1 5-27 7-9 :t: 6-1 7 early-June to early-July 0.3 % < 0. 1 % 

5-26 --- 5-28 --- ---- < 0 . 1 % --
ate basses 5-28 6-1 6 7-9 :t: 7- 1 5 :t: earl y-June to mid-July 1 0. 2 % (5) 0 . 5 % ( 5 )  
tes 5-1 8 6-9 7-9 i 7- 1 5 i early-June to beyond 8.8 % (6} 1 9.4 % (2)  
t species 5-1 8 5-27 7-9 :t: 7- 1 5  :t: late-May to mid-July 20. 6 % (2}  1 .2 % (4} 
darter --- 6-9 --- 6-23 ---- -- 0 . 1 % 
perch 5-1 1 5-27 7-2 6-9 mid-May to late-June 1 0. 2  % (4) < 0 . 1 % 

:h 7-9 6-2 7-9 :t: 6- 1 6  ---- < 0. 1 % < 0 . 1 % 
3 5- 1 8 --- 5- 1 8 --- ·--- 0 . 1 % --

An (t)  indicates this species was collected on the first day of the sampling period for that year. Therefore, spawning may 
:ed earlier for that species. 

An U : l  indicates this species was collected on last day of the sampling period for that year. Therefore, spawning may have 

beyond that date for that species. 
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Figure 0. 1 .  Walleye catch .pet sampling trip by boat shocker in the lower reach Cattaraugus Creek 
during March - April, 1993 to 2005 .  
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