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Abstract 

Energetics and migration in songbirds: two case studies examining energetic 

condition and migration at a northern stopover location 

 

Migration is an energy-intensive behavior undertaken in both spring and fall 

by billions of songbirds to reach distant breeding and wintering grounds.  Stopover 

habitats, particularly those located near ecological barriers that birds must cross, 

provide key locations where birds can stop and refuel during migration.  A bird’s 

energetic condition affects its behavior at stopover locations; in spring, birds may 

accumulate energy reserves at locations en route to breeding grounds for tasks other 

than migration.  This two-part study examined different aspects of the energetic 

condition of songbirds at a northern stopover location on the south shore of Lake 

Ontario.  First, banding data for 12 Parulidae species were analyzed, and I found that 

arrival date, sex, and season explained some of the variation in the energetic 

condition of birds arriving at this location.  My results suggest that there is possibly a 

reproductive advantage for spring migrants to arrive with energy reserves. Second, I 

found that energetic condition affects the orientation of White-throated Sparrows 

(Zonotrichia albicollis), mainly in the spring.  However, like other studies of 

sparrows in captivity, I found bimodal orientation along the migratory axis, which 

makes it difficult to predict migratory orientation based on energetic condition.  Both 

of these studies demonstrate that songbird behavior during migration is complex, 

variable, and worthy of further study. 
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Energetics and migration in songbirds: two case studies examining energetic condition 

and migration at a northern stopover location 

General Introduction 

 

 Billions of songbirds migrate within and between continents annually.  

Migration is considered one of the most unpredictable and vulnerable phases of a 

bird’s annual cycle (Sillett and Holmes 2002).  To complete migration successfully, 

birds must use a variety of endogenous and exogenous cues to navigate accurately to 

seasonally appropriate locations (see Åkesson and Hedenström 2007).  While the end 

locations of migration, breeding and wintering grounds, are important, critical 

locations en route for refueling and resting (so-called stopover habitats) can be 

equally, if not more, important for migrants.  Locating quality stopover habitat en 

route is essential for the successful completion of migration, but much research on the 

stopover biology of songbirds is still needed (e.g., see Mehlman et al. 2005, 

Deutschlander and Beason 2014).   

Given the potential consequences of mistakes during migration, there is a high 

selective pressure for birds to both locate stopover habitat successfully and to refuel 

effectively during stopover (Moore and Aborn 2000).  Understanding how birds 

locate and use stopover habitat has important management and conservation 

implications because a migratory bird’s energetic condition may affect both its 

probability of survival during migration and its reproductive success once it arrives 

on breeding grounds in the spring (e.g., Sandberg and Moore 1996, Drent et al. 2003).  
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There is evidence that both males and females can derive reproductive benefits from 

arriving on breeding grounds with excess energy reserves (Smith and Moore 2003, 

2005, Cooper et al. 2011).  Hence, the potential for migratory birds to increase fitness 

on the breeding grounds lends even more value to the energy reserves and nutrients 

that migrants accumulate en route and further suggests the importance of quality 

stopover locations.  

In addition to potential spring breeding ground benefits, the energy reserves 

birds accumulate en route may also affect their stopover behaviors, such as length of 

stay (Cherry 1982), foraging (Loria and Moore 1990), departure decisions (Seewagen 

and Guglielmo 2010), and orientation (Covino and Holberton 2011).  The amount of 

stored energy (fat) a bird has at a given stopover location can affect its orientation, 

particularly near a large ecological barrier (such as a body of water, desert, or 

mountain range); birds with inadequate energy reserves often reorient themselves 

away from, or parallel to, barriers to replenish energy reserves before crossing (e.g., 

Sandberg et al. 2002, Deutschlander and Muheim 2009).  Because stopover locations 

near barriers can help provide migratory birds with the resources they need to cross or 

circumvent barriers successfully, they are especially worthy of conservation.  

However, many stopover locations for migrating birds, especially in coastal locations, 

are threatened by habitat destruction (Buler and Moore 2010).  It is ineffective to 

conserve breeding and wintering grounds unless these vital stopover locations are 

also protected (Mehlman et al. 2005), and given their varied habitat requirements, 
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migratory species may be more vulnerable to extinction than non-migrants (Buler and 

Moore 2010).   

This thesis has two parts, each of which focuses on a different aspect of the 

energetic condition of migratory birds and seeks to answer both general and specific 

questions about the biology of migratory birds that stop over at or near the Braddock 

Bay Bird Observatory (BBBO).  Braddock Bay Bird Observatory is surrounded by 

stopover habitat that is adequate for many migrating songbirds (Bonter et al. 2007), 

and this site may serve as a location for songbirds to refuel either before crossing 

Lake Ontario in the spring or after crossing in the fall.  Because BBBO is located 

adjacent to an ecological barrier and serves as a location for a long-term banding 

study, it is an ideal location to study the energetics of migratory songbirds at a 

northern stopover location.    

The first part of this thesis uses bird banding data for 12 New World warbler 

(Parulidae) species to determine if arrival date, sex, and/or season explain variation in 

energetic condition of birds arriving at BBBO, and also to determine if patterns in 

condition of birds arriving at BBBO support Sandberg and Moore’s (1996) breeding 

and insurance hypotheses.  The number of Parulids that stop over at this location 

makes them an ideal group for my studies because most have sexually dimorphic 

plumage, which enables comparison of relatively large numbers of males and 

females.  Most of these Parulids also have northerly breeding grounds and are long-

distance migrants, which also makes them ideal for examining predictions of the 

breeding and insurance hypotheses (Sandberg and Moore 1996).  The second part of 
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my thesis pertains to a much more specific aspect of bird migration biology: 

specifically, whether Zugunruhe and orientation of White-throated Sparrows 

(Zonotrichia albicollis) are affected by an individual’s energetic condition.  White-

throated Sparrows were studied in part two because they are plentiful at this study 

location, are robust in captivity, and results from previous research on this species at 

this site (Smith and Norment 2005, Deutschlander and Muheim 2009, Muheim et al. 

2009) enabled a comparison of my results to those of earlier studies.  Although the 

focus and species of these two parts of my thesis are different, the overarching 

purpose of my project is to study the behavior and energetic condition of migratory 

songbirds at an important stopover location.  Multi-scale studies conducted at 

stopover locations are needed, not only to provide information about migratory bird 

biology, but also to present further justification for stopover habitat conservation.   
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Part One: Do migratory warblers carry excess fuel reserves during migration 

for insurance or for breeding purposes? 

 

Introduction 

 Migration is an energetically expensive behavior that is arguably the most 

vulnerable period of a bird’s annual cycle (Moore et al. 1990, Sillett and Holmes 

2002).  There is some evidence that basal metabolic rates increase considerably in 

migratory birds, particularly during spring migration (see Swanson 2010).  To 

compensate for these increased metabolic demands during migration, birds must 

deposit adequate energy reserves to reach distant breeding and wintering grounds 

successfully.  Some species of Neotropical, intercontinental migratory passerines are 

capable of accumulating fat stores of up to 50% of their body mass in preparation for 

or during migration (Blem 1990).  The migratory journey often consists of alternating 

periods of oriented flight (known as Zugunruhe) and frequent pauses at stopover 

locations to rest and refuel, or Zugdisposition (see Ramenofsky and Wingfield 2006).  

To accumulate necessary fuel reserves for Zugunruhe, birds may expend considerable  

time and energy at stopover locations en route to seasonally appropriate destinations 

(e.g., Hedenström and Alerstam 1997, Wikelski et al. 2003), and accumulating fuel 

reserves can delay arrival on breeding grounds in the spring (Fransson and Jakobsson 

1998).   

Fuel reserves, however, may be important for functions other than Zugunruhe.  

Studies show that fat reserves can affect the fitness of both males and females that 
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arrive early on spring breeding grounds; for example, excess fat or energy reserves 

can be directed toward breeding activities, such as territory establishment and egg 

production (Ojanen 1984, Sandberg and Moore 1996, Fransson and Jakobsson 1998, 

Bêty et al. 2003, Smith and Moore 2003, 2005).  This can lead to different patterns in 

energetic condition within and between species.  Sandberg (1996) found that several 

species arrived in good energetic condition on their Scandinavian near-Arctic 

breeding grounds, and when both sexes arrived concurrently, females had greater fat 

reserves than males.  However, males in some species also can arrive on breeding 

grounds with excess fat; for example, Fransson and Jakobsson (1998) found that male 

Willow Warblers (Phylloscopus trochilus) arrived on spring breeding grounds on 

Gotland Island in the Baltic Sea with relatively high fat reserves.  Also, a study in the 

low Arctic of Canada found that both male and female Harris’s Sparrows 

(Zonotrichia querula) arrived on their subarctic breeding grounds with appreciable fat 

reserves (Norment 1992).  In contrast, there is also evidence that some passerine 

species do not carry excess fat reserves to northern breeding grounds and perhaps 

only deposit fat en route for daily maintenance and migration requirements.  At a 

high-latitude site in Alaska, Benson and Winker (2005) discovered that among 16 

species of songbirds, all arrived with low fat reserves in spring and about one-third of 

the species had greater fat reserves in the fall.  Similarly, Dunn (2002) compared 

several stopover locations in spring and fall across Canada and found that several 

species of migrant songbirds had low daily mass gains and thus were not depositing 

excessive fat stores during migration.   
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Given the high degree of variability in the stopover ecology of migrating 

songbirds suggested by different studies and the varied ecology of migrant songbirds, 

patterns in the energetic condition of individual migrants likely differ among species 

at specific stopover locations and/or among stopover locations along a population’s 

migratory route.  An energetic surplus upon arrival on breeding grounds could be 

particularly beneficial for Arctic and subarctic (i.e., boreal) breeding birds, given the 

temporal constraints associated with breeding at high latitudes.  Timing of events on 

the breeding grounds may affect a bird’s reproductive success (e.g., Smith and Moore 

2003) and subsequent departure in the autumn (Mitchell et al. 2012).  Birds that arrive 

relatively early and in good energetic condition might be more successful at acquiring 

high quality territories and could breed earlier (e.g., Smith and Moore 2005, Cooper 

et al. 2011).  Birds that depart late from northern breeding grounds may face adverse 

weather conditions and depleted resources at stopover locations en route to wintering 

grounds (see Newton 2006).  Therefore, energetic condition coupled with the timely 

arrival on and subsequent departure from breeding grounds may influence a bird’s 

fitness.  In addition to the potential reproductive effects of an energy surplus, birds 

that arrive on stopover habitat or breeding grounds in good energetic condition would 

likely be better able to cope with sudden energetic demands due to unpredictable 

conditions (e.g., adverse weather) or resource constraints (Sandberg and Moore 

1996). 

To add to the body of knowledge about how birds use stopover locations and 

help identify key stopover sites for conservation (Donovan et al. 2002), it is useful to 
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study patterns in energetic condition at individual stopover locations during various 

stages of the migratory journey.  During spring migration, birds are under selective 

pressure to minimize time spent at stopover locations in order to reach breeding 

grounds in a timely manner (Fransson and Jakobsson 1998, Dänhardt and Lindström 

2001) and stopover habitat might be limiting for some songbird populations (e.g., 

Sillett and Holmes 2002).  Stopover locations in close proximity to ecological barriers 

(e.g., deserts, bodies of water, and mountain ranges) are especially important, as birds 

often need to refuel just prior to or just after crossing the barrier (e.g., Buler and 

Moore 2011).   

 The goals of the current study were two-fold.  First, I wanted to test two 

hypotheses about the role of energetic condition during spring migration by 

examining how condition varies with arrival time, sex, and season.  Second, I 

examined birds captured at a northerly stopover location in North America during 

both fall and spring migration, to compare with patterns found at other locations.  I 

investigated two hypotheses concerning the function of excess fuel and energetic 

condition during spring migration – the breeding performance hypothesis and the 

insurance hypothesis (Sandberg and Moore 1996): 

1. The breeding performance hypothesis suggests that gamete production and 

reproductive success, particularly in females, on northern breeding 

grounds can be influenced by pre-stored fat that is accumulated en route; 

females arriving with more fat reserves could produce larger clutches 

and/or begin breeding activities earlier than females that arrive with little 
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or no energy reserves.  Moreover, the asymmetrical energy expense of 

female gamete production could easily lead to sexual differences in energy 

acquisition, utilization, and storage while en route during spring 

migration.  Sandberg and Moore (1996) predicted that females should 

arrive on breeding grounds with more energy reserves than males to off-

set some of the energetic demands of female gamete production.     

2. The insurance hypothesis suggests that birds breeding at high latitudes 

should benefit from arriving on breeding grounds or northerly stopover 

locations with fat reserves because environmental conditions are harsh, 

and resources can be unpredictable and scarce at high latitudes in spring.  

Birds with stored energy reserves should be able to cope better with 

unpredictability, which would have fitness consequences.  Because food 

availability and weather conditions improve with time during the spring, 

one prediction of this hypothesis is that birds arriving earlier in the season 

should have greater fat reserves relative to later birds (Sandberg and 

Moore 1996).   

In general, both hypotheses imply that it is beneficial for birds to have 

energy/fat reserves in the spring.  Neither of these hypotheses would predict 

advantages of fuel reserves during fall migration, so one expectation is that birds 

arrive fatter in the spring relative to the fall when they depart.  While there may also 

be advantages to fall energy reserves, such as for long migrations, several studies 

suggest that fall migration occurs at a slower rate and many species may be more 
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likely to accumulate energy reserves as needed along their fall migratory route (e.g., 

Bauchinger and Klaassen 2005, Stutchbury et al. 2009).     

To test these two hypotheses, I analyzed spring and fall banding data for 

several warbler species collected from 1999-2012 at the Braddock Bay Bird 

Observatory (BBBO), located along the south shore of Lake Ontario, near Rochester, 

NY.  Although not a breeding site for most species I studied, this location is a 

northerly stopover site for migratory species that breed in boreal habitats.  The 

proximity of BBBO to the boreal forest makes it a potential penultimate stopover for 

many Parulids.  I included data for 12 Parulids in my analyses to investigate the 

following questions pertaining to Sandberg and Moore’s (1996) hypotheses: (1) Does 

the energetic condition of migrant songbirds at a northerly stopover site vary 

predictably with factors associated with the breeding or insurance hypothesis?  

Particularly, does energetic condition vary with date of capture (e.g., insurance) or 

sex (e.g., breeding)?  (2) Are there seasonal differences in energetic condition that 

support the prediction that birds should be fatter in the spring?  My analyses should 

provide valuable information about songbirds that use this stopover location and will 

contribute to current knowledge about the stopover biology of migratory songbirds. 

 

Methods 

Data collection: 

Braddock Bay Bird Observatory is located on the south shore of Lake Ontario 

near Rochester, Monroe County, New York, USA (43º 19’N, 77º 43’W).  The most 
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direct distance across Lake Ontario at this longitude is ±75-80 km.  The vegetation 

surrounding BBBO is characterized as a mix of abandoned field and early-

successional land-cover types dominated by viburnum (Viburnum spp.), dogwood 

(Cornus spp.), honeysuckle (Lonicera spp.), ash (Fraxinus spp.) and alder (Alnus 

spp.) (Bonter et al. 2007).  Much of the surrounding habitat is managed seasonally to 

maintain an early-successional vegetative state dominated by woody fruiting shrubs.   

Songbirds were captured with 30-mm-mesh mist nets that were operated daily 

(weather permitting) as part of the migration monitoring protocol at BBBO.  Across 

all years, birds were captured in the spring season from mid-April until late-May and 

in the fall season from late-August until mid-October.  Nets were opened just prior to 

sunrise and operated for a minimum of 6 h/d, with net checks to remove birds at least 

every 30 min.  The following data were recorded for each bird: time of capture, age, 

sex, unflattened wing chord or length (to 0.5 mm), mass (to 0.01 g), and fat score on a 

scale of 0-5 (Helms and Drury 1960).  

Data analyses: 

I selected 12 sexually dimorphic warbler species for these analyses: Black-

and-white Warbler (Mniotilta varia), Nashville Warbler (Oreothlypis ruficapilla), 

Mourning Warbler (Geothlypis philadelphia), Common Yellowthroat (Geothlypis 

trichas), American Redstart (Setophaga ruticilla), Magnolia Warbler (Setophaga 

magnolia), Blackpoll Warbler (Setophaga striata), Black-throated Blue Warbler 

(Setophaga caerulescens), Yellow-rumped Warbler (Setophaga coronata), Black-

throated Green Warbler (Setophaga virens), Canada Warbler (Cardellina 
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canadensis), and Wilson’s Warbler (Cardellina pusilla).  I compiled and analyzed 

data that were collected during both spring and fall from 1999 until 2012.  All data 

were collected on the first day of capture, assumed to be the arrival day for 

individuals at the site if birds arrive at or before dawn (see Moore et al. 1995, Dunn 

2000); data for re-captured individuals were not included in these analyses.  I 

included only individuals that could be reliably sexed by plumage, and individuals 

with obvious errors in wing length or mass measurements were eliminated.  Julian 

arrival date for all individuals was determined for each season and year.  To estimate 

energetic condition for each individual, I used unflattened wing length and body mass 

to calculate the scaled mass index (SMI) of body condition for all individuals 

(following Peig and Green 2009).  Scaled mass index enabled me to adjust the mass 

of all individuals to reflect what it would be if its body size (i.e., unflattened wing 

length) was equal to the population mean.  Therefore, the SMI is a size-corrected 

body mass that enabled comparison of the energetic condition of individuals within 

the population sample for each species.   

Arrival date distributions for each species were graphed by sex and season 

(see Appendix) to determine if there were intraspecific differences in arrival time 

between males and females.  I used linear regression analyses to investigate the 

relationship between energetic condition (SMI) and arrival date for all species; each 

season and sex were regressed separately for each species (see Appendix).  For each 

species, the linear regression slopes (in grams/day) and average SMI (g) of all birds 

with a fat score of 0 were used to calculate a daily percent change from lean mass, 
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similar to Dunn (2002).  This allowed for comparisons among species and between 

sexes and seasons within my data, in addition to enabling more direct comparisons to 

other studies.  A paired t-test was used to determine if there were significant 

differences in daily percent mass changes between the sexes of all species in spring. 

A general linear model (GLM) was used to determine if there were differences 

in energetic condition between seasons and sexes for each species; I created 

interaction plots to elucidate specific details about the energetic condition of males 

and females in spring and fall.  The GLM used ANCOVA to investigate if arrival date 

was a significant co-variant for energetic condition across seasons and sexes, and 

allowed me to “control” for arrival date differences between sexes and seasons when 

comparing condition of the sexes.  I standardized arrival dates to compare both spring 

and fall arrival for the ANCOVAs.  Median arrival date was calculated for each 

season by year, and the differences between individual arrival date and median date 

(median arrival date was equal to zero) were used for the analysis.  I determined the 

difference between male and female median Julian arrival dates for spring and fall 

across all species to elucidate differences in arrival time between sexes.  All data met 

test-appropriate assumptions before analyses were conducted.  SPSS version 21 

(SPSS IBM, New York, U.S.A.) and Minitab 16 (Minitab Inc., Pennsylvania, U.S.A.) 

were used to perform the statistical analyses.  
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Results 

Arrival date: 

Males arrived at BBBO earlier than females for all 12 species during spring 

migration.  Magnolia Warbler, American Redstart, and Wilson’s Warbler showed the 

smallest springtime median arrival date difference between males and females (two 

days), and Black-and-white Warbler had the largest difference between median 

arrival dates (eight days) (Table 1).  During fall migration, males of five species had 

earlier median arrival dates than females, females had earlier median arrival dates 

than males for five species, and two species (Yellow-rumped Warbler and Mourning 

Warbler) had no difference in median arrival date between sexes (Table 1).  Complete 

arrival distributions for all 12 species are provided in the Appendix. 

ANCOVA results for all species showed significant relationships between 

arrival date and condition (Table 2).  Regression analyses revealed that energetic 

condition increased with arrival date at BBBO for both males and females of all 

species in the spring (Table 3, Appendix).  Estimates of mean daily mass change 

during spring migration in females ranged from 0.1% (in Magnolia Warbler) to 1.2% 

(in Blackpoll Warbler), while mean daily mass change for spring males ranged from 

0.2% (in Magnolia Warbler and American Redstart) to 1.2% (in Blackpoll Warbler) 

(Table 3).  Mean daily mass change did not differ significantly between males and 

females among all 12 species during spring migration (T-value = -1.12, P = 0.288).  
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For fall migrants, regression analyses showed less consistent trends with 

arrival date (Table 3, Appendix).  Four species in the fall (Blackpoll Warbler, 

American Redstart, Common Yellowthroat, and Wilson’s Warbler) showed patterns 

similar to spring (i.e., energetic condition increased with arrival date at BBBO).  

Mean daily mass changes for these four species ranged from 0.2% (in American 

Redstart, Common Yellowthroat, and Wilson’s Warbler) to 0.6% (in Blackpoll 

Warbler) for females and from 0.2% (in American Redstart, Common Yellowthroat, 

and Wilson’s Warbler) to 0.5% (in Blackpoll Warbler) for males (Table 3).  Four 

other species (Nashville Warbler, Black-throated Green Warbler, Black-and-white 

Warbler, and Canada Warbler) showed no significant relationship between arrival 

date and condition (Table 3).  In the remaining four species (Magnolia Warbler, 

Black-throated Blue Warbler, Yellow-rumped Warbler, and Mourning Warbler), one 

sex had a significant regression between condition and the other did not (see Table 3 

for a summary of intraspecific fall differences).   

Sex: 

ANCOVA results showed significant condition differences between males and 

females for all species except Mourning Warbler (Table 2); interaction plots show 

that females of all species were in better energetic condition than males when they 

arrived at BBBO (Fig. 1).  Across all 12 species and both seasons, females were 5.5% 

heavier than males.  The largest mean SMI difference between sexes occurred in 

Blackpoll Warblers, with females averaging 2.1 g (17.9%) more than males, while the 
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smallest difference was among American Redstarts with females weighing 0.2 g 

(2.1%) more than males (Table 2).   

Season: 

Results for ANCOVA showed a significant effect of season on the energetic 

condition of all 12 species (Table 2).  In 11 species, energetic condition was higher in 

the spring compared to the fall (Fig. 1).  The overall SMI increase between fall and 

spring for these 11 species was 4.3%.  The greatest seasonal increase occurred in the 

Blackpoll Warbler; on average, birds had a mean SMI of 16.3% more in the spring 

than in the fall.  Black-and-white Warbler showed the opposite seasonal pattern from 

the 11 other species, with a mean SMI difference of -2.1% between spring and fall 

(Table 2).  

Interaction between sex and season: 

Although the overall trends for sex and season among all species are stated 

above, three species (Magnolia Warbler, Yellow-rumped Warbler, and Blackpoll 

Warbler) showed a significant interaction between sex and season.  In Magnolia 

Warbler and Blackpoll Warbler, males showed a greater difference in condition 

between seasons than did females.  Magnolia Warbler males had a mean SMI of 5.5% 

more in the spring than in the fall, while females had a 1.9% higher mean SMI in the 

spring than during fall migration.  Blackpoll Warbler males had a mean SMI 21.1% 

greater in the spring than in the fall; in comparison, females had a 5.3% higher mean 

SMI in the spring than during fall migration.  In contrast to Magnolia and Blackpoll 
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warblers, Yellow-rumped Warbler females showed a greater seasonal difference than 

males; females had a mean SMI that was 8.3% higher in the spring compared to fall, 

while males had a seasonal average SMI difference of 3.6%. 

 

Discussion 

Energy for breeding but not insurance? 

My results support the breeding performance hypothesis (Sandberg and 

Moore 1996).  Particularly, females of all 12 Parulids were in better energetic 

condition than males upon arrival at my study site during spring migration.  This 

finding is congruent with one prediction of the breeding performance hypothesis that, 

given the high energy demands of egg production, females should arrive on breeding 

grounds with more energy reserves than males (Sandberg and Moore 1996).  Those 

energy reserves are likely accumulated at stopover locations en route to breeding 

grounds rather than on the wintering grounds.  Females begin reproductive activities 

shortly after arriving on breeding grounds (Ojanen 1984), which may lend additional 

value to any fat reserves accumulated en route.  However, like many species of 

songbirds, Parulids are income breeders (Langin et al. 2006), so any benefit incurred 

from arriving on breeding grounds with energy reserves would likely be indirect (e.g., 

beginning reproductive activities earlier) rather than direct (e.g., energy directed 

toward egg production).    
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My results are complicated slightly by my finding that females are in better 

energetic condition than males at my study site during both spring and fall migration; 

therefore, this sex difference may not be fully attributed to breeding activities.  

However, I found that 11 of the 12 species had greater energy reserves in the spring 

compared to fall, which suggests that individuals of both sexes are carrying more 

energy reserves in the spring to potentially use for reproductive activities.  This also 

supports Sandberg and Moore’s (1996) “spring fatter” hypothesis.  Male reproductive 

activities, including acquisition and defense of territory and singing to attract females, 

also require energy expenditure, and therefore, both sexes have energetic demands 

related to breeding.  In contrast to results for most species, Black-and-white Warblers 

at Braddock Bay showed an inverse seasonal pattern (i.e., both males and females 

were fatter in the fall).  Reasons for this pattern are unclear, although it has been 

suggested that interspecific differences in migratory behavior and foraging ecology 

influence energetic condition during migration (Sandberg 1996). 

I found that the energetic condition of all species increased with capture 

(assumed arrival) date during the spring; therefore, the earliest birds to arrive at my 

site in the spring were in lower energetic condition relative to later arrivals for all 

species.  My findings for this study site contradict the insurance hypothesis’ 

prediction that earlier arrivals should carry excess fat to northern breeding grounds as 

insurance against inclement or unpredictable weather earlier in the season (Sandberg 

and Moore 1996).  A possible explanation for earlier migrants arriving with lower 

reserves is that conditions become more favorable later in the spring season and birds 
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are better able to gain mass en route (Bonter et al. 2007, Dunn 2000).  Earlier in the 

spring, some migrants actually lose mass at northerly stopover sites, likely due to 

poor resource levels and/or thermoregulatory challenges (Dunn 2000). 

Braddock Bay as a penultimate stopover site: translating my results to the breeding 

grounds: 

Braddock Bay is not a breeding site for most of the species I examined, but 

could be an ultimate or penultimate stopover location for at least some of the species.  

The precise breeding location (i.e., remaining migratory distance) of the Parulids that 

stop over at Braddock Bay is unknown and variable.  For instance, Blackpoll 

Warblers could breed anywhere from approximately 500 km to 6500 km from BBBO.  

I must, therefore, be cautious about any conclusions regarding the energetic condition 

of birds at this stopover location compared to arrival on their breeding grounds.  

Braddock Bay should provide adequate resources for most migrating songbirds, but 

habitat quality is likely better in the fall than in the spring for warblers and other 

species due to the delayed spring phenology caused by proximity to Lake Ontario 

(Bonter et al. 2007, Smith 2013).  Bonter et al. (2007) demonstrated that energetic 

condition varies with time of day and, like others (e.g., Dunn 2002), used regression 

analyses to show that many species of migrants can gain mass even in one day while 

stopping over near Braddock Bay.  In the spring, mean hourly mass change ranged 

from 0.33% to 1.13% of lean mass, with an average of 0.69% for 10 warbler species 

included in my study.  In the fall, mean hourly mass change was higher overall than 

in the spring, and ranged from 0.79% to 1.58%, with an average of 1.03% for seven 
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warbler species in my study.  Interestingly, my results show that these warblers 

arrived at Braddock Bay in poorer condition in the fall than in spring, and for this 

stopover site, fall migrants in poorer condition have the opportunity to gain more 

mass prior to continuing migration than they would in the spring.  Likewise, the lower 

hourly mass gains upon arrival in the spring suggest that the differences in energetic 

condition between males and females will probably not be offset by additional mass 

gain at this stopover site.  Hence, these mass differences are likely carried over to the 

bird’s next migratory location (either another stopover site or their breeding grounds). 

Measurements of condition, such as SMI or fat score determined from 

banding data, are static measurements and do not take into account dynamic 

differences in energy utilization that may occur between individuals.  For example, 

males can refuel more quickly than females (Seewagen et al. 2013).  Birds assimilate 

energy en route, so it is possible that patterns in energetic condition differ between 

stopover sites and breeding grounds.  Males, for instance, may accumulate additional 

energy reserves more readily than females after departing from my study site.  Dunn 

(2002), however, compared multiple stopover locations in spring and fall across 

Canada and found that several species of migrant male and female songbirds had low 

daily mass gains and thus were not depositing excessive fat stores en route.  

Accordingly, I believe that differences in the seasonal or sex-biased patterns in 

energetic condition between my stopover study site and arrival on breeding grounds 

likely would be small, particularly in the spring when most birds are under selective 

pressure to reach breeding grounds quickly (e.g., Smith and Moore 2003).  
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Spatial heterogeneity in energetic condition: comparisons to other sites: 

A relatively quick review of literature examining energetic condition in birds 

demonstrates that results vary between locations, suggesting spatial heterogeneity that 

could reflect population differences, latitudinal differences related to the migratory 

journey, or habitat-specific effects (e.g., Dunn 2000).  As in my study, Sandberg 

(1996) found that when males and females of nine passerine species arrived 

synchronously on near-Arctic breeding grounds in Swedish Lapland, females carried 

more fat reserves than males.  Another study found that female Harris’s Sparrows 

(Zonotrichia querula) arrived on low-Arctic Canadian breeding grounds with more 

fat reserves than males (Norment 1992).  Closer to my study site, American Redstart 

(Setophaga ruticilla) females arrived with more fat than males on breeding grounds in 

northern Michigan (Smith and Moore 2003, 2005).  Interestingly, Smith and Moore 

(2005) also found that earlier arriving American Redstarts are in better condition that 

later arriving individuals, which contradicts my findings at BBBO.  Not all studies, 

however, have found female-biased energetic condition (see Yong et al. 1998, Morris 

et al. 2003).   

Seasonal differences also vary across study sites.  Both males and females of 

most species that I studied arrived with significantly greater fat reserves in the spring 

than in the fall, which is consistent with the findings of a study that compared the fat 

reserves of several Parulids in New York City (Seewagen 2008).  However, contrary 

to my findings, a study that examined 16 passerine species captured near breeding 

grounds in Alaska found that most species were heavier in the fall than in the spring 
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(Benson and Winker 2005).  While it has been suggested that birds arriving at high 

latitudes may not carry excess fat for breeding or insurance purposes (Dunn 2002, 

Benson and Winker 2005, but see Norment 2002), birds captured at my northerly 

stopover location are consistently in better condition during spring migration, which 

may reflect differences in mass gain at southerly sites.  Given that many passerines 

are in low energetic condition after they cross the Gulf of Mexico (e.g., Moore and 

Kerlinger 1987, Loria and Moore 1990, Kuenzi et al. 1991, Yong and Moore 1997), 

they must accumulate energy stores at southern latitudes on their northward journey 

in the spring.  This suggests that there is a degree of spatial variation in energetic 

condition of birds during spring migration and emphasizes the need to compare 

further the patterns in energetic condition of migrants across North America.   

Arrival time: 

During spring at my study site, males were captured earlier in the season than 

females for all species that I examined, which suggests that these 12 species have 

differential spring migration.  Males in some species depart from wintering grounds 

before females (Marra et al. 1998), and males that arrive early might be able to secure 

high-quality territory and hence increase fitness (see Sandberg and Moore 1996, 

Kokko 1999).  Interspecific arrival timing of males and females at my site varied 

during fall migration, which is not surprising given that timing of fall migration is 

contingent upon cessation of breeding and/or molting activities (e.g., Mitchell et al. 

2012).  Birds migrate more quickly, and likely more urgently, in the spring than in the 
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fall (e.g., Yohannes et al. 2009, Schmaljohann et al. 2012), which may help explain 

the arrival variation at my study site during fall migration.   

My findings are consistent with a study by Smith and Moore (2005), which 

found that migrating male American Redstarts arrived before females at a study site 

in northern Michigan, but birds that bred at their study site did not show arrival date 

differences between sexes.  Other studies on several Parulidae species across North 

America also found that males arrived before females during spring migration, 

including at Prince Edward Point, Ontario (Francis and Cooke 1986), at a site in New 

Mexico (Yong et al. 1998), on Appledore Island, Maine (Morris et al. 2003), and at 

several sites across Alaska (Benson et al. 2006).  My fall results are also consistent 

with other studies, which did not find meaningful differences between the arrival of 

male and female warbler species during fall migration (e.g., Yong et al. 1998, Carlisle 

et al. 2005).   

The advantage of excess fat should not be considered without also considering 

arrival time differences among individuals.  There is evidence, in both sexes, that 

high-quality individuals arrive on breeding grounds earlier (e.g., Cooper et al. 2011), 

and arriving early confers increased reproductive success (Smith and Moore 2003, 

2005, Cooper et al. 2011).  Therefore, it should be beneficial for both sexes to arrive 

early on breeding grounds and with excess energy reserves to offset the energetic 

demands of reproductive activities (e.g., Sandberg and Moore 1996).  Both males and 

females are time-minimizers during spring migration, but males may show more 

time-minimization than females (Dierschke et al. 2005).   
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The unknown—migratory phenotypes: 

It is worth considering that populations of migratory birds are not equal in 

migratory phenotype; furthermore, there may be behavioral phenotypes that I 

unknowingly grouped together in my analyses.  For instance, Møller (1994) found 

that individual variation in the arrival timing of Barn Swallows (Hirundo rustica) was 

dependent on a phenotypic quality – high-quality males had longer tails and arrived 

earlier.  Birds are under selective pressure to arrive early on breeding grounds, which 

may result in some phenotypes being more risk-prone than others.  Therefore, perhaps 

some early males arrived at my study site with lower energy reserves than later 

arrivals because they were risking a negative trade-off by arriving earlier on breeding 

grounds, whereas the risk-averse phenotypes arrived later but in better condition.  

Differences among migratory phenotypes (e.g., risk-prone vs. risk-averse) might 

explain some of the variation in energetic patterns within my data, particularly at 

different times of the season or when birds are present at different densities (e.g., 

Kelly et al. 2002).    

Conclusion: 

In conclusion, I found a variety of patterns in the energetic condition of birds 

arriving at my study site, which show support for the breeding performance 

hypothesis but not the insurance hypothesis (Sandberg and Moore 1996).  My 

findings elucidate seasonal differences in the energetic condition of 12 warbler 

species that used stopover habitat near BBBO.  Although I found several interesting 

energetic condition patterns, I cannot make conclusive statements about how the 
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energetic condition of birds in my study affected their reproductive performance.  

However, given my finding that both males and females are consistently heavier 

during spring migration when resources are scarcer than during fall (e.g., Bonter et al. 

2007), I can cautiously conclude that there is a possible reproductive advantage to 

arrive with excess fat reserves during spring migration.           
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Tables and Figures 

 

Table 1.  Median Julian arrival (capture) dates at Braddock Bay Bird Observatory for 

males and females of 12 warbler species during spring and fall migration.  Difference 

shows female median minus male median date; a positive difference indicates that 

males arrived earlier than females.  Complete distributions of arrival dates are 

provided in the Appendix. 

  Season 

 
Spring Fall 

Species male female difference male female difference 

Black-and-white Warbler 127 135 8 253 254 1 

Nashville Warbler 128 135 7 263 260 -3 

Mourning Warbler 143 148 5 241 241 0 

Common Yellowthroat 138 143 5 255 254 -1 

American Redstart 142 144 2 253 255 2 

Magnolia Warbler 141 143 2 251 250 -1 

Blackpoll Warbler 145 148 3 260 261 1 

Black-throated Blue 

Warbler 134 141 7 261 263 2 

Yellow-rumped Warbler 124 128 4 276 276 0 

Black-throated Green 

Warbler 134 140 6 259 263 4 

Canada Warbler 143 146 3 241 238 -3 

Wilson's Warbler 144 146 2 250 249 -1 
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Table 2. ANCOVA results for 12 warbler species captured at Braddock Bay Bird Observatory between 1999 and 2012.  

Results show effect of sex and season on energetic condition with arrival date as a covariate.  This table also includes the 

percent differences in mean energetic condition (SMI) between sexes and seasons.  Energetic condition differences were 

determined by calculating the percent increase in female SMI compared to male for sex differences and percent increase (or 

decrease in Black-and-white Warblers) in spring SMI for both sexes compared to fall for seasonal differences.  

    Sex Season Arrival Date 

Species n F 

Energetic 

condition 

difference  F 

Energetic 

condition 

difference  F P 

Black-and-white Warbler 571 17.19** 6.6%      4.03* -2.1% 31.19 0.000 

Nashville Warbler 1041 81.86** 4.9 73.92** 4.3 28.78 0.000 

Mourning Warbler 551 1.41 2.9     5.47* 3.9 39.54 0.000 

Common Yellowthroat 2650 40.56** 4.0      4.15* 1.3 118.8 0.000 

American Redstart 3129 23.55** 2.1 40.09** 1.6 109.29 0.000 

Magnolia Warbler*** 4604 123.91** 3.2 157.44** 4.0 250.86 0.000 

Blackpoll Warbler*** 1189 375.31** 17.9 196.74** 16.3 83.41 0.000 

Black-throated Blue 

Warbler 2160 268.75** 6.7 17.22** 1.8 31.66 0.000 

Yellow-rumped Warbler*** 2493 95.18** 6.9 117.00** 5.0 87.37 0.000 

Black-throated Green 

Warbler 560 15.28** 3.3 19.49** 3.5 20.24 0.000 

Canada Warbler 936 25.65** 5.1 1.75 1.0 19.79 0.000 

Wilson's Warbler 1890 48.91** 3.0 129.82** 4.7 52.79 0.000 

***Significant interaction effect between sex and season (P < 0.005)  

          *P ≤ 0.05, **P ≤ 0.005 
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Table 3.  Regression analysis results by sex for arrival date vs. energetic condition of 

12 warbler species captured at Braddock Bay Bird Observatory between 1999 and 

2012 during both spring and fall migration.  For each species, the linear regression 

slopes (in grams/day) and average SMI (g) of all birds with a fat score of 0 were used 

to calculate mean daily percent change from lean mass.  Regression plots for each sex 

for all 12 species are shown in the Appendix. 

  Sex 

 

Female Male 

Species n F 

Daily 

mass 
change n F 

Daily 

mass 
change 

 
Spring Migration 

Black-and-white Warbler 258 18.09** 0.3% 222 30.81** 0.5% 

Nashville Warbler 253 13.37** 0.3 495 51.20** 0.4 

Mourning Warbler 274 16.95** 0.5 246 26.97** 0.5 

Common Yellowthroat 901 41.49** 0.4 1163 95.22** 0.3 

American Redstart 1333 28.70** 0.2 1393 45.76** 0.2 

Magnolia Warbler 947 6.48* 0.1 1752 17.56** 0.2 

Blackpoll Warbler 373 53.35** 1.2 342 52.57** 1.2 
Black-throated Blue 

Warbler 702 22.12** 0.3 493 52.48** 0.4 

Yellow-rumped Warbler 800 81.40** 0.5 1258 68.53** 0.4 

Black-throated Green 

Warbler 100 4.35* 0.2 182 27.70** 0.3 

Canada Warbler 452 13.15** 0.3 418 13.24** 0.3 

Wilson's Warbler 292 10.83** 0.4 1088 57.11** 0.4 

 
Fall Migration 

Black-and-white Warbler 49 2.91 0.2% 42 0.12 0.1% 

Nashville Warbler 164 0.11 0.0 129 3.72 0.2 

Mourning Warbler 14 7.19* 0.5 17 1.94 0.5 

Common Yellowthroat 129 4.59* 0.2 456 8.12** 0.2 

American Redstart 214 17.23** 0.2 189 9.02** 0.2 

Magnolia Warbler 429 1.72 -0.1 1403 16.82** 0.1 

Blackpoll Warbler 171 18.87** 0.6 303 26.31** 0.5 

Black-throated Blue 

Warbler 506 26.06** 0.2 459 1.29 0.0 

Yellow-rumped Warbler 226 0.1 0.0 209 7.11* 0.2 

Black-throated Green 
Warbler 55 0.46 0.1 96 3.07 0.1 

Canada Warbler 33 0.51 0.2 33 0.33 0.1 

Wilson's Warbler 191 5.25* 0.2 319 13.61** 0.2 

*P ≤ 0.05, **P ≤ 0.005 
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Figure 1.  Interaction line plots for 12 warbler species captured at the Braddock Bay 

Bird Observatory showing the effect(s) of season and sex on energetic condition. SMI 

is reported in grams; female data are represented with a dashed line and a solid line is 

used for male data. 
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Part Two: A longitudinal study to examine the causal relationship between 

energetic condition and orientation in White-throated sparrows (Zonotrichia 

albicollis) 

Introduction 

Migration is arguably the most vulnerable and unpredictable part of a bird’s 

annual cycle, since the preponderance of annual songbird mortality may occur during 

migration (Sillett and Holmes 2002).  For birds to complete migration successfully 

they must coordinate complex environmental and physiological cues to determine 

accurately the timing, distance, and orientation of their movements to navigate to 

seasonally appropriate locations (see Åkesson and Hedenström 2007).  Navigation 

and orientation during migration involve the integration of several exogenous cues 

such as skylight polarization, star patterns, angle of the sun at sunset, and information 

from the geomagnetic field (Muheim et al. 2006, Deutschlander and Beason 2014).  

However, other exogenous cues (e.g., weather conditions) and endogenous cues (e.g., 

energy reserves) can also influence a bird’s motivation to migrate and orient 

appropriately (e.g., Sandberg 2003, Fusani et al. 2009). 

Migratory songbirds may encounter several challenges en route: adverse 

weather conditions (Newton 2007), predators (Schmaljohann and Dierschke 2005), 

the need to locate resources in unfamiliar environments (see Newton 2006), depleted 

food resources (Kelly et al. 2002), resource competition (Moore and Yong 1991), and 

the need to correct for navigational errors (Ralph 1978).  Many migrating birds 

alternate between active, orientated nocturnal flight behavior (so-called Zugunruhe) 
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and extended periods of feeding to replenish energy reserves, or Zugdisposition (see 

Ramenofsky and Wingfield 2006).  Birds must deposit adequate energy stores to 

complete migration successfully; amazingly, long-distance intercontinental migrants 

can accumulate fat deposits representing up to 50% of their total body mass (Blem 

1990).  Stopover habitats along migratory routes provide key locations where birds 

can replenish these critical energy reserves, in addition to seeking respite, shelter, 

and/or waiting for favorable weather (e.g., Moore and Kerlinger 1987). 

The amount of stored energy (i.e., fat) that a migratory bird possesses 

influences many behaviors during spring and fall stopover.  A bird’s energetic 

condition is a physiological constraint during migration that may affect its length of 

stay and departure (Cherry 1982, Winker et al. 1992, Yong and Moore 1997, Gannes 

2002, Seewagen and Guglielmo 2010), rate of fat deposition and foraging behavior 

(Loria and Moore 1990, Schaub and Jenni 1999, Ktitorov et al. 2010), habitat and 

food selection (Bairlein 1985, Biebach et al. 1986, Ydenberg et al. 2002, McWilliams 

et al. 2004), orientation (Deutschlander and Muheim 2009), and Zugunruhe (Fusani et 

al. 2009, Eikenaar and Bairlein 2014).  Length of stay at a given stopover location 

varies and is influenced by a myriad of factors.  However, in general, birds spend a 

substantial proportion of their migratory journey at stopover locations, and songbirds 

can expend energy, in addition to gaining energy, during stopovers (Hedenström and 

Alerstam 1997).  Therefore, a bird’s overall migration length is constrained by how 

long it spends at stopover locations. 
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Ecological barriers to migration—areas where birds cannot stop for refueling 

(e.g., bodies of water, mountain ranges, and deserts)—present migrating birds with 

the dichotomous choice of either crossing the barrier or circumventing it (e.g., 

Stutchbury et al. 2009).  Therefore, stopover habitat in close proximity to ecological 

barriers is particularly important because birds may need to replenish energy reserves 

urgently, either just prior to or just after crossing a barrier.  When faced with a large 

ecological barrier, migrants in lean energetic condition may alter their migratory 

trajectory and reorient themselves in seasonally unexpected or even temporarily 

reversed directions (e.g., southward during spring migration), possibly to locate 

suitable habitat for refueling before continuing with migration (Alerstam 1978).  

Reorientation of birds in lean energetic condition occurs near aquatic ecological 

barriers, such as along ocean or gulf coastlines (Lindström and Alerstam 1986, 

Åkesson et al. 1996, Sandberg and Moore 1996a, Sandberg et al. 2002, Covino and 

Holberton 2011, Smolinsky et al. 2013), on island stopover locations (Fitzgerald and 

Taylor 2008, Schmaljohann et al. 2011), and along lakeshores (Deutschlander and 

Muheim 2009).  Reorientation behavior near ecological barriers has been observed 

during free-flying experiments (e.g., Sandberg and Moore 1996a), cage experiments 

(e.g., Deutschlander and Muheim 2009), and a combination of both (Sandberg et al. 

2002).  Oftentimes, birds with low energy reserves orient themselves either away 

from or parallel to a barrier, while birds with adequate energy reserves continue 

forward migration.  However, conflicting orientation behavior between birds in lean 

and fat energetic condition is not always observed, and a bird’s migratory orientation 
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is likely influenced by many exogenous and endogenous factors, such as 

environmental conditions, resource availability, competition, stage of migratory 

journey, or stress (e.g., Korner-Nievergelt et al. 2002, Ilieva et al. 2012). 

Although many studies show correlation between energetic condition and 

orientation, no published study to date was designed to test for a causal effect of 

energetic condition on orientation.  Bäckman et al. (unpublished) conducted a 

repeated measures orientation experiment with Red-eyed Vireos (Vireo olivaceus) 

and found that fat loads were an important factor for orientation of individuals (see 

Sandberg 2003).  I conducted a longitudinal (i.e., repeated measures) orientation cage 

experiment on White-throated Sparrows (Zonotrichia albicollis), a North American 

temperate migrant, to determine if energetic condition directly affected individual 

orientation at an ecological barrier.  Birds were caught and tested at the Braddock 

Bay Bird Observatory (BBBO) on the south shore of Lake Ontario; White-throated 

Sparrows previously tested at this stopover location showed correlative (not direct) 

responses between condition, or fat levels, and seasonally-appropriate orientation 

(Deutschlander and Muheim 2009).  I kept individual sparrows on semi-synthetic 

diets to manipulate their mass gain and loss, and then tested them for orientation three 

times: in their original condition (e.g., lean), after their condition changed on a 

manipulated diet (e.g., to fat from lean), and then again after they returned to their 

original condition (e.g., lean).  I hypothesized that a change in individual energetic 

condition would cause a change in an individual’s orientation.  Specifically, when a 

bird was in fat energetic condition, I expected orientation in a seasonally appropriate 
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direction.  In contrast, I expected that the same bird in lean energetic condition would 

either orient away from Lake Ontario or show disorientation (as in Deutschlander and 

Muheim 2009).   

 

Methods 

Study site and dates: 

All experiments were conducted in the orientation laboratory at BBBO during 

fall of 2012 and spring of 2013.  Braddock Bay Bird Observatory is located on the 

south shore of Lake Ontario near Rochester, Monroe County, New York, USA (43º 

19’N, 77º 43’W W; total intensity of the geomagnetic field: ~54,500 nT; inclination: 

70.5 deg.; declination: –12 deg.).  A straight-line distance across Lake Ontario at this 

longitude is approximately 75 to 80 km.  

Bird capture and processing: 

All birds were captured between 0.5 and 6 h after sunrise with 30-mm-mesh 

mist nets, which were operated daily (weather permitting) as part of the migration 

monitoring protocol at BBBO.  Permits were obtained through the U.S. Fish and 

Wildlife Service and the New York State Department of Environmental Conservation 

to house birds up to 14 days for these experiments.  For each bird, I recorded time of 

capture, age, unflattened wing length, mass (to nearest 0.01 g on a digital electronic 

balance), and visual subcutaneous fat estimate (where 0 = no visible fat, 1 = trace of 

fat visible in furcular region, 2 = furcular region lined with fat, 3 = furcular region 



45 
 

full and some fat on abdomen, 4 = furcular region convex and fat visible on abdomen, 

5 = furcular region convex and abdomen mounded, following Helms and Drury 

[1960]).  For testing and analyses, birds with a visual fat score of ≥ 3 were classified 

as fat, while those with a fat score of ≤ 1 were considered lean (similar to 

Deutschlander and Muheim 2009); however, due to time constraints, a small number 

of birds were tested with a fat score of 2.  Mass and fat score were repeatedly 

assessed for each individual throughout the experiment (see below).  Both white and 

tan morph individuals were used in these experiments, but due to the small number of 

birds tested each season, morph was not considered in my analyses.  Although 

refueling rates may vary between morphs, body fat and lean mass do not, likely 

because rate differences are offset by morph-specific competitive behaviors and 

stopover duration (Brown et al. 2014).  

Diet and feeding: 

Birds were held indoors with minimal human disturbance at BBBO in 

individual bird cages (41 x 36 x 41 cm).  A natural photoperiod was provided by 

diffuse lighting through frosted windows.  All birds were given access to food and 

water ad libitum during an initial acclimation period (usually two days).  Any bird 

that did not eat, showed signs of excessive weight loss, or that appeared lethargic 

during acclimation was released.  After acclimation and initial testing for orientation, 

lean healthy birds were given ad lib access to food to increase their energetic 

condition (i.e., fat score) while fat birds were fed a restricted caloric diet 

(approximately 50% of their ad lib intake) to decrease their energetic condition.  
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Birds were fed a semi-synthetic diet high in carbohydrates, which simulated a 

seed/grain diet (Table 1) (following Smith et al. 2007).  Birds were also fed a small 

amount of cracked corn during the acclimation period.  Food consumption was 

continually monitored while birds were held in captivity.  Bird mass and fat score 

were recorded daily or bi-daily.  

Orientation testing: 

Each bird was tested for orientation three times; within two days of when the 

bird was first caught, within two days after its energetic condition changed (e.g., from 

lean to fat), and again within two days after the bird returned to its original energetic 

condition.  Prior to each test, birds were placed in an open field at sunset (when the 

sun was no longer visible on the horizon) for one hour in small, non-magnetic cages.  

This allowed birds access to natural magnetic and celestial cues, including the 

horizon and zenith, for internal compass calibration (following Deutschlander and 

Muheim 2009, Muheim et al. 2009). Testing was carried out in a building on-site, 

separate from where the birds were housed for feeding.  The geomagnetic field 

properties in the open field were 54,400 nT in total intensity and 70.4º in inclination.  

In the testing facility, the geomagnetic field properties ranged from 51,500 to 54,500 

nT in total intensity and 64.1º-69.6º in inclination.  Geomagnetic field parameters 

were measured with a 3-axis magnetometer (model #539, Applied Physics Systems).  

Orientation was assessed for approximately 60 min in round Emlen-style 

funnel cages (Emlen and Emlen 1966) covered in plastic window screening, which 

allowed visual observation of the birds from above but prevented escape.  Up to six 
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orientation cages were placed inside a large wooden framed cube (approximately 2 m 

square) covered with white sheets on the top and the sides (see Fig. 1).  Light was 

provided from outside the sheets using tungsten halogen bulbs.  The lighting and 

white sheets created uniform illumination in the orientation testing area; therefore, 

during testing birds only had access to geomagnetic compass information for 

orientation.  Lighting in the testing area was measured in multiple directions with an 

Ocean Optics USB2000 spectrophotometer to ensure uniformity.  During testing, bird 

movements within the funnel cages were video-recorded with security cameras and a 

standard DVR (AGI Security VC-SYS-4CDIYBK provided by Leadertech USA).  

One camera was mounted overhead in each of two wooden frames and recorded up to 

six birds simultaneously (each funnel was fully visible within the video frame).   

Data analyses: 

BirdOriTrack, which was written specifically to analyze the orientation 

behavior of passerines, was used to analyze all video recordings (Muheim et al. 

2014).  The program determined bird orientation by extracting positional information 

from video frames and determining a bird’s position relative to the center of the 

Emlen funnel every time the bird moved out of the center.  For each test, mean 

direction (α), mean vector length (r), P-value (for both unimodal and axial 

distributions), number of counted positions or “valid hops” (n), and total activity 

levels (summed length of a bird’s movement binned over 30-sec intervals relative to 

radius of the funnel) for both unimodal and bimodal (or axial) distributions were 

determined (see Fig. 2).  Relative vector lengths from raw bearings and doubled-
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bearings were used to determine whether individuals were oriented unimodally or 

bimodally, respectively (Batschelet 1981).  For bimodally oriented birds, the end of 

the axis with the most hops was used for subsequent analyses because it likely 

indicated the direction birds were most oriented toward.   

For each season, birds were grouped according to energetic condition (fat or 

lean) and corresponding test number (one, two, or three).  Group orientation was 

tested in two ways – relative to magnetic north and relative to each bird’s initial 

orientation (similar to Muheim et al. 2009).  All initial tests (i.e., test one data) were 

analyzed only for orientation relative to magnetic north.  Subsequent tests were 

analyzed for orientation relative to magnetic north and for orientation relative to each 

bird’s initial orientation (i.e., plotted as the deflection or change in orientation from 

each bird’s original orientation in test one).  Mean vectors (µ) and length of mean 

vectors (r) for each group (based on the orientation of all birds within groups) were 

analyzed for significant orientation with Raleigh’s test of uniformity.  As for 

individual orientation, group orientation was tested for both unimodality and 

bimodality.  Additionally, a Watson’s U
2 
test was used to determine if there were 

differences in orientation between fat birds and lean birds across groups.  Oriana 

software (Kovach Computing) was used to calculate all circular statistics.  I used 

repeated measures ANOVA to elucidate possible differences in individual activity 

levels and/or hops among tests (i.e., energetic condition) and between seasons.  

Assumptions associated with this parametric test were satisfied.  SPSS version 21 

(SPSS IBM, New York, U.S.A.) was used to perform these statistical analyses.  



49 
 

Results 

Condition: mass, fat, and age: 

Because most sparrows captured at BBBO during fall 2012 were in lean 

condition, I was only able to test birds in a lean-fat-lean testing order.  The average 

mass for lean birds at their initial test was 25.0 ± 1.6 g, while fat birds weighed an 

average of 27.2 ± 2.3 g (roughly 9% heavier than the average initial mass), and the 

average mass for birds restored to original (lean) condition for their third test was 

24.2 ± 2.3 g (Table 2).  Fat scores ranged from 0 to 2 for lean birds and from 2 to 3 

for fat birds.  It took birds an average of 9 ± 2 days to fatten from lean condition and 

5 ± 2 days to lose mass before they were tested again in lean condition.  All of the 

birds tested in fall 2012 were aged as hatch-year (HY), or birds on their first 

migration.   

Most birds in spring 2013 were captured in fat condition, and therefore, I only 

tested birds with a fat-lean-fat testing order.  The average mass of sparrows was 27.3 

± 2.3 g during the first test.  For the second and third tests (lean and fat condition, 

respectively), birds weighed an average of 22.1 ± 1.6 g (roughly 20% less than their 

initial mass) and 25.9 ± 2.0 g, respectively.  Fat scores ranged from 3 to 4 for fat birds 

and from 0 to 1 for lean birds.  On average, fat birds took 8 ± 3 days to lean out and 4 

± 2 days to fatten prior to their final orientation test.  Most birds tested in spring 2013 

were of unknown age, specified as after-hatch-year (AHY); six were aged second-

year (SY) or birds on their first return migration.   
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Orientation: 

During fall 2012, all sparrows were tested in a lean-fat-lean energetic 

condition sequence (see Table 3 for individual bird data and Fig. 3 for group 

analyses).  When first tested in lean condition, the mean orientation of all lean birds 

was significantly bimodal, oriented along a northwest-southeast (NW-SE) axis, with 

mean vector of 118º-298º (± 16º, r = 0.514, Z = 5.02, P = 0.005).  When the birds 

were tested subsequently in fat condition, the group orientation relative to magnetic 

north was very similar to the initial test (Watson’s U
2  

=  0.092,  0.5 > p > 0.2, df  = 

17, 19); during test two, the group oriented bimodally along a NW-SE axis, with 

mean vector of 136º-316º (± 18º, r = 0.432, Z = 3.17, P = 0.04).  However, when the 

bearings were analyzed relative to initial orientation, the overall distribution of 

deflections from their original orientation for the group was weakly, bimodally 

oriented, with a mean vector of 22º-202º (± 19º, r = 0.421, Z = 3.02, P = 0.05).  Nine 

of the birds oriented in a similar direction in test one and two, while eight of the birds 

in test two oriented in roughly the opposite direction of their initial test.   

Lastly, during the third test, when the birds were returned to a lean energetic 

condition, the group again oriented bimodally along a NW-SE  axis relative to 

magnetic north (127º-297º ± 14º, r = 0.604, Z = 6.94, P = 0.0005), not significantly 

different from the orientation in test one (Watson’s U
2  

=  0.087,  0.5 > p > 0.2, df  = 

19, 19).  However, when the bearings were analyzed relative to initial orientation, the 

overall distribution of deflections from their original orientation for the group was 

strongly bimodal with a mean vector of 25º-205º (± 15º, r = 0.421, Z = 6.17, P < 
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0.001).  Nine of the birds oriented in a similar direction in tests one and three, while 

10 of the birds in test three oriented roughly in the opposite direction of their initial 

test.  Between tests two and three, about one third of the birds switched their 

orientation (see Table 2).  In summary, the overall group orientation was NW-SE 

regardless of condition, but half of the individuals switched their orientation after 

they were fed ad lib and increased fat stores, and one-third changed their orientation 

when they were returned to a lean condition.  

 During spring 2013, birds were tested with a fat-lean-fat sequence (see Table 

4 for individual bird data and Fig. 4 for group analyses).  As during fall 2012, the 

distribution of bearings for birds tested in the spring was bimodally oriented along a 

NW-SE axis regardless of condition; mean vectors were 131º-311º (± 16º r = 0.510, Z 

= 4.97, P = 0.006), 146º-326º (± 20º, r = 0.367, Z = 2.29, P = 0.1), and 146º-326º (± 

16º, r = 0.534, Z = 5.14, P = 0.005), for tests one, two, and three, respectively.  When 

analyzed with respect to magnetic north, the overall group orientation did not change 

between tests one and two or tests one and three (Watson’s U
2 
= 0.057, P > 0.05, df = 

17, 19 and Watson’s U
2 
= 0.135, 0.2 > P > 0.1, df = 18, 19).  However, when I 

analyzed the bearings of each individual relative to its initial orientation, a different 

result was apparent.  In test two, when birds were tested in a lean condition, the 

overall distribution of bearings relative to their initial orientation did not differ 

significantly from random (r = 0.069, Z = 0.082, P = 0.924); when birds changed 

from fat to lean, they randomly changed directions from their initial preferred 

orientation.  In test three, after birds were fed ad lib and returned to their initial fat 
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condition, the overall distribution of bearings relative to their initial orientation was 

unimodally oriented toward their initial direction (352º ± 36º, r = 0.452, Z = 3.67, P = 

0.023); most birds oriented toward their initial direction after they returned to their 

original fat energetic condition. 

Activity levels: 

Traditionally in orientation tests, some estimate of the number of hops is used 

as a surrogate measurement of migratory activity of Zugunruhe.  In BirdOriTrack, 

both the number of hops and an estimate of activity based on distance moved are 

determined for each test.  Figure 5 shows a direct linear relationship between activity 

levels based on distance moved and number of counted hops for all birds tested in fall 

2012 and spring 2013.  For each season, ANOVA revealed no differences in either 

the number of hops or the activity levels (i.e., distance moved) for individuals among 

the three orientation tests (all P-values > 0.05).  Additionally, I found no significant 

seasonal differences in either the activity levels or number of hops for tested 

individuals (all P-values > 0.05).  

 

Discussion 

 When analyzed relative to magnetic north (for an “absolute” direction), the 

White-throated Sparrows tested were unexpectedly well-oriented along a NW-SE axis 

in all tests (Figs. 3 and 4).  When analyzed as a group, birds did not show seasonally 

appropriate unimodal orientation (e.g., north in the spring) or reverse orientation 
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based on condition, but rather showed consistent bimodal orientation along the 

correct axis for orientation regardless of condition (similar to Muheim et al. 2009, 

who tested this species at the same location in a similar short-term captive study – see 

below).  Moreover, there were no differences in the amount of activity, or Zugunruhe, 

between seasons or among birds in different conditions.  I did not expect the amount 

of Zugunruhe to differ among birds with different levels of energy reserves given that 

other studies have not found a relationship between the energetic condition of White-

throated Sparrows and level of migratory restlessness at BBBO (Smith and Norment 

2005, Deutschlander and Muheim 2009).  My goal, however, was to determine how a 

change in condition affected individual orientation or Zugunruhe.  Therefore, the 

most appropriate analysis for my longitudinal study was to examine the orientation of 

individuals and determine how each individual changed its orientation with condition.  

Accordingly, I analyzed each individual’s orientation in tests two and three relative to 

its initial orientation in test one.  Comparison of test two to test one enabled me to see 

how a change in condition affected orientation, while the comparison of test three to 

test one enabled me to see if restoring original condition resulted in a return to initial 

orientation. 

Birds tested during spring 2013 were initially in fat condition; hence, they 

should have been highly motivated to migrate in a seasonally appropriate direction 

(e.g., Deutschlander and Muheim 2009); the bimodal NW-SE orientation of these 

birds is consistent with another study that held sparrows in captivity for extended 

periods (Muheim et al. 2009).  When plotted relative to their initial orientation, it is 
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apparent that fat birds, after they were induced to lose fat and mass, showed random 

orientation during test two relative to their well-oriented “control” direction in test 

one (Fig. 4).  This implies that birds lacked motivation to migrate or orient 

appropriately (despite activity levels comparable to their initial test), which might 

indicate dispersal behavior in lean White-throated Sparrows, as suggested by 

Deutschlander and Muheim (2009).  After gaining fat and mass, the majority of 

individuals oriented in a direction similar to their initial orientation (Fig. 4), which 

suggests that birds’ motivation to migrate and orient in a seasonally appropriate 

direction returned when their fuel reserves increased.  Therefore, the spring 2013 data 

suggest that decreasing fat mass results in less consistent individual orientation, while 

increasing fat mass restores a consistent orientation response.  Reorientation behavior 

and/or lack of migratory motivation of lean birds prior to crossing an ecological 

barrier has been documented in many species of migratory songbirds in the fall (e.g., 

Lindström and Alerstam 1986, Sandberg et al. 1991, Åkesson et al. 1996, Sandberg et 

al. 2002, Covino and Holberton 2011) and the spring (Schmaljohann et al. 2011).  

Interpretation of the fall 2012 results is slightly more complex because the 

birds were initially tested in lean condition – when they should be least motivated to 

show oriented Zugunruhe (Deutschlander and Muheim 2009).  Surprisingly, these 

lean birds also were well-oriented along a NW-SE axis when initially tested, but 

when these birds gained mass and fat, many (about half of tested individuals) oriented 

opposite of their initial orientation in test one (Fig. 3).  When birds were tested a third 

time, once again in lean condition, about half of the birds oriented opposite to their 
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initial orientation and the other half oriented towards their initial direction (Fig. 3); 

about one-third of individuals showed orientation in a different direction from the 

previous test (compare tests two and three in Table 3).  Like the spring results, a 

portion of the birds tested during fall changed their orientation with energetic 

condition, but these results are less consistent than during spring, and I cannot 

exclude the alternative explanation that birds were randomly switching their 

orientation between ends of the preferred axis of orientation for migration.   

The spring data clearly show an effect of condition on orientation, while the 

fall data are much less conclusive.  There are several possible explanations for the 

differences in my results between spring and fall.  First, during spring migration, 

birds are under selective pressure to reach breeding grounds quickly (e.g., Sandberg 

and Moore 1996b, Smith and Moore 2005).  During the fall there is likely less 

selective pressure to reach winter grounds, particularly for temperate migrants, such 

as White-throated Sparrows, and migration occurs at a slower pace (e.g., Yohannes et 

al. 2009, Schmaljohann et al. 2012).  Second, all birds tested in the fall were hatch-

year (HY) birds with no previous migration experience (birds tested in the spring had 

all previously migrated).  Age and inexperience might have affected the orientation 

responses of the birds tested in this study (as in Ralph 1978, Moore 1984, but see 

Korner-Nievergelt et al. 2002, Smolinsky et al. 2013).  Third, the location of my test 

site relative to an ecological barrier (Lake Ontario) differs between seasons.  In the 

spring, birds at Braddock Bay are faced with crossing the barrier, while in the fall 

birds had crossed the barrier prior to reaching my site and, therefore, reorientation is 
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not necessary in the fall.  Sandberg and Moore (1996a) found that lean Red-eyed 

Vireos (Vireo olivaceus) oriented in a seasonally appropriate direction after crossing 

the Gulf of Mexico during spring migration, which could represent a situation similar 

to that of birds tested during the fall at Braddock Bay.  Fourth, it is difficult to make 

direct comparisons between the fall and spring experiments because birds were not 

tested in the same energetic condition sequence.  Initially testing birds in each season 

in fat condition would make my results easier to interpret because I expect birds to be 

most motivated to migrate in fat condition.  Finally, the winter range of this species 

includes the study site (Falls and Kopachena 2010); therefore, it is possible that some 

of the individuals I studied in the fall were ceasing migration.  However, overall 

activity levels were similar in the fall and spring, which suggests that Zugunruhe 

levels were similar.    

It is also worth noting that White-throated Sparrows are short-distance 

migrants and may not need excessive fat reserves before continuing migration 

because they are not making long, intercontinental flights.  There are well-

documented differences between the migratory activities of long- and short-distance 

migrant species; short-distance migrants tend to demonstrate more variation in body 

mass and migratory activity compared to long-distance migrants (e.g., Gwinner 1972, 

Yong and Moore 1993).  There is also evidence that distance to the next stopover 

location or goal can affect the departure decisions and stopover behavior of migrants.  

Dierschke and Delingat (2001) found that Northern Wheatears departing the North 

Sea island Helgoland differed in their energetic strategy based on their goal; 
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individuals closer to their goal departed more quickly – irrespective of energetic 

condition or weather – compared to birds that were farther from their destination.  

Likewise, Long and Stouffer (2003) found that body mass (an indicator of a bird’s 

energetic condition) was not a good predictor of Zugunruhe in Hermit Thrushes 

(Catharus guttatus), a short-distance migrant.  Energetic condition, therefore, might 

not be a reliable or strong predictor of migratory readiness or orientation in White-

throated Sparrows and other short-distance migrants because they are not making 

extensive migrations.  This may help explain, in conjunction with other factors, why I 

found variation in the orientation of the birds I tested.   

There are several possible explanations for why I did not observe seasonally 

appropriate unimodal orientation in sparrows in fat condition.  When White-throated 

Sparrows were tested on the day of capture at the same location along Lake Ontario 

under similar experimental conditions, sparrows in fat condition (fat score ≥3) 

oriented in a seasonally appropriate, unimodal direction in both spring and fall, while 

birds in lean condition (fat score of 0 or 1) were randomly oriented (Deutschlander 

and Muheim 2009).  Unlike the study by Deutschlander and Muheim (2009), 

however, I held birds in captivity for up to 14 days, which potentially influenced the 

behavior of the birds I tested.  A study that tested White-throated Sparrows while they 

were held in captivity for up to 10 days found that, very much like my study, birds 

were not oriented in a seasonally appropriate unimodal direction but were axially (or 

bimodally) oriented along the correct axis for migration even though they were in fat 

condition (Muheim et al. 2009).  Laboratory studies on the orientation of captive 
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Savannah Sparrows (Passerculus sandwichensis) also found that the magnetic 

orientation of birds was consistently bimodal during fall migration (Able and Able 

1993, 1995, 1996).  Captivity of several nights or more appears to induce an axial 

orientation response in sparrows.  Conducting similar experiments on a species that 

continues to show unimodal orientation while held in captivity would be a better 

model to examining the effect(s) of condition on orientation. 

The artificial conditions my birds experienced in captivity, most notably 

fluctuations in food availability created by my experimental design, might also have 

affected the migratory status of birds I tested.  Previous studies show a variety of 

conflicting results with respect to food availability and migratory readiness, or 

Zugunruhe.  Fasting can actually increase Zugunruhe, and some studies have shown 

that birds have lower Zugunruhe while refueling (e.g., Korner-Nievergelt et al. 2002, 

Fusani and Gwinner 2004, Fusani et al. 2009, Eikenaar and Bairlein 2014).  Similar to 

my study, Long and Stouffer (2003) found that body condition accumulated after diet 

supplementation did not predict the amount of Zugunruhe in Hermit Thrushes, which 

was contrary to the results of Yong and Moore (1993), who found increased 

Zugunruhe in Hermit Thrushes after they refueled.  Given my study design, it is 

possible that individual variation in the amount of food birds consumed prior to 

testing affected the directedness (but not the amount) of their Zugunruhe.           

I (and others) have assumed that orientation is a condition-dependent behavior 

that is alterable simply by changing a bird’s condition, but condition and orientation 

may both be linked by a bird’s personality (Marchetti and Zehtindjiev 2009).  
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Differences in the rate individuals adapt to captivity, measured by captive feeding and 

exploratory behavior, have a greater influence on orientation than fat levels in Sedge 

Warblers (Acrocephalus schoenobaenus), an Old World warbler and long distance 

migrant.  Marchetti and Zehtindjiev (2009) found lean birds that ate in captivity were 

more likely to orient in a seasonally appropriate direction than fat birds, which 

suggests that conditions and behaviors in captivity may be compounded by existing 

individual variation in personality.  Individual birds may also have different 

physiological traits, such as rates of fat metabolism (e.g., Eikenaar and Bairlein 

2014).  

Consequently, because of individual variation in physiological and 

psychological (i.e., personality) processes, two birds in similar energetic condition 

might have differing motivation to continue migration, or might respond differently to 

changes in condition.  This might explain some of the variation in orientation I found 

between birds in fat and lean condition.  Perhaps some of the lean birds I tested had 

sufficient energy reserves to continue migration, while others did not, or perhaps lean 

birds are more likely to have personalities associated with appropriate migratory 

direction than fat birds.  For example, initially lean birds may be more risk-prone, and 

attempt migratory orientation regardless of condition, while initially fat birds may be 

more risk averse individuals that only attempt migratory orientation when in good 

condition.  Additionally, the orientation of birds in Emlen cages may not always 

coincide with the orientation of free-flying birds, particularly if birds lack motivation 
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to migrate (see Nievergelt et al. 1999) and other parameters, such as weather, also 

affect migration initiation (see Bulyuk and Tsvey 2013).     

In conclusion, my longitudinal study on White-throated Sparrows 

demonstrates the complexity of migration behavior at a northern stopover location 

and also shows the importance of considering the orientation of individuals relative to 

their orientation during previous tests.  Although some of my results were 

inconsistent, I did find a change in the orientation of some individuals when their 

energetic condition changed, especially during spring migration.  Future studies 

should examine the effect of energetic condition on the orientation of long-distance 

migrants.      
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Tables and Figures 

 

 

 

 

Table 1. Semi-synthetic diet (ingredients and composition), designed to mimic a seed 

diet, and fed to White-throated Sparrows held at BBBO for orientation testing; 

approximately 63% carbohydrates, 10% protein, and 8% fat (following Smith et al. 

2007).  

Ingredient Dry Mass (%) 

Corn Starch 63.41 

Casein
a
 10.31 

Cellulose
b
 5.15 

Vitamin mix
c
 1.03 

Salt mix
d
 5.67 

Ground silica sand 5.15 

Sodium bicarbonate 1.03 

Corn oil 8.25 

TOTAL DRY 100.00 
a USB Corporation, Cleveland, OH.  
b SIGMA Chemical Corporation 
c MP Biomedicals LLC, Solon, OH. 
d MP Biomedicals LLC, Solon, OH. 
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Table 2. Data for White-throated Sparrows tested for orientation, each individual was 

tested three times at three different energetic conditions (e.g., fat, lean, fat) in fall 

2012 and spring 2013.  Fat scores and average masses reflect bird condition on night 

of testing; average days to change condition reflects how long birds took to fatten (ad 

lib diet) or lean (restricted diet) before testing.  Visible fat was scored on a scale from 

0-5.  

Fall 2012       

n 

Test 

condition 

Fat 

score 

Average 

mass (g) ± 

s.d. 

Average #/days ± s.d. 

to change condition 

19 Lean 0 to 2 25.0 ± 1.6 n/a 

17 Fat 2 or 3 27.2 ± 2.3 9 ± 2 

19 Lean 0 to 2 24.2 ± 2.3 5 ± 2 

Spring 2013       

n  

Test 

condition 

Fat 

score 

Average 

mass (g) ± 

s.d. 

Average #/days ± s.d. 

to change condition 

19 Fat 3 to 4 27.3 ± 2.3 n/a 

17 Lean 0 to 1 22.1 ± 1.6 8 ± 3 

18 Fat 3 25.9 ± 2.0 4 ± 2 
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Table 3. Individual orientation data for White-throated Sparrows tested three times each at three conditions (lean, fat, lean) 

during fall 2012.  Mass and fat score reflect individual condition on night of testing.  Mean direction (α) and total number of 

hops for each test are given for all individuals, unless the birds were inactive (hops < 35).  Each individual’s orientation in tests 

two and three relative to its orientation in test one is also included.  Mean vectors for birds that were bimodally oriented during 

a specific test are designated with an asterisk (*).  

Test 1: Lean Test 2: Fat Test 3: Lean 

Bird 

Mass 

(g) 

Fat 

score α (⁰) 

No. of  Mass 

(g) 

Fat 

score α (⁰) 

Relative to No. of Mass 

(g) 

Fat 

score α (⁰) 

Relative to No. of 

hops Test one (⁰) hops Test one (⁰) hops 

1 22.2 0 287* 56 24.7 2 148* 230 170 24.2 1 140 222 155 

2 26.6 2 107 158 27.8 3 101 186 179 27.0 2 321* 226 311 

3 25.4 0 111 74 31.0 3 18 279 134 30.0 2 303 204 279 

4 26.0 1 310 79 n/a - - - - 26.3 2 121 183 405 

5 24.8 1 117 108 28.4 3 77 332 246 24.0 0 312* 207 143 

6 24.4 1 123* 104 27.6 3 310 199 265 24.9 1 128* 17 107 

7 22.4 1 79 112 26.2 3 130 63 383 22.4 1 121 54 184 

8 26.4 1 321 105 29.6 3 299* 350 83 25.9 1 330 21 94 

9 23.6 2 287 96 n/a - - - - 21.4 1 139 224 184 

10 24.6 1 46 178 27.9 3 299* 265 97 24.5 1 98 64 117 

11 24.6 1 205 144 27.9 3 230 37 222 23.7 1 195 182 203 

12 25.9 1 149 114 27.1 3 179 42 54 23.7 1 208 71 79 

13 25.5 1 48 163 25.0 3 162 126 125 23.6 1 109 73 128 

14 26.2 1 308* 79 26.6 3 347 51 121 23.4 1 340 44 122 

15 25.6 1 329* 73 26.0 3 131 174 134 23.0 1 75 118 75 

16 28.7 1 338 67 30.2 3 14 48 144 25.8 1 96 130 75 

17 25.3 1 100 324 29.2 3 308* 220 106 24.3 1 316* 228 75 

18 22.4 1 283* 42 21.7 3 118 207 161 19.4 1 293 22 48 

19 25.1 2 300 165 24.7 3 312* 24 135 21.7 1 128 200 64 
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Table 4. Individual orientation data for White-throated Sparrows tested three times each at three conditions (fat, lean, fat) 

during spring 2013; presented in the same format as Table 3. 

Test 1: Fat Test 2: Lean Test 3: Fat 

Bird 

Mass 

(g) 

Fat 

score α (⁰) 

No. of Mass 

(g) 

Fat 

score α (⁰) 

Relative to No. of Mass 

(g) 

Fat 

score α (⁰) 

Relative to No. of 

hops Test one (⁰) hops Test one (⁰) hops 

1 30.1 3 112 346 25.2 1 119 29 311 n/a - - - - 

2 29.2 3 282 462 24.2 1 305 35 357 27.9 3 351 81 100 

3 25.8 3 343 268 20.4 1 150* 179 125 24.2 3 151* 180 355 

4 28.3 3 315* 35 22.8 0 185 242 54 28.5 3 351* 48 101 

5 27.5 3 42 187 22.1 0 291 261 71 26.6 3 205 175 35 

6 24.1 3 193 75 n/a - - - - 22.9 3 187 186 47 

7 31.0 3 165* 320 n/a - - - - 26.2 3 151 358 296 

8 26.8 3 300 102 20.3 0 323* 35 76 24.2 3 287 359 247 

9 24.9 3 123 459 20.9 1 24 273 101 24.0 3 83 332 522 

10 27.1 3 122* 74 23.1 1 234 124 92 25.0 3 84 334 52 

11 29.4 4 307* 262 23.0 1 99 164 178 27.0 3 322 27 340 

12 31.0 3 309 40 24.4 1 333 36 78 29.5 2 322* 25 131 

13 26.7 3 330* 456 21.2 1 128* 170 291 28.3 3 319* 181 333 

14 25.1 3 136 306 19.9 1 155 31 312 22.7 3 155 31 217 

15 30.4 4 301 100 22.8 0 297 188 405 28.0 3 325* 36 123 

16 25.6 3 131* 101 20.5 0 318* 199 248 26.4 3 327* 208 82 

17 25.8 3 226 564 22.8 1 21 167 405 24.4 3 171* 317 428 

18 26.2 3 334 275 20.5 1 353 31 57 24.9 3 289 327 126 

19 24.2 3 90 74 21.8 1 29 311 115 25.5 3 308* 230 39 
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Figure 1. Orientation testing area (top) and video frame showing White-throated 

Sparrows that were video recorded and then analyzed with BirdOriTrack to determine 

orientation within Emlen-style cages (bottom). 
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Figure 2.  BirdOriTrack output for one individual bird during one orientation test, 

shows mean direction (α), mean vector length (r), P-value (for both unimodal and 

axial distributions), number of counted positions or “valid hops” (n), and total activity 

levels (summed length of a bird’s movement binned over 30 sec intervals relative to 

radius of funnel).  Each small circle within the upper left circle plot represents a valid 

hop in a particular direction. The circle plot in the upper right shows the bird’s mean 

vector relative to magnetic north; the dotted lines on either side of the mean vector 

indicate the 95% confidence intervals.
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Figure 3. Orientation of White-throated Sparrows tested during fall 2012 (lean-fat-lean sequence). For each test (1, 2, and 3) 

data are plotted relative to magnetic North (mN = 0).  For tests 2 and 3, data are also plotted relative to the initial orientation of 

each bird in test one (i.e., as deflections from the initial mean orientation).  Each point on the circle plots represents the 

orientation of an individual bird (from Table 2).  Lines bisecting each circle show the mean vector for all birds; brackets at the 

end of each line indicate the 95% confidence intervals for the mean vector.  P-values are for the Rayleigh test (full statistics are 

reported in the text). 
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Figure 4. Orientation of White-throated Sparrows tested during spring 2013 (fat-lean-fat sequence).  These data are plotted as 

in Figure 3, with the exception that the plots showing the orientation of birds relative to their initial orientation were not 

bimodally significant.  Rather one distribution was not significantly different from random (so no mean vector is shown) and 

one distribution was unimodally oriented (shown with a unimodal mean vector and 95% confidence brackets). 
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Figure 5.  Relationship between mean activity levels (distance moved per 30 sec 

interval) and mean number of hops for all White-throated sparrows tested for 

orientation (three times each at three conditions) in fall 2012 and spring 2013. 
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Appendix   

There are six figures for each of the 12 Parulidae species included in my 

analyses: two frequency distributions that show the number of individual males and 

females captured at Braddock Bay Bird Observatory (BBBO) during both spring and 

fall migration and four linear regressions that show the relationship between the 

energetic condition or SMI (g) and arrival date of males and females at BBBO during 

both spring and fall migration.  Species are listed alphabetically.    
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1. American Redstart (Setophaga ruticilla) 
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2. Blackpoll Warbler (Setophaga striata) 
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3. Black-and-white Warbler (Mniotilta varia) 
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4. Black-throated Blue Warbler (Setophaga caerulescens) 
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5. Black-throated Green Warbler (Setophaga virens) 
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6. Canada Warbler (Cardellina canadensis) 

162156150144138132126120

80

70

60

50

40

30

20

10

0

Spring Arrival Date (Julian)

N
u

m
b

e
r 

o
f 

In
d

iv
id

u
a

ls 146.1 4.937 453

142.2 5.253 418

Mean StDev N

Female

Male

Sex

Canada Warbler

Cardellina canadensis

 

270260250240230220210

10

8

6

4

2

0

Fall Arrival Date (Julian)

N
u

m
b

e
r 

o
f 

In
d

iv
id

u
a

ls 240.9 8.936 33

240.3 6.343 33

Mean StDev N

Female

Male

Sex

Cardellina canadensis 
Canada Warbler

  

 



91 
 

160155150145140135130125

13

12

11

10

9

8

7

Spring Arrival Date (Juian)

E
n

e
rg

e
ti

c
 C

o
n

d
it

io
n

 (
S

M
I)

S 0.816325

R-Sq 2.8%

R-Sq(adj) 2.6%

Canada Warbler
Female

P < 0.005

160155150145140135130

14

13

12

11

10

9

8

7

Spring Arrival Date (Julian)

E
n

e
rg

e
ti

c
 C

o
n

d
it

io
n

 (
S

M
I)

S 0.771229

R-Sq 3.1%

R-Sq(adj) 2.9%

Canada Warbler
Male

P < 0.005

260250240230220

13

12

11

10

9

8

Fall Arrival Date (Julian)

E
n

e
rg

e
ti

c
 C

o
n

d
it

io
n

 (
S

M
I)

S 1.07649

R-Sq 1.6%

R-Sq(adj) 0.0%

Canada Warbler
Female

P = 0.481

260255250245240235230

12

11

10

9

8

Fall Arrival Date (Julian)

E
n

e
rg

e
ti

c
 C

o
n

d
it

io
n

 (
S

M
I)

S 0.788494

R-Sq 1.1%

R-Sq(adj) 0.0%

Canada Warbler
Male

P = 0.568



92 
 

7. Common Yellowthroat (Geothlypis trichas) 
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8. Magnolia Warbler (Setophaga magnolia) 
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9. Mourning Warbler (Geothlypis philadelphia) 
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10.    Nashville Warbler (Oreothlypis ruficapilla) 
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11.   Wilson’s Warbler (Cardellina pusilla) 
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12.    Yellow-rumped Warbler (Setophaga coronata)  
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