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Abstract 
 
  The main objectives of this study were to determine and compare fatty acid signatures 

(FAS) of lake trout eggs within and among the Great Lakes region. Fifteen sites were sampled 

over 2 years, including six sites in Lake Michigan, four sites in Lake Huron and one site each in 

Lake Ontario, Lake Superior, Lake Champlain, and Cayuga Lake. A total of 518 egg samples 

were quantified. A combination of univariate and multivariate statistical analyses was used to 

assess spatial and temporal differences in FAS in both the neutral lipid (NL) and phospholipid 

(PL) fractions of lake trout eggs. At each sampling site, FAS did not differ significantly between 

the 2 years of sampling. Therefore samples from 2009 and 2010 were combined to assess spatial 

differences. Discriminant factor analysis (DFA) was performed on lake trout eggs from 13 

sample sites using 18 of the most abundant fatty acids detected. DFA revealed a clear separation 

of lake trout eggs by sample site reaching an overall classification success of 77.7% and 77.3% 

in the neutral lipid and phospholipid fractions, respectively. Similarly, nonmetric 

multidimensional scaling and SIMPER analyses revealed differences in FAS among sample sites 

in both lipid fractions. These differences were driven by 16:1n-7 and 18:1n-9 in the NL and by 

16:0 and docosahexaenoic acid in the PL. We suggest that the differences observed in FAS in 

lake trout eggs among sample sites are reflective of the lake trout feeding habit.  
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1. Introduction 

Lake trout Salvelinus namaycush is a salmonid species native to the Great Lakes, Finger 

Lakes, and Lake Champlain. Historically, lake trout flourished in their native habitats and were 

once the most valuable commercial fish in the Upper Great Lakes. Their populations declined in 

the 1950’s due to combined pressures from overfishing, sea lamprey Petromyzon marinus 

predation, habitat degradation, and alewife Alosa pseudoharengus invasion (Hile et al. 1951, 

Eschmeyer 1955, Marsden and Langdon 2012). It has become a goal of many fisheries managers 

to restore and achieve self-sustaining lake trout populations in these water bodies (Bronte et al. 

2008). This goal is achieved through catch limits, stocking efforts, and research. Currently, large 

numbers of lake trout are stocked in many of the Great Lakes, Finger Lakes, and Lake 

Champlain. According to the Great Lakes Fish Stocking Database (FWS/GLFC 2011) in 2011 

total stocking efforts in the Great Lakes ranged from 221,885 fish stocked in Lake Erie to 

3,454,179 fish stocked in Lake Michigan. According to the New York State Department of 

Environmental Conservation (Fish Stocking 2012), lake trout stocking in 2011 ranged from zero 

fish stocked in Cayuga Lake to 40,200 fish stocked in Seneca Lake. To date, efforts have not 

been successful outside of Lake Superior, although natural spawning has been observed in lakes 

Michigan and Huron (Riley et al. 2007, Bronte et al. 2008). Recently, Bronte et al. (2008) 

identified several factors affecting lake trout natural recruitment and impeding their 

rehabilitation efforts in Lake Michigan. These factors include early mortality syndrome (EMS, 

characterized by thiamine deficiency in lake trout alevins), predation on lake trout eggs and 

alevins, low adult populations, and improper stocking strategies. 

Survival of lake trout offspring can be influenced by variation in egg quality. The term 

egg quality is often used loosely but can be defined as the ability of a gamete to be fertilized and 
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subsequently develop into a viable embryo (Bobe and Labbé 2010). Egg quality can be 

determined by the amount of proteins, carbohydrates, lipids, vitamins, hormones, and maternal 

mRNAs deposited into eggs by female fish during the process of vitellogenesis (Lubzens et al. 

2010). Lipids, and their fatty acid components, have previously been used as a measure of egg 

quality (Sargent 1995, Czesny and Dabrowski 1998, Wiegand et al. 2004). There are two major 

fractions of lipids: neutral lipids (NL) and phospholipids (PL). Neutral lipids serve primarily as 

energetic reserves while phospholipids are used as the building blocks for biological membranes 

(Tocher 2003).  

 Lipids of both fractions are comprised of fatty acids. Structurally, fatty acids are 

carboxylic acids with a hydrocarbon chain. Fatty acids can be divided into saturated (SAFAs) 

and unsaturated fatty acids (Figure 1). Saturated fatty acids contain no double bonds while 

unsaturated fatty acids have at least one double bond in the hydrocarbon chain. Unsaturated fatty 

acids can further be classified as monounsaturated fatty acids (MUFAs), which contain a single 

double bond, and polyunsaturated fatty acids (PUFAs), which contain two or more double bonds. 

Fatty acids are designated in IUPAC (The International Union of Pure and Applied Chemistry) 

nomenclature by carbon chain length: number of double bonds and the position (n-x) of the first 

double bond with respect to the methyl end. 

 An important group of PUFAs are the essential fatty acids (EFAs) or fatty acids that 

cannot be synthesized by an organism and must be acquired through diet. The two EFAs required 

by most freshwater fish are linoleic acid (LA; 18:2n-6) and linolenic acid (ALA; 18:3n-3). These 

EFAs are needed to synthesize long chain fatty acids such as arachidonic acid (AA; 20:4n-6), 

eicosapentaenoic acid (EPA; 20:5n-3), and docosahexaenoic acid (DHA; 22:6n-3) (Sargent 1995, 

Tocher 2003). AA and EPA are both precursors to eicosanoids (Sargent 1995, Tocher 2003), 
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which play a critical role in inflammatory responses and are used as messenger molecules in the 

central nervous system (Tocher 2003). DHA is commonly found in phospholipid membranes of 

neural and retinal tissues (Tocher 2003). 

Fatty acid profiles have been used to determine predator-prey relationships (Napolitano 

1999, Dalsgaard et al. 2003). Lovern (1935) proposed that fatty acids are transferred from prey 

to predators and established the concept “you are what you eat.” Fatty acids of carbon chain 

length greater than 14 are not broken down during the digestion process and are absorbed into 

the blood stream of monogastric animals (Smith et al. 1997). Since these fatty acids remain 

intact, it is possible to distinguish which fatty acids are synthesized by the predator and which 

are acquired through diet via prey (Iverson 1993). If diet determines which fatty acids are 

available to predators, then egg fatty acid composition may vary based on the fatty acids 

available to feeding female. Several laboratory studies have shown that maternal diet can 

influence lipid content and fatty acid profiles of fish eggs (Fernandez-Palacios et al. 1995, Navas 

et al. 1997, Rodriguez et al. 1998). Neutral fatty acid profiles tend to vary more than 

phospholipid profiles in response to manipulation of maternal diet (Wiegand 1996, Bell et al. 

1997, Almansa et al. 1999). Variations in lipid and fatty acid profiles among wild fish 

populations have also been studied. Wiegand et al. (2004) compared lipid and fatty acid profiles 

of unfertilized walleye Sander vitreus eggs among ten sample sites in the Great Lakes and found 

that percent neutral lipids varied significantly among populations while percent phospholipids 

did not. Similarly, fatty acid profiles of neutral lipids differed significantly among populations, 

but fatty acid profiles of phospholipids did not. In another study conducted by Czesny and 

Dabrowski (1998), lipid and fatty acid profiles of wild caught and domesticated walleye eggs 

were analyzed and compared. These authors found that egg lipid concentrations and fatty acid 
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profiles differed among walleye populations. Linoleic acid concentration in the NL fraction was 

significantly higher in domesticated eggs while ARA, EPA, and DHA levels were higher in wild 

egg samples. Differences in the PL fraction were not as noticeable as differences in the NL 

fraction. Both studies revealed that lipids and fatty acids can vary by location and can be affected 

by the maternal diet. Czesny and Dabrowski (1998) also showed that PL were less affected by 

diet than NL. 

There are several ways in which scientists use lipids and fatty acid to track trophic 

relationships among species. First, we can assume that individuals of the same species can alter, 

biosynthesize, and digest fatty acids in the same manner. Therefore if we find differences in fatty 

acid signatures among individuals from the same species, then we can assume that these 

differences occur because of dietary differences (Iverson et al. 2002). Secondly, we can use 

specific fatty acids as biomarkers. Fatty acid biomarkers are fatty acids that are only synthesized 

by certain organisms. For example, a study by Ackman and McLachlan (1977) found that 16:2n-

4 and 16:4n-1 were only produced by certain diatoms. Thus, if these two fatty acids were found 

in higher tropic levels, it would be indicative of diatom consumption. Similarly, Czesny et al. 

(2011) found in Lake Michigan that pelagic fish presented higher concentrations of DHA , while 

benthic fish had higher levels of EPA and palmitoleic acid (16:1n-7). Thus the relative 

concentrations of fatty acids can indicate in what type of environment fish are foraging. 

Unfortunately, at higher trophic levels it becomes increasingly difficult to determine if the 

predator synthesized a particular fatty acid or if that organism in fact acquired that fatty acid in 

its diet. The third and most thorough approach has been to use the entire fatty acid profile to 

determine diet composition of predators as proposed by Iverson (1993). By knowing the fatty 

acid profile of a predator and all of its possible prey items, we can predict diet composition of a 
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predator based on its fatty acid profile and compare foraging differences within species and 

among systems (Budge et al. 2002, Iverson et al. 2002). 

We know that prey assemblage differs among aquatic ecosystems. Alewife is the 

dominant prey item in Lake Michigan (Miller and Holey 1992, Madenjian et al. 1998, Madenjian 

et al. 2008), Lake Ontario (Bowlby et al. 2007), and Cayuga Lake (Bishop personal 

communication 2009). Historically, alewives were dominant in Lake Huron, but populations 

crashed in both 2004 and again 2007 after population increases between 2005 and 2006 

(Schaeffer and O’Brien 2008). As of 2008, bloater Coregonus hoyi was the dominant prey in 

Lake Huron (Schaeffer and O’Brien 2008). In Lake Superior lake herring Coregonus artedii 

makes up a majority of the prey assemblage (Kitchell et al. 2000, Gorman et al. 2010). The most 

dominant prey item in Lake Erie is rainbow smelt Osmerus mordax followed by round goby 

Neogobius melanostomus (Lake Erie Forage Task Group 2012). In Lake Champlain, rainbow 

smelt, yellow perch Perca flavescens, and emerald shiners Notropis atherinoides make up the 

majority of the forage base although alewife abundance has increased since the early 2000’s 

(Lake Champlain Fisheries Technical Committee 2009). One of the perquisites for the utility of 

fatty acid profiles as food web indicators is the assumption that each prey species has a distinct 

fatty acid signature. Although this assumption is well documented in marine environments 

(Budge et al. 2006), the utility of fatty acid signatures is not well documented in freshwater 

ecosystems. In a recent study, Czesny et al. (2011) reported that prey species collected in Lake 

Michigan had different amounts of mean lipid concentrations as well as different fatty acid 

signatures. Since prey assemblages differ among aquatic systems and female fish deposit lipids 

and fatty acids into their eggs we should be able to identify what female fish are eating based on 

the fatty acid profiles of their eggs. 
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Objectives 

 The main objective of this study was to compare fatty acid signatures (FAS) of lake trout 

eggs within and among the Great Lakes region (Lake Ontario, Lake Superior, Lake Michigan, 

Lake Huron, Lake Erie, Lake Champlain and Cayuga Lake). Specifically, I (1) determined the 

amount of total lipids (TL), neutral lipids (NL), and phospholipids (PL) in lake trout eggs from 

different locations; (2) determined the FAS of eggs from different locations; and (3) compared 

FA signatures among systems using a variety of univariate and multivariate techniques. In 

addition, I observed and compared the survival of lake trout embryos at two sample sites: 

Taughannock Falls (Cayuga Lake) and Hamlin Beach (Lake Ontario).  

 

2. Materials and Methods 

2.1. Site Selection, Sampling, and Egg Collection 

 Eggs of female lake trout were collected in lakes Ontario, Erie, Huron, Michigan, 

Superior, Champlain, and Cayuga Lake in fall 2009 and 2010. There were a total of thirteen sites 

sampled in 2009 and twelve in 2010 (Table 1 and Figure 2). 

Because lake trout assessment surveys are conducted simultaneously by federal, state, 

and tribal agencies in the fall (mid-October through early November), I was not able to 

personally collect lake trout eggs from all my sample sites. However, the personnel of these 

agencies collected eggs as part of the thiamine biomonitoring conducted by the USGS-Great 

Lakes Science Center in collaboration with Dr. Rinchard (Table 1). Five to 10g of eggs was 

collected from each individual female and immediately frozen on dry ice prior to being shipped 

to Dr. Rinchard’s laboratory at The College at Brockport - State University of New York. Upon 
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arrival, eggs were stored at -80°C until biochemical analysis. All samples were processed within 

3 months of acquisition. 

Nevertheless, I was able to collect eggs in two sites in New York: Hamlin Beach in Lake 

Ontario and Taughannock Falls in Cayuga Lake. At Hamlin Beach, vertical gill nets were set 

perpendicular to the shoreline over rocky reefs. Mesh size ranged from 1- to 6-inch stretch with 

each mesh panel being 50 feet in length. Thus, there was a 50-foot panel of 1-inch stretch mesh, 

followed by a 1.5-, 2-, 3-, 4-, 5-, and 6-inch stretch for a total net length of 350 feet.  Soak time 

was approximately 18 h; nets were set at 4 pm and were pulled at 8 am the next morning. When 

nets were pulled, all lake trout and bycatch were removed. Ovulating female lake trout were 

stripped of eggs. Approximately 5 g of eggs was stored on ice and transported to The College at 

Brockport where they were stored at -80oC for lipid and fatty acid analysis. The remaining eggs 

were directly fertilized on the boat using fresh sperm (see section 2.2.). Striped fish, as well as 

bycatch fish, were returned to the water. Green females were euthanized and taken back to 

laboratory. Individual fish were measured and weighed, and 5 g of ovarian tissue was collected 

and stored at -80°C for lipid and fatty acid analysis. Length (cm) and weight (kg) were taken in 

2009 using a meter stick and hanging fish scale; whereas only length was taken in 2010 as there 

was a malfunction with the hanging fish scale. 

I also participated in the egg take at Taughannock Falls, Cayuga Lake, which is 

conducted by the New York State Department of Environmental Conservation (NYSDEC) as 

part of their annual lake trout stocking program. The NYSDEC set and pulled all gill nets. 

Ovulating females and sperm producing males were stripped of eggs and sperm, respectively, by 

the NYSDEC. A subsample of eggs from individual females was taken and stored directly on 

ice, and approximately 200-300 eggs per female were fertilized (see section 2.2.). Upon arrival at 
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The College at Brockport, unfertilized egg samples were stored at -80°C for further biochemical 

analysis. Morphological data were not recorded. 

 

2.2. Egg Fertilization, Incubation, and Embryo Survival 

 In addition to sampling eggs for lipid and fatty acid analysis, a portion of lake trout eggs 

collected from individual females at Hamlin and Taughannock Falls were fertilized to monitor 

embryo survival in 2009 and 2010. Eggs were fertilized using sperm from one to three male lake 

trout. Approximately 100μl of combined sperm was added to each portion of eggs (200-300 

eggs). A small amount of water was added to the sperm/egg mixture to activate sperm. The 

sperm and egg mixture was then gently agitated for 1 minute. After mixing, eggs were rinsed 

three times with clean water to remove the excess sperm. Fertilized eggs were placed in plastic 

containers and filled with clean lake water. Containers were transported back to the laboratory at 

The College at Brockport. Water temperature was maintained by placing containers with eggs in 

a cooler with ice. A layer of newspaper was placed between the egg containers and ice to prevent 

eggs from coming in direct contact with ice. 

 Hatching baskets containing fertilized eggs were incubated in California-style hatching 

trays using recirculating water systems (Figure 3).  Each basket contained fertilized eggs from a 

specific female fish. Hatching baskets were made from PVC pipe with a mesh bottom (Figure 4).  

Chillers (Frigid Units, Inc., Toledo, OH) were used to maintain water temperatures between 4°C 

and 10°C. The water source was charcoal filtered, dechlorinated, municipal water. Degree days 

were used to compare embryos at different developmental stages. Survival was evaluated at three 

different stages: pigmented eyed stage, hatching, and swim-up. Pigmented eyed stage is 

characterized by the appearance of pigments in the eye of the embryos. The hatching stage 
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occurs when embryos emerge from their eggs, whereas at the swim-up stage alevins have 

absorbed their yolk sac and start to swim in the water column. Water temperature and number of 

dead eggs were recorded daily during all developmental stages. Dead eggs and embryos were 

removed daily. Dead eggs turn white in color and can be easily identified and removed while 

dead embryos stop moving, turn translucent in color, and show signs of physical deterioration. 

At hatching, alevins were counted and transferred to 3-L, cylindrical aquaria with aeration 

(Figure 5). The number of alevins used to monitor survival to swim-up stage depended on the 

number of hatched alevins (40-400). Cylindrical aquaria were kept in a flow-through water bath 

to maintain constant water temperature. Water was added to the aquaria as needed to compensate 

for evaporative water loss. Particulate wastes (from dead eggs/embryos) were removed daily 

with a pipette. For each stage of development, the total number of surviving embryos/alevins 

from the previous stage was used at the start of the next stage of survival. For example, the total 

number of embryos that survived to the pigmented eyed stage was used as the starting number 

for the survival to the hatch stage. Similarly, the total number of hatched fish was the starting 

number for the swim-up survival study. Thus, survival was restarted at 100% survival at each 

stage of development. 

 

2.3. Lipid Extraction 

 Total lipids were extracted from lake trout eggs following the gravimetric method 

originally proposed by Folch et al. (1957). One gram of unfertilized eggs/sample was placed in a 

homogenization tube. Twenty mL of 2:1 chloroform/methanol solvent with 0.01% butylated 

hydroxytoluene (BHT), used as antioxidant, was added to each homogenization tube containing 

samples. Tubes were then capped and placed on ice. Samples were homogenized for 1 minute 
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using an Omni homogenizer (Omni International, Kennesaw, GA). The homogenization tube 

was kept on ice for the entire process of homogenization. The Omni homogenizer probe was 

cleaned twice with deionized water and twice with the solvent between each sample 

homogenization. Next, homogenized samples were filtered under vacuum filtration using 11-µm 

Whatman filters (Whatman International Ltd., Piscataway, NJ) and transferred to large glass 

tubes. The homogenization tube was rinsed twice with solvent. The filtration flask was rinsed 

two times, with solvent, between each filtration to ensure that all lipids were transferred from the 

flask to the large glass tubes. After transfer, 4 mL of magnesium chloride (MgCl26H2O) was 

added to each sample. Large glass tubes containing samples were put under nitrogen, closed, and 

vortexed for one minute. Tubes were then refilled with nitrogen gas, capped, and stored at room 

temperature overnight. 

After overnight storage, the bottom (solvent) layer containing the lipids was transferred 

to a new glass tube using a Pasteur pipette. The top (water) layer was discarded. Collected 

solvent was evaporated under nitrogen in a 30-35°C water bath. Samples were transferred to 

preweighed small glass tubes. The solvent was evaporated off of the samples, leaving only lipids. 

Total lipid amount in the sample was then determined gravimetrically. Finally a small aliquot of 

chloroform and nitrogen gas was added to the tube containing the lipid sample and stored at        

-80°C until lipid separation. Percent lipid content [(weight of lipid/weight of tissue)*100] was 

then calculated for each sample. All reusable glassware was cleaned using soap and water. 

Particulate matter was removed by scrubbing. Glassware was rinsed three times with tap water 

and three additional times with DI water before drying. Glassware was spot checked before using 

to make sure not debris or soap stains were present. 
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2.4. Neutral and Phospholipids Separation 

 Total lipids were separated into NL and PL according to the methods described by 

Juaneda and Roquelin (1985). Total lipids were eluted using a syringe with attached Sep-Pak 

silica columns (Waters Corporation, Milford, MA). First, total lipid samples were added to the 

column using a Pasteur pipette. Next, 20 mL of chloroform was added to the column to elute NL. 

Neutral lipids were collected in glass tubes. After collection of NL, the Sep-Pak silica column 

was moved over another glass tube and 20 mL of methanol was added to the column to elute the 

PL remaining in the column. Phospholipids were collected in glass tubes. Then each fraction was 

evaporated under nitrogen. Both the NL and PL fractions were transferred to separate, small, 

preweighed glass tubes and were evaporated under nitrogen. The amounts of NL and PL were 

determined gravimetrically. Percent NL was determined by dividing the amount of neutral lipid 

by the amount of total lipid and multiplying by one hundred. The same calculation was made for 

the PL fraction except that amount of PL was used in place of amount of neutral lipids. 

 

2.5. Fatty Acid Transmethylation 

 Both NL and PL fractions were transmethylated following the methods described by 

Metcalfe and Schmitz (1961). Transmethylation replaces the hydroxide group, at the end of a 

fatty acid chain, with a methyl group. Attachment of the methyl group allows fatty acids to be 

identified using Gas Chromatography Mass Spectroscopy (GC/MS). A known amount of 

nonadocanoic acid (19:0) was added as an internal standard to each sample to calculate the 

amount of each fatty acid. After the addition of internal standard, samples were evaporated under 

nitrogen to remove excess solvent. Neutral lipids were then saponified using 1.5 mL of sodium 

hydroxide (NaOH 0.5 M in methanol) and incubated at 80ºC for 1 hour. Saponification is the 
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process by which an ester, in this case a triglyceride, undergoes nucleophilic acyl substitution 

producing a carboxylic acid. Essentially, saponification adds a hydroxide group to the neutral 

lipid. After incubation samples were cooled to room temperature, 2 mL of borontrifluoride 

methanol, which replaces the hydroxide group with a methyl group, was then added to each 

neutral lipid sample. Samples were placed under nitrogen and incubated at 80ºC for 30 minutes. 

After cooling to room temperature, 1 mL of hexane was added to each sample. Samples were 

capped and vortexed for 1 minute. Then, 1 mL of distilled water was added to each sample and 

vortexed again for 1 minute. The hexane phase was transferred to tubes containing anhydrous 

sodium sulfate, which absorbs water residues. An additional 1 mL of hexane was added to each 

sample, which was capped and vortexed. This additional hexane phase was transferred to the 

tubes containing anhydrous sodium sulfate.  This double extraction with hexane ensures that all 

fatty acids are collected from samples. After transfer, the tubes containing the hexane phase and 

anhydrous sodium sulfate were vortexed. The hexane phase was transferred to 4-mL glass vials, 

put under nitrogen, capped, and stored at -80ºC until GC/MS analysis. The same procedure was 

used for PL, except for the saponification step which is not necessary because PL already contain 

a hydroxide group. 

 

2.6. GC/MS Analysis 

 Fatty acids profiles were determined using an Agilent Technologies 7890A GC system 

with Agilent Technologies 7693 Autosampler and Agilent Technologies 5975C inert XL EI/CI 

MSD with Triple-Axis detector (Agilent Technologies, Inc., Santa Clara, CA). The capillary 

column is an Omegawax 250 Fused Silica Capillary Column with 30 m x 0.25 mm x 0.25 µm 

film thickness (Supelco, Bellefonte, PA). Helium was used as a carrier gas. The oven 
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temperature was programmed from 175oC for 26 min to 205oC at 2oC/ min and then held at 

205oC for 24 min. The rate of helium carrier gas flow was 1.8 mL/min. The source and analyzer 

temperature of the MS was set at 230oC. The individual fatty acid methyl esters (FAMEs) were 

identified by comparing the retention times of authentic standard mixtures (FAME mix 37 

components, Supleco) and with known spectrographic patterns of FAMEs. Spectrographic 

patterns for FAMEs were acquired from the National Institute of Standards and Technology 

(NIST) Mass Spectral Library provided with the GC/MS and the American Oil Chemists’ 

Society (AOCS) mass spectral library provided online at http://lipidlibrary.aocs.org/index.html. 

The FAMEs quantification was made by comparing individual fatty acid peak areas with that of 

the internal standard. Fatty acid concentrations are expressed as percent of total identified 

FAMEs. 

 

2.7. Quality Control Procedures 

 As indicated previously (see 2.6.), FAMEs were identified by comparing their retention 

times with authentic standard mixtures and with known spectrographic patterns of FAMEs. 

Precautions were taken to account for retention time shifts. A running record of retention times 

were kept from previous injections. This allowed us to track shifts in retention time and 

accurately identify the correct peak of each FA over time. FA peaks were also manually checked 

to ensure that the software ChemStation properly identified and quantified them. If FA peaks 

were inaccurate, retention times were reexamined and adjusted to account for retention-time drift 

and peaks were reintegrated. A blank was run through the GC/MS after every 20 samples. Blank 

allows baseline to be adjusted to zero and to correct for background noise. The use of an auto 

injector ensured that samples were injected to the GC/MS similarly.    
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2.8. Statistical Analysis 

 Univariate and multivariate statistical analyses were performed. For univariate statistics, 

percentage data were arcsin transformed. Lipid data were checked for normality with a Shapiro-

Wilk test and for homogeneity of variance with a Bartlett’s test. Both the Shapiro-Wilk and 

Barlett’s test failed, thus differences in lipid content (TL, NL, and PL) were tested using a 

Kruskal-Wallis test for both 2009 and 2010 data. Lipid data from 2009 and 2010 were then 

combined because the Kruskal-Wallis test revealed no differences in TL, NL, or PL 

concentration between years for the same sample site. Next, fatty acid data were checked for 

normality with a Shapiro-Wilk test and for homogeneity of variance with a Bartlett’s test. FA 

data failed the Shapiro-Wilk and Bartlett’s tests. Differences in FA concentrations were tested 

using a Kruskal-Wallis test in both the NL and PL fractions for 2009 and 2010 data. FA data 

from 2009 and 2010 were combined because the Kruskal-Wallis test revealed no differences in 

FA concentration between years for the same sample site. Since multiple comparisons were 

performed with the Kruskal-Wallis test, a Bonferroni correction was applied to the FA data. The 

Bonferroni correction decreases the alpha value thus decreasing the chance of a type one error. 

Since 24 different fatty acids were compared among 25 total sample sites, the alpha value (0.05) 

was divided by the number of fatty acids (24) to reduce the p-value to 0.002083 (0.05/24). 

Correlation analysis was used to determine correlations between fish length and FA 

concentration in lake trout eggs. All univariate analyses were performed in IBM SPSS 19.0 

(SPSS Inc., Chicago Illinois). 

Discriminant factor analysis (DFA), a multivariate technique, was used to compare FAS 

among sample sites in both lipid fractions. To prevent misclassification of subjects to groups 
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with the largest variance, equality of covariance matrices is required. To meet this requirement, 

the sample size of the smallest group must be larger than the number of predictor variables. This 

requirement was met by combining data from 2009 and 2010 to increase sample size. 

Consequently, I limited the number of fatty acids (predictor variables) to 18 (14:0, 16:0, 16:1n-9, 

16:1n7, 18:0, 18:1n-9, 18:1n-7, 18:2n-6, 18:3n-3, 18:4n-3, 20:1, 20:4n-6, 20:4n-3, 20:5n-3, 

22:4n-6, 22:5n-6, 22:5n-3, and 22:6n-3). Thus, all sample sites with sample size (n) of 19 or 

greater were included in the analysis. Sample sites included were Taughannock Falls, Hamlin 

Beach, Clay Banks, Drummond Island, Owen Sound, Portage Point, Waukegan, Old Mission, 

Michigan City, Grindstone, Milwaukee, Parry Sound, and Grand Isle. Sample sites Hamburg and 

Klondike Reef could not be included in the analysis because the number of samples was below 

19 for both of these sample sites. Prior to DFA, percentage values were normalized using log-

ratio transformed fatty acid data (Aitchison 1986) according to the equation: X(trans) = ln (Xi/Cr) 

were Xi is a fatty acid expressed as percentage of total fatty acids, X(trans) is the transformed fatty 

acid data, and Cr is the geometric mean of all 18 fatty acid variables. Wilk’s λ was used to test 

the significance of the DFA to separate groups. The number of observations correctly classified 

was used to evaluate the performance of the DFA. Classifications were cross-validated using a 

jack-knife procedure, which allowed me to determine into which group individuals were 

misclassified. DFA was conducted on IBM SPSS 19.0. 

Nonparametric methods were also used to assess variation in FAS among sample sites in 

both lipid fractions. Nonparametric methods have no minimum sample size requirement, thus all 

data were included in the analysis. All nonparametric analyses were performed in PRIMER 

software v.6, (Primer-E Ltd., Plymouth, UK) using untransformed data of 24 fatty acids in both 

the NL and PL fractions expressed as percentage of total fatty acids (total NL in the NL fraction 
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and total PL in the PL fraction). First, the average value for each fatty acid was determined for 

all sample sites. For each lipid fraction, a Bray-Curtis resemblance matrix, which calculates the 

similarity between each sample pairing, was computed. A cluster analysis (CA) was then run to 

determine percent similarity (between 0 and 100 percent) among sample sites and to generate 

similarity contours. In addition to the CA, an analysis of similarity (ANOSIM) was performed to 

look at similarities between sample sites. The benefit of using ANOSIM is that it allows for the 

entire fatty acid signature to be used when comparing similarities between sample sites rather 

than just comparing individual fatty acids. ANOSIM uses an R-statistic to determine how similar 

two groups of data are to one another, in this case how similar fatty acid signatures from two 

samples sites are. R-statistic of 0.0 indicates that within group samples are no more similar to 

one another than they are to samples from another group. R-statistic of 1.0 indicates that within 

group samples are more similar to one another than they are to samples from another sample site. 

Cluster analysis and ANOSIM were generated for FAS in both the NL and PL fraction. 

Nonmetric multidimensional scaling (nMDS) plots with overlain similarity contours were 

generated to visualize the amount of similarity (or dissimilarity) among sample sites. The relative 

level of distortion in each nMDS plot is described by its stress level. Stress levels less than 0.1 

indicate accurate representation of data. Stress levels above 0.2 may be inaccurate and caution 

should be used when interpreting. Cluster analysis was used to select percent similarity contours. 

Bubble plots were overlain on the similarity contours to show relative abundance of selected FA. 

In addition to nMDS, a similarity percentages (SIMPER) routine was conducted to evaluate 

similarity and/or dissimilarity among sample sites. SIMPER determines the similarity and 

dissimilarity between sample sites. In addition, SIMPER identifies individual fatty acids 
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responsible for the observed similarity and dissimilarity. Finally, a principle component analysis 

(PCA) was used to help visualize the results from the SIMPER routines.  

For the analysis of embryo survival, all percentage data were arcsine transformed. 

Normality of the data was tested using a Shapiro-Wilk test; whereas the homogeneity of variance 

was tested using a Bartlett’s test. Since data were not normal, a Mann-Whitney test was used to 

determine differences in survival between Taughannock Falls and Hamlin Beach for both 2009 

and 2010 data. The Mann-Whitney tests were performed on IBM SPSS 19. A Pearson 

Coefficient (R) was used to determine the strength and direction of the relationship between 

embryo survival and fatty acid concentration with an R value of 1.0 indicating a strong 

correlation and an R value of 0 indicating no correlation. Correlations were performed on IBM 

SPSS 19.  

 

3. Results 

3.1. Egg Collection and Fish Morphology  

Variability in catch rates resulted in incomplete sampling between years. In 2009, lakes 

Champlain and Erie were not sampled. In 2010, Grindstone and Owen Sound in Lake Huron and 

Klondike Reef in Lake Superior were not sampled. A total of 518 lake trout egg samples from 

the Great Lakes, Cayuga Lake, and Lake Champlain were collected between 2009 and 2010 and 

analyzed for total lipid and fatty acid composition. Table 1 shows the total number of fish caught 

at each sample site, as well as fish length and weight. Some length and weight data were not 

recorded by collection agencies. Fish from all sample sites were similar in length and weight, 

except for fish from Lake Superior which were smaller. Significant correlations between female 

fish length and the concentration of individual FA were determined and are presented in Table 2.  



19 
 

 

3.2. General Trends in Total Lipids, Neutral Lipids, and Phospholipids 

Total, neutral, and phospho-lipid concentrations in lake trout eggs collected in 2009 and 

2010 are presented in Table 3. Statistical analyses revealed no year effect in TL, NL, PL, and 

fatty acid concentrations among populations between 2009 and 2010 at each sample site. Since 

there was no year effect, samples collected in 2009 and 2010 were combined to form one set of 

data for each sample location. After combining data, statistical differences among locations were 

observed in total lipids of lake trout eggs (Kruskal-Wallis, Chi-square = 136.129, df = 14, p < 

0.05). The concentration of total lipid was statistically highest in eggs from Clay Banks and 

lowest in Parry Sound and Grand Isle (Tamhane’s post hoc, p < 0.001) (Table 3). In general, 

Hamburg (L. Erie), Hamlin Beach (L. Ontario), and Taughannock Falls (Cayuga Lake) had 

similar levels of TL compared to all sites from Lake Michigan. All sites from Lake Huron had 

similar amounts of TL and were always lower than sites from Lake Michigan. Statistical 

differences among locations were also observed in the lake trout egg NL and PL concentrations 

(Kruskal-Wallis, Chi-square = 66.126, df = 14, p < 0.001 and Kruskal-Walis, Chi-square = 

66.146, df = 14, p < 0.001 for NL and PL, respectively). The concentration of NL was highest in 

eggs from Hamburg and lowest in Klondike Reef. The percentage of NL was fairly consistent 

among sample sites except for Klondike Reef which had a significantly lower percentage of NL 

than the rest of the sample sites (Tamhane’s post hoc, p < 0.001) (Table 3). The concentration of 

PL showed the opposite trend. 

 

3.3. General Trends in Fatty Acid Signatures 
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 There were a total of 24 fatty acids routinely identified in both the neutral and 

phospholipid fractions. In both lipid fractions, SAFAs were dominated by palmitic acid (16:0) 

and myristic acid (14:0), whereas MUFAs were dominated by palmitoleic acid (16:1n-7) and 

oleic acid (18:1n-9). Docosahexaenoic acid, EPA, ARA, linoleic acid, and linolenic acid were 

the most abundant PUFAs detected in both the neutral and phospholipid fractions. Although both 

the NL and PL fractions were dominated by the same fatty acids, there were noticeable 

differences in the concentrations of those fatty acids between fractions. The NL fraction 

contained less SAFA than the PL fraction. Higher concentrations of 14:0 were observed in the 

NL fraction than the PL fraction, whereas the lower concentrations of 16:0 and 18:4n-3 were 

observed in the NL fraction compared to the PL fraction. The NL fraction contained about twice 

the concentration of MUFAs than the PL fraction. The concentration of palmitoleic acid was four 

times greater in the NL than in the PL fraction. Similarly, the concentration of oleic acid was 

more than twice as high in the NL fraction compared to the PL fraction. The total concentration 

of n-6 PUFA was similar in both the NL and PL fraction although there were noticeable 

differences in the concentrations of specific PUFA. In the NL fraction the major n-6 PUFA 

detected were 18:3n-3 and ARA, while ARA was the single largest contributor in the PL 

fraction. Arachidonic acid had a higher concentration in the PL fraction compared to the NL 

fraction, while 18:2n-6 was lower in the PL fraction compared to the NL fraction. The 

concentration of ALA was much less in the PL fraction than in the NL fraction. The total 

concentration of n-3 PUFA was higher in the PL fraction than in the NL fraction. 

Eicosapentaenoic acid concentrations were similar in the NL and PL fractions. The PL fraction 

contained more than twice the amount of DHA than the NL fraction. 
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3.4. Among Lake Differences in Fatty Acids in the Neutral Lipid Fraction 

Fatty acids from the NL fraction differed among sample sites; however, sample sites 

within the same lake system showed less variation. Significant differences were observed in the 

concentration of SAFA (Kruskal-Walis, Chi-square = 135.312, df = 14, p < 0.001) among all 

sample sites. Eggs from Taughannock Falls had the statistically highest concentration of SAFA, 

while eggs form Owen Sound had the lowest concentration (BFC α = 0.006, Tamhane’s post 

hoc, p < 0.001) (Table 4). The highest concentration of 16:0 was observed in eggs collected in 

Grindstone and the lowest in the ones from Owen Sound (BFC α = 0.002, Tamhane’s post hoc, p 

< 0.001) (Table 4). The highest observed concentration of 14:0 was observed in the eggs from 

Taughannock Falls while the lowest was found in eggs from Grindstone (BFC α = 0.002, 

Tamhane’s post hoc, p < 0.001) (Table 4). The highest percent concentration of 18:0 was 

observed in Parry Sound and lowest in Klondike Reef (BFC α = 0.002, Tamhane’s post hoc, p < 

0.001) (Table 4). 

 Significant differences were observed in MUFA concentration (Kruskal-Wallis, Chi-

square = 147.972, df = 14, p < 0.001) among all sample sites. Eggs from Grindstone had the 

highest concentrations of MUFA and eggs from Portage Point had the lowest concentration of 

MUFA (BFC α = 0.006, Tamhane’s post hoc, p < 0.001) (Table 4). The highest concentration of 

18:1n-9 was in fish eggs from Parry Sound and lowest in eggs from Portage Point (BFC α = 

0.002, Tamhane’s post hoc, p < 0.001) (Table 4). The highest concentration of 16:1n-7 was 

found in fish eggs from Hamburg and lowest in eggs from Taughannock Falls (BFC α = 0.002, 

Tamhane’s post hoc, p < 0.001) (Table 4). The third most detected MUFA was 18:1n-7 (vaccenic 

acid). The concentration of 18:1n-7 was statistically highest in Grindstone and lowest in 

Taughannock Falls (BFC α = 0.002, Tamhane’s post hoc, p < 0.001) (Table 4). 
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The sum of PUFA was statistically different (Kruskal-Wallis, Chi-square = 131.619, df = 

14, p < 0.001) among all sample sites. The percentage of PUFA was statistically highest (BFC α 

= 0.006, Tamhane’s post hoc, p < 0.001) in lake trout eggs from Portage Point and lowest in 

those from Grindstone (BFC α = 0.006, Tamhane’s post hoc, p < 0.001) (Table 4). The sum of n-

6 PUFA was statistically different in lake trout eggs among sample sites (Kruskal-Wallis, Chi-

square = 188.466, df = 14, p < 0.001). The sum of n-6 was statistically highest in eggs from 

Portage Point and lowest in eggs from Hamburg (BFC α = 0.006, Tamhane’s post hoc, p < 

0.001) (Table 4). The concentration of linoleic acid was statistically highest in Klondike Reef 

and lowest in Owen Sound (BFC α = 0.002, Tamhane’s post hoc, p < 0.001) (Table 4). The 

highest concentration of ARA was observed in Taughannock Falls while Klondike Reef had the 

lowest concentration of ARA (BFC α = 0.002, Tamhane’s post hoc, p < 0.001) (Table 4).  

The sum of n-3 PUFA was statistically different in lake trout eggs among sample sites 

(Kruskal-Wallis, Chi-square = 112.058, df = 14, p < 0.001). Portage Point had the highest 

concentration of n-3 PUFA while Grindstone had the lowest concentration of n-3 PUFA. These 

results were statistically significant (BFC α = 0.006, Tamhane’s post hoc, p < 0.001). The two 

dominant n-3 PUFA in the NL fraction were DHA and EPA followed by 22:5n-3 and linolenic 

Acid. The highest concentration of DHA was found in fish from Portage Point, while fish from 

Grand Isle had the lowest concentration (BFC α = 0.002, Tamhane’s post hoc, p < 0.001) (Table 

4). The statistically highest concentration of EPA was found in Klondike Reef while the lowest 

concentration was found in lake trout eggs from Grand Isle (BFC α = 0.002, Tamhane’s post hoc 

p < 0.001) (Table 4). Waukegan had the statistically highest concentration of 22:5n-3 and Grand 

Isle had the lowest (BFC α = 0.002, Tamhane’s post hoc, p < 0.001) (Table 4). The highest 
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concentration of 18:3n-3 was found in eggs from Grand Isle and the lowest concentration in 

eggs from Owen Sound (BFC α = 0.002, Tamhane’s post hoc, p < 0.001) (Table 4). 

The ratio of Σn-3/Σn-6 was statistically highest in Grand Isle and Hamburg and lowest in 

Hamlin Beach, Michigan City, and Grindstone (BFC α = 0.006, Tamhane’s post hoc, p < 0.001). 

However, the ratio of Σn-3/Σn-6 in Grand Isle and Hamburg were not statistically different from 

each other. Likewise, the ratio of Σn-3/Σn-6 in Hamlin Beach, Michigan City, and Grindstone 

were not statistically different from each other. The ratio of DHA/EPA was statistically highest 

in Parry Sound and lowest in Hamlin Beach and Hamburg (BFC α = 0.006, Tamhane’s post hoc, 

p < 0.001) (Table 4). There was little variation in the ratio of ARA to EPA among sample sites. 

Taughannock Falls, Clay Banks, Milwaukee, Michigan City, and Portage Point all had a 

concentration of 0.7 ± 0.1%, which was statistically higher than the ratio of ARA to EPA in 

eggs from Klondike reef (BFC α = 0.006, Tamhane’s post hoc, p < 0.001) (Table 4). The ratio of 

ARA to EPA in Taughannock Falls, Clay Banks, Milwaukee, Michigan City, and Portage Point 

was not statistically different (Table 4). 

 

3.5. Among Lake Differences in Fatty Acids in the Phospholipid Fraction 

As in the NL fraction, there were differences among sample sites in the FA of lake trout 

eggs in the PL fraction. The sum of SAFA was statistically significant among sample sites 

(Kruskal-Wallis, Chi-square = 150.637, df = 14, p < 0.001). The percentage of SAFA was 

statistically highest (BFC α = 0.006, Tamhane’s post hoc, p < 0.001) in lake trout eggs from 

Parry Sound and Hamburg and lowest in lake trout eggs from Waukegan (Table 5). The 

concentration of palmitic acid was statistically highest (BFC α = 0.002, Tamhane’s post hoc, p < 

0.001) in Old Mission, Parry Sound, and Grand Isle and lowest in Waukegan (Table 5). The 
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concentration of 18:0 was statistically highest (BFC α = 0.002, Tamhane’s post hoc, p < 0.001) 

in Parry Sound and Hamburg and lowest in Klondike Reef (Table 5). 

The sum of MUFA was statistically different (Kruskal-Wallis, Chi-square = 110.574, df 

= 14, p < 0.001) among all sample sites. The percentage of MUFA was statistically highest (BFC 

α = 0.006, Tamhane’s post hoc, p < 0.001) in lake trout eggs from Owen Sound and Hamburg 

and lowest in eggs from Taughannock Falls (Table 5). The concentration of oleic acid was 

statistically highest (BFC α = 0.002, Tamhane’s post hoc, p < 0.001) in Owen Sound and Grand 

Isle and lowest in Klondike Reef (Table 4). The concentration of 18:1n-7 was highest (BFC α = 

0.002, Tamhane’s post hoc, p < 0.001) in Hamburg and lowest in Taughannock Falls (Table 5). 

The sum of PUFA was statistically different (Kruskal-Wallis, Chi-square = 152.272, df = 

14, p < 0.001) among all sample sites. The percentage of PUFA was statistically highest (BFC α 

= 0.006, Tamhane’s post hoc, p < 0.001) in lake trout eggs from Klondike Reef and lowest in 

eggs from Hamburg (Table 5). The sum of n-6 was statistically highest (BFC α = 0.006, 

Tamhane’s post hoc, p < 0.001) in eggs from Taughannock Falls and lowest in eggs from 

Hamburg (Table 5). The statistically highest (BFC α = 0.002, Tamhane’s post hoc, p < 0.001) 

concentration of ARA was found in lake trout eggs from Taughannock Falls and the lowest in 

eggs from Klondike Reef (Table 5). The highest concentration of linoleic acid (BFC α = 0.002, 

Tamhane’s post hoc, p < 0.001) was found in eggs from Taughannock Falls, Hamlin Beach, and 

Klondike Reef while Owen Sound had the lowest concentration of linoleic acid (Table 5). The 

sum of n-3 was statistically highest (BFC α = 0.006, Tamhane’s post hoc, p < 0.001) in lake trout 

eggs from Klondike Reef and lowest in eggs from Hamburg (Table 5). Docosahexaenoic acid 

has the most dominant n-3 fatty acid followed by EPA. The statistically highest concentration 

(BFC α = 0.002, Tamhane’s post hoc, p < 0.001) of DHA was found in eggs from Klondike Reef 
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and the lowest concentration was in eggs from Hamburg (Table 5). Lake trout eggs from 

Klondike Reef had the statistically highest concentration (BFC α = 0.002, Tamhane’s post hoc, p 

< 0.001) of EPA while eggs from Owen Sound and Parry Sound had the lowest concentrations 

(Table 5). 

The ratio of n-3/n-6 in lake trout eggs was statistically different among sample sites 

(Kruskal-Wallis, Chi-square = 235.542, df = 14, p < 0.001). Eggs from Hamburg and Klondike 

Reef had the statistically highest n-3/n-6 ratio (BFC α = 0.006, Tamhane’s post hoc, p < 0.001) 

while eggs from Taughannock Falls had the lowest n-3/n-6 ratio (Table 5). There was a 

statistically significant difference (Kruskal-Wallis, Chi-square = 205.208, df = 14, p < 0.001) in 

the ratio of DHA to EPA in lake trout eggs among sample sites. Owen Sound had the statistically 

highest (BFC α = 0.006, Tamhane’s post hoc, p < 0.001) ratio of DHA to EPA and Hamburg had 

the lowest ratio of DHA to EPA (Table 3). There was little variation in the ratio of ARA to EPA 

in lake trout eggs among sample sites; however, this difference was statistically significant 

(Kruskal-Wallis, Chi-square = 175.201, df = 14, p < 0.001). Eggs from Klondike Reef had the 

lowest ration of ARA to EPA (Table 5).  

 

3.6. Comparison of FAS Using Discriminant Factor Analysis 

DFA was performed on fish eggs from 13 samples sites (with n ≥ 18) using the 18 most 

abundant fatty acids detected. DFA revealed separation of groups by lake and sample site in both 

the neutral lipid (Figure 6) and phospholipid (Figure 7) fractions. There were a total of twelve 

discriminant functions (DFs), or linear combinations of variables, generated by DFA in both the 

neutral lipid and phospholipid fractions. 
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In the DFA using FAS from the NL fraction, the first two DFs accounted for 62.4% 

percent of the variance (DF1= 48.9 % and DF2 = 13.5%) in fatty acid composition among 

samples. Inclusion of DF3 (11.8%) and DF4 (7.8%) increased cumulative variation explained to 

81.9%. DF1 was defined positively by 18:1n-7 and negatively by 14:0. DF2 was characterized 

by positive loadings of 20:4n-6, 22:4n-6, and 22:5n-6 and negative loading of 18:1n-9. The third 

discriminant function was defined positively by 16:1n-9 and negatively by 18:3n-3 and 18:4n-3. 

The fourth discriminant function defined positively by 20:4n-3 and 18:2n-6 and negatively by 

18:0. A bivariate plot of only DF1 and DF2 showed a clear separation of samples by lake (Figure 

6). DFA correctly classified 77.7% of samples (Wilks’λ = 0.003; P < 0.0001). Cross-validation 

using jackknife procedure yielded a 71.9% overall success rate in predicted group membership. 

In general, misclassified egg samples (egg samples not classified from the correct sample site) 

were from Lake Michigan or Lake Huron. For example, of the 47 eggs sampled from Drummond 

25 were misclassified. Misclassified eggs were grouped with eggs from other sample sites in 

Lake Huron and Lake Michigan but not from any other lakes. In addition, some sample sites, 

such as Taughannock Falls and Grand Isle, had no misclassified eggs. 

In the DFA using FAS from the PL fraction, the first two DFs accounted for 63.7% 

percent of the variance (DF1= 49.7 % and DF2 = 14.1%) in fatty acid composition among 

samples. Inclusion of DF3 (9.5%) and DF4 (7.4%) increased cumulative variation explained to 

80.6%. DF1 was defined negatively by 18:1n-7. DF2 defined positively by 16:1n-9 and 16:0. 

DF2 was negatively defined by 18:2n-6, 20:4n-3, 22:4n-6, 18:4n-3, and 18:3n-3. DF 3 was 

positively defined by 16:1n-7; DF 3 was negatively defined by 20:4n-6 and 22:5n-6. The fourth 

discriminant function was defined positively by 20:1. A bivariate plot of only DF1 and DF2 

showed a clear separation of samples by lake (Figure 7). DFA correctly classified 77.3% of 
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samples (Wilks’λ = 0.004; P < 0.0001). Cross-validation using jackknife procedure yielded a 

overall success rate of 70.7%. As with the NL fraction, the majority of misclassified egg samples 

came from lakes Michigan and Huron sample sites. Similarly, Taughannock Falls and Grand Isle 

samples were not misclassified.  

 

3.7. Comparison of FAS Using Analysis of Similarity, Nonmetric Multidimensional Scaling, and 

Principal Component Analysis 

Similarities in FAS among sample sites are illustrated in an nMDS plot with overlain 

similarity contours, for both the NL and PL fractions (Figures 8 and 9, respectively). For both 

NL and PL fractions the stress level was 0.15. In the NL fraction, clusters were formed at the 

90%, 95%, and 97% similarity level (Figure 8). All sample sites formed a single cluster at the 

90% similarity level. Four clusters emerged at the 95% similarity level. One cluster contained 

Taughannock Falls and Hamlin Beach, another contained Parry Sound and Owen Sound, a third 

cluster contained Grindstone and Hamburg, and lastly a fourth cluster encompassed Old Mission, 

Portage Point, Klondike Reef, Drummond Island, Milwaukee, Clay Banks, Waukegan, and 

Michigan City. A single cluster emerged at the 97% similarity level. It encompassed Milwaukee, 

Clay Banks, Waukegan, and Michigan City. In the PL fraction, clusters were formed at the 90%, 

95% and 97% similarity level (Figure 9). In the PL fraction, all sample sites formed a single 

cluster at the 90% similarity level. At the 95% similarity level a single cluster emerged 

incorporating all sample sites except for Klondike Reef and Hamburg. At the 97% similarity 

level three clusters emerged. The first cluster contained Michigan and Waukegan, the second 

contained Parry Sound and Owen Sound, and finally the third cluster encompassed Milwaukee, 

Clay Banks, Old Mission, and Portage Point. ANOSIM revealed differences in FAS among 
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sample sites in both the NL and PL fractions (Tables 6 and 7, respectively) as well. In both the 

NL and PL fractions, PCA reduced 24 fatty acids into five principal components. In the NL 

fraction the first two principal components explained 78.8% of the variance in the data set 

(Figure 10). Variance in principal component 1 (PC1) was explained by 18:1n-9. Variance in 

principal component 2 (PC2) was explained by 16:1n-7 and 18:1n-7. In the PL fraction the first 

two principal components explained 58.5% of the variance in data (Figure 11). Variance in 

principal component 1 (PC1) was explained by 22:6n-3. Variance in principal component 2 

(PC2) was explained by 16:0 and was contributed to negatively by 20:4n-6.  

SIMPER routines revealed within site similarity and among site dissimilarity in FAS. In 

the NL fraction within site similarity ranged from 91-96% similarity. Three FA, 18:1n-9, DHA, 

and 16:0, combined to explain 40% of the within-site similarity at each sample site. Dissimilarity 

among sample sites ranged from 7-13% dissimilarity (Table 8). This dissimilarity was caused by 

18:1n-9, 16:1n-7, and 18:1n-7. In the PL fraction within site similarity ranged from 92-96% 

similar. The two main fatty acids that caused this similarity were DHA and 16:0, which 

combined to explain 40% of the within-site similarity. Dissimilarity among sample sites ranged 

from 5-9% dissimilarity (Table 9). This dissimilarity between sample sites was caused mostly by 

DHA, 16:0, and 20:4n-6. 

 

3.8. Survival of Lake Trout Embryos from Lake Ontario and Cayuga Lake 

 There were a total of 24 and 26 fish sampled from Taughannock Falls in 2009 and 2010, 

respectively. All fish sampled from Taughannock Falls (2009 and 2010) were used in the 

survival study. Of the 12 fish sampled in 2009 and the 27 fish sampled in 2010, only five fish 

were used in the survival study from Hamlin Beach in 2009 and three fish from 2010 (Table 10). 
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Sample sizes are lower in the survival analysis because green females were used in fatty acid 

analysis but not the survival analysis. Survival to pigmented-eyed stage was not statistically 

different between sample sites in 2009 (U = 41.0, df = 27, p > 0.05). Survival at hatching was 

statistically higher in Taughannock Falls than in Hamlin Beach in 2009 (U = 120.0, df =27, p < 

0.05). Survival at the swim-up stage between Taughannock Falls and Hamlin Beach in 2009 did 

not differ significantly (U = 71.0, df = 27, p > 0.05). There were no statistical differences 

between survival to pigmented-eyed stage (U=53.0, df = 27, p > 0.05), hatching (U = 34.0, df = 

27, p > 0.05), or swim-up (U = 63.0, df = 27, p > 0.05) between Taughannock Falls and Hamlin 

Beach in 2010.  

 Correlations between survival of lake trout embryo and specific fatty acids in both the NL 

and PL fractions were investigated. Significant correlations were found and are presented in 

Table 11 and Figures 12 and 13.   

 

4. Discussion 

Our research represents the first study to simultaneously compare lipids and fatty acids 

both temporally and spatially in lake trout eggs. Interestingly, our study found no differences in 

TL, NL, PL, or FA concentrations temporally. It is possible that a larger data set, spanning more 

than 2 years, would show temporal variation in lake trout eggs. However, the lack of temporal 

variation allowed us to combine data from fish collected in 2009 and 2010 and helped to provide 

a better understanding of lipid and fatty acids differences spatially, where we were able to 

identify differences. 

Lake trout eggs from all sample sites were rich in lipids, regardless of origin. In 

freshwater fish species, ripe fish eggs on average ranged from 2% to 10% lipids based on wet 
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weight. It was reported that yellow perch contained less than 5% total lipids (Kaitaranta and 

Ackman 1981), whereas common whitefish Coregonus lavaretus contained 11.5% total lipids 

(Kaitaranta 1980). Total lipids in lake trout ova from this study ranged from 8.8 – 9.5% of wet 

weight. These levels are consistent with findings in other studies. Czesny et al. (2012) found that 

lake trout eggs from two sites in Lake Michigan (Algoma and Waukegan) had total lipid content 

(Mean ± SD) of 9.9 ± 0.6% (Algoma) and 9.1 ± 0.7% (Waukegan). Since it takes lake trout 

embryos several months to develop and food is not readily available after hatching, total lipid 

reserves are very important to embryo survival and must be high enough to sustain embryos 

during their development.  

In our study, TL comprised of 50.7-56.7% NL and 43.4-49.3% PL. This is consistent 

with other studies conducted in Lake Michigan by Czesny et al. (2009, 2012). In terms of spatial 

differences in specific FA, Czesny et al. (2012) found that DHA concentration differed between 

Algoma and Waukegan in both the NL and PL fraction. Likewise, the concentrations of FA 

detected by Czesny et al. (2012), in both the NL and PL fractions, were similar to levels detected 

in our study.  

FAS have been used to identify predator-prey relationships (Dalsgaard et al. 2003, Falk-

Petersen et al. 2004) following the concept “you are what you eat.” Since fatty acids with carbon 

chain length greater than 14 remain intact during digestion in monogastric animals (Smith et al. 

1997), it is possible to distinguish which fatty acids are acquired through diet and which are 

synthesized by the predator (Iverson 1993). In a recent study by McKenna et al. (unpublished 

data), food web composition (based on gut contents of lake trout and FAS) was shown to vary 

both within a lake system and among lake systems. Specifically, lake trout in Lake Michigan fed 

mostly of alewives on the western side of the lake, while fish on the eastern shore of Lake 
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Michigan fed on both alewives and round gobies. McKenna et al. (unpublished data) also found 

that lake trout in Lake Huron fed mostly on rainbow smelt and round goby. In another study, 

Czesny et al. (2011) found that alewives from Lake Michigan had high levels of DHA (15.5%) 

and low concentrations of 16:1n-7 (4.7%) compared to round goby which had a DHA 

concentration of 6.8% and a 16:1n-7 concentration of 9.5%. Knowing this information, we can 

predict what types of FA we would find in lake trout eggs based on their diet, again following 

the principle “you are what you eat” and assuming that FA are not transformed and that female 

fish will transfer all available FA to their progeny. 

In our study, we determined that lake trout eggs from Lake Michigan had higher levels of 

DHA compared to other sample sites in the NL fraction. High levels of DHA indicate alewife 

consumption by lake trout in Lake Michigan. When we compared the concentrations of 16:1n-7 

in the NL fraction, we determined that lake trout eggs from Drummond Island and Grindstone 

(both Lake Huron) had some of the highest levels of 16:1n-7 while sample sites from Lake 

Michigan (Milwaukee, Waukegan, Portage Point and Old Mission) had lower levels of 16:1n-7. 

High levels of 16:1n-7 indicates consumption of round goby by lake trout in Drummond Island 

and Grindstone. Regardless of location, McKenna et al. (unpublished data) found that round 

goby is increasingly important to lake trout diets in both lakes Michigan and Huron, suggesting 

that the range expansion of round goby is having a significant impact on the forage base of lake 

trout. The recent alewife population crash in Lake Huron (Madenjian et al. 2006) also provided a 

window for round goby expansion in Lake Huron and greater inclusion in diet.  In terms of FA 

concentrations, our results provide evidence of round bogy consumption by lake trout in Lake 

Huron, specifically Drummond Island and Grindstone (assuming that round goby FA 

concentrations are the same in Lake Huron and Lake Michigan) while round goby consumption 
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by fish from Lake Michigan is not conclusive. Knowing that alewives are the major prey item in 

Lake Ontario (Bowlby et al. 2007) and Cayuga Lake (Bishop, personal communication 2009), 

we would expect to find high levels of DHA and low levels of 16:1n-7 in lake trout eggs similar 

to Lake Michigan sample sites. In our study, we observed that 16:1n-7 concentrations were lower 

in Hamlin Beach (Ontario) and Taughannock Falls (Cayuga) compared to sample sites from 

Lakes Michigan and Huron. This indicates that lake trout in Lake Ontario are feeding mostly on 

alewives and less on round goby compared to fish from Lakes Michigan and Huron (assuming 

alewife FAS do not differ among lake systems).  It is important to note that we know less about 

lipids and FA in Lake Ontario prey fish (and almost nothing about lipids and FA in Cayuga Lake 

prey fish) than we do about lipids in FA in prey fish from Lakes Michigan and Huron. However, 

lipids and FA concentrations of Lake Ontario prey fish are being studied by various research 

groups; this will help our understanding of the Lake Ontario system. Table 12 summarizes the 

primary prey items found in the investigated lakes and major fatty acids associated with them. 

Prey fatty acid data are taken from Czesny et al. (2011).    

Our nMDS and PCA results help to further illustrate the importance of 16:1n-7 and DHA 

as these FA contributed largely to the differences in samples sites in the NL fraction. SIMPER 

routines also showed that 18:1n-9, 16:1n-7, and 18:1n-7 contributed the most to dissimilarity 

among sample sites in the NL fraction. According to Czseny et al. (2011), rainbow smelt 

(dominant prey in Lake Erie and Lake Champlain) are high in DHA and low in 16:1n-7 

compared to other prey from Lake Michigan. In our study, we found that lake trout eggs from 

Lake Erie had higher levels of 16:1n-7 and low levels of DHA compared to lake trout eggs from 

Lake Champlain, despite having the same dominant prey item. It is likely that rainbow smelt 

from these differing lake systems have different FA concentrations, although further 
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investigation of prey lipids and FA in Lake Erie and Champlain is required. Lastly, lake trout 

diet in Lake Superior is dominated by lake herring. Unfortunately, little is known about the FAS 

of lake herring in Lake Superior. Despite this shortcoming, we can attribute differences in FA 

concentrations in lake trout eggs from Lake Superior to reflect a herring-dominated diet.   

 Although differences in lipids and FAS were observed in our data, it is difficult to say 

whether or not these differences are biologically significant. Differences in TL, NL and PL as 

well as differences in FA require further investigation before the health of the ecosystem can be 

accurately determined. However, other studies have shown that proper ratios of certain FA can 

influence fish health and development. For example, Sargent (1995) found that a DHA: EPA 

ratio of 2:1 is commonly found in PL fraction of fish eggs. Similarly, Czesny et al. (2009) found 

that lake trout had an average DHA: EPA ratio of 3.4 in the PL fraction which is similar to the 

results found in our study (DHA: EPA range of 3.2-4.7 in the PL fraction). Czesny et al. (2009) 

explained that high levels of DHA and/or low levels of EPA resulted from heavy alewife 

consumption by adult fish. We know that alewives made up a majority of the diet in lake trout 

from lakes Michigan, Ontario, and Cayuga Lake thus it is plausible that the ratio of DHA: EPA 

in this study indicates alewife consumption by lake trout in Lakes Michigan, Ontario, and 

Cayuga Lake. Other studies have shown AA to increase resistance to infection, lead to better egg 

quality, and promote growth in salmonids (Ackman and Takeuchi 1986, Bell and Sargent 2003). 

Sargent (1995) also showed that proper EPA:AA ratio is important to fish health and 

development. Czesny et al. (2009) showed that early mortality syndrome (EMS) increased if the 

ratio of EPA:AA was below 2 in the NL or below 1 in the PL fraction. In our study we found that 

the EPA:AA ratio in the NL fraction ranged from 0.4-0.7 and 0.8-1.3 in the PL fraction. Contrary 

to Czesny et al. (2009), we did not find any correlation between EPA:AA ratios and survival. 
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Similarly, we were not able to determine strong correlations between lipids, fatty acids 

concentrations, and survival. Other studies have shown relationships between total lipid content 

of eggs and egg quality in other freshwater fishes. Zhukinsky and Kim (1981) found that high 

levels of lipids in roach (Rutilus rutilus) and bream (Abramis brama) eggs increased larval 

viability whereas Devauchelle et al. (1982) found a negative relationship between total lipid 

content of eggs and egg viability. In a study by Sheikh-Eldin et al. (1996), egg viability varied 

heavily regardless of egg lipid content. Likewise, Czesny and Dabrowski (1998) were unable to 

demonstrate a definite relationship between total egg lipid content and egg viability in walleye. 

In the most recent study of lake trout survival, Czesny et al. (2012) found the early mortality 

syndrome (EMS) was positively and negatively correlated to certain fatty acids. For example, 

20:1n-9 was positively correlated with EMS mortality while linoleic acid was negatively 

correlated with EMS mortality. Thus, different concentrations of specific FA may negatively or 

positively affect embryo survival. Likewise, proper DHA:EPA and EPA:AA ratios (not 

necessarily high or low concentrations) may also increase embryo survival. Another important 

factor when considering fish health is the ratio of n-3/n-6 PUFA. In a study by Leray et al. 

(1985), a low n-3/n-6 ratio resulted in stunted embryo development, reduction in hatching, and 

decreased viability in rainbow trout. Likewise Santiago and Reyes (1993) found that the ratio of 

n-3/n-6 fatty acids affected the reproductive success of Nile tilapia Oreochromis nitloticus. We 

did not observe any correlations between the ratio of n-3/n-6 PUFA and survival in either the NL 

of PL fractions of this study.  

Although total lipid content and the concentrations of specific FA are important factors 

that determine egg quality, they are not the only factors affecting embryo survival. Other factors 

such as thiamine concentration in lake trout eggs may influence survival of lake trout embryos. 
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Recently, studies have shown an increase in thiamine levels in lake trout eggs from Lake 

Michigan and Lake Huron (Riley et al. 2011). Low levels of thiamine are associated with EMS 

in alevins (Honeyfield et al. 2005, Czesny et al. 2009). Despite increasing levels of thiamine, 

EMS may still be negatively affecting alevin survival in our study. It is also important to note 

that sample sizes were very low especially in Hamlin Beach. Larger sample sizes may have been 

helpful in determining differences between sample sites and correlations with specific FA. 

Alevins in this study exhibited some signs of EMS including yolk oedema, which is associated 

with ammonia build up in culture systems (Wolf 1957, Burkahlter and Kaya 1997). Regardless, 

the relationships among total lipid content, egg quality, and embryo survival remain an area that 

needs further investigation.   

 Ideally the best predicative model for predicting percent composition of predator diet 

incorporates the use of prey FAS of all prey items available within a lake system (and therefore 

available to predators). Iverson et al. (2004) recently proposed the use of Quantitative Fatty Acid 

Signature Analysis (QFASA) to predict and estimate predator diets. At its core QFASA estimates 

the proportion of specific prey items in a predator’s diet based on analysis of the predators FAS 

and comparing it known FAS of potential prey items available to that predator. In order to 

construct this QFASA detailed information of prey FAS must be determined and incorporated 

into analysis. More recently, Czesny et al (2011) publication on the FAS of many prey fish in 

Lake Michigan has greatly expanded our ability to predict predator diet based on prey FAS. 

Although this information helped us to determine trends in lake trout egg FAS in this study, a 

more complete understanding of prey FAS in each lake system (Lake Superior, Lake Erie, Lake 

Ontario, Cayuga Lake, and Lake Champlain and to a lesser degree Lake Huron) are still required 

before we can create a model the accurately determines percent composition of predator diet 
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solely by based on the analysis of predator tissue samples. Even though we know the dominate 

prey items in each lake system, caution must be taken when predicting percent composition of 

predator diet based on FAS. Additionally, constantly changing forage bases, most notably the 

introduction and expansion of round goby and their inclusion in the diet of lake trout, are leading 

to changes in FAS. Increasing reliance on goby in lake trout diets may have positive implications 

on lake trout restoration and increase the chances on lake trout rehabilitation in the Great Lakes 

and Finger Lakes. Continued monitoring of lake trout diets, monitoring of lake trout egg FA 

concentrations, and better understanding prey FAS will be the utmost importance for the 

continued recovery of lake trout. 
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Table 1. Summary of samples including locations (lake and sample site within the lake), sample sizes (n) and morphological data 
(length and weight), and collection agencies for all sites sampled in 2009 and 2010 (- indicates absence of data). 

  Sample Site 

 

 

Cayuga Lake L. Ontario L. Michigan L. Huron L. 
Champlain L. Erie L. Superior 

Year                                                   Taughannock 
Fallsa,b 

Hamlin 
Beachb 

Clay 
Banksc Milwaukeed Waukegane,f Michigan 

Cityg 
Portage 
Pointh 

Old  
Missioni 

Drummond 
Islandj Grindstonek Owen 

Soundl 
Parry 

Soundl Grand Islen Hamburga Klondike 
Reefm 

2009 

n 24 12 21 30 14 14 28 16 25 25 23 5 - - 9 

Length 
(cm) - 73.9±4.5 73.2± 4.4 72.8±3.3 75.5±6.3 76.4±4.0 72.6±5.1 67.6±5.3 67.4±3.4 72.3±5.2 70.6±3.9 73.8±7.1 - - 47.6±5.9 

Weight  
(kg) - 4.3±0.9 - - 4.3±1.4 4.4±0.8 4.1±1.0 3.1±0.7 3.1±0.6 3.5±1.0 4.0±0.7 3.8±1.2 - - 0.9±0.3 

2010 

n 26 27 18 18 20 30 26 30 32 - - 14 20 11 - 

Length 
(cm) - 76.8±4.9 75.2±4.9 72.4±5.6 70.9±4.2 76.3±4.4 66.6±13.4 69.8±5.7 71.7±4.6 - - 71.9±6.2 70.5±5.9 77.6±4.4 - 

Weight  
(kg) - - 4.2±0.9 - 3.5±0.7 4.7±1.1 3.4±0.8 3.4±0.8 3.8±0.9 - - 3.5±1.1 - - - 

 

Collection agencies: a: New York State Department of Environmental Conservation, b: The College at Brockport Department of Environmental Science and 
Biology, c: US Fish and Wildlife Service, d:Wisconsin Department of Natural Resources, e: Illinois Department of Natural Resources, f: Illinois Natural History 
Survey, g: Indiana Department of Natural Resources, h: Little River Band of Ottawa Indians, i: Grand Traverse Bay of Ottawa and Chippewa Indians, j: Inter-
Tribal Fisheries, k: Michigan Department of Natural Resources, l: Ontario Ministry of Natural Resources, m: La Crosse Fish Health Center, n: Vermont 
Department of Fish and Wildlife. 
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Table 2. Pearson’s coefficient (r) between total fish length and concentration of individual fatty 
acids in both the neutral lipid (NL) and phospholipid (PL) fractions of lake trout eggs. Sample 
size (n) = 435. Significant correlations denoted by an asterisk. 

Fatty Acid Correlations  

SAFA NL PL 

14:0 0.088 -0.125* 

15:0 -0.005 -0.100* 

16:0 0.083 -0.002 

17:0 0.061 -0.141* 

18:0 0.086 0.123* 

ΣSAFA 0.116* 0.036 

MUFA 
  

16:1n-9 0.284* 0.156* 

16:1n-7 0.164* 0.107* 

17:1 -0.036 0.059 

18:1n-9 0.108* 0.082 

18:1n-7 0.245* 0.309* 

20:1 0.066 0.047 

ΣMUFA 0.201* 0.274* 

PUFA 
  

18:2n-6 -0.186* -0.233* 

20:2n-6 -0.195* -0.202* 

20:3n-6 -0.013 0.049 

20:4n-6 0.033 0.099* 

22:4n-6 0.041 0.165* 

22:5n-6 -0.141* -0.100* 

Σn6 -0.122* -0.022 

18:3n-3 -0.069 -0.029 

18:4n-3 -0.133* -0.126* 

20:3n-3 -0.109* -0.118* 

20:4n-3 -0.191* -0.172* 

20:5n-3 -0.209* -0.105* 

22:5n-3 0.022 0.337* 

22:6n-3 -0.273* -0.317* 

Σn3 -0.239* -0.227* 

ΣPUFA -0.217* -0.198* 

DHAEPA -0.054 -0.096* 

EPAAA -0.253* -0.146* 
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Table 3. Total lipid, neutral lipid, and phospholipid (% of wet weight, mean ± standard deviation) of lake trout eggs from all sample 
sites. Data were combined for 2009 and 2010. Means with different superscript letters indicated statistical difference (p < 0.05). Note 
that “-“ indicates missing data. 
 

Sample Sites 

  Cayuga L. L. Ontario L. Michigan L. Huron L. 
Champlain L. Erie L. Superior 

  Taughannock 
Falls 

Hamlin 
Beach Clay Banks Milwaukee  Waukegan  Michigan 

City  
Portage 
Point Old Mission  Drummond 

Island  Grindstone  Owen 
Sound  

Parry 
Sound  Grand Isle Hamburg Klondike 

Reef 
2009                

n 24 12 21 30 14 14 28 16 25 25 23 5 - - 9 

TL (%) 9.5±0.7  9.4±0.7 9.7±0.5 9.3±0.3 9.0±0.8 9.3±0.8 8.7±1.0 9.4±0.9 8.6±0.7 8.5±0.6 8.2±0.6 7.9±0.6 - - 8.7±0.6 
NL (% of TL) 53.1±2.3 54.4±1.5 54.3±2.5 55.8±1.7 53.3±3.0 56.0±1.6 55.6±3.4 53.9±1.8 54.3±2.6 53.7±2.2 53.4±1.3 54.4±2.1 - - 50.7±2.7 
PL (% of TL) 46.9±2.3 45.6±1.5 45.7±2.5 44.2±1.7 46.7±3.0 44.0±1.6 44.4±3.4 46.1±1.8 45.7±2.6 46.3±2.2 46.6±1.3 45.6±2.1 - - 49.3±2.7 

2010                

n 26 27 18 18 20 30 26 30 32 - - 14 20 11 - 

TL (%) 7.9±0.9 9.1±0.6 9.3±0.5 9.3±0.5 9.0±0.4 9.2±1.0 8.8±0.6 9.3±0.9 8.9±1.2 - - 8.0±0.9 8.0±0.6 9.3±0.6 - 

NL (% of TL) 53.9±1.6 54.1±6.1 55.8±1.9 54.8±2.6 55.9±1.8 55.1±2.9 54.6±3.7 54.9±2.1 55.4±2.3 - - 55.8±2.9 55.2±3.2 56.7±2.4 - 

PL (% of TL) 46.1±1.6 45.9±6.1 44.2±1.9 45.2±2.6 44.1±1.8 44.9±2.9 45.4±3.7 45.1±2.1 44.6±2.3 - - 44.2±2.9 44.8±3.2 43.3±2.4 - 

2009 and 2010                 

n 50 39 39 48 34 44 54 46 57 25 23 19 20 11 9 
TL (%) 8.7±1.1bcde 9.2±0.6abc 9.5±0.5ab 9.3±0.4ab 9.0±0.6abc 9.2±2.6ab 8.8±0.9bcd 9.2±0.9abc 8.8±1.0bcd 8.5±0.6cde 8.2±0.6de 8.0±0.8e 8.0±0.6de 9.3±0.6ab 8.7±0.6bcde 

NL (%) 53.5±2.0b 54.2±5.1ab 55.0±2.3ab 55.4±2.1ab 54.8±2.6ab 55.4±2.6ab 55.1±3.6ab 54.6±2.0ab 54.9±2.5ab 53.7±2.2b 53.4±1.3b 55.4±2.7ab 55.2±3.2ab 56.7±2.4a 50.7±2.7c 

PL (%) 46.5±2.0b 45.8±5.1bc 45.0±2.3bc 44.6±2.2bc 45.2±2.6bc 44.6±2.6bc 44.9±3.6bc 45.4±2.0bc 45.1±2.5bc 46.3±2.2b 46.6±1.3b 44.6±2.7bc 44.8±3.2bc 43.3±2.4c 49.3±2.7a 
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Table 4. Percent detected fatty acids in the neutral lipid fraction of lake trout eggs from all sample sites. Means with different 
superscript letters indicated statistical difference (p < 0.05). 
 

Fatty Acid Sample Site 

 
Cayuga L. L. Ontario L. Michigan L. Huron L. Champlain L. Erie L. Superior 

 

Taughannock 
Falls 

Hamlin 
Beach 

Clay 
 Banks Milwaukee Waukegan 

Michigan 
City 

Portage 
Point 

Old 
Mission 

Drummond 
Island Grindstone 

Owen 
Sound 

Parry 
Sound 

Grand 
Isle Hamburg 

Klondike 
Reef 

SAFA 
               

14:0  3.1±0.4a 2.6±0.2bc 2.1±0.3de 2.2±0.3de 2.1±0.2de 2.4±0.0bcd 2.3±0.4cde 2.2±0.2de 2.3±0.4cde 2.0±0.2e 2.2±0.2de 2.2±0.3de 2.3±0.3cde 2.8±0.2ab 2.3±0.3cde 

15:0  0.6±0.1a 0.4±0.0b 0.2±0.1ef 0.2±0.0def 0.3±0.0cde 0.3±0.0cd 0.3±0.1cde 0.3±0.0de 0.3±0.0cde 0.3±0.0cd 0.2±0.0f 0.3±0.1cd 0.3±0.0cd 0.3±0.0bc 0.3±0.1cd 

16:0 10.3±0.9abcde 10.1±0.7abcde 10.1±1.0abcde 9.9±0.9bcde 9.4±1.0de 9.8±1.0bcde 9.9±1.3bcde 10.1±0.8abcde 9.8±0.7bcde 11.1±0.8a 9.3±0.7e 10.5±1.2a 10.8±0.7ab 10.6±0.7abc 9.6±1.0cde 

17:0 0.3±0.0a 0.2±0.0b 0.3±0.2a 0.1±0.0bc 0.3±0.2a 0.1±0.0bc 0.1±0.0bc 0.1±0.0bc 0.1±0.0c 0.1±0.0bc 0.1±0.0bc 0.1±0.0bc 0.2±0.0bc 0.1±0.0bc 0.2±0.0bc 

18:0 1.9±0.3bcd 1.6±0.1def 1.9±0.3abc 2.0±0.2ab 1.9±0.3bcd 1.8±0.3bcde 1.8±0.3bcde 1.7±0.2bcde 1.5±0.2ef 1.8±0.2bcd 1.6±0.2def 2.2±0.2a 1.8±0.2bcd 1.7±0.2cdef 1.5±0.2f 

ΣSAFA 16.2±1.4a 14.8±0.9bcd 14.6±1.2bcde 14.4±1.3bcde 13.9±1.3cde 14.4±1.3bcde 14.5±1.6bcde 14.4±1.0bcde 13.9±0.9cde 15.4±1.1ab 13.3±3.3e 15.2±1.4abc 15.5±1.0ab 15.5±0.7ab 13.8±1.4de 

                
MUFA 

               
16:1n-9 1.5±0.2abcd 1.6±0.3ab 1.2±0.3ef 1.1±0.2ef 1.2±0.3cdef 1.3±0.2bcdef 1.2±0.2def 1.4±0.2bcde 1.3±0.3cdef 1.5±0.2abc 1.5±0.3abc 1.8±0.3a 1.8±0.3a 1.5±0.1abc 1.1±0.2f 

16:1n-7 7.4±0.8f 7.9±0.8ef 9.7±1.5bcde 9.1±1.4cdef 9.1±1.8cdef 9.9±2.0bcd 8.5±1.9def 8.8±2.3cdef 10.6±1.3abc 11.2±1.8ab 9.5±1.7bcde 8.9±2.0cdef 8.0±0.8def 12.3±1.1a 9.3±0.8cdef 

17:1 0.8±0.1a 0.6±0.1bc 0.3±0.2b 0.4±0.0fg 0.2±0.2h 0.4±0.0efg 0.4±0.1defg 0.4±0.1defg 0.4±0.0g 0.5±0.1bcd 0.5±0.1cdef 0.5±0.1bcde 0.6±0.0bc 0.6±0.1b 0.4±0.0efg 

18:1n-9  25.0±2.0cde 24.0±1.4de 23.3±2.1de 23.6±1.7de 23.1±2.1de 23.7±2.3de 21.8±2.1e 25.1±2.4cde 24.6±2.7de 26.7±3.0abc 27.6±1.7ab 29.0±3.1a 28.6±2.0a 25.0±1.3cde 24.2±3.8def 

18:1n-7 4.8±0.5e 5.1±0.4de 6.5±0.9bc 6.7±0.8abc 6.7±1.1abc 6.7±1.0abc 6.2±0.9bc 5.9±1.1cd 6.2±0.6bc 7.5±1.2a 6.9±0.6ab  6.4±1.2bc 4.9±0.5de 7.2±0.5ab 6.3±0.6bc 

20:1 1.3±0.2ab 1.2±0.2abcd 1.1±0.2abcd 1.2±0.2ab 1.2±0.2abcd 1.2±0.3abc 1.0±0.2bcd 1.2±0.3ab 0.9±0.2d 1.0±0.3cd 1.2±0.2abc 1.2±0.2abc 1.2±0.1abcd 1.0±0.2bcd 1.3±0.2a 

ΣMUFA 40.8±2.5def 40.3±2.2ef 42.0±4.1def 42.2±3.6def 41.5±4.8def 43.3±4.7bcdef 39.2±4.2f 42.9±5.6cdef 44.0±3.5bcde 48.5±5.0a 47.2±3.3abc 47.7±5.7ab 45.1±2.7abcd 47.6±2.0ab 42.5±4.6defdef 

                
PUFA 

               
18:2n-6 4.0±1.0abc 4.1±0.3abc 3.5±0.5bcde 3.6±0.4bcde 3.8±0.6abcd 3.7±0.7abcde 3.9±0.6abcd 3.8±0.5abcd 4.1±0.5abc 3.5±0.9bcde 3.0±0.7e 3.3±0.8cde 3.6±0.3bcde 3.2±0.3de 4.4±0.5a 

20:2n-6 0.5±0.1cd 0.7±0.1b 0.7±0.1b 0.7±0.1b 0.7±0.1b 0.7±0.2b 0.7±0.2b 0.6±0.2bc 0.6±0.1b 0.4±0.1d 0.4±0.1d 0.4±0.1d 0.4±0.0d 0.3±0.1d 1.0±0.1a 

20:3n-6 0.5±0.1a 0.4±0.0bcd 0.4±0.1bcde 0.4±0.1abc 0.4±0.1ab 0.4±0.1ab 0.4±0.1ab 0.3±0.1cdef 0.3±0.0ef 0.3±0.1ef 0.3±0.1def 0.3±0.0fg  0.3±0.0cdef 0.2±0.0g 0.4±0.0ab 

20:4n-6 4.9±0.6a 4.6±0.4abc 4.5±0.5abc 4.6±0.5abc 4.5±0.7abc 4.7±0.5ab 4.8±0.6a 4.4±0.5abcd 4.1±0.4bcd 4.1±0.4cd 4.6±0.5abc 3.8±0.6de 3.3±0.4ef 3.3±0.3ef 3.1±0.3f 

22:4n-6 0.7±0.2ab 0.6±0.1abc 0.8±0.3a 0.6±0.1ab 0.6±0.1ab 0.6±0.1ab 0.7±0.1ab 0.6±0.1bcd 0.5±0.1bcd 0.5±0.1cde 0.6±0.1bcd 0.4±0.1de 0.4±0.0e 0.4±0.0e 0.4±0.1de 

22:5n-6 1.0±0.2abcd 0.8±0.2bcde 0.8±0.5bcde 1.1±0.2ab 1.1±0.3abc 1.0±0.3abcd 1.3±0.3a 1.2±0.2a 0.9±0.3bcde 0.6±0.2e 0.8±0.2bcde 0.7±0.2de 0.6±0.1e 0.7±0.1de 0.8±0.2cde 

Σn-6 11.5±0.9a 11.3±0.6ab 10.6±1.1abcd 11.0±1.0ab 11.2±1.5ab 11.2±1.3ab 11.8±1.3a 10.9±1.2abc 10.5±0.8abcd 9.4±1.2def 9.7±1.3cdef 9.0±1.5efg 8.6±0.7fg 8.1±0.6g 10.2±0.8bcde 
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18:3n-3 4.4±0.7abc 4.5±0.4ab 3.2±0.5def 3.2±0.6def 3.4±0.7de 3.1±0.7defg 3.6±0.7cde 3.2±0.9def 2.9±0.5efg 2.3±0.8g 2.3±0.6g 2.5±1.3fg 5.0±0.4a 3.7±0.6bcd 3.3±0.6def 

18:4n-3 1.0±0.2b 0.9±0.2b 0.6±0.1cdef 0.7±0.2bcde 0.7±0.2bcde 0.7±0.2bcde 0.8±0.2bcd 0.6±0.2def 0.6±0.2cdef 0.5±0.2f 0.5±0.1f 0.5±0.3ef 1.3±0.3a 0.8±0.2bcd 0.9±0.3bc 

20:3n-3 0.6±0.1defg 1.2±0.2a 0.9±0.2bc 0.9±0.2bc 0.9±0.2bc 0.8±0.2bcd 1.0±0.3ab 0.8±0.3bcd 0.8±0.2bcd 0.4±0.2fg 0.4±0.1g 0.5±0.3efg 0.7±0.1cdef 0.4±0.1fg 1.0±0.1ab 

20:4n-3 2.3±0.4bcde 3.2±0.4a 2.7±0.7abc 2.6±0.7abc 2.9±0.9abc 2.4±0.8abcd 3.1±0.8ab 2.6±1.1abc 2.8±0.8abc 1.4±0.9e 2.1±0.6cde 1.7±0.9de 2.8±0.3abc 1.6±0.3de 3.1±0.5ab 

20:5n-3 6.6±0.8bc 7.3±0.7ab 6.9±1.0abc 6.9±0.9abc 7.0±0.7abc 7.3±1.2ab 7.1±1.0abc 6.9±1.0abc 7.2±0.7abc 6.5±1.1bc 7.4±0.7ab 6.2±1.0c 6.6±0.5bc 7.0±0.6abc 7.9±1.4a 

22:5n-3 4.6±0.7cde 5.2±0.3ab 5.0±0.4abc 5.1±0.5abc 5.3±0.5a 5.1±0.5abc 5.2±0.6ab 4.7±0.5abcd 4.9±0.5abcd 4.7±0.7bcd 4.8±0.4abcd 4.3±0.5de 3.9±0.4e 4.6±0.3cde 4.9±0.6abcd 

22:6n-3 12.0±1.3abcde  11.2±1.3bcde 12.9±1.6ab 13.0±1.4ab 12.4±1.6abcd 11.7±1.7bcde 13.6±1.9a 12.9±1.8ab 12.3±1.2abcde 10.9±1.5cde 12.2±1.2abcde 12.2±1.5abcde 10.5±1.5cd 10.6±0.6de 12.5abc±1.2 

ΣPUFA 43.0±2.6ab 44.9±2.5a 42.8±4.4ab 43.4±4.0ab 43.8±4.9ab 42.3±4.9ab 46.3±5.0a 42.7±5.9ab 42.1±3.4ab 36.1±5.2c 39.5±3.5bc 37.1±5.9c 39.5±3.0bc 36.9±2.1c 43.7±3.ab8 

Σn-3  31.5±2.5abcd 33.6±2.0a 32.2±3.5abc 32.4±3.1abc 32.7±3.6ab 31.1±3.7abcd 34.6±4.0a 31.8±4.8abcd 31.6±2.7abcd 26.7±4.2e 29.8±2.6bcde 28.0±4.7de 30.9±2.4abcd 28.8±1.5cde 33.5±3.1ab 

Σn-3/n-6 2.8±0.3a 3.0±0.1defg 3.1±0.2cdef 2.9±0.2defg 2.9±0.2defg 2.8±0.2fg 2.9±0.2defg 2.9±0.2defg 3.0±0.2defg 2.8±0.3efg 3.1±0.5cde 3.1±0.4cd 3.6±0.2a 3.6±0.2ab 3.3±0.2bc 

DHA/EPA 1.8±0.4abc 1.5±0.2d 1.9±0.3abc 1.9±0.3ab 1.8±0.2abcd 1.6±0.3bcd 1.9±0.3ab 1.9±0.2abc 1.7±0.2abcd 1.8±0.3abcd 1.7±0.2bcd 2.0±0.3a 1.6±0.2cd 1.5±0.1d 1.6±0.4bcd 

ARA/EPA 0.7±0.1a 0.6±0.1bc 0.7±0.1abc 0.7±0.1ab 0.6±0.1bc 0.7±0.1abc 0.7±0.1ab 0.6±0.1bc 0.6±0.1cd 0.6±0.1bc 0.6±0.1bc 0.6±0.1bc 0.5±0.0de 0.5±0.0ef 0.4±0.1f 
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Table 5. Percent detected fatty acids in the phospholipid fraction of lake trout eggs from all sample sites. Means with different 
superscript letters indicated statistical difference (p < 0.05). 

Fatty Acid Sample Site 

 Cayuga L. L.Ontario L. Michigan L. Huron L. Champlain  L Erie L.Superior 

 
Taughannock 

Falls  
Hamlin 
Beach 

Clay  
Banks Milwaukee   Waukegan  

Michigan 
 City 

Portage  
Point  

 Old 
 Mission  

 Drummond 
 Island Grindstone 

Owen 
 Sound 

 Parry  
Sound  

Grand  
Isle  Hamburg  

Klondike 
Reef 

SAFA                

14:0  1.1±0.1abc 1.1±0.1ab 1.0±0.1cd 1.0±0.1bcd 1.0±0.1bcd 1.1±0.1abc 1.1±0.1abc 1.1±0.2abc 1.2±0.2a 0.9±0.1d 1.1±0.1abc 1.0±0.2bc 1.2±0.1ab 1.3±0.1a 1.1±0.1b 

15:0  0.6±0.1a 0.4±0.0b 0.3±0.0de 0.3±0.0e 0.3±0.0de 0.3±0.1cde 0.3±0.0cde 0.3±0.1cde 0.3±0.0cd 0.3±0.0cde 0.3±0.0de 0.3±0.1cde 0.3±0.0cde 0.4±0.0bc 0.4±.1bc 

16:0 16.0±1.2abc 15.5±1.9bc 15.4±0.8bc 16.0±0.9abc 14.6±1.3c 16.1±0.9abc 16.3±1.1ab 17.1±2.3a 16.7±1.5ab 16.8±0.7ab 16.2±0.7ab 17.1±1.0a 17.1±1.1a 17.0±1.1ab 16.3±1.0ab 

17:0 0.5±0.1a 0.3±0.0b 0.2±0.1de 0.2±0.0de 0.2±0.0e 0.2±0.0de 0.3±0.0cd 0.3±0.1bcd 0.2±0.0de 0.2±0.1de 0.2±0.0de 0.3±0.1cd 0.3±0.0bc 0.3±0.0bcd 0.3±0.0bcd 

18:0 6.9±0.4abcd 6.0±1.0de 6.6±0.6cd 6.8±0.6abcd 6.2±0.8cd 6.4±0.7cd 6.7±0.7bcd 6.8±1.0abcd 6.6±0.8cd 7.0±0.6abc 6.8±0.5abcd 7.6±1.2a 6.7±0.6abcd 7.6±0.8ab 5.3±0.7e 

ΣSAFA 25.1±1.2abcd 23.3±2.9de 23.5±1.1cde 24.3±1.2bcd 22.4±1.8e 24.1±1.3bcde 24.7±1.3abcd 25.6±2.8ab 25.0±1.8abcd 25.3±1.0abc 24.6±1.0abcd 26.4±1.7a 25.6±1.2ab 26.4±1.5a 23.4±0.9cde 

                

MUFA                

16:1n-9 1.0±0.2bcdefg 1.0±0.2bcd 0.8±0.2g 0.8±0.1g 0.8±0.2efg 0.9±0.2cdefg 0.8±0.2fg 1.0±0.2bcdef 1.0±0.2bcdefg 1.0±0.2bcde 1.1±0.2bc 1.3±0.2a 1.1±0.2ab 1.0±0.1bcdefg 0.8±0.2defg 

16:1n-7 1.5±0.1f 1.8±0.3def 2.0±0.4cde 1.9±0.3cde 2.0±0.4cde 2.2±0.4bcd 1.9±0.3cde 1.9±0.5cde 2.6±0.4a 2.5±0.3ab 2.1±0.3bcde 2.0±0.4cde 1.8±0.2ef 2.6±0.1a 2.3±0.2abc 

17:1 0.3±0.0a 0.2±0.0bcde 0.2±0.1bc 0.1±0.0f 0.2±0.1b 0.2±0.0bcde 0.2±0.0cdef 0.2±0.0cdef 0.1±0.0f 0.2±0.0cdef 0.2±0.0def 0.2±0.0cdef 0.2±0.0bcde 0.2±0.0bcd 0.1±0.0f 

18:1n-9  10.0±0.6abcd 10.3±0.8abcd 9.8±0.6cde 10.2±0.7abcd 9.7±0.5de 9.9±0.6bcde 10.1±0.8abcd 10.1±1.2abcd 9.6±1.3de 9.9±0.9bcde 11.0±0.8a 10.8±1.0ab

c 11.0±0.9ab 10.3±0.7abcd 9.0±0.5e 

18:1n-7 4.7±0.5f 5.7±0.6de 6.2±0.8bcd 6.2±0.7bcd 6.5±1.0bcd 6.7±0.9abc 6.1±0.8bcde 5.8±1.2cde 6.1±0.9bcd 6.9±0.7ab 6.9±0.6ab 5.9±0.8cde 5.2±0.5ef 7.6±0.4a 5.8±0.5cde 

20:1 2.8±0.4a 2.6±0.5ab 2.4±0.5abccde 2.3±0.3abcde 2.4±0.3abcd 2.2±0.3bcdef 2.0±0.4efg 2.2±0.3bcdef 1.8±0.4fg 1.6±0.4g 2.3±0.5abcde 2.1±0.3cdef 2.5±0.4abc 2.0±0.3defg 2.4±0.5abcde 

ΣMUFA 20.2±1.0d 21.6±1.3bcd 21.4±1.3bcd 21.6±1.4bcd 21.6±1.4bcd 22.0±1.5abc 21.0±1.5bcd 21.2±2.3bcd 21.3±2.1bcd 22.1±1.4abc 23.6±1.2a 22.3±1.9ab 21.8±1.4bcd 23.6±1.1a 20.4±1.3cd 

                

PUFA                

18:2n-6 1.0±0.3ab 1.0±0.1abc 0.9±0.1abcdef 0.8±0.1bcdefg 0.9±0.1abcde 0.8±0.2bcdef 0.9±0.2abcde 0.8±0.1bcdef 0.9±0.1abcd 0.7±0.2defg 0.6±0.1g 0.7±0.1fg 0.8±0.1cdefg 0.7±0.1efg 1.0±0.1a 

20:2n-6 0.8±0.2cde 1.2±0.2ab 1.2±0.3ab 0.9±0.2bcd 1.2±0.3ab 1.0±0.3bc 1.0±0.3bc 0.9±0.3bcd 1.1±0.3b 0.6±0.2e 0.7±0.1de 0.6±0.3e 0.6±0.1e 0.5±0.1e 1.4±0.2a 

20:3n-6 0.2±0.1ab 0.1±0.0cd 0.2±0.0c 0.2±0.0bc 0.2±0.1a 0.2±0.0cd 0.2±0.0c 0.1±0.0de 0.1±0.0de 0.1±0.0de 0.1±0.0de 0.1±0.0de 0.1±0.0cd 0.1±0.0e 0.1±0.0cd 

20:4n-6 9.5±0.9a 8.5±0.5bcd 8.2±0.8bcde 8.6±0.6abc 9.0±0.7ab 8.5±0.8bcd 8.4±0.7bcd 8.0±0.8cdef 7.2±0.6fg 8.1±0.9cde 7.5±0.6efg 7.9±0.9cdef 7.6±0.6defg 6.9±0.4g 6.8±0.3g 

22:4n-6 0.5±0.1a 0.4±0.1abcde 0.5±0.1ab 0.4±0.1abcd 0.5±0.1abc 0.4±0.1abcd 0.4±0.1bcdef 0.4±0.1cdef 0.4±0.1cdef 0.4±0.1cdef 0.4±0.1cdef 0.3±0.1ef 0.3±0.0f 0.3±0.0def 0.3±0.1f 

22:5n-6 1.6±0.3ab 1.2±0.2bcd 1.7±0.4a 1.7±0.3a 1.7±0.5a 1.5±0.5abc 1.7±0.4a 1.5±0.3abc 1.3±0.3bcd 1.0±0.3d 1.1±0.2d 1.0±0.3d 1.0±0.2d 1.0±0.2d 1.2±0.2cd 

Σn-6 13.6±1.1a 12.4±0.9ab 12.6±1.5ab 12.7±0.8ab 13.5±1.3a 12.4±1.4ab 12.6±1.1ab 11.8±1.2bc 11.0±1.1cd 10.9±1.0cd 10.3±0.8de 10.6±1.1cd

e 10.5±0.8de 9.6±0.7e 10.9±0.8cd 

18:3n-3 0.7±0.1ab 0.7±0.1a 0.4±0.1cde 0.4±0.1cdef 0.5±0.1c 0.4±0.1cde 0.5±0.1cd 0.4±0.2cde 0.5±0.1cd 0.3±0.1ef 0.3±0.1f 0.3±0.2def 0.7±0.1a 0.5±0.1cd 0.5±0.1cd 
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18:4n-3 0.1±0.0ab 0.1±0.0ab 0.1±0.1bc 0.1±0.0bc 0.1±0.0ab 0.1±0.0bc 0.1±0.0bc 0.1±0.1bc 0.1±0.0bc 0.0±0.0c 0.0±0.0c 0.0±0.0c 0.1±0.0ab 0.1±0.0bc 0.1±0.0bc 

20:3n-3 0.6±0.1defg 1.2±0.2a 1.0±0.3ab 0.7±0.2bcd 0.9±0.3bc 0.7±0.3bcde 0.9±0.2ab 0.7±0.3bcd 0.8±0.3bcd 0.3±0.2g 0.4±0.1fg 0.4±0.3efg 0.6±0.1cdef 0.4±0.1fg 0.7±0.2bcd 

20:4n-3 0.6±0.1abc 0.8±0.1a 0.7±0.2ab 0.6±0.1abc 0.7±0.2ab 0.6±0.2abcd 0.7±0.2ab 0.5±0.2bcde 0.7±0.2ab 0.3±0.2f 0.4±0.1cdef 0.4±0.2def 0.7±0.1ab 0.3±0.1ef 0.7±0.1ab 

20:5n-3 7.5±0.8bcd 7.5±0.5bc 6.7±0.6def 6.9±0.5cdef 7.3±0.5bcde 7.2±0.8bcde 6.6±0.7ef 6.5±0.6ef 6.5±0.7ef 6.7±0.9cdef 6.2±0.8f 6.2±0.7f 8.0±0.6ab 7.8±0.7b 8.8±1.2a 

22:5n-3 5.0±0.9cd 6.2±0.7ab 5.6±1.2abcd 5.0±0.8cd 5.8±1.4abcd 5.9±1.2abcd 4.8±0.9d 5.0±1.0cd 5.5±0.7abcd 6.6±1.2a 5.3±0.6bcd 5.1±0.7bcd 5.2±0.4bcd 6.1±0.7abc 4.9±0.2d 

22:6n-3 26.7±1.5bcd 26.3±1.8cd 28.2±1.9abc 27.8±1.6abc 27.3±1.7bcd 26.6±1.4bcd 28.2±2.1abc 28.1±2.7abc 28.7±2.1ab 27.4±2.4abcd 28.8±1.6ab 28.3±2.5ab

c 26.7±1.6bcd 25.2±1.4d 29.6±2.0a 

Σn-3  41.1±1.2bc 42.7±2.0b 42.5±1.8bc 41.4±1.7bc 42.5±1.6bc 41.4±1.5bc 41.7±1.7bc 41.4±3.5bc 42.8±2.5b 41.7±1.7bc 41.5±1.5bc 40.8±2.3bc 42.1±1.5bc 40.4±1.1c 45.3±1.0a 

ΣPUFA 54.7±1.2abc 55.1±2.6ab 55.1±1.7ab 54.1±1.7abcd 56.0±2.1a 53.9±1.8abcde 54.3±1.7abc 53.2±3.9bcde 53.7±2.9abcde 52.6±1.5cde 51.8±1.4def 51.4±2.4ef 52.6±1.7cde 50.0±0.9f 56.2±1.2a 

Σn-3/n-6 3.0±0.3e 3.4±0.2cde 3.4±0.6cde 3.3±0.3de 3.2±0.3de 3.4±0.4de 3.3±0.4de 3.5±0.4bcd 3.9±0.4ab 3.9±0.5abc 4.1±0.4a 3.9±0.5ab 4.0±0.4a 4.2±0.4a 4.2±0.4a 

DHA/EPA 3.6±0.6cde 3.5±0.3de 4.3±0.6ab 4.1±0.4abcd 3.8±0.3bcde 3.7±0.5bcde 4.3±0.6ab 4.3±0.5ab 4.5±0.6a 4.2±0.8abc 4.7±0.6a 4.6±0.9a 3.3±0.3e 3.2±0.4e 3.5±0.7de 

ARA/EPA 1.3±0.1a 1.1±0.1bc 1.3±0.2abc 1.3±0.1abc 1.2±0.1abc 1.2±0.2abc 1.3±0.1a 1.2±0.1abc 1.1±0.1c 1.2±0.2abc 1.2±0.2abc 1.3±0.1ab 1.0±0.1d 0.9±0.1de 0.8±0.1e 
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Table 6. ANOSIM of fatty acid signatures among lake trout eggs across all sample sites in the neutral lipid fraction of lipids. Values 
are R-statistics, which range between 0.0 and 1.0, with a value of 1.0 indicating that “within-group” samples are more similar to one 
another than they are to samples in another group, and a value of 0.0 indicating that the “within-group” samples are no more similar to 
one another than they are to samples in another group. “*” indicates a differences in FAS between sites. 

 

Sample site 
 Ta

ug
ha

nn
oc

k 
Fa

lls
 

H
am

lin
 B

ea
ch

 

C
la

y 
B

an
ks

 

K
lo

nd
ik

e 
R

ee
f 

D
ru

m
m

on
d 

Is
la

nd
 

O
w

en
 S

ou
nd

 

Po
rta

ge
 P

oi
nt

 

W
au

ke
ga

n 

O
ld

 M
is

si
on

 

M
ic

hi
ga

n 
C

ity
 

G
rin

ds
to

ne
 

M
ilw

au
ke

e 

Pa
rr

y 
So

un
d 

G
ra

nd
 Is

le
 

H
am

bu
rg

 

Taughannock Falls - 0.391* 0.579* 0.725* 0.683* 0.681* 0.495* 0.543* 0.373* 0.471* 0.734* 0.55* 0.619* 0.554* 0.715* 

Hamlin Beach 
 

- 0.521* 0.798* 0.554* 0.856* 0.338* 0.462* 0.290* 0.344* 0.790* 0.543* 0.757* 0.791* 0.916* 

Clay Banks 
  

- 0.289* 0.219* 0.400* 0.118* 0.053 0.143* 0.079 0.405* 0.081 0.523* 0.744* 0.424* 

Klondike Reef 
   

- 0.322 0.648* 0.258* 0.200 0.240 0.197 0.444* 0.468* 0.391* 0.867* 0.775* 

Drummond Island 
    

- 0.336* 0.354* 0.288* 0.211* 0.191* 0.425* 0.258* 0.589* 0.747* 0.413* 

Owen Sound  
     

- 0.504* 0.403* 0.202* 0.238* 0.305* 0.438* 0.335* 0.831* 0.692* 

Portage Point 
      

- 0.065 0.156* 0.174* 0.559* 0.133* 0.594* 0.709* 0.552* 

Waukegan 
       

- 0.125* 0.061 0.424* 0.137* 0.499* 0.703* 0.418* 

Old Mission 
        

- 0.118* 0.301* 0.157* 0.270 0.448* 0.331* 

Michigan City 
         

- 0.290* 0.114* 0.445* 0.643* 0.175 

Grindstone 
          

- 0.543* 0.197 0.642* 0.079 

Milwaukee  
           

- 0.600 0.800* 0.620* 

Parry Sound 
            

- 0.503* 0.384* 

Grand Isle 
             

- 0.915* 

Hamburg 
              

- 
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Table 7. ANOSIM of fatty acid signatures among lake trout eggs across all sample sites in the phospholipid fraction of lipids. Values 
are R-statistics, which range between 0.0 and 1.0, with a value of 1.0 indicating that “within-group” samples are more similar to one 
another than they are to samples in another group, and a value of 0.0 indicating that the “within-group” samples are no more similar to 
one another than they are to samples in another group. “*” indicates a differences in FAS between sites. 
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Taughannock Falls - 0.469* 0.554* 0.836* 0.673* 0.785* 0.512* 0.508* 0.466* 0.498* 0.782* 0.535* 0.719* 0.570* 0.828* 

Hamlin Beach 
 

- 0.345* 0.702* 0.456* 0.696* 0.375* 0.300* 0.318* 0.247* 0.641* 0.478* 0.661* 0.370* 0.637* 

Clay Banks 
  

- 0.514* 0.222* 0.390* 0.083 0.094 0.125* 0.155* 0.458* 0.113* 0.499* 0.590* 0.661* 

Klondike Reef 
   

- 0.239 0.794* 0.571* 0.544* 0.205 0.600* 0.696* 0.781* 0.637* 0.820* 0.952* 

Drummond Island 
    

- 0.167 0.230* 0.410* 0.179* 0.300* 0.302* 0.313* 0.353* 0.450* 0.462* 

Owen Sound  
     

- 0.344* 0.568* 0.067 0.378* 0.334* 0.464* 0.303* 0.720* 0.700* 

Portage Point 
      

- 0.235* 0.124* 0.184* 0.474* 0.046 0.421* 0.480* 0.681* 

Waukegan 
       

- 0.242* 0.149* 0.530* 0.251* 0.626* 0.600* 0.641* 

Old Mission 
        

- 0.221* 0.217* 0.183* 0.043 0.120 0.283* 

Michigan City 
         

- 0.291* 0.176* 0.521* 0.440* 0.335* 

Grindstone 
          

- 0.594* 0.293* 0.650* 0.268 

Milwaukee  
           

- 0.572* 0.670* 0.810* 

Parry Sound 
            

- 0.470* 0.464* 

Grand Isle 
             

- 0.677* 

Hamburg  
              

- 
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Table 8. SIMPER routines of fatty acid signatures among lake trout eggs across all sample sites in the neutral lipid fraction of lipids. 
Values are percent dissimilarity between sample sites. The higher the number, the more different two sites are to one another. 
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Taughannock Falls - 7.16 9.79 10.60 9.96 10.18 9.98 9.80 9.18 9.75 12.17 8.96 11.30 8.79 10.32 

Hamlin Beach 
 

- 8.55 8.49 8.43 9.89 8.43 8.19 8.29 8.40 11.8 8.00 11.59 8.60 9.76 

Clay Banks 
  

- 8.86 7.92 9.08 8.68 8.09 8.72 8.38 10.67 7.29 11.18 11.55 9.53 

Klondike Reef 
   

- 8.14 9.75 9.40 8.82 9.41 9.14 11.65 8.41 11.63 10.66 10.09 

Drummond Island 
    

- 8.14 9.21 8.32 8.31 8.13 9.62 7.63 10.38 10.68 8.38 

Owen Sound  
     

- 10.94 9.52 8.86 8.96 9.00 8.48 9.04 10.23 8.76 

Portage Point 
      

- 8.63 9.34 9.27 12.89 8.08 12.97 12.54 11.66 

Waukegan 
       

- 8.94 8.53 11.42 7.59 11.83 11.73 10.11 

Old Mission 
        

- 8.96 10.73 8.06 10.53 10.32 9.86 

Michigan City 
         

- 10.4 7.81 11.35 11.54 8.93 

Grindstone 
          

- 10.5 9.99 11.15 8.10 

Milwaukee  
           

- 10.65 11.11 9.47 

Parry Sound 
            

- 9.87 10.12 

Grand Isle 
             

- 9.77 

Hamburg 
              

- 
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Table 9. SIMPER routines of fatty acid signatures among lake trout eggs across all sample sites in the phospholipid fraction of lipids. 
Values are percent dissimilarity between sample sites. The higher the number, the more different two sites are to one another.  
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Taughannock Falls - 6.68 7.20 8.9 8.67 8.23 7.12 7.14 8.17 7.02 8.78 6.37 8.53 6.44 8.78 

Hamlin Beach 
 

- 6.63 7.96 7.79 7.76 6.96 6.61 8.06 6.38 8.17 6.41 8.46 6.37 7.94 

Clay Banks 
  

- 7.53 6.94 6.64 6.05 6.23 7.38 6.27 7.54 5.50 7.80 7.50 8.48 

Klondike Reef 
   

- 7.06 7.72 7.54 8.09 8.39 7.82 9.03 7.41 8.85 7.55 8.94 

Drummond Island 
    

- 6.50 6.80 7.93 7.57 7.14 7.40 6.69 7.57 7.60 7.85 

Owen Sound  
     

- 6.54 7.78 7.15 6.67 6.41 5.93 6.22 6.75 6.83 

Portage Point 
      

- 6.73 7.01 6.39 7.46 5.43 7.29 7.07 8.33 

Waukegan 
       

- 8.19 6.42 8.20 5.99 8.93 7.95 8.73 

Old Mission 
        

- 7.60 8.20 6.77 7.60 7.51 8.68 

Michigan City 
         

- 6.82 5.72 7.80 6.90 6.86 

Grindstone 
          

- 6.94 7.32 7.79 6.59 

Milwaukee  
           

- 6.96 6.61 7.74 

Parry Sound 
            

- 6.99 7.83 

Grand Isle 
             

- 6.74 

Hamburg 
              

- 
 



54 
 

Table 10. Survival (%) of lake trout embryos to pigmented eyed stage, hatching stage, and swim-
up stage in Taughannock Falls and Hamlin Beach in 2009 and 2010. 

 
Survival (%) 

Sample Site Year n pigmented eyed stage hatching stage swim-up stage 

Taughannock Falls  2009 24 81.4 ± 16.2 97.9 ± 2.7 75.0 ± 30.0 

Hamlin Beach  2009 5 93.9 ± 0.2 68.5 ± 18.2 83.2 ± 5.9 

Taughannock Falls  2010 26 85.9 ± 11.5 86.8 ± 20.2 92.4 ± 19.2 

Hamlin Beach  2010 3 73.3 ± 26.0 91.7 ± 7.3 92.2 ± 3.6 

 

Table 11. Pearson’s coefficient (r) between survival of lake trout embryos to pigmented eyed 
stage, hatching stage, and swim-up stage and the concentrations of specific fatty acids in both the 
neutral lipids and phospholipid fractions of lake trout eggs from Taughannock Falls and Hamlin 
Beach (Data from 2009 and 2010 combined). 

  
Fatty acids in the NL fraction 

Location Survival 15:0 17:0 18:0 18:3n-3 20:1 20:2n-6 20:3n-6 20:4n-6 22:4n-6 22:6n-3 

 
Pigmented Eyed - 0.943 0.767 - - - - - - - 

Hamlin Beach Hatching 0.805 - - - -0.816 - - - - - 

 
Swim-Up - - - - - - - - - - 

 
Pigmented Eyed - - - -0.298 - - - -0.299 - - 

Taughannock Falls Hatching - - - - - 0.316 0.424 - 0.319 - 

 
Swim-Up - - - - -0.373 - - - - - 

  Fatty acids in the PL fraction 

  
15:0 17:0 18:0 18:3n-3 20:1 20:2n-6 20:3n-6 20:4n-6 22:4n-6 22:6n-3 

 
Pigmented Eyed - - - - - - - - - - 

Hamlin Beach Hatch - - - 0.708 - - - - - - 

 
Swim-Up 0.873 - - - - - - - - -0.797 

 
Pigmented Eyed - - - - - - - - - - 

Taughannock Falls Hatching - - - - - 0.368 - - - - 

 
Swim-Up - - - - - - - - - - 

 

Table 12. Primary prey item in each of the lake investigated and their major fatty acid. Fatty acid 
data were taken from Czesny et al. (2011). Note that fatty acid data comes from Lake Michigan 
prey fish and that the concentration of specific fatty acids of prey fish may differ among lake 
systems. 

Lake Primary Prey Item Major Fatty Acid Associated with Prey 

Ontario Alewife DHA 

Erie Rainbow Smelt DHA 

Michigan Alewife/Round Goby DHA/16:1n-7 

Huron Rainbow Smelt/Round Goby DHA/16:1n-7 

Superior Lake Herring Unknown 

Champlain Rainbow Smelt DHA 

Cayuga Alewife DHA 
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Figure 1. A saturated (left panel) fatty acid, with no double bonds in the hydrocarbon chain, and 
an unsaturated fatty acid (right panel), with one or more double bonds in the hydrocarbon chain.  
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Figure 2. Study area: Great Lakes, Finger Lake (Cayuga Lake), and Lake Champlain. Stars 
indicate locations where lake trout eggs were sample for lipid and fatty acid analysis. Star color 
indicates lake. 
  

 Hamburg



57 
 

 

Figure 3. California hatching trays used for lake trout eggs incubation. 

 

Figure 4. Individual tray holding mesh baskets. Each basket contains fertilized eggs from a 
specific female fish. 

 

 



58 
 

 

Figure 5. Aquaria used to determine alevin survival from hatching to swim-up stage. Each 
aquarium contains alevins from one specific female fish.
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Figure 6. Discriminant analysis of lake trout eggs from 13 sample sites (with n ≥ 19) using 18 
fatty acids selected based on the largest variance of total fatty acids across all groups in the 
neutral lipid fraction of lipids. Plot shows the average scores of the first 2 of 12 discriminant 
functions that classified eggs to sample sites with a 77.7% success rate. 
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Figure 7. Discriminant analysis of lake trout eggs from 13 sample sites (with n ≥ 19) using 18 
fatty acids selected based on the largest variance of total fatty acids across all groups in the 
phospholipid fraction of lipids. Plot shows the average scores of the first 2 of the 12 discriminant 
functions that classified eggs to sample sites with a 77.3% success rate. 
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Figure 8. nMDS plot of group-averaged fatty acid signature data from all sample sites in the 
neutral lipid fraction of lipids. Contour lines from cluster analysis represent data groupings with 
specified similarity levels to aid in interpretation. Stress level 0.15. Solid green line represents 
90% similarity. Large dashed blue line represents 95% similarity. Small dashed red line 
represents 97% similarity. Circles superimposed on data points used to represent relative 
proportions of fatty acids in data (a) 18:1n-9 (b) 16:1n-7 (c) 18:1n-7. Circle color indicates lake. 
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Figure 8. Continued from page 61. Graph (c). 
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Figure 9. nMDS plot of group-averaged fatty acid signature data from all sample sites in the 
phospholipid fraction of lipids.  Contour lines from cluster analysis represent data groupings with 
specified similarity levels to aid in interpretation. Stress level 0.15. Solid green line represents 
90% similarity. Large dashed blue line represents 95% similarity. Small dashed red lines represent 
97% similarity. Circles superimposed on data points used to represent relative proportions of 
fatty acids in data (a) 22:6n-3 (b) 16:0 (c) 20:4n-6. Circle color indicates lake. 
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Figure 9. Continued from page 63. Graph (c). 
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Figure 10. Plot of PC1 and PC2 (from PCA) of fatty acid signature data from all sample sites in 
the neutral lipid fraction of lipids. PC1 and 2 accounted for 78.8% of the variance in the data. 
18:1n-9 is important on PC1. 16:1n-7 and 18:1n-7 are important on PC2. Selected correlations 
above 0.40. Circles superimposed on data points used to represent relative proportions of fatty 
acids in data (a) 18:1n-9 (b) 16:1n-7 (c) 18:1n-7. Circle color indicates lake. 
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Figure 10. Continued from page 65. Graph (c). 
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Figure 11. Plot of PC1 and PC2 (from PCA) of fatty acid signature data from all sample sites in 
the phospholipid fraction of lipids. PC1 and 2 accounted for 58.5% of the variance in the data. 
22:6n-3 is important on PC1. 16:0 and 20:4n-6 are important on PC2.Selected correlations above 
0.40. Circles superimposed on data points used to represent relative proportions of fatty acids in 
data (a) 16:0 (b) 22:6n-3 (c) 20:4n-6. Circle color indicates lake. 
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Figure 11. Continued from page 67. Graph (c). 
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Figure 12. Relationship between embryo survival at the pigment eyed stage (%) and 
concentration (%) of arachidonic acid (20:4n-6) in egg neutral lipids (r = -0.229). Eggs were 
collected in Taughannock Falls in 2009 and 2010. 
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Figure 13. Relationship between embryo survival at the swim up stage (%) and concentration 
(%) of docosahexaenoic acid (22:6n-3) in egg phospholipids (r = -0.797). Eggs were collected in 
Hamlin Beach in 2009 and 2010. 
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