
The College at Brockport: State University of New York The College at Brockport: State University of New York 

Digital Commons @Brockport Digital Commons @Brockport 

Environmental Science and Ecology Theses Environmental Science and Ecology 

Spring 3-8-2018 

Investigating the ecology of a threatened ecosystem: Alpine Investigating the ecology of a threatened ecosystem: Alpine 

snowbank communities of Mt. Washington, NH snowbank communities of Mt. Washington, NH 

Kevin M. Berend 
The Department of Environmental Science and Biology-The College at Brockport, 
kbere1@u.brockport.edu 

Follow this and additional works at: https://digitalcommons.brockport.edu/env_theses 

 Part of the Biodiversity Commons 

Repository Citation Repository Citation 
Berend, Kevin M., "Investigating the ecology of a threatened ecosystem: Alpine snowbank communities of 
Mt. Washington, NH" (2018). Environmental Science and Ecology Theses. 111. 
https://digitalcommons.brockport.edu/env_theses/111 

This Thesis is brought to you for free and open access by the Environmental Science and Ecology at Digital 
Commons @Brockport. It has been accepted for inclusion in Environmental Science and Ecology Theses by an 
authorized administrator of Digital Commons @Brockport. For more information, please contact 
digitalcommons@brockport.edu. 

https://digitalcommons.brockport.edu/
https://digitalcommons.brockport.edu/env_theses
https://digitalcommons.brockport.edu/envsci
https://digitalcommons.brockport.edu/env_theses?utm_source=digitalcommons.brockport.edu%2Fenv_theses%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1127?utm_source=digitalcommons.brockport.edu%2Fenv_theses%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.brockport.edu/env_theses/111?utm_source=digitalcommons.brockport.edu%2Fenv_theses%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@brockport.edu


 

 

 

 

Investigating the ecology of a threatened ecosystem:  

Alpine snowbank communities of Mt. Washington, NH 

 

by 

Kevin Berend 

 

 

 

 

 

 

 

A thesis 

Submitted to the Department of Environmental Science and Ecology of The College at Brockport,  

State University of New York, in partial fulfillment of the degree of 

Master of Science 

March 2, 2018 

 



 

 

 

 

Copyright 

by 

Kevin Berend 

2018 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Investigating the ecology of a threatened ecosystem:  

Alpine snowbank communities of Mt. Washington, NH 

 

by Kevin Berend 

 

 

APPROVED BY:          

 

__________________________________  _____________ 

    Advisor       Date 

  

__________________________________  _____________ 

    Committee member     Date 

 

__________________________________  _____________ 

    Committee member     Date 

 

 

 



 

i 

 

Acknowledgements 

I would like to thank my thesis advisor, Dr. Kathryn Amatangelo, and committee members Dr. 

Christopher Norment and Doug Weihrauch for their help and support. This work would not have been 

possible without their guidance and expertise. My deepest gratitude as well to the Appalachian Mountain 

Club, which provided housing, resources, and laboratory space at the Pinkham Notch Visitor Center in 

2016 and 2017. A huge thank you to Matthew Penberthy and Jess Detoy for large contributions in data 

collection and greenhouse care, as well as Shelby Perry, Ashlee Dow, Claire Hartl, Kira Broz, McKenzie 

Wybron, Holly Jackson, Dylan Worthy, Hannah Dukerschein, and Catherine Frondorf for help with data 

analysis, seedling planting, and field data collection. Dan Sperduto and Jennifer Pontius were 

instrumental in gaining research permits, the New Hampshire Natural Heritage Bureau provided 

geographical data on rare plant occurrences, and the Mount Washington Auto Road provided automobile 

access to field sites. Last, I’d like to thank my family for their continued love and support. Funding was 

provided by the Waterman Fund, the New England Botanical Club, and the College at Brockport’s 

Distinguished Professor’s Award.  

 

 

 

 

 

 

 



 

ii 

 

 

Table of Contents 

List of Figures .............................................................................................................................................. iv 

List of Tables ................................................................................................................................................ v 

Abstract ......................................................................................................................................................... 1 

General Introduction ..................................................................................................................................... 2 

Chapter 1: Effects of snow and temperature on the phenology of 

alpine snowbank plants on Mt. Washington, NH .................................................................................... 5 

Abstract ..................................................................................................................................................... 5 

Introduction ............................................................................................................................................... 6 

Methods .................................................................................................................................................... 8 

Site description ...................................................................................................................................... 8 

Environmental monitoring .................................................................................................................... 9 

Phenology ............................................................................................................................................. 9 

Data analysis ....................................................................................................................................... 10 

Results ..................................................................................................................................................... 11 

Melt date & phenology ....................................................................................................................... 11 

Temperature & phenology .................................................................................................................. 12 

Discussion ............................................................................................................................................... 13 

Community dynamics ......................................................................................................................... 16 

Climate change & conservation .......................................................................................................... 17 

Conclusions ......................................................................................................................................... 19 

Acknowledgements ................................................................................................................................. 20 

References ............................................................................................................................................... 20 

Tables ...................................................................................................................................................... 30 

Figure captions ........................................................................................................................................ 31 

Figures .................................................................................................................................................... 32 

Supplemental materials ........................................................................................................................... 34 

Chapter 2: Plant traits and community metrics across a snowmelt gradient 

at alpine snowbank sites on Mt. Washington, NH ................................................................................. 46 

Abstract ................................................................................................................................................... 46 

Introduction ............................................................................................................................................. 47 

Methods .................................................................................................................................................. 50 



 

iii 

 

Site description .................................................................................................................................... 50 

Sampling design .................................................................................................................................. 51 

Vegetation ........................................................................................................................................... 52 

Trait sampling ..................................................................................................................................... 52 

Specimen processing ........................................................................................................................... 53 

Common garden .................................................................................................................................. 54 

Data analysis ....................................................................................................................................... 55 

Results ..................................................................................................................................................... 58 

Diversity metrics ................................................................................................................................. 58 

Community-weighted mean trait values ............................................................................................. 59 

Core/edge trait comparisons................................................................................................................ 60 

Alpine/lowland trait comparisons ....................................................................................................... 60 

Common garden .................................................................................................................................. 61 

Discussion ............................................................................................................................................... 61 

Traits and the snowmelt gradient ........................................................................................................ 62 

Population dynamics & gene flow ...................................................................................................... 63 

Climate change & conservation .......................................................................................................... 66 

Conclusions ............................................................................................................................................. 68 

Acknowledgments ................................................................................................................................... 68 

References ............................................................................................................................................... 69 

Tables ...................................................................................................................................................... 79 

Figure captions ........................................................................................................................................ 82 

Figures .................................................................................................................................................... 84 

Supplemental materials ........................................................................................................................... 92 

 

 

 

 

 

 



 

iv 

 

List of Figures 

Chapter 1 

1) Map of Mt. Washington snowbank study sites…………………………………………...………32 

2) Phenology of Clintonia borealis in relation to growing degree days…………………………….33 

3) Summary linear regression models for peak and lag time responses…………………………….33 

S1)  Seasonal temperature data for a typical alpine snowbank community on Mt. Washington……..39 

S2)  Complete linear regression models for peak phenophase responses of seven study species…….40 

S3)  Complete linear regression models for lag time responses of seven study species……………...41 

S4)  Phenology of six remaining study species in relation to growing degree days……………….....42 

Chapter 2 

1) Map of Mt. Washington snowbank study sites and lowland trait sampling sites………………...84 

2) Vascular plant diversity of Alpine Garden and Lakes of the Clouds study sites…………………85 

3) Diversity of vascular plants, bryophytes, and lichens across the snowmelt gradient…………….86 

4) Ordination of vascular plant community composition across the snowmelt gradient……………87 

5) Ordination of vascular plant community composition between Alpine Garden and  

   Lakes of the Clouds study sites………………………………………………………………....88 

6) Change in community-weighted mean trait values across the snowmelt gradient……………….89 

7) Difference in traits between core and edge habitats for four focal snowbank species…………...90 

8) Mean trait values of Chamaepericlymenum canadense plants grown in a common garden……..91 

S1)  Ordination of bryophyte and lichen community composition across the snowmelt gradient……95 

 

 

 



 

v 

 

List of Tables 

Chapter 1 

1) Summary linear regression results for phenophase peak and lag time responses to  

   snowmelt date and cumulative growing degree days…………………………………………...30 

S1)  List of snowbank study sites on Mt. Washington………………………………………………..34 

S2)  Complete ANOVA results: Response of phenophase peak to snowmelt date…………………...35 

S3)  Complete ANOVA results: Response of lag time to snowmelt date…………………………….36 

S4)  Complete ANOVA results: Response of phenophase peak to cumulative growing 

   degree days……………………………………………………………………………………...37 

S5)  Mean cumulative growing degree days to phenophase peak for seven snowbank  

   study species……………………………………………………………………………………38 

Chapter 2 

1) Mean Shannon-Wiener diversity of vascular plants, bryophytes, and lichens across  

   the snowmelt gradient…………………………………………………………………………..79 

2) ANOVA results for community-weighted mean trait values across the snowmelt gradient……..80 

3) T-test results for trait values and phenotypic plasticity index between alpine and lowland  

   sites in the dispersed sampling strategy………………………………………………………...81 

S1)  Weighted mean trait values of fifteen most abundant/frequent vascular plant species  

   from snowbank study sites……………………………………………………………………...92 

S2)  T-test results for trait values and phenotypic plasticity index between alpine and lowland 

   sites in the condensed sampling strategy……………………………………………………….93 

S3)  T-test results of comparisons of phenotypic plasticity index of dispersed sampling sites 

   to concentrated site at the same elevation………………………………………………………94 

S4)  Mean trait values of Chamaepericlymenum canadense plants collected from alpine and  

   lowland sources and grown in a common garden………………………………………………94



 

1 

 

Abstract 

 In northeastern North America, alpine snowbank (or snowbed) communities are rare plant 

assemblages that form in sheltered sites above treeline where late-lying snow provides insulation from 

late-season frosts and a longer-lasting source of water. These communities are highly diverse and may 

provide many beneficial ecosystem services. Though work has been done to document their location and 

community composition, little is known about the relationships between plants and abiotic conditions in 

alpine snowbanks of the Northeast. We studied the relative effects of snowmelt date and temperature on 

the phenological responses of seven alpine snowbank plants and examined plant traits and community 

metrics (diversity and richness) across the snowmelt gradient at alpine snowbank sites on Mt. 

Washington, NH. Peak of observed phenophases was positively correlated with snowmelt date, but lag 

time (time between snowmelt date and peak phenophase) was negatively correlated with snowmelt date. 

Higher temperature was an important factor in the quickened phenological response of plants at later-

melting sites. There was a clear transition in both community composition and traits across the snowmelt 

gradient; moving outward from snowbank cores, vascular plant diversity decreased and lichen diversity 

increased, with no trend evident in bryophytes. This corresponded to a transition in observed traits both 

within species and at the community-level, with snowbank core habitats having lower leaf dry matter 

content and greater height, leaf area, and specific leaf area than edge habitats. A similar difference in 

plant traits was observed among conspecifics between lowland and alpine habitats, though we were 

unable to conclude whether alpine ecotypes of those species exist. The change in environmental 

conditions across the snowmelt gradient, mediated by snow persistence, is important in determining plant 

phenological responses and growing conditions on Mt. Washington in ways as found elsewhere at similar 

sites worldwide. Due to prevalence of leafy species and reliance on specific environmental conditions, 

alpine snowbank communities are considered particularly sensitive to environmental change, and may be 

indicators of climatic trends occurring in northeastern North America.  

Keywords: Alpine, snowbed, plants, phenology, community, traits, gradient, ecotype, climate, northeast 



 

2 

 

General Introduction 

 

The mountains of northeastern North America were formed through a long history of tectonic 

activity, uplift, glaciation, and erosion, resulting in the dramatic and varied landforms found in the region 

(Jones and Willey, 2012). Upon the retreat of the Laurentide ice sheet, arctic tundra plant communities 

were isolated by surrounding spruce-fir and hardwood forests which migrated northward along with 

climatic warming, and now occupy the lower slopes of the region’s peaks (Billings, 1974). Vegetation 

atop these summits has not changed significantly in the last ~2k years (Spear, 1989). Arctic-alpine plant 

communities persist to this day in northeastern North America despite extreme conditions including high 

winds, low temperatures, poor soil, and a short growing season (Korner, 1999). These plants have 

developed a host of adaptations to deal with these conditions, including dwarf or aerodynamic growth 

form, overwintering flower or leaf buds, and accessory photosynthetic pigments, and seed dormancy 

strategies (Bliss, 1962, 1971). Today, the most notable arctic-alpine areas in the region exist in the 

Adirondack Mountains of New York, White Mountains of New Hampshire, and the Katahdin massif in 

Maine, but can also be found in high-elevation areas of Vermont, Quebec, Labrador, and Newfoundland 

(Jones and Willey, 2012).  

 Snowbank (or snowbed) communities are a rare alpine plant community type found above 

treeline in areas where snow accumulates and lasts longer into the spring, such as ravine ledges, shallow 

depressions, and lee of sheer rock faces (Sperduto and Nichols, 2011; Capers and Slack, 2016). These 

unique habitat conditions provide shelter for a multitude of herbaceous species from lower elevations, 

resulting in high species diversity (Bliss, 1963) and a potentially high level of ecosystem function. 

Because of their floristic composition and specific habitat requirements, snowbank communities are 

considered particularly vulnerable to climatic change (Björk and Molau, 2007; Schöb et al., 2009), and 

monitoring them may provide clues as to how global warming may affect alpine areas (Löffler et al., 

2011). However, little work has been done to closely examine the plant-environment relationships in 

these communities in northeastern North America. 



 

3 

 

Recently, scientists and conservationists came together to coordinate alpine research directions in 

northeastern North America, and “Identifying the location, community composition, duration of snow 

cover and timing of snow melt in snowbed communities…” was ranked as the highest priority (Capers et 

al., 2013). The goal of this study was to explore questions pertaining to the ecology of alpine snowbank 

communities on Mt. Washington, NH in an attempt to better understand these ecosystems and anticipate 

potential changes in an altered future climate.  
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Effects of snow and temperature on the phenology of 

alpine snowbank plants on Mt. Washington, NH 

 

K. Berend, K. Amatangelo, D. Weihrauch, and C. Norment 

Abstract 

 In northeastern North America, alpine snowbank (or snowbed) communities are rare plant 

assemblages that form in sheltered sites above treeline where late-lying snow provides insulation from 

late-season frosts and a longer-lasting source of water. We studied the effects of snowmelt timing and 

temperature on the vegetative and flowering phenology of seven common snowbank species. We visually 

observed snowmelt date and plant phenology at Alpine Garden and Lakes of the Clouds sites on Mt. 

Washington, NH, and collected temperature data using automated dataloggers. We used linear regression 

models to analyze those relationships. There was no relationship between site area and melt date or 

elevation and melt date. Snowmelt date was positively correlated with date of peak phenophases, and lag 

time (time between snowmelt and peak phenophases) was negatively correlated with snowmelt date. 

Snowmelt timing consistently delayed the onset of plant phenological stages, but later snowmelt had a 

less pronounced delay. These trends match studies of alpine plant phenology conducted elsewhere, and 

can likely be attributed to the higher mean daily temperatures experienced by plants at sites that melt 

later. Plants at those sites accumulate temperature (growing degree days) more quickly and undergo a 

quickened phenological cycle. Continued monitoring of snowmelt timing and phenology of alpine 

snowbank plants may yield important clues as to how climate change may affect alpine areas of 

northeastern North America, especially in terms of diversity, pollination, and abiotic interactions.  

Keywords: Alpine, snowbed, plants, Mt. Washington, phenology, snowmelt, delay, climate change 
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Introduction 

In northeastern North America, alpine snowbank (or snowbed) communities are rare plant 

assemblages that form in sheltered sites above treeline, such as ravine ledges, shallow depressions, and 

lee of sheer rock faces, where late-lying snow provides insulation from late-season frosts and a longer-

lasting source of water (Bliss, 1963; Capers and Slack, 2016). In these habitats, herbaceous understory 

species from lower elevations can persist above treeline. As a result, snowbank communities are the most 

species-rich alpine plant community in northeastern North America (Bliss, 1963), supporting several rare 

or threatened plant species (Sperduto and Nichols, 2011), browse for mammalian herbivores such as 

snowshoe hares (Berend, personal observation), and habitat/brood host plants for at least one endemic 

(and imperiled) butterfly, Boloria chariclea montinus (McFarland et al., 2017). However, these 

communities occur only sparsely. The most extensive sites exist in the Presidential Range of the White 

Mountains, NH and Mt. Katahdin, ME (Kimball and Weihrauch, 2000), but they can also be found in 

high-elevation areas of New York State (Carlson et al., 2011), Quebec, and Labrador (Jones and Willey, 

2012).  

Both snow and temperature are important drivers of ecosystem functions and plant community 

responses in alpine habitats (Bliss, 1971; Körner, 1999; Schmidt, 2011). Snow is influential in terms of its 

effects on hydrology, temperature mediation, and growing season length (Holway and Ward, 1965; 

Beniston, M. et al., 2003; Wipf and Rixen, 2010; Inouye and Wielgolaski, 2013; Petraglia et al., 2014). 

Alpine plants generally must wait until snowmelt to begin yearly cycles of growth and reproduction. An 

increase in mean temperatures due to climate change, then, may lead to reduced snowpack levels and/or 

earlier snowmelt dates in alpine environments (Beniston, 2003), already documented in several studies 

(Beniston, M. et al., 2003; Dankers and Christensen, 2005; Inouye, 2008). Independent of snow cover, 

though, temperature itself also plays a large role. For instance, links between accumulated seasonal 

temperature (or growing degree days, GDD) and the timing of life-history stages (phenology) such as 

leaf-out and flowering are well established (Körner, 1999; Smith et al., 2012). Commonly, leaf buds or 
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shoots will not emerge in spring until a threshold GDD is met, so as to avoid late-spring frosts (Inouye, 

2000; CaraDonna and Bain, 2016); thus earlier snowmelt does not necessarily lead to advanced 

phenology (Inouye, 2008; Iler et al., 2013a). In this sense, GDD can act as a timekeeper for plants, 

determining later-season phenological responses such as flowering that may be less tied to snowmelt 

timing.  

Arctic and alpine areas worldwide are expected to be disproportionately affected by climate 

change, and are already warming more quickly than the global average (Høye et al., 2007; Rangwala and 

Miller, 2012; Hoyle et al., 2013; Mountain Research Initiative 2015; Pepin, 2015). Increased spring 

temperatures and earlier snowmelt due to climate change, therefore, are leading to phenological 

advancement (or upslope migration) in some alpine plants (Walther et al., 2002; Dunne et al., 2003; 

Walther et al., 2005a; Lambert et al., 2010; Theobald et al., 2017), potentially disrupting community or 

pollinator dynamics (Kudo, 2014). Due to the presence of many indicator species that require specific 

habitat conditions (Björk and Molau, 2007; Grabherr et al., 2010), alpine plant communities are 

considered particularly sensitive to environmental change (Walker et al., 1993; Löffler et al., 2011). 

However, the relative importance of snowmelt date and temperature on alpine plant phenology is complex 

and remains somewhat unclear, and plants may display both linear and non-linear responses to changing 

climatic conditions (Inouye, 2008; Iler et al., 2013a).  

Due to both their rarity and threats from environmental change, alpine snowbank communities are 

considered “critically imperiled” (S1) by the states of NY, NH, and ME (Gawler and Cutko, 2010; 

Sperduto and Nichols, 2011; Edinger, G. J. et al., 2014), and there is an immediate research need to better 

understand these communities (Capers et al., 2013). Capers and Slack (2016) documented community 

composition in relation to melt date for several snowbank sites on Mt. Washington, but to date no studies 

have done the same for plant phenology or temperature at snowbank sites in northeastern North America. 

Given the need for better information on alpine snowbed communities, the objectives of this study were 

to collect information on snowmelt patterns and factors that may affect it at snowbank sites on Mt. 
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Washington and examine the relationships and relative effects of snowmelt date and temperature on 

vegetative and flowering phenology of seven snowbank plant species. We hypothesized that snowbank 

plant phenology is tied to snowmelt date, but that temperature is also a factor determining plant 

phenological responses. 

Methods 

Site description 

Mount Washington (44.270 N, -71.3036 W) is the tallest peak in northeastern North America 

(1914 m), and lies within the White Mountain National Forest in New Hampshire (Fig. 1, inset). Treeline 

is approximately 1504 m, but varies considerably based on exposure and topography (Kimball and 

Weihrauch, 2000). Mt. Washington and the Presidential Range make up the largest area of alpine habitat 

in the eastern United States (1132 ha), but snowbank communities comprise <1% of this total, at only 3 

ha (Bliss, 1963; Kimball and Weihrauch, 2000). 

Because prevailing winds are from the northwest, snow accumulates primarily on southeast-

facing slopes, especially in topographic depressions. The majority of these sites exist in the Alpine 

Garden Research Natural Area (AG), east of the summit and upslope (west) of the Alpine Garden foot 

trail. Several other sites exist near the Appalachian Mountain Club’s (AMC) Lakes of the Clouds hut 

(LC), 1.8 km southwest of the summit. In summer 2016, we identified 14 snowbank sites across both 

areas (AG=9, LC=5, Fig. 1) by the presence of indicator species (Sperduto and Nichols, 2011; Capers and 

Slack, 2016). Sites ranged in area from 10 to 378 m2, and in elevation from 1556 to 1744 m (Table S1). 

All snow depth and phenology observations took place within 1.5 m-radius circular plots placed in the 

“core” or center of snowbank sites. Where possible, larger sites had more than one plot (total=23, see 

below), with replicate plots at a given site placed at least 3 m apart.  
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Environmental monitoring 

Elevation at each site was recorded using a handheld GPS unit (Garmin GPSMAP®64, Garmin 

Ltd., Olathe, KS), and area was determined using aerial imagery (USDA, 2016) and geospatial analysis 

software (ArcMap™ 10.2.2, ESRI, Redlands, CA). In July-August 2016, we placed a magnetic survey 

marker (SurvKap®, Tucson, AZ) flush with the soil surface at the center of each plot and a 

temperature/light datalogger (OnSet HOBO® Pendant® UA-002-08, Bourne, MA) similarly in one plot 

at every site, according to GLORIA protocols (Pauli et al., 2015).  

In May 2017, plots were relocated beneath the snow using a magnetic survey detector 

(CST/Berger™, Watseka, IL), and temporarily marked with stakes. We revisited each plot every 3-5 

days, and observed snow depth using an avalanche probe (Black Diamond® Equipment, Salt Lake City, 

UT). Melt date for each plot was recorded as the first date visited in which the entire plot was snow-free 

(earliest 21 May, latest 25 June). Melt date was averaged for sites with >1 plot. 

Phenology 

Beginning with the initial date of exposure, we monitored phenology of seven snowbed species: 

Carex bigelowii Torr. ex Schwein., Chamaepericlymenum canadense (L.) Aschers. & Graebn., Clintonia 

borealis (Ait.) Raf., Coptis trifolia (L.) Salisb., Maianthemum canadense Desf., Vaccinium cespitosum 

Michx., and V. uliginosum L. throughout the growing season. Chamaepericlymenum, Clintonia, Coptis, 

and Maianthemum are understory herbs found commonly in hardwood forest habitats of lower elevations 

in the region, and survive above treeline only in snowbank communities. Carex bigelowii is an arctic-

alpine sedge common in alpine areas of northeastern North America, while V. cespitosum and V. 

uliginosum are arctic-alpine heath shrubs (V. cespitosum is a snowbank community indicator) (Bliss, 

1963; Sperduto and Nichols, 2011; Capers and Slack, 2016). All nomenclature follows Haines et al. 

(2011). 
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Every 4-6 d, we recorded the presence and abundance of vegetative and flowering stages of each 

species in each plot. Vegetative phases monitored were “Shoots” (leaf bud burst/new growth) and 

“Leaves” (at least one fully expanded leaf). Flowering phases were “Fl. buds” (flower buds present) and 

“Flowers” (at least one open flower). Abundance estimates (or phenological scores) of each vegetative 

and flowering stage were made according to AMC Mountain Watch/National Phenology Network 

protocol (Denny et al., 2014). For species in which the previous year’s growth, such as dead/dormant 

leaves (Carex and Coptis) or woody vegetation (V. cespitosum and V. uliginosum) existed as a baseline 

for comparison, phenological score was the percentage of each species in each plot exhibiting a given 

phenophase. For species in which the previous year’s growth does not persist (Chamaepericlymenum, 

Clintonia, and Mainthemum), phenological score was based on number of plants observed (by ranked 

category, 1-6). Percent estimates would have been unreliable for these three species without the previous 

year’s baseline. Monitoring continued until the end of flowering phenology, on 26 July 2017. 

Data analysis 

Melt date, phenology scores, and temperature data were averaged by site. We used two-sample t-

tests to evaluate differences in both site area and elevation across the two locations (AG/LC) and 

Pearson’s correlations to evaluate relationships between both melt date and site area and elevation. Site 

area was log-transformed for normality. 

The peak dates of the four phenophases for each species were recorded as the day with highest 

score. If peak lasted for more than one observation, score was recorded as the average of those days. We 

then calculated the number of days between melt date and phenophase peaks at each site, called lag time. 

Peak date was used for analyses, as it has been shown to be a more reliable indicator than date of first 

appearance (Moussus et al., 2010). All dates were converted to Julian day (1 Jan.=001) for analyses, and 

C. bigelowii Fl. buds data were arcsine-square root transformed for normality.  
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We calculated GDD for each plot that had a datalogger using the average method (daily max-

min/2), with 1 Jan. 2017 chosen as a start date, and 0°C as the threshold temperature. These values were 

plotted against phenological score for each phenophase and species (Fig. 2). Mean cumulative GDD was 

calculated for each site at day 201 (the last day of monitoring in which all sites were included), and a two-

sample t-test was performed to compare total heat accumulation between locations.  

We used linear regression models for each species and phenophase to analyze the effect of melt 

date, location (AG vs. LC), and their interaction on both date of phenophase peak and lag time. We then 

performed a second set of linear regression models using temperature data; GDD was the predictor rather 

than melt date. We analyzed the effect of GDD on peak phenological score, location, and their interaction 

on date of phenophase peak. We used a Holms-Bonferroni correction for family-wise error rate for each 

of the three sets of regressions separately. Correlation and regression analyses were performed in Minitab 

(v. 18, Minitab, Inc., State College, PA). 

Results 

 Alpine Garden (AG) sites were significantly higher in elevation than Lakes of the Clouds (LC) 

sites (1690.9±12 m and 1592.2±19 m, respectively, t=4.39, p=0.003), but site area was not statistically 

different (98.51±30.2 m2 and 144.5±80.0 m2, respectively, t= -0.83, p=0.434). Pearson correlations 

showed no relationship between site area and melt date (r=0.081, p=0.783) or elevation and melt date  

(r=-0.092, p=0.754). 

Melt date & phenology 

 In general, LC sites melted out earlier than AG sites (153.6 ±1.88 d, CV=2.74 and 156.7 ±4.1 d, 

CV=7.91, respectively), but had a considerably smaller range of melt dates. AG had the earliest-melting 

site (AG9), but also the latest-melting sites, AG4 and AG7, which saw their first snow-free day almost 

three weeks after LC.  
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In the linear regression analyses, melt date significantly affected phenophase peak date in 24 of 

28 (85.7%) models (Table 1). Slopes of all regression lines were positive (Fig. 3A), and mean slopes (by 

phenophase) ranged from 0.438 to 0.629. This indicates that for every day melt date increased by 1, 

phenophase peaks were delayed by about 0.54 days. 

 Melt date significantly affected lag time in 25 of 28 (89.3%) models (Table 1). Slopes of all 

regression lines were negative (Fig. 3B), and mean slopes (by phenophase) ranged from -0.562 to -0.372. 

This indicates that for every day melt date increases by 1, lag time decreased by about 0.46 days. Sites 

with later melt date, therefore, had later phenophase peak, but also shorter lag time. Location and 

Location*Melt date were significant predictors in phenophase peak or lag time models only rarely. 

Patterns in new shoot growth were also generally consistent among leafy species in plots regardless of 

melt date, with C. bigelowii emerging first, followed by Clintonia borealis and Maianthemum canadense, 

and last Chamaepericlymenum canadense. 

Temperature & phenology 

Temperature data indicated that during the period of snowcover, temperature at the soil surface 

remained at a constant 0°C (Fig. S1). Occasionally, a late-fall melt event was evident as a temperature 

spike or drop; afterward, the site was re-covered by snow and returned to 0°C. These seasonal 

temperature patterns were consistent across all study sites. There was negligible soil GDD accumulation 

until snowmelt date, after which soil accumulated GDD more quickly than the air (Berend, unpublished 

data). Cumulative GDD at the end of the growing season was greater at LC (mean 770.2 ±26) than AG 

sites (mean 676 ±37), and the t-test approached significance (t= -2.08, df=9, p=0.068).  

 In the second set of linear regression models that used GDD as a predictor, GDD was statistically 

different among phenophase peak dates in only 3 of 28 (10.7%) of models, and only 1 model 

(Chamaepericlymenum, Leaves) had a significant (p<0.05) regression. GDD to peak was consistent 

among phenophases, despite varying melt dates. There were occasional differences in abundance (e.g., 
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Mainthemum, Fl. buds & Flowers) or GDD (e.g., V. uliginosum, Fl. buds) between Alpine Garden and 

Lakes of the Clouds sites (Table S5), but in general, bell-shaped curves with distinct maximums were 

observed for the Shoots and Fl. buds phenophases, and logistic curves for the Leaves and Flowers phases 

(Figs. 2, S4). These two shapes indicate a smooth transition from both Shoots to Leaves and Fl. buds to 

Flowers.  

Discussion 

The later melt dates and greater variation at Alpine Garden (AG) sites compared to Lakes of the 

Clouds sites was likely driven by both elevation and topography. AG sites were roughly 100 m higher in 

elevation and experienced slightly cooler average daily air temperatures (Mount Washington Observatory 

2017). Also, they were located on a mostly uniform grade east of the summit, where they received less 

direct late-afternoon sunlight, and snow cover across them was more unbroken, compared to LC sites 

(Berend, personal observation). This likely led to local topography at AG sites being a greater factor in 

melt date, as larger, deeper sites filled with more snow took longer to be exposed than smaller, shallower 

ones. Also, unbroken snow cover across such areas probably produces a feedback effect, insulating larger 

areas (or adjacent sites) and delaying snowmelt longer than would be predicted by air temperature alone. 

Because they did not benefit from this kind of unbroken snow cover beyond the extent of the snowbanks, 

LC sites melted earlier and more uniformly. The lack of significance by location (AG/LC) in the second 

set of linear regressions that used GDD as a predictor indicates that regardless of variable melt dates 

between locations, phenophase peak corresponds strongly to GDD, a trend consistent among species at 

both locations. Because they melted earlier, LC sites accumulated about 100 more growing degree days 

(GDD) during the course of the 2017 study period. This raises potential consequences including 

phenological mismatch of plants and pollinators between locations, should differential melt dates become 

more exaggerated. 

The linear regression data presented here demonstrate that on Mt. Washington, vegetative and 

flowering phenology of both herbaceous and woody alpine snowbank plants is closely tied to date of 
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snowmelt. The later snow melts at a given snowbank site, the later observed phenophases are delayed in 

the growing season. This is consistent with findings from alpine plant phenology studies elsewhere (e.g., 

Walker et al., 1995; Price and Waser, 1998; Anderson et al., 2012). This relationship between melt date 

and phenology can be attributed to the need for plants to accumulate a minimum threshold GDD before 

initiating new spring growth. This is an advantageous response for plants, as waiting for this thermal 

indicator minimizes risk of frost damage to new shoots and buds while maximizing productivity and 

reproductive success. 

The later a site melts, though, the time between melt date and all respective phenophase peaks 

(lag time) decreases. This phenomenon, too has been discovered at other sites throughout the world (Høye 

et al., 2007; Venn and Morgan, 2007; Kawai and Kudo, 2011), but this is the first confirmation of its 

occurrence in an alpine system in northeastern North America. The inverse relationship between melt date 

and lag time can be explained by the lack of significance of the GDD regressions performed in this study, 

which isolated temperature as an environmental variable aside from snowmelt date. Plants delayed by late 

snowmelt begin growing under warmer ambient conditions and longer day lengths than those at earlier-

melting sites, and accumulate GDD more rapidly. Quicker accumulation leads to an even more condensed 

growing season and a shorter lag time for all observed phenophases.  

In sum, snowmelt is responsible for the initiation of GDD accumulation, while GDD itself 

(temperature) is responsible for the actual timing of each respective phenophase from that point forward. 

Earlier-flowering species on Mt. Washington, therefore, may be more responsive to yearly changes in the 

timing of snowmelt date than later-flowering species, as found elsewhere (Miller-Rushing and Inouye, 

2009; Wipf, 2010; Iler et al., 2013b). 

Based on our data, the response of snowbank communities to earlier snowmelt should be a linear 

advancement of phenology, but maybe only to a point. There is evidence from other world alpine areas 

that phenology cannot advance beyond a certain point, no matter how early snowmelt occurs. Rather, the 

interacting effects of snowmelt and GDD accumulation (temperature), as well as other factors like unmet 
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chilling requirements, could lead to non-linear phenological responses (Høye et al., 2007; Inouye, 2008; 

Iler et al., 2013a). Non-linear trends were not investigated here, but such responses may become more 

probable under extremely advanced snowmelt. If observed, they are evidence that flowering timing is not 

keeping pace with changing abiotic conditions.  

Solar radiation also plays a large role in influencing photosynthetic responses of plants in terms 

of its effects on snowmelt and temperature. Bliss (1966) found that soil surface temperatures on Mt. 

Washington were considerably warmer than ambient air temperature even 10 cm above the soil. By 

comparing temperature data collected at study plots here with available 2017 air temperature data for Mt. 

Washington, we confirm that the soil surface (plant growth media) accumulates GDD more quickly than 

the air (Berend, unpublished data). This effect is likely to be exaggerated the earlier a snowbank site 

melts, as the loss of the highly-reflective snow layer will mean more solar energy absorbed by the soil as 

heat and more rapid GDD accumulation.  

Both light intensity and photoperiod, too, while not directly evaluated here, may complicate 

predictions regarding the interactions of snowmelt and temperature on alpine snowbank plant phenology. 

Photoperiod is a crucial driver of plant phenology, perhaps even more important than snowmelt date in 

some alpine systems (Venn and Morgan, 2007; Ernakovich et al., 2014). Earlier snowmelt due to climate 

change or other factors, though, may contribute to non-linear phenological trends because plants may still 

wait for photoperiod cues to begin seasonal growth. Some species, therefore, may be unable to take 

advantage of this extra growing time (Keller and Körner, 2003). A longer snow-free, dormant period may 

have further effects on ecosystem dynamics at snowbank sites such as altered hydrology, productivity, 

microbial activity (Ernakovich et al., 2014), organic matter content (Shimono et al., 2009), nutrient fluxes 

(Smith et al., 2012), seed germination success (Bliss, 1962), or insect habitats (Finn and Poff, 2008). 

Plants may even respond to these cues before melt-out, as research has shown that light is able to 

penetrate snowpack to a limited depth, stimulating early bud activity and influencing photosynthetic 

responses (Starr and Oberbauer, 2003). This was also true on Mt. Washington in this study, as light was 
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able to penetrate up to 30 cm depth and up to 5 days prior to melt-out at snowbank study plots (Berend, 

unpublished data).  

Community dynamics 

The dual effects of snowmelt and temperature on alpine plant phenology have several 

consequences for plant reproductive success and community dynamics. First, earlier snowmelt at a given 

site may lead to a longer growing season, but also an increased exposure of leaf or flower buds to spring 

frost (Inouye, 2008). This risk may outweigh the benefits of a longer growing season, decreasing 

aboveground growth in some species (such as dwarf shrubs; Wipf et al., 2009), while facilitating growth 

in more tolerant ones (such as graminoids; Jonas et al., 2008). Since the order of melt-out from year to 

year is consistent among snowbank sites on Mt. Washington (Capers and Slack, 2016), changes in species 

composition may occur naturally over time (Galen and Stanton, 1995). 

Second, differences in growing season length due to variable melt-out can affect reproductive 

success through impacts on flowering and seed set. Plants at early-melting sites may be pollen-limited, 

missing key pollinators that depend on warmer ambient temperatures (Kudo and Suzuki, 2002; Kudo, 

2014). Plants at late-melting sites, on the other hand, while potentially more successful with pollination, 

risk early autumn frosts and the completion of seed set (Molau, 1993; Wagner and Reichegger, 1997). 

Plants that are able to may abandon sexual reproduction at such sites, opting for vegetative propagation 

instead (Kudo, 1991).  

Last, the timing of snowmelt may affect not only the phenology of individual species, but entire 

communities (Kudo and Suzuki, 1999). Dates of first, peak, and last phenophases rarely shift uniformly 

(Iler et al., 2013a), and any directional shift in environmental variables can result in substantial reshaping 

of ecological communities (CaraDonna et al., 2014). Considering a more complete phenological profile in 

future studies could be informative in this regard. Climatic variation in snowmelt may also lead to altered 

competitive interactions (Forrest et al., 2010) or changes in nutrient fluxes that may affect interactions 
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between species (Smith et al., 2012). Biotic and abiotic interactions, though, will vary depending on 

snowmelt patterns within even highly-localized areas (Kudo and Hirao, 2006), and year-to-year changes 

may be difficult to discern on such scales. Thus, continued monitoring of snowbank sites will be crucial 

to assessing community change in alpine areas of northeastern North America.   

Climate change & conservation 

Climate change will have wide-ranging effects on alpine systems worldwide (Grabherr et al., 

2010). Increased average temperatures and a greater percentage of precipitation falling as rain is likely to 

lead to decreases in both duration and volume (by up to 90%) of snowpack in alpine areas (Beniston, 

2003; Beniston et al., 2003). In a recent study, trends in the dates of first and last observed snow depth on 

Mt. Washington were significant, with first snow occurring 7.0 days/decade later in autumn and last snow 

occurring 2.8 days/decade earlier in the spring (Seidel et al., 2009). Continued trends in northeastern 

North America could have dramatic consequences for plants such as the snowbank species studied here 

that rely on insulating snow cover and protective microhabitats. Earlier loss of snow could lead to 

changes in temperature regimes and hydrology, leading to the loss or fragmentation of these habitats 

above treeline (Walther et al., 2005b). We are only beginning to understand the ways these highly-diverse 

communities contribute to the stability and productivity of the greater alpine ecosystem, and losing them 

could have wider effects beyond the plants themselves, from endemic insects (McFarland, 2003; 

McFarland et al., 2017) to birds (D’Oleire-Oltmanns et al., 1995) to mammals (Kausrud et al., 2008). 

Little is known, though, about how climate change may affect alpine ecosystems in the region. 

A reduction in snow cover and a longer growing season could lead to fewer suitable 

microhabitats for many alpine species, but snowbank communities are likely to be most vulnerable to 

these changes. Snowbank plants may become more susceptible to spring frost damage and summer 

desiccation while increasing competitive pressure from external or invasive species (Craine et al., 2012; 

Komac et al., 2015). Prompt research on such impacts is crucial, as alpine vegetation may respond 

quickly to altered climates (Cannone et al., 2007). 
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In fact, recent vegetation change has been observed in alpine plant communities in northeastern 

North America. Robinson et al. (2010) found significant vegetational change over a 23-year period in the 

Adirondack Mountains of NY. In that study, vascular plant frequency increased at the expense of 

bryophytes and lichens—important components of snowbank communities (Capers and Slack, 2016). 

Capers and Stone (2011) found an increase in tree and shrub abundance over 33 years on Bigelow Mt., 

ME, and attributed the increase in species richness they found to the encroachment of lower-elevation 

species into alpine areas. These trends are expected to continue as climatic conditions in the alpine zone 

become less harsh and shrubs/trees are able to outcompete herbaceous species in transitional communities 

(Chapin et al., 1996; Callaway et al., 2002). Phenotypic (or phenological) plasticity and evolutionary 

adaptation may be necessary for plants to track these climatic/abiotic changes (Anderson et al., 2012) but 

it is unclear whether plants and communities will be able to keep pace. 

There are reasons to believe, however, that alpine areas in the region may respond differently to 

climate change than other areas of the world. Lower treeline, greater precipitation and soil moisture, along 

with acidic soil conditions, make alpine areas of northeastern North America unusual among other 

mountainous regions of the world  (Cogbill et al., 1997; Jones and Willey, 2012). Seidel et al. (2009) 

demonstrated that the alpine zone of Mt. Washington is not warming as quickly as lower elevations in the 

region. Their climate models predict an increase in both cloud cover and precipitation for the region under 

warming scenarios, and they propose that higher humidity and increased fog/cloud cover may buffer the 

effects of atmospheric warming. Phenological models using historic climate data have confirmed this 

trend, finding that despite increases in regional average temperatures, flowering advancement of three 

species on Mt. Washington was less pronounced in the alpine zone than at lower elevations (Kimball et 

al., 2014). 

These findings indicate that alpine snowbank communities in northeastern North America may 

not be as threatened as previously thought. Increased precipitation due to climate change may actually 

lead to increased snowfall and deeper, longer-lasting snowpack at snowbank sites in the region. 
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Snowbank-obligate species, therefore, may continue to have a suitable habitat under changing climate 

conditions (Scherrer and Körner, 2011). In fact, longer snow persistence may actually threaten the “true” 

arctic-alpine species at the margins of snowbanks that depend on spring snowmelt for sufficient yearly 

growth and reproductive success. Many species that make up the greater alpine tundra community, while 

locally abundant on alpine peaks, are considered imperiled due to regional rarity and a reliance on 

specific habitat conditions (listed as S2; NH Nat’l Her. Bur., 2013). Carex bigelowii, Diapensia 

lapponica, and even Potentilla robbinsiana, for example, are species that may feel increasing stress if 

faced with extended snow cover duration. Such arctic-alpine species have many adaptations to deal with 

the cold, wind exposure, and ice they experience year-round (Bliss, 1971), but are generally poor 

competitors, and may be displaced if alpine conditions become ameliorated under climate change 

(Scherrer and Körner, 2011).  

The most likely scenario, at least in the short term, seems to be a loss of snowbank habitat in 

some places, with gains (or equilibrium) in others, simply due to the high variability in snowmelt across 

sites and among years. We recommend that snowbank communities continue to be monitored for changes 

in phenology and community or ecosystem dynamics into the future, as they are likely to remain sensitive 

indicators of change (Komac et al., 2015). Integrating snowbank-occurring species into the Appalachian 

Mountain Club’s Mountain Watch program (McDonough MacKenzie et al., 2017) and continued 

monitoring of permanent or long-term monitoring plots, such as GLORIA (Grabherr et al., 2000), recently 

established on Mt. Washington, may be helpful in assessing alpine plant phenological responses and 

community change as a result of climatic shifts. 

Conclusions 

Phenological responses to snowmelt of alpine snowbank plants on Mt. Washington studied here 

match similar studies conducted elsewhere. Vegetative and flowering phenology is highly sensitive to 

snowmelt date, but there is a substantial interaction effect between snowmelt date and temperature 

(growing degree days). This is promising for comparisons with other world alpine areas, especially those 



 

20 

 

with long-term weather records such as on Mt. Washington. Continued monitoring of snowbank melt 

dates and plant phenology may provide clues as to how those species respond to yearly variations in melt 

date or temperature, and whether longer-term shifts are evident in response to climate change. A broader 

profile of phenology (e.g., first, peak, last dates), consideration of non-linear responses, and the 

incorporation of light data may be necessary to understand these relationships more fully.  
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Tables 

Table 1. Summary results of linear regression models. Values listed are the number of species (out of 

seven) with significant (p<0.05) responses (value after Holms-Bonferroni correction in parentheses). A) 

Responses of phenophase peak date and lag time to factors of melt date, location (Alpine Garden vs. 

Lakes of the Clouds), and their interaction. B) Phenophase peak date as a response of growing degree 

days (GDD), location, and their interaction. Phenophase peak is the Julian day when the maximum 

number of plants displayed a given phase. Lag is the number of days between melt date and phenophase 

peak (see Methods for description). Complete results in table S2. 

 

A) Peak  Lag 

 Shoots Leaves Fl. buds Flowers  Shoots Leaves Fl. buds Flowers 

Regression 3 (1) 6 (4) 7 (2) 7 (4)  6 (2) 5 (2) 4 (2) 6 (3) 

   Melt date 4 (2) 6 (6) 7 (7) 7 (7)  6 (3) 6 (3) 6 (3) 7 (4) 

   Location 0 1 (1) 0 0  1 (0) 1 (1) 1 (0) 0  

   Melt date*Loc 0 1 (1) 0 0  1 (0) 1 (1) 1 (0) 0  

          

B) Peak  

 Shoots Leaves Fl. buds Flowers  

Regression 0  1 (0) 0  0   

   GDD 0 1 (0) 1 (0) 1 (0)  

   Location 0 0 0 0  

   GDD*Location 0 0 0 0  
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Figure captions  

Figure 1. Overview map of snowbank study sites on Mt. Washington, NH. Alpine Garden (AG) sites 

were on the slope to the east of the summit, and included sites HR2, HR4, AG1, AG2, AG15, AG16, 

AG19, AG20, AG21. Lakes of the Clouds (LC) sites were to the south and southwest of the summit and 

included sites LC2, LC5, MN3, MN4, and TK3. Inset of northeastern United States with Mt. 

Washington’s location in New Hampshire (star).  

Figure 2. Example plots of cumulative growing degree days (GDD) vs. phenological score (see Methods) 

for four phenophases of Clintonia borealis. Points are average value of scores for all plots visited on a 

given day; dark circles represent observations from Alpine Garden (AG), and open circles are Lakes of 

the Clouds plots (LC). See supplementary material (Fig. S4) for plots of remaining six species.  

Figure 3. Example linear regression results for phenophase Leaves for seven focal snowbank species. a) 

Melt date vs. peak Leaves, and b) melt date vs. Leaves lag time (number of days between melt and peak). 

Black lines indicate melt date as a significant (p<0.05) factor; non-significant are gray. Consistent trends 

in peak and lag time were seen in all four phenophases. See supplementary material (Figs. S2, S3) for 

complete results. 
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Figures 

Figure 1. 
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Figure 2.
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Supplemental materials 

Table S1. List of snowbank study sites on Mt. Washington. Melt date is the first observed day visited 

without snow cover at a plot, listed as Julian day. Two general site groupings were those in the Alpine 

Garden (AG) and those near the Lakes of the Clouds (LC). 

Location Site Latitude Longitude Area (m2) Elevation (m) Plot 
Melt 
date 

AG AG1 44.275615 -71.293405 10.4 1686.8 A 158 

 AG2 44.265661 -71.298846 254.4 1635.3 A 150 

 AG3 44.265989 -71.298358 51.3 1631.3 A 163 

 AG4 44.275145 -71.294231 33.4 1701.1 A 172 

    
 

 B 176 

 AG5 44.271929 -71.297072 51.7 1718.8 A 148 

 AG6 44.274764 -71.295524 112.7 1744.4 A 141 

 AG7 44.275456 -71.293858 236.8 1699.3 A 172 

    
 

 B 172 

       C 176 

 AG8 44.277279 -71.291324 111.6 1689.2 A 163 

       B 163 

 AG9 44.27727 -71.291694 24.3 1712.1 A 141 

LC LC1 44.258995 -71.314881 299.2 1578.3 A 158 

       B 147 

 LC2 44.259319 -71.312098 16.8 1606.0 A 155 

    
 

 B 155 

       C 155 

 LC3 44.256653 -71.319055 94.1 1556.7 A 155 

 LC4 44.256498 -71.319145 378.7 1561.2 A 147 

    
 

 B 162 

       C 166 

 LC5 44.263171 -71.30429 88.4 1659.1 A 147 
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Table S2. Full linear regression ANOVA results for four phenophases of peak date to predictors of snowmelt date, location, and their interaction 

for seven study species.  
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Table S3. Full linear regression ANOVA results for four phenophases of lag time to predictors of snowmelt date, location, and their interaction for 

seven study species. 
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Table S4. Full linear regression ANOVA results for four phenophases of peak date to predictors of growing degree days (GDD), location, and 

their interaction for seven study species. 
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Table S5. Mean cumulative growing degree days (GDD) (±SE) to peak phenophase for seven snowbank species at both Alpine Garden (AG) and 

Lakes of the Clouds (LC) sites. Arranged by increasing GDD for Shoots at AG sites. 

 

 Shoots        Leaves        Fl. buds      Flowers     

 AG  LC   AG  LC   AG  LC   AG  LC  
Species GDD   GDD     GDD   GDD     GDD   GDD     GDD   GDD   

Carex bigelowii 236.5 (7.1) 287.0 (11.7)  427.7 (6.0) 385.5 (1.8)  413.9 (5.4) 381.1 (1.0)  429.8 (2.6) 463.5 (5.8) 
Maianthemum 
canadense 296.6 (6.5) 215.8 (15.3)  361.7 (5.9) 347.3 (4.1)  466.3 (5.9) 451.8 (10.4)  615.2 (5.0) 555.4 (2.2) 

Clintonia borealis 322.0 (13.2) 363.1 (4.9)  389.7 (7.7) 429.3 (3.6)  438.7 (5.1) 482.3 (2.5)  540.8 (2.9) 596.6 (7.5) 

Vaccinium uliginosum 345.2 (5.5) 493.8 (12.6)  501.7 (7.3) 536.9 (13.2)  499.7 (11.4) 533.3 (10.1)  595.9 (12.7) 683.8 (7.8) 

Vaccinium cespitosum 361.1 (11.0) 375.0 (7.1)  447.1 (9.7) 447.4 (9.5)  498.2 (5.3) 515.1 (2.2)  626.1 (4.4) 689.4 (7.0) 
Chamaepericlymenum 
canadense 383.2 (5.5) 381.9 (0.7)  458.9 (6.4) 444.7 (1.7)  465.7 (4.8) 477.9 (6.3)  552.3 (4.9) 588.7 (3.0) 

Coptis trifolia 484.8 (9.9) 505.3 (4.7)  583.9 (11.8) 546.2 (6.8)  327.3 (4.2) 312.9 (5.8)  377.6 (5.4) 373.2 (1.2) 
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Figure S1. Example seasonal temperature data from study site AG6. This site was snow-covered from 

approximately 23 Oct. 2016 - 21 May 2017, during which time the soil surface remained at 0°C. Note 

large daily temperature fluctuations before onset of snow cover and after melt-out. A late-fall melt event 

is indicated by brackets. 
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Figure S2. Results of linear regression models for response of peak phenophase date to predictor of melt 

date for seven study species. Phenophases are a) Shoots, b) Leaves (repeated from Fig. 3), c) Fl. buds, and 

d) Flowers. Black lines indicate melt date as a significant (p<0.05) factor; gray are non-significant. C. 

bigelowii omitted from Fl. buds plot because data were arcsine-square root transformed.  
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Figure S3. Results of linear regression models for response of lag time to predictor of melt date for seven 

study species. Phenophases are a) Shoots, b) Leaves (repeated from Fig. 3), c) Fl. buds, and d) Flowers. 

Black lines indicate melt date as a significant (p<0.05) factor; gray are non-significant. C. bigelowii 

omitted from Fl. buds plot because data were arcsine-square root transformed.  
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Figure S4. (A-F) Full phenophase charts for remaining six species. Phenology observations taken as 

percent of plants exhibiting a given phenophase (C. bigelowii, C. trifolia, V. cespitosum, and V. 

uliginosum) or abundance, as phenological score (C. canadense and M. canadense) (see Methods). Points 

represent mean percents or phenological scores from either Alpine Garden (AG, dark circles) or Lakes of 

the Clouds (LC, open circles) sites for a given day visited plotted against cumulative growing degree days 

(GDD). Species are A) Carex bigelowii, B) Chamaepericlymenum canadense, C) Coptis trifolia, D) 

Maianthemum canadense, E) Vaccinium cespitosum, and F) V. uliginosum. 

 

A) Carex bigelowii 
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B) Chamaepericlymenum canadense 

 

C) Coptis trifolia 
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D) Maianthemum canadense 

 

E) Vaccinium cespitosum 
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F) Vaccinium uliginosum 
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Plant traits and community metrics across a snowmelt gradient 

at alpine snowbank sites on Mt. Washington, NH 

 

K. Berend, K. Amatangelo, D. Weihrauch, C. Norment, and M. Penberthy 

Abstract 

In northeastern North America, alpine snowbank communities are rare plant assemblages that 

form in sheltered sites above treeline where late-lying snow provides insulation from late-season frosts 

and a longer-lasting source of water. We studied community composition and plant traits across a gradient 

of snowmelt timing at snowbank sites on Mt. Washington, NH. We used nMDS ordination and ANOSIM 

to examine community composition across the snowmelt gradient, and measured plant traits (height, leaf 

dry matter content, leaf area, and specific leaf area) in several comparisons. We calculated community-

weighted mean trait values across the snowmelt gradient and phenotypic plasticity of four focal snowbank 

species (Carex bigelowii, Chamaepericlymenum canadense, Clintonia borealis, and Maianthemum 

canadense) between snowbank core and edge habitats. ANOVAs indicated that vascular plant diversity 

increased and lichen diversity decreased with later melt date; no trend was evident in bryophytes. 

ANOSIM indicated that vascular plant and bryophyte/lichen communities were significantly stratified 

across the snowmelt gradient. In the community-weighted mean trait analyses, height, leaf area, and 

specific leaf area increased with later snowmelt, and leaf dry matter content decreased; the four focal 

species showed matching responses in traits across the snowmelt gradient, except for M. canadense, 

which was shorter in snowbed cores, though not significantly. The transition in trait values across the 

snowmelt gradient is indicative of changing environmental conditions, as well as changing ecosystem 

functions occurring there. Genetic analysis may be necessary to evaluate population dynamics among 

isolated alpine communities. Given their sensitivity to environmental conditions, alpine snowbank 

communities are considered vulnerable to climate change or displacement by exotic or lowland species. 

Keywords: Alpine, snowbed, plants, northeast, Mt. Washington, traits, gradient, diversity, community-

weighted mean, common garden 
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Introduction 

In northeastern North America, alpine snowbank (or snowbed) communities are rare plant 

assemblages that form in sheltered sites above treeline, such as ravine ledges, shallow depressions, and 

lee of sheer rock faces, where late-lying snow provides insulation from late-season frosts and a longer-

lasting source of water (Bliss, 1963; Capers and Slack, 2016). In these habitats, herbaceous understory 

species from lower-elevation northern hardwood or spruce-fir forest habitats are able to persist above 

treeline. (Billings and Bliss, 1959). Of the many community types that exist in northeastern alpine areas, 

herbaceous snowbank communities are the most species-rich (Bliss, 1963), supporting several rare or 

threatened vascular plant species (e.g., Carex bigelowii, Geum peckii, Nabalus bootii, Vahlodia 

atropurpurea, and Vaccinium cespitosum) (Sperduto and Nichols, 2011). Snowbank sites may provide 

beneficial ecosystem services and functions to the greater landscape, such as shelter for flowering plants 

and insect pollinators, berries for birds, and high-quality browse for mammal and invertebrate herbivores 

(Zwinger and Willard, 1996; McFarland, 2003; Björk and Molau, 2007; McFarland et al., 2017). They 

also harbor a diverse assortment of bryophytes (and lichens, to a lesser degree), which are important 

components of these ecosystems in terms of structure and function (Dibble et al., 2009; Capers and Slack, 

2016). In the Northeast, the most extensive alpine snowbank communities exist in the Presidential Range 

of the White Mountains, NH and Mt. Katahdin, ME (Kimball and Weihrauch, 2000), but they also occur 

in the Adirondack Mountains of NY State (Carlson et al., 2011) and high-elevation areas of Quebec and 

Labrador (Jones and Willey, 2012).  

In alpine environments, the strongest abiotic driver of species sorting is physical exposure to 

wind, cold, and ice—mediated predominantly by differential date of snowmelt (Choler, 2005). The 

snowmelt gradient that develops in areas of late-lying snowpack acts as a selective filter, removing all 

species without a specified combination of adaptations for a specific microhabitat (Keddy, 1992). In 

regulating exposure of plants, buds, and seeds to physical stressors, the snowmelt gradient across alpine 
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snowbank communities generates concentric rings of plant communities stratified based on snow 

tolerance and date of snowmelt (Billings and Bliss, 1959; Zwinger and Willard, 1996).  

Environmental stress gradients can drive morphological variability in plants (Milla et al., 2008), 

and plant phenotypes are highly plastic in response to even steep environmental gradients such as 

sunlight, temperature, precipitation, soil moisture, nutrients, substrate, and elevation, (e.g., Fonseca et al., 

2000; Wright et al., 2002; Choler, 2005; Cornwell and Ackerly, 2009; Shimono et al., 2009; Guittar et al., 

2016). Thus, plant traits—measurable morphological, physiological, or phenological characteristics of an 

individual plant—may reflect evolutionary responses to environmental conditions and/or particular 

ecological strategies (Wright et al., 2004; Pérez-Harguindeguy et al., 2013). Traits are directly linked to 

plant fitness via their effects on growth, reproduction and survival (Violle et al., 2007), and some 

commonly measured plant traits, such as leaf dry matter content (LDMC), leaf area, N/P content, specific 

leaf area (SLA), height, and seed mass are strongly related to establishment, persistence, and dispersal in 

alpine habitats (Choler, 2005).  

Trait-based approaches are emerging as a promising way to understand ecological mechanisms 

underlying species occurrence and establishment (Ali et al., 2017), and the snowmelt gradient in alpine 

snowbank communities makes them ideal systems to study the interactions of abiotic conditions on plant 

traits in the alpine environment. However, little is known about the trait structure of alpine snowbank 

communities in northeastern North America or their species-environment interactions involved in 

community assembly. Community-weighted mean (CWM) trait values (Garnier et al., 2004) have been 

used to assess how environmental variables (such as snow cover) structure community composition, 

selecting for particular advantageous traits at the community, rather than individual or population, level. 

Shifts in CWM trait values should therefore reflect shifts in community structure or composition 

(Amatangelo et al., 2014), as well as community-level functional processes. Intraspecific variation in 

plant traits in response to environmental factors can also be considerable (Albert et al., 2010; Jung et al., 
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2010), and may reflect the resistance of plant community structures to changes in environmental 

conditions (Kichenin et al., 2013).  

Trait plasticity may not be the only driver of individual or community-level trait differences, 

though. Because of the highly-fragmented nature of alpine ecosystems, conspecific populations of alpine 

plants are often considerably separated by either space (long distance, topographic relief) or time (e.g., 

early/late snowmelt), and there is some evidence that this separation may lead to genetic divergence 

among substantially isolated metapopulations of plants (Hirao and Kudo, 2004; Stöcklin et al., 2009; 

Cortés et al., 2014). Trait differences among conspecifics derived from underlying genetic differences, 

therefore, could indicate that speciation is ongoing, probably due to constraints on connectivity to 

neighboring populations and/or local adaptation. Since most arctic-alpine species are ecotypically 

different from their congeners in the Arctic, (Mooney and Billings, 1961; Billings, 1974), there is the 

possibility that through isolation and speciation, ecotypic differences may exist between alpine and 

lowland populations of snowbank species, or among populations of alpine species inhabiting adjacent 

peaks (or even microhabitats on a single peak). Currently, little is known about gene flow and 

connectivity between alpine habitats in the region, and identifying alpine-adapted ecotypes of snowbank 

species could be important in terms of taxonomy, biogeographic history, and conservation priorities for 

species or communities. 

Alpine snowbank communities are particularly sensitive to environmental change (Galen and 

Stanton, 1995; Björk and Molau, 2007). Due to both their rarity and reliance on specific environmental 

conditions, they are listed as “critically imperiled” (S1) by the states of NY, NH and ME (Gawler and 

Cutko, 2010; Sperduto and Nichols, 2011; Edinger, G. J. et al., 2014). Monitoring community change in 

these habitats, then, may identify broader alpine community change due to climatic shifts. Thus, a better 

understanding of snowbank community composition in relation to snowmelt timing in northeastern North 

America has been identified as a top priority by researchers in the region (Capers et al., 2013). Recently, 

Sardinero (2000) and Capers and Slack (2016) cataloged community composition at snowbank sites on 
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Mt. Washington, and the latter linked these metrics to snowmelt date. Here, we extend the scope of this 

work to include systematic observations of snowmelt timing across a gradient at snowbank sites, as well 

as analysis of individual and community-level plant traits.  

The objectives of this study were five-fold: 1) evaluate community metrics (diversity and 

richness) in relation to snowmelt date at snowbank sites on Mt. Washington, NH; 2) document and 

describe community-level changes in four plant traits across the snowmelt gradient; 3) assess species-

level (phenotypic) differences in traits of four herbaceous snowbank species across the snowmelt 

gradient; 4) quantify and compare in-situ inter- and intraspecific trait values (and their variability) of 

snowbank species between alpine and low-elevation sites; and 5) compare observed traits of one focal 

snowbank species grown in a common garden to those of conspecifics from the natural environment. 

Methods 

Site description 

Mt. Washington (44.270 N, -71.3036 W) is the tallest peak in northeastern North America (1914 

m), and lies within the White Mountain National Forest in northern New Hampshire (Fig. 1, inset). 

Treeline is approximately 1500 m, but varies considerably based on exposure and topography (Kimball 

and Weihrauch, 2000). Mt. Washington and the Presidential Range make up the largest area of alpine 

habitat in the eastern United States (1132 ha), but snowbank communities comprise <1% of this total, at 

only 3 ha (Bliss, 1963; Kimball and Weihrauch, 2000). 

Because prevailing winds are from the northwest, snow accumulates primarily on southeast-

facing slopes, especially in topographic depressions. The majority of these sites exist in the Alpine 

Garden Research Natural Area (AG), east of the summit and upslope (west) of the Alpine Garden foot 

trail, but several other sites exist near the Appalachian Mountain Club’s (AMC) Lakes of the Clouds hut 

(LC), 1.8 km southwest of the summit. In June 2016, we identified 15 contiguous snowbank sites across 

both areas (AG=9, LC=6) (Fig. 1) by topography and the presence of indicator species (Dibble et al., 
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2009; Sperduto and Nichols, 2011; Capers and Slack, 2016), and marked the location of each with a 

handheld GPS unit (Garmin GPSMAP®64, Garmin Ltd., Olathe, KS). We also selected six low-elevation 

sites near the Appalachian Mountain Club’s Pinkham Notch Visitor Center where four focal snowbank 

species were abundant. These sites were used as low-elevation replicates for comparisons of trait values 

(see below).  

Sampling design  

In June-July 2016, we established at least one transect at each site extending across the 

snowmelt/vegetation gradient from the center (or “core”) of the snowbank community to its margins in an 

adjacent community type. Larger sites could accommodate more than one transect, while smaller sites had 

only one (total # transects = 25). The core of each transect was determined based on literature 

descriptions of snowbed communities (Bliss, 1963; Sperduto and Nichols, 2011; Capers and Slack, 2016) 

and local topography. We sought to follow the snowmelt gradient outward from the snowbeds across a 

smooth transition in plant communities to its margin, or “edge”. Transects were 6, 9, or 12 m in length, 

depending on the length of the vegetation gradient and size of a site, and placed horizontally along the 

elevation contour (except for LC2, which was flat; transects there were placed radially). At sites with 

more than one transect, cores were placed at least 3 m apart, and transects were oriented in alternating 

directions along the elevation contour, except when local topography or vegetation gradients were 

unsuitable, such as across rock scree. We placed a magnetic survey marker (SurvKap®, Tucson, AZ) 

flush with the soil surface to mark the beginning (core) and end (edge) of each transect so they could be 

relocated beneath the snow, and in the same manner, we placed a temperature datalogger (OnSet HOBO® 

Pendant® UA-002-08, Bourne, MA) every 3 m along one transect at every site (except LC5 and LC6, due 

to datalogger constraints and proximity to federally-designated wilderness, respectively).  

 In May 2017, we returned to study sites while still snow-covered, relocated the transects using a 

magnetic survey locator (CST Magna-Trak® 100), and temporarily marked the ends with stakes. We 

revisited each transect every 3-5 d and recorded snow depth measurements (max. 320 cm) every 3 m 
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along them using an avalanche probe (Black Diamond® Equipment, Salt Lake City, UT) until the entire 

transect was snow-free. The first day visited when a given quadrat was entirely snow-free was recorded as 

its melt date. Site LC6 was not monitored; because it lies in federally-protected wilderness, no 

dataloggers or magnetic markers were left there.  

Vegetation 

From June-July 2016, we collected community composition data every 3 m along each transect 

(coinciding with snow depth measurements) using a 1 m2 quadrat. For example, transects 12 m in length 

had five quadrats, at 0, 3, 6, 9, and 12 m. We identified to species and visually estimated percent cover of 

all vascular plants, bryophytes, and lichens (except saxicolous). Since most species found in these habitats 

are perennials, year-to-year composition was unlikely to change substantially. 

Trait sampling  

In July 2017, we collected specimens for trait analyses from sites AG4, AG7, AG8, LC1, and 

LC4. Using cover data from community composition sampling, we calculated the proportional number of 

species to sample from each site and each end (core or edge) of a transect based on sample sizes needed 

for both CWM and focal species analyses (below) and collected specimens from either the core or edge 

accordingly. For example, a species with higher abundance in the core at a given site warranted more 

samples being collected there. We collected specimens from a 1.5 m radius circle centered on the transect 

core or edge quadrat, and used a random number generator to select individuals.  

For the community-weighted mean (CWM) analyses, we collected 10 individuals each of the 15 

most abundant/frequent species across all quadrats, based on community composition data: Carex 

bigelowii Torr. ex Schwein., Chamaepericlymenum canadense (L.) Aschers. & Graebn., Clintonia 

borealis (Ait.) Raf., Coptis trifolia (L.) Salisb., Deschampsia flexuosa (L.) Trin., Empetrum nigrum L., 

Juncus trifidus L., Maianthemum canadense Desf., Streptopus lanceolatus (Ait.) Reveal, Solidago 
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macrophylla Pursh, Spiraea alba Du Roi, Vaccinium angustifolium Ait., V. cespitosum Michx., V. 

uliginosum L., and Veratrum viride Ait. All nomenclature is after Haines et al. (2011).  

To asses inter- and intraspecific trait variation across the snowmelt gradient at alpine sites, we 

selected five abundant snowbank species from the above list for closer analysis: Carex bigelowii, 

Chamaepericlymenum canadense, Clintonia borealis, Coptis trifolia, and Maianthemum canadense. We 

randomly collected (as above) three specimens of each species in the cores of each transect at the five 

alpine sites. We spread collection across all transect cores for sites with more than one transect (e.g., at 

sites AG4, AG7, and LC4, each with three transects, we collected one specimen of each species from 

each transect core). We also collected a total of at least 15 specimens from edge quadrats—distributed 

proportionally across sites, for comparison. 

We also aimed to assess trait differences and variability between alpine and low-elevation (or 

lowland) source populations for species that were found abundantly in both locations: 

Chamaepericlymenum canadense, Clintonia borealis, Coptis trifolia, and Maianthemum canadense. In 

addition to the collection from alpine site cores distributed across sites (as above, 3 replicates each), we 

collected an additional twelve (total of 15 replicates) from the cores of one large site (or “megasite”, 

AG7) to asses intra-site variability. We duplicated both the dispersed and concentrated collection 

procedures at six low-elevation sites near PNVC, with site R5 serving as the megasite (Fig. 1).  

Specimen processing 

Upon random selection of an individual plant, we measured traits according to Pérez-

Harguindeguy et al. (2013): two of the youngest, fully-expanded, undamaged leaves (replicates) were 

clipped at the base, blotted dry, and weighed on a digital balance (wet weight). Only a single leaf blade 

was used for Maianthemum canadense, Deschampsia flexuosa, and Juncus trifidus, while a short stem 

clipping (~3 cm, with leaves attached) was used for Empetrum nigrum because individual leaves were too 

small for processing. In cases when leaf mass was too small to register on the balance (<0.001 g), as in 
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some Coptis trifolia and Vaccinium spp., six leaves were used instead, and trait values were averaged as a 

single replicate. Leaves were scanned, and leaf area was found using ImageJ software (v. 1.51, National 

Institutes of Health, Bethesda, MD). Leaves were dried at 70°C for 48 h, then re-weighed (dry weight). 

Leaf dry matter content (LDMC) was calculated as mg dry weight per g wet weight. Specific leaf area 

(SLA) for each replicate was calculated as leaf area in mm2 per mg dry weight. Replicates were averaged 

to obtain a single leaf area, LDMC, and SLA value for each individual.  

Common garden 

 In August 2016, we collected ripe fruits of Chamaepericlymenum canadense from eight alpine 

sites on Mt. Washington and three lowland sites near Pinkham Notch Visitor Center, and allowed them to 

dry in paper bags. Care was taken to follow available collection guidelines (Guerrant et al., 2014; Hoban 

and Schlarbaum, 2014). At the College at Brockport, seeds from each collection site were kept separate 

and prepared according to published germination guidelines (see Cullina, 2000; USDA). Fruits were 

soaked in a weak water/apple cider vinegar solution for 24 h, pulsed in a dulled blender, and strained to 

separate seed from pulp. After allowed to air dry completely, seeds were scarified in 90% sulfuric acid for 

15 min, and rinsed. Seeds from each collection source were placed in a separate plastic bag (n=11) with a 

moist mix of peat, vermiculite, and potting soil, and allowed to undergo warm-moist stratification (room 

temperature) for six weeks. Bags were then moved to 4°C for another 25 weeks for cold stratification. 

Bags were opened weekly and kneaded gently by hand during both warm and cold stratification periods to 

mix soil media and allow for gas exchange. At the end of the cold-stratification period, bags were opened 

slightly, placed flat in a germination chamber at 21°C day/10°C night, and checked daily for signs of 

germination.  

After 30 d (on 1 May 2017), seedlings were transplanted into individual 8.9 x 8.9 cm square 

plastic pots with a mix of peat, vermiculite, perlite, sand, and potting soil, and topped with ~1-2 cm 

crushed pine straw. Pots were placed in trays of 18 pots each, arranged on benches in the College at 

Brockport greenhouse, and watered/rotated every 2-3 d. Plants were allowed to grow for the duration of 
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the summer. During growth, the greenhouse was covered with partial-transmittance shade cloth and 

temperature was limited to 27°C, as C. canadense is intolerant of full sun and high soil temperatures. In 

August 2017, we processed plants in the lab as described above, collecting trait data (height, LDMC, leaf 

area, and SLA) for each surviving plant as a separate replicate. 

Data analysis 

Diversity metrics 

 We created three categories of quadrat types for analyses: Core (first quadrat of transects), 

transition (intermediate), and edge (last quadrat). All transition quadrats were averaged together within a 

transect for analyses, and for sites with multiple transects, quadrat types were averaged within each other. 

Using community composition data, we calculated species richness and Shannon-Weiner diversity (H’) 

for each taxon type (vascular plants, bryophytes, and lichens) at core, transition, and edge quadrats.  

We then performed two-sample t-tests to assess differences in diversity (H’) and species richness 

by site location (Alpine Garden vs. Lakes of the Clouds) for each taxon. We used core quadrats for 

evaluation of vascular plants and bryophytes, but edge quadrats only for tests of lichens, as lichens were 

rarely found in core or transition quadrats.  

Next, we performed two-way ANOVAs for each taxon by quadrat type, blocked by site. Lichens 

had a large number of zero values for diversity, richness, and cover, so those cases were excluded for 

ANOVAs of that taxa type. Bryophyte cover and lichen richness data were square-root transformed, and 

lichen cover data were log-transformed for normality. We used post-hoc Tukey’s tests for pairwise 

comparisons to find grouping information of significant (p<0.05) ANOVAs. All ANOVAS were 

performed in Minitab (v. 18, Minitab, Inc., State College, PA).  

Ordinations  

Using temperature data, we calculated cumulative growing degree days (GDD) for the 2017 study 

period (Julian d 1-201) by the average method (daily max-daily min/2; 0°C was used as the threshold 
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temperature). Snowmelt dates were averaged by quadrat at each site. We averaged abundance of all taxa 

by quadrat type (core/transition/edge) at each site, and square-root transformed all cover data to down-

weight highly abundant species (McCune et al., 2002). 

We performed two initial non-metric multidimensional scaling (nMDS) ordinations, one for 

vascular plants only and another for bryophytes and lichens. We used a secondary matrix with additional 

variables (melt date, GDD, and quadrat type) for these analyses, and overlaid the vectors for 

environmental variables as a biplot. For the bryophyte/lichen ordination, we eliminated rare species 

(frequency <5% of quadrats) to improve stress and, where applicable, combined taxa of uncertain 

identification to the genus level. We did not include quadrats that crossed rock screes, or the two sites 

where no dataloggers were present (LC5 and LC6), as nMDS is intolerant to missing values (McCune et 

al., 2002). Repeating the analyses with these sites included, though, did not yield major differences in 

grouping structure.  

We then performed a third nMDS ordination using core quadrat data only and all taxa types to 

look for general floristic similarities across sites rather than by quadrat type within sites. For this 

ordination, we eliminated rare species (as above) and converted data to presence/absence to reduce stress 

(McCune et al., 2002). All ordinations were performed in PC-Ord (v. 5.0, MjM Software, Gleneden 

Beach, OR), and Sorenson/Bray-Curtis was used as a distance measure.   

We used analysis of similarity (ANOSIM) to evaluate differences in community composition in 

three separate tests, one for each similarity matrix used in ordinations: vascular plants by quadrat type 

(core/transition/edge), mosses and lichens by quadrat type, and all taxa (site cores only) by location (AG 

and LC). ANOSIMs were performed in PRIMER (v. 6, PRIMER-E Ltd., 2013). 

CWM calculations 

 We calculated mean trait values for the 15 most abundant/frequent vascular plant species, based 

on specimens collected in the field. To calculate community-weighted mean (CWM) trait values, we used 
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the average cover of each taxa by quadrat type at each site, as mentioned above. The CWM values for 

each measured trait (height, LDMC, leaf area, and SLA) were calculated as the average trait value for a 

particular quadrat type at a given site, weighted by the species’ abundance (Garnier et al., 2004), as 

indicated by cover. This yielded a CWM value for each quadrat type at each site. Using these data, we 

performed separate one-way ANOVAs for all four measured traits (response: trait value, factor: quadrat 

type), and post-hoc Tukey’s pairwise comparisons to find groupings of significant ANOVAs. Leaf area 

data were log-transformed for normality prior to analysis. 

Core/edge trait comparisons  

To assess trait change across the snowmelt gradient in the four focal snowbank species, we 

calculated average trait values by site of specimens taken from both core and edge quadrats, and 

calculated the difference between them at each site (core-edge). We then performed two-sample t-tests 

using core and edge trait data for each species to evaluate differences statistically.  

Alpine/lowland trait comparisons 

We calculated a phenotypic plasticity index (PPI) as a measure of trait variability for each species 

by site (Valladares et al., 2000). We then performed two sets of analyses based on the two sampling 

strategies, dispersed and concentrated. Traits and PPI were averaged by site, and we performed a two-

sample t-test using trait values for each trait/species combination, comparing the alpine and lowland 

values for both the dispersed and concentrated data sets. We then performed two-sample t-tests using PPI 

data for each species/trait combination in the same manner. This test was not possible for the concentrated 

data set because of insufficient replication (only one alpine and lowland “megasite” each). We then 

performed paired t-tests (paired by species) using average trait values and PPI by site for both the 

dispersed and concentrated data sets, again comparing alpine to lowland source populations. We used a 

Holms-Bonferroni correction for family-wise error rate within each data set (i.e., separately for dispersed-

trait values, dispersed-PPI, dispersed-paired t, concentrated-trait values, and concentrated-paired t).  
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To assess trait variability between the dispersed and concentrated sampling methods, we 

performed one-sample t-tests for each species/trait combination comparing the average PPI values for the 

dispersed sites to its same-habitat megasite (total=32 tests). We used a Holms-Bonferroni correction for 

family-wise error rate separately for alpine and lowland sets of tests. 

Common Garden  

We calculated germination success and survivorship of seedlings and plants from each collection 

site. One alpine and two lowland sites did not produce sufficient numbers of plants for analyses (n<15) 

and were excluded from further comparisons. 

Results 

Diversity metrics 

Two-sample t-tests indicated that vascular plant diversity and species richness were greater at 

Lakes of the Clouds sites than at the Alpine Garden sites (t= -3.65, df=12, p=0.003 and t= -3.20, df=10, 

p=0.009, respectively) (Fig. 2). Diversity and richness of bryophytes and lichens were not significantly 

different between sites. 

Analyses of diversity, richness, and cover data by quadrat type (core/transition/edge) indicated a 

consistent transition of communities across the snowmelt gradient (Fig. 3). Vascular plant diversity, 

richness, and cover, decreased from the core to the edge of transects, while lichens increased in these 

three metrics (Table 1). Significant differences in both diversity and cover of bryophytes was found, but 

general increasing or decreasing trends across the snowmelt gradient were not evident, as diversity, 

richness, and cover of bryophytes was greatest in transition quadrats. 

In both the vascular plant and bryophyte/lichen nMDS ordinations, quadrats were stratified by 

type, with core and edge quadrats distinctly separated. Core quadrats tended to group more tightly than 

edge quadrats, indicating greater floristic similarity among them. Transition quadrats occupied a broad 

swath between these two groups. In the vascular plant ordination (Fig. 4; stress=16.47), later melt date 
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corresponded with core quadrats, while edge quadrats had higher GDD, and these two vectors pointed in 

opposite directions, as expected. Closely associated species with Axis 1 were core species: Deschampsia 

flexuosa, Solidago macrophylla, Vaccinium cespitosum, Clintonia borealis, and edge species: Vaccinium 

vitis-idaea, Sibbaldiopsis tridentata, V. angustifolium, and Empetrum nigrum. ANOSIM of vascular 

species indicated significant differences in community composition between core and edge (R=0.536, 

p=0.001) and transition and edge (R=0.245, p=0.013) quadrats, but not between core and transition 

quadrats.  

The correspondence between quadrat type and melt date/GDD was less clear in the 

bryophyte/lichen ordination (Fig. S1; stress=15.34), as the vectors, while opposite each other, pointed 

somewhat perpendicular to the core-transition-edge axis. Closely associated species were one core species 

(the moss Sciuro-hypnum reflexum) and two edge species (the moss Pleurozium schreberi and the lichen 

Cladonia arbuscula). The ANOSIM of moss/lichen species indicated a significant difference in 

community composition between core and edge quadrats (R=0.385, p=0.001), but not between core and 

transition or transition and edge. Bryophyte and lichen nomenclature follow Flora of North America 

(2007) and Hinds et al., (2007), respectively.  

 In the ordination of site cores (Fig. 5; stress=10.50), there was a clear separation of Alpine 

Garden (AG) and Lakes of the Clouds (LC) sites. Species with strong associations along the main axis of 

separation, Axis 2, were LC vascular plants Streptopus lanceolatus, Dryopteris campyloptera, Luzula 

parviflora, Nabalus trifoliolata, Geum peckii and AG vascular plants Juncus trifidus, Polytrichum spp. 

mosses, and the lichen Cladonia chlorophaea. The ANOSIM comparing community composition 

between AG and LC sites was not significant.  

Community-weighted mean trait values 

 CWM trait values changed considerably across the snowmelt gradient. Height, leaf area, and SLA 

all decreased from core to edge quadrats, while LDMC increased (Fig. 6). ANOVAs indicated significant 
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(p<0.05) decrease in leaf area and SLA, while the increase in LDMC approached significance (p=0.053; 

Table 2). 

Core/edge trait comparisons 

Plant height, leaf area, and SLA generally were greater in snowbank cores, while LDMC was 

lower (Fig. 7). Several of the t-tests were significant, seeming to confirm trends among the other species 

that showed similar but non-significant responses. One possible exception to the overall trends was 

Maianthemum canadense, which tended to grow shorter in snowbank cores compared to the edge, though 

the difference was not statistically significant.  

Alpine/lowland trait comparisons 

 LDMC was greater among alpine populations, while leaf area and SLA were greater among 

lowland populations. No overall trends were apparent in plant height (Table 3). Species from the two 

habitats tended to respond the same, except for Coptis trifolia. It had lower LDMC and higher SLA 

among alpine populations, while height and leaf area gave mixed results based on sampling strategy. In 

general, results were consistent between sampling strategies, whether selecting three individuals of each 

spread across several sites (dispersed, Table 3) or all individuals from one “megasite” (concentrated, 

Table S2). 

 In terms of PPI, Chamaepericlymenum canadense was more plastic among alpine populations 

than the other species studied, which generally showed higher plasticity among lowland populations in 

most traits, although none of the t-tests were significant (Table 3). No other discernible trends were 

evident. In the one-sample t-tests that compared PPI of the dispersed sites to the megasite from the same 

habitat, there was greater trait variability at the megasites for all traits across all four focal species, except 

Coptis trifolia LDMC, lowland (Table S3). PPI was significantly greater (p<0.05) at the megasites in 6/16 

(alpine) and 7/16 (lowland) tests after Holmes-Bonferroni correction. 
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Common garden 

Six alpine and one lowland site produced at least 15 Chamaepericlymenum canadense plants in 

the common garden. Both germination success and survivorship were greater among the lowland 

(medians=45.1 and 75.6%) vs. alpine sources (medians=23.5 and 46.7%, respectively). Traits were 

variable, but plants from the lowland tended to grow taller, had lower LDMC, and higher SLA compared 

with the range of values from alpine sources (Fig. 8, Table S4). Height and leaf area of C. canadense 

plants grown from alpine sources in the common garden were dramatically lower than their naturally-

occurring alpine conspecifics (Figure 8, Table S1); to a lesser degree, LDMC was higher and SLA was 

lower among the greenhouse plants as well.  

Discussion 

Analysis of community composition data confirm alpine snowbank sites as rich in vascular 

plants, but scarce in lichens. In fact, the dominance of tall, leafy, vascular plants is a defining 

characteristic of these communities (Sperduto and Nichols, 2011). Bryophytes were found throughout the 

transects, but had the greatest diversity, richness, and cover in transitional quadrats. The intermediate 

zone between true snowbank and edge habitats seems to be the niche for these non-vascular plants, which 

are likely outcompeted/shaded by vascular species in snowbank cores and, due to dry conditions and/or 

physical exposure, do not populate surrounding edge habitats in large amounts. Lichens, on the other 

hand, are well-adapted to the stresses of the wider alpine zone, and thrive in colder, drier, windswept 

microhabitats at the margins of snowbank communities. There, lichen diversity, richness, and cover was 

greatest (also, see Dibble et al., 2009).  

The higher diversity and species richness of vascular plants at Lakes of the Clouds (LC) vs. 

Alpine Garden (AG) sites found here may be due to differences in elevation and distance to treeline. The 

higher elevation of AG sites (see Ch. 1) makes them more isolated and further from pockets of lower-

elevation species, such as Abies balsamea. Infiltration by such species may have increased diversity and 

richness values at LC sites, especially in transitional zones. This is probably the case for site LC6, in 
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Oakes Gulf—by far the most species-rich site. It had several species found at no other sites, such as 

Arnica lanceolata, Campanula rotundifolia, Carex capillaris, Chamerion angustifolium, Epilobium 

hornemannii, and Lonicera villosa. Though LC6 strongly fits the physical description of alpine snowbed 

sites, some of these plants are not “true,” – or characteristic snowbed species. Being very near treeline, 

environmental filtering may not be acting as strongly at this site (or other LC sites, to a lesser degree), 

allowing transitional or marginal species to grow alongside more strictly-defined alpine snowbed species. 

LC snowbank sites, in this respect, may represent more of the “ravine” or “moist alpine herb-heath 

meadow” communities, rather than the type of true herbaceous snowbank communities found in the 

Alpine Garden (Sperduto and Cogbill, 1999; Sperduto and Kimball, 2011). 

Traits and the snowmelt gradient 

A species’ fundamental niche is governed by its functional traits, which determine the range of 

habitat conditions in which it can survive (McGill et al., 2006). In snowbank communities, this niche is 

one of greater soil moisture and temperature, lower wind speeds, and shorter growing season, as 

compared to more typical alpine communities. The environmental conditions characteristic of snowbed 

communities are unusual in the alpine landscape, and plants that dominate under those conditions have 

traits that allow them to take advantage of the more abundant resources and protection from physical 

damage (Komac et al., 2015). Fast growth rate, tall height, high allocation of biomass to leaves, and 

strong photosynthetic capacity help snowbed species outcompete the “true” arctic-alpine species adapted 

to more extreme conditions.  

In this study, the decrease in height, leaf area, and SLA, along with the corresponding increase in 

LDMC across the snowmelt gradient highlights the matching of advantageous traits to localized 

environmental conditions. Moving outward from the core, the smooth transition in trait values is evidence 

of the corresponding transition of underlying environmental conditions, as filtering becomes stronger and 

species with traits suited to harsher conditions are no longer outcompeted, and begin to fill in. But 

because calculated trait values for individual species were weighted means of samples taken from both 
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core and edge quadrats, these analyses are a conservative estimate of the differences in trait values across 

the snowmelt gradient; the actual difference in CWM trait values between core and edge habitats is likely 

to be even more exaggerated than results shown here. 

However, trait differences also reflect underlying functional differences (Violle et al., 2007). That 

is, the greater height and leaf area (together, biomass) among plants in snowbank cores indicate greater 

rates of carbon fixation and water or nutrient uptake, while greater SLA indicates increased 

photosynthetic capacity and transpiration rates (Poorter and Evans, 1998; Reich et al., 1998a, 1998b). 

Lower LDMC in snowbank cores corresponds to greater water availability there. Intraspecific trait 

variability may also be important in affecting community assembly by promoting facilitation and species 

coexistence (Schöb et al., 2013), especially along stress gradients or where environmental filtering may 

be strong (Jung et al., 2010; Yan et al., 2012; Kichenin et al., 2013; Luo et al., 2016), such as in alpine 

habitats.  

Population dynamics & gene flow 

A major objective of this research was to investigate the potential ecotypic variation (via trait 

differences) between lowland understory plants and their conspecifics that grow in alpine snowbanks. In 

general, our results match expectations, in that for conspecific populations, individuals growing in the 

alpine environment had higher LDMCs and lower SLAs compared to their lowland counterparts due to 

the increased harshness of growing conditions above treeline. High winds, exposure to UV radiation, risk 

of frost damage, and a lack of a humidifying overstory all contribute to the growth of smaller, tougher, 

denser leaves in the alpine environment. It is unclear, however, whether trait differences between alpine 

and lowland populations of the same species are due to phenotypic plasticity, genetic 

divergence/evolutionary adaptation among alpine populations, or some combination of the two. 

Plants can be highly plastic in response to environmental conditions (Bradshaw, 1965; Sultan, 

1995), developing different growth forms and adaptive strategies even among alpine conspecifics, (e.g., 
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Riebesell, 1981; Shimono and Kudo, 2003; Scheepens et al., 2010). For instance, Shimono et al. (2009) 

found that Potentilla matsumurae (Rosaceae), an alpine forb native to Japan, displays two markedly 

different growth forms depending on whether it grows in a fellfield (rock scree) or snowbed habitat. 

These characteristics are retained when grown in a common garden. This species is locally distinct across 

Japan due to habitat fragmentation during Pleistocene glaciation and subsequent vicariance (Ikeda et al., 

2008). The mountains of northeastern North America have undergone a similar history of glaciation and 

fragmentation, (Spear, 1989), and there is reason to believe its species have responded in kind (Billings, 

1974). It is important to note, however, that this study focused solely on snowbeds within the alpine zone 

of one peak in the White Mountains of New Hampshire. Alpine plant communities, and the species that 

inhabit them, though, occur throughout northeastern North America. Little is known about gene flow 

dynamics between distinct alpine areas in the region or the degree of isolation among species across a 

peak or range within its limits, though. 

Some preliminary work has been done on this topic. Riebesell (1982) found that the distribution 

of alpine plants in the Adirondacks of New York roughly follow the model of island biogeography theory, 

as described by MacArthur and Wilson (1963, 2016). Species richness and immigration indices were 

correlated with area of alpine habitat and dispersal distance between peaks, respectively, suggesting that 

gene flow among alpine peaks is ongoing and dynamic. He also stressed the importance of seed dispersers 

such as birds, which may carry propagules long distances between alpine areas and mitigate isolation due 

to topographical relief and distance. Some work has been done on gene flow in wind-dispersed species 

(such as Carex bigelowii across arctic and alpine populations; Schönswetter et al., 2008), but further 

questions remain.  

 In this context, snowbank communities may be viewed as “islands within islands”. That is, the 

questions we have about gene flow and isolation regarding adjacent alpine areas in northeastern North 

America can just as easily be applied to snowbank communities within a single alpine peak or range. For 

example, is there a limit to how far insect pollinators will travel above treeline, and do snowbank sites 
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separated by large distances on the same peak (such as AG and LC) risk genetic isolation because of it? Is 

gene flow occurring between alpine and lowland populations of conspecifics? These questions and more 

deserve our attention if we are to fully understand the ecology of these ecosystems and devise better 

conservation plans for alpine areas in the region.  

With respect to the trait anomalies of Coptis trifolia (lower LDMC, higher leaf area and SLA in 

alpine habitats), a larger sample size or broader study may be needed to determine if our results were 

accurate. It differed from other species used in our analysis because it has evergreen leaves that 

overwinter, becoming dark and leathery (presumably high LDMC/low SLA), in contrast to new-growth 

leaves that are brighter and more delicate (lower LDMC/higher SLA) (Wright et al., 2005a), and which 

sprout from the roots of an existing plant. We did not discriminate between these leaf types, collecting 

either if they were randomly selected. Limiting future studies of trait measurements to new-growth leaves 

only, for instance, may reduce variability and yield different results. 

The traits of Chamaepericlymenum canadense plants grown in the common garden also 

contradicted our expectations. The greenhouse plants—whether alpine or lowland in origin—developed 

distinctly differently from naturally-occurring plants. They were very short and wiry, and had small, 

stubby leaves that alternated in pairs all the way up the stem, rather than just the four-leaf whorl at the 

apex that is characteristic of the species, although many had the whorl as well. We never observed this 

growth form in natural populations. We anticipated that the ameliorated conditions of the greenhouse 

would allow for better growth—i.e., greater height, leaf area, SLA, and lower LDMC—among seedlings 

grown from alpine sources compared to in-situ conspecifics. Perhaps there are abiotic cues that these 

species experience while in the alpine environment that facilitate their growth there. A reciprocal 

transplant experiment may better take these cues into account. Greater replication is needed among plants 

grown from lowland sources to compare trends statistically between populations.  

While we were unable to demonstrate a difference in trait values among plants grown from seed 

collected from alpine and low-elevation sources, a larger study focusing solely on this question may be 
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able to do so. Phenotypic differences in traits between plants grown from different sources, but under 

uniform conditions, could be evidence of underlying genetic differentiation between populations 

(Shimono et al., 2009), as well as a potentially strong impetus for preservation efforts or listing under an 

increased conservation status, as occurs with rare or threatened species or ecotypes. Genetic sequencing 

may be necessary for such studies, an avenue as yet unexplored in alpine areas of northeastern North 

America. 

Climate change & conservation  

Because we were unable to determine if intra-mountain genetic variation/divergence is occurring 

among snowbank species, more research should be conducted on this topic. As climate change continues 

to affect growing conditions of alpine plants in northeastern North America, phenotypic plasticity may 

take on a larger role in adaptation (Matesanz et al., 2010; Nicotra et al., 2010; Franks et al., 2014), and 

having baseline levels of trait values and variation may be a useful tool for tracking environmental 

change. Chamaepericlymenum canadense, being the most plastic in alpine conditions, may be the best 

species of the four studied here to use as an indicator of environmental conditions. Arctic-alpine 

bryophytes and lichens, too, respond to winter warming events, but bryophytes in particular may be 

negatively affected if above-average temperatures become consistent (Bjerke et al., 2011). A reduction in 

habitat or loss of these important transitional species could lead to substantial changes in microclimate 

where they are currently present (Bueno et al., 2016). 

Arctic and alpine areas worldwide are experiencing disproportionate warming compared to lower 

elevations/latitudes (Rangwala and Miller, 2012; Mountain Research Initiative 2015; Pepin et al., 2015), 

and predictions for mountainous regions include higher average temperatures, decreased snowpack, 

earlier snowmelt dates, and more precipitation falling as rain (Rawlins et al., 2012). This may lead to 

significant declines, range shifts, or complete loss of alpine tundra in some locations (Walther et al., 

2005a, 2005b; Diaz and Eischeid, 2007). Alpine snowbank communities are particularly sensitive to such 
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environmental changes (Galen and Stanton, 1995; Björk and Molau, 2007), and declines in alpine 

snowbank communities have been reported elsewhere (Klanderud and Birks, 2003).  

Despite these worldwide trends, the mountains of northeastern North America may follow a 

different course. Seidel et al. (2009) found that the alpine zone on Mt. Washington is not warming as 

quickly as the surrounding low-elevation forest matrix, and they point to higher humidity and cloud cover 

compared to other world regions as factors in thermal buffering. Because regional models predict 

increased precipitation under climate warming, a lack of significant warming among high-elevations in 

the region could actually mean more snowfall, not less. Because plant traits are correlated with climate 

(Wright et al., 2005b), understanding those relationships in alpine areas of northeastern North America 

may help researchers anticipate species and community range shifts, as well as niche availability under 

altered climatic conditions (Woodward and Cramer, 1996; Lavorel and Garnier, 2002; Guittar et al., 

2016).  

Some research to monitor and track changes in alpine plant communities has already been 

conducted in the region, though. Robinson et al. (2010) found an increase in vascular plant frequency at 

the expense of bryophytes and lichens between 1984-2007 in the Adirondack Mountains of New York, 

and Capers and Stone (2011) found an increase in the prevalence of trees and shrubs over a similar time 

period on Bigelow Mountain in western Maine. These findings are attributable to a process of “filling”, 

whereby lowland species expand their range into newly habitable areas (Grabherr et al., 1995; 

Erschbamer et al., 2009), increasing overall species richness/biodiversity, but potentially compromising 

the biological integrity of alpine communities. Snowbank communities are particularly vulnerable to this 

process (Schöb et al., 2009). We have already seen the encroachment of low-elevation or exotic species 

such as dandelions (Taraxacum officinale) into snowbeds on Mt. Washington, and there is risk that such 

invasions may displace rare or threatened species (Komac et al., 2015; Capers and Slack, 2016) or lead to 

a loss of host plants for insect pollinators (Levesque and Burger, 1982; McFarland, 2003).  
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In order to track potential community change in snowbeds and other alpine communities, we 

recommend continued monitoring efforts, such as GLORIA (recently established on Mt. Washington and 

Monts Chic-Chocs, Quebec), permanent transects, and phenological studies. Also important should be a 

focused effort to catalog snowbank community distribution across the region and periodic monitoring of 

their size and species composition, possibly with permanent plots. Such monitoring may provide clues as 

to the trajectory northeastern alpine areas will take in response to environmental change in the coming 

years and give managers and researchers a better understanding of the complex relationships between 

plants and environmental factors operating in these ecosystems. 

Conclusions 

 The trait ecology of northeastern alpine snowbank ecosystems obey many rules found elsewhere 

worldwide, but there remain several unanswered questions. There is more to learn about the relationship 

of plant species diversity to elevation, distance to treeline, and site area in these communities, and how 

closely individual or community-level traits are linked to the processes of environmental filtering and 

community assembly in alpine environments. It is our hope that this work is a further step in our 

understanding of the ecology of alpine snowbank communities in northeastern North America, especially 

in regards to anticipating future climatic change. Snowbank communities may be a sensitive indicator of 

larger-scale environmental change in the region, with implications for the broader landscape; monitoring 

their health and persistence should remain a priority of alpine researchers.  
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Tables 

Table 1. Mean (±SE) Shannon-Weiner diversity, species richness, and percent cover of vascular plants, bryophytes, and lichens by quadrat type. 

Quadrat types are: core (starting quadrats of transects), transition (intermediate quadrats), and edge (last quadrats of transects). Summary two-way 

ANOVA results also listed for each taxa. See Fig. 3 for grouping information of significant ANOVAs. 

  Taxa type Core   Transition Edge    Source MS F p 

Diversity Vascular 1.78 (0.08) 1.60 (0.07) 1.35 (0.07)  Type 0.716 11.9 0.000 

         Site 0.123 2.05 0.046 

 Bryophytes 0.39 (0.08) 0.53 (0.06) 0.30 (0.08)  Type 0.214 3.52 0.042 

         Site 0.132 2.17 0.035 

 Lichens 0.04 (0.04) 0.16 (0.04) 0.54 (0.1)  Type 0.107 0.55 0.595 

                  Site 0.064 0.33 0.969 

Richness Vascular 11.2 (0.6) 10.6 (0.6) 9.6 (0.6)  Type 10.83 2.76 0.080 

         Site 8.866 2.26 0.028 

 Bryophytes 1.8 (0.3) 2.1 (0.2) 1.8 (0.2)  Type 0.523 0.95 0.398 

         Site 1.819 3.31 0.003 

 Lichens 0.5 (0.2) 1.3 (0.2) 2.6 (0.4)  Type 0.394 1.84 0.184 

                  Site 0.229 1.07 0.435 

Cover Vascular 64.3 (3.9) 59.3 (4.2) 58.9 (7.0)  Type 144.8 0.4 0.674 

         Site 565.4 1.56 0.146 

 Bryophytes 5.2 (1.8) 8.1 (1.8) 11.1 (3.1)  Type 5.253 4.18 0.025 

         Site 4.146 3.3 0.003 

 Lichens 0.1 (0.0) 2.4 (1.2) 10.1 (3.0)  Type 3.514 12.2 0.001 

                  Site 0.687 2.39 0.070 
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Table 2. Full one-way ANOVA results for community-weighted mean trait values by quadrat type. 

Quadrat types were core, transition, and edge; leaf area was log-transformed prior to analysis. 

 Source df adj. SS MS F p 

Height Type 2 401959 200979 2.35 0.108 

 Error 42 3590400 85486       

  Total 44 3992359          

LDMC Type 2 2386700 1193350 3.15 0.053 

 Error 42 15899548 378561       

  Total 44 18286248          

log(Leaf area) Type 2 4.738 2.36922 36.72 0.000 

 Error 42 2.71 0.06452       

  Total 44 7.448          

SLA Type 2 10107 5054 3.92 0.028 

 Error 42 54206 1291       

  Total 44 64313          
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Table 3. Results of t-tests of comparisons of plant trait values and phenotypic plasticity index (PPI) 

between alpine and lowland source populations from the dispersed sampling strategy (results from 

concentrated sampling were similar, see Table S2). Traits were height, leaf dry matter content (LDMC), 

leaf area, and specific leaf area (SLA). Gray boxes indicate higher mean values among alpine source 

populations, while white boxes indicate higher values among lowland sources. Significance of t-tests 

before and after Holms-Bonferroni correction (in parentheses) indicated (*p<0.05, +p<0.10). Both two-

sample (each species individually) and paired (all species averaged) t-tests were performed. 

 Species Height LDMC 
Leaf 
area SLA 

Trait value CHCA   * (*) * * (*) 

 CLBO   *   * 

 COTR   *     

 MACA   +   * (*)  

      

PPI CHCA         

 CLBO         

 COTR     +   

 MACA         

       

Paired t-tests Trait value         

 PPI   * (*)     
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Figure captions 

Figure 1. Map of snowbank study sites (white) on Mt. Washington, NH (summit 1914 m), and lowland 

trait collection sites (black, R1-R6) near the Pinkham Notch Visitor Center (PNVC, 619 m). Alpine sites 

are labeled based on general location: Alpine Garden (AG) and Lakes of the Clouds (LC). Boundaries of 

federally-designated wilderness area, alpine zone, and the Alpine Garden Research Natural Area (RNA) 

indicated. Inset map of Mt. Washington’s location in northern New Hampshire, USA. 

Figure 2. Boxplots of vascular plant diversity (H’) of Alpine Garden (n=10) and Lakes of the Clouds 

(n=6) study sites. The two-sample t-test was significant (t=-3.65, df=12, p=0.003), indicating a difference 

between the two locales. Boxplots of vascular plant species richness not shown, but they displayed a 

matching trend; the t-test was significant (t=-3.20, df=10, p=0.009). 

Figure 3. Mean (±SE) Shannon-Weiner diversity (H’) of vascular plants, bryophytes, and lichens across 

the snowmelt gradient. Quadrat types are: core (starting quadrats of transects), transition (intermediate 

quadrats), and edge (last quadrats of transects). Significance of one-way ANOVAs (*p<0.05) and 

grouping information based on Tukey’s pairwise comparisons indicated. Trends in species richness and 

cover closely follow those shown here; figures for those metrics are not included.  

Figure 4. nMDS ordination of vascular plant cover by quadrat type (core/transition/edge), with vectors 

for environmental variables snowmelt date and cumulative growing degree days (CumGDD). Grouping 

based on ANOSIM indicated in legend. 

Figure 5. nMDS ordination of core quadrats by study site. Dark circles represent sites in the Alpine 

Garden (AG), while open circles are those near the Lakes of the Clouds (LC).  
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Figure 6. Change in community-weighted mean trait values (±SE) across the snowmelt gradient. Three 

quadrat types were core (first), transition (intermediate), and edge (last). Traits measured were: height, 

leaf dry matter content (LDMC), leaf area, and specific leaf area (SLA). Significance of one-way 

ANOVAs indicated (*p<0.05 and †p<0.10, see Table 2) and letters denote grouping based on Tukey’s 

pairwise comparisons.  

Figure 7. Mean difference (±SE) in measured plant traits of four focal species between snowbank core 

and edge quadrats (core – edge). Positive bars indicate higher trait values in the snowbank cores. Traits 

are a) plant height, b) leaf dry matter content (LDMC), c) leaf area, d) specific leaf area (SLA). 

Significance levels of paired t-tests indicated (*p<0.05, †p<0.10).  

Figure 8. Mean trait values of Chamaepericlymenum canadense plants grown from seed in a common 

garden at the College at Brockport greenhouse. Traits were height, leaf dry matter content (LDCM), leaf 

area, and specific leaf area (SLA). Seeds were collected from both alpine (A1-A6, gray) and lowland (L1, 

black) sources. See Table 6 for complete results.  
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Figures 

Figure 1.  
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Figure 2.  
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Figure 8. 
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Supplemental materials 

Table S1. Mean trait values (±SE) for 15 most abundant/frequent species found across all sampling plots, 

weighted proportionally by abundance in core and edge quadrats. Note: Mean leaf area was not calculated 

for Empetrum nigrum, as small branch clippings were used for analyses instead of individual leaves (see 

Methods). 

Species n
 (

C
o

re
) 

n
 (

Ed
ge

) 

n
 (

To
ta

l)
 

 Height (mm)  LDMC (mg/g)  Leaf area (mm2)  

SLA 
(mm2/mg) 

Carex bigelowii 15 16 31  173.7 (8.4)  308.3 (6.1)  473.1 (23.1)  18.1 (0.7) 

Chamaepericlymenum 
   canadense 17 15 32  85.8 (3.7)  245.4 (4.9)  479.5 (35.9)  29.4 (0.9) 

Clintonia borealis 17 22 39  125.6 (3.7)  114.9 (3)  3614.3 (165.2)  28.6 (0.7) 

Coptis trifolia 13 18 31  44.0 (4.2)  219.1 (10.6)  115.3 (12)  38.1 (3.2) 

Deschampsia flexuosa 8 2 10  292.9 (21.5)  253.7 (11.2)  428.3 (36.3)  8.0 (0.7) 

Empetrum nigrum 0 10 10  102.7 (17.1)  301.3 (11.6)  N/A -  7.5 (0.7) 

Juncus trifidus 4 6 10  177.7 (13.9)  340.7 (11.2)  277.9 (31.1)  10.2 (0.5) 

Maianthemum  
   canadense 15 15 30  66.2 (5.5)  226.0 (4.1)  903.2 (68.7)  29.7 (0.7) 

Solidago macrophylla 10 0 10  146.4 (17.4)  214.6 (5.5)  1716.0 (234)  32.4 (1.3) 

Spiraea alba 4 6 10  131.5 (18.4)  301.5 (20)  127.3 (13.9)  30.3 (3) 

Streptopus  
   lanceolatus 10 0 10  301.7 (15.7)  152.9 (3)  1098.7 (67.3)  34.9 (0.6) 

Vaccinium  
   angustifolium 1 9 10  88.0 (10.1)  283.3 (13)  50.5 (6.4)  4.4 (0.3) 

Vaccinium cespitosum 6 4 10  85.8 (9.1)  287.0 (21.6)  114.0 (16.6)  17.4 (6) 

Vaccinium uliginosum 2 8 10  108.1 (10.6)  317.1 (16)  117.3 (18.9)  16.0 (2.4) 

Veratrum viride 10  0 10   431.3 (53.7)   182.2 (3.3)   9529.6 (1233.2)   20.1 (1.5) 
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Table S2. Results of t-tests of comparisons of plant trait values and phenotypic plasticity index (PPI) 

between alpine and lowland source populations from the concentrated sampling strategy. Traits were 

height, leaf dry matter content (LDMC), leaf area, and specific leaf area (SLA). Gray boxes indicate 

higher mean values among alpine source populations, while white boxes indicate higher values among 

lowland sources. Significance of t-tests before and after Holms-Bonferroni correction (in parentheses) 

indicated (*p<0.05, +p<0.10). Both two-sample (each species individually) and paired (all species 

averaged) t-tests were performed. Note no data for PPI two-sample t-test due to sampling/data constraints.      

 Species Height LDMC 
Leaf 
area SLA 

Trait value CHCA   * (*) * (*) * (*) 

 CLBO   * (*) * (*)   

 COTR * (*) * (*) * (*) + 

 MACA         

      

PPI CHCA         

 CLBO   (no data)    

 COTR         

 MACA         

       

Paired t-tests Trait value         

 PPI       + 
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Table S3. Results of one-sample t-tests comparing phenotypic plasticity index (PPI) of dispersed sites to 

the Megasite from the same source elevation (alpine/lowland). Gray boxes indicate higher PPI values at 

the Megasite, while white box indicates higher value among dispersed sites. Significance of tests after 

Holms-Bonferroni correction indicated (*p<0.05). 

Source Species Height LDMC 
Leaf 
area SLA 

Alpine Chamaepericlymenum   * * * 

 Clintonia borealis         

 Coptis trifolia     *   

  Maianthemum   *   * 

          

Lowland Chamaepericlymenum *     * 

 Clintonia borealis   *   * 

 Coptis trifolia         

  Maianthemum * *   * 
 

Table S4. Trait values (±SE) of Chamaepericlymenum canadense plants grown from seed in a common 

garden at the College at Brockport greenhouse. Traits were height, leaf dry matter content (LDCM), leaf 

area, and specific leaf area (SLA). Seeds were collected from 6 alpine sites on Mt. Washington (A1-A6) 

and 1 lowland source near the Pinkham Notch Visitor Center (L1). 

Collection site Source  Height (mm)  LDMC (mg/g)  Leaf area (mm2)  SLA (mm2/mg) 

A1 Alpine  17.7 (1.5)  349.4 (15.2)  54.6 (9.1)  8.3 (1.9) 

A2 Alpine  21.3 (2.8)  350.7 (16.0)  59.3 (16.3)  7.2 (1.7) 

A3 Alpine  27.7 (1.6)  314.9 (9.0)  109.4 (11.4)  16.0 (1.8) 

A4 Alpine  33.1 (3.2)  292.5 (8.9)  195.5 (28.2)  19.6 (2.3) 

A5 Alpine  39.9 (4.1)  312.8 (12.3)  247.5 (32.7)  18.5 (2.1) 

A6 Alpine  40.5 (2.7)  293.5 (13.9)  274.7 (25.6)  24.1 (2.1) 

L1 Low  41.3 (2.5)  290.9 (9.2)  196.2 (21.2)  22.3 (1.8) 
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Figure S1. nMDS ordination of bryophyte and lichen cover by quadrat type (core/transition/edge), with 

vectors for environmental variables snowmelt date and cumulative growing degree days (CumGDD). 

Grouping based on ANOSIM indicated in legend. 
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