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Abstract 
 
 In Lake Michigan, native yellow perch (Perca flavescens) have experienced poor 

recruitment since 1989.  With the introduction of non-native species yellow perch prey 

fish have changed dramatically, which could affect successful recruitment of these fish.  

Therefore, in the present study I investigated dietary effects of two non-native species 

(alewife and round goby) on female yellow perch reproduction using lipid and fatty acid 

composition of their eggs, liver, muscle, and visceral fat.  Two-year-old yellow perch 

were fed two diets, representing two distinct fatty acid signatures.  These two diets were 

significantly different, in terms of fatty acid composition, with alewife containing higher 

concentrations of SAFA and MUFA and round goby having higher concentrations of 

PUFA.  Unexpectedly, the entire dietary fatty acid composition was not reflected in 

tissues of yellow perch, but some individual dietary fatty acids were incorporated.  

Biosynthesis of linoleic acid into ARA and linolenic acid into EPA and DHA was also 

clearly observed in all tissues of yellow perch.  Yellow perch fed round goby yielded a 

significantly higher body mass than yellow perch fed alewife (p < 0.05), but there were 

no significant differences in fecundity, embryo survival at pigmented eyed stage, HSI, or 

pseudo-GSI (p > 0.05).  In conclusion, although round goby and alewife have high levels 

of n-3 and n-6 fatty acids, (which are general requirements for successful reproduction 

and recruitment by fish) successful reproduction of all female yellow perch was not 

observed in the present study.  This observation could have been due to poor quality of 

egg ribbons; indicated by the ribbon separating in several places, and females spawning 

in tanks, thus limiting our ability to successfully fertilize eggs by hand.  
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1. Introduction 
 
 

The Laurentian Great Lakes have a long history of invasions by non-indigenous 

aquatic species.  To date, more than 170 invaders are well established in the Great Lakes 

(Mills et al. 1993, Ricciardi 2001, Holeck et al. 2004) and strong evidence suggests that 

these species are having dramatic and damaging impacts on ecosystem functioning.  They 

compete for habitats and overlap diets with native species (French and Jude 2001, 

Janssen and Jude 2001, Lauer and McComish, 2001), alter nutrient pathways (Pothoven 

et al. 2001, Hecky et al. 2004, Parker-Stetter et al. 2005), increase bioaccumulation of 

contaminants (Kuhns and Berg 1999, Morrison et al. 2000), and cause declines of native 

species through predation (Mason and Brandt 1996, Nalepa et al. 1998, Chotkowski and 

Marsden 1999, Kuhns and Berg 1999).  In addition to economic costs (Pimentel et al. 

2000), these invaders have the potential to decrease biodiversity (Sala et al. 2000) and 

cause extinction of native species (Ricciardi and Rasmussen 1999).  Therefore, a better 

understanding of the effects that invasions have on food webs is essential for adequate 

fishery management responses.   

In Lake Michigan, native yellow perch (Perca flavescens) have experienced poor 

recruitment since 1989.  Although the mechanisms driving its poor recruitment have not 

been identified (Dettmers et al. 2003) several factors have been proposed to potentially 

influence yellow perch recruitment, including predation (Shroyer and McComish 2000), 

zooplankton availability (Bremigan et al. 2003; Dettmers et al. 2003), water movement 

(Dettmers et al. 2005), and spawning stock characteristics (Heyer et al. 2001).   

In 1949, alewife (Alosa pseudoharengus) was introduced to Lake Michigan causing the 

yellow perch population to decline along with the populations of other native species 
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(e.g., lake trout Salvelinus namaycush) (Madenjian et al. 2008).  Alewives have 

contributed to a change in the zooplankton community due to their ability to switch 

feeding techniques between filter and particulate feeding and therefore allowing them to 

prey on both small and large zooplankton (Janssen 1976).  By reducing the abundance of 

small zooplankton, alewives have directly impacted the ability of yellow perch larvae to 

survive as they have a small gape size limiting them to smaller zooplankton (Bremigan et 

al. 2003).   The consumption of yellow perch eggs by alewives is another factor that has 

been associated with the poor recruitment of yellow perch in Lake Michigan (Brandt et 

al. 1987, Bremigan et al. 2003, Dettmers et al. 2003).  Alewife population in Lake 

Michigan declined between 1965 and 1990 due to the control of the sea lamprey 

Petromyzon marinus, which brought back salmonine populations that prey on alewives 

(Madenjian et al. 2008).  This reduction of alewife abundance led to a yellow perch 

population recovery from 1983-1985, but it never returned to its pre-alewife-introduction 

level. (Madenjian et al. 2008). 

The yellow perch is a generalist and opportunistic omnivorous species (Tyson and 

Knight 2001).  Adult forage broadly upon benthic invertebrates (e.g., chironomids, 

Sphaeridae), pelagic fish such as alewife, rainbow smelt Osmerus mordax, white perch 

Morone americana, spottail shiner Notropis hudsonius and benthic fish such as johnny 

darter Etheostoma nigrum and mottled sculpin Cottus bairdi depending on prey 

availability (Parrish and Margraf 1994, Schaeffer et al. 1999, Graeb et al. 2005, Truemper 

et al. 2006).  Yellow perch will switch their diet to utilize the most readily available prey.  

Thus, Trumper and Lauer (2005) reported that the round goby Neogobius melanostomus 

(a benthic non-native species introduced in the 1990s in the Great Lakes) has become a 

relevant component of adult yellow perch > 100 mm diets (ranging from 7 to 47% of the 
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total diet) in southern Lake Michigan (Michigan City, MI and Gary, IN).  This change in 

yellow perch is indicative of increasing abundance of round goby in this system.  

Although the quantity of food affects growth in fish, its quality is also an 

important factor.  Fatty acids are key nutrients that influence physiological performance 

of aquatic organisms.  They are required to ensure growth, survival and reproduction of 

zooplankton, pelagic and benthic invertebrates, and fish. They play major roles as a 

source of metabolic energy (β-oxydation of fatty acids which provides ATP), as 

components of cellular membranes (supporting membrane fluidity and permeability), and 

as precursors of ecosanoids (controlling e.g., immune responses, ovulation, embryonic 

development, hatching and early larval performance) (Tocher 2003).  Essential fatty acids 

cannot be synthesized in appreciable quantities by animals and therefore must be 

obtained through diet.  In most animals, linoleic (18:2n-6) and linolenic (18:3n-3) are 

essential because organisms without chlorophyll lack ∆12 and ∆15 desaturases required 

for their formations from oleic acid (18:1n-9).  These dietary fatty acids can be 

desaturated and elongated to form the physiologically essential polyunsaturated fatty 

acids (PUFA – Figure 1).  The degree to which an animal can perform these conversions 

is dependent on the relative activities of fatty acid elongases and desaturases in their 

tissues.  The activities of these enzymes depend on the extent to which the species can or 

cannot readily obtain the end products of these conversions from their natural diets 

(Tocher 2003).  Carnivores and omnivores lack the ability to efficiently make the above 

described conversions and mostly rely on their diet as a source of arachidonic acid (ARA, 

20:4n-6), ecosapentaenoic acid (EPA, 20:5n-3), and docosahexaenoic acid (DHA, 22:6n-

3).  Considerable research in aquaculture has demonstrated the importance of essential 

fatty acids in fish.  Essential fatty acid deficiencies result in lordosis or curvature of the 
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spine (Geurden et al. 1995), fin erosion (Higashi et al. 1966), erratic swimming (Castell 

et al. 1972), bleeding gills (Lochmann and Gatlin 1993), vision impairment (Bell et al. 

1995), swim bladder non-inflation (Kitajima et al. 1994, Tandler et al. 1995), improper 

pigmentation (Kanazawa 1993, Rainuzzo et al. 1994), brain damage (Navarro et al. 

1993), susceptibility to stress (Tago et al. 1999), impaired ontogeny of schooling 

behavior (Ishizaki et al. 2001, Masuda et al. 1998), decreased fecundity and reduced 

viability (Furuita et al. 2000), and impaired growth and decreased survival (Bell et al. 

1999, Smith et al. 2004).  

Along with their role as key nutrients, fatty acid signatures (the entire array of 

fatty acids in a species) have been use to trace and confirm predator-prey interactions for 

more than 30 years (Napolitano 1999, Dalsgaard et al. 2003).  This approach is based on 

the concept, originally proposed by Lovern (1935), that fatty acids are conservatively 

transferred from prey to predator and therefore infer diet in accordance to the principle 

“you are what you eat.”  During digestion dietary fatty acids pass into the circulation of 

monogastric animals, and those of carbon chain length greater than 14, remain largely 

intact during digestion process (Smith et al. 1997).  They are retained within the predator, 

thus it is possible to distinguish between those fatty acids that could be biosynthesized by 

the animal and those that can only come via prey from the diet (Iverson 1993).  Fatty 

acids have been used successfully as trophic markers both at the bottom (Fraser et al. 

1989, Cripps and Atkinson 2000, Graeve et al. 1994, 2002, Goedkoop et al. 2000, Jeffs et 

al. 2004) and at the top (Iverson 1993, Iverson et al. 1997, Smith et al. 1997, Kirsch et al. 

1998, Raclot et al. 1998, Barrado et al. 2003, Dwyer et al. 2003, Käkelä et al. 2006) of 

the food web.  The fatty acid method integrates not only spatial and temporal variations 

in diets, but is also reliable for rapid detection of diet shifts in fish, because the time 
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needed to influence fatty acid signature is relatively short, e.g., 3 weeks (Kirsch et al. 

1998). 

A prerequisite to this powerful analytical method is that each prey species has a distinct 

fatty acid signature.  Most of the fatty acid data sets currently available are limited to 

marine species and lower trophic levels (Kirsch et al. 1998, Auel et al. 2002, Budge et al. 

2002, Graeve et al. 2002, Phillips et al. 2002, Reuss and Poulsen 2002, Staniland and 

Pond 2005, Käkelä et al. 2006).  Recently, lipid concentration and fatty acid signatures 

were described for nine species of fish (alewife, johnny darter, rainbow smelt, round 

goby, spottail shiner, ninespine stickleback Pungitius pungitius, threespine stickleback 

Gasterosteus aculeatus, white sucker Catostomus commersonii, and yellow perch) and 

several different invertebrates (amphipods, arthropods, crayfish spp., dreissenid mussels, 

isopods, Mysis diliviana, and zooplankton) collected in Lake Michigan (Czesny et al. 

2011).  These authors found that alewife and round goby have two distinct fatty acid 

signatures with alewife associated with pelagic species and round goby with benthic 

species.  A non-metric multidimentional scaling (nMDS) plot revealed two distinct 

clusters, where zooplankton, dreissenid mussels, rainbow smelt and alewife made one 

cluster and the other consisted of benthic invertebrates (i.e., amphipods, arthropods, 

isopods, and Mysis), round goby, johnny darter, spottail shiner, adult yellow perch, and 

stickleback species (Figure 2).  One can observe from these results that dreissenid 

mussels are clustered with pelagic species’.  Since mussels are filter feeders their diet 

consists of mainly zooplankton.  This conclusion could also be suggested for spottail 

shiner, which may consume benthic invertebrates clustering them with benthic species.  

In a feeding trial conducted by Weber et al. (2010) yellow perch favored alewife over 

round goby, however, in Lake Michigan they had a benthic fatty acid signature indicating

 
 



    
 
they are taking advantage of the exploding round goby population in the lake (Czesny et 

al. 2011).   

With the introduction of these non-native species yellow perch prey fish have 

changed dramatically, which could affect successful recruitment of yellow perch in Lake 

Michigan.  Therefore, the purpose of this study was to compare the effects of two prey 

species (alewife and round goby) representing two distinct fatty acid signatures on 

growth, survival, egg quality, and fatty acid composition of adult yellow perch.    

 
2. Methods 
 
 
2.1. Experimental fish and husbandry 
 

On April 7, 2008, two-hundred and twenty-six (226) two-year-old yellow perch 

(74 males and 152 females) were purchased from Coolwater Fish Farm in Geneseo, NY.  

Fish were bagged (~30 fish/bag) and transported to The College at Brockport, State 

University of New York (SUNY).  The bags were placed in several coolers on ice to 

reduce fish stress during transport.  Upon arrival the bags were placed in a 450 L tank for 

20 minutes so fish could acclimate to water temperature.  Fish were then sorted and 

distributed into 4-450 L circular, fiberglass tanks maintained as a flow-through water 

system.  Tanks were supplied with flow-through, declorinated city water.  Dechlorination 

was attained using a carbon filter system (Siemens Water Technologies, Warrendale, 

PA).  Females were placed into three tanks (51 fish/tank) and males in the remaining 

tank.  Each tank was supplied with continuous aeration and a mesh screen was placed on 

top of each tank to prevent fish escapement.   

 Fish were acclimated for one week and then individually weighed and reassigned 

into four tanks based on weight to maintain similar biomass per tank (~ 3.8 kg/tank).  The
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four tanks contained 38 females each.  Water was continuously aerated using air stones.  

Throughout the experiment, fish were reared at ambient water temperature and a natural 

photoperiod was provided by the use of fluorescent daylight tubes; suspended above the 

tanks.  Water temperature was recorded and tanks were cleaned daily.  Water quality 

measurements including chlorine and ammonia were recorded for each tank throughout 

the experiment using a colorimetric method (Smart Water Lab, Model SCL-04, LaMotte, 

Chestertown, MD).  Dissolved oxygen was measured using a waterproof dissolved 

oxygen meter (Hanna Instruments, Woonsocket, RI).  These measurements were initially 

taken every two-weeks and then monthly.  Prior to the feeding experiment, eight fish (2 

per tank) were randomly selected and sacrificed.  Fish were individually weighed, 

measured and dissected.  Gonads and liver were excised and weighed, whereas a sample 

of visceral fat and muscle were sampled, but not weighed.  All samples were immediately 

frozen at -80oC until lipid and fatty acid analysis. 

 
2.2. Diet  
 
 At the Coolwater fish farm, yellow perch were reared on a 3.0 mm floating dry 

diet from Melick Aquafeed Incorporated (Catawissa, PA).  During the experiment, which 

started on April 12, 2008, yellow perch were fed alewife or round goby (2 tanks/dietary 

treatment).  Both prey fish were collected in the nearshore water of Lake Michigan at 

Waukegan, IL by the Illinois Natural History Survey personnel.  Fish were collected 

using gill nets, trap nets, and bottom trawl.  Nets were set up for 24 hours, parallel to the 

shore at the 5 m depth contour line.  Large gill nets consisted of 100 ft panels with 2.0, 

2.5, 3.0 and 3.5 inch (in.) stretched mesh and small gill nets having 33 ft panels with 

0.31, 0.5, 0.75 and 1.0 in. stretched mesh.  Fyke nets were used with a 4 X 6 ft double-
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end with a 100 ft. leader between the double-throated pockets.  A 16-ft. semi-balloon 

otter trawl was used for bottom trawling.  Upon collection, fish were immediately placed 

on dry ice and store stored at -80°C.  Fish were shipped on dry ice to The College at 

Brockport, NY and then immediately stored at -80°C until feeding.      

Prior to feeding, alewife and round goby were removed from the -80°C 

biofreezer, they were partially thawed and chopped into 1-2 cm pieces.  Starting on April 

15, 2008, fish were fed 15 g/tank of alewife or round goby (duplicates/dietary treatment), 

which was gradually increased until fish accepted 35 g or 1% of their total body weight 

about three and half months later and for the remainder of the experiment (i.e., until 

spawning began).    

 A composite of alewife and round goby were analyzed for lipid contents and fatty 

acid signatures.  Each composite consisted of three to four fish.  Whole body alewife and 

round goby were measured, weighed, and homogenized in a commercial blender 

(Waring, Torrington, CT), then they were immediately stored at -80°C until biochemical 

analysis.     

 
2.3. Yellow perch reproduction and survival 
 
In March and April 2009, females were observed closely for signs of egg ovulation, 

which include roundness of the abdomen and a distended genital papilla.  When signs of 

ovulation were apparent the length and weight of each fish were recorded and eggs were 

stripped by hand.  Yellow perch produce a ribbon or skein of eggs when they spawn.  The 

entire egg mass was weighed and recorded, then a subsample was taken to determine the 

fecundity of each fish and another subsample for lipid and fatty acid analysis.  

Approximately 2 g of eggs were fertilized using the dry method of fertilization (Czesny 
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and Dabrowski 1998) by placing 200 µl of sperm on eggs, adding water, swirling the 

mixture and allowing fertilization to take place for one minute.  Eggs were rinsed several 

times with clean dechlorinated water and placed in baskets made of polyvinyl chloride 

(PVC) approximately 110 mm in diameter with 1.0 mm mesh glued to the bottom to hold 

the eggs.  The baskets were placed in trays inside a hatching system for incubation until 

hatching.  The hatching system was a recirculating system, supplied with dechlorinated 

city water maintained at a temperature of 9.0-9.5ºC.   

Embryo survival at the pigmented eyed stage (fertilization rate) was determined 

one week after fertilization from three subsamples of eggs for each female.  The total 

number of eggs and the number of eggs containing embryos at pigmented eyed stage 

were counted for each subsample under a dissecting microscope.  Survival, expressed in 

percent, was determined by dividing the number of eggs containing embryos at the 

pigmented eyed stage by the total number of eggs.  The average of the three subsamples 

was then calculated and considered as the percentage of survival for each female. 

Absolute fecundity (total number of eggs in gonad) and relative fecundity (total 

number of eggs per g of fish) were calculated for each female.  A subsample of egg from 

each female was weighed, eggs were counted and the number of eggs per g of weight was 

determined.  Absolute fecundity was calculated by multiplying the total weight of eggs 

by the number of eggs per g.  Relative fecundity was determined as the number of eggs 

produced per g of body weight.   

Some females were sacrificed just after spawning.  Each sacrificed female was 

weighed, measured, and dissected.  Liver, visceral fat, and a sample of muscle were 

removed and frozen for further biochemical analysis.  Liver was individually weighed.   
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 The hepatosomatic index (HSI) and pseudo-gonadosomatic index (pseudo-GSI) 

were calculated for female yellow perch.  The HSI was determined as the ratio of the 

liver weight to body weight indicating the energy reserve in the fish; a larger liver 

designates a larger energy reserve.  The pseudo-GSI was determined as the ratio of the 

weight of eggs to the body weight, which is used to approximate the reproductive effort 

in the fish (Kjesbu et al. 1991).   

 
2.4. Lipid analysis 
 
 Lipids in diet (alewife and round goby), liver, muscle, visceral fat, and eggs were 

extracted following the procedure described by Folch et al. (1957).  Approximately 1 g of 

wet fish tissue or eggs was homogenized in a 20 mL mixture of chloroform and methanol 

(2:1, v/v) with 0.01% butylated hydroxytoluene as an antioxidant.  The homogenate was 

then filtered through a Büchner funnel using a 42.5 mm Whatman filter (Whatman, 

England).  Then the solvent containing lipids was washed with a 4 mL MgCl26H2O 

solution.  At this stage two phases are visible; a MgCl26H2O solution on top and an 

organic phase on the bottom.  Nitrogen was added and the two phases were left overnight 

for complete separation.  Then the bottom solvent was extracted using a Pasteur pipet and 

evaporated under nitrogen.  The total lipid concentration (TL) was determined 

gravimetrically.   

 Total lipids from eggs and liver were separated into phospholipids and neutral 

lipids using a Sep-Pak silica cartridges (Waters Corporation, Milford, MA).  Chloroform 

was used to extract the neutral lipids and methanol for the phospholipids (Juaneda and 

Rocquelin 1985).  Neutral lipid and phospholipid levels were then determined 
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gravimetrically.  All samples (total lipids, neutral lipids, and phospholipids) were stored 

at -80°C until transmethylation of fatty acids. 

 
2.5. Transmethylation of fatty acids 
 
 Transmethylation of fatty acids (FA) followed the method developed by Metcalfe 

and Schmitz (1961).  A known amount of nonadocanoic acid (19:0) was added as an 

internal standard (IS) to the lipids, which is correlated with amount of total and neutral 

lipids or phospholipids (8 mg of 19:0 per mL).  The IS was used for quantification of the 

fatty acids.  After the IS was evaporated using nitrogen, total lipids and neutral lipids 

were saponified using sodium hydroxide (NaOH) in methanol at 80ºC for 1 h.  Fatty acid 

methyl esters (FAMEs) were then prepared by transesterification with borontrifluoride in 

methanol at 80°C for 30 min.  The same procedure was used for phospolipids, without 

saponification.   

 FAMEs were quantified by the Agilent 7890A Gas Chromatograph (Agilent 

Technologies, Santa Clara CA) equipped with an Agilent 7693 Series Automatic Liquid 

Sampler and mass spectrometer detector (ID).  The column was an Omegawax 250 fused 

silica capillary column, 30 m, 0.25 mm, and 0.25 µm film thickness (SUPELCO, 

Bellefonte, PA, USA).  Helium was used as carrier gas, with the flow rate set to 1.8 

mL/min and the injection volume of 2.0 µL.  The oven temperature was programmed 

initially for 175°C for 26 min; it was increased at a rate of 2°C/min to 205°C, and finally 

held at 205°C for 24 min.  The source and analyzer temperature for the mass 

spectrometer was set to 230°C.  The fatty acids were integrated by their retention times 

from the standard mix to identify all the peaks.  Each fatty acid is expressed in % of total 

fatty acid detected. 
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2.6. Statistics 
 

  Data are expressed as mean ± standard deviation.  Percent data were arcsine 

transformed before analysis.  All data were checked to ensure normality and homogeneity 

of variance prior to choice of specific statistical analysis techniques.   

When normality and homogeneity of variance assumptions were met, independent 

t-test and one-way analysis of variance (ANOVA) were used to determine statistical 

differences between (two dietary treatments) or among groups (eight fish sampled at the 

start of the experiment and two dietary treatments), respectively.  When statistical 

differences were observed using ANOVA, a post hoc Tukey’s test was performed to 

determine which groups differed.  The Bonferroni correction factor (BCF), which 

accounts for a large number of comparisons by reducing the alpha level to decrease the 

probability of obtaining a type I error, was used to distinguish means after t-tests.  The 

BCF was calculated by dividing the alpha level (0.05) by the number of fatty acids 

analyzed.  Since 26 individual fatty acids were analyzed, the new alpha value used for 

individual fatty acids was 0.002 (α= 0.05/26).  The alpha value used for summation 

groups and the ratio of n-3/n-6 was 0.008 (α = 0.05/6).   

If data failed to meet the normality requirements, Mann-Whitney and Kruskal-

Wallis tests were used.  When statistical differences were observed using the Kruskal-

Wallis test, a post hoc Tamhane’s test, which does not assume equal variances was 

applied to determine differences among groups.  Bonferroni correction factor was also 

applied as previously described for t-tests.  Differences were considered statistically 

significant if p < 0.05, except for fatty acids, which used the alpha values (0.002 for 

 
 



    
 
individual fatty acids and 0.008 for fatty acid groups) calculated from the Bonferroni 

correction.   

Classification and Regression Tree (CART) analysis, a non-parametric analysis, 

was used to determine if the tissues from fish fed two different diets were similar to their 

corresponding diet.  CART does not require the data be distributed normally or 

homogeneity of variance.  CART narrows variables down to the most important ones that 

influence the dataset.  Classification was used to separate eggs and liver by neutral and 

phospholipid fraction and to separate visceral fat and muscle by total lipids.  The diet was 

used as the target variable and 26 different fatty acids were used as the predictors of diet.  

CART produces nodes depending on the number of variables that influence the dataset.  

Generally, the first node represents how many rows (N) were placed in this particular 

node, the target variable, and misclassification percent, whereas the subsequent nodes 

also include the predictor variable (diet) used for generating the split from the first node.  

 Linear regression analysis was used to determine relationship between fish length 

and fecundity.  Statistical data were analyzed using IBM SPSS 20.0 (independent t-test, 

Mann-Whitney, ANOVA, and Kruskal-Wallis) and DTREG (CART). 

 
3. Results 
 
 
3.1. Experimental fish and husbandry 
 
 All water quality parameters were appropriate throughout the experiment (Table 

1).  However, starting in May 2008, signs of stress (i.e., decreased appetite, lordosis, 

lethargy, hemorrhaging) and fungus were noticed on some fishes.  Salt treatments (10%) 

were administered to each tank from August 2008 to February 2009 to reduce stress and 
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prevent disease development (see arrows on Figure 3).  As a result, seven fish died during 

the experiment, three fed alewife and four fed round goby.      

 
3.2. Diet 
 

Whole body lipid was significantly higher in alewife (8.6 ± 0.1%) than in round 

goby (2.9 ± 0.0%) (independent t-test, t = 61.07, df = 4, p < 0.001).  The fatty acid 

composition of the two different diets is presented in Table 2.      

 The percentage of saturated fatty acids (SAFA), monounsaturated fatty acids 

(MUFA), and the ratio of n-3/n-6 for the diet were higher in alewife than in round goby 

(Table 2; independent t-test, t = 58.82, df = 4, p < 0.001, t = 26.29, df = 4, p < 0.001, t = 

20.00, df = 4, p < 0.001, respectively).  In contrast, the sum of n-3 and n-6 as well as the 

percentage of PUFA were higher in round goby (Table 2; independent t-test, t = 12.30, df 

= 4, p < 0.001; t = 4.17, df = 4, p < 0.05; t = 9.88, df = 4, p < 0.01, respectively).  

Hexadecanoic acid (16:0) was the dominant SAFA in both species but was significantly 

at a higher concentration in alewife (Table 2; independent t-test, t = 31.24, df = 4, p < 

0.001).  The main MUFA consisted of 16:1n-7 and 18:1n9, however alewife had the 

higher concentration of 16:1n-7 (Table 2; independent t-test, t = -111.73, df = 4, p < 

0.001) and round goby had the higher concentration of 18:1n-9 (Table 2; independent t-

test, t = 46.97, df = 4, p < 0.001).  The dominant fatty acids from the n-6 family in both 

species were 18:2n-6, ARA, and 22:5n-6.  Round goby exhibited the higher level of ARA 

(Table 2; independent t-test, t = -46.86, df = 4, p < 0.001) and 22:5n-6 (Table 2; 

independent t-test, t = -63.27, df = 4, p < 0.001), whereas alewife contained the higher 

level of 18:2n-6 (Table 2; independent t-test, t = 50.36, df = 4, p < 0.001).  The main fatty 

acids from the n-3 family were 18:3n-3, EPA, and DHA.  The concentrations of EPA and 
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DHA were higher in round goby compared to alewife (Table 2; independent t-test, t = -

46.42, df = 4, p < 0.001; t = -33.79, df = 2, p < 0.001, respectively), whereas 18:3n-3 was 

higher in alewife (Table 2: independent t-test, t = 29.54, df = 4, p < 0.001).  The only 

fatty acids that were not significantly different between both species were 15:0 and 

18:1n-7.   

  
3.3. Yellow perch reproduction and survival 
 
 Spawning of yellow perch occurred early morning or late afternoon. Although 

efforts were made to strip eggs by hand from each female, some females started to spawn 

in tanks early morning prior to hand stripping. Overall, eggs from 31 females (12 fed the 

alewife diet and 19 fed the round goby diet) were collected for lipids and fatty acid 

analysis.  

 Females fed round goby had a significant increase in body weight of 18.3 g in 

comparison to fish fed alewife with an increase of 6.0 g (Table 3; Kruskal-Wallis, Chi-

Square = 16.97, df = 2, p < 0.05, Bonferroni post hoc test, p < 0.001).  

 Absolute fecundity and relative fecundity were not significantly different between 

the two dietary treatments (Table 4; independent t-test, t = -0.65, df = 17, p = 0.52 and t = 

0.44, df = 3.37, p = 0.69, respectively).  Regardless of the dietary treatment, there was no 

relationship between yellow perch length and relative fecundity (Figure 4; fish fed 

alewife:  R2 = 0.77, F = 6.68, df = 1, p > 0.05 and fish fed round goby:  R2 = 0.03, F = 

0.39, df = 1, p > 0.05).   

Embryo survival at the pigmented eyed stage for both alewife-fed (n = 7) and 

round goby-fed (n = 3) fish was very poor, 10.4% and 30.3 %, respectively and did not 

differ significantly (Table 4; independent t-test, F = 6.77, df = 2.3, p > 0.05).  Once again 
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many fish spawned in the tank, which impacted our ability to successfully fertilize the 

eggs. 

 Female HSI was not statistically different between yellow perch fed the alewife 

diet (1.8%) and round goby diet (1.9%; Table 4; independent t-test, t = 0.42, df = 8, p = 

0.69).  Pseudo-GSI (alewife-fed fish 31% and round goby-fed fish 29%) also did not 

differ significantly (Table 4; independent t-test, t = 0.28, df = 3.28, p = 0.79).   

 
3.4. Lipid concentration and fatty acid signatures in yellow perch tissues 
 
 Lipids were extracted from all yellow perch tissues sampled at the beginning (n = 

8) and at the end of the experiment.  Twenty six fatty acids were consistently identified in 

all lipid fractions (total, neutral, and phospholipids) from each tissue examined. 

 
3.4.1. Eggs  
 
3.4.1.1. Total, neutral, and phospholipids  
 
 The concentration of total lipid in yellow perch eggs was significantly higher in 

fish fed alewife compared to fish fed round goby (Table 5; Mann-Whitney, U = 61.5, p < 

0.05).  The eggs of fish fed the alewife diet had a significantly higher percentage of 

neutral lipids (Table 5; Mann-Whitney, U = 36.5, p < 0.05), while eggs of fish fed the 

round goby diet had a significantly higher percent of phospholipids (Table 5; Mann-

Whitney, U = 36.5, p < 0.05).   

  

3.4.1.2. Fatty acids in neutral lipids of eggs 
 
    The sum of SAFA in the neutral lipid fraction of yellow perch eggs was not 

significantly different between dietary treatments (Table 6; Mann-Whitney, U = 104.0, p 

= 0.685).  The dominant fatty acid among SAFA was 16:0 but, its concentration did not 
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differ significantly between dietary treatments (Table 6; Mann-Whitney, U = 105.0, p = 

0.715).  The only SAFA difference between the two dietary treatments was 14:0, with 

eggs of the fish fed alewife having a significantly higher concentration (Table 6; Mann-

Whitney, U = 33.0, p < 0.01).   

 The sum of MUFA was significantly higher in eggs of fish fed round goby when 

compared to the eggs of fish fed alewife (Table 6; Mann-Whitney, U = 6.0, p < 0.01).  

The major fatty acid found in MUFA was 18:1n-9, which also was significantly higher in 

eggs of yellow perch fed alewife compared to eggs of fish fed round goby (Table 6; 

Mann-Whitney, U = 65.5, p < 0.05).  Palmitoleic acid (16:1n-7) was a second major fatty 

acid of MUFA, which was significantly higher in eggs of round goby-fed fish (Table 6; 

Mann-Whitney, U = 0.0, p < 0.01).   

 In the neutral lipid fraction of eggs in fish fed round goby only linoleic acid, total 

PUFA, and ratio of n-3 to n-6 was similar to the diet (Table 6).  The sum of PUFA was 

significantly higher in eggs of fish fed alewife when compared to eggs of fish fed round 

goby (Table 6; Mann-Whitney, U = 10.0, p < 0.01).  The sum of n-6 was similar in the 

two dietary treatments (Table 6; Mann-Whitney, U = 68.0, p = 0.062).  The major fatty 

acid from the n-6 family was 18:2n-6.  There was a higher concentration of linoleic acid 

(12.8%) in neutral lipid fraction of eggs in fish fed round goby compared to the diet (3% - 

Table 6; Mann-Whitney, U = 62.0, p < 0.05).  The sum of n-3 was significantly higher in 

the alewife-fed fish (Table 6; Mann-Whitney, U = 8.0, p < 0.01).  DHA was the main 

fatty acid from the n-3 family and also was significantly higher in the fish fed alewife 

(Table 6; Mann-Whitney, U = 24.0, p < 0.01).  The ratio of n-3 to n-6 was significantly 

higher in the fish fed alewife (Table 6; Mann-Whitney, U = 31.0, p < 0.01). 
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 CART analysis performed using fatty acids in the neutral lipid fraction of eggs 

revealed that 18:0 was the most important fatty acid discriminating between the two 

dietary treatments (Figure 5).  If the percentage of 18:0 in yellow perch eggs was greater 

than 13.14% then the fish were fed alewife.  Misclassification was 38.71% on the first 

node and 0% on the second and third nodes. 

 
3.4.1.3. Fatty acids in phospholipids of eggs 
 
  The sum of SAFA in the phospholipid fraction was nearly seven times higher than 

neutral lipid fractions for eggs, but was not significantly different between dietary 

treatments (Table 6; Mann-Whitney, U = 110.5, p = 0.89).  The major fatty acid was 

16:0, which was not significantly different between treatments (Table 6; Mann-Whitney, 

U = 97.0, p = 0.49).  Stearic acid (18:0) was also abundant in SAFA and was significantly 

higher in fish fed round goby (Table 6; Mann-Whitney, U = 53.5, p < 0.05). 

 The sum of MUFA in the phospholipid fraction of eggs was nearly half the 

concentration in comparison to the neutral lipid fraction of eggs and was significantly 

higher in eggs of fish fed round goby (Table 6; Mann-Whitney, U = 19.0, p < 0.01).  The 

main fatty acid was 18:1n-9, which was similar in dietary treatments (Table 6; Mann-

Whitney, U = 111.5, p = 0.92).  The concentration of 16:1n-7 was almost two times 

higher in eggs of fish fed round goby compared to eggs of fish fed alewife (Table 6; 

Mann-Whitney, U = 0.0, p < 0.01). 

 In the phospholipid fraction linoleic acid, ARA, EPA, and total PUFA were 

retained (Table 6).  The sum of PUFA and n-3 fatty acids were significantly higher in 

eggs of fish fed alewife compared to the ones fed round goby (Table 6; Mann-Whitney, U 

= 56.0, p < 0.05 and U = 35.0, p < 0.01, respectively).  The major n-3 fatty acids were 
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EPA and DHA.  EPA was not significantly different between dietary treatments, but 

DHA was significantly higher in eggs of fish fed alewife compared to eggs of fish fed 

round goby (Table 6; Mann-Whitney, U = 100.5, p = 0.58 and U = 36.0, p < 0.01, 

respectively).  The sum of n-6 was similar to for both dietary treatments (Table 6; Mann-

Whitney, U = 93.5, p = 0.41) and consisted mainly of 18:2n-6 and ARA.  Linoleic acid 

was significantly higher in eggs of fish fed round goby (Table 6; Mann-Whitney, U = 

29.0, p < 0.01) and ARA was significantly higher in eggs of fish fed alewife (Table 6; 

Mann-Whitney, U = 37.5, p < 0.01).  The ratio of n-3 to n-6 was not significantly 

different (Table 6; Mann-Whitney, U = 103.0, p = 0.65). 

 CART analysis performed using fatty acids of eggs from the phospholipid 

fraction revealed that only 18:0 was the most important fatty acid for distinguishing 

between the two dietary treatments (Figure 6).  If the percentage of 18:0 was greater than 

2.17% then fish were fed round goby. Misclassification was 38.71% on the first node and 

0% on the second and third nodes. 

 
3.4.2. Liver 
 
3.4.2.1. Total, neutral, and phospholipids 
 
 Although, total lipids and neutral lipid fractions in liver were much higher in fish 

at the start of the experiment (7.6% and 72.6%, respectively) compared to the results after 

dietary treatments (round goby-fed fish 3.1% and alewife-fed fish 3.8% and round goby-

fed fish 34.5% and alewife-fed fish 36.7%, respectively), there were no significant 

differences (Table 5; Kruskal-Wallis, Chi-Square = 13.05, df = 2, p < 0.01, Tamhanes 

post hoc test, p > 0.05 and Chi-Square = 7.41, df = 2, p < 0.05, Tamhanes post hoc test, p 

> 0.05, respectively).  There was also no significant difference in the phospholipid 
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fraction of liver among groups, even though females at the start of the experiment had a 

much lower concentration (27.4%) than the ones (round goby-fed fish 65.5% and 

alewife-fed fish 63.3 %) fed both diets (Table 5; Kruskal-Wallis, Chi-Square = 7.41, df = 

2, p < 0.05, Tamhanes post hoc test, p > 0.05).  

 
3.4.2.2. Fatty acids in neutral lipids of liver 
 

The sum of SAFA in the neutral lipid fraction of liver was significantly higher in 

fish fed alewife when compared to fish at the start of the experiment (Table 7; Kruskal-

Wallis, Chi-Square = 9.93, df = 2, p < 0.01, BCF α = 0.008, Tamhanes post hoc test, p < 

0.005).  SAFA was made up mainly of 16:0, which was also higher in liver of fish fed 

alewife, but no significant difference was found between the two dietary treatments 

(Table 7; Kruskal-Wallis, Chi-Square = 9.82, df = 2, p < 0.01, BCF α = 0.002, Tamhanes 

post hoc test, p > 0.002).   

The sum of MUFA for the neutral lipid fraction of liver was the highest in fish at 

the start of the experiment, but did not differ statistically due to high variation (Table 7; 

Kruskal-Wallis, Chi-Square = 10.94, df = 2, p < 0.01, BCF α = 0.008, Tamhanes post hoc 

test, p > 0.008).  MUFAs consisted primarily of 16:1n-7 and 18:1n-9.  Both of these fatty 

acids were at least twofold higher in fish at the start of the experiment, but only 18:1n-9 

was statistically different when compared to liver in fish fed round goby (Table 7; 

Kruskal-Wallis, Chi-Square = 15.20, df = 2, p < 0.001, BCF α = 0.002, Tamhanes post 

hoc test, p < 0.002).  The concentration of 16:1n-7 was not significantly different among 

groups (Table 7; Kruskal-Wallis, Chi-Square = 11.92, df = 2, p < 0.01, BCF α = 0.002, 

Tamhanes post hoc test, p > 0.002). 
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 The sum of PUFA for the neutral lipid fraction of liver was the highest in fish at 

the start of the experiment, but was not significantly different in comparison to liver of 

fish fed the two dietary treatments (Table 7; Kruskal-Wallis, Chi-Square = 6.79, df = 2, p 

< 0.05, BCF α = 0.008, Tamhanes post hoc test, p > 0.008).  The sum of n-6 was also 

significantly the highest in liver of fish at the start of the experiment (Table 7; Kruskal-

Wallis, Chi-Square = 15.56, df = 2, p < 0.001, BCF α = 0.008, Tamhanes post hoc test, p 

< 0.002).  Linoleic acid was the main n-6 fatty acid, initially, the concentration in yellow 

perch liver was 13.2% and after the experiment the concentration in fish fed alewife and 

round goby was 5.2% and 4.4%, respectively (Table 7; Kruskal-Wallis, Chi-Square = 

17.80, df = 2, p < 0.001, BCF α = 0.002, Tamhanes post hoc test, p < 0.001).  ARA was 

relatively similar in liver of fish fed the two dietary treatments as well as four times 

higher than fish at the start of the experiment (Table 7; Kruskal-Wallis, Chi-Square = 

17.49, df = 2, p < 0.001, BCF α = 0.002, Tamhanes post hoc test, p < 0.001).  The sum of 

n-3 was the highest in liver of fish fed alewife, but was not significantly different among 

groups (Table 7; Kruskal-Wallis, Chi-Square = 0.89, df = 2, p = 0.641, BCF α = 0.008).  

Regardless of dietary treatment, linolenic acid in the neutral lipid fraction of liver 

remained low throughout the experiment (<1.5%) especially compared to the 

concentration in both round goby (2.5%) and alewife (4.5% - Table 7; Kruskal-Wallis, 

Chi-Square = 11.15, df = 2, p < 0.01, BCF α = 0.002, Tamhanes post hoc test, p > 0.002).   

The liver in fish fed alewife also had the highest concentration of DHA, but was also not 

significantly different from the other groups (Table 7; Kruskal-Wallis, Chi-Square = 1.94, 

df = 2, p = 0.38, BCF α = 0.002).  EPA was the second major fatty acid in the sum of n-3 

and contained similar concentrations among the three groups (Table 7; Kruskal-Wallis, 

Chi-Square = 2.33, df = 2, p = 0.31, BCF α = 0.002).  Liver of fish fed the two dietary 
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treatments had significantly higher ratios of n-3 to n-6 compared to fish at the start of the 

experiment (Table 7; Kruskal-Wallis, Chi-Square = 15.52, df = 2, p < 0.001, BCF α = 

0.008, Tamhanes post hoc test, p < 0.002). 

 CART analysis performed using fatty acids in the neutral lipid fraction of liver 

revealed that 22:5n-6 was the most important fatty acid for distinguishing between the 

dietary treatments (Figure 7).  If the percentage of 22:5n-6 was less than or equal to 

0.17% then fish were fed round goby and if it was greater than 0.17% then fish were fed 

alewife.  Misclassification was 33.33% on the first node and 0% for the second and third 

node.  

 
3.4.2.3. Fatty acids in phospholipids of liver 
 
 The sum of SAFA for the phospholipid fraction of liver was similar among 

groups (Table 7; Kruskal-Wallis, Chi-Square = 2.51, df = 2, p = 0.29, BCF α = 0.008). 

The major fatty acid, 16:0 was the highest in liver of fish at the start of the experiment 

compared to the two dietary treatments, but was not statistically different (Table 7; 

Kruskal-Wallis, Chi-Square = 8.68, df = 2, p < 0.05, BCF α = 0.002, Tamhanes post hoc 

test, p > 0.002).  Stearic acid (18:0) was statistically higher in liver of fish fed round goby 

compared to liver of fish at the start of the experiment (Table 7; Kruskal-Wallis, Chi-

Square = 13.44, df = 2, p < 0.01, BCF α = 0.002, Tamhanes post hoc test, p < 0.001).    

The sum of MUFA for the phospholipid fraction of liver was highest in fish at the start of 

the experiment, while the liver of the two dietary treatments was similar (Table 7; 

Kruskal-Wallis, Chi-Square = 3.17, df = 2, p = 0.21, BCF α = 0.008).  The three major 

MUFA were 18:1n-9, 18:1n-7, and 16:1n-7.  Liver in fish at the start of the experiment 

had the highest concentration of 16:1n-7 compared to the two dietary treatments (Table 7; 
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Kruskal-Wallis, Chi-Square = 11.09, df = 2, p < 0.01, BCF α = 0.002, Tamhanes post hoc 

test, p < 0.001), whereas 18:1n-9 and 18:1n-7 were not significantly different among 

groups (Table 7; Kruskal-Wallis, Chi-Square = 6.55, df = 2, p < 0.05, BCF α = 0.002, 

Tamhanes post hoc test, p > 0.002 and Chi-Square = 9.90, df = 2, p < 0.01, BCF α = 

0.002, Tamhanes post hoc test, p > 0.002, respectively). 

The sum of PUFA was twofold higher in the phospholipid fraction of liver in comparison 

to the neutral lipid fraction of liver and were similar throughout the three groups (Table 

7; Kruskal-Wallis, Chi-Square = 3.20, df = 2, p = 0.20, BCF α = 0.008).  For the sum of 

n-6, liver in fish fed the two dietary treatments were significantly higher than fish at the 

start of the experiment (Table 7; Kruskal-Wallis, Chi-Square = 14.19, df = 2, p < 0.01, 

BCF α = 0.008, Tamhanes post hoc test, p < 0.005).  ARA was the main fatty acid found 

in the n-6 group and was considerably higher in liver of fish fed the two dietary 

treatments (Table 7; Kruskal-Wallis, Chi-Square = 15.27, df = 2, p < 0.001, BCF α = 

0.002, Tamhanes post hoc test, p < 0.001).  Linoleic acid was the secondary fatty acid 

that made up the n-6 family.  This fatty acid was twofold higher in liver of fish at the start 

of the experiment compared to liver of fish fed round goby (Table 7; Kruskal-Wallis, 

Chi-Square = 15.05, df = 2, p < 0.01, BCF α = 0.002, Tamhanes post hoc test, p < 0.001).  

The sum of n-3 was not significantly different among the three groups (Table 7; Kruskal-

Wallis, Chi-Square = 3.84, df = 2, p = 0.20, BCF α = 0.008).  Regardless of dietary 

treatment, linolenic acid in the phospholipid fraction of liver remained low throughout 

the experiment (<1.0%) especially compared to the concentration in both round goby 

(2.5%) and alewife (4.5% - Table 7; Kruskal-Wallis, Chi-Square = 14.17, df = 2, p < 

0.01, BCF α = 0.002, Tamhanes post hoc test, p > 0.002).  DHA was the primary fatty 

acid of the n-3 family and concentrations (initial 33.2%, fish fed round goby 30.4% and 
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fish fed alewife 32.7%) were similar throughout the three groups (Table 7; Kruskal-

Wallis, Chi-Square = 2.14, df = 2, p = 0.34, BCF α = 0.002).  EPA was the second main 

n-3 fatty acid, where the concentration was similar among the groups (Table 7; Kruskal-

Wallis, Chi-Square = 1.55, p = 0.46, BCF α = 0.008).  The ratio, sum of n-3 to sum of n-

6, was significantly lower in liver of fish fed the two dietary treatments; almost half when 

compared to liver of fish at the start of the experiment (Table 7; Kruskal-Wallis, Chi-

Square = 14.50, df = 2, p < 0.01, BCF α = 0.008, Tamhanes post hoc test, p < 0.001). 

 CART analysis performed using fatty acids in the phospholipid fraction of liver 

revealed that only 22:1n-11 was the most important fatty acid between the dietary 

treatments (Figure 8).  If the percentage of 22:1n-11 was less than or equal to 0.33% then 

fish were fed round goby and if it was less than 0.33% then fish were fed alewife.  

Misclassification for the first node was 30.77% and 0% for the second and third node. 

 
3.4.3. Muscle 
 
3.4.3.1. Total lipids 

 Lipid content in muscle of fish was significantly different among groups with fish 

fed round goby having significantly lower total lipid content than fish at the start of the 

experiment (Table 5; Kruskal-Wallis, Chi-Square = 6.43, df = 2, p < 0.05, BCF α = 0.05, 

Tamhanes post hoc test, p < 0.05).   

 
3.4.3.2. Fatty acids in total lipids of muscle 
 
 Fish at the start of the experiment had a significantly higher sum of SAFA in total 

lipid of muscle than muscle of fish fed alewife (Table 8; Kruskal-Wallis, Chi-Square = 

10.30, df = 2, p < 0.05, BCF α = 0.008, Tamhanes post hoc test, p < 0.005).  Once again, 

SAFA consisted of mostly 16:0 with the highest concentration in muscle of fish at the 
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start of the experiment, but was not statistically different (Table 8; Kruskal-Wallis, Chi-

Square = 10.42, df = 2, p < 0.01, BCF α = 0.002, Tamhanes post hoc test, p > 0.002).  

The other main fatty acid of SAFA was 18:0, which was similar in muscle among the 

three groups of fish (Table 8; Kruskal-Wallis, Chi-Square = 8.00, df = 2, p < 0.05, BCF α 

= 0.002, Tamhanes post hoc test, p > 0.002). 

 Fish sampled at the start also had a significantly higher sum of MUFA in total 

lipid of muscle than fish fed alewife, with the lowest concentration in muscle of fish fed 

round goby (Table 8; Kruskal-Wallis, Chi-Square = 12.20, df = 2, p < 0.01, BCF α = 

0.008, Tamhanes post hoc test, p < 0.005).  Oleic acid was the main fatty acid in MUFA 

and was statistically higher in muscle of fish at the start of the experiment (Table 8; 

Kruskal-Wallis, Chi-Square = 16.42, df = 2, p < 0.001, BCF α = 0.002, Tamhanes post 

hoc test, p < 0.001).  Palmitoleic acid was a second major fatty acid of MUFA and was 

higher in muscle of both fish at the start of the experiment and fish fed round goby, but 

was not significantly higher in muscle of fish fed alewife (Table 8; Kruskal-Wallis, Chi-

Square = 11.10, df = 2, p < 0.01, BCF α = 0.002, Tamhanes post hoc test, p > 0.002).   

    The lowest sum of PUFA was in muscle of fish at the start of the experiment 

with the highest in muscle of fish fed round goby (Table 8; Kruskal-Wallis, Chi-Square = 

17.30, df = 2, p < 0.001, BCF α = 0.008, Tamhanes post hoc test, p < 0.001).  For the sum 

of n-6, muscle of fish at the start of the experiment was significantly lower than in muscle 

of fish fed the two dietary treatments (Table 8; Kruskal-Wallis, Chi-Square = 17.67, df = 

2, p < 0.001, BCF α = 0.008, Tamhanes post hoc test, p < 0.001).  Linoleic acid was the 

primary fatty acid of the n-6 family, with the highest concentration found in muscle of 

fish at the start of the experiment (Table 8; Kruskal-Wallis, Chi-Square = 13.58, df = 2, p 

< 0.01, BCF α = 0.002, Tamhanes post hoc test, p < 0.002).  ARA was the secondary 
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fatty acid of the n-6 family and had a lower concentration in muscle of fish at the start of 

the experiment compared to muscle of fish fed the two dietary treatments (Table 8; 

Kruskal-Wallis, Chi-Square = 19.50, df = 2, p < 0.001, BCF adjustment α = 0.002, 

Tamhanes post hoc test, p < 0.001).  The sum of n-3 was not significantly different 

among muscle of the three groups (Table 8; Kruskal-Wallis, Chi-Square = 4.52, df = 2, p 

= 0.11, BCF α = 0.008).  DHA was the major fatty acid in n-3 and had the highest 

concentration in fish fed round goby and was significantly different compared to fish at 

the start of the experiment (Table 8; Kruskal-Wallis, Chi-Square = 5.47, df = 2, p = 0.07, 

BCF α = 0.002).  EPA was the other major fatty acid in n-3.  The concentration of EPA 

(7.8%) in the muscle of fish fed alewife was similar to the concentration of EPA (7.2%) 

in their diet, whereas muscle in fish fed round goby (8.7%) had a slightly lower 

concentration than the diet fish (10.4%).  Although, the concentration of EPA in muscle 

of fish fed round goby was lower than the diet fish themselves, it was higher than the 

initial concentration (7.4%) of yellow perch (Table 8; Kruskal-Wallis, Chi-Square = 

11.78, df = 2, p < 0.01, BCF α = 0.002, Tamhanes post hoc test, p < 0.001).  The ratio of 

n-3 to n-6 was significantly higher in muscle of fish at the start of the experiment in 

comparison to muscle of fish fed the two dietary treatments (Table 8; Kruskal-Wallis, 

Chi-Square = 16.04, df = 2, p < 0.001, BCF α = 0.008, Tamhanes post hoc test, p < 

0.005). 

 CART analysis performed using fatty acids from total lipid of muscle revealed 

that 20:2n-6 was the most important fatty to distinguish between the dietary treatments 

(Figure 9).  If the percentage of 20:2n-6 was less than or equal to 0.29% then fish were 

fed round goby.  The second most important fatty acid that was responsible for 

distinguishing between the dietary treatments was 17:0. If the percentage of 17:0 was 

 
 



27 
 
greater than or equal to 1.22% then fish were fed round goby and if it was greater, then 

fish were fed alewife.  Misclassification was 33.33%, 6.25%, 12.50%, 0% and 0% for 

node 1, node 2, node 3, and node 4 and 5, respectively. 

 
3.4.4. Fat 
 
3.4.4.1. Total lipids  

 Lipid content in visceral fat of fish was significantly higher at the start of the 

experiment compared to visceral fat of fish fed the two dietary treatments (Table 5; 

Kruskal-Wallis, Chi-Square = 8.85, df = 2, p < 0.05, BCF α = 0.05, Tamhanes post hoc 

test, p < 0.05).   

 
3.4.4.2. Fatty acids in total lipids of fat 
 
 The sum of SAFA in visceral fat was similar throughout all three groups of fish 

(Table 9; Kruskal-Wallis, Chi-Square = 3.12, df = 2, p = 0.21, BCF α = 0.008).  The main 

fatty acid in SAFA of visceral fat was 16:0 and was not significantly different among the 

three groups of fish (Table 9; Kruskal-Wallis, Chi-Square = 3.77, df = 2, p = 0.15, BCF α 

= 0.002). 

 The sum of MUFA was statistically higher in visceral fat of fish fed round goby 

fish when compared to visceral fat of fish at the start of the experiment (Table 9; Kruskal-

Wallis, Chi-Square = 15.33, df = 2, p < 0.001, BCF α = 0.008, Tamhanes post hoc test, p 

< 0.001).  The main MUFA was 18:1n-9, which was the highest in visceral fat of fish at 

the start of the experiment, but was not significantly different due to high variation in 

visceral fat of fish fed the two dietary treatments (Table 9; Kruskal-Wallis, Chi-Square = 

7.35, df = 2, p < 0.05, BCF α = 0.002, Tamhanes post hoc test, p > 0.002).  The second 

MUFA was 16:1n-7, which was significantly higher in visceral fat of both fish at the start 
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of the experiment and fish fed round goby in comparison to visceral fat of fish fed 

alewife (Table 9; Kruskal-Wallis, Chi-Square = 14.82, df = 2, p < 0.01, BCF α = 0.002, 

Tamhanes post hoc test, p < 0.002). 

 For the PUFA, visceral fat of fish fed alewife had the highest concentration 

compared to visceral fat of both fish at the start of the experiment and fish fed round 

goby, but was not significantly different due to high variation among all three groups 

(Table 9; Kruskal-Wallis, Chi-Square = 13.84, df = 2, p < 0.01, BCF α = 0.008, 

Tamhanes post hoc test, p > 0.008).  The sum of n-6 was also not statistically different 

among visceral fat of the three groups (Table 9; Kruskal-Wallis, Chi-Square = 4.64, df = 

2, p = 0.10, BCF adjustment α = 0.008).  The most abundant n-6 fatty acid was 18:2n-6.  

The concentration of linoleic acid in both round goby (3.0%) and alewife (5.0%) was 

notably lower than the initial concentration found in fat of yellow perch (16.3%).  

Furthermore, the concentration of linoleic acid in fat of both dietary treatments was lower 

than that of the initial concentration of yellow perch (Table 9; Kruskal-Wallis, Chi-

Square = 15.07, df = 2, p < 0.01, BCF α = 0.002, Tamhanes post hoc test, p < 0.002).  

ARA was the second fatty acid and was significantly higher in visceral fat of fish fed 

round goby in comparison to visceral fat of fish at the start of the experiment (Table 9; 

Kruskal-Wallis, Chi-Square = 16.14, df = 2, p < 0.001, BCF α = 0.002, Tamhanes post 

hoc test, p < 0.001).  For the sum of n-3, there were no statistical differences among 

visceral fat of the three groups due to high variation in visceral fat of fish fed alewife 

(Table 9; Kruskal-Wallis, Chi-Square = 10.89, df = 2, p < 0.01, BCF α = 0.008, 

Tamhanes post hoc test, p > 0.008).  DHA was the most abundant fatty acid in the n-3 

family and the concentration in visceral fat of fish fed alewife was significantly higher 

than visceral fat of both fish at the start of the experiment as well as fish fed round goby 

 
 



 

(Table 9; Kruskal-Wallis, Chi-Square = 11.38, df = 2, p < 0.01, BCF α = 0.002, 

Tamhanes post hoc test, p < 0.002).  EPA was the second main fatty acid, but the 

concentration in visceral fat among the three groups was similar (Table 9; Kruskal-

Wallis, Chi-Square = 0.19, df = 2, p = 0.91, BCF α = 0.002). 

     CART analysis performed using fatty acids in total lipid of fat revealed that 18:0 was 

the most important fatty acid responsible for distinguishing between the dietary 

treatments (Figure 10).  If the percentage of 18:0 was less than or equal to 11.21% then 

the yellow perch were fed alewife.  Misclassification was 33.33% on the first node and 

0% on the second and third nodes.   

 
4. Discussion 
 
 
 The yellow perch is an important species both ecologically and economically in 

the Laurentian Great Lakes and it is thus imperative to better understand its decline.  I 

investigated the effects of consuming two non-native species (alewife and round goby) on 

female yellow perch reproduction using lipid and fatty acid composition of their diets, 

eggs, liver, muscle, and visceral fat.      

 It is known that a diet deficient in essential fatty acids (EFA) can inhibit growth.  

Reduced growth rates were found in juvenile turbot, Scophthalmus maximus, fed a diet 

consisting of linseed oil or olive oil in replacement of fish oil, which increased linoleic 

and linolenic acid and reduced ARA, EPA, and DHA (Bell et al. 1999).  Depressed 

growth was also observed in rainbow trout juveniles, Onchorynchus mykiss, fed a diet 

with 18:1n-9 as the only source of lipid (Rinchard et al. 2007).  

 4.1. Growth, fecundity, embryo survival at eyed stage, HSI and pseudo-GSI 
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 In my study, female yellow perch fed the two different diets exhibited a higher 

body mass at the end of the experiment compared to the weight of yellow perch at the 

start.  Females fed round goby had a significantly higher body weight at the end of the 

experiment than the weight of fish at the start.  However, there were no significant 

differences detected in fecundity, embryo survival at eyed stage, HSI or pseudo-GSI.  

Therefore, despite the lower weights of fish fed alewife, both diets appeared to satisfy the 

EFA requirements for reproduction by yellow perch.           

The sample size for yellow perch, especially group fed alewife (n = 4), was small; 

this could have been a possible reason that no relationship was found between length of 

fish and absolute fecundity.  Yellow perch embryo survival rate for both dietary 

treatments was low.  Similar results were found in wild Eurasian perch embryos at eyed 

stage under controlled reproduction, where ribbons were categorized into four groups 

with the lowest grade having an embryo survival rate of 9.71% (Zarski et al. 2011).  In 

the present study, several fish started to spawn in tanks prior to spawning them by hand, 

which prevented obtaining the entire egg mass to estimate the fecundity and survival of 

yellow perch embryos at pigmented eyed stage.  When the yellow perch were spawned 

by hand several of the egg ribbons were of low quality, indicated by the ribbon separating 

in several places.  This could explain the non-significant, but reduced rate of embryo 

survival.  It would be interesting to examine the oil droplet fragmentation in ovulating 

eggs of yellow perch as was done in the study by Zarski et al. (2011) on Eurasian perch.  

They found that highly fragmented oil droplets in eggs of perch were correlated with a 

low rate of embryo survival (Zarski et al. 2011).   

 Although the percentage of lipids found in the liver of females fed alewife was 

slightly higher, yet not significant compared to fish fed round goby their HSI was lower 
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than for fish fed round goby.  Higher lipid content was also observed in eggs of fish fed 

alewife in comparison to fish fed round goby.  These results reflected the lipid 

composition of their diets, with alewife presenting a higher lipid concentration than round 

goby.  Similarly, Sheikh-Eldin et al. (1996) found that wild Macquarie perch Macquaria 

australasica, fed a higher lipid content than cultured perch, exhibited a higher percentage 

of lipids (28.3%) in their liver compared to cultured perch (22.5%), but their HSI (0.6%) 

was lower than the ones reported for cultured perch (1.2%).  The authors attributed this 

higher percentage of lipids in liver of wild perch to the increase of DHA from 10.6% in 

dietary lipids to over 16% in their liver (Sheikh-Eldin et al. 1996).  

The pseudo-GSI values found in my yellow perches’ diet were comparable to GSI 

values found in mature female Eurasian perch collected in Sweden (22%; Noaksson et al. 

2005) and France (25%; Sulistyo et al. 1998).  According to the GSI values found in the 

present study, eggs would be considered viable, however, more research will have to be 

done to examine why embryo survival was low.  Possible reasons for this could be related 

to insufficient accumulation of lipids in the eggs or increased oil droplet fragmentation in 

ovulated eggs (Zarski et al. 2011).   

4.2. Fatty acid compositions in yellow perch, round goby and alewife 

Previous studies have shown that alewife in Lake Michigan are rich in 14:0, 16:0, 

16:1n-7, 18:0, 18:1n-9, linoleic acid, linolenic acid, ARA, EPA, and DHA (Honeyfield et 

al. 2009, Czesny et al. 2011).  In this study, concentrations of 14:0, 16:1n-7, 18:0, and 

EPA were similar to the previous studies.  The concentrations of 16:0, 18:1n-9, linoleic, 

and linolenic acid were higher in the alewife of this study, whereas ARA was lower when 

compared to both previous studies (Table 3).  Another difference found between the 

 
 



32 
 
present study and previous studies was in the concentration of DHA, which was almost 

twofold lower in this study.  Since linolenic acid concentration in my study was higher 

and DHA was lower it could be suggested that desaturase and elongase activity was 

lower in the alewife used in my study compared to enzyme activity in alewife of previous 

studies.  Another explanation of these differences could be due to seasonal variation in 

fatty acids.  In the present study, alewife were collected in early spring, whereas in 

previous studies they were collected in fall (Honeyfield et al. 2009) as well as in all three 

seasons (spring, summer, and fall – Czesny et al. 2011).  Lipid concentrations in alewife 

can be highly variable in the spring compared to the summer and summer concentrations 

tend to be lower than in the fall (Czesny et al. 2011).  

Czesny et al. (2011) also quantified the fatty acid composition of round goby from 

Lake Michigan and found that 16:0, 16:1n-7, 18:1n-9, 18:1n-7, ARA, 22:5n-6, EPA, 

22:5n-3, and DHA were the most abundant fatty acids.  This study indicated 

concentrations of 16:0, ARA, and EPA (Table 3) were similar to my study, whereas the 

concentrations of 18:1n-9 and 18:1n-7 were slightly lower.  Concentrations of the 

remaining fatty acids, 16:1n-7, 22:5n-6, 22:5n-3, and DHA, were significantly higher in 

my round goby compared to the previous study by Czesny et al. (2011).  As a results of 

this relatively higher concentrations of ARA, EPA, DHA, linoleic, and linolenic acid 

(i.e., essential fatty acids) in both alewife and round goby suggest that these species are 

sufficient prey for higher food chain fish (e.g., yellow perch, lake trout).  

In most experiments dietary fatty compositions have been reflected in the tissues 

of consumers.  Kirsch et al. (1998) found that only 3 weeks were required for Atlantic 

cod, Gadus morhua, to completely reflect their dietary fatty acids.  Although, similar 

results were found in Eurasian perch, the time necessary for dietary fatty acid reflection 
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in fish carcass, liver, and muscle was 76 days (Blanchard et al. 2008).  These results 

indicate that dietary fatty acid reflection in fish tissues is species specific.  On the other 

hand tissues of some fish species do not reflect the dietary fatty acid composition (Tocher 

2003).   Honeyfield et al. (2009) found this when lake trout were fed two different fish 

species (alewife and bloater) at different concentrations for approximately 2 years.  The 

authors measured the fatty acid composition in lake trout eggs and suggested that lake 

trout regulate the fatty acid composition found in their eggs physiologically.  Some fatty 

acids may be oxidized, where they are present in high concentration in the parent, but are 

low in their eggs (Henderson et al. 1984a, Tocher 2003). 

Since yellow perch are closely related to Eurasian perch, it was expected that 

dietary fatty acids would be incorporated in their tissues rapidly.  Although, yellow perch 

were fed exclusively on round goby or alewife for a year, a complete reflection of the diet 

in yellow perch tissues was not observed, especially in muscle and visceral fat tissue.  

The tissue that by and large reflected the dietary fatty acids was the liver.  The fatty acids 

found in the liver that were similar between round goby and the dietary treated yellow 

perch were 14:0, 16:0, 18:0, 18:1n-9, 18:1n-7, linoleic acid, ARA, 22:5n-6, and DHA.  In 

alewife the similar fatty acids in liver samples were 18:0, 16:1n-7, linoleic acid, ARA, 

22:5n-6, linolenic acid, 22:5n-3, and DHA (Table 7).  One possible reason for this 

incomplete reflection of dietary fatty acid composition could be due to the metabolism of 

fatty acids.  It is known that both 16:0 and 18:1n-9 are metabolized in fish for energy 

(Tocher 2003).  In the livers of yellow perch fed alewife 16:0 and 18:1n-9 had a 

significantly lower concentration than the dietary fish, which suggests the metabolism of 

these fatty acids.  The visceral fat tissue also had specific fatty acids that were reflected in 

the dietary treatments.  Concentrations of 16:0, 18:0, 18:1n-7, linoleic acid, ARA, 22:5n-
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6, linolenic acid, 22:5n-3, and DHA were similar in round goby and the yellow perch to 

which they were fed.  Concentrations of 14:0, 16:1n-7, 18:1n-9, 18:1n-7, linoleic acid, 

ARA, 22:5n-6, linolenic acid, 22:5n-3, and DHA were similar in alewife and the yellow 

perch to which they were fed. 

In most experiments, fatty acid composition of total lipids is investigated, 

however, in this experiment I wanted to examine specifically which dietary fatty acids 

were being incorporated in the eggs and liver.  Muscle tissue had low lipid content and it 

is known that fat tissue is mostly comprised of neutral lipids (Tocher 2003).  Therefore, 

total lipids were divided into neutral and phospholipid fractions and then compared to the 

diet.  Since samples of eggs were not collected before the experiment, fatty acid 

compositions of yellow perch eggs were compared to dietary fatty acid composition.  It 

was apparent that in the phospholipid fraction of eggs in fish fed alewife synthesis of 

linoleic acid into ARA occurred due to the lower concentration of linoleic acid in the diet 

and higher concentration of ARA in eggs.  However, in neutral lipid fraction, linoleic 

acid was accumulating in eggs of fish fed round goby.  Synthesis of linolenic acid into 

DHA appeared to occur in the neutral lipid fraction of eggs in fish fed alewife as well as 

in the phospholipid fraction of eggs regardless of dietary treatment due to the lower 

linolenic acid concentration and higher DHA concentration compared to their 

corresponding diet (Table 6). 

Incorporation of dietary ARA was observed in the neutral lipid fraction of liver.  

There was a significant increase in ARA concentration for fish fed both diets, which 

could have been a reason for the decrease in linoleic acid.  These results suggest that 

there was an incorporation of dietary fatty acids due to the increase of ARA in both fish.  

As mentioned previously, linoleic acid can transform into longer chain fatty acids such as 
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ARA by elongase and desaturase enzymes.  In the phospholipid fraction of liver there 

was also an increase in ARA for fish fed both diets.   

The lower concentrations of linolenic acid found in neutral lipid and phospholipid 

fractions of liver in comparison to both diets could be explained by the high DHA 

concentration initially in yellow perch liver and in both dietary treatments (Table 7).  The 

main product of linolenic acid desaturation and elongation is DHA.  Similar results were 

found in a study conducted by Bell et al. (2001), in which they investigated the fatty acid 

composition of liver and muscle tissues in Atlantic salmon, Salmo salar, fed five diets 

with different concentrations of fatty acids.  Bell et al. (2001) found that the 

concentration of DHA in liver and muscle of salmon were higher than in their dietary 

lipid.  In the current study, only the phospholipid fraction of liver for both dietary 

treatments had a higher concentration of DHA than the diet concentrations.  A higher 

concentration of DHA was also found in the total lipid of muscle for both dietary 

treatments compared to that found in dietary lipid.  Although, DHA concentrations were 

higher in the phospholipid fraction of liver and total lipid of muscle in comparison to 

dietary lipids, initial concentrations in both tissues were also high.  It is well documented 

that DHA is retained in tissues due to its low rate of oxidation, which follows the 

peroxisomal pathway and not the mitochondrial β-oxidation pathway (Bell et al. 2001).  

Menoyo et al. (2007) showed similar results for DHA concentrations in Atlantic salmon.  

The DHA concentration was retained in neutral lipid fraction of muscle in Atlantic 

salmon, in which the concentration in muscle was similar to that found in the diet 

(Menoyo et al. 2007).   

Henderson (1996) found that dietary polyunsaturated fatty acids were 

incorporated and esterified in muscle of freshwater fish.  In this study both ARA and 
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EPA were incorporated into the muscle of both dietary treatments; due to the significant 

drop in concentration of linoleic acid from muscle of fish at the start of the experiment to 

muscle of fish at the conclusion, regardless of dietary treatment (Table 8).  The result of 

EPA concentration in muscle of fish fed round goby lower than their diet was similar to 

what Menoyo et al. (2007) found in the muscle of Atlantic salmon, whereas the muscle in 

fish fed alewife did not follow this pattern.  In the study by Menoyo et al. (2007) salmon 

were fed eight different diets containing different concentrations of SAFA, n-3 and n-6 

fatty acids, such that one diet (0% fish oil) had the highest SAFA, higher total n-3, and 

the lowest total n-6, whereas another diet (75% linseed oil) had the lowest SAFA, lower 

total n-3, and the highest n-6.  EPA concentration of both neutral and phospholipid 

fractions in muscle of fish fed 0% fish oil was lower than the diet, whereas the 

concentration in neutral and phospholipid fractions of fish fed 75% linseed oil remained 

similar to dietary EPA (Menoyo et  al. 2007).   

Specific dietary fatty acids were being incorporated in the fatty acid composition 

of fat in my yellow perch (i.e., linoleic acid).  Since the concentrations of linoleic acid in 

both dietary treatments was lower than the initial concentration, (most likely due to the 

low concentrations found in round goby and alewife) then one can suggest that dietary 

linoleic acid was being incorporated into the fatty acids of yellow perch fat.  Synthesis of 

16:0 into 16:1n-7 and 18:0 into 18:1n-9 was evident in visceral fat samples (Tocher 

2003).  Incorporation of 16:0 and 18:0 was observed in the higher concentrations found 

in round goby and alewife fats (Table 3) compared to the fat in dietary treatments (Table 

9).  When comparing concentrations of 16:1n-7 and 18:1n-9 results showed that the 

concentration of these fatty acids were higher in fat of dietary treatments compared to 

 
 



37 
 
round goby and alewife, indicating synthesis of 16:1n-7 and 18:1n-9 from 16:0 and 18:0, 

respectively. 

4.3. CART analysis   

    I applied CART analysis, a non-parametric technique because data were not 

normally distributed and the sample size among groups was not equal.  CART analysis 

revealed that one fatty acid in eggs (18:0 for both neutral and phospholipids), liver 

(22:5n-6 for neutral lipids and 22:1n-11 for phospholipids), and fat (18:0 for total lipids) 

of yellow perch could distinguish between dietary treatments of yellow perch.  For 

muscle tissue CART analysis indicated two fatty acids (20:2n-6 and 17:0 for total lipids) 

could distinguish between dietary treatments of yellow perch.  It was apparent that each 

tissue had different concentrations of fatty acids in order for the analysis to produce such 

a small number of nodes for each tissue.  Since there were only one or two fatty acids that 

distinguished which diet was fed to yellow perch one can suggest that most of the fatty 

acids concentrations in alewife and round goby were different.  These different fatty acid 

concentrations in alewife and round goby were then incorporated in the tissues of yellow 

perch.  If these concentrations weren’t distinct then CART would reveal more than one or 

two distinguishing fatty acids.   

The high percentage of misclassification was likely due to small sample size, 

which varied among tissues and dietary treatment with a range of 5 to 16.  Budge et al. 

(2002) used CART analysis to investigate differences within fatty acid composition of 28 

marine species.  The authors found that if the species sample size was below 20 then it 

was more likely to misclassify that individual at a rate greater than 20% in comparison to 

a larger sample size (Budge et al. 2002).  Another explanation could be large variance 
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within fatty acid concentrations of tissues for each dietary treatment resulting in incorrect 

identification. 

4.4. Non-dietary factors that may have influenced the results     

My study fish were certified pathogen free prior to the experiment by Coolwater 

Fish Farm for the following pathogens:  viral hemorrhagic septicemia (VHS), 

furunculosis (Aeromonas salmonicida), enteric redmouth (Yersinia ruckeri), infectious 

pancreatic necrosis (IPN), and spring viremia carp (SVC).  Within a few months of 

beginning the experiment fish began to express signs of stress, which include decreased 

appetite, lordosis, lethargy, hemorrhaging, and fungi on head.  These symptoms could be 

attributed to anything from disease to diet deficiency.  Several fish were found moribund 

or dead throughout the experiment, but it is unlikely that disease was the cause due to 

environmental conditions (i.e., overcrowding, water flow, and temperature).    

While ammonia levels were not at zero ppm the concentrations in the tanks were 

not considered lethal to the fish.  Signs of ammonia toxicity in fish are gulping for air at 

the surface, erratic swimming, and decreased appetite (Israeli-Weinstein & Kimmel 1998, 

Suski et al. 2007).  The fish in this experiment did not exhibit all of these symptoms; this 

indicates that high ammonia levels were not the cause for fish showing signs of stress.   

Another possible cause for fish to display signs of stress and fungus could be 

related to a decrease in food uptake or a diet deficiency.  According to Ruyter et al. 

(2000) an increase in the percentage of DHA and a decrease in 18:1n-9 in phospholipid 

fractions of liver can be signs observed in starved animals; these conditions were both 

noted in the liver of yellow perch regardless of dietary treatment compared to initial 

concentrations in yellow perch.  Diet deficiency has also been associated with skeletal 
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deformities (Ahlgren et al. 1999), such as the ones observed in the fish of the present 

study (e.g., lordosis).  Ahlgren et al. (1999) found that a high concentration of DHA 

associated with a low concentration of ARA can explain deformities in freshwater fish.  

Skeletal deformities are a result from oxidation of PUFA.  In the present study, the ratio 

of n-3 to n-6 increased in the neutral lipid fraction of liver as well as the total lipid in fat, 

likely caused by an increase in the concentration of DHA and decrease in ARA, which 

according to Ahlgren et al. (1999) could explain skeletal deformities found in the yellow 

perch.  However, skeletal deformities can also be induced by a nutrient deficiency, 

particularly vitamin C and E.  Lee and Dabrowski (2004) found that after 20 weeks, 

reared on a diet with no supplementation of vitamins C and E, juvenile yellow perch 

exhibited signs of diet deficiency (scoliosis, lordosis, and lens cataract).  These vitamins 

are antioxidants protecting tissue lipids as well as the lipid bilayer in bone cells from free 

radical attack (Santosh and Lewis-McCrea 2007).  Although, vitamins C and E were not 

considered in this study it would be interesting to measure these two vitamins in alewife 

and round goby in a future study.        

Diet deficiency is also associated with poor reproduction (Furuita et al. 2000); 

although yellow perch reproduced, the quality of their ribbons and corresponding eggs, 

regardless of dietary treatment, was poor, as evidenced by low embryo survival rate.  A 

balance of n-3 and n-6 fatty acids is important to support development in fish (Bell et al. 

1995, Tocher 2003, Furuita et al. 2000).  Furuita et al. (2000) found that a higher level of 

ARA in the diet was associated with a higher egg quality.  However, these studies 

involve marine fish, which have different EFA requirements than freshwater fish because 

their desaturase and elongase enzyme activity are limited compared to freshwater fish.  

Due to the relatively higher concentrations of ARA, EPA, and DHA the n-3 and n-6 fatty 
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acids in the current study meet the requirements for yellow perch reproduction.  As 

mentioned previously, further research should be conducted to investigate oil droplet 

fragmentation in ovulating eggs of yellow perch.  

4.5. Conclusion   
 

Dietary fatty acids were not completely reflected in yellow perch tissues, but 

specific fatty acids were influenced by the diet.  Biosynthesis of linoleic and linolenic 

into ARA, EPA, and DHA was evident among all tissues due to the higher levels of the 

latter three EFAs.  Further experiments and analysis need to be conducted to include 

whole body lipid content of yellow perch at the end of the experiment.  Whole body lipid 

content is important because neutral lipids can be associated with growth in fish due to 

higher lipid retention (Peng et al. 2003, Tocher et al. 2008).  Further examination of 

whole body lipid content might provide a possible explanation for the lack of growth in 

yellow perch.   

Although, round goby and alewife have high levels of n-3 and n-6 fatty acids 

(which are general requirements for successful reproduction and recruitment in fish), 

successful reproduction of all female yellow perch was not observed in the present study.  

The next step would be to investigate the specific n-3 and n-6 requirements of yellow 

perch for successful reproduction by incorporating different concentrations of linoleic 

acid and linolenic acid in their diet.  For comparative purposes, one could also examine 

wild yellow perch reproduction in terms of egg quality, embryo survival at eyed stage, 

and larval quality.   
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Table 1. Water quality tests were conducted for each tank throughout the experiment.  
Ammonia was not taken after November due to instrument malfunction.  N/A = not 
applicable. 
 

Date 
Tank 

# Diet 

Dissolved 
Oxygen 
(mg/L) 

Ammon  
(ppm) 

NH3 
(ppm) 

NH4
+ 

(ppm) 
Chlorine 

(ppm) 
4/23/2008 1 alewife 9.6 0.14 0.17 0.18 0.02 

 4 alewife 9.9 0.11 0.13 0.14 0.00 
 2 round goby 9.6 0.10 0.12 0.13 0.00 
 3 round goby 9.9 0.14 0.17 0.18 0.00 

4/29/2008 1 alewife 9.6 0.12 0.14 0.16 0.02 
 4 alewife 9.7 0.12 0.14 0.16 0.01 
 2 round goby 9.6 0.09 0.11 0.12 0.02 
 3 round goby 9.8 0.12 0.14 0.16 0.00 

6/6/2008 1 alewife NA 0.12 0.14 0.16 NA 
 4 alewife NA 0.20 0.24 0.26 NA 
 2 round goby NA 0.17 0.20 0.22 NA 
 3 round goby NA 0.14 0.17 0.18 NA 

7/3/2008 1 alewife 5.6 NA NA NA NA 
 4 alewife 5.9 NA NA NA NA 
 2 round goby 5.0 NA NA NA NA 
 3 round goby 5.5 NA NA NA NA 

7/8/2008 1 alewife 6.3 0.20 0.24 0.26 0.00 
 4 alewife 6.9 0.22 0.26 0.29 0.00 
 2 round goby 6.2 0.28 0.34 0.36 0.01 
 3 round goby 6.3 0.22 0.26 0.29 0.03 

8/5/2008 1 alewife 5.9 0.22 0.26 0.29 0.00 
 4 alewife 5.8 0.30 0.36 0.39 0.04 
 2 round goby 5.7 0.24 0.29 0.31 0.03 
 3 round goby 5.7 0.26 0.31 0.34 0.00 

9/9/2008 1 alewife 5.4 0.23 0.28 0.30 0.01 
 4 alewife 4.8 0.25 0.30 0.33 0.05 
 2 round goby 4.7 0.22 0.26 0.29 0.00 
 3 round goby 5.2 0.22 0.26 0.29 0.02 

10/8/2008 1 alewife 6.5 0.26 0.31 0.34 0.02 
 4 alewife 6.6 0.24 0.29 0.31 0.02 
 2 round goby 5.8 0.24 0.29 0.31 0.02 
 3 round goby 6.5 0.32 0.38 0.42 0.01 

11/4/2008 1 alewife NA 0.27 0.32 0.35 0.02 
 4 alewife NA 0.24 0.29 0.31 0.02 
 2 round goby NA 0.28 0.34 0.36 0.02 
 3 round goby NA 0.29 0.35 0.38 0.03 

12/5/2008 1 alewife NA NA NA NA 0.02 
 4 alewife NA NA NA NA 0.03 
 2 round goby NA NA NA NA 0.01 
 3 round goby NA NA NA NA 0.01 
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2/25/2009 1 alewife 8.6 NA NA NA NA 

 4 alewife 8.1 NA NA NA NA 
 2 round goby 8.3 NA NA NA NA 
 3 round goby 8.3 NA NA NA NA 

Table 2. Whole body fatty acid composition (% of total fatty acids detected) of the two 
experimental diets (alewife and round goby).  Results are expressed as the average of 
three pools with three fish for each diet ± standard deviation. Means with significant 
differences (p < 0.05) are denoted with different superscript letters. nd= not detected. 
 
 Dietary Treatments 
Fatty acids Round goby Alewife 
Saturated    

14:0  1.6 ± 0.1b 4.5 ± 0.1a 
15:0  0.5 ± 0.0 0.6 ± 0.0 
16:0 12.8 ± 0.1b 20.0 ± 0.4a 
17:0 0.3 ± 0.0b 0.5 ± 0.0a 

18:0 2.9 ± 0.0b 3.3 ± 0.0a 
Sum Saturated 18.0 ± 0.2b 28.8 ± 0.3a 

   
Monounsaturated    

16:1n-9 0.4 ± 0.0b 0.9 ± 0.0a 

16:1n-7 11.9 ± 0.1a 5.1 ± 0.1b 
17:1 0.5 ± 0.1a 0.3 ± 0.0b 

18:1n-9  9.6 ± 0.1b 19.9 ± 0.4a 
18:1n-7 4.7 ± 0.0 4.7 ± 0.0 
20:1 1.4 ± 0.0b 1.8 ± 0.1a 

22:1n-11 0.1 ± 0.0b 0.3 ± 0.0a 

22:1n-9 0.3 ± 0.0a 0.1 ± 0.0b 

Sum Monounsaturated 28.9 ± 0.3b 33.1 ± 0.2a 
   
Polyunsaturated   

18:2n-6 3.0 ± 0.1b 5.0 ± 0.0a 
20:2n-6 0.2 ± 0.0b 1.0 ± 0.1a 
20:3n-6 0.1 ± 0.0b 0.3 ± 0.0a 

20:4n-6 7.5 ± 0.1a 3.3 ± 0.0b 
22:4n-6 1.4 ± 0.0a 0.4 ± 0.0b 

22:5n-6 6.4 ± 0.1a 1.6 ± 0.0b 
Sum n-6 18.6 ± 0.2a 11.6 ± 0.2b 
18:3n-3 2.5 ± 0.1b 4.5 ± 0.1a 
18:4n-3 1.5 ± 0.1b 2.7 ± 0.1a 
20:3n-3 0.1 ± 0.0b 1.1 ± 0.0a 
20:4n-3 0.3 ± 0.0b 1.8 ± 0.1a 
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20:5n-3 10.4 ± 0.1a 7.2 ± 0.1b 
22:5n-3 6.9 ± 0.1a 1.9 ± 0.1b 
22:6n-3 12.9 ± 0.3a 7.3 ± 0.1b 
Sum n-3 34.5 ± 0.2a 26.5 ± 0.3b 
Sum Polyunsaturated 53.2 ± 0.4a 38.1 ± 0.4b 
Sum n-3/Sum n-6 1.9 ± 0.0b 2.3 ± 0.0a 
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Table 3. Weight (mean ± standard deviation) of yellow perch females at the start and the 
end of the experiment.  Weight of females after spawning was used.  Means with 
different superscript letters are significantly different (p < 0.05). 
  n Weight (g) 
Females   

Initial 152 75.7 ± 18.4b 
Fed alewife 12 81.7 ± 18.1ab 
Fed round goby 19 94.0 ± 14.9a 
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Table 4. Description of spawning yellow perch; fecundity, survival of eggs at pigmented-
eyed stage, hepatosomatic index and pseudo-gonadosomatic index fed two dietary 
treatments (alewife and round goby).  Fish were fed one of the two diets for 
approximately 387 days. 
 
  Dietary Treatments 
  Round goby Alewife 
Number of females  19 12 

Stripped by hand 13 4 
Partially in tank 6 8 

   
Fecundity   

n 15 4 
Absolute fecundity (# eggs per gonad) 22809 ± 7169 19767 ± 12235 
Relative fecundity (# eggs per g of fish) 176 ± 51 200 ± 107 

   
Embryo survival   

n 3 7 
Survival at eyed stage (%) 30.3 ± 23.7 10.4 ± 9.3 

   
Reproductive parameters   

n 15 7 
HSI (%) 1.9 ± 0.6 1.8 ± 0.9 
n 15 4 
pseudo-GSI (%) 29.2 ± 5.6 31.2 ± 13.6 
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Table 5. Composition of lipids (means ± standard deviation) among female yellow perch 
at the start of the experiment and fed the two dietary treatments (alewife and round goby).  
Abbreviations are as follows: neutral lipid fraction (NL), phospholipid fraction (PL), and 
total lipids (TL).  NA = not applicable.  Means with significant differences (p < 0.05) are 
denoted with different superscript letters.   
 
      Dietary Treatments 
  Lipids Initial Round goby Alewife 
n  4 19 12 
Eggs (%) TL NA 5.4 ± 0.7b 6.0 ± 1.0a 
 NL NA 80.9 ± 2.1b 83.3 ± 1.1a 

 PL NA 19.1 ± 2.1a 16.7 ± 1.1b 
n  4 16 8 

Liver (%) TL 7.6±2.6 3.1 ± 0.5 3.8 ± 0.9 
 NL 72.6±18.4 34.5 ± 10.1 36.7 ± 11.0 
 PL 27.4±18.4 65.5 ± 10.1 63.3 ± 11.0 
n  4 16 8 
Muscle (%) TL 1.4±0.0a 1.1 ± 0.2b 1.2 ± 0.2ab 
n  4 9 5 
Fat (%) TL 93.4±1.3a 68.9 ± 12.9b 68.6 ± 10.8b 
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Table 6. Fatty acid composition of neutral lipid fractions and phospholipid fractions in 
eggs of yellow perch fed two diets.  Means with significant differences (p < 0.05) are 
denoted with different superscript letters.  nd = not detected. 
 
    Neutral lipids Phospholipids 

 
  Dietary Treatments 

 Fatty acids   Round goby Alewife Round goby Alewife 
n   19 12 19 12 
Saturated           

14:0    0.8 ± 0.1b 0.9 ± 0.1a 0.9 ± 0.1b 1.1 ± 0.1a 
15:0    0.1 ± 0.0 0.1 ± 0.0 0.3 ± 0.0 0.3 ± 0.0 
16:0   2.8 ± 0.4 2.8 ± 0.4 20.5 ± 1.0 20.5 ± 0.7 
17:0   0.2 ± 0.2 0.1 ± 0.1 0.4 ± 0.0 0.4 ± 0.1 
18:0   0.3 ± 0.2 0.2 ± 0.0 5.5 ± 0.4a 5.1 ± 0.3b 
Sum Saturated   4.1 ± 0.6 4.2 ± 0.6 27.6 ± 1.1 27.3 ± 0.9 

            
Monounsaturated         

16:1n-9   3.3 ± 0.4 3.3 ± 0.3 1.8 ± 0.5 1.9 ± 0.2 
16:1n-7   17.4 ± 1.5a 10.5 ± 0.9b 3.0 ± 0.4a 1.7 ± 0.2b 
17:1   0.6 ± 0.3 0.5 ± 0.1 0.3 ± 0.0a 0.1 ± 0.0b 
18:1n-9    16.5 ± 1.2b 17.3 ± 1.1a 8.5 ± 0.9 8.3 ± 0.8 
18:1n-7   3.0 ± 0.4a 2.6 ± 0.3b 3.4 ± 0.4a 3.3 ± 0.2b 
20:1   0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.1b 0.5 ± 0.2a 
22:1n-11   nd nd nd nd 
22:1n-9   nd nd nd nd 
Sum Monounsaturated 41.2 ± 2.5a 34.6 ± 2.1b 17.9 ± 1.1a 15.9 ± 1.2b 

            
Polyunsaturated         

18:2n-6   12.8 ± 1.7a 11.7 ± 1.2b 2.1 ± 0.1a 1.6 ± 0.1b 
20:2n-6   0.1 ± 0.0b 0.2 ± 0.0a 0.0 ± 0.0 0.1 ± 0.1 

20:3n-6   0.3 ± 0.0b 0.3 ± 0.0a 0.2 ± 0.0a 0.2 ± 0.0b 
20:4n-6   3.0 ± 0.3b 3.9 ± 0.4a 9.7 ± 0.1b 10.5 ± 0.2a 
22:4n-6   0.7 ± 0.1 0.7 ± 0.1 0.5 ± 0.0a 0.3 ± 0.0b 
22:5n-6   1.4 ± 0.2b 2.2 ± 0.3a 1.3 ± 0.1 1.5 ± 0.1 
Sum n-6   18.3 ± 1.4 18.9 ± 0.9 13.9 ± 0.2 14.2 ± 0.3 
18:3n-3   2.3 ± 0.5b 3.7 ± 0.4a 0.3 ± 0.0a 0.5 ± 0.0b 
18:4n-3   0.2 ± 0.1b 0.6 ± 0.2a nd nd 
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20:3n-3   0.1 ± 0.0b 0.4 ± 0.1a 0.1 ± 0.0b 0.5 ± 0.0a 
20:4n-3   0.4 ± 0.1b 1.8 ± 0.2a 0.1 ± 0.0b 0.5 ± 0.1a 
20:5n-3   5.8 ± 0.6 5.9 ± 0.5 8.3 ± 0.1 8.1 ± 0.2 
22:5n-3   3.2 ± 0.3a 2.7 ± 0.2b 2.7 ± 0.1a 1.7 ± 0.1b 
22:6n-3   24.3 ± 2.1b 27.3 ± 1.4a 29.2 ± 0.5b 31.3 ± 0.3a 
Sum n-3   36.4 ± 2.1b 42.2 ± 2.0a 40.6 ± 0.5b 42.6 ± 0.3a 
Sum Polyunsaturated 54.7 ± 2.9b 61.2 ± 2.1a 54.5 ± 0.4b 56.8 ± 0.4a 
Sum n-3/Sum n-6   2.0 ± 0.2b 2.2 ± 0.1a 2.9 ± 0.1 3.0 ± 0.1 
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Table 7. Fatty acid composition of neutral lipid fractions and phospholipid fractions in liver of yellow perch at the start of the 
experiment and fed the two diets.  Means with significant differences (p < 0.05) are denoted with different superscript letters. nd= 
not detected. 
 

  Neutral lipids Phospholipids 
Fatty acids     Diets     Diets 

   Initial  
Round 
goby Alewife  Initial  

Round 
goby Alewife 

n   8 16 8  8 9 4 
Saturated         

14:0   2.1 ± 0.3a 1.1 ± 0.4b 1.4 ± 0.6ab  0.8 ± 0.2 0.6 ± 0.2 0.7 ± 0.1 
15:0   0.3 ± 0.1 0.2 ± 0.1 0.3 ± 0.1  0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 
16:0  10.8 ± 1.5 11.0 ± 3.1 14.7 ± 2.1  15.8 ± 1.3 13.7 ± 0.9 14.5 ± 1.1 
17:0  0.3 ± 0.1 0.3 ± 0.2 0.3 ± 0.1  0.2 ± 0.0 0.4 ± 0.1 0.4 ± 0.0 
18:0  0.6 ± 0.2b 1.8 ± 0.6a 1.8 ± 0.5a  2.7 ± 0.9b 5.6 ± 0.5a 5.1 ± 0.8ab 
Sum Saturated  13.9 ± 1.6b 14.4 ± 3.5ab 18.4 ± 2.4a  19.7 ± 0.6 20.1 ± 0.5 20.9 ± 0.6 

         
Monounsaturated         

16:1n-9  1.4 ± 0.6 1.2 ± 0.5 1.4 ±0.4  1.3 ± 0.4 1.0 ± 0.2 0.9 ± 0.1 
16:1n-7  15.6 ± 6.4 7.1 ± 3.7 4.8 ± 1.7  2.2 ± 0.5a 1.7 ± 0.5ab 1.0 ± 0.0b 

17:1  0.4 ± 0.2 0.3 ± 0.1 0.2 ± 0.1  0.1 ± 0.0 0.1 ± 0.1 0.1 ± 0.0 
18:1n-9   20.4 ± 6.0a 8.3 ± 3.4b 9.8 ± 3.4ab  6.4 ± 1.4 4.7 ± 0.8 4.8 ± 0.4 
18:1n-7  2.3 ± 0.7 1.8 ± 0.7 2.1 ± 0.6  2.3 ± 0.5 3.4 ± 0.6 3.2 ± 0.1 
20:1  nd nd nd  nd nd nd 
22:1n-11  nd nd nd  nd nd nd 
22:1n-9  nd nd nd  nd nd nd 
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Sum Monounsaturated  39.7 ± 13.6 18.7 ± 8.0 18.3 ± 6.0  12.3 ± 0.9 10.9 ± 0.5 10.0 ± 0.2 
         
Polyunsaturated         

18:2n-6  13.2 ± 2.2a 4.4 ± 2.5b 5.2 ± 1.6b  3.0 ± 0.3a 1.4 ± 0.4b 1.4 ± 0.3ab 
20:2n-6  0.1 ± 0.1 0.1 ± 0.0 0.2 ± 0.1  0.2 ± 0.1 0.2 ± 0.1 0.5 ± 0.1 
20:3n-6  0.2 ± 0.1 0.1 ± 0.1 0.1 ± 0.8  0.1 ± 0.1 0.1 ± 0.2 0.1 ± 0.1 
20:4n-6  0.5 ± 0.1b 2.2 ± 0.6a 2.1 ± 0.5a  2.9 ± 0.5b 6.8 ± 1.0a 6.4 ± 0.3a 
22:4n-6  0.1 ± 0.1 0.2 ± 0.1 0.2 ± 0.1  nd 0.3 ± 0.1 0.2 ± 0.1 
22:5n-6  0.2 ± 0.1b 0.6 ± 0.2a 0.9 ± 0.4ab  0.2 ± 0.0b 1.4 ± 0.3a 1.5 ± 0.5ab 
Sum n-6  14.4 ± 2.5a 7.5 ± 2.9b 8.6 ± 2.5b  6.4 ± 0.3b 10.3 ± 0.4a 10.1 ± 0.5a 
18:3n-3  0.7 ± 0.3 0.6 ± 0.2 1.1 ± 0.8  0.2 ± 0.0 0.1 ± 0.1 0.6 ± 0.1 
18:4n-3  0.1 ± 0.2 0.1 ± 0.1 0.5 ± 0.5  nd nd 0.1 ± 0.1 
20:3n-3  nd nd 0.2 ± 0.1  nd nd 0.6 ± 0.1a 
20:4n-3  0.3 ± 0.2 0.1 ± 0.1 0.5 ± 0.3  0.1 ± 0.1 nd nd 
20:5n-3  2.3 ± 0.8 1.7 ± 0.6 1.8 ± 0.8  4.3 ± 1.1 3.8 ± 0.6 4.2 ± 0.9 
22:5n-3  1.2 ± 0.6 0.8 ± 0.4 0.8 ± 0.5  0.8 ± 0.2 1.4 ± 0.3 1.2 ± 0.1 
22:6n-3  7.4 ± 2.1 8.7 ± 2.4 9.5 ± 3.8  34.4 ± 2.5 32.7 ± 0.8 32.7 ± 2.8 
Sum n-3  12.0 ± 3.4 11.8 ± 3.4 14.5 ± 6.3  39.9 ± 1.0 38.1 ± 0.2 39.4 ± 1.1 
Sum Polyunsaturated  26.4 ± 5.3 19.2 ± 5.5 23.1 ± 8.6  46.3 ± 1.3 48.3 ± 0.5 49.5 ± 1.4 
Sum n-3/Sum n-6  0.8 ± 0.2b 1.7 ± 0.5a 1.6 ± 0.4a  6.2 ± 0.1a 3.7 ± 0.1b 4.0 ± 0.2b 
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Table 8. Fatty acid composition of total lipids in muscle of yellow perch at the start of the 
experiment and fed the two diets.  Means with significant differences (p < 0.05) are 
denoted with different superscript letters. nd= not detected. 
 
Fatty acids     Diets 
   Initial Round goby Alewife 
n  8 10 5 
Saturated     

14:0   1.2 ± 0.3 1.1 ± 0.3 1.0 ± 0.2 
15:0   0.2 ± 0.0b 0.3 ± 0.04a 0.3 ± 0.0a 
16:0  18.7 ± 0.5 17.3 ± 1.4 17.5 ± 0.7 
17:0  0.2 ± 0.0b 0.2 ± 0.0a 0.2 ± 0.0ab 
18:0  3.9 ± 0.2 3.8 ± 0.6 3.2 ± 0.5 
Sum Saturated  24.2 ± 0.2a 22.2 ± 0.4ab 22.7 ± 0.5b 

     
Monounsaturated     

16:1n-9  0.8 ± 0.1 0.9 ± 0.2 1.0 ± 0.2 
16:1n-7  4.6 ± 0.6 4.0 ± 0.9 2.8 ± 1.1 
17:1  0.2 ± 0.0b 0.3 ± 0.1a 0.2 ± 0.0b 
18:1n-9   12.0 ± 1.2a 9.1 ± 1.4b 8.5 ± 1.1b 
18:1n-7  2.3 ± 0.1b 3.3 ± 0.3a 3.0 ± 0.3a 
20:1  0.4 ± 0.0 0.4 ± 0.1 0.5 ± 0.1 
22:1n-11  nd nd nd 
22:1n-9  nd nd nd 
Sum Monounsaturated  20.3 ± 0.6a 15.9 ± 0.8ab 18.0 ± 0.5b 

     
Polyunsaturated     

18:2n-6  7.5 ± 0.9a 5.9 ± 1.2ab 4.9 ± 1.1b 
20:2n-6  0.2 ± 0.0 0.2 ± 0.1 0.4 ± 0.1 
20:3n-6  0.4 ± 0.1 0.3 ± 0.0 0.3 ± 0.0 
20:4n-6  2.8 ± 0.2b 6.9 ± 0.8a 7.7 ± 1.0a 
22:4n-6  0.3 ± 0.0b 0.4 ± 0.1a 0.4 ± 0.1ab 
22:5n-6  0.7 ± 0.1b 2.0 ± 0.4a 2.9 ± 0.6a 
Sum n-6  11.8 ± 0.3b 16.6 ± 0.7a 15.9 ± 0.5a 
18:3n-3  0.5 ± 0.1 0.7 ± 0.3 0.9 ± 0.3 
18:4n-3  0.2 ± 0.1 0.2 ± 0.2 0.3 ± 0.1 
20:3n-3  0.7 ± 0.0 0.1 ± 0.2 0.3 ± 0.1 
20:4n-3  0.4 ± 0.0 0.3 ± 0.2 0.7 ± 0.3 
20:5n-3  7.4 ± 0.5b 8.7 ± 0.7a 7.8 ± 1.0ab 
22:5n-3  2.0 ± 0.2b 3.2 ± 0.4a 2.6 ± 0.4ab 
22:6n-3  33.2 ± 2.5 30.4 ± 2.4 32.7 ± 3.1 
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Sum n-3  43.7 ± 0.8 45.3 ± 1.0 43.5 ± 0.5 
Sum Polyunsaturated  55.4 ± 0.6b 61.9 ± 0.5a 59.3 ± 0.6a 
Sum n-3/Sum n-6  3.7 ± 0.2a 2.8 ± 0.2b 2.8 ± 0.1b 
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Table 9. Fatty acid composition of total lipids in visceral fat of yellow perch at the start of 
the experiment and fed the two diets.  Means with significant differences (p < 0.05) are 
denoted with different superscript letters. 
 
Fatty acids     Diets 
   Initial Round goby Alewife 
n  8 10 5 
Saturated     

14:0   4.3 ± 0.2 4.3 ± 0.6 4.7 ± 0.5 
15:0   0.3 ± 0.0b 0.4 ± 0.1a 0.4 ± 0.0 
16:0  13.7 ± 1.0 12.6 ± 1.9 12.1 ± 1.2 
17:0  0.2 ± 0.0 0.2 ± 0.1 0.2 ± 0.0 
18:0  1.5 ± 0.2 1.6 ± 0.2 1.2 ± 0.2 
Sum Saturated   19.9 ± 1.1 19.3 ± 1.6 18.7 ± 0.9 

     
Monounsaturated     

16:1n-9  0.8 ± 0.1b 1.8 ± 0.3a 1.8 ± 0.2a 
16:1n-7  12.8 ± 0.9a 15.3 ± 2.5a 8.8 ± 1.0b 
17:1  0.3 ± 0.0b 0.5 ± 0.1a 0.4 ± 0.1ab 
18:1n-9   29.2 ± 0.6 25.4 ± 3.3 25.2 ± 2.9 
18:1n-7  2.7 ± 0.1b 4.5 ± 0.5a 4.0 ± 0.3ab 
20:1  1.1 ± 0.2 1.6 ± 0.3 1.8 ± 0.3 
22:1n-11  0.2 ± 0.0 0.2 ± 0.1 0.1 ± 0.1 
22:1n-9  0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 
Sum Monounsaturated  47.1 ± 1.0a 49.3 ± 1.5a 42.1 ± 3.7b 

     
Polyunsaturated     

18:2n-6  16.3 ± 0.9a 11.0 ± 2.2b 10.4 ± 1.7b 
20:2n-6  0.2 ± 0.0a 0.2 ± 0.0b 0.6 ± 0.1ab 
20:3n-6  0.3 ± 0.0 0.4 ± 0.2 0.4 ± 0.1 
20:4n-6  0.7 ± 0.0b 2.3 ± 0.4a 2.8 ± 0.6ab 
22:4n-6  0.2 ± 0.0b 0.6 ± 0.1a 0.5 ± 0.0a 
22:5n-6  0.3 ± 0.0b 1.4 ± 0.4a 2.5 ± 0.4a 
Sum n-6  18.0 ± 0.9 15.9 ± 2.3 17.2 ± 1.1 
18:3n-3  1.4 ± 0.1 1.6 ± 0.5 3.1 ± 1.3 
18:4n-3  0.7 ± 0.1 0.4 ± 0.2 1.4 ± 0.7 
20:3n-3  0.1 ± 0.0 0.1 ± 0.1 0.5 ± 0.2 
20:4n-3  0.6 ± 0.0a 0.4 ± 0.1b 1.4 ± 0.5ab 
20:5n-3  3.5 ± 0.5 3.4 ± 1.0 3.5 ± 1.1 
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22:5n-3  1.3 ± 0.1b 2.4 ± 0.4a 2.1 ± 0.2a 
22:6n-3  7.4 ± 0.8b 7.2 ± 0.6b 10.1 ± 0.7a 

Sum n-3  14.9 ± 0.8 15.5 ± 1.9 22.0 ± 4.1 
Sum Polyunsaturated  32.9 ± 1.1 31.4 ± 1.6 39.2 ± 3.5 
Sum n-3/Sum n-6  0.8 ± 0.1 1.0 ± 0.3 1.3 ± 0.3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 



64 
 

 
 
Figure 1. Biosynthesis pathways of linoleic acid (18:2n-6) and linolenic acid (18:3n-3) to 
arachidonic acid (ARA; 20:4n-6) and docosahexaenoic acid (DHA; 20:5n-3), respectively 
(Napier 2002). 
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Figure 2. nMDS plot of group-averaged fatty acid signature data for samples from 
the Illinois management district. Alewife and round goby data were averaged by 
season–year and size class; all other data were averaged by species or taxa group 
and year. Solid and dashed ovals enclose clusters of group means with 75% and 
85% similarities, respectively (Czesny et al. 2011). 
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Figure 3. Change in average daily water temperature for each dietary treatment (n = 2).  
The arrows indicate when a salt treatment was administered to each tank. 
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Figure 4. Relationship between female yellow perch length fed two dietary treatments 
and their absolute fecundity (number of eggs). 
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Figure 5. Yellow perch were fed two different diets, alewife and round 
goby for 387 days and CART analysis revealed three nodes for neutral 
lipid fractions in eggs, where one fatty acid (18:0) distinguished between 
the two diets.  Abbreviations are as follows:  RG is round goby and AW is 
alewife. 
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Figure 6. Yellow perch were fed two different diets, alewife and round 
goby for 387 days and CART analysis revealed three nodes for 
phospholipid fractions in eggs, where one fatty acid (18:0) distinguished 
between the two diets.  RG is round goby and AW is alewife. 
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Figure 7. Yellow perch were fed two different diets, alewife and round 
goby for 387 days and CART analysis revealed three nodes for neutral 
lipid fractions in liver, where one fatty acid (22:5n-6) distinguished 
between the two diets.  RG is round goby and AW is alewife. 
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Figure 8. Yellow perch were fed two different diets, alewife and round 
goby for 387 days and CART analysis revealed three nodes for 
phospholipid fractions in liver, where one fatty acid (22:1n-11) 
distinguished between the two diets.  RG is round goby and AW is 
alewife. 
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Figure 9. Yellow perch were fed two different diets, alewife and round goby for 387 days 
and CART analysis revealed five nodes for total lipids in muscle, where two fatty acids 
(20:2n-6 and 17:0) distinguished between the two diets.  RG is round goby and AW is 
alewife. 
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Figure 10. Yellow perch were fed two different diets, alewife and round 
goby for 387 days and CART revealed three nodes for total lipids in 
visceral fat, where one fatty acid (18:0) distinguished between the two 
diets.  RG is round goby and AW is alewife. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 


	Dietary Effects of Non-native Species on Yellow Perch, Perca flavescens, Reproductive Performance
	Repository Citation

	Biographical Sketch
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	1. Introduction
	2. Methods
	2.1. Experimental fish and husbandry
	2.3. Yellow perch reproduction and survival
	2.4. Lipid analysis
	2.5. Transmethylation of fatty acids
	2.6. Statistics

	3. Results
	3.1. Experimental fish and husbandry
	3.2. Diet
	3.3. Yellow perch reproduction and survival
	3.4. Lipid concentration and fatty acid signatures in yellow perch tissues
	3.4.1. Eggs
	3.4.1.1. Total, neutral, and phospholipids
	3.4.1.2. Fatty acids in neutral lipids of eggs
	3.4.1.3. Fatty acids in phospholipids of eggs

	3.4.2. Liver
	3.4.2.1. Total, neutral, and phospholipids
	3.4.2.2. Fatty acids in neutral lipids of liver
	3.4.2.3. Fatty acids in phospholipids of liver

	3.4.3. Muscle
	3.4.3.1. Total lipids
	3.4.3.2. Fatty acids in total lipids of muscle

	3.4.4. Fat
	3.4.4.1. Total lipids
	3.4.4.2. Fatty acids in total lipids of fat


	4. Discussion
	4.1. Growth, fecundity, embryo survival at eyed stage, HSI and pseudo-GSI
	4.2. Fatty acid compositions in yellow perch, round goby and alewife
	4.3. CART analysis
	4.4. Non-dietary factors that may have influenced the results
	4.5. Conclusion

	5. Literature Cited

