
RESEARCH LETTER

Convenient synthesis of sulfonyl azides using PEG-400 as an efficient and eco-friendly

reaction medium
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Sulfonyl azides have efficiently been synthesized via a convenient and environmentally benign procedure, in

which sulfonyl chlorides undergo nucleophilic substitution reaction with sodium azide in PEG-400 under mild
conditions. The sulfonyl azides were obtained in 84�97% isolated yields.
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Introduction

Sulfonyl azides are very valuable reagents in organic

chemical transformations such as the preparation of

a-diazocarbonyl compounds [1], the hydro-hydrazi-

nation or/and hydroazidation of olefins [2,3], the

aziridination of olefins [4], the radical amination [5,6],

and metal-catalyzed coupling reactions [7]. Due to a

wide range of applications, there are many methods

available for the preparation of sulfonyl azides. For

example, sulfonyl azides were prepared by reacting

sulfonyl anhydrides [8], a-disulfones [9], or 1-

sulfonylbenzotriazole [10] with sodium azide. These

procedures may suffer from the unavailability of

starting materials or their difficulty in preparation.

Additionally, diazotization of sulfonyl hydrazides

with NO� has also been employed but still requires

the availability of the hydrazides [11]. However, the

most practical laboratory methods for preparing

sulfonyl azides by nucleophilic substitution reaction

of sulfonyl chlorides with sodium azide in various

solvents are such as alcohol/H2O, acetone/H2O,

DME/H2O, and so on [3,12�17]. Since nucleophilic

substitution reactions of sulfonyl chloride involve a

nonpolar organic compound and a polar ionic salt,

sodium azide, the heterogenous reactions are often

troublesome because the polar and nonpolar reagents
are often not soluble in a single solvent system.
Consequently, to improve the yields and to facilitate
the product isolation, the nucleophilic displacement
reactions are carried out under phase-transfer cataly-
sis conditions [18,19]. However, these methodologies
often suffer from complex procedures, long reaction
times, and low yields. Thus, there is a great demand for
the development of new convenient and eco-friendly
synthetic methods toward assessing sulfonyl azides.

In the recent years, polyethylene glycols (PEGs)
have attracted great interest and have been explored as
a novel, powerful, eco-friendly reaction medium for
various organic transformations [20�25] due to their
relatively inexpensive, thermally stable, readily recycl-
able, and biodegradable. In a continuation of our work
[20] to explore PEG as an efficient and eco-friendly
reaction medium, we report here a convenient and
practical synthesis of sulfonyl azides by using sodium
azide in PEG-400 at room temperature (Scheme 1).

Results and discussion

Initially, we examined the effectivity of PEG-400 for
the model reaction of 4-Tosyl chloride and sodium
azide (Entry 4, Table 1). In a typical experimental
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procedure, a screening of different solvents (CH3CN,
THF, CH2Cl2, toluene, and so on) for the model
reaction revealed that PEG-400 was the most active
reaction medium.

To investigate the generality and scope of the
reaction, various sulfonyl chlorides were subjected to
the reaction conditions and no additional catalyst and
solvent were required. The results are summarized in
Table 1. As presented in Table 1, all aryl and aliphatic
sulfonyl chlorides gave sulfonyl azides in excellent
yields in 10�40 minutes. Aryl sulfonyl chlorides
containing both electron-donating, such as methyl,
methoxyl, and electron-withdrawing groups, like
nitro, acetamido, underwent the conversion
smoothly. Aryl sulfonyl chlorides with electron-
withdrawing groups such as NO2 required slightly
more long time (Entries 8�10, Table 1). With more
sterically hindered sulfonyl chlorides, satisfactory
yields were still obtained from the nucleophilic
substitution (Entries 5, 6, and 10, Table 1).
2-Nitrobenzenesulfonyl chloride took the longest
time caused by the electronic and steric hindrance
effect (Entry 10, Table 1). The presence of various
functional groups such as halides, nitro, aceta-
mino, and methoxyl on the aryl sulfonyl chlorides
was tolerated (Entries 7�13, Table 1). Trans-b-
styrenesulfonyl chloride and 2-thiophenesulfonyl
chloride have also been successfully converted into
their corresponding sulfonyl azides in high yields
(Entries 14 and 15, Table 1). In short, the products
were all formed in excellent yields and no side
products were detected. The structures of all products
were identified by their physical and spectral data.
Infrared spectra of all compounds have strong
characteristic band at 2120�2160 cm�l (N3), 1310�
1370 cm�l, and 1100�1170 cm�l (SO2).

Experimental

All reagents were purchased from commercial sources
unless otherwise stated. Petroleum ether/ethyl acetate
(8:1) (TLC) was carried out on silica gel 60 F254

precoated plates (0.20�0.25 mm thickness) and visua-
lized with UV light (254 nm). Melting points were
determined with X-6 (Beijing Fukai Co. Ltd.) melting
point apparatus and were uncorrected. 1H NMR and
13C NMR (600 and 150 MHz, respectively) spectra
were recorded in CDCl3.

1H NMR chemical shifts are
reported in ppm (d) relative to tetramethylsilane

(TMS) with the solvent resonance employed as the
internal standard (CDCl3, d 7.26 ppm). Data are
reported as follows: chemical shift, multiplicity (s�
singlet, d�doublet, t�triplet, and m�multiplet),
coupling constants (Hz), and integration. 13C NMR
chemical shifts are reported in ppm fromTMSwith the
solvent resonance as the internal standard (CDCl3, d
77.0 ppm). Compounds 1l [27], 1m [27], and 1n [28]
were prepared by following the reported methods.

Typical procedure for synthesis of sulfonyl azides

A typical experimental procedure is as follows: a
mixture of sulfonyl chloride (2 mmol) and NaN3

(2.4 mmol) in PEG-400 (2 mL) was vigorously stirred
at room temperature for the appropriate time (Table
1) until TLC indicated total disappearance of sulfonyl
chloride. After completion, the reaction mixture was
poured into water and extracted with dry ether. The
organic layer was removed under reduced pressure
and afforded pure sulfonyl azides in excellent yield
[Caution: Sufficient care has to be exercised while
treating organic azides because of their explosive
nature]. The crude products were generally sufficient
purity to be used without further purification. The
pure compounds can also be obtained by flash silica
gel column chromatography with petroleum ether/
ethyl acetate (8:1) or crystallized from methanol. The
PEG-400 was recovered from the aqueous layer and
reused without loss of activity.

Characterization data of selected known compounds

and new compound

The products are all known except 3m and were
identified by comparing their physical and spectral
data with literature values. Spectral data for selected
and new compounds are described in the following
subsections.

1-Butanesulfonyl azide (3a)

Pale yellow liquid. 1H NMR (CDCl3): dH 0.99 (t, J�
7.4 Hz, 3H), 1.48�1.57 (m, 2H), 1.88�1.93 (m, 2H),
3.32 (t, J�7.9 Hz, 2H). 13C NMR (CDCl3): dC 13.4,
21.3, 25.3, 55.7. IR (KBr), vNcm�1: 3306, 2965, 2877,
2378, 2136, 1467, 1364, 1242, 1198, 1159, 1100, 1079,
917, 794, 735.

Phenylmethanesulfonyl azide (3b)

Colorless solid, m.p. 53�54 8C. 1H NMR (CDCl3): dH
4.53 (s, 2H), 7.43�7.48 (m, 5H). 13C NMR (CDCl3):
dC 61.9, 126.6, 129.3, 129.9, 130.9. IR (KBr), vNcm�1:

S + NaN3
PEG-400

R

1 2 3
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Scheme 1. Synthesis of sulfonyl azides from sulfonyl chlorides.
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Table 1. Synthesis of sulfonyl azides from sulfonyl chlorides using PEG-400 as an efficient reaction medium.a

m.p. (8C)

Entry Sulfonyl chloride Sulfonyl azide Time (mins) Yieldb Found Reportedc

1 CH3(CH2)2SO2Cl 1a CH3(CH2)2SO2N3 3a 10 94 Oil Oil [10]

2
SO2Cl

1b

SO2N3

3b
10 97 53�54 53.5�54 [26]

3 SO2Cl

1c
SO2N3

3c
10 96 13�14 13.5�14.5 [11]

4 SO2Cl
1d

SO2N3

3d
10 94 22�23 22.5�23.5 [11]

5 SO2Cl

1e

SO2N3

3e

10 90 Oil Oil [7]

6 SO2Cl

1f

SO2N3

3f

30 84 42�43 41�43 [14]

7 SO2ClH3CO
1g

SO2N3H3CO
3g

10 95 50�51 51.5�52 [17]

8 SO2ClO2N
1h

SO2N3O2N
3h

30 90 100�101 101.5�102 [17]

9
SO2Cl

O2N 1i

SO2N3

O2N 3i

30 95 78�79 80.5�81 [17]

10
SO2Cl

NO2 1j

SO2N3

NO2 3j

40 85 67�68 68�71 [15]

11 SO2ClBr
1k

SO2N3Br

3k
10 97 54�55 54.5�56 [17]

12 SO2ClAcHN
1l

SO2N3AcHN
3l

10 93 107�108 108�110 [16]
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3436, 3294, 2979, 2137, 1599, 1496, 1456, 1407, 1355,
1270, 1179, 1159, 1136, 1031, 884, 793, 748.

Benzenesulfonyl azide (3c)

Colorless solid, m.p. 13�14 8C. 1H NMR (CDCl3): dH
7.63 (t, J�7.5, J�7.9 Hz, 2H), 7.74 (t, J�7.5 Hz,
1H), 7.97 (d, J�7.9 Hz, 2H). 13C NMR (CDCl3): dC
127.5, 129.7, 134.8, 138.5. IR (KBr), vNcm�1: 3273,
3069, 2921, 2128, 1732, 1583, 1449, 1373, 1313, 1170,
1087, 1020, 930, 753.

4-Toluenesulfonyl azide (3d)

Colorless solid, m.p. 22�23 8C. 1H NMR (CDCl3): dH
2.48 (s, 3H), 7.41 (d, J�8.1 Hz, 2H), 7.84 (d, J�8.3
Hz, 2H). 13C NMR (CDCl3): dC 21.7, 127.5, 130.3,
135.6, 146.2. IR (KBr), vNcm�1: 3273, 3067, 2926,
2127, 1595, 1494, 1450, 1371, 1308, 1167, 1121, 1086,
1018, 814, 748.

2,4,6-Trimethylbenzene-1-sulfonyl azide (3e)

Tan liquid. 1H NMR (CDCl3): dH 2.3 (s, 3H), 2.67 (s,
6H), 7.02 (s, 2H). 13C NMR (CDCl3): dH 21.1, 22.7,
132.2, 133.3, 139.9, 144.6. IR (KBr), vNcm�1: 3276,
2981, 2924, 2382, 2122, 1602, 1566, 1455, 1366, 1291,
1191, 1166, 1051, 965, 854, 745.

2,4,6-Triisopropylbenezensulfonyl azide (3f)

Colorless solid, m.p. 42�43 8C. 1H NMR (CDCl3): dH
1.26 (d, J�7.1 Hz, 6H), 1.30 (dd, J�6.6, J�6.8 Hz,
12H), 2.91�2.96 (m, 1H), 4.22�4.26 (m, 2H), 7.22 (s,
2H). 13C NMR (CDCl3): dC 23.4, 24.3, 24.7, 29.7,
29.8, 34.3, 124.1, 124.3, 139.3, 150.4, 150.9, 155.6. IR
(KBr), vNcm�1: 3435, 3055, 2961, 2930, 2870, 2121,

1598, 1462, 1434, 1385, 1378, 1364, 1350, 1261, 1175,
1104, 1059, 889, 802, 740.

4-Methoxysulfonyl azide (3g)

Colorless solid, m.p. 50�51 8C. 1H NMR (CDCl3): dH
3.91 (s, 3H), 7.05 (d, J�8.9 Hz, 2H), 7.90 (d, J�8.9
Hz, 2H). 13C NMR (CDCl3): dC 55.9, 114.8, 128.6,
129.9, 164.6. IR (KBr), vNcm�1: 3273, 3096, 2984,
2129, 1590, 1495, 1369, 1318, 1266, 1187, 1163, 1110,
1085, 1020, 832, 805, 744.

4-Nitrobenzenesulfonyl azide (3h)

Tan solid, m.p. 100�101 8C. 1H NMR (CDCl3): dH
8.17 (d, J�8.8 Hz, 2H), 8.46 (d, J�8.8 Hz, 2H). 13C
NMR (CDCl3): dH 124.9, 128.9, 143.8, 151.0. IR
(KBr), vNcm�1: 3107, 2920, 2143, 1606, 1531, 1377,
1350, 1311, 1178, 1160, 1085, 854, 769, 744.

2-Nitrobenzenesulfonyl azide (3j)

Tan solid, m.p. 68�71 8C. 1H NMR (CDCl3): dH 7.83
(ddd, 1H), 7.88 (ddd, 1H), 7.92 (dd, 1H), 8.20 (dd,
1H). 13C NMR (CDCl3): dH 125.4, 131.7, 132.7,
133.0, 135.7. IR (KBr), vNcm�1: 3320, 3100, 2923,
2381, 2157, 1594, 1550, 1438, 1363, 1315, 1261, 1194,
1145, 1120, 967, 853, 755, 737.

4-Bromobenzenesulfonyl azide (3k)

White solid, m.p. 78�79 8C. 1H NMR (CDCl3): dH
7.76 (d, J�8.4 Hz, 2H), 7.82 (d, J�8.6 Hz, 2H). 13C
NMR (CDCl3): dC 128.9, 130.3, 133.1, 137.5.
IR (KBr), vNcm�1: 3246, 3094, 2923, 2148, 1571,
1470, 1392, 1376, 1168, 1083, 1064, 1008, 819, 770,
732.

Table 1 (Continued )

m.p. (8C)

Entry Sulfonyl chloride Sulfonyl azide Time (mins) Yieldb Found Reportedc

13
SO2Cl

Cl

AcHN
1m

SO2N3

Cl

AcHN
3m

10 92 95�97 �

14
SO2Cl

1n

SO2N3

3n
30 91 31�32 31.5�33 [26]

15
S SO2Cl

1o

S SO2N3

3o
10 90 30�31 30�32 [10]

aReaction conditions: sulfonyl chloride (2.0 mmol), sodium azide (2.4 mmol), and PEG-400 (2 mL) at room temperature.
bIsolated yield.
cThe compound reported in the literature.
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4-Acetamidobenzenesulfonyl azide (3l)

White solid, m.p. 107�108 8C. 1H NMR (CDCl3): dH
2.25 (s, 1H), 7.78 (d, J�9.0 Hz, 2H), 7.79 (brs, 1H),
7.89 (d, J�8.8 Hz, 2H). 13C NMR (CDCl3): dC 24.7,
119.6, 129.6, 129.0, 132.7, 143.9, 168.9. IR (KBr),
vNcm�1: 3303, 3264, 3185, 3112, 2130, 2120, 1676,
1585, 1534, 1405, 1365, 1315, 1265, 1165, 1086, 839,
752, 707.

3-Chloro-4-acetamidobenzenesulfonyl azide (3m)

White solid, m.p. 95�97 8C. 1H NMR (CDCl3): dH
2.32 (s, 3H), 7.85 (dd, J�2.2, J�9.0 Hz, 1H), 7.87
(brs, 1H), 7.97 (d, J�2.2 Hz, 1H), 8.74 (d, J�8.8 Hz,
1H). 13C NMR (CDCl3): dC 25.1, 120.9, 122.6, 127.5,
128.3, 133.2, 140.3, 168.5. IR (KBr), vNcm�1: 3401,
3119, 3070, 2340, 2134, 1712, 1575, 1505, 1392, 1375,
1306, 1171, 1098, 857, 837, 778, 745.

Trans-b-styrenesulfoyl azide (3n)

White solid, m.p. 31�32 8C. 1H NMR (CDCl3): dH
6.94 (d, J�15.3 Hz, 1H), 7.45�7.47 (m, 2H), 7.50 (m,
1H), 7.53�7.55(m, 2H), 7.70 (d, J�15.3 Hz, 1H). 13C
NMR (CDCl3): dC 123.2, 126.8, 128.9, 129.4, 129.6,
129.8, 131.3, 132.2. IR (KBr), vNcm�1: 3292, 3065,
2345, 2130, 1725, 1610, 1576, 1495, 1450, 1368, 1180,
1154, 1107, 1074, 975, 863, 821, 749.

2-Thiophenesulfonyl azide (3o)

Pale yellow, m.p. 30�31 8C. 1H NMR (CDCl3): dH
7.21 (dd, J�3.9, J�4.9 Hz, 1H), 7.80 (dd, J�1.4,
J�4.9 Hz, 1H), 7.21 (dd, J�1.4, J�3.9 Hz, 1H). 13C
NMR (CDCl3): dC 128.0, 134.7, 135.1, 138.2. IR
(KBr), vNcm�1: 3271, 3101, 2129, 1754, 1601, 1504,
1400, 1378, 1345, 1167, 1094, 1019, 857, 757, 746.

Conclusion

In summary, we have disclosed a simple, mild, and
efficient method for the synthesis of sulfonyl azides.
Compared to the previously reported methods, this
protocol offers several advantages including exceed-
ingly mild conditions, operational simplicity, more
environmentally benign, short reaction time, and
higher reaction yield. Further investigations on the
application of PEG-400 on other catalytically syn-
thetic reactions will be reported in due course.
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