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ABSTRACT 

Smith, Caitlin Langworthy, M.S., Department of Natural Resources Management. 
College of Graduate and Interdisciplinary Studies, North Dakota State University. May 
2011. Effects of Sediment Removal on Vegetation Communities in Prairie Pothole 
Wetlands in North Dakota. Major Professor: Dr. Edward Shawn DcKcyscr. 

The goal of this study was to assess eff ccts of sediment removal on vegetation 

communities in Prairie Pothole wetlands in North Dakota to determine if this 

management technique is providing desired results to create conditions for ideal 

vegetation communities in wetlands that \\ill benefit wildlife. This project consists of 

vegetation surveys from seasonal wetlands located in Benson, Fddy. Towner. and Wells 

counties in North Dakota. Three types of wetlands were sun eyed: natural (reference). 

excavated (treatment), and com·erted cropland. Vegetation sun·eys were completed in the 

shallow marsh and wet meadow zones of seasonal wetlands. Sites were sampled using a 

modified Daubenmire method. Aerial photos were assessed to determine the occurrence 

of drawdown cycles in wetland sites. Plant communities were analyzed using non-metric 

multidimensional scaling and multi-response permutation procedure was used to make 

comparisons between sites. The \\Ct meadow zone:, and shallow marsh zones of the three 

types of wetlands were all significantly different (p·<0.016) from one another. In general. 

restored\\ etlands shm\· wgctation trends that liken natural wetlands\\ hile those that 

haYe been allowed to reco\·er \\ithout restoration tend to be cattail choked. When 

examining hybrid cattail specifically. visual obstruction scores \\ere approximately four 

times greater in com·erted cropland sites versus treatment or reference sites. Vegetation 

composition indicates hydrologic conditions ( fresh to brackish conditions) of specific 

sites and regional distribution are likely influential factors in \\etland plant establishment. 
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INTRODUCTION 

North Dakota supports some of the most productive wetlands in the world and 

degradation of these wetlands because of increased sedimentation is a growing concern 

due to past and current management (Martin and Hartman 1987, Gleason and Euliss 

1998, Fisher and Allbee 2010). Sediment removal to extend the lifespan of wetlands is a 

relatively new management technique. However, little follow-up research has been 

completed after sediment removal has occurred to track potential improvement in habitat 

and plant community condition. 

North Dakota is located in an agricultural dominated landscape that has resulted 

in the conversion of grasslands to cropland. It has been impacted by human settlement 

and intensive agriculture since the early 1900s (Fisher 20 I 1 ). Extensive cultivation has 

led to increased erosion and the degradation of wetlands in this area. Increases in 

agricultural practices like native prairie being converted to agricultural land can 

accelerate sedimentation which can increase the deposition of nutrients, including 

nitrogen and phosphorus (Richardson et al. 1994 ). Soil erosion has also been aggravated 

due to the cultivation of wetland catchment areas (Gleason and Euliss 1998 ). Due to 

excess sedimentation and erosion. many of the \\ctlands on the landscape have been 

degraded or ha\e disappeared (Gleason and Euliss 1998). Smaller wetlands arc especially 

susceptible due to shallow basins \\·hich tend to dry quickly lea\·ing the margins and 

basins of these wetlands easily degraded by agricultural practices (Bartzen ct al. 2010 ). It 

has been estimated that up to 90% of seasonal and temporary wetlands ha\·e been lost 

within the Prairie Pothole Region ( PPR) due to the com ersion of grasslands to cropland 

and the drainage of\\etlands (Knutsen and Euliss Jr. 2001). 



Wildlife, such as waterfowl. rely on these wetlands for both food and cover 

during their migration as well as for breeding and raising broods (Weller and Spatcher 

1965, Kantrud and Stewart 1977, Cox ct al. 1998 ). Primary factors that determine the 

quantity and diversity of breeding waterfowl that will settle in the PPR are wetland 

a\'ailability and emergent co\'er conditions (Weller and Spatcher 1965 ). 

Increased disturbance in a wetland, whether natural or anthropogenic. facilitates 

wetland invasion resulting in a decline of both the number and quality of native 

\'egetation species (Zedler and Kercher 2004 ). T)pha x xlauca, or hybrid cattail. is one 

in\'asi\'e species of prairie v;etlands that tends to form robust monocultural stands that 

choke out natiw \ cgctation (Galatowitsch and \'an der Valk 1995, Galatowitsch ct al. 

1999. Boers ct al. 2007). Wildlife use has been shown to decline in these monocultural 

wetlands (Kantrud 1986 ). 

Inwstments in wetland restoration and interest in wetland mitigation has been 

increasing (fisher and Allbee 2011 ). The ecological significance and the decline of these 

ecosystems ha\'e made wetland restoration a priority for many pri\'ate, state, and federal 

organizations (Zimmer ct al. 2002. Fisher and Allbee 2011 ). Although this management 

technique is growing in popularity, there arc still many unanswered questions. 

The specific objccti\'es of this study include: 

1) Compare\ egetation communities between nati\'e prairie wetlands (reference). 

wetlands that haw been restored through sediment rem en al (treatment). and 

\\ etlands that ha\'e been allO\\ ed to rcco\ er from past tillage practices on their 

own ( c01werted cropland). 

2) E \'al uate effects of sediment remoYal on hybrid cattail establishment. 
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3) Evaluate post-excavation management practices and the effects on wet meadow 

vegetation community development. 

4) Evaluate regional differences of wetland plant community establishment. 
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LITERATURE REVIEW 

Wetlands 

Although there are many definitions for wetlands, the U.S. Army Corps of 

Engineers definition is used as the legal definition when considering wetland 

management and regulation (USCOE 1987. Mitsch and Gosselink 2007). This definition 

is as follows: "The term '"wetlands" means those areas that arc inundated or saturated by 

surface or ground water at a frequency and duration sufficient to support. and that under 

normal circumstances do support, a prevalence of vegetation typically adapted for life in 

saturated soil conditions. Wetlands generally include swamps. marshes, bogs, and similar 

areas.'' (33 CFR 328.3(b) 1984 ). Three characteristics must be present for an area to 

qualify as a wetland: indicators of hydrology, hydrophytic vegetation. and hydric soils 

(Mitsch and Gosselink 2007, COE 2008). 

The most common wetland type within the PPR is palustrinc emergent (PEM) 

(Cowardin et al. 1979). These wetlands can be further divided into four water regime 

classes: temporary, seasonal, semi-permanent, and permanent (Stewart and Kantrud 

197 L Co\\·ardin et al. 1979, Phillips and Beeri 2008 ). All sites used for this study arc 

type III freshwater wetlands. i.e., seasonal wetlands (Stewart and Kantrud 1971 ). 

Seasonal wetlands, as defined by Stewart and Kantrud 1971, are comprised ofa shallow 

marsh zone, \\Ct meado\\' zone. and low prairie zone as seen in figure 1. 

Wetlands in the PPR ha\·c a shared surface and groundwater hydrology (Phillips 

and Beeri 2008 ), howewr: most wetlands arc not connected by overland flow due to few 

narnral surface drainage systems within the region (Richardson ct al. 1994. Euliss ct al. 

1999). These pothole wetlands can function as groundwater recharge, flow-through 
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systems, or groundwater discharge sites (Arndt and Richardson 1988, 1989, Euliss ct al. 

1999). The hydrologic function that a wetland performs is based on its landscape 

position, climate variation, the type of underlying substrate, and the arrangement of the 

affiliated water table (Euliss ct al. 1999). Wetlands act as landscape sinks collecting 

debris, sediments, water, and nutrients from the surrounding landscape (Zedlcr and 

Kercher 2004 ). 

Clcu II 
s-~ ....... , 

Pond or Lou 

Figure 1. Spatial relation of vegetation zones of Class III seasonal wetlands. 

Subclasses of wetlands are based on differences in species composition of 

vegetation communities within ,,et-meadow, shallow-marsh. or deep-marsh zones that 

are correlated with variations in aYCrage salinity of surface water and can persist o, er 

widely overlapping ranges of salinity (Ste,,·art and Kantrud 1971, Cowardin ct al. 1979). 

These subclasses include fresh. slightly brackish. moderately brackish, brackish. and 

subsaline. Subclasses are based on ranges in specific conductance (micromhos/cm') of 

surface ,,ater (Table 1) (Stewart and Kantrud 1971 ). Plant community associations arc 

used as reliable indicators of aYCragc salinity than single measurements of specific 

conductance due to unstable water conditions characteristic of most prairie pothole 

wetlands (Stewart and Kantrud 1971 ). 
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Table 1. Approximate normal and extreme ranges in specific conductance 
(micromhos/cm3

) of surface water in plant communities that are indicators of differences 
in average salinity. -~-------------

Disturbances 

Plant Community 
Fresh 

Slightly brackish 

Moderately brackish 

Brackish 

Subsaline 

Saline 

Normal Range 
<40-500 

500-2,000 

2,000-5,000 

5,000-15,000 

15,000-45,000 

45.000-100,000+ 

Extreme Raf!_~ 
<40-700 

300-2,200 

1.000-8.000 

1,600-18.000 

3,500-70.000 

20.000-100.000+ 

For this paper, '"disturbance·· is defined as, "any event or series of events that 

disrupt ecosystem, community, or population structure and alters the physical 

environment, by natural or unnatural means". Wetlands used for this study have been 

subject to disturbances including grazing and sedimentation which are common in 

agricultural settings. Wetland sites located in Wells county have been left idle and 

therefore are considered to have a lack of disturbance. 

Grazing 

Ecological systems such as wetlands depend on disturbance which plays a critical 

role in maintaining diYersity. structure. and function (Marty 2005 ). Disturbance on prairie 

grasslands occurred naturally oYer thousands of years through fire and grazing (Kantrud 

et al. 1989a). Li\·estock can sen·e as a functional equiYalent to large herbirnrcs that 

historically grazed grasslands (Marty 2005 ). 

Grazing effects vary depending on the intensity of grazing. Grazing can be 

effecti\·e in controlling inYasi\·e wetland plant species such as hybrid cattail (7)pha x 

glaucaJ and reed canary grass (Phalaris anmclinacea) which often forn1 monocultures in 

wetlands (Kantrud 1986. Kirby et al. 2002. ;\farty 2005) Cattle selectiYCly forage on 
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grasses and grass-like plants which help maintain a more open canopy in wetlands 

(Kantrud 1986, Marty 2005 ). Higher biodiversity and increased native plant species 

richness has been shown in grazed versus non-grazed systems (Marty 2005 ). I lowever. 

overgrazing can decrease the productivity of plants, reduce plant cover, and increase the 

amount of bare ground (Reimold et al. 1975, Basset 1980). 

Sedimentation 

Sedimentation can be from both natural and anthropogenic origin. Sediment can 

impact wetlands in multiple ways and has been shown to have substantial effects on 

wetland processes (Jurik et al. 1994, Gleason and Euliss 1998 ). These effects include 

shortening of the topographic lifespan of the wetland, the alteration of vegetation 

communities, altering the soil structure within wetland basins, reducing the 

microtopography within the wetland, and excess nutrients and contaminants entering the 

\Vetland (Martin and Hartman 1987, Jurik et al. 1994, Gleason and Euliss 1998, Werner 

and Zedler 2002). 

Prairie conversion to agricultural lands and agricultural practices can accelerate 

the sedimentation process which is especially common in the PPR (Gleason and Euliss 

1998, Detenbeck et al. 2002). Sediment rates have been found to be nearly twice as high 

in wetlands with cultivated catchments than with catchments occurring in native or non­

native grassland (\1artin and Hartman 1987. Gleason and Euliss Jr. 1998). Prolonged 

drought coupled with wind can increase soil erosion and the deposition of sediment in 

wetland basins. especially in cultivated catchment areas (Gleason and Euliss Jr. 1998). 

Ewry wetland has a finite topographical lifespan: however, increased sedimentation can 

shorten its topographical lifespan. Sediment accumulation makes wetlands shallcrn·er and 
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creates fresh substrate, allowing for species, such as hybrid cattail, to colonize the area 

that may otherwise be restricted by water depths (Werner and Zed!er 2002). 

There is a negative correlation between the increase in sediment depth and the 

decrease in number of plant species in wetlands (Jurik et al. 1994, Werner and Zedler 

2002, Gleason et al. 2003). Reports have shown that sediment burial depths as little as 2.5 

mm can reduce species richness, emergence, and germination of hydrophytes in wetlands 

(Jurik et al. 1994, Gleason ct al. 2003 ). This is a minute amount to have such a significant 

impact on wetland vegetation. Germination success has been shown to be linked to seed 

size with larger, more robust seeds generally more able to withstand sediment loads like 

T_Jpha x glauca (Jurik ct al. 1994 ). Sedimentation burial of seedbeds prior to the 

drawdown phase can inhibit the growth and establishment of hydrophytic species and 

potentially alter the vegetation communities of wetlands (Jurik ct al. 1994, Gleason ct al. 

2003). Sediment not only affects vegetation recruitment from sccdbanks, but invertebrate 

egg banks are also negatively affected by sedimentation (Gleason ct al. 2003 ). 

Sedimentation has been shown to significantly alter physical characteristics of 

wetlands, such as soil structure and moisture regime, by decreasing soil organic matter 

content and increasing dry soil bulk density which can lower species richness of the 

wetland basin (Werner and Zedler 2002). This can lead to an increase in invasive species. 

The expansion of hybrid cattail is a symptom of excessive sedimentation of PPR 

wetlands (Kantrud 1992 ). Increased sedimentation can lead to excess deposition of 

nutrients such as nitrogen (N) and phosphorus (P ), commonly found in larger amounts in 

agricultural areas (Martin and Hartman 1987 ). Total accumulation rates of total P have 

been found to be approximately twice as high in wetlands surrounded by cultivation than 
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in grassland complexes, however, total N and organic matter were similar when 

compared between cultivated and grassed watersheds (Martin and Hartman 1987). 

Significantly more clay and silt, up to five times more, has been found in the soils of 

cultivated wetlands versus grassland wetlands (Martin and Hartman 1987). Sedimentation 

can affect species richness in wetlands by reducing microtopographic relief (Werner and 

Zedler 2002). Sedimentation reduces microtopographic variation and surface area for 

native species. A reduction in microtopography due to sedimentation can smother natiYC 

vegetation and encourages invasive species, such as Typha x glauca. to establish and 

expand, choking out native vegetation (Werner and Zedler 2002). 

Idle Wetlands 

Areas in the PPR are left idle for different reasons including being a part of 

national wildlife refuges, waterfowl production areas, state game management areas, and 

conservation reserve program, or being located under private ownership (Hargiss 2009). 

The PPR was formed by natural disturbances such as fire. grazing, and climatic 

fluctuations (Kirby et al. 2002). \Vhen left idle, the lack of disturbance can have an effect 

on present vegetative communities. Opportunities for invasion by woody species are 

increased when areas are left idle, especially after culti\·ation (Kantrud and Ne\\ton 

1996). Allowing lands to idle may decrease oYeralJ plant diversity and increase non­

native vegetation species abundance in wetlands (Marty 2005 ). 

Hydrology 

Hydrologic conditions, especially flooding regimes, are a primary influence on 

wetland processes and plant community composition (Mitch and Gosse link 2007 ). 

Smaller seasonal or temporary wetlands are floristically less stable regarding species 
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richness as these are more susceptible to changes in precipitation patterns (Aronson and 

Galatowitsch 2008). The natural fluctuation of water levels is likely the most important 

cause of vegetative change in prairie wetlands (van der Valk 1981, Kantrud 1986). Water 

levels within wetland basins respond rapidly to changes in weather (Johnson et al. 2004, 

2005). Drawdown periods are natural and are critical for the recruitment and germination 

of emergent species from the seed bank for the re-colonization of emergent vegetation in 

wetlands (van der Valk and Davis 1978, Johnson et al. 2005). For the same reasons. 

frequent drawdown periods are also important for invertebrate egg banks (Gleason ct al. 

2003, 2004). 

Hydrological disturbance affects nutrient availability and salinity levels, not just 

water levels. Nitrates are quickly leached from oxidized soil during drainage and 

phosphorus is released upon rewetting (Olde Ventcrink et al. 2002). Salinity within a 

wetland basin changes as hydrology fluctuates, for example the wet/dry cycle, impacting 

vegetation communities present in the wetland basin (Euliss ct al. 1999). For example. a 

v,etland classified as a freshwater wetland may become classified as a brackish wetland 

as salinity increases due to hydrology fluxes. Plant species have varying tolerances to 

salinity and wgetation communities within wetland basins may shift over time due to 

changes in these salinity levels (Ste\\art and Kantrud 1971, 1972, Euliss ct al. 1999). 

Ho\\ever, high salinity usually results in Jess diversity of wetland vegetation (Kantrud ct 

al. 1989b ). 

Typha Species 

Three species of cattail are found in the ?\orthem Great Plains: T;pha latifolia, 

T)pha angustifolia. and T_1plw x glauca. These species can be found in both seasonal and 
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permanent surface water (Goslee et al. 1997). Typha lat(folia, or broad-leaved cattail, is 

native to North American wetlands and is typically found upslope in shallower water 

depths (Grace and Harrison 1986). Typha angustifolia, or narrow-leaved cattail, is a 

European species that was introduced from the early 191
h century and spread inland and 

westward across southern Canada and the northern United States (Grace and Harrison 

1986). Typha angust(folia can tolerate more saline or alkaline environments as well as 

deeper water than Typha lat(folia (Smith 1967, Grace and J Iarrison 1986, Wilcox 1986. 

Tanaka et al. 2004) and is usually found in highly disturbed sites versus natural sites 

(Smith 1967, Grace and Harrison 1986, Olson et al. 2009). Typha x glauca, or hybrid 

cattail or Typha x, is a Fl hybrid between Typha latifrJlia and Typha angusttfolia (Smith 

1967, Grace and Harrison 1986) and is also usually found in disturbed sites (Grace and 

Harrison 1986) and poses the greatest concern from a management perspective. 

Typha x is a common invasive species in disturbed wetlands and can tolerate 

varied \Vater depths (Grace and Harrison 1986. Boers et al. 2007, Vaccaro ct al. 2009) 

and can adapt quickly to altered hydrologic regime and altered soils (Smith 1967, Olson 

et al. 2009). This species spreads rapidly through rhizomatous grov,th ,,·hich allows for 

quick invasion of aquatic habitats (Grace and Harrison 1986, Woo and Zedlcr 2002, 

Boers et al. 2007). T)pha xis a robust species that can withstand sediment loads unlike a 

large portion of natiw vegetation (van der Valk and Davis 1978, Maurer and Zcdlcr 

2002. Boers et al. 2007) and will often form monocultural stands unless properly 

managed (Galatowitsch and van der Valk 1995, Galatowitsch et al. 1999, Boers et al. 

2007). Hybrid cattail tends to become more dominant as the awrage number of flood 

days increase (Boers et al. 2007). Due to greater tolerance of flooding T_,\pha x readily 
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invades many wetland sites, and rapid early grow1h may contribute to tolerance as well 

when nutrients are not a factor (Kercher and Zedler 2004 ). 

Typha x can become dominant in wetlands for many reasons. They have tall 

stature that may potentially block sunlight that would otherwise be available to 

understory vegetation. Typha x exhibits rapid growth and the ability to utilize resources 

such as light, nutrients and root space more effectively than native plants (Galatowitsch ct 

al. 1999) and tend to create a high-nutrient, low-light environment that benefits itself 

(Farrer and Goldberg 2009). Hybrid cattail produces large amounts of vegetative litter 

that can accumulate to great depths. This litter prevents light from penetrating the bottom 

of the wetland and may inhibit the growth of present vegetation or prevent other species 

from establishing in the wetland. This results in the decrease of native plant density, 

diversity, and survival (Hager 2004, Boers et al. 2007, Farrer and Goldberg 2009, 

Vaccaro et al. 2009). Boers et al. (2007) found a negative correlation between Typha x 

cowr and species richness. A study done by Vaccaro et al. (2009) revealed that species 

density was negatively correlated with litter biomass, but was not related to aboveground 

live cattail biomass. Not surprisingly, native diversity has been found to be highest in 

shallow litter depth (Farrer and Goldberg 2009). 

Hybrid cattail has been shown to utilize excess nutrients such as N and P and 

accelerate their \egetative gro\\th and increase aboveground biomass suggesting it is an 

opportunistic invader (Mack et al. 2000, Woo and Zedler 2002). However, the same 

study by Woo and Zedler (2002) showed that native graminoids did not respond to excess 

nutrients in either biomass or percent conr. This allows for T)pha x to exploit these 

nutrients \\-ithin \\-etland habitats. It is thought that excess~ and P in sediment. along 
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with continuous anaerobic water levels, provides a niche for cattails to flourish which 

then often out-compete native vegetation (Woo and Zedler 2002, Fisher and Allbee 

2011). Typha x has been shown to not respond to increases in Nor P individually, but 

responds when N and Pare added together (Woo and Zcdler 2002). Removing these 

excess nutrients through sediment removal may inhibit the ability of Typha x to establish, 

or re-establish if already present, and form dense stands. 

Waterfowl 

The PPR provides critical wetland waterfowl habitat in North America. Primary 

factors that determine the quantity and diversity of breeding waterfowl that will settle in 

the PPR are wetland availability and emergent cover conditions (Weller and Spatchcr 

1965). Seasonal wetlands prove to be of utmost importance for habitat for breeding ducks 

(Kantrud and Stewart 1977). These wetlands arc important to waterfowl as they are the 

some of the first wetlands to thaw in the spring. Water in seasonal wetlands wanns early 

in the spring and these are some of the first \\'etlands to produce macro-invertebrate 

populations, which are important to the diets of waterfowl (Gleason ct al. 2003 ). Seasonal 

wetlands are more producti\'e in the recruitment. abundance and taxon richness than 

semi-permanent wetlands (Gleason et al. 2003 ). Aquatic in\'crts help fulfill a crucial 

protein -rich diet for nesting hens and are also are an important food source for young 

broods (Cox et al. 1998). 

Cattail choked wetlands may decrease suitable habitat for ducks in the PPR. 

Dabbling and di\'ing ducks prefer wetlands with openings as well as heterogeneity in 

\'ege\.ation structure in the marsh canopy to nest and raise their broods (Kantrud 1986 ). 

Robust. monoculture stands produced by cattails tend to haw decreased use by waterfowl 
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(Kantrud 1986). Structured natural vegetation could ultimately provide more potential 

habitat and food for wildlife. 

Sediment Removal 

Sediment removal is implemented to remove undesired vegetation and soil with 

excess nutrients and to expose the original seedbed that would allow for natural 

vegetation to re-establish. Restored wetlands regain native plant communities and 

invertebrate communities similar to reference, or undisturbed, wetlands (Fisher and 

Allbee 2011 ). The establishment of native plant communities in restored wetlands is 

accredited to remnant seed banks and wildlife acting as seed vectors between sites 

(Wissinger et al. 2001 ). Prairie wetlands have seed banks that contain high densities of 

long-lived seeds of native hydrophytic species that enable their vegetation to respond 

rapidly to hydrologic fluxes (van der Valk and Davis 1978). Some species within these 

wetland seed banks can survive for decades (Roberts 1981 ). However, if a site has been 

in cultivation for 50 years or longer, native seed bank is likely near depletion and the seed 

bank of potential competitive and invasive species remains (Verhagen et al. 2001 ). For 

this reason, restorations are often manually seeded or plugged to aid in the native plant 

establishment process. 

Removing surface soil (0-61 cm) not only removes excess nutrients, hut also seed 

banks of undesired vegetation (Verhagen ct al. 2001 ). Hybrid cattail occurs more often in 

areas of varying depths of alluvium suggesting that they arc more successful at 

establishing and persisting in areas of sediment accumulation (Werner and Zcdler 2002). 

If im·asive species are not completely rcmo\'Cd from a restored site they arc likely to re­

invade and out-compete other vegetation (Dalrymple et al. 2003. Boers ct al. 2007 ). 
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The specific objectives of this study include: 

I) Compare vegetation communities between native prairie wetlands, wetlands 

that have been restored through sediment removal, and wetlands that have been 

allowed to recover from past tillage practices on their own. 

2) Evaluate effects of sediment removal on hybrid cattail establishment. 

3) Evaluate post-excavation management practices and the effects on wet meadow 

vegetation community development. 

4) Evaluate regional differences of wetland plant community establishment. 
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STUDY AREA 

This study was completed during 2010 on wetlands located in Benson, Eddy, 

Towner, and Wells counties in North Dakota located within the PPR (Figure 2). These 

counties are categorized within the Northern Great Plains Region, Land Resource Region 

F (USCOE, 2008). Three types of wetlands were surveyed for this study: 1) natural 

(reference, native prairie), 2) excavated (treatment), and 3) converted cropland 

(unexcavated, allowed to recover from past tillage practices on their own). Wetlands 

were chosen based on proximity to the other two types of wetlands. 

Figure 2. Location of Benson, Eddy, Towner, and Wells county wetland study sites in 
North Dakota and clusters. Credit: Statetravelmaps.com 

Eco regions 

Ecoregions are designed and formatted to provide a spatial framework for the 

assessment, research, monitoring, and management of ecosystems and their components. 

Ecoregions are categorized based on biotic and abiotic units and patterns that reflect 

differences in ecosystem type and quality. These ecological units include geology, 
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physiography, climate, soils, hydrology, vegetation, land use and wildlife (Nesser et al. 

1997, Bryce et al. 1998). 

This study was conducted in the Level III Northern Glaciated Plains Ecoregion 

(NGP) of North Dakota (Bryce et al. 1998). This ecoregion is composed of glacial drift 

and characterized by a flat to gently undulating landscape with a high concentration of 

temporary and seasonal wetlands. The landscape hosts transitional grassland with mixed 

grass prairie in the west to tallgrass prairie in the east. Although the NGP possesses 

subhumid climate and fertile till soil, agricultural success is dependent upon annual 

climatic fluctuations. 

Within the NGP there are Level IV ecoregions characterized by greater similarity 

in ecosystem type and quality as well as land use and vegetation characteristics found 

across the entire ecoregion (Bryce et al. 1998). Study sites were located in four Level IV 

ecoregions located within the NGP including the: Northern Black Prairie, End Moraine 

Complex, Drift Plains, and Glacial Outwash. 

Similar to the larger NGP, the Northern Black Prairie is generally flat with 

sporadic undulations with high concentrations of temporary and seasonal wetlands (Bryce 

et al. 1998). This Level IV ecoregion represents a broad transition zone marking the 

introduction from the north of a boreal influence in climate. Land use is extensively tilled 

to spring wheat (Triticum aestivum) and durum (Triticum durum), sunflower (Helianthus 

annuus), alfalfa (Medicago saliva), and other small grains and has the shortest growing 

season. 

The End Moraine Complex is a concentration of glacial features and has high 

temporary and seasonal wetland densities (Bryce et al. 1998). The landscape is of 
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hummocky stagnation moraine, parallel end moraine ridges, and additional glacial 

features such as kames, thrust ridges, and eskers. Land use includes cultivation of spring 

wheat (Triticum aestivum), oats (Avena sativa), barley (Hordeum vulgare), flax (Linum 

usitatissimum), and hay, which can be composed of multiple species, as well as range 

dependent upon slope and presence of rocks in soil. 

The Drift Plains is a generally flat glaciated area with thick glacial till and an 

abundance of temporary and seasonal wetlands (Bryce ct al. 1998). Land use is almost 

entirely used for cultivation of spring wheat and other small grains due to productive soil 

and level topography. 

The Glacial Out\vash is glaciated with generally smooth topography amidst 

ancient channel depressions and relict lakes (Bryce et al. 1998). Soils arc highly 

permeable and possess low water holding capacity. Land use is a mixture of cattle 

grazing and cultivation of spring wheat (Triticum aestirum), oats (Arena satirn), barley 

(Hordeum vulgare), rye (Sccalc ccrcale), and alfalfa (Mcdicaf.{o satirn). 

Climate 

The general climatic pattern for the PPR is short hot summers and long frigid 

winters with a short growing season (Figure 3 ). The PPR is subject to extreme variations 

in temperatures which range from -40''( in the winter to 40''C in the summer (-4(rF to 

I 04°F) (Euliss et al. 1999, Jensen no date). :\orth Dakota, in general. is characterized by 

a relatiwly dry, but typical continental climate \\ith extreme daily, season, and annual 

temperature fluctuations (Winter 1989, Jensen no date). 

Precipitation in North Dakota primarily occurs in the summer but water present in 

wetlands mostly comes from spring sno,\·melt (Winter et al. 1984 ). During winter 



months, less than 20% of the total annual precipitation falls as snow resulting in a period 

ofrelative drought throughout the Northern Great Plains Region (Barker and Whitman 

1988, Jensen no date). Typically 60-80% of total annual precipitation occurs in spring 

and early summer seasons, peaking in June (Barker and Whitman 1988, Jensen no date). 

Figure 3. The Prairie Pothole Region of North America. Shaded area represents the PPR. 
Credit: U.S. Geological Survey 

The PPR's climatic pattern is coupled with alternating wet and dry cycles that last 

approximately 10-20 years each (Diaz 1983). Northeast North Dakota is currently in a 

wet cycle and has undergone 18 consecutive years (1994-2011) of excessively wet, 

annual rainfall conditions (Fisher and Allbee 2011). The wet-dry cycle has pronounced 

effects on the physical, chemical, and biological properties of wetlands (Euliss et al. 

1999, Euliss et al. 2004, Johnson et al. 2005). Alternating weather cycles creates a 

vegetation cover cycle with vegetation expansion and recruitment during draw-down 

periods and vegetation deluge and drowning during high waters (Cowardin et al. 1979, 

an der Valk 1981, Phillips and Beeri 2008). These changes vary and may occur on a 
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weekly, monthly, or annual basis. Variability in temperatures and precipitation are critical 

climatic factors that influence wetlands and vegetation patterns (Barker and Whitman 

1988, Kantrud et al. 1989b). 

For the research year 2010, the average temperature for northeastern North 

Dakota is 5°C (41 °F), and the average summer temperature is 18°C (65°F). Temperatures 

for 2010 ranged from -35 to 36°C (-30 to 98°F) (NDA WN 2011). For the research year 

2010, sites received approximately 47 cm (18.5 inches) in precipitation. Average annual 

precipitation for the region ranges from 36 to 53 cm (14 to 21 inches) (USDA NRCS 

2006). Evaporation exceeded precipitation in the study area by 71 cm (28 inches) 

(NDA WN 2011). 

Geology 

The variable landscape of the PPR was shaped by the late Pleistocene Epoch 

(Wisconsin) glaciations that occurred between 9,000 and 13,000 years ago (Bluemle 

1991, Richardson et al. 1994, Richardson and Vepraskas 2001). The glacial action of the 

last ice age left behind a mosaic of kettles and kames, swales and swells, moraines, 

outwash plains, and glacial lake basins as well as the formation of millions of small 

depressions across the landscape (Euliss et al . 1999, Richardson and Vepraskas 2001 , 

Johnson et al. 2005). 

Major formations in the study area include the Missouri Coteau, Missouri 

Escarpment and Drift Prairie. Elevations within the study area range from 453 to 498m 

above sea level. Wetland sites are located in the Drift Prairie geological region, just on 

the eastern edge of the Missouri Escarpment geological region, which separates the Drift 

Prairie from the Missouri Coteau geological region (Young 1923, Bluemle and Clayton 
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1983). Surface sediments typically found in the PPR include glacial till, glacial outwash, 

and lacustrine muds formed from the erosion of sedimentary rocks (Richardson and 

Vepraskas 2001). The Drift Prairie is a plain covered with undulating deposits of glacial 

till and drift (Young 1923, Aandahl 1982, USCOE 2008). Soil parent materials 

throughout the PPR tend to be clayey, silty, and calcareous. Most of the soils within the 

Drift Prairie formed from the residuum from sandstones and shales formed during the 

Tertiary period (USCOE 2008). 

Vegetation 

The dominant vegetation in the PPR and the NGP has been grass for the last 6,000 

years (Richardson et al. 1994, Richardson and Vepraskas 2001). The governing grassland 

vegetation is very similar over most of its range in the NGP (Barker and Whitman 1988, 

1989). Vegetation is dominated by mixed grass prairie in the west and tall-grass prairie in 

the east. The mixed grass is mostly dominated by western wheatgrass (Pascopyrum 

smithii), green needlegrass (Nassella viridula), needle-and-thread (Hesperostipa comate), 

blue grama (Bouteloua gracilis) and the tallgrass prairie is dominated by big bluestem 

(Andropogon gerardii) , switchgrass (Panicum virgatum), little bluestem (Schizachyrium 

scoparium) and Indian grass (Sorghastrum nutans) (USDA NRC 2006). The United 

tates Department of Agriculture PLANTS database was used as the primary reference 

for all of the plant species and nomenclature identified in this document (USDA NRCS 

2011). 

Wetland vegetation will vary dependent upon a ariety of factors including 

climate season, hydrology and soils. Wetlands are capable of hosting multiple plant 

communities throughout its zones and boundaries. The type of wetland and how long it 
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ponds water will influence what vegetation species establish as well as how long species 

are present within the wetland. A seasonal wetland may be characterized freshwater to 

subsaline and these hydrologic conditions will influence wetland vegetation as wetland 

plants vary in tolerance. Common \Vetland communities consist of sedges ( ( ·arcx .,pp.) 

and forbs in the shallow marsh with the addition of grasses in the wet meadow (Stewart 

and Kantrud 1971. 1972). 

Soils 

Soils throughout the PPR arc comprised mostly of Mollisols ( Richardson et al. 

I 994 ). or dark prairie soils with a relatiYcly deep A horizon ((iardiner and Miller 2004 ). 

Mollisols are high in organic matter that dc\elops primarily under grassland \eg<:tation 

(USCOE 2008. USDA Web Soil Suney 2011 ). The cxtcnsiYc root systems of the 

remnant mixed and tall-grass prairie ha\·c assisted in the formation of present-day soils 

by both stabilizing the soil and adding to the soils organic richness through root 

decomposition (Dahlman and K uccra 1965 ). The typical upland and wetland soi Is of the 

NGP and the four Lewi IV ecoregions of this study arc \1ollisols with \arying Cireat 

Groups and common soil series (Bryce et al. 1998 ). 

The typical soil Order for study sites located in the '.\orthern Black Prairie 

(Towner County) is \1ollisols with Great Groups consisting of I laplohorolls. 

:\'atriborolls. Calciaquolls. Calcihorolls. and Argiaquolls n ·snA \\"ch Soil Sun ey 2011 ). 

Common upland soil series include Barnes. S\ea. Cresbard. and Buse. with common 

wetland soil series Hamerly and Parnell (Bryce et al. 1998. L"SDA Official Soil Serice, 

Descriptions 201 l l. \\"etland sites located in Towner County arc comprised of the soil 



series Hamerly-Tonka-Parnell complex, Vallers saline-Parnell complex. and Vallers­

Hammerly loams. 

Study sites located in the End Moraine (Benson County) arc comprised of the soil 

Order, Molli sols. with Great Groups consisting of Haploborolls. Argiborolls. 

Calciborolls, and Calciaquolls (USDA Web Soil Survey 201 I). Common upland soil 

series include Heimdal, Emrick, Esmond, Barnes, Buse, Bottineau. and Aastad. with 

Hamerly as the common wetland soil series (USDA Official Soil Series Descriptions 

201 I). Specific Benson county wetland soils of are comprised of the soil series Vallers 

saline-Parnell complex and the I Iamcrly -Tonka complex. 

The typical soil Order for the Drift Plains (Wells County) is Mollisols with Great 

Groups Haploborolls. Calciaquolls. Natriborolls, Calciborolls, and Argiaquolls (USDA 

Web Soil Sur\'ey 201 I). Common upland soil series include Barnes, S\'ca, Buse. and 

Cresbard. with Hamerly and Parnell as the common wetland soil series (LSDA Official 

Soil Series Descriptions 2011 ). Wetland sites arc comprised of the soil series Heimdal­

Emrick loams, Fram-Tonka complex. and Fram-Wyard loams. 

Typical soil Orders for the Glacial Outwash (Eddy County) arc Mollisols and 

Entisols with Great Groups Haploborolls. :\atraquolls. and Ldipsammcnts ({ .·sDA Web 

Soil Sun ey 2011 ). Common upland soil series include Brantford. Claire. Rensha\\. 

An·illa. Ford\ille. and Sioux. with Totten as the common \\etland soil series (l .SJ),:\ 

Official Soil Series Descriptions 2011 ). \\.etland sites arc comprised of the soil series 

Southam silty clay loam. RauYillc silty clay loam. Vallers loam. and Coh in silt loam. 

Besides wetland sites located within the (ilacial Outwash. the most common 

wetland soil series across study sites is Hamerly and Parnell. The Hamerly sencs 1s 



characterized of very deep, somewhat poorly drained soils (USDA Official Soil Series 

Descriptions 2011, USDA Web Soil Survey 2011 ). The taxonomic class for the I lamerly 

series is fine-loamy, mixed, superactive, frigid Aerie Calciaquolls (USDA Official Soil 

Series Descriptions 2011 ). This soil series is found on flats on lake plains and on corn·ex 

slopes surrounding shallow depressions and on slight rises on till plains. I Jamerly soils 

fonncd in calcareous loamy till and ha\'e moderate permeability. Parnell soils arc 

characterized as very deep and \'ery poorly drained (USDA Official Soil Series 

Descriptions 2011, USDA Web Soil Sur\·ey 20] l ). The taxonomic class for the Parnell 

series is fine, smectitic. frigid. Vertie Argiaquolls (USDA Official Soil Series 

Descriptions 2011 ). These soils arc fine textured and enriched with smcctitic clays that 

ha\'c \'ery slO\\ penncability resulting in ponding at the surface. Parnell soils de\'elop in 

well-sorted glacial sediments within depressions. drainage ways, swales. and along 

glacial moraines. 

The relatiw youth of the landscape (9.000-13.000 years old). along with 

distinguishing climatic and landscape features of the PPR. ha\'e resulted in an absence of 

\\ell-dewloped drainage networks and an abundance of pothole \\ct lands (Richardson ct 

al. 1994. Richardson and Vepraskas 200 l ). The pre\ alcncc of an abundant amount of 

small depression pothole wetlands has been significantly influential in the de\ clopment 

of hydric soils in the PPR ( Richardson et al. 1994 ). The dc\clopmcnt of the 

characteristics of underlying soils is influenced by the hydrology of indi\idual PPR 

wetlands (Richardson ct al. 1994. Richardson and Vcpraskas 2001 ). Due to their 

landscape position. recharge \\etlands generally possess soils that arc highly leached. lad: 

highly soluablc ions. non'-aline. and free of carbonates ( Arndt and Richardson l 989. 



Richardson et al. 1994). Recharge wetlands generally have well-dC\elopcd argillic 

horizons. Flow-through wetlands generally possess soils with thick A-horizons in their 

center-most zones. The soils in flow-through wetlands may exhihit spatial variation in 

texture due to sorting by water. Wetland edges may host coarser textured soil particles 

with finer textured particles at the center of the wetland (Arndt and Richardson 1989). 

Flow-through wetlands tend to have higher salinity than recharge \vctlands and may han.: 

an abundance of gypsum and calcite. Discharge wetlands. located lowest on the 

landscape. possess the most saline soils of these wetland types. Salinity in discharge 

v-;etlands typically increases as the distance from the recharge zone increases (Arndt and 

Richardson 1989 ). 



METHODS 

Three area clusters were created within Towner. Benson. Wells. and Lddy 

counties to account for topographic and geomorphic \'ariation (Figure 2). The clusters 

were developed so that comparisons could be made among all wetland sites within a 

cluster and across clusters. Each cluster contains treatment. reference. and past cropland 

wetlands. All sites used for this study are type llI freshwater wetlands. i.e .. seasonal 

wetlands (Stewart and Kantrud 1971 ). 

Seasonal wetlands were chosen because they are declining in numbers the fastest 

and are usually the type of wetland most affected by agricultural practices and landscape 

use (Bartzen ct al. 2010). These wetlands pro\ide critical habitat to a large portion of 

North American waterfowl. Seasonal wetlands arc impo11ant to waterfowl as they arc 

some of the first wetlands to thaw in the spring. Water in seasonal wetlands warms early 

in the spring and seasonal \\ ctlands are some of the first to produce macro-im crtebratc 

populations. This early thaw prmides critical habitat and food for migrating ducks as 

well as prime brooding habitat ( Cox ct al. 1998 ). Seasonal wetlands prO\ ide ideal 

conditions for communities of aquatic and semi-aquatic \ crtehrates. im e11chratcs. and 

hydrophytcs to thri\e ( Kantrud ct al. 1989a. Euliss ct al. 1999 ). 

Three different treatment categories of wetlands\\ ere used for this study: 

treatment. reference. and com e11ed cropland. Treatment \\ et lands ha\e been subject to 

sedimentation in the past due sun-ounding culti,ation and ha, e had their sediment 

remo\cd. Reference \\etlands \\ere selected to meet these three condition<i: J) are located 

\Yi thin sites that ha,c lrnd limited culti\ at ion. 2 Jan: on natiw prairie soil. >) and ha, e not 

had sedimentation remo\ed. Comc11ed cropland \\etlands \\eJT selected to meet these 
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conditions: 1) are located on land that has been cultivated in the past or Conservation 

Reserve Program (CRP) ground, 2) have not had sediment removed. 3) have been 

cropped at some time in the past. Study sites were located on private. state land. state 

school land. and federal land. Individual sampling sites were small. approximately 0.2-

0.6 hectares (0.5 to 1.5 acres) in size with a total of 39 sites assessed for this study. Site 

infom1ation and general latitude and longitude coordinates of study sites can he found in 

Appendix B. 

Benson county wetland sites arc located on federal and state school land south of 

Leeds. North Dakota. Sites located on federal land are found on the I Jofstrand Waterfowl 

Production Area (\\'PA). Treatment sites on the llofstrand WPA were completed in 2007 

and planted the same year with native seed mix in the uplands. These sites arc grazed hy 

cattle for management purposes. 

Towner wetland sites arc located on both federal and pri\atc land. Wetland sites 

located on federal land are found on the );ikolaisen \\'PA north of Cando. North Dakota. 

Treatment sites on the >-:ikolaisen \\'PA were completed in 2008 and planted the same 

year with natiw seed mixes in the uplands. These sites arc grazed hy cattle for 

management purposes. 

Wells county \\etland sitt:s are located on the Robert L. \1organ Wetland 

\1anagcment Area (W\1A ). Treatment sites on this, property were completed in 2003 and 

planted 2004 \\ith native seed mix in the uplands. This property has not had management 

techniques implemented since the propcrty·s restoration in 2007 (i.e. idle). 
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Eddy county wetland sites are located on state land at Camp Grafton South. 

These sites are solely reference sites to include ,vith the Wells county cluster. These 

wetlands are grazed by cattle for management purposes. 

Sampling Methods 

Vegetation 

A modified Daubenmire sampling method using I -meter quadrats was used to 

measure all indi\"idual plant species and their percentage vegetation cm·er (Young 2005 ). 

Vegetation sampling was completed during mid-July to August during the peak growing 

season. Large quadrats were chosen so that rare species would he detected and to prm ide 

a better estimate of di,·ersity (Stohlgrcn 2006 ). lo obtain a thorough species account of 

,egetation throughout the \\·et land. a total of 20 random quadrats were done per wetland: 

10 in the shallow marsh. IO in the wet meadow. The shallow marsh and wet meadow 

zones were targeted for sampling because they contain Yegetation communities that arc 

most ,·ulnerable changes in sediment loads and hydrology fluxes. Secondary species 

within the \\·etland that were not present in quadrat samples \\ere noted to gi,e a 

complete species account of the area. In addition. percent standing dead. percent litter 

coyer. depth of litter. percent bare bottom. open water and depth of water \\ere measured. 

Yisual Obstruction 

A Yisual obstruction score was gi, en for each quad rat in the shallow marsh and 

\\Ct meadow of each zone aiter each Daubenmire reading. Scores were assigned 1-4 

based on percent ,·isual obstruction (Iable 2 ). Assigning percent , isual obstruction by 

categories ,,as intended to increase consistenc:, among the readings. Although slightly 
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modified, this method has been used before (Young 2005 ). A vcrage visual obstruction 

scores within each wetland and each zone were used for analysis. 

Table 2. Modified Daubenmire cover class visual obstruction guide. 

'Yc, Visual 

Aerial Photos 

Score 
--------

2 
-, 
_) 

Obstruction _______ ~~tcg<>!_'y __ 

0-5% Open 

5-50% 

50-80% 

Open-Dense 

Dense 

It is important for\\ etlands to have drawdown periods so that \'cgctation 

regeneration can occur (van dcr Valk and Da\ is 1978 . .Johnson ct al. 2005 ). Aerial 

photos of wetland sites were obtained through Google farth (V crsion 6.0.2 ). Images used 

by Google Earth (Version 6.0.2) were obtained from the USDA Farm Service Agency. 

Google Earth (Version 6.0.2) prO\-ides aerial images from spring 1990 to fall 2010. Water 

within wetlands is \ isible from aerial photos and is typically represented by dark areas 

within a basin. When a dra\\down cycle occurs. mudflats arc exposed and less water is 

visible on aerial photos. t ·sing these aerial images. restored \\ctland sites \\ere examined 

to detem1ine if at least one dra\\dO\rn cycle has occurred since sediment remm al. 

Statistics 

'.\1ulti-rcsponsc Permutation Procedure and :\on-metric \1 ultidimcnsional 
Scaling 

All comparisons among wetland plant communities for sties and clusters \\ere 

made using multi-response pernrntation procedure (\1RPP). 1\ll analyses used PC-ORD 

version 5.21 sofo,are (\1cCunc and \kfford 1999. \kCune and Cirace 2002). Species 

data\\ ere listed by proportions and modified using the arcsine square root 

transfonnation: b=2 ;r*arcsin((x 1._1)
1 

~). A distance matrix \\as run using a relati\c 
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Smensen index. Wetland sites \\'ere compared within each cluster. then across all three 

clusters. Pairwise comparisons were completed between treatment. control. and reference 

sites. Significance among the three comparisons ,vas determined by using the Bonfcronni 

correction for multiple comparisons (p<0.05/3<0.0l 6). 

Non-metric multidimensional scaling (NMS) was used as a graphical tool to 

display the data and the species correlations. The NMS ordination utilized a random 

starting point, 50 runs with real data. and 250 runs ,,ith randomized data. The best 

solution was selected based on the following: l) the highest dimensions with a reduction 

of 5 or more in the stress of real data. 2) a p:;0.05 for the Monte Carlo test comparing 

stress for the real data to a randomized dataset. and 3) final solutions with stress" 20. 

number of iterations <250. and instability <0.0005. J\11 graphical outputs were \'arimax 

rotated. Species proportions were correlated with axis scores and those with r.,, -0.4 or 

r>0.4 were selected as driYing species (Pearson correlation). 
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RESULTS 

The plant community analysis showed that the shallow marsh and wet meadow 

zones were significantly different from one another. The NMS ordination and l'v1RPP 

analysis showed all treatments (treatment. reference. and con,Trted cropland) were 

significantly different (p<O.O 16 ). Treatment wetlands were significantly different 

amongst the three clusters. 

\Vetl\1eado~·Zone 

Multi-response permutation procedure analysis of plant community data for the 

wet meadow zone rc,·calcd a significant difference (p' 0.0 I (i) bet ween the treatment. 

reference. and con\'crtcd cropland sites across all three clusters. Non-metric 

multidimensional scaling analysis of the wet meadow zone dataset produced a final 

solution with 2 solutions. or 2 dimensions (J-igure 4). The 2 dimension solution had a 

final stress of 15.14. 68 iterations for the final solution. and final instability was 0.00000. 

Both axes of the final solution arc important in explaining the ,ariation within the \\Ct 

meadow zone dataset. Axis I accounted for 49.6%, of the \'ariation and axis 2 accounted 

for 32.5%. 

Axis I of the :S:\1S ordination had a correlation (Pearson correlation__, (J.40J \\ith 

thirty-one plant species: the majority (6W'J,) of which \\ere nati,e perennials (Table 3). 

Field sm\thistle (Sonc!w arw:nsis L.) had the strongest positi, c correlation ( 0. 748 ). 

Lo,\land yellow loosestrifc (Lysinwchia h_1 hrida \1ichx.) had the strongest negati,e 

correlation (-0.694). Species positi,cly correlated \\ith axis I tend to bl: planted and or 

in\'asiw species while those species negatiYCly correlated with axis 1 tend to be dl:sired. 
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native perennial species. All plant species encountered during this study are listed in 

Appendix A. 

1.5 Wet Meadow 

Invasive Weeds • Treatment A 

DNC • • Converted Cropland B 

• • Reference C 

0.5 
lu! Different letters 
••• • • denote significant 

Axis2 • • L- difference (p<O.O 16) 

• • • •• • • • • • 
-0.5 ~ • • A Axi Increment • • .496 • • 2 .325 
-1.5 • 

ative -2.5 -1 .5 -0.5 0.5 1.5 Invasive Weeds 
Perennials Axis 1 D C 

Figure 4. Non-metric multidimensional scaling ordination of the wet meadow zone for 
treatment, converted cropland, and reference wetland sites showing axes I and 2. Points 
in ordination space represent individual wetland sites. 

Axis 2 of the NMS ordination had a correlation (Pearson correlation ~ 0.40) with 

thirty-seven plant species; the majority (92%) of which are native perennials (Table 3). 

Examining the nati e perennials correlated with axis 2 43% had a coefficient of 

conservatism (C-value) greater than or equal to five. Western wheatgrass (Pascopyrum 

smithii (Rydb.) A. Love) had the strongest positi e correlation (0.617). Silverweed 

cinquefoil (Argentina anserina (L.) Rydb.) had the strongest negative correlation (-

0.861). pecies positi ely correlated with axis 2 tend to be planted and/or invasive 

species while those species negatively correlated with axis 2 tend to be desired, native 

species. 
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Table 3. Pearson correlation coefficient between plant species co\'er and non-metric 
multidimensional scaling ordination axes for the_ wet n1~adCJ~\' zo11_~. 

.l r 
S~ecies c' PhI:'i.2 Axis I Axis 2 

Achillea millefo!ium L. 3 Forb -0.462 

Agrostis gigantea Roth * ( hass -0.614 

Agrostis hyemalis (Walter) Britton. Sterns & Poggenb. (ira ... s -0.5(1 I 

Alopecurus aequalis Sobol. 2 ( irass -0.612 

Amhrosia psilostachya DC. 2 Forb -0.612 

Andropogon gerardii Vitman 5 (jras'-. 0.(112 

Anemone canadensis L. 4 Forb -0 .4 08 -0.532 

Argentina anserina (L) Rydh. 2 Ft1rh -0.8(11 

Artemisia ludm·iciww Nutt. 3 Forh -0.541 

Boltrmia asteroides ( L.) L' If er. 3 !orb -0.438 

Calamagrostis ccmadcnsis (Michx.) P. Beam. 5 ( ira"" -0 .44 9 

Calamagrostis stricta (Timm) Koclcr 5 (ira"" -0. 724 

Carex lae\·ico11ica Dewey 6 Sedge -0.502 

Carex pellita Muhl. ex Willd. 4 Sedge -0.60 I -0. 5 8 

Carex praegracilis \\". Hoott 5 Sedge -0.513 

Carex sarMel Iii De,\ cy 5 Sedge -0.5 76 

Chenopodium a/hum L. * Forb 0.496 

Cirsium mTe11.1e (L.) Scop. * Forb 0. 725 

Cirsiumflodmcmii (Rydh.) Arthur 5 Forb -0.437 

Cirsium rnlgare (Sa,i) Ten. * Forh 0.451 

Distichlis .1picata ( L.) Greene 2 (jra<,S -0.433 

Eleocharis 111uc-ro.11achya Britton 4 Sedge -0.5,.U 

Elymus repens (L.) Gould * (jra'-.s -0.531 

l:.'pilohium ciliatum Raf. 3 I orb 0.421 

Fraxinus pe1111.1yhcmica \1arsh. 5 Tn:e 0.413 

Gzi-ceria gra11di.1 S. \\.at~on 4 Gra'-.s -0.642 

Gzl cyrrhi:a lepidota Pur::,h ') Forh .() 5 3 5 -
Helicmthus nuttallii Torr. & A. Gray 8 !orb .(J.{i()2 

Horde um juhatum L. (J Cira','> 0.622 

Juncus arcticus \\"illd. ssp. littoral is ( Lngelm.) I lult0n ) Forh -0.741 

Jzmcus illlcrior \\"iegand 5 Forh -0.465 

.!1111cus nodo.111.1 L. 7 I-orb .() 4 82 

Liatris ligulistdis (A. ~elson) K. Schum. 10 I-orb .(). 5 1 l 

L_ffopus americrmus \1uhl. ex \\'. Bartram 4 Forh -0.418 

L_i-copus mpcr Greene 4 Forh -0.581 

L n imachia ciliatu L. 6 Forb -0.441 

lninwchia /nhrida \fich.\. 5 Forb -0.694 

.\fedicago lupulina L. "' I· C\rh -0.41 ~ 

,\felilorus of(ici11alis ( L.) Lam. * !orb 0 499 
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Table 3 (continued) 

.l r 
Species c' Ph~·s.2 Axis 1 Axis 2 

--~----·-

Mentha arvensis L. 3 Forb -0.426 
Muhlenhergia mper~fo!ia (Nees & Meyen ex Trin.) 
Parodi 2 (irass -0.447 

Muhlenhergia richardsonis (Trin.) Rydb. JO ( irass -0.63 I 

Packera pseudaurl.'a (Rydb.) W.A. Weber & A. U)\e ,ar. 
semicordata (Mack. & Bush) D.K. Trock & T.M. Barkle:, 5 hlrb -0.5 I 5 

Pascopyrum smithii (Rydb.) A. Lii,c 4 ( irass 0.507 0.6 I 7 

Plantago major L. * hlrb -0.515 

Poa palustris L. 4 Cira,s -0.6 72 

Polygonum amphihium L. \'ar. stipulaceurn Coleman Forb 0.4 

Ranunculus pe11.1yfra11ic11s L. f. 4 !·orb -0.56 I 

Rosa 1rnod1ii Lindi. 5 Shrub -0.453 

Rumex cri.\pus L. * I· orb 0.7 

Schoe11oplect11s pzmgens (Vah I) Palla , ar. Jongispicat u" 
(Britton) S.G. Sm. 4 Sedge -0.4(J9 

Solie/ago canadensis L. Forb -0.5 73 

Sonchus arwnsis L. * Forb 0.748 

Sorghastrum nutans (L) ;\ash 6 ( ira,<, 0.53 7 

Sparti11a pcctinata Bose ex Link 5 Cira;,;, -0.4·~8 

Stachys tenu!folia \\"illd. 3 Forb -0 .4 9 7 

Symphoricarpos occidentalis Hook. 3 Shrub -0 .60 I 

.'l)mphyotrichum cricoicles (L) G.L. \:esom, ar. cricoide, 2 l·orb -0.4 75 

Symphyotrichum la11ccolatu111 ( \\' i lid.) G. L. :\es.( 1111 ,s.p. 
lanceolaturn ,ar. Janccolatum 3 Forb -0.484 

Taraxarnm of(icinale F.H. \\.igg. * I· orb -0.4 78 

Thinopyrum intcrmedium ( IJo<,l) Bark,\ or1h & D.R. 

De\\C\ * ( ira<,, 0.422 

Thinopyrumpmzticum(Podp.)/.-\\". Liu & R.-C. \\"ang * ( ira,, (). 5 

Tri(olium repe11.1 L. * l·orb -fJ.55 I 

J"icia amcriccma \1uhl. ex \\-illd. 6 I orb -0 .4 9 

Zi~ia aptcra (A. Gray) Fernald 8 l·orb -0.542 
-- -· -----

3 (oefficient of conserYatism ('.\GP! ():\P 2()() 1 l. 
hPhysiognomy of plant species. 

cPearson correlation \\ith ~\1S axes 

* Introduced species are not assigned a coefficient of conscn atism. 
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Shallow Marsh Zone 

Multi-response permutation procedure analysis of plant community data for the 

shallow marsh zone revealed a significant difference (p<0.016) between the treatment 

reference, and converted cropland sites across all clusters. Non-metric multidimensional 

scaling analysis of the shallow marsh zone dataset produced a final solution with 3 

dimensions (Figure 5). The 3 dimension solution had a final stress of 12.21 250 

iterations for the final solution and final instability was 0.00012. Each of the three axes of 

the final solution is important in explaining the variation within the wet meadow zone 

dataset. Axis 1 accounted for 22.5% of the variation axis 2 accounted for 13.4%, and 

axis 3 accounted for 50.6%. The two axes explaining the most variability axis 1 and axis 

2, are used to display results. 

• hallow Marsh 
ative + Treatment A 

Perennials •• • A Converted Cropland B • 1.0 • Reference C 

Different lenen 
denote significant 

Axis3 
difference (p<0.016) 

• • • • 
• • • • ... ... 0.0 • • • ... 

# •• ... • • ... AD Iner m nt 
• • •1 ... ... ... .225 • 

3 506 
-1.0 

-2.0 -1.0 0.0 1.0 Invasive Weeds 
D C 

ative Perennials Axis 1 

Figure 5. on-metric multidimensional scaling ordination of the shallow marsh zone for 
treatment, converted cropland, and reference wetland sites showing axes I and 3. Points 
in ordination space represent indi idual wetland sites. 
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Axis 1 of the NMS ordination had a correlation (Pearson correlation ? 0.40) with 

thirteen plant species; the majority (77%) of which are native perennial species (Table 4). 

Hybrid cattail (Typha x glauca Godr. (pro sp.)) had the strongest positive correlation 

(0.679). Pale spikerush (Eleocharis macrostachya Britton) had the strongest negative 

correlation (-0.665). pecies positively correlated with axis 1 tend to be planted and/or 

invasive species with few desired native perennial species. Species negatively correlated 

with axis 1 tend to be desired native perennial species. 

Axis 2 of the NMS ordination had a correlation (Pearson correlation ? 0.40) with 

thirteen plant species; the majority (85%) of which are native perennial species (Table 4). 

Rough bugleweed (Lycopus asper Greene) had the strongest positive correlation (0.447). 

White panicle aster (Symphyotrichum lanceolatum (Willd.) G.L. esom ssp. lanceolatum 

var. lanceolatum) had the strongest negative correlation (-0.615). There were only two 

species, Turion duckweed (Lemna turionifera Landolt.) and rough bugleweed (Lycopus 

asper Greene) that positively correlated with axis 2. Species that negatively correlated 

with axis 2 were a mix of planted, invasive, and native perennials. 

Axis 3 of the NM ., ordination had a correlation (Pearson correlation 2".: 0.400) with 

twelve plant species; the majority (83%) of which are native perennial species (Table 4). 

Broadfruit bur-reed (Sparganium eurycarpum Engelm.) had the strongest positive 

correlation (0.861). Curly dock (Rumex crispix L.) had the strongest negative correlation 

(-0.484). pecies positively correlated with axis 3 tend to be desired native perennial 

species while those species negatively correlated with axis 3 tend to be invasive and/or 

weedy species. 
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Table 4. Pearson correlation coefficient between plant species cover and non-metric 

multidimensional scaling ordination axes for the shall_l?.'"'-111arsh_z_one. 

j 
r 

Species c1 Ph_1_s'.=--~- Axis I Axis 2 Axis 3 
- . 

Alisma suhcordatum Raf. Forh 0.561 

Andropogon gerardii Vitman 5 Grass -0.4 8 

Care:r atherodes Spreng. 4 SeJge 0. 74 

Carex lae,·iconica Dewey 6 Sedge -0.465 

Carex pellita Muhl. ex Willd. 4 Sedge 0.51 l 

Cirsium arvense (L.) Scop. * Forh o.5:n 

Eleocharis acicularis (L.) Roem. & Schult. 3 Sedge -0.5% 

Eleocharis macrostachyu Britton 4 Sedge -0.665 

Glyceria grandis S. Watson 4 Cirass -0 .4 01 0.527 

l!ordewnjuhatum L. () Ciras-, -0.522 

Lemna mi11or L. 9 Forh 0.786 

Le,nna trisulca L. 2 Forh 0.429 

Lemna turio11i/cra Landolt hlrh 0.41 l 

Lycopus asper Greene 4 Forh 0.447 

Lysimachia hyhrida Michx. 5 Forh -O.-n6 

,Hentha C11Te11.1is L. l Forh 0.497 -0.42 

Pascopyrum smithii (Rydb.) J\. Ui\e 4 Cira'>'> -0.542 

PoZ\xonum m11phihi11111 L. , ar. stipulaceum 
Coleman Forh 0.528 -0 .426 -0.44 

Pota111ogeto11 gra111i11e11.1 I,. 6 Forh 0. 769 

Rumex cri.1pus L. * Forh -0.612 -0.48-i 

Scolochloafestucacca ( \\'ii Id.) Link 6 Cira'>, (J."45 

Si11111 .mare Walter l Forh 0. 72 

Solid ago cc111ade11.1 is L. Forh 0.41 

So11chus CIJTc11.1 is L. * Forh 0.5 51 

Sparga11i11111 cw:, cmpum Enge Im. 4 I orb 0.86 l 

S1wr1i11a pectinata Bose ex Link 5 Cira'>'> -0 .405 

Snnph_rntrichum lcmccolatum (\\'illd.) Ci.L. 
:\esom ssp. lanceolatum , ar. lanceolatum l F()rh -0.615 

Tcucri11111 canadcnsc L. l F orh o .. n -O.-B9 

Thinupn-um i11tt'n11ecliu111 (I lost 1 

Barkworth & D.R. De,\e\ * Cira..,, -0.429 

T_lpha Y glauca Godr. ( pro sp.) * Forh 0.6 79 -0.43 5 

L-tricularia macrorhi::a Leconte 
-, Fnrh 0.756 -·--

2Coefficient of consen atism (:-,'GPFQ:\P :::(JO]). 

i,Physiognomy of plant species. 

cPearson correlation \\ith \.'\1S aws. 

* Introduced species are not assigned a coeflicicnt of consc.T\ atism. 
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Shallow Marsh Treatments 

Multi-response permutation procedure analysis of plant community data for the 

shallow marsh treatments revealed a significant difference (p<0.016) bet,vcen the 

treatment sites across all clusters. Non-metric multidimensional scaling analysis of the 

shallow marsh treatment dataset produced a final solution with 3 dimensions (l·i12ure (J ). 

The 3 dimension solution had a final stress of 9.38. 59 iterations for the final solution and 

final instability was 0.00000. Each of the three axes of the final solution is important in 

explaining the variation within the wet meadow zone dataset. /\xis 1 account<:d for 14.'Y% 

of the variation. axis 2 accounted for 41.1 <Yo. and axis 3 accounted for 34. 7°/o. The two 

axes explaining the most variability. axis 2 and axis 3. arc used to display results. 

1 5 ~---~ 
:\ati\ C 

Perennials 

05 

Axis 3 

-0 5 

-1 5 

ln\a.,i\\: \\·ccJ, 
D:\C 

• 

20 -1 0 

• 

• • • • 
•• • 

OD 

Axis 2 

• 
• 

• • 

• 

1 0 

Shallow Marsh 
Trcatmcnh 

• ·1 rc:atmc:nt J\ 
• Converted Cropland B 
• Rc:fc:rc:ncc: ( · 

• !Jiffcrrnt letter, 
dl'nol(: <...q . .:rnfllcmt 

ddfcrrn,c (p· (1 (1 If, 1 

Axis Increment 
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.347 

:\;,ti\ C 

l'erenni;,], 

Figure 6. ".\on-metric multidimensional scaling ordination of the shallow marsh treatment 
wetland sites sho,\ing axes 2 and 3. Points in ordination space represent indi,idual 
,wtland sites. 
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Axis 1 of the NMS ordination had a correlation (Pearson correlation~: 0.40) with 

twenty-seven plant species: the majority (67°/i)) of which arc nati\'c perennial species 

(Table 5). Wheat sedge (Care.1.· atherodes Spreng.). Turion duckweed (/,e11111a t11rio11ifcra 

Landolt), and rough bugleweed (Lycopus mpcr Greene) had the strongest positi\C 

correlation of 0.678: Curly dock (Rumcx cri.,pus L.) had the strongest negatin: 

correlation (-0.635). Species positi\'cly correlated with axis 1 tend to Ix: desirc<l natin: 

perennial species while species ncgati\<.:ly correlated with axis 1 tend to he planted and/or 

. . . 
IJ1\'as1ve species. 

Axis 2 of the NMS ordination had a correlation (Pearson correlation,, 0.40) with 

t\Wl\'e plant species: all of\\hich arc nati\·e perennial species (I able 5). Prairie cordgrass 

(.SJJarlinapectinata Bose ex Link.) ha<l the strongest positi\'c correlation (0.(i50J. Star 

duckweed (Lem11a lrisulca L.J had the strongest negati\'e correlation (-0.758). Species 

positi\'ely correlated with axis 2 tend to he a planted and !cir im asi\'c species. Species 

negatively correlated with axis 2 tend to be desired natiYC perennial species. 

Axis 3 of the ~:'\1S ordination had a corn:lation (Pearson correlation:::" 0.40) with 

t\\enty-fi\'e plant species: majority (6-t<J~,) of which arc nati\'e perennial species (I able 5 ). 

Prairie cordgrass (.'-,jwrtina pccrinala Bose ex Link.) had the strongest positi\'c correlation 

(0.650). Star duck\\eed (/,e11111a rri.\11/ca L.) had the strongest ncgati\ c correlation 

(-0.758). Only t\\O species positi\ely correlated \\ith axis~: pale spikl:rush (Ueoclwris 

macrosrach_rn Britton) and hroadlcafcattail ((,pho lari(olia L.J Species negati\ely 

correlated \\ith axis 3 tend to be a mixture bet\\ cen planted. \\ ccdy. and perennial natiH: 

plant species. 
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Table 5. Pearson correlation coefficient hctween plant species co\Tr and non-metric 
multidimensional scaling ordination axes _ _!~r the shallow marsh treatment sites. 

3 r 
Species ci Phys.2 Axis 1 Axis 2 Axis 3 

-------------- -

Alopecurus aequalis Sobol. 2 Grass -0.434 

Amaranthus retroflexus L. 0 Forh -0.439 

Ambrosia psilostachya DC. 2 Forh -0.4 8 -0. 5 1 

Andropogun gerardii Vitman 5 ( irass -0. 60 7 

Astragalus ccmadensis I,. Forh 0.444 

A triplex subspicata (Nutt.) Rydb. 2 Forb -0 .4 77 -0. (i(i 

Carex atherodes Spreng. 4 Sedge 0.648 -0.69 

Carex pellita Muhl. ex Willd. 4 Sedge -0.484 

Chenopodium a/hum I,. * Forh -0 .4 3 9 

Chenopodium glaucum L. * Forh -0.408 

Cirsium arrense (L.) Scop. * I orh -0.5 I 8 

Echinochloa crus-galli (L.) P. BeaU\. * Grass -0.439 

Echinochloa P. Beau\". () (irass -0. 5 2 3 
Eleocharis acicu/ari.1 ( L.) Roem. & 
Schult. 3 Sedge -0. 7 I CJ 

Eleocharis macrostachrn Britton 4 Sedge 0.435 

Epilobium ciliatum Raf. 3 !·orb -0.466 -0.414 

Epilohium leptoplzdlum Raf. 6 Forb -0.408 

Glyceria grcmdis S. Watson 4 Ciras<. -0. 69 5 

Gratiola neglect a Torr. 0 Fnrh -0.523 

Hordeumjuhatum L. 0 ( irass -0.483 -0.571 

Lemna minor L. 9 Forh -0 .(,9 5 

Lemna trisulca J ,. 2 Forh -0. 758 

Lemna turionifera Landolt lorh 0.64 8 

Limosella aquatica L. 
') I· nrh -0.523 -

Lycopus mper Greene 4 I orh 0.64 8 

.\felilotus o[/ici11a/is ( L.) Lam. * lorh -0.439 

.\fentlw mTemi.1 L. ·' I orb -0. 4 8 8 -0. 65 

Pa11ic11111 rirgatum L. 5 (1fihS -0 4 I I 

Pascopyrum smithii <R:db.) A. Ui,e 4 Cira-,s -0.543 

Phalaris aru11cli11acea L. () ( irass 0.491 

Pohgonum a111phihiu111 I . ,ar. 
stipulaceum C0leman !orb -0. 4 3 4 -0.833 

Potamoge/011 ;-.rra111i11eus L. 6 J·orh -0.695 

Potenlifla nmTegica L. () Forb -0.43') 

Rammculus cnnhalaria Pur,h 3 Forb -OS23 

Rumex cri1p11.1 L. " Forh -fJ.635 -05(,J 

Schoc'11oplec111.1 acuru.1 ( \ 1 uh!. e:,.. 
Bige]O\\) A. U:i,e & D. U:i,e ,ar. acutus .;; Sedge 0 418 
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Table 5 (Continued) 

j 
r 

Species c1 
- ------- -------

Ph~·s.2 Axis I Axis 2 Axis 3 

Schoe11op!ectus t ahe rncw 1110111 m1 i 
(C.C. Gmel.) Palla 3 Sedge 0.417 

Sco!ochloafestucacea (Willd.) Link 6 C,ra-.s 0.608 

Sium sum·e \\'alter , 1-orh -0.63 I 

So!idago canadcnsis L. Forb -0.439 

Sonchus a,-vemis L. * I-orb -0.507 -0.797 

Sorg has/rum 1111/011.1 ( L.) N a"h 6 Cira-.-. -0.523 

Sparganium ewycarpum Eng<:!m. 4 1-mb -0.6<)) 

S'partina pcctinata Bose ex Link 5 Cira<,-. (Ui5 

Stuckcnia pectinata ( L.) Boemer () I orb 0.43 7 
,'\i ·mphyotrichum lanceo!atum ( W i I Id.) 
G.L. Nesom ssp. Janceolatum \ ar. 
lanceolatum .., 

I orb -0.519 -0.(J l 7 ·' 
Teucrium ca11ade11.1e L. 

.., 
/-orb -0. 75, ·' 

Thinopyrum intermcdium (I lost) 
Barkworth & D.R. De\1ey * Cirass -0. 723 

lhlaspi an·ense L. * I-orb -0. 439 

Typha xg/auca Godr. (pro sp.) * Forh 0.547 

T_ipha lati(olia L. 2 Forh 0.421 

Utricularia macrorhi:::a Leconte 2 l·orh -0.695 

l'erhcna hracteara Ca,. ex Lag. & Rodr. () /-orb -0 .4 3 9 

Veronica pcrcgrina I.. ssp. xalapensis 
(Kunth) Pennell () Forb -0.523 -- ~---

aCoefficient of conser\'atism (\:GPH)AP 2001 ). 
bPhysiognomy of plant species. 

cPearson correlation \\ith \:\1S axes. 

* Introduced species arc not assigned a coefficient of con sen at ism. 

Canopy Conr and Typlta x glauca 

The canopy co,cr of 7_\pha x glcmca ha-. a strong relationship to axis I with r -

0.679 and axis 2 r= -0.4]5 (Figure 7J. The comertcd cropland \\etland sites arc at th\.'. 

high end of the percent co,cr and the reference wetland site." arc at the lo\\ end of the 

percentage co, er \\ ith the treatment \\ etlands positioned hct\, ccn the com crtcd crop] and 

and reference sites. 
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Figure 7. Linear regression analysis of Typha x glauca between canopy cover and axis 
scores across all wetland types in the shallow marsh zone. Each point represents a site. 
Symbol size (diamond circle, triangle) is proportional to Typha x glauca coverage. 
Upper right: 2-D ordination of species composition. Lower right: scatterplot of 
abundance of Typha x glauca against score on Axis 1 (horizontal axis). Upper left: 
scatterplot of abundance of Typha x glauca against Axis 3. Superimposed on the two 
abundance scatterplots are the least squares regression lines and a smoothed envelope. 
See text for interpretation of r. 

Density Cover and Visual Ob truction 

Multi-response permutation procedure results show that average visual 

obstruction scores of wetlands o er the three wetland types of wetlands were not 

significantly different (p<0.016) for the wet meadow (Table 6). However results show 

that average isual obstruction scores for the shallow marsh for treatment and reference 

sites were significantly lower (p<0.016) for the converted cropland sites (Table 6). When 

looking specifically at Typha x the average percent of Typha x co er across the three 

wetland types shows an increase, approximately four times higher in the percent of 
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hybrid cattail cover in the control wetlands versus the treatment and reference wetlands 

(Table 7). 

Table 6. Average obstruction score \'alucs and multi-response JXTmutation procedure 
results of average obstruction scores of the wet meadow and shallow marsh zones for the 
three wetland types. Treatments with different letters within a column indicate a 
significant difference (p<O.O 16 ). 

_ J\ \·ei:.~ge ( )hs_ti:_ucti~>n Score _y al ues 

Treatment 
----~~--- ---- -

Excavated 

Past Cropland 

Reference 

\Vet !\1eadow Shallow Marsh 

0.7961l 1.12' 

0.784" 2.241l 

0.631 ll 1.58' 

Table 7. A wrage percent l)pha x glauca co\ er in the shallow marsh zone for the three 
wetland types. Treatments with different letters indicate a significant difference 
(p<0.016). 

J\ \ cragc Percent 
T rcatmcnt _ J) plw x glaurn CO\ er 

Exca\ated 5.94'' 

Past Cropland 19.34H 

Reference 4.6J'' 

Wet Meadow .\1anagemcnt 

\1ulti-response permutation procedure analysis of plant community data for the 

\\ et meadow management data rc\calcd a significant di ffcrencc (p,..0.016) hctwccn the 

\\ et meado\\ zones of cxca\ ated sites. \\ ·etland sites used in this study arc managed in 

different \\aYs: either hY cattle urazinu or no manauement since restoration efforts. :\on-. .. ..... .._ ..... 

metric multidimensional scaling analysis of the \\et mead(m management dataset 

produced a final solution \\ ith 2 dimensions ( I· igurc 8 ). The 2 dimension solution had a 

final stress of 11.47. 65 iterations for the final solution and final instahility was 0.0000. 

Each axis of the final solution is important in explaining the \ariation \\ithin the \\Ct 
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meadow management dataset. Axis 1 accounted for 28.3% of the variation while axis 2 

accounted for 59 .6%. 

Invasive Weeds 1.5 
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-0.5 

-1.5 

2.5 

-1 .5 

Invasive Weeds 
D C 

I. 

A 

A 

I. 

-0.5 

Axis 1 

• • 
•• •\ • • 
• 

0.5 

Wet Meadow Mgmt 
• Idle 
.& Grazing 

A.xis Increment 

I 

2 

.283 

.596 

ative Perennials 
Invasive Weeds 

Figure 8. Non-metric multidimensional scaling ordination of the wet meadow 
management wetland sites showing axes 1 and 2. Points in ordination space represent 
individual wetland sites. 

Axis 1 of the NMS ordination had a correlation (Pearson correlation ?::0.40) with 

twenty-four plant species; with only about half (54%) being native perennial species 

(Table 8). Prairie cordgrass (Spartina pectinata Bose ex Link) had the strongest positi e 

correlation (0.709). Intermediate wheatgrass (Thinopyrum intermedium (Host) Barkworth 

& D.R. Dewey) had the strongest negati e correlation (-0.871). Species positively 

correlated with axis 1 tend to be a mixture of introduced and desired native perennial 

species while species negatively correlated with axis 1 tend to be planted and/or in asive 

species. 
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Table 8. Pearson correlation coeflicient het\\een plant species cmn and non-metric 
multidimensional scaling ordination axes for the wet 111e.~dm~ management sites . 

. l r 
S~ecics c' Ph)'S.

2 Axis I Axis 2 

Achillea millefo!ium L. 3 J·orh -0.462 

Agrostis gigantea Roth * C iras,s, -0 .(J] -l 

Agrostis hyemalis (Walter) Britton. Sterns & Poggenb. ( JnJ',', -0.5(i I 

Alopecurus aequalis Sobol. 'l Cira"" -0.612 -
Ambrosia psilostachya DC. 2 l·orh -0.612 

Andropogon gerardii Vitman 5 (iras.s 0.612 

Anemone ca11ade11sis L. ..j !orb -0.408 -0.532 

Argelllina a11seri11a (L.) Rydb. 'l l·(irb -0.8(J l -
Artcmisia !11doricia11a Nutt. 3 I-orb -0.541 

Boltrmia asteroidcs (L.) L'Her. 3 I· orb -0.43 8 

Calamagrostis canademis (Michx.) P. BeaU\. 5 ( iras.-. -0.449 

Calamagrostis stricfa (Timm) Koeler 5 ( iras.s, -0. 72..J 

Carex laericonica Dewey 6 Sedge -0.502 

Carex pellita Muhl. ex Willd. ..j Sedge -0Ji02 -0. 5 8 

Carex praegracilis \\'. Boott 5 Sedge -0.5 I 3 

Carex sarMellii Dewey 5 Sedge -0.57(i 

Che11opodiu111 a/hum L. * I orb 0.--1% 

Cirsium arrense (L.) Scop. * I· orb 0.725 

Cirsiumflodmcmii (Rydh.) Arthur 5 l·orh -0.43 7 

Cirsium rnlgare (Sa\ i) Ten. * I orh 0.45 I 

Distichlis spica/a ( L.) Greene 
..., ( ira,-. -0.433 

Eleocharis macro.1tachra Britton ..j Sedge -0.543 

Elymus repens (L.) Gould * Cira-." -0.531 

Epilobium ciliatum Raf. 3 l·orh 0.42 J 

Fraxinus pe1111.1Tlra11ica \1arsh. 5 ·1n:c 0.413 

(j~1·ceria gra11di.1 S. Watson ..j Cira\, _().(i4 2 

Glycyrrhi::a lepidota Puhh 
..., I orh -0.535 -

Helianthus nuttal!ii Torr. & A. Cira\ 8 I orh -0.602 

Horde um juhatum L. () (jra<-,<-, 0.622 

Juncus arcticus Willd. s-.p. littoral is ( Lngelm.) llult0n .:; I orh -0. 7..J 1 

J1111c11s interior \\"iegand 5 Forh -0.465 

J1111cus nodosus L. 7 Forh -0 .4 82 

Liatris li[!ulisn-/is (A. :'\elson) K. Schum. l () I· orh -0. 5 1 1 

Lycopus a111erica11u1 \1uhl. ex \\". Banram ..j Forh -0 . ..J 1 8 

L_l'Copus a.1p€r Greene ..j l·orh -0.581 

L 1·si111achia ciliata L. 6 I· orh -0 . ..J-~ J 

Lnimachia /n-hrida \1ichx. 5 J·orh -0.69..J 



Table 8 (Continued) 

r.1 

__________ __fu)_ecics ____________________ !_' 1 _l'_h_ys. 1 Axis 1 Axis 2 
lvfedicago lupulina L. 

l'vfelilotus officinalis (L.) Lam. 

A1enlha arvensis L. 

Muhlenbergia asperifolia (Nees & Meyen ex Trin.) 
Parodi 

Muhlenbergia richardso11is (Trin.) Rydb. 

Packera pseudaurca (Rydb.) \V.A. Weber & A. Liin: 
var. semicordata (Mack. & Bush) D.K. ·1rock & T.\1. 
Barkley 

Pascopyrum smith ii (Rydb.) A. I .ii\ e 

Plantaxo major L. 

Poa pal us tr is L. 

Po(rgo11u111 amphihium L. \ar. stipulaccum Coleman 

Ranunculus pe11.1ylwmicus L. f. 

Rosa 11·oodsii Lindi. 

Rumex cri.1pus L. 

Schoenoplectus pzmgens (Yahl) Palla\ ar. longi~picatu, 
(Britton) S.G. Sm. 

Solidago ca11adc11.1i.1 L. 

So11chus ane11sis L. 

Sorghastrum 11utcms ( L.) ~ash 

Spartina pectinata Bose ex Link 

Staclzn tcnui(olia \\"illd. 

Symphuricwpos occide11tali.1 I look. 

Snnphyotrichum cricoides (L.) G.L. :'\c,om \ar. 
ericoides 

Srn1phyotrichu111 la11ceula111111 (\\ illd.J Ci.I.. :'\e,om ,,p. 
lanccolatum \ ar. lanccolatum 

Tarawcum o{t7ci11ale r .11. \\" igg. 

Thinopyrum intcrmcdium ( Jloq J Bark11 (1J1h & U. R. 
De11eY 

Jhi11opyru111 ponlicum ( Podp. J Z.-\\. Liu & R.-C. \\ ang 

Tri(olium rcpc11s L. 

T'icia w1wrica11a \fuhl. n \\"illd. 

Zi::ia aptcra (A. Gray) Fernald ____ _ 
aCoefficient of consenatism (>:CiPH).\P 2(Jfll J. 
rPhysiognomy of plant species. 
cPearson correlation \\ith ):\1S a:xes. 

* Forb -0.413 

* Forh 0.-109 o .. J<Jl) 

1 hirb -0.42(1 

IO C,ra" -0.631 

'.' !orb -0'.'I'.' 

( ,ra" (J.~,07 

* lorh -0.'.'I'.' 

4 

I· orb () .. j 

4 Forh -0.5(1 I 

5 Shrub -0.-1'.'3 

* h>rb 0.7 

-1 Sedge -0.-1 (,9 

Forh -0.573 

* Forb 0.748 

5 Cira\\ -0.-1-18 

3 I orb -0.-197 

3 Shrub -0.60 l 

-, Forb -0.-17 5 

3 I orh -0.-18-1 

* h>rb -0.478 

* 

* 

" !orb -0.551 

6 !orb -0.-19 

8 I orb -(J5-12 

* Introduced species are not assigned a coefficient of consen atism . 
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Axis 2 of the NMS ordination had a correlation (Pearson correlation , 0.40) with 

forty-one plant species; the majority (71%) of which arc native perennial species (Table 

8 ). Canada thistle ( Cirsium wTense ( L.) Scop.) had the strongest positi \'e correlation 

(0.819). Prairie cordgrass (5,1wrti11a pectinata Bose ex Link) had the strongest negative 

correlation (-0.702). Species positiwly correlated with axis 2 tend to be planted and/or 

invasive weedy species while those species negatively com:lated with axis 2 tend to he 

desired native perennial species. 

Aerial Photos 

Aerial images revealed that all restored \\ct land sites in ·1 owner. Benson. and 

\Velis counties have had at least one drawdown cycle since sediment rcmo\'al. Past 

cropland sites in all three clusters also experienced at least one drawdown cycle since 

wetland restoration dates. 
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DISCUSSION 

\Vetl\1eadowZone 

The wet meadow zone of treatment. comcrted cropland. and reference siks \\ ere 

all significantly different from one another. Looking further at hgurc 4. reference sites 

separate from the treatment and com·crted cropland sites. indicating higher quality wet 

meadow vegetation. Wet meadow communities of reference sites han: more nati\'C 

perennials than treatment or con\'erted cropland wet meadow communities. which t<:nd to 

have more invasive weeds and planted dense nesting co\cr. \Vctlands arc unstable 

ecosystems and stresses from agricultural add to the instability hy tillage and indirectly 

through siltation, chemical runoff elimination of nati\'c seedbed through continuous 

culti\'ation (Kantrud and NC\\1on 1996). The wet meadow zone is difficult to re-establish 

once lost and are ,·ulncrahlc to agricultural stresses. (Kantrud and i\'c\\ton 1996). \\'ct 

meadow communities of reference sites arc typically less disturbed by agricultural 

practices, thus. creating the potential for more nati\'e species to establish and thri \'e. 

Shallow Marsh Zone 

The shallow marsh zone of treatment. com crted cropland. and reference sites 

were all significantly different from one another. Looking further at 1-igure 5. the three 

\\·etland types tend to separate out into groups \\ith the treatment sites positioned hct\\Ccn 

the reference and corn erted cropland sites.. Treatment sites arc dc\cloping characteristics. 

similar to those of reference wetlands. indicating the plant communities of treatment sitl'.s 

are transitioning a\\ ay from the corn ertcd cropland plant communities \\ hich arc 

generally undesired cattail choked wetlands. Treatment sitl'.s arc between t\\O and sc\ en 

years old. The greatest input of growth from \\ ct land seed hanks occurs in the first t\\ o 
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years after restoration when exposed sediments arc quickly colonized by communities of 

mudflat annual species (Wienhold and \an dcr Valk. I 98<1). Wetland \cgctation 

communities typically begin to stabilize approximati:ly two to three years alter 

excavation (Aronson and (ialatowitsch 2008. I ishcr and 1\llhcc 2010) hut ha\l' hccn 

known to continue to de\ clop and accumulate species for up to l l) years (Aronson and 

Galatowitsch 2008). These treatment sites \\ill likely continue to dc\clop and establish 

plant communities for up to the next t\\O ckcadcs. 

Shallow Marsh Treatments 

These results arc interesting as these arc the plant SJ1LTics that arc establishing 

after exca\ation. Plant species that arc fa\(lrcd for \aluahlc \\ildlifc habitat arc 

establishing. howc\cr. there arc still im asi\ c species colonizing. Scahloom and \ an dcr 

Valk (2003) sho,\cd that recently restored wetlands. li\c to se,cn years old. had lower 

\egetatiYe cowr and species richness than natural \\ctlands. '\ati\c perennials ma~ ha\e 

a tendency to be absent from restored \\ctlands. and manually introducing seeds or 

\egetatiYe propagules during the restoration process may help m crcomc any\ cgctati\ c 

dispersal barrier \\ hen located in an agricultural dom i natcd landscape. 1 t is abo tlmuµht 

that positioning restored m:tlands near others \\ill decrease seed dispersal limitation and 

increase nati\ e propagule prcs,stm.: of nati\ c pcrcnniab ( :\ronc,on and ( ialatcl\\ itsch 

2008 ). 

Propagulcs of shallo\\ marsh species ha\ c hccn c,hm, n to sun i\c decades in 

extant \\Ctlands in the PPR. Jlo\\e\CL \\Ct mead(!\\ c,pecies ha\e been :-,hm,n to he not :-,o 

resilient (\\.einhold and \an dcr \'alk. JC/i-:9,. \lean :-,ccd dem,ity numbers trnd to decline 

O\er time in a \\etland that it is drained. Due to seed den-,ity declining mer time. the hc-,t 
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candidates for wetland restoration may he those that ha, e been drained less than 20 years 

ago and ha\'e seed banks that still contain , iable seeds of many \\ et land species 

(Weinhold and \'an der Valk. 1989). 

Canopy Co\'er and Typha x g/auca 

The presence of hyhrid cattail expresses a strong regression in regards to canClp) 

CO\'er re\'ealing a link het,\een hyhrid cattails and obstruction of canopy co,cr in the 

shallow marsh. Corn·erted cropland sites had the most hyhrid cattail present\\ hile 

reference sites had the least amount of hybrid cattail. ·1 rcatmcnt sites did nClt ha, e nearly 

as much hybrid cattail present as curnerted cropland sites. hm\e,cr. treatment sites did 

have more hybrid cattail present than reference sites. Arom,on and C ialat()\\ ihch ( 2008) 

suggest that wetlands should not he a top restoration priority if' located near other cattail 

choked areas due to the ahility ofhyhrid cattail seed to easily transfer to these nc,\ly 

exposed areas. Hybrid cattail communities in treatment sties could potentially he a result 

of wetland placement as (,pha x communities ha,c spread rapidly in the study area mer 

the last decade (Fisher 2011 ). The greater the abundance pf !_1pho x. the less light \\ill he 

able to penetrate the wet land and the pot en ti al for I itter ahundancc and depth \\ i 11 

increase. The increasing obstruction of canClpy cm er can affect a nati, c plant species" 

abilit, to establish and sun in: ( \'accam ct al. 2()()9 ). 

Densi~· Conr and \'isual Ohstruction 

Visual ohstructinn scores for the \\Cl mcadcl\\ /one did not slww significance. 

This is not surprising as there tends to he less, egctati, c structural height difference 

between plant communities in the \\el meadcm zone. I !o,\C\CL, isual ohstruction scClrcs 

for the shallo,, marsh /one of the study sites re, calcd a signiticant difference het,,ccn 



treatment and reference sites from con\'erted cropland siks. \\'hen examining hybrid 

cattail cover specifically in the shallow marsh zone of the study sites. the percent of 

T;pha x co\'er across all \\ctlands shows a drastic increase in the percent of cattail co\ er 

in converted cropland wetlands. almost four times the percent of J_\-pha x co\ er in 

treatment or reference wetlands. ~ot only arc cattails affecting canopy eo\er within 

wetlands. the density of cattail stands is affecting the openness and structural\ ariation of 

the vegetation. The lack of openness and structural \ ariation \\ ithin the\ egetation 

decreases hahitat quality hy making it difficult f~ir \\ ildlifc to mm e throughout the 

wetland and decreases \ i sihi I ity to sec potential food and predators ( Kant rud 1 <J8(1 ). 

\Vet Meadow Management 

All exca\ated wetlands arc grazed hy cattle except those located on the Robert I 

Morgan property in \\'ells county. Sites located in \\'ells county ha\c not had any 

management techniques implemented since cxca\ ation. Wetland sites shm,cd significant 

differences in the \\ et meadow plant communities amongs,t cxca\ ated \\ et lands located in 

Towner and Benson counties although planted \\ ith similar nati\ c seed mixes containing 

grasses and forhs. Axis 1 is represented hy a mixture of ,,eedy and planted species as 

well as natiYc perennials. !Iowc\er. it docs han: a few de-.ircd -.pecic-. on the po-.iti,c end 

of the axis that separate the cxG1\atcd -.itc-. in \\"elb cuunt:, from the other cxca\ated 

\\etland sites located in Tcmncr and Benson counties. indicating a higher quality ,,ct 

meado\\. zone for those sites in \\.clb county. 

These results are unexpected since it has hecn shown that grazing is typically 

heneficial to \\Ct land plant communities and <dtcn promote-. nati\ e gnmth and 

suppresses il1\asi\C -.pccics (Kantrud ct al. 198%. Kirh\ ct al. 2()02. \1arty 2fJ0~). 
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Leaving land idle may increase non-nati,e species ahundance and allow for woody 

species to increase (Marty 2005 ). Similar to exrn\ ated sites located in Towner and 

Benson counties. they are surrounded hy cropland. It is unclear why this property has 

acquired a high abundance of nati,es without any implemented management. Reasons 

why Wells county wetland sites may haw higher quality wet meadow plant communities 

could be due to local wet and dry cycles. the amount of sediment rerno\ ed. hydrologic 

conditions. local soils. the amount of time since restoration. or a com hi nation of these 

events. 

Aerial Photos 

Despite recurrent wct years. all seasonal \\ et lands used in this study ha\ e had at 

least one drawdm\n cycle potentially allowing for adequate\ egetation regeneration. 

Drawdown periods expose mudflats that allow seedhank recruitment and regeneration 

(van der Valk and Da,is 1978. Johnson ct al. 2005 ). Without drawdown periods. seeds 

may not be gi,cn the opportunity to gcrn1inate. pre\ enting new plant growth(\ an der 

Valk 1981 ). It is important that all treatment sites used in this study ha,e had at least one 

drawdown period so that the site has hecn gi\ en the opportunity to re-eqahlish \ egetation 

communities and he an appropriate example of an exc;1\ ated \\ et land. 

Regional Distribution 

Ce11ain plant species are correlated \\ith different regional c]u-,ters and the 

hydrologic conditions associated \\ith those clusters used in this study. Plant s,pecies 1hat 

are re-establishing in \\ et lands can he examined hy us,ing exca\ ated sites. In the shall cl\\ 

marsh treatment sites. those found in I <1\,ner county \\ere hea\ ily dominated hy wetland 

\ egetation found in slightly to moderately hrackic.,h waters ( Ste\\ an and Kantrud 197 J ) . 



Benson county had wetland regeneration that fin ors species found in hoth fresh to 

moderately brackish conditions. Exca\'atcd sites located in \\'ells county arc mon: hca, ily 

dominated towards wetland \'egetation found in slightly to modcrateh brackish water hut 

is fairly represented by fresh water species. 

Similar to the results nf I largiss (2009). hydrologic conditions appear to he an 

influencing factor and affects ,,hat species arc pn:sent at wetland sites. Differrnccs in 

salinity at sites are likely due to landscape position indicating water regimes of discharge. 

flow-through. or recharge ,,ctlands (Richardson and Vepraskas 2001) and may also he 

influenced by regional distribution. Restoration sites located in urban or agricultural 

settings. such as the control sites in this study. may he more prone to ,arying hydrologic 

conditions due to increased storm ,,atcr runoff ,,hich may influence \'cgctation 

communities ( Kercher and /cdlcr 2004 ). \\'ctlands that obtain surface water from 

agricultural ,,·atcrsheds tend to ha\'c many im asi,c species (( ialatowitsch ct al. 1999). 

These results indicate that it is important to consider hydrnlogic conditions ,, hen 

planning a restoration to generate desired, cgctation. 11:, drologic condition,, ill , ar:, and 

ma, shift O\Cr time due to climate fluxes. 

Summary 

This is a general baseline stud:, and the<-e results may change mer time. Sediment 

remo,al is changing the plant community and structure of thesc ,,ctlands. lhcrc is a 

significant difference in plant communities bet,, ecn the ,,ct meadow and shallow marsh 

zones. The treatment sites arc closer to the reference condition as compared to cattail 

choked wetlands. Results sho,, that sediment remm al is aiding in rcmm ing cattails. 

ho,,cwr. it may still he too earl:, to tell if the sediment remo,al process pre,ents cattails 



from re-establishing in treatment sites. Restoration sites used in this study arc rather 

young and as weather cycles change and time is allowed to lapse. results of plant 

community establishment may shilt. It is not clear whether post-cxca, at ion managen1L'nt 

practices have a positi\'e or negati\'e effect on wet meadow community dc\'elopment. 

However, regional differences did ha,e an effect on wetland plant community 

development which \\as likely influenced hy hydrological conditions. 

Future Research Needs 

There arc many questions left to answer as there may he many factors intluencing 

nati\'e plant community establishment after restoration. Areas that need to he further 

investigated arc \\·etland soils and proper cxc1,ation depth. nutrient fluxes aho,c and 

below the surface. whether natural and cxca, atcJ wetlands differ cnough in landscape 

fom1ations that it can affect plant communities. All these factors likely play a role in 

plant community establishment after the restoration process. Knowing how these factors 

are related can be a ,·al uablc tool for determining proper restoration management 

techniques. 

\\'hen restoring a wetland through sediment remo, al. it is not certain i I there is a 

proper depth that \\ill increase chances for nati,c species establishment. Different 

exca\'ation depths ha\'e hct:n ust:d in \\ t:'llanJ rt:'-lorations ( Dair) mplc ct al. 2orn. hsher 

and Allbee 2011) that ha\'c yielded ,arying results. Different stratcgies include remming 

the A horizon. remo\'ing pa11 of the B hori/on to expose the original si:cdhed. and e\'en 

exca,ating dm\·n to the original bedrock \\here plausible. Propc:r i:xca,ation depth is 

likely site specific and dependent upon <-ite characteristics. 



Increases in agricultural practices and prairie land hcing con\wtcd to agricultural 

land can accelerate sedimentation which can increase the deposition of nutrients. 

including N and P (Richardson ct al. 1994 ). Due to \:orth Dakota being located in an 

agriculturally dominated landscape. nutrient le\ els may he clc\ atcd hy the addition of' 

fertilizers or other chemical applications. This inllu\ of soil nutrients may he a critical 

factor in restoration. lt is thought that an increase of phosphoru-. may prm idea niche lt>r 

cattails to flourish (Mack ct al. 2000. Woo and /edlcr 2002. I isher and /\llhee 2011 ). 

Surrounding land use must he taken into considl'.ration not only during thl'. sdcction and 

design process. but also during the implementation and monitoring procc-.s. 

It has been questioned whether or not it is po-.sihlc to reestablish the \\Ct meadm\ 

zone after it has been destroyed. Kantrud and \:cwton ( 199(1) rai-.c this question and 

suggest that it may he difficult to gain the \\Ct meadow /one hack alier nati\e \\ctlands 

ha\'e been altered by agricultural practices. One of the characteristics of nati\c pothole 

wetlands is a characteristic topography (Richard-.on and \'erpra-.kas 2001 ). I or cxamplc. 

the location of the toe-slope is usually near or within the \\et meadcm plant comm unit:, 

and sedimentation may alter the toe-slope position and shape. l he re-establishment of a 

toe-slope may he a factor to consider\\ hen attempting the re-establishment of the\\ ct 

meadO\\. zone. 

Data from a Real-Time Kinematic de, ice can he u\ed to -.hcl\\ an c\amplc of 

topographical differences hct,\een natural and l'.\ca, ated wetland-.. I cir e\amplc. \\et land 

topography from a natural and an c\c;nall'd \\etland \uch as t,\o \\l'.tlands sun eyed in 

Benson county can differ a gr,·at deal I I igurc" 9 and 1 (J l. ln the profile of the: natural 

\\etland. a distinct tol'-slope. is\ i-.ihlc surniunding the\\ ct land. Thic, same toc:--.lopc: i-. 



not represented in the excavated wetland. This toe-slope is located consistently on the 

edge or within the wet meadow vegetation community and zone. As seen in the figures 

the toe-slope is found in the natural wetland yet is lacking in the excavated wetland. 

Further research must be completed to determine if it is possible to regain a more natural 

topography whether through the design and restoration process or if it only can naturally 

develop over time. 

Shallow Marsh Edge 

Wet Meadow Edge 

Toe-slope {Light Colored Linc) 

Natural Wetland Profile 

Figure 9. Aerial view and profile of a natural wetland located in Benson county. Arrows 
indicate potential toe-slope formation. 
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Shallow Marsh Edge 

Wet Meadow Edge 

E,ccavated Wetland Proflle 

o Toe-slope een 

Figure 10. Aerial view and profile of an excavated wetland located in Ben on county. 
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MANAGEME:\T IMPLICATIO:\S 

Sediment remo\'al is an adapti\'c management technique that can he used to creak 

ideal conditions to obtain desired wetland ,cgl'lation communities to hcnelit both people 

and wildlife. Little is known how ,,ctland plant communities n:-cstahlish alter rL·storation 

by sediment remo\'al. Although there arc still many questions about this wetland 

management technique and its cfkcti,cness. it is necessary to think site specific \\hen 

doing restorations and to not assume broad gcnerali/ations. \\'hen designing ,,ctland 

restorations. many \'ariahlcs should he taken into consideration in rq:ards to sill' 

expectations and restoration designs to obtain the plant communities \\e desire to manage 

for targeted wildlife. These include location. geologic conditions. climate (,,et 1dr:, cycle). 

hydroperiod. hydrologic conditions. soils. and surrounding land use. 

Results of this study can he used as baseline data for future monitoring of rcstorcd 

wetlands \\'ithin :\orth Dakota. Continuous adapti, c management i-, nece-,sary to 

successfully restore a ,,etland and establish natin: plant communitic-,. Repeat asse-,smcnt 

of restored wetlands ,,ithin :\orth Dakota can indicate the ,cgctati, c trend in relation to 

the present and future land practices and climate. \"cgctation communities in site<, may 

change O\'er time and \\ith climatic c:,clcs. :\dditional "1udics must he done to obtain a 

general time line of plant community reestablishment. 

Without Jong tem1 irnasi, c species control. h:, hrid cattail ,, ill likely reestablish and 

replace the nati\'e communities /Bc11.:rs ct al. 2()()7 ) . .,\dditional long-term monitoring is 

necessary to better understand and accurate]:, de-,crihc the effects of sediment rcmm al on 

plant communities on ,,etland". \\.hen managing a re"1ored ,,etland. it may he important 

for it not to be in close prn-.:imit:, l\l an unmanagL·d wetland with hybrid cattails a<, it is 
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more likely to dew lop a nati\e plant community before hyhri<l cattail is able to rc-im a<lc 

(Boers 2007). lnfonnation from the project can also he usc<l in other \\ctlan<l restoration 

projects across the United States to determine the appropriate location and cffccti,cncs~ 

of restorations based on project needs and goals. 
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APPENDIX A. PLA~T SPECIES E'.\'COl.'.\'TERED Dl'Rl'.\'G TESTI\C; 

--·----------

(-

Scientific Name 1 Common '\aml' Origin· Lifr Ph~~. ' \'al 

A chi/lea mi//efolium L. ( ·om mun : arru11 '\;1ti\L' I' I< JR.ll ' 
Agalinis tenuilolia ( Vahl) Rat. SlcnJL'rkaf falsL' f,,.,.,:lm L' '\ at i IL' A l(Jl{Jl 8 

Agrostis gigalllea Roth RL'Jtup lntroduLTd I' < ,R.ASS 

Agrostis hyemalis (\\'altL'r / Britt(>n. 
Stems & Poggcnb. Wintt:r lwnt,:r.1" '\;1ti\L' I' <d{ASS 

Alisma gramineum Lli '\:1rru11 k;tf 11 ;ttn pl;mt;11n '\;111\L' ,. I c JIW ' -
Alisma subcorJatum Raf. American 11 atn pLtinta111 '\ ;111 I e I' I c Jim 

Alopecurus aeqzwli.1 Sobol. Slw11a11n f"\L1il '\atiH· I' < ,RAS\ ' -
Anwranlhus retru/lexu.1 ] __ l<L'druot an,:trantl! '\ ;111 IL' A I< >RB () 

Ambrosia arlemi.1i1lolia l.. Annual r.1g11 ccd '\ ;111 IL' A I c JI< I~ () 

Ambrosia psi/0.1/achyu DC. Cu man r;1g11 cnl '\ ;11 i I l' I' J ( Jf{H ::' 

Andropogmz gerardii \'itman Bi.L' hluc,tl'lll '\;111\L' I' < d<ASS ~ 

Anemone ccmade11.1i.1 I Can;1di;m ,menwnc '\at 11 c ,. f(Ji{Jl ,I 

Apocynum ca1111ahi1111111 l.. Ind i;m hL·mp '\at 11 c I' I< Jim ·1 

Argenlina a11.1cri11a ( L. / R: db. \iii L'rll L'L'd Ulll.jLH:f<•il '\ati1L· I' f()l{Jl ::' 

Arlemisia ab.1inthium L. Ab,inthium lntrodull·d ,. I< >Rll 

Artemi.1ia hienni.1 Willd. Biennial \\<1r11111,1<1d lntrodull·d ll j(Ji{Jl 

Arlemisia cana Pur,h \iii er ,agchru,h '\ ;11 i I l: I' \111<1 ll 7 

Ar/emisiafrigida \\'illd Prairie ,;1gn1, ,11 '\at i1 c I' Slll{I ll .1 

Arlemisia ludorici,mu '\utt. \\ hitc ,agchru,h '\ati1 e I' I Ol<H ' 
Asclepias incamata l.. S11amp milk\\ecd '\ati1 e I' H>lrn ~ 

Asclepias syriaca L. ( (l ]llJll(\ n 1111 I b\LT J '\ati1 c I' I< >l<li () 

As/raga/us ca11adc11.1i.1 l.. Canadian 111ilk1ctd1 '\at i1 c I' J(Jl{Jl ~ 

A 1•'iplcx s11b.1pic·atu ('\utt. I I<: db. Saline salthu,h '\ at i I c A I< !l<B ') -
Beckmannia .1y::igach11c ( Stl'ud I 

Fernald Amcricrn ,lough;,:r,1,, '\at i1 e A (,f<A\\ 

Bidens ccrnuu L. '\ndd1ng h:c::.::1nid, '\. at i I e .\ HJl<H 

Bide/15 frrmdosa I .. Dc1 iJ', bc;;,::in1d. '\ ,111 \ l' A I <!I{ ll 

Boltonia a.1teroidcs ( L. I f.'llcr. \\ hill: d<1IJ', d,11,1 '\ ;1t I I(.' I' l ( JI{ ll 

B0111elo11a c11rt1jJc'11d11/a ( \1ich, I 

Torr. Sid·:,,,11, gram,1 '\ati1 e I' ('I{:\',', ~ 

Bromus incrmis Le:,,. Smooth hr "me l11trodulcd I' ( ,I<,\\\ 

Calamagros1i.1 ca11adc11111 I \licln I 

P. BeaU1. Blucy,int '\ at 11 e I' (il<AS\ ~ 

Cala111agros1i.1 .1tricta (Timm I 
Koe I er Slim-.tcm rccd;r,:" ),< at i, c: I' (ii{,\"', " 
Callitrichc pa/11srri1 L. \-cmJI 1,atcr q;,n1,,;1 '\GtilC: I' H >Rll 

Carex a1hcrodcs Srrcng \\-heat ,cJ;c '\ ,11 i IC I' \IJ)(il. 4 

Carex athrostach1·u Olnc:- \kndcrhc:,,k 'L·J~c 'sati1 c I' \I f)(,l 

Carex ,mrea 'sutl. C1nldcn ,ccJ;e '\ ,11 i IL' I' s,Jf)(jf 8 

Car ex hrci'ior ( Dc11 ey I \ lack Shc,nhcak ccd;e '\ a1i1 e l' \J f)(,E 4 
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Scientific Name 1 

Carex laci·iconica Dewey 

Carex pell it a Muhl. ex Willd. 

Carex praegracilis \\'. Boott 

Carex sartweilii Dewey 

Carex sychnocephala Can::, 

Carex rnlpinoidea M ichx. 

Chenopodium a/hum L. 

Chenopodium glau,wn I.. 

Chenopodium ruhrum I .. 

Cirsium a1Te11se (L.J Scop. 

CirsiumfloJmanii (Rydh.) Arthur 

Cirsium rnlgare (Sa, i) rcn. 

Co11rofru/11s an·e11si1 I .. 

Cony::.a ca11adrnsi1 (I..) Crunqui,t 

Coreopsis tinctoria '-:utt. 
C)'clachaena xa111!11(u!iu ( '-:utt 
Frcsen. 

Dal ea p11rp11rca V cnt. 
Descurainia sorhia ( L.) \\ rhb n 
Prantl 

Dist ich!is spicara ( L.) Cirecnc 
Echinoch/oa c111s-gul Ii (I .. J I'. 
Beau,·. 

Echinuchloa P. Beau,. 
Eleocharis acicu/aris (L.) Rocm &. 

Schult. 

Eleocharis compl'L'11a Sull. 

Eleocharis macro.11acln a Britwn 

Elrmus ca11aJc111i.1 L. 

E~rnms rcpcm (L.) Gould 

E/i'mus 1rachl'Ca11/111 ( I.ink I Cit•uld 
e; Shinners s·,p. suh,ccundu, ( Linh 1 

Common :'\aml' 

Smoothconl' ,cdt!l' 

Woulh ,l'dt!c 

Clu,tcrcd fic·ld ,l'dt!c 

S;1r1,1ell\ ,t:Jt!c 

\fan:, he;1d ,nlt!l' 

I o\ ,cdt!l' 

l .amh,q uartn, 

( );1k ka ft!<\( 1'cf oot 

Red t!<•<•,cfi,ot 

( an;1d;1 thiqlc 

I lodman·, th jq k 

Bull thistk 

I il'ld hind\\cl'd 

( ·an;1di;rn lwr,l'11 c'l'd 

( Hilden tilk,cc·d 

\ br,h l' lckr 

Purple prainl' clo, n 

Bzm1:- ardt!ra"" 

Cock,pur t!ra" 

'-:ccdk ,pib.:ru,h 

1 lahtun ,pikcrwh 

!'ale \pikl':ll"h 

C an;1J;1 11 i ldr: e 

(Juac k;:r:1" 

A. Uhe & D. Ui,e Slender 111,c;,t;:ra" 

Epi/obium ci/iu111m Raf. 

Epi/obium lcp1opln/!11m Raf. 

Eq11i.1e111m ,nTt!IIIL' L 

Equiserum !ae1'igar11m :\ Braun 

E11phorbia es11/a L. 

lrir,;:d 111Jl(l\1hcrh 

Br>::' 1•.ill(l11hnb 

I 1c:ld hc,r,c:tail 

Ezahamia gramimfolia ( L. 1 '-:utt I Lit-tc,p :,'< 1!clc:·;1< 1p 

Fragaria n'rginiana Duch,>nc \'ir:,'inia '1ril11 h<:n; 

Frw:inus f't'llll.'.1'/i'anic ,1 \lar,h. (irccn z,,h 

Galium bnrealc I.. '-:orthcm hcd,,rz:\1 

G/i','t'ria hore,1/i, ('\a,h I B:itcl1cldcr C.,n:z,11 tlna1in;: 1:11,r,,;;,;:rc:" 
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----------·.,---------

Scientific Name 1 Common "iame 

Glyceria grandis S. Watson /\1rn:rican mannagrass 

Gzvceria stria/a (Lam.) llitchc. Fll\\l m,rnnagrass 

Gz)'cyrrhi::.a lepidota Pur,h /\mnic,m l1Ll>riet: 

Gratiola neglect a Torr. Clamm::, hnlgch::, ,,Pp 

Helianthus an111111s L. Comm(ln ,untlll11cr 

He/ianthus maximiliani Schrad. \1a,imilian ,1rnJl(111c·:· 

Helianthus 1111/tallii Torr. & /\. (ir;J\ \:uttall\ ,untlll11n 

Helianthus pauciflorus l\utt. ""P 
pauciflorus Stiff ,unfhl\\ er 

Hierochloe odorata ( l..) I'. Beall\. 
ssp. arctica (J. Pres]) Tzn:le1 :\Pl1hcrn ,11cct,.·r"" 

Hordeumjuhatum I.. I \l\tail h;ir]n 

Hyperirnm ma;us (/\. Ciray) Britton Jart'c St John',\1"11 

Juncus arcticus \\'illd. ,,p litwrali, 
(Engelm.) llulten \1ount,1in ru,h 

Juncus hu(onius l.. 

Juncus interior \\' iegand 

Juncus nodosus L. 

Juncus torreri Co\ ille 

Lactuca tatarica (L.) C.A. \1ey. \ ar. 

·1 oad rw.h 

Inland ru,h 

Knotted rwh 

·1 orrc::, \ ru ,Ji 

pulchella (Pursh) Breitung Blue kttucc 

Lemna minor L. 

Lemna trisulca L. 

Lemna turionifera Landolt 
Liatris ligu!isn·/i.s ( :\. \:el,on I K. 
Schum. 

Liatris pycnostachni \1ich• .. 

Limosclla aquatica L 

Lohelia spicata Lam. 

Lotus u11i(oliola1111 ( J lcioh:. I Bcnth 
Yar. unifoliolatus 
Lycopus am<·ric·a11u1 \1uhl e\ \\. 
Bartram 

Lycopus asper Greene 

L nimachia ciliata L. 

Lysimachia lnhriJa \1ich, 
.\fatricaria malricarir,iJ,·1 auct n(ln 
(Less.) Pon er 

.\fedicago lupuli11a L. 

.\fclilotus alh.1 \1edih:u,. Cll1h. \ ar 

.\fcli/0111s of(ici11a!is I I.. I I.am 

.\fcmh:i WTCl15i., L. 

.\fonardafi.1111/osu L 

tc,mmon dud. 11 ced 

Star duch:11 ccd 

Tunon dud, \I c,:d 
J{och:::, \lountain hl;11ing 
star 

Prairie hL11ing '1,ir 

Water mud11(>!1 

l'ak,pikc lohcl1,J 

American hu;clc\1c-cd 

l{(lLJ,'.h hu,!k11ccd 

lrin,!cd lo,"c'irifr 

J(l\\l~nd ::,cllo11 l,l<"c,trifc 

Bbch: mcdich: 

\\ ild mint 

Origin· 

\:atiH· 

'\atJ\1.' 

\:;111\T 

\:;itJ\l' 

\:;1ti\ C 

:--..at i I c 

:--..atJ\ C 

\:ati,c 

:\ at I\ l' 

\: ,11 i \ l' 

\:at i\ c 

\:at i \ c 

\:at i \ c 

'\:ati1l' 

\: ,ll i \ l' 

\:ati\ c 

\:;it i, e 

'\:ati\e 

\:ati\l' 

lntre>ducccJ 

lntrodmcd 

Introduced 

Introduced 

's:atJ\l 

Life Ph~~-' 

I' <,R/\SS 

I' (iR/\SS 

l' I< >RH 

A I< >RH 

A I < ,irn 

I' H>RH 

I' l<>RH 

P l<>lrn 
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I' I< >RH 

I' H >l<H 
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C-
Scientific Name 1 

Common :\ame Origin' Life Ph~~-
4 \'al' 

Muhlenbergia asperifolia (1\ee, & 
Meyen ex Trin.) Parodi Scratd1gra,, Nat1\e I' (iR/\S\ 2 
Muhlenbergia richard.rnnis (Trin.) 
Rydb. !\1at muhh 1\;1( i I l' I' < rl{/\SS I o 
Nassella 1·irid11la (Trin.) Barb, urth ( irn:n llLTdkgra,:, '\;i! I\ l' I' <,l{/\SS " 
Oligoneurun riddellii (I-rank e:,_ 
Riddell) Rydb. Riddell', gol,knr,,J '\;itiH· I' I < >R !{ I o 
Oligo11e11ro11 rigiJum (L) Small \ar. 
humile (Porter) G.L. l\e<.0111 Stiff gollknrod '\atiH· I' I< >Rll ·1 

Oxalis dillenii .lacq. Skndn :L'll(111 11," ,,i ,, >rrL· I '\ati\e I' I < )J<Jl ,, 
Packera pseudcmrea (R) dh.) W./\. 
Weber & A. Ui\'e var. <.emicordata 
(Mack. & Bush) D.K. Trock & T.\1. 
Barkley I ahq,old gnitmd,L· I '\atJ\l' I' I < > ]{ ll " 
Panicum 1·irgat11m L. S11 itl hgra,, '\ ;111 \ e I' (,]{;\',', "' 
Pascapyru111 smit/1/i (R:- dh.) A. 
Love We,tern II hcJtgra,, ~<at I\ l: I' (,I{/\',', ·1 

Phalaris aru11di11acca L. Ree,i C;111;tr: gr.i" '\;1t 11 e I' <,RA<..,<.., () 

Ph/cum pra/C'nsc L. I im"th1 l11tr(ldlJLCll I' ( ,I{/\',', . 
Plan/ago eriopoda Torr. Rcd11 o, ,J pl;111t;un '\ati1c I' H JI{ ll .:; 

Plantago 111ajor L ( ·ommon pla11t;rn1 lntrodULed I' H Jl<ll . 
Paa palu11ris L. 1·011 I blUL'_L'.fJl', '\ati1 c I' ( ,I{/\',', 4 

Paa pratcnsis L. Kcntud,) hlucgr,1" Introduced I' ( ,I{/\',', 

Po(1gonum amphihiu111 L. \ ar. 

emersum Michx. Longruot ,m;Jrt II eccl '\ ;it i \ l' I' H Jl<ll () 

Pa(1go1111111 amphihium J, \ ar. 

stipulaceum Coleman \ lahh ,mart II l:ed '\ati1L· I' I <Wll r, 

Pol1go1111111 lapathi(olium L. Pair ,mart11 er:d '\ ,ll i \ l' :\ I< il<ll 

Po(1go11um ramo.1i.1.1im11m \licl1\ Bu.-!11 J...11ot11eed '\ ;11 i \ l' :\ f(JJ{Jl 

Pata111ogc1011 grcJmi11e111 L. \'ariahlck;d p,,nch1eul '\at11 e I' I <>I< ll r, 

Potamogeton pwil/11.1 L. Small p,,n,h1L·eJ '\at i, e !' HJl<B ") -
!'ote11tiila 1101Tc>gic·a L. '\c,n1<:;ci,1n LinqL;d,1J! '\at1\l' 1\ I< 11<B () 

Rcm1111c11lu.1 n·111hcJluri,1 Pur,h 1\lbli hutkrrnp '\ ;1! j \l' I' Ir ilrn 

Ra111111c11!11s gmciinii DC. (imelin·, huttncup '\ ,1! j I(: I' f(Jl{ll X 

Ra111111c11!11s !011girostri< Ciodr. L<,ngb<:Z:k hunerc up '\ J1 j I(: I' l<Jf<B 

Ra111111c11!11s Jh:'11s1h,mic111 I. f. Penn,:- h ania huttnc up '\ ,11 j I l' :\ I< Jl<B .. 
Ratihida cnlz1111111(cra ('\ult I \\.C>ol. 

& Stand!. ·pri;cht pr;:iiric: cr,ncflr," c:r '\;,ti,(: I' I r Jl<B 

Rorippa palustris IL.) Re~,er B(l;c: <: ]]()11 ere,, '\ati\ c· 1\ HJl<B 2 

Rosa arka11sa11a Porter l'rairi(: n"c '\ ;it j I l' I' \IIRI B -:; 

Rosa 1mndsii LindL \\'()(ld,' J{(IC(: '\ al I\(: f' \111<1 B .:; 

Rudlvckia hirt,1 L BlacJ...c-:, cd ,u<:n '\ati\e B H WB <; 

Rumcx a,1zwtic11s L. \ ar. fer,e'1ratu, 

(Greene) Dom \\'t>!C'n1 J(lc~, '\ ,ll i \ (: I' I (JRB 

-1 



Scientific Name 1 

Rumex crispus L. 

Rumex marilimus L. 

Rumex sa!icifo!ius Wcinm. ,ar. 
mexicanus (Meisn.) C.L. Hitchc. 

Sagitlaria cuncala Sheldon 

Sagit1aria !ati(o!ia Willd. 

Salix exigua Nutt. ssr. interior 
(Rowlee) Cronquist 

Salix !utea Nutt. 
Schi::achyrium scoparium ( \ 1 ichx. 

Nash 
Schoenop!l'Clll.1 ac11111.1 ( \1uhl. L'\ 

Common i'\ame 

Curly dock 

(ioldcn dock 

\\'illt111-k,l\l'd duck 

Arum leaf ,1rru11 hl'ad 

BruJdkat amm head 

Sandbar 11 i I lt111 

Yl'llc\\\ 11 illt111 

J.ittJc bJUL'S\cm 

Bigelow) A. U.i\e & D. U\1 e I ar 
acutus I larJ,tl'm hulru,h 

Schocnop!cct11.1fl111'ia1ili.1 (I on. I 
M.T. Strong Ri1cr bulrush 

Schoenop!cctus m,1ri1i111111 ( L. i l .: L' Cc1',rnorolll,1T1 bulrush 

Schocnop!cclus pungcns ( \'ahl I 
Palla var. longispicatu, ( Britton I 
S.G. Sm. Conrnwn thrl'l:,qu,,rl' 

Schoenop! cctus I ,1hcr11aem1 ,111 cm 1 

(C.C. Gmel.) Palla Softstcm bulrush 

Sco!ochloafestucuceu (\\'illd.1 I.ink Commun ri1n!:'ra,s 

Scute!!uria ga!erirnlata I.. \h:rsh Skullcap 

Set aria pumila (Poir.J Rocm. & 
Schult. ssp. pumila 

Si/enc noctiflora L. 

Si nap is arrensi.1 L. s~p. an cmh 

Si.1:i-rinchium muntunum (irc:cnc 

Sium sum·c \\'alter 

Solid ago canadcm is I.. 

So!idago gigantca Aiton 

So!idago missouriL·mi.1 '\utt 

So!idago 1110!/is Bartlett 

Sonchus a,Te11si.1 L. 

Sorghastrum nurans IL I '\ ash 

Sparganium cur; cmpum Enge Im 

Spartina gracili.1 Trin 

Spartinu p.:ctinara Bo,c ex Link 

Spiraea a!bc1 Du Roi 

Stachn /Clllllfalia \\'illd. 

S111ck.:11ia p.:ctinat,1 IL l Bciemcr 
s:nnphoricarpos ui"11.1 IL. 1 S.F. 

Blah:e 

Yelle\\\ foxtail 

'\ightfl<l\\cring siknc 

\\.ild mustard 

Strict bluc-c: cd !:'ra,, 

hcmlocJ... 11 atcrparsn ip 

Canada gPldcrm•d 

I.ate gcddl'rn•d 

\jjs,(ltlrl c21,Jd,rm,d 

\. ch ct, c'(l]Jc·nr, ,d 

field sc,11tlwtk 

Indian gr,i-' 

Bn,adfruit t,ur-rl'l·d 

:\lJ...ali c,,rdgr"'' 

l'rairil' cc,rd:,:r,,,, 

\\.hitc mcadc,11, 11 l'l't 

Smc•i•th hcJgc:1c:t1lc: 

Sage• pr•nd\\ c:cJ 

Origin·' Life 

Introduced I' 

\at11 L' 

\ ;1t I IL' 
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\,Ill\ l' 

\at11L· 

\at ill' 

\at I\ L' 
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Scientific Namc 1 

S)·mphoricwpos occide111uli.1 I look. 

Symphyotrichum ci/iu111111 ( I .nli:h. J 

G.L. Nesom 

Symphyotrichwn erirnides ( L.) (i I.. 
Nesom var. cricoides 

S)'lllph_1·otrich11111 la11L·,·1,/u111111 
(Willd.) G.L. Nesom ,sp 
lanceolatum var. lanccolatum 

Taraxarnm o/Jici11ale 1.11. Wigg 

Teucrium canadt!me I. 

Thalictrum da.1:i-rn1p11111 Fisch. & 

Ave-Lall. 

Thinopyrum i111crm,·di11111 ( I lo;,t) 
Barkworth & D.R Dewe:, 

Thinopyrum po111irnm ( l'odp.) /.-\\'. 
Liu & R.-C. \\'ang 

Thla.1pi G/Tf'/1.1(' I.. 

h[fo/iu111 repc11s L. 

Trig/ochin muritimu L. 

7)pha xg/aucu Godr. (pw ,p.l 

T_ipha a11g11sti(olia I.. 

T_ipha latifolia I.. 

Crtica dioica L. 

Utricu!aria 11w,·mrhi::.a Leconte 
I 'erbcna hractcata Ca\. e\ Lag. & 
Rodr. 

I 'ernonia_(c,sc'i,·11/ut,1 \lich\. 

1 ·l!l"onica p1!regri11a I .. ,,p. 
xalapensis (Kun th) Pcnnc 11 

I 'eronica .1c11td/,,1u I.. 

1 'icia amerirn11u \1uhl. C\ \\ illd. 

J 'iola 11cphroplnlla Greene 

Xa111hi11111 strumarium I.. 

Common 'iamc 

\\'c,krn ,1w11 hcrr:, 

Ra; le" all-.;di ;1,tn 

\\'hill' hc;it h a "!er 

\\'hill' p;rniclc a"1n 

( ·0111111011 Li<indcliun 

( ·,m;id;i tclTl11.!lldLT 

l'urpk mi:;1d, ,11 -nH: 

lntcrmcd1ati: 11 hL·<ittcra,, 

I all 11hcatgr;1" 

I ield pc·nn:,crn, 

\\'hill' cl,,\ er 

1\rn,11 _','.LI" 

1 l; hrid catt,1il 

'\amm k;1f c;1tta1I 

Hniadkaf cattail 

Stinging nc:ttk 

Comnl(ln hbdch.-r11, ,rt 

Bilchract I crbtna 

Prairie irc,n11 etd 

Pur,l,me ,pn·J11cll 

\kullcir ,pc-i:ch11:II 

:\mc-ric;rn \L·,ch 

'\\\rthcrn ),,,:_: \ ",Jc:t 

( ,,cl-.khn 

Origin.' Lifr 

'\atiH: I' 

'\ati\L' A 

'-.:;1tiH· I' 

'\ ;11 i \ l' I' 

l111r, 1duccd I' 

'\at i\ c I' 

'\ at i \ i: I' 

I 111 rod lJl cd I' 

lntrodl!lcd I' 

l11t1odl!ll.'.lj A 

Introduced I' 

'-.:;1tJ\1.'. I' 

Introduced I' 

Introduced I' 

'\ati\l' I' 

'\ ill i \l' I' 

'\ ill I\ e I' 

'\;itJ\l' ;\ 

'\at J\ i: I' 

'\atiH :\ 

,;'111\ e I' 

'\ ill I\ L' I' 

'\ati'. l' I' 

,,,ti\('. :\ 

Ph~,. 
., 

Sl!Rl ll 

I <>IUl 

I <11rn 

I< llrn 

I < >R fl 

' () I{ ll 

I< >RB 

( ,I{ 1\ ', ', 

< ,R!\SS 

H>lrn 

I <>RB 

' ( JI{ ll 

J(JJ{ll 

I< >Rll 

H >Fil 

J(JF!l 

I< >Rll 

JI Jf{ll 

l(Ji{Jl 

'< ,,rn 
I <>I< ll 

I< >l<ll 

I< >RB 

' ( Jl{ll 

( -
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Zi::.ia apt era ( A. Gra;) Fernald~ -~--- \ kaJ(,\1 lilld '-.: <it I\ i: f> I < >I{ ll s 
1Species scientific names folln\\ the Jl(lmcnclaturc ol the l ·sD . .\ J>lanh Datahi"c ( l SD . .\. 

I\RCS 2011 ). 
2Lifc-form ~ P =-Perennial..-\= .-\nnual. B BicJ1nial 
30rigin of plant species 
4Physiognomy of plant species 
'(-Values \\ere assigned hy the ~orthcm (ircat Plain" l l(lri"1ic <)uality 1\<.,scs'imcnt 

Panel (T.\GPFQ.-\P 2001 ). 
* Introduced species are not assigned a cocflicicnt (lj con<.cn ati<,m. 

·' 



APPENDIX B: l'.\1)1\IIDl 'AL \\'LI I.A'.\!) sn I ll\l < >R\1AI JO'.\ 

Amount Lm·ation 

Sediment 
Study Year lfrmon·d 
Site C~· __ WetlandT~pe Exrn,·ated (lnda·s) Latitudl· Longitude 

Nik 1 Towner ln:at,rn:nt 2008 1 0" ,18' 36'0·1 ()<)' 1,1'{)() 

Nik 3 Towner ·I· re at 111 en t 20()8 1 X" ·18 35'17 ()<)' 1.n, 

Nik4 Towner · Ire at ment 2 ()()8 1·1" IX , "' 1 <1 <)()' 1 ·1 '20 

Nik 5 Towner I reat men! 2008 20" ,18'15'17 ()() 1 .J'(J 1 

Nik 6 Towner Treatment 2008 1 0,, .1x F20 ()<) 1 .J' 1 (1 

NikSEI Towner Com erted Cropland ·18 ,.r Vi ()<)' 12'02 

NikSE2 Towner Com e11ed Cr,ipland ,18 ,.r ,(1 ()()' 1 2 '()() 

NikSE3 Towner Com erted ( ·rnpland ,18' F15 ()<)' 1 lT, 

NikSE4 Towner Com erted Cropland .1x ,5' l •1 (){)' 1 1 ', <i 

MS2 Towner Reference ,18 .,rn5 ()<) 1 ,'27 

MS3 Towner Reference .1x ,rn5 (JC)' 1 ,·,r, 
MS4 Towner ReL:rence .1x ,1' 17 ()<)' 1 ,·, 1 

HOFF 1 Benson Treatment 2 ()() 7 X-12" IX 12'58 ()<) 2 7'22 

HOFF 2 Benson ·1 reatment 200-: 8-12" -IX 1 T02 ()<)' 2 7'()(1 

HOFF 5 Benson Treatment 2 ()() 7 8-12" ·IX 12',X ()<)' 28'()() 

HOFF 4 Benson Com erted ( ·rnpland .1x 12',12 ()<)' 21'1(1 

HOFF 6 Benson Com erted Cropland .1x 12'3) ()<)' 2 7·.15 

BEN I Benson Reference ,18 12·22 ()<)' 2x· 1 7 

BEN 2 Benson Refrrc:nce --18 12·, 1 ()()' 28'22 

BEN 3 Benson Referrnce 18 12·, () ()9 28',() 

cw 47 \Velis ·1 re at 111 en t 20(), 8" .17 W,7 C)<)' 27',8 

C\\'48 \Velis Treatment 2()(), 12" .1T ,rns CJ<)' 2-·.1, 

cw 57 \Veils TreatJrn:nt 2r,o, 1 ()" .17 ,o· 12 <)<) l ~,.:::. ~ 

cw 58 \Veils Treatment 2()(), .::;," 1..,, 'H)' 12 <><r2-·"-. ' 

cw 61 Well~ Treatment 20(), 8" .17 ,<n2 <)()'27',, 

C\\' 62 \\.ells T n:atment 21)(), r· ,'i' ,rr.12 ()<)' 2-·,.1 •• I 

CW 63 \\.ells Treatment :r,r,:; 1--1" j '7' . ; ,(J'.15 <)<) 2-·,, 

CW 6-1 \\'ells Treatment 2 ()()' 1" --17',()',18 99'2-·,1 ., 

CW 65 \\.ells Treatment 2()(1, 1 ()" 1-, . ' ,rnx <><r 2-·,r) 

CW 66 \\.ells Treatment 2 ()()' 1 (1" ._i- W51 <)<)' 2-·,3 

C\\. 7 \\'ells Coll\ ertcd Cr(1pland r 3 ()' 1 (1 <)<)' =-·,, 
C\\' 15 \\'ells Coll\ ertcd Cr, 1pland 1 "'. W2X C)CJ'2-',8 .. 

C\\' -16 \\'ells Coll\ crted Cr,,pLrnd --17' :;rr, - 99· =-·,2 

C\\' 51 \\.ells Con\ crted Cr,1pland ._\"',()',._\ 9()' =-·~., 
C\\. 59 Wells Con\ erted Cr, ,p!and .\ 7· ,(J'--13 <)9·2-·~5 

- 1 .. 



Study 
Site 

CGSI 

Counh· 

Eddy 

Wetland T\'J_)l' 

Reference 

Amount 
Sl·dimcnt 

\' car Rcmon·d 

Lorntion 

E~carntcd (lnchl·s) Latitmk Longitu<k 

CGS 2 Eddy Reference ,17 .i::'.'.l() <)8 ,<)'.)<) 

CGS 3 ~-· -~--- Reference .17 ,<1',(1 </8 .1(1']</ 

* Exact exca\'ation depths \\ ere not recorded hut hes\ estimation was ~ i ,en hy contractor. 
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