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ABSTRACT

Glazyrina, Anna, M.S., Department of Agribusiness and Applied Economics, College of
Agriculture, Food Systems and Natural Resources, North Dakota State University,
March 2011. Contribution of Public Investments and Innovations to Total Factor
Productivity. Major Professor: Dr. Saleem Shaik.

This study examines the importance of public research and development (R&D)
expenditures and innovations (prices) to U.S. agricultural productivity employing panel
vector error correction econometric technique. Specifically, time-series and panel unit
root tests, panel cointegration procedures, panel causality tests, and vector error
correction model are used in the analysis. Empirical application to U.S. state-level data
for 1960-2004 suggests positive and statistically significant influence of both supply-
side drivers, in the form of public R&D expenditures, and demand-side drivers, in the

form of innovations (prices), on total factor productivity growth.
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CHAPTER 1.

INTRODUCTION

What is productivity? It seems to be like love in that everyone
knows they want it, but few have a good defimition of 1t.
Diewcrt and Nakamura (2005)

Total factor productivity (TFP) or productivity, defined as the ratio of aggregate
output over aggregate input quantity indexes, is one of the concepts of neoclassical
economics which has been the subject of intense research over the last half of the century.
At the macro-level, the focus has been on linking productivity growth with the economic
growth of a country and on explaining cross-country differences in economic development
by productivity differences (Solow, 1956; Hall and Jones, 1999). At the micro-level,
economists use productivity to evaluate the performance of manufacturing firms and
industries. Overall, the contributions of neoclassical economists have led to the
development of theory and new empirical methods to examine productivity and its causes.
According to neoclassical theory, exogenous technical progress drives long-run output and
productivity growth. In contrast, new growth theory explains log-run growth endogenously.
Common to both views is that investment in both tangible and intangible assets is a
fundamental part of the growth process. Endogenous growth theory reflects that policy
measures, such as subsidies on education or research and development (R&D), provide a
motivation to innovate and, thus, can have an impact on a long-run growth rate. Therefore,
measures of R&D expenditures are typically included in productivity analyses. But is R&D

the only driver of productivity growth?



1.1. Rationale and significance

The issue of output and productivity growth in agriculture becomes especially
important since the world population has been growing. Analyzing trends in U.S.
agriculture, one will inevitably notice that, in contrast to other production sectors of the
American economy, increase in inputs (capital, land, labor) has not been a dominant source
of output growth. According to USDA journal Amber Waves (2005), agricultural output in
2002 was 2.6 times as high as it was in 1948, but input use actually declined over the past
half century. From Figure 1.1.1 it is observable that US agricultural productivity trended
upward over time. The causes and sources of this positive trend have caught the attention

of policy makers.
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Figure 1.1.1. Changes in U.S. agricultural output, inputs, and total factor productivity
since 1948

Studies conducted since 1950s significantly enhanced knowledge about the sources
of productivity growth and methods to estimate TFP (Solow, 1957; Jorgenson and
Griliches, 1967; Denison, 1972, Diewert, 1974, 1976). However, these studies focused on

the supply driven changes with very little attention given to the demand driven changes and



to the simultaneous changes in supply and demand as to the sources of a productivity
change (see Shaik, 1999).

According to the existing literature, the major sources or contributors to agricultural
productivity growth are supply driven. The supply driven factors include investment in
research and development (public and private R&D), extension, education, and
infrastructure, with the most attention given to research and development. In this study we
set aside private R&D expenditures since our main interest is to evaluate the importance of
publicly funded R&D.

The value of publicly funded research in agriculture is indeed demonstrated by
numerous analyses. To evaluate the importance of R&D investments, the ““social rate of
return” on the investment is often estimated or computed. This social rate of return reflects
the total value of all benefits associated with an investment to the members of the society.
Many economic studies find high social returns to investments in agricultural research. For
35 studies published over 1965-2005 that were reviewed by Huffman and Evenson, the
median estimate of the social rate of return was 45% per year (see Table 1.1.1).

Table 1.1.1. Summary estimates of the rate of return to U.S. agricultural research

ITEM STUDIES, MEAN MEDIAN
1965-2005 ESTIMATE ESTIMATE

Social rate of returns to 35 53 45
public agricultural research

Social rate of returns to 4 45 45
private agricultural research

Source: Fuglic, Hetsey (IUSDA, ERS, 2007) using data from Hutfman and Evenson, 2006, and Luglie et al..
1996



Thereby, research investments accompanied by new knowledge make a vital
contribution to the economic development leading to increased productivity due to
rightward shift in the supply. Traditionally, these supply driven changes in productivity,
attributed to R&D expenditures, are treated as the principal source of productivity changes
at all levels of economic activity (Alston et al, 1995; Baumol and Wolff, 1983), while less
or no attention 1s given to demand driven changes.

Prices and productivity are not yet clearly linked, although some work has been
conducted in this direction. For example, induced innovation theory (Fellner, 1961;
Kennedy, 1964; Ahmad, 1966; Schmookler, 1966, Binswanger, 1978; Scherer, 1982; Dosi,
1988; Ruttan, 2002) considers endogenous demand driven price changes as the other causal
factor affecting productivity conditional or unconditional on supply changes. This study
attempts to enlarge induced-innovation framework by including output prices in the
analysis. By introducing the price ratio, input price over output price, we investigate
demand-side driver of a productivity shift. Hereby, the influence of both supply and
demand factors on TFP is taken into account in this thesis using panel vector autoregressive
(VAR) or vector error correction (VEC) modeling. Investigating the supply and demand
driven effects in a dynamic panel framework is the primary objective of this study. This
extends earlier research that estimates the unconditional and conditional linear dependence

between R&D, prices and TFP based on the econometric methods using time-series data.



1.2. Research contribution

This study contributes to the existing literature by examining the importance of
public investments via the shift in supply and innovations via the demand shift affecting the
U.S. agricultural TFP. Specifically, this study employs dynamic adjustment through VAR /
VEC mechanism in a panel framework. Second, this study covers a longer time span
compared to other current studies. The final contribution is the construction of the data set
on public research expenditures for the period 1889-2009.

This research is organized as follows: the second chapter summarizes the literature
on the analysis of R&D investments and prices, as factors driving TFP change, and the
estimation methods planned to be employed in the current study. Data utilized in the
estimation and the sources are discussed in the third chapter. The fourth chapter explains
theoretical model and estimation procedure. Empirical results are given in the fifth chapter,

which is followed by the conclusions in the final chapter.



CHAPTER 2,

LITERATURE REVIEW

2.1. R&D investments as a factor driving TFP
2.1.1. Literature on R&D and TFP analysis

| The question of how limited resources should be allocated to sustain and enhance
agricultural productivity growth has been a vital and urgent issue for policy makers. It
generated vigorous discussions on determining the factors having the largest influence on
TFP. Over half of a century ago, in 1953, Schultz explained all the productivity growth in
agriculture by public investments in agricultural research. However, he offered no
sufficient quantitative evidence to support his view. Later, with the development of
econometric techniques, the situation has changed. Currently, hundreds of studies
quantifying effects of R&D investments on productivity patterns in agriculture, and the
resulting social payoffs, have been conducted and published (e.g., Evenson, 1967; Evenson,
1980; Huffman and Evenson, 1992; Alston, Craig, and Pardey, 1998; Griliches, 1998;
Huffman, 2009). Many of these studies were reviewed by Echeverria (1990), Huffman and
Evenson (1993), Alston and Pardey (1996), Alston et al. (1997). An important outcome of
these analyses is providing evidence that stock and new knowledge are major sources of
productivity growth in the long run.

USDA'’s own research supports this conclusion confirming the importance of R&D

investments for TFP growth and economic well-being as a whole. For example, the USDA
Agrjculture Information Bulletin Agricultural Productivity in the United States emphasizes

high rates of return to agricultural research which result in “higher yielding crop varieties,



better livestock breeding practices, more effective fertilizers and pesticides, and better farm
management practices” and which is required “not only to increase agricultural
productivity, but to keep productivity from falling” (AIB-740, 1998, p.10). Analysis
presented in the USDA Agricultural Economic Report .S, Agricultural Growth and
Productivity: An Economy-Wide Perspective revealed that public agnicultural R&D
accounted for approximately 50 percent of the growth in agricultural productivity (TFP)
between 1949 and 1991 (AER-758, 1998). The 2000 National Academy of Sciences report
The National Research Initiative: A Vital Competitive Grants Program in Food, Fiber, and
Natural Resources Research found that “20th century research in food, fiber, and natural
resources has contributed substantially - in both quantitative and qualitative terms - to the
stability and prosperity of the US economy and to the broader world economy” (NRI, 2000,
p. 22).

Thus, much effort was taken to investigate the benefits from research through
research-induced supply shifts. Such models consider research-based technological change
which reduces supplier costs, hence, consumer prices, and increases the volume of
transactions. If to represent it graphically, then the commodity supply curve moves
downward against the stationary demand curve (e.g., Alston, Norton, and Pardey, 1995).

While there is a plethora of works devoted to the analysis of R&D outlays as to a
TFP driver, not much attention in the literature is given to such raw material as data needed
for these analyses to be conducted. Meanwhile, it requires much effort to develop historical
dataset of agricultural research investments. If data on other variables can usually be
accessed online or through other readily available sources, data on R&D expenditures is

not easy to access prior to 1970. Recently, Alston, Andersen, et al. (2010) published a US-



level data on agricultural research investments since 1890, Earlier, Huffman and Evenson
(1993) published US-level dataset since 1888 which is still widely utilized by researchers.
They also documented state-level R&D expenditures. Another group of researchers,

Alston & Pardey (1996), constructed state-level dataset as well. However, neither of these
datasets is available for general public. As Alston et al. (2009) note: “To derive the relevant
measures of public research spending requires delving through various government
documents and sorting out those elements from particular spending lines that are truly
research and truly applied to agriculture; it requires going across places and backwards
through time, dealing with changing definitions, changing reporting procedures, and
inevitable omissions”'. Thus, constructing state-level dataset of R&D expenditures is one

of the important outcomes of this study.

2.1.2, Public research investments: historical perspective
Since research investments are proven to drive productivity, it may be helpful to
provide a brief history of public agricultural research in the United States to set the scene.
Agricuitural research in the U.S. is conducted primarily by the state agricultural
experiment stations, SAES, at the state level and USDA agencies at the federal level
implying that these two institutions are the main recipients of public funding. As Huffman
(1993) notes, establishment of SAES through the passing of the Hatch Act was one of the

most important steps to develop public agricultural research in the U.S. Therefore, we will

" Alston JM., Pardey P.G., James, J. 5., Andersen, M. A. The Economies of Agricultural R&D. Annual
Review of Resource Kconomics. 2009, p. 549 Retrieved 12/01/2011, from
10 1146/annurev.resource.030708.144137.
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further discuss a history of major federal legislation affecting research in agriculture
through financing of the SAES at the federal level.

“Agricultural experiment stations are institutions engaged in systematic research
that seeks to enlarge the existing body of scientific knowledge as this applies to agriculture
and scientific fields”.? Creation of the state agricultural experiment stations in most states
was initiated by passing the Hatch Act of 1887. Each qualifying state, i e. each of 48
continental states, was to receive $15,000 annually to maintain the station. Since then, the
federal support grew gradually. The Adams Act of 1906 enabled states to receive
additional $15, 000 for conducting original research and experiments: according to this act,
in 1906 each state was entitled to an increase of $5,000; this sum was increased by $2,000
each year, until 1t reached $15,000 in 1911. The payments under this Act continued till
1955, The Purnell Act of 1925 further expanded the scope of agricultural research and
provided funds for the investigation of the social and economic problems associated with
agriculture: in 1926 each authorized state received additional $20,000; this amount was
increased by $10,000 annually from 1927 to 1930, and from 1930 to 1955 the support
under the Purnell Act equaled $60,000.

The Bankhead-Jones Act of 1935 approprated a total from $600,000 in 1936 to
$ 2,863,708 in 1955 to the states, territories and Puerto-Rico. Funds were to be distributed
to the states based on the proportion of the population in each state to the US population.
Unlike the previous acts, this act also required that each state and territory would have
available funds from other than federal sources, equal in amount to those received under

the Bankhead-Jones Act for each fiscal year.

*USDA. (1962). Funds for Research at State Agricultural Experiment Stations. Washington, D.C.
Government Printing service, p. 3.
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The passage of the Research and Marketing Act of 1946 authorized state and
federal cooperation in research on problems of regional and national importance as well as
in research on marketing of agricultural products and other related fields. The funds were
allotted to the cooperating states for the solution of problems concerning the agriculture of
more than one state. The funds were appropriated to the states since 1948 till 1955 (title I,
section 9) and till 1964 (title II, section 204 (b)).

In 1955 the original Hatch Act and subsequent authorizing legislation, namely:
Adams Act, Pumell Act, Bankhead-Jones Act and Title I of Research and Marketing Act, -
were combined in a single Amended Hatch Act. Similar to the original Hatch Act,
Amended Hatch Act declared promotion of the efficient production, marketing,
distribution, and utilization of farm products.

In 1964-1967 SAES received grants for conducting a basic scientific research under
the Public Law 85-934 (Grants for Basic Scientific Research Authorized Under the Act of
September 6, 1958). McIntire Stennis Act of 1962 (P.L. 98-788) provided funding for
forestry research since 1964. Research Facilities Act of 1963 (P.L. 88-74) appropriated
funds to SAES which were earmarked for pesticides facilities in 1965. Funds appropriated
in subsequent years (1966-1968) did not carry this restriction. Since 1966 SAES also were
assigned grants for conducting applied and basic research authorized under the Act of
1965, P.L. 89-106.

Consolidated Farm and Rural Development Act of 1972, which represents the
amendment of Consolidated Farmers Home Administration Act of 1961, made it possible
for SAES to receive funds for rural development and small farm research. National

Agricultural Research, Extension, and Teaching Policy Act of 1977, enacted as Title
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X1V of the Food and Agriculture Act of 1977 (P.L. 95-113), established a new program of
grants for high-priority agricultural research to be awarded on the basis of competition
among research workers and all colleges and universities. It also established a mechanism
for improved coordination and planning of agricultural research. Title XIV of the Food
Security Act of 1985 (also cited as National Agricultural Research, Extension, and
Teaching Policy Act Amendments of 1985) amended the Competitive Grants Program
having included emphasis on biotechnology research (a total of $70 million per fiscal year
was appropriated for _this program). Title XII of the Food, Agriculture, Conservation,
and Trade Act of 1990 (Forest Stewardship Act of 1990) reaffirmed the importance of
Mclntire-Stennis Cooperative Forestry Act (P.L. 87-788) and established a competitive
forestry, natural resources, and environmental grant program to award grants for the
conduct of research in related fields. Title XVI of the same act increased appropriations and
extended the length of the existing programs: Agricultural Research Facilities Grants
established by Research Facilities Act ($50 million was appropriated per year since 1991)
and programs established in the National Agricultural Research, Extension, and Teaching
Act of 1977 including Agricultural Research Programs, Animal Health and Disease
Research, Cnitical Agricultural Materials Research.

The Federal Agriculture Improvement and Reform Act of 1996 appropriated
$10 million for pilot research programs to combine medical and agricultural research and
also extended programs of National Agricultural Research, Extension, and Teaching Act of
1977 in animal health and disease research, policy research, etc. The Farm Security and
Rural Investment Act of 2002 further extended existing programs established by National

Agricultural Research, Extension, and Teaching Act of 1977 and Food, Agriculture,
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Conservation, and Trade Act of 1990 including aquaculture research, National Genetics
Resources Program, Nutrient Management Research, as well as continued Integrated
Research, Education, and Extension Competitive Grants Program and other competitive
grant programs. The Act also established a biosecurity planning and response program, and
grant programs for biotechnology risk assessment research and biotechnology research on
crops important for developing countries. It reauthorizes and broadens the energy program
and establishes new programs and grants for procurement of biobased products to support
development of biorefineries. The Food, Conservation, and Energy Act of 2008
authorized research initiatives for specialty and organic crops, bioenergy, nutrition, and
pollinators, and revised high-priority research areas. It also increased role of competitive
funding for most programs.

Thus, the development of agricultural science was rigorously stimulated on a public
level since 1988, when the Hatch Act first provided a large increase in funds for state
agricultural experiment stations. From year to year research activities at SAES were
becoming more diverse via increased federal support including competitive grant programs

what promoted rapid agricultural development in the US.

2.2. Prices as a factor driving TFP

While supply-side TFP drivers, such as R&D investments, were analyzed with
alacrity by many researchers, demand-side drivers, such as prices, were not approached
with the same intensity, although some work has been done in this direction (see Shaik,

1999),
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The hypothests stating that change in relative prices of factors drives technical
change affecting productivity growth, or induced innovation hypothesis, was introduced by
Hicks (1932) in his work “The Theory of Wages”. According to Hicks, one of the forces
driving inventions is seen in changes in relative prices and factor substitution: "change in
the relative prices of the factors of production is itself a spur to invention, and to invention
of a particular kind - directed to economizing the use of a factor which has become
relatively expensive”®. Thus, “production isoquants change in response to the changes in
relative factor prices”*. The hypothesis has been analyzed in a number of works (e.g.,
Felner, 1961; David and Klundert, 1965, Hayami and Ruttan, 1970; Binswanger, 1974,
Antle, 1984; Kawagoe ef al., 1986; Huffman and Evenson, 1989; Olmstead and Rhode,
1993) for many countries and industries, with a majority of works devoted to the US
agriculture.

Another stream of studies deals with the causality between output prices and
productivity. Baumol and Wolff (1983) claim that productivity affects the price of output,
and, hence, the cost of R&D relative to output price. In its turn, the investment in research
1§ affected by prices and productivity. Shaik {(1999), analyzing the bidirectional causality
between R&D expenditures, output prices and TFP for Nebraska agricultural sector, found
the evidence of influence of both R&D and prices on productivity with a greater influence
of the former. Recent research has been done to find the relationship between TFP

slowdown and rise in agricultural commodity prices (Fuglie, 2010).

*Hicks. 1.R. (1932). The Theory of Wages, Macmillan, London, p. 124
“Hayami, Y. and Ruttan, V.W. (1970) Factor Prices and Technical Change in Agricultural Development: The
United States and Japan, 1880-1960. The Journal of Political Economy 78, p. 1124
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It is worth noting that along with R&D expenditures, other variables such as public
extension, farmers’ schooling, government commodity program variables, weather
variables, general business cycle variables, and geoclimatic variables were analyzed in a
number of studies (e.g. Huffman and Evenson, 1992). But, still, much less attention in the
current literature was given to prices as to a driver of agricultural TFP change.

This study enlarges existing frameworks by incorporating changes in the input
prices relative to output prices in the analysis. We propose that this price ratio represents

a true demand-side factor driving productivity changes.

2.3. VAR / VEC techniques, unit roots and cointegration

In producttvity analysis scholars typically made use of either time series estimation
(e.g. Evenson (1967) utilized US-level data for 1938-1963; Alston, Craig, Pardey (1998)
used US aggregate data for 1949-1991 data), or panel estimation (e.g. Evenson (1980)
conducted analysis with the data for 1948-1971 for 48 states; Huffman (2009) used 1970-
1999 state-level data for 48 states; Alston er al. (2010) made use of 1949-2002 data for 48
states). The advantages of panel data estimation are obvious: it gives ample degrees of
freedom and allows accounting for both spatial and temporal variation. However, less work
was made to incorporate dynamics in proposed panel models of U.S. agricultural TFP,
though some researchers considered dynamic panels. For example, Liu, Shumway,
Rosenman, Ball (1998) considered dynamic panel using 1927-1995 state-level data on

R&D expenditures in their study for TFP convergence.
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Thereby, this study attempts to fill this void in U.S. agricultural productivity
literature by employing VAR/VEC model for panel data. Prior to explaining these models,
a word should be said about unit root (nonstationarity) tests and cointegration techniques.

Stationarity 1s a characteristic of a series’ mean and variance over time. The series
is referred to as stationary if both mean and variance are constant over time. Otherwise, the
series 1s said to be nonstationary, or to contain a unit root. The determination of the
stationarity has important consequences, since the regression with nonstationary variables
will lead to spurious results. The phenomenon of the spurious regression was first
discovered by Yule (1926) and analyzed in detail by Granger and Newbold (1974). Since
the first formal test for unit roots were developed by Dickey (1976) and Dickey and Fuller
(1979), many alternative unit root tests have been proposed, among them are augmented
Dickey-Fuller test, test by Phillips and Perron (1988), test by Kwiatkowski, Phillips,
Schmidt, and Shin (1992) which are still widely used in time series analysis. Foundations
for panel unit roots were established by Levin and Lin (1993). Modification of this test by
Levin, Lin and Chu (2002) along with the ones suggested by Im, Pesaran and Shin (1997,
2003), Maddala and Wu (1999) are among of the most commonly used tests in practice.

The problem of nonstationarity can often be resolved by differencing. The order of
differencing determines the order of integration of a variable, commonly denoted as /(d).
As already emphasized, a regression of one nonstationary time series to another
nonstationary time series may produce spurious results. However, if two nonstationary
variables are of the same order of integration, but their linear combination is stationary or
has a lower order of integration, then the series are said to be cointegrated, and a traditional

regression may be then applied to variables in levels. This idea comes from Granger
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(1981). Among the most popular tests for cointegration are Engle-Granger test (1987) and
Johansen procedure (1991), which permits for more than one cointegrating equation unlike
the first test. There are generalizations and modifications of both these tests for panel data.
Vector autoregressive model, VAR, popularized by Sims (1980), represents a
multiple time-series generalization of AR model and also serves as a starting point for
cointegration analysis. An alternative to VAR is the error correction model (ECM),
proposed by Sargan (1964) and popularized by Davidson et al. (1978) which encompasses
a long-run equilibrium relationship, at the same time allowing for a short-run dynamics,
The recent interest in VECM has been based on a demonstration by Granger and Weiss
(1983) that if two I(1) variables are cointegrated, they can be modeled by a VEC. Panel
VAR and VEC are relatively new econometric techniques. The next two chapters explain

data used in the analysis and the hypothesized model generated as panel VAR/VEC.
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CHAPTER 3.

DATA AND SOURCES

3.1. Data sources

The data on federal and nonfederal funds for agricultural research were collected
for SAES, USDA and other cooperating institutions. The funding for forestry research
(including support under the MclIntire Stennis Act) was not accounted for in the analysis
since forestry goes beyond the scope of this study.

State-level data on funds available to SAES were obtained from the following
USDA public documents: Organization of the Agricultural Fxperiment Stations in the
United States in Experiment Station Bulletin No. 1 for 1889 (data for 1889 is also available
in the Report of the Commissioner of Agriculture), Report of the Secretary of Agriculiure
- for 1890-1893, Statistics of Agricultural Colleges and Experiment Stations in OES Circular
No. 27 for 1894, Statistics of Land-Grant Colleges and Agricultural Fxperiment Stations in
OES Circular No. 35 for 1896, Statistics of Land-Grant Colleges and Agricultural
Lxperiment Stations in the United States in OES Bulletin Nos. 51, 64, 78, 97 for 1897-
1900, Annual Report of the Office of Experiment Stations for 1901-1912, 4 Report on the
Work and Expenditures of the Agricultural Fxperiment Stations for 1913-1924, Report on
the Agricultural Fxperiment Stations for 1925-1959, Funds for Research at State
Agricultural Fxperiment Stations for 1960-1963, Funds for Research at State Agricultural
Experiment Stations and Other State Institutions for 1964-1969, and Inventory of

Agricultural Research for 1970-1992, For 1993-2009 the data come from USDA's web-
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based Current Research Information System (CRIS),

http://cris nifa.usda gov/fsummaries html. Data for 1895 were interpolated.

During the period of 1966-1974 USDA had been issuing two publications on funds
for research: Funds for Agricultural Research and Inventory of Agricultural Research.
However, total funds reported by SAES and published in Funds for Agricultural Research
do not match exactly with CRIS data published in Inventory of Agricultural Research. It is
especially true for the first years of transition to the Current Research Information System
(1966-1968). Since 1970s data from two sources becomes more consistent. Thereby, in this
study, data on SAES funds is extracted from Funds for Agricultural Research up to 1969,
and from /nventory of Agriculiural Research since 1971. Data for a year of 1970 is found
as an average of values in two publications.

State-level data on funds for USDA research agencies, 1890 Universities and
Tuskegee University are available from 1970, for other cooperating institutions - from
1972, for Colleges of Veterinary Medicine — from 1982 up to 1992 from Inventory of

Agricultural Research, and from CRIS website, http://cris.nifa.usda.gov/fsummaries.html,

the data for all listed institutions are available from 1993 to 2009. USDA federal funds at
the US level were collected from Huffman (1993). The relative share of federal funding in
total funding for each state was then computed based on average between the mean for all
available years and the mean for 1970-1985 perniod, thereby giving more weight to earlier
years. Based on these shares, the data on federal funds for USDA were extrapolated back to
1901.

Summary of funding sources for research institutions is schematically presented in

Figure 3.1.1.
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* Years in parentheses indicate periods for which data are obtained
Figure 3.1.1. Funding sources for agricultural research institutions

US insular territories and Puerto Rico were not included in the analysis, nor were
Hawaii and Alaska. The last two states officially became a part of the United States only in
1959; federal support for them also differed significantly from the support available to
other states. Thereby, the analysis is conducted only for 48 continental states.

The data on output and input quantity and price indexes from 1960 to 2004 are from

Eldon Ball, USDA (http://www ers usda gov/Data/AgProductivity).

Data on two exogenous climate variables, average annual temperatures {measured
in F°) and precipitation (measured in inches), which were included to capture state-level
precip p

variation, can be obtained from the Time Bias Corrected Divisional Dataset provided by
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the National Climatic Data Center (TD-9640,

http://www7.ncde noaa.gov/CDO/CDODivisional Select jsp).

Finally, the exogenous political party variable was obtained from Shaik (2009).

3.2. Summary statistics

Summary statistics is given for states and their respective regions. States included in

each production region (according to ERS classification) are listed in Table 3.2.1.

Summary statistics for series used in the analysis are presented in Tables 3.2.2 -3.2.3 and

A1-A2 (Appendix). R&D funds were converted to real terms (adjusted for inflation) using

the agricultural R&D deflator by Pardey et al. (2009).

Table 3.2.1. Farm production regions

Region States

Appalachia Kentucky, North Carolina, Tenncssce, Virginia, West Virginia

Corn Belt Hlinois, Indiana, lowa, Missour, Ohio

Delta Arkansas, Louisiana. Mississippi

Lake States Michigan, Minnesota, Wisconsin

Mourntain Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, Wyoming

Northeast Connecticut, Delaware, Mainc, Maryland, Massachusctts, New Hampshire,
New Jersev, New York, Pennsylvania, Rhode Island, Vermont

Northern Plains  Kansas, Nebraska, North Dakota, South Dakota

Pacific Califomnia, Oregon, Washington

Southeast Alabama, Flonda, Georgia, South Carolina

Southern Plains

Oklahoma, Texas

Table 3.2.2 shows research expenditures averaged by period of time for each state.

Regional averages are also presented in Table 3.2.2.
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Table 3.2.2. Summary statistics for R&D funds (thousands of real doliars)

Region/State 1889- 1901- 1911~ 1921- 1931~ 1941- 1951- 1961- 1971- 1981- 1991-  2001-
1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2009

Appalachia 935 2088 4875 9267 13313 17124 23803 36819 32612 60,79 39198 67,948
Kentucky 1,072 3,172 9456 12267 17060 18851 22572 37,305 43906 42023 44148 51247
North Carolina 1,104 2,757 5063 12744 17,947 24495 36507 58221 98,129 124735 115,125 127.020
Tennessee 779 1,515 3367 7,217 11708 15818 215532 33659 50327 44411 45336 49,005
Virginia 805 1230 2872 5916 9269 13413 22879 369690 53326 66864 65435 73409
West Virginiia 916 1,766 3616 8192 10,581 13042 15525 17941 17373 25945 25045 39057
Com Belt 1,238 4317 12271 24136 33709 42191 47199 63823 75173 85445 95280 105132
lfinois 1,085 6440 15900 32,704 45608 53518 56,384 78399 89944 99712 111,980 115,006
Indiana 894 2,906 12,587 20933 31333 38720 45021 49288 68913 80250 81,102 98,040
lowa 1028 3,546 10,800 25156 35323 45592 57813 73597 87091 111,188 144892 145776
Missouri 974 3083 7,006 14128 21,179 25997 31,738 53,373 63335 67420  TSA3T 92,992
Ohio 2209 5612 14961 27759 35103 47,125 45040 64458 66583 68656 62,991 73,848
Delta 1,345 3564 8213 22498 33711 41207 44827 68821 83597 85939  §7.305 107,397
Arkansas 658 1,550 2477 4,137 6,506 10,185 19247 32474 40913 48619  63.146 84794
Louisiana 2,333 5,505 13465 38895 58328 66398 67735 107918 129666 106263 96401 104,472
Mississippi 1,043 3,635 8,696 24460 36299 47039 47498 66072 86210 102,934 102,367 132,925
Lake States 1152 2662 7338 I6086 22725 28519 42342 56442 74211 89413 107512 152475
Michigan 919 2,077 4436 13958 19453 21877 37,521 52,367 71028 76568 86,368 108636
Minnesota 1,304 3,717 11,809 19,130 25921 31,141 43071 58162  7583G 95074 121,905 222,437
Wisconsin 1,232 2,194 5770 15171 22802 32,540 46434 58797 75768 96597 114263 126,352
Mountain 755 1741 4076 9.843 14746 16878  19.019 27037 34204 39692 40,395 46908
Arizona 814 2,131 5743 14004 20696 22297 23214 42244 54716 64217 77168 80,088
Colorado 1,192 2842 7,080 19352 27706 31,104 31661 43868 64060 90960 86843 112008
ldaho $83 1,554 3,662 9451 14553 16741 21216 29937 33909 39798 41116 46959
Montana 619 2,110 5367 11417 16017 20,783 26048 33,158 37854 357757 33772 43438
Nevada 740 1,145 2213 4657 7560 7715 7427 12477 16939 14885 14675 19496
New Mexico 686 1216 2867 5648 9191 10819 12063 16,530 19894 22342 22477 20,761
Utah 798 1,727 3426 8,197 11903 14069 17,535 21919 27845 31738 33437 37115
Wyoming 605 1203 2252 6021 10,343 11494 12985 16963 18417 17834 15272 15400
Northeast 1,293 2222 4510 10524 17383 19.080 21,987 30,327 34411 48870 52422 55565
Connecticut 1,352 2,002 3,045 6330 10,171 10223 15586 18,177 17852 16069 19111 26873
Delaware 671 992 2,187 4232 6647 8219 9395 12,103 13415 15332 13343 11,012
Maine 774 1,356 2,627 4349 6702 8928 9292 12405 17625 18931 17825 18553

(Continued)
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Table 3.2 2 - (Concluded)

Region/State 1889- 1901- 1911- 1921- 1931- 1941- 1951- 1961- 1971- 1981- 1991- 2001-
1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2009
Maryland 830 2,225 3,155 13,175 19,782 22311 23,545 33332 34078 128382 176227 163801
Massachusetts 1,338 2,138 4245 9100 13,663 12632 13,587 17,801 13983 40,861 39,364 44,923
New Hampshire 687 831 1,608 2,030 3860 3164 4,304 6,406 6,008 6,836 6,766 5,707
New Jersey 1,200 2,096 5,090 8,982 17322 17058 22463 31817 37736 29395 35105 29,084
New York 4,211 6,834 13217 37,015 63815 69810 82335 114,773 133612 170,629 152,748 187,720
Pennsylvania 1,557 3,831 9,588 25987 41451 49262 50,539 71986 84797 97378 104315 111,947
Rhode Island 756 1,025 1,587 2,760 4424 4929 6,291 8271 11,204 0,258 4.345 4,843
Vermont 232 1,020 1,256 1.804 3379 3326 4,515 6,326 7.608 7,500 7,494 6,746
Northern Plains 823 2266 6,479 14,230 19,307 22,450 28276 44665 54893 63784 67173 72358
Kansas 779 2360 5904 11421 16409 20959 30945 46263 59380 69945 71,757 76,667
Nebraska 838 2624 7934 13175 215346 24800 32875 55232 73060 89743 103,902 113,431
North Dakota 944 2,838 9221 24669 30,856 33,689 34823 53005 60568 74481 70435 73,118
South Dakota 729 1241 2858 5,653 8419 10,350 14460 24,159 26,563 20,965 22598 26215
Pacific L205 3824 10660 28,039 43,593 54316 73,520 111,332 131946 154269 163703 192734
Calitomia 1,765 6,374 15502 41,354 67,504 85935 128447 198,096 242282 312913 330251 396,759
Oregon 812 1,799 6499 13,162 23271 27832 36846 54891 63325 69912 78270 82727
Washington 1,038 3,299 9579 27602 40,065 49180 55267 81,608 90232 79983 88590 98716
Southeast L7 2333 6411 19337 31,731 41,266 47467 67594 89437 107.577 103410 93279
Alabama 1,257 1,704 3443 7692 16202 24878 320669 44262 34577 60663 61,156 41,941
Florida 1,024 2871 7679 26328 43,339 61079 70478 97830 133816 174,997 174795 177380
Georgia 1,357 3,983 10,929 32558 50422 55965 64,307 96,060 124449 146435 137,808 125,205
South Carolina 831 1,575 3,594 10,770 16,842 23,141 22213 32224 42906 48215 47881 36,588
Southern Plains 949 2,854 9,034 24767 39901 52,267 39717 73772 93321 124739 141453 153713
Oklahoma 664 1.858 4244 10859 20832 28319 32883 43,023 48134 55476 60,751 68,052
‘lexas 1,234 3849 13824 38675 58969 76,215 86,551 108,522 138507 194,002 222,154 239375
Average Chain Growth Rates, %
Appalachia - 22329 23349 19311 14365 12863 139.00 15468 14289  355.03 97.37 114.78
Com Belt - 34870 28421 196.69 13966 12546 11187 13522 117.78  202.52 111.51 110.34
Delta - 265.04 23047 27393 14984 12224 108.7¥ 153.53 124.37 208.55 101,59 123.01
Lake States - 231,16 27563 21921 14127 12549 14847 133.30 13148 313.52 120.24 141.82
Mountain - 23073 23413 24148 14981 11446 112.69 14269 12604 23517 10228 115.55
Northeast - 171.82 20291 23337 16518 10976 11523 137.93 11347 256.13 10727 1035.99
Northern Plains - 27539 28599 219.61 13568 11627 12595 15796 12290  284.12 10531 107.72
Pacific - 31735 27876 26304 15547 12460 13536 151,70 11830 28402 10741 116.31
Southeast - 22671 25309 30162 16420 12997 11503 142.40 132.31 2607 979y 90139
Southern Plains - 300.64 31660 27414 161.11 130499 11425 126 84 123.16 238.66 11340 108.67




From Table 3.2.2, it is easy to see the differences in average distribution of
investments between the states and regions in absolute values. For the last nine decades, the
Pacific region had been getting the largest financing, for the most part due to the share of
California in total R&D budget of a region. The second place based on average size of
funding belongs to the Southern Plains region due to ample financing of Texas’s
agricultural research. For the last six decades Mountain and Northeast regions have been
getting the least funding. On the whole, it the spread is quite significant, especially in the
last decade: from 4,843 in Rhode Island ( Northeast region) to 396,759 thousand dollars in
California (Pacific region).

Average chain growth rates of R&D funding are given in the second part of
Table 3.2.2 by region and in Table A1 (Appendix) by state.

Average TFP as well as input and output (quantity indices) annual percentage
changes by region can be found in Table A2 (Appendix). In general, input grows at a lower
rate than output, and even tends to decline over time, while output exhibits stable increase,
providing a positive rate of productivity growth.

Average values of TFP and price ratio (input/output) are given in Table 3.2.3.

From Table 3.2.3 it can be noted that, for every region and state, TFP and price ratio share
similar (increasing) trends. It is difficult to make any other observations based on the tabled
values. Figures 3.2.1 and A1-A2 (Appendix), however, allow a better visualizing of the
dynamics of productivity and prices by region and state, respectively. It now can be
aobserved that two lines do not wander too far from each other in most cases. Thus, this

graphical evidence supports our hypothesis of possible causality between the two.
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Table 3.2.3. Average values of TFP and price ratio

Region TFP Price ratio
1960-197¢ 1971-1980 1981-1990 1991-2004 1960-1970 1971-1980 1981-1990 1991-2004
Appalachia L1l 1.34 1.69 1.97 124 146 1.95 2.28
Kentucky 1.16 1.41 1.84 209 1.23 t.49 2.2 2.48
Nerth Carolina 1.13 1.51 1.83 2.33 1.26 1.48 1.87 2.17
Tennessee 1.09 1.29 1.57 1.71 1.20 1.43 1.94 2.28
Virginia 1.09 1.29 1.69 1.96 1.18 1.40 1.87 222
West Virginia Lo7 1.18 1.53 1.78 1.31 1.49 2.0 2.26
Con Belt 111 1.29 1.52 1.99 109 1.22 1.64 2.20
Nlinois 111 1.25 1.46 1.91 1.12 1.27 1.76 226
Indiana 1.15 1.35 1.63 222 1.42 1.27 1.73 2.36
lowa 1.09 1.20 1.36 1.84 1.07 1.17 1.52 2.00
Missouri 1.07 1.22 1.42 1.75 1.06 1.18 1.63 222
Ohio 1.14 1.42 1.71 2.23 1.09 1.20 1.56 2.19
Delta 118 1.49 179 2.14 118 1.43 2.08 2.46
Arkansas 1.13 1.36 1.66 2.09 1.07 1.26 1.88 222
Louisiana 1.23 1.57 1.91 2.16 1.24 1.52 2.33 2.82
Mississippi 120 1.53 1.79 2.16 1.25 1.52 2.02 2.34
Lake States 110 1.32 1.59 208 111 1.23 1.67 2.47
Michigan 1.17 1.58 2.00 2.56 1.26 1.41 1.90 2.62
Minnesota 1.05 1.22 1.46 1.92 1.03 1.20 1.72 2.44
Wisconsin 1.09 1.15 1.32 1.76 1.04 1.08 1.39 235
Mountain 1.07 115 1.33 1.68 106 119 1.65 1.88
Arizona 1.03 1.06 122 1.59 1.02 1.19 1.66 1.86
Colorado 0.99 1.11 1.26 1.56 1.00 1.10 1.39 1.68
Tdaho : 1.13 1.30 1.57 2.13 1.12 1.21 1.60 2.02
Mentana 1.14 1.24 1.36 1.65 1.10 1.34 1.43 224
Nevada 1.07 1.10 1.32 1.59 1.04 147 1.51 1.61
New Mexico 1.4 1.09 1.32 1.76 1.08 1.19 1.91 2.14
Utah 1.11 1.24 1.46 1.81 1.09 1.24 1.59 1.83
Wyoming 1.06 1.10 1.16 1.37 1.05 118 1.60 1.69

(Continued)
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Table 3.2.3 - (Concluded)

Rggion TFP Price ratio
1960-1970 1971-1980 1981-1990 1991-2004 1960-1970  1971-1980 1981-1990 1991-2004
Northeast L6 1.33 1.63 2.00 I 133 1.64 212
Connecticut 1.16 1.26 1.63 220 1.15 1.20 1.40 1.98
Delaware £.17 1.30 1.66 1.96 1.24 148 1.73 2.02
Maine 1.17 1.34 1.56 2.05 1.35 t.51 1.91 2.48
Maryland 1.12 1.33 1.57 1.89 1.13 1.33 1.70 2.08
Massachusetts 1.20 1.38 1.71 223 1.24 1.43 1.67 2.34
New Hampshire 1.19 1.45 1.64 1.96 1.12 1.29 1.63 2.10
New Jersey 1.08 1.10 1.43 182 1.10 1.28 1.70 225
New York 1.12 1.15 1.37 1.70 1.10 1.21 1.43 1.85
Permsylvania 1.15 1.29 1.66 2.00 1.13 1.25 .59 2.03
Rhode [sland 1.27 1.42 219 2.30 1.18 1.30 1.79 2.33
Vermont 1.15 1.35 1.49 1.86 1.20 1.28 1.49 1.8%
Northern Plains 1.05 1.21 1.47 1.84 1.09 1.28 1.82 2.26
Kansas 0.99 1.14 1.27 1.54 1.05 1.22 1.58 1.0
Nebraska 1.08 1.25 1.53 1.85 1.14 1.30 1.61 1.95
North Dakota 1.12 1.36 1.71 221 1.15 1.45 2.33 3.06
South Dakota 1.02 1.11 1.36 1.78 1.00 1.16 1.77 2.15
Pacific 116 1.50 1.88 2.23 119 1.39 1.95 225
Calitornia 1.09 1.31 1.68 1.87 1.10 1.29 1.82 1.94
Oregon 1.18 1.60 1.95 248 1.26 1.52 2.07 261
Washington 1.21 1.59 2.01 2.34 1.22 1.38 1.95 2.20
Southeast 110 1.32 1.60 192 1.08 130 1.70 1.92
Alabama 1.00 1.16 1.39 1.60 1.04 1.24 1.64 1.77
Flonida 1.10 1.35 1.55 1.86 1.12 1.44 1.91 2.22
Georgia 1.17 1.44 1.82 225 1.12 1.34 1.63 1.84
South Carolina 1.13 1.33 1.66 1.97 1.05 1.20 1.60 1.84
Southern Plains 0.97 1.07 L27 141 113 1.33 1.84 1.96
Oklahoma .93 1.01 1.21 1.24 1.20 1.40 1.89 1.92
Texas 1.01 1.13 1.33 1.57 1.07 1.26 1.79 2.00
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3.3. Variables
Description of variables used in the analysis is presented in Table 3.3.1.

Table 3.3.1. Description of variables

Variable Description

TFP Total factor productivity
Trap Stock  R&D stock (with assumed trapezoidal lag structure)
fav V Stock R&D stock (with assumed inverted-V lag structure)

PR Price ratio

Temp Average annual temperature (F°)

Precip Average annual amount of precipitation (inches)

Party Political party dummy variable: 1 — Democratic Party, 0 — Republican Party

TFP is computed as aggregate output quantity index over aggregate input quantity
index. Price ratio (PR) represents the ratio of aggregate input price index over aggregate
output price index.

R&D stock variables were to be constructed because investments in research do not
affect production immediately: a presence of the lag between expenditures in R&D and
their impact on TFP is commonly accepted in the literature, However, the structure and
length of this lag have been an issue for researchers for over half of the century. Most of
them agree on the fact that there is an initial “gestation” lag — a time before research has
any impact; an adoption lag, during which the weights increase until reaching the
maximum; and disadoption lag with declining weights, when the impact of the research
starts diminishing at some point. In practice, specific weights have been estimated or, more
often, imposed based on the assumptions made. This study involves consideration of the
most commonly used lag structures to construct stock of knowledge: trapezoidal and
inverted-V.
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Trapezoidal lag was introduced by Huffman and Evenson (1989) and adopted by
many others later. This lag structure assumes a gestation period of two years during which
the impacts are negligible, a seven-year period when the impacts are positive and the
weights tend to increase, a six-year period of maturity during which weights are high and
constant, and then twenty-year span when weights decline gradually to zero (see, for
example, Huffman and Evenson, 2003).

The use of a finite inverted-1" lag was introduced by F. de Leeuw (1962) and
required considerable computation. Evenson (1967) developed a weighting procedure such

that a lag still could be represented in the form of inverted-V:

(33.1) W, =——— fori—1, .5
S+22j
=1
and

(3.32) W, = — e fori=stl, ., n,

| 5+ ZSZ: j
=l

where w, is a weight for period 7;

# is a total number of lags,

5 is a mean lag: s = n/2.

We attempt to compare the outcomes from using two different lag structures. For
purposes of comparison the total lag length for the inverted-V structure was assumed the
same as for the trapezoidal structure, that is, 35 years. The structures are compared in

Figure 3.3.1.
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R&D expenditures were deflated prior to constructing knowledge stocks.’

The research conducted in a given state is not solely defined by the amount of
public appropriations for this state, but is also influenced by the spillovers, primarily from
the neighboring states. Thus, the effects of the interstate spillovers have to be taken into
account. Measures of spillover potential are defined based on ERS farm production
regions: the spillovers of agricultural research in a particular state are computed by
subtracting this state’s R&D stock from the sum of the R&D stocks for all the states
associated with its respective regionz. The R&D stock (Trap_Stock or Inv_V_Stock) for a
particular state is then defined as a sum of its own stock and respective spillovers.

The description of the theoretical model and estimation methods is given in the

next chapter.

lAgricultural R&D deflator is from Pardey (2009),
? Liu et al. (2008) use an analogous approach in computing public R&D spillovers.
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CHAPTER 4,

THEORETICAL MODEL AND METHODS

4.1. Conceptual framework

As it has already been noted, this study attempts to determine the effects of
research-induced supply shift together with a price-induced demand shift on total factor
productivity. The Figure 4.1.1, developed by Shaik (1999), illustrates the possibility of
such influence on productivity change from time period ¢ to 7 +1under the assumption of

technical efficiency.
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DI}y and DDy — demand curves at time periods 0 and 1. respectively: SS; and $S, - supply curves
at time pertods O and 1, respectively.
Source: Shaik, S. (1999).

Figure 4.1.1. Supply and demand sources of productivity
30



As arule, the change in productivity from period ¢ to period t+1 is viewed as a
result of a shift in the supply curve (S5, to SS,) while a demand curve is assumed to be
stationary. However, the simultaneous movements in demand and supply are more likely
to take place in reality. Assuming flexibility of the demand curve, the productivity change
can then be explained by the two sources: by the movement along the DD, till it reaches
8S, due to change in R&D expenditures and the movement along the S, till it reaches
DD, due to change in the price ratio.

This study’s objective is to empirically examine graphically demonstrated influence
of supply and demand sides on productivity utilizing the panel data set for 48 U.S. states.
At the same time the linear feedback relationship from productivity to the magnitude of
R&D investments does not seem impossible (Baumol, Wolff, 1983), as well as the linear
feedback from productivity to prices {Shaik, 1999). In this study, following Shaik (1999),
it is hypothesized, there may be a causality running not only from public R&D outlays and
price ratio to TFP, but a two-way causality between TFP and R&D activity, between TFP

and price ratio, and between R&D activity and price ratio (Figure 4.1.2).

— = o T

R&D activity > T F P < Price ratio

\d//‘

Figure 4.1.2. Causal relationship between TFP, R&D activity and price ratio

A
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To capture various causal informational relationships, VAR / VEC model is

proposed, where the three main variables of interest are thought to be endogenous (see
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Section 4.2 for details). To capture a state-level vanation, three exogenous variables — two
climate variables (temperature and precipitation) and a political party dummy variable - are
introduced to explain the remaining state level variation not explained by the endogenous

variables.

4.2. Hypothesized model and estimation method

The relationships between the variables of interest are not straightforward. To
account for a possible causality between all the variables in the analysis (see Chapter 3,
Section 3.3 for description of the variables), the following model, where each variable is

explained by its own lags as well as by the lags of all other variables is proposed:

TFP, = ¢, *Zﬁun"}i.r , +ZJ/11SIOCI(LH +Z/11}.PRj’,7J +&,,
j=1 7:1 Jj=l

(42.1) Stock,, = a, +Zﬁ3f7'1:11)?,1’f + >y, Stock,,  +D A, PR, +e,,,
=l J=1 71

IRES]

PR, =, +Zﬂ3JTFP +> y,,Stock,,_ +> A4, FR,,  +&,,
j=1 7=1 =1

where ¢, are unobservable zero-mean white noise processes, ¢, ¢,, &, are

uncorrelated.

System of equations (4.2.1) is a mathematical representation of a vector
autoregressive model (VAR). Prior to estimating this model, unit root tests (tests for
nonstationarity) and cointegration tests have to be performed. If the variables are found to
be stationary, a VAR may be then safely estimated with variables in levels. But if the
underlying series are nonstationary and nonstationarity will not be accounted for, the

regression of one such variable against another can lead to spurious results (Gauss-Markov
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theorem will not hold, as random walk does not have finite variance, hence, OLS would
not vield a consistent parameter estimator). Moreover, the answer to the question of
whether series are stationary or nonstationary has implications for our understanding of the
economy and the forecasting (Pindyck, 1998). If a variable follows a random walk, the
effects of the temporary shocks will not dissipate after several periods, but instead will
have permanent effects. However, if nonstationary variables are cointegrated, that is, there
exists a long-term equilibrium relationship between them, the regression will not yield
spurious results. The presence of a long-run (cointegrating) relationship can be controlled
by a vector error correction model (VEC) which is a generalization of a VAR.

Summing it up, testing the dynamic relationships between the variables of the
system under study requires three steps:

1) testing for unit roots;

2) testing for cointegration and endogeneity (causality);

3) estimation of VAR or VEC depending on the results of the procedures in the first

two steps.

4.2.1. Unit roots

Karlsson and Lothgren (2000) suggest that the individual and panel unit root test
results should be jointly analyzed for a better evaluation of the stationarity properties of the
panel. Their rationale is that for large T there is a risk to conclude that the whole panel 1s
stationary even if only a small proportion of the series in the panel is indeed stationary. For

small 7, one runs potential risk to conclude that the whole panel is nonstationary even if a
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large proportion of the series is stationary. Therefore, both types of the tests are conducted
in this study.
Three following individual time-series unit root tests are applied for each cross-
section:
¢ Augmented Dickey-Fuller (1981) Testing the null of unit root
o Phillips-Perron (1988)
¢ Kwiatowski, Phillips, Schmidt, and Shin (1992) } Testing the null of stationarity
Brief description of the tests is given further.
Augmented Dickey-Fuller (ADF) unit root test is based on estimating the

regression:

i
(4211 Y, ~Y =a+f1+(p-DY +) LAY, +&,

5=l

where ¢, are assumed to be white noise.

It further requires computing ADF statistics which is equal to (-D/se(B-1) and
comparing it with the DF (1979) or more recent MacKinnon (1996) critical values’.
Adding a lagged dependent variable AY, controls for serial correlation in the residuals.
The null hypothesis is that of unit root (, : p—1=0), the alternative — there is no unit
root (H - p—-1<0).

Phillips-Perron (PP) test for the null of unit root uses nonparametric statistical

methods to account of serial correlation in the error terms without adding lagged AY,.

" The more recent MacKinnon critical value calculations are used by EViews,
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Kwiatowski, Phillips, Schmidt, and Shin (KPSS) test in contrast to two other tests

has (trend-) stationarity as the null hypothesis. Kwiatowski, Phillips, Schmidt, and Shin

start with the model®:

(4212) y, =& +g, +¢,

where ¢, is a stationary process and ¢, is a random walk given by
(42.13) ¢, =¢, | +u,, u,~id (0, o).

The formulation of the null hypothesis is:
(42.14) H, :o. =0 or ¢, is constant.

The LM test statistic for this hypothesis is defined as

(4.2.1.5) IM =41
(22

B 3
e

where e, are the residuals from regression of y, on constant, or on constant and a

time trend, & is the residual variance from this regression (residual sum of squares

divided by T), S is a partial sum of e,

T
(4216) S =3¢ 1-12..T
£=1

Critical values for LM statistic were derived by Nabeya and Tanaka.

Along with time series unit root tests, the following panel-based unit root tests will

be conducted:

¥ Maddala, G.S$. and [n-Moo Kim. Unit Roots, Cointegration, and Structural Change. Cambridge University
Press. 1998, p. 120.
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¢ Im, Pesaran and Shin (2003) )
e ADF - Fisher Chi-Square (1999)
e PP - Fisher Chi-Square (2001) > Tests of unit root under the nuil

e Levin, Lin and Chu (2002)

e Breitung (2000) )

e Hadri (2000) } Test of stationarity under the null
Summary of the listed tests is given below.
Consider AR(1) process for panel data defined as follows:
(42.1Y7) y,=p¥., +X”5; +&, ,9
where X, represent exogenous variables in the model (e.g., any fixed effects or

individual trends), &, are mutually independent idiosyncratic disturbance terms, If
autoregressive coefticients |p,-| are less than unity, y; is said to be weakly (trend-)

stationary; and if |p1| 15 equal to unity, then y; has a unit root.

The conducted panel unit root tests can be divided into two groups based on the
assumption about g, : tests with common unit root process and tests with individual unit
root process. Both groups of the tests are briefly discussed below.

L. Tests with common unit root process, so that p, = pfor all i. They include Levin, Lin

and Chu (LLC), Breitung, and Hadri tests.

LLC and Breitung consider the ADF formulation:

P
(42.18) &y, =ay,, + D B0, +X8 +¢&,."
il

?EViews 6. User Guide I, p. 104.
¥ EViews 6. User Guide 11, p. 105.
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where a =, = p—1lis comrhon for all cross-sections, but the lag p, may vary for
different 7.

Both tests, LLC and Breitung, has unit root under the null and stationarity (for all
the cross-sections) under the alternative,ie.. H, a=0and H, :a <0. Again, the
restriction here is that «; is the same for all the cross-sectional units under the alternative.

Inclusion of the lagged first differences of y, allows controlling serial correlation of error
terms.

Levin, Lin and Chu define Ay, by taking Ay, and eliminating the autocorrelations

and deterministic components:

P I~
(42.19) Ay, =4y, - B,Ay, , +X.5 .

j=1

Similarly, they definey, | as

Pon 2
(42110) _1'1 1 :yu—l _Zﬂy‘Ayt! i +X-"15 ’
=1

~
~ ~ ~

B,.0,and B, g represent estimated coefficients from the regression of Ay, and
Y. 1. respectively, on lagged terms Ay, and exogenous variables X;,.

Then, Ay, and ¥, , are divided by standard errors of each ADF regression defined
by Equation (4.2.1.8) to obtain proxies:
(42.1.11) AV, =AF, /s,
(42.1.12) ¥y, =y,.,/s.

Finally, the estimate of « is obtained from pooled proxy equation:

(42.1.12) AV, =ap, , +n,
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Levin, Lin and Chu show that modified t-statistic for & converges to normal

distribution asymptotically:

t,—(NT)S, 6 se(@;

(42.1.13) 1, = — N(O)]).

mr

where N — number of cross sections,

t,— standard t-statistic for & =0,
& *— estimated variance of the error term 7 _

T — average number of observations per cross-section in the panel,

N

b,

(4.2.1.14) =T —# —1, T— number of time periods,

Sy - average standard deviation ratio (the mean of the ratios of the long-run

standard dewviation to the innovation standard deviation for each individual),

A - — adjustment term for the mean,

U:,f — adjustment term for the standard deviation.

In Breitung test, in contrast to LLC, only autoregressive part is ¢liminated for

constructing the standardized proxies, Ay, and y, ,,1.e.

£i o,
(42.1.15) Ay, =&y, - D BNy, .,

J=1

LN
(4.2.1.16) Vi1 =Yuu 72[)}“&}’” i’

#=1
(421.17) Aj}’”:Ayﬁ/Sr,

(42.1.18) ¥, =¥, /s
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The proxies are then transformed and detrended:

(421 19) Ay” rw ( Ayzt+1+ :Aer)

(42120) y, =¥, -V, - T l(yﬂ - ¥a).

The estimate of « is then obtained from pooled proxy equation:

(42.121) Ay =ay., +v,

Estimator « "is asymptotically distributed as a standard normal under the null
hypothesis.

Hadri test 15 a generalization of the time-series KPSS unit root test for the panel
data. It differs from LLC and Breitung in that it has stationarity for all the series under the
null. Hadri allows the error term to be homoskedastic or heteroskedastic across cross-
sectional units. The test is based on OLS residuals from regression of v, on a constant, or a
constant and a trend:

(42.1.22) y,=¢,+8,

or

(42123) y,=61+¢, +¢,

where ¢, is a random walk:

(42124) ¢, =¢,  +u

it-1 it 2
~1IN (0, ¢} )and u,~IIN (0, 57
The formulation of the null hypothesis is given as

(4.2125) H, 0. =0.
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Lagrange multiplier (LM) statistic is:

ta

T
1”2& .
F(z ;:}2 Y6
il ’

=

(42.126) LM, =
where S, are partial sums of the OLS residuals:
!
(42.127) §,=3¢,
31

LM test accounting for heteroskedasticity across cross-sections is given by:

1 =1 ~ 2
mzm&ma;FZ(f/%»

i=]

The test statistic of Hadri is

— N(0)]),

mzmw2_£@¥12

where £=1/6 and ¢ =1/45 if the model includes only constant; &£ =1/15 and

¢ =11/6300, otherwise.

IL Tests with individual unit root process when p, can vary across cross-sections. This
assumption is employed by Im, Pesaran and Shin (IPS), Maddala and Wu (Fisher-ADF)
and Choi (Fisher-PP). Instead of pooling the data, these tests use separate unit root tests for

N cross-sections.
Im, Pesaran and Shin (IPS) unit root test is a balanced-panel-based equivalent of
ADF test with the null of & unit root in all cross-sectional units. The alternative allows for

heterogenetty. In other words, rejection of the null may imply that there may be a unit root
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present in some of the cross-sections while other cross-sectional units may be stationary.

The test statistic is the average of the t-statistics for a, from Equation (4.1.2.8):

N
(42.130) 7y =t (PN,
i1

which converges to a standard normal distribution in large samples when properly

standardized:

N (i~ N EG ()

(42131) W, = — N(O,1).

‘/N“Zma} (p,)

Fisher-ADIF and Fisher-PP tests, proposed by Maddala and Wu (1999) and by
Choi (2001), utilize the Fisher’s results and are based on p-values of individual unit root
tests. The null hypothesis 1s that all series are non-stationary against the alternative that at

least one of the series is stationary. The test statistic is
N .

(42.132) -2 In(z,) > x3y.
i1

where 7, is p-value from any individual unit root test for a cross section 7.

Choi (2001) shows that
(4.2.1.33) Z*—]—ZN:(D*(::)—»N(OI)

where ®~' is a cumulative standard normal distribution function.
Fisher-type tests differ from IPS in that they do not require a balanced panel, so 7

can differ across cross-sections.
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In case the series under analysis are found to be nonstationary, based on the results
of the unit root tests, cointegration tests will need to be employed. In either case, whether
variables contain unit root or not, testing for causality will be performed to ensure

endogeneity of the analyzed series.

4.2.2. Cointegration and causality

Given that the variables are found to be nonstationary, there is a possibility that a
linear combination of them will cancel out stochastic trends in the series, i.e. the variables
can be cointegrated. In an economic sense, it will imply that the variables have a long-
term, or equilibrium, relationship among them. In this study Johansen testing procedures
for panel data is employed for the reason that it allows several cointegrating vectors in the
system. Many other tests, such as Pedroni (1995, 1999, 2004), Kao (1999) which are based
on Engle-Granger framework, assume that there is only one cointegrating vector.

The starting point for Johansen cointegration test is VAR model of order p,
VAR(p):
(4221 y, =4y  +..+A4y ,+Bx +¢,

where y,is k x [ vector of variables integrated of order one, I(1);

x,is d x I vector of deterministic variables;

&,1s k x I vector of innovations,

An error-correction model for the VAR(p) process y, is:

p-l
(4222) Ay, =Tly,, +>.T\Ay,, +Bx, +¢,

i=i
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P 14
(42.23) where [I=Y 4 —7and T, =-> 4, .

=1 F=i+l

Three cases are possible in considering the VECM in Equation (4.2.2.2),

1) Rank( T ) =0. This implies that there are no cointegrating relationships;

2) Rank( I'1) =k. This implies that none of the series has a unit root and stationary
VAR may be specified in terms of the levels of the series;

3) 0 <Rank(I])=r = k. In this case one can write [] as
(4.224) [T=af’,

where « and S are & x r matrices with Rank({ @ }=Rank( ) =r, and By, is
stationary. 7 is the number of cointegrating relations (cointegrating rank), each column of
[1s a cointegrating vector, elements of « are adjustment parameters for the VEC model.

If there is only one cointegrating equation, then a single linear combination of I(1)

endogenous variables, B'y,_, , should be added to each equation in VAR. When multiplied
by a coefficient for an equation, the resulting term, aB'’y, , , is referred to as an error

correction term. If there are more than one cointegrating equations, each will contribute an

additional error correction term involving a different linear combination of I(1) series.
Thus, to test for cointegration, Johansen (1988) suggests examining the rank of

[T (for a specified deterministic term) by applying two statistics: trace statistics and

maximum eigenvalue statistics. The trace statistics tests the null hypothesis that there are r

or fewer cointegrating vectors against a general alternative that there are more than r

Vectors:

(4225) LR (rlk)=-T ilog(l — 1),

i=r+1
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where A, is the i-th largest eigenvalue of the [T matrix in Equation (4.2.2.3).

The maximum eigenvalue test evaluates the null hypothesis of 7 cointegrating
relations against the alternative of +/ cointegrating relations and is computed as:
(4226) LR (rlr+D)=-Tlogl- A, )=LR (r|k)-LR (r+1|k)
forr—0,1,. k-1

It should be noted, that the number of cointegrating equations (CE) ts determined
conditional on the assumption made about the trend. Altogether, five possible
combinations of deterministic components are contained in the Johansen procedure:
Model (1) The level data y, have no deterministic trends and CE do not have intercepts:
4227 My, +Bx, =afy, .

Model (2) The level data y, have no deterministic trends and CE have intercepts:
(422.8) Iy, , +8x, =a(fYy, ,+p,).
Model (3) The level data y, have linear trends and CE have intercepts:
(4.2.2.9) [Ty , +8x, =a(fy, ,+p)ta.y,.
Model (1) The level data y,and CE have linear trends:
(42.2.10) My, +8Bx, =a(By,_ +p, +o)+a.7,.
Model (5) The level data y, have quadratic trends and CE have linear trends:
(4.22.11) [y _ +Bx, =a(BYy, ,+p, +p)+a (¥, + 1)
The terms related tocr| are deterministic terms “outside” the CE.
As can be noted that the most restrictive model, Model {1), contains no

deterministic components and the least restrictive model, Model (5), contains unrestricted

quadratic trends in level data. The five models are nested within one another, so that Model
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(1) is contained in Model (2) and so on. Johansen (1992, 1995) suggests a method for
simultaneously determining rank and deterministic components, which is also known as
Pantula principle. This principle is applied in this study to ascertain deterministic
assumption and can be described as follows: first, a test of the null of no cointegrating
vector for Model (1) is performed. if this hypothesis is rejected, one proceeds with the test
using Model (2) and so on. If the null of zero rank is rejected for all five models, the
procedure 1s repeated for the null of at most rank one. The process stops when one fails to
reject the null for the first time, and the corresponding model is then chosen.

Maddala and Wu (1999) extend Johansen’s approach to panel data based on
Fisher’s results. They obtain test statistic for a whole panel by combining tests from

individual cross-sections:

N
(4.22.12) -2 log 7)) = x3y

i=1
where 7, ‘s are the p-values from an individual cointegration tests.

After the test for cointegration is performed, we proceed with a test for the causal
relationship among the four variables and check whether all the variables belong to the
system using conventional bivariate Granger causality tests.

In pairwise Granger causality tests the following equations are estimated for each
possible pair (x, y).

(42213) y,=a, +rony, +.. vy, +Bx ,+..+Bx, , +u,

kl

(42214) x, =a,+ax,_+..+tax ,+ By, +. . +By ,+e,

The null hypothesis, Hy: f, = 8, =...= B, =0, is tested based on the F-statistic for

each equation. The null hypothesis is that x does not Granger-cause y in the first regression
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(4.2.2.13) and that y does not Granger-cause x in the second regression. The test is
performed in the following way: first v is regressed on lagged values of y until the t-
statistic for a given lag of y is significant. Then the regression is augmented by adding
lagged x values, and the F-test that jointly these lagged x add explanatory power to the
regression 1s conducted. If the variables are found to be nonstationary, then the test is
performed with differenced series rather than levels.

Besides uncovering the feedback mechanism between the variables, these tests
allow making conclusions about possible exogeneity of some variables with respect to
others. Exogenous variable is a variable that is not caused by any other variable in the
model.

Alternatively, the VAR/VEC multivariate block exogeneity test is applied. For each
equation in the VAR, y° statistics for the joint significance of each of the other lagged

endogenous variables in each equation and aiso for the joint significance of all the other
lagged endogenous variables is computed. In a VEC case, the lagged variables that are
tested for exclusion are only those that are first differenced, that is, short-run causality is
tested. The null hypothesis is that the lags of one set of variables do not enter the equations

for the remaining variables.

4.2.3. Vector autoregression / vector error correction specifications

In case the series are stationary and all the varniables are endogenous, panel VAR
model, given in a system of equations (4.1.1), is a relevant econometric approach. In this
model each variable is written as a linear function of its own lagged values and lagged
values of all other variables in the system. Estimation can be undertaken using the method
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of ordinary least squares by running a separate regression for each variable, regressing it
on lags of itself and of all other variables.

If nonstationarity is evidenced, panel VAR can be estimated for differenced
variables. However, if the series are cointegrated, then the long-run information may be
lost by running VAR. According to “Granger Representation Theorem”, if the variables are
cointegrated, then there must exist an associated error-correction model. Therefore, if
evidence of cointegration is found, we will proceed with a development of a VEC model.
A VEC is a generalization of a VAR in which multiple error correction term (cointegration
term) appears. VEC model captures both short-run dynamics and long-run relationships
among the variables.

The procedure involves regressing the differenced dependent variable on the lagged values
of itself all other endogenous differenced variables as well as on the lagged residuals from

the cointegrating vector (long-run equilibrium regression).
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CHAPTER 5.

ESTIMATION PROCEDURE AND EMPIRICAL RESULTS

This chapter describes the results of the previously proposed procedures. The
chapter organized as follows: first, we test for stationarity of the variables; second,
cointegration and causality tests are performed; and, finally, VAR/VEC mode] 1s

estimated’!.

8.1, Testing for stationarity

Prior to starting investigating the time-series properties of the data, the natural
logarithms were taken. The rationale for it lies in the fact that many unit root tests (e.g.,
ADF, KPSS) are based on the linear regression, and log-transformation can convert an
exponential trend, possibly present in the data, into a linear trend. Therefore, it is common
to take logs of the data before conducting unit root tests (Wang, 2006).

Even though a number of tests for unit roots are readily available to help answer the
question at issue regarding stationarity of the series, it is convenient to start with a simple
graphical analysis of the data under study before conducting any formal tests. From
Figures A3-A6 (Appendix), it can be observed that all of the series have been increasing
over time; these trends may be suggesting that the means have been changing, implying
possible nonstationarity.

At the next step 1t may be helpful to investigate the plots of the autocormrelation

function, or correlogram, which also can provide us with the initial idea of

11 : ‘ . .
EViews software was used for estimation.

48



stationarity / nonstationarity of the data and show how much interdependency there is
between neighboring data points. It is expected that autocorrelation function will drop
rather quickly as the lag length increases if the series is stationary.
The sample autocorrelation function at lag & is defined as:
T
D2 =P =)

(5.1.1) p, =" )
Z(yz _J_})_
t 1

which is the ratio of sample covariance to sample variance.

The number of lags £ is basically an empirical question. A rule of thumb is to

- compute autocorrelation function (ACF) up to one third to one-quarter the length of the
time series'>. Here ACF is computed up to one third of the series length.

Autocorrelation coefficients (AC), Q-statistics with p-values, and correlograms for
variables in levels are presented in Table 5.1.1 and Figure 5.1.1. Individual insignificant
autocorrelation coefficients are marked with asterix in Table 5.1.1. Another statistics given
1s Ljung-Box Q-statistics which allows testing the joint hypothesis that all AC coefficients

up to lag & are simultaneously equal to zero, that is, there is no autocorrelation up to lag 4:

P

2
| I
—k A

(5.12) 0,y =T(T+2)3 -

The pattern seen in Table 5.1.1 and Figure 5.1.1 shows that autocorrelation
coefficients for all series start at very high values (0.849 and higher) at lag 1 and decline
quite slowly. Thus, it is possible that all series are nonstationary. The p-values of Q-

statistics reinforce this supposition.

' Gujarati, D.N. (2003). Basic Econometrics. 4™ ed. McGraw-Hill, p. 812.
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Table 5.1.1, Sample autocorrelation function

0§

Lag Log(TFP) Log{PR) Log(Trap_Stock) Log(Inv_V_Stock)

AC Q-stat p-value AC Q-stat p-value AC Q-stat p-value AC Q-stat p-value
1 0849 15580 0.000 0.882 16837 0.000 0.906 319035 0.000 0.904 3182.6 0.000
2 0753 27846 0.000 0,752 29073 0000 0814 57664 (.000 0812 5748.6 0.000
3 0.669 37543 0000 0.631 37685 0.000 0.724 7808.6 0.000 0.723 77829 0.000
4 0.588 45042 0.000 0529 43752 0.000 0.638 093939 0.000 0.637 9364.6 0.000
5 0.510 5067.0 0.000 0451 48151 0000 0.555 10595 (.000 0.535 10566 0.000
6 0436 34797 0.000 0.382 51321 0.000 0.476 11478 (.000 0.477 11455 0.000
7 0368 37738 0.000 (0.323 35358.1 0.000 0.401 12104 0.000 0.403 12089 0.000
8 0306 59774  0.000 0270 35166 0.000 0.330 12529 0.000 0.334 12523 0.000
9 0233 6ll6es5 0.000 0.231 36323 0.000 0.264 12800 0.000 0.268 12803 (.000
10 0209 62114 0000 0.193 37136 0.000 0.202 12960 0.000 0.207 12970 (.000
11 0171 62753  0.000 0.156 57668 0.000 0.146 13043 0.000 0.150 13057 0.000
12 0.145 63209 0.000 0.129 5803.0 0.000 0.094 13077 0.000 0.097 13094 0.000
13 0.136 63612 0.000 0.116 38321 0.000 0.047 13086 0.000 0.049 13104 0.000
14 0.118 63917 0000 0.082 358466 0.000 0.004* 13086 0.000 0.005* 13104 0.000
15 0093 64107 0.000 0.060 58545 0.000 -0.034 13090 0.000 -0.035 13109 0.000
16 -0.069 13109 0.000 0,072 13129 0.000
17 -0.099 13147 0.000 -0.104 13171 0.000
18 -0.126 13209 0.000 -0.133 13240 0.000
19 -0.149 13296 0.000 -0.158 13337 0.000
20 -0.169 13408 0.000 -0.180 13463 0.000
21 -0.187 13544 0.000 -0.199 13618 0.000
22 -0.201 13703 0.000 -0.215 13799 0.000
23 -0.214 13882 0.000 -0.229 14004 0.000
24 -().224 14079 0.000 -0.240 14230 0.000
23 -0.233 14292 0.000 -0.250 14473 0.600
26 -0.240 14518 0.000 -0.257 14731 0.000
27 -0.246 14753 0.000 -0.262 14999 0.000

Note: * - insignificant at 5% significance level
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Thus, the next step involves conducting a formal test for unit roots. A well known
weakness (initially noted by Perron, 1989) of most such tests is that they are atfected by
structural change: the null of a unit root tends to be underrejected, that is, the unit root tests
may fail to reject unit root hypothesis in case of structural break(s) due to interpreting the
break as an evidence of nonstationarity. Therefore, prior to testing for unit roots, state-
specific tests for stability of the parameters (under the null hypothesis) were conducted using
CUSUM procedure which is based on the cumulative sum of the recursive residuals
(proposed by Brown, Durbin, and Evans, 1975) and is designed for the detection of abrupt

changes. This test builds the plot of the quantity:

: 1 &
(513) W, :;Zw,,

¥ =kl
where m=k+[...T, w; — recursive residual, s — standard error of the regression fitted
to all 7" sample points.

Six linear models of the following type were considered:
(5.14) y,=c+pB%, +¢&,,

where y, is a dependent variable: log(TFP), log(Trap Stock), log(Inv_V_Stock), or
log(PR), x¢1s a vector of independent variables which includes two variables, other than a
dependent variable, for each model. If £ vector remains constant from period to period,
E(W,)—0, butif it changes, W, will tend to diverge from the zero mean line. The null is
rejected if W, crosses the probabilistic boundary for the path of i#,,. At 5% significance
level no structural change was observed for most states. At different periods the borders
were slightly crossed for several states in each of the models. However, analysis of recursive

coefficient estimates did not reveal any indication of instability for these particular states.
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Though, according to National Institute of Standards and Technology (1999), the use
of residual charts, such as CUSUM or EWMA"| has the advantage that they can be applied
to any autocorrelated data even if the data comes from the nonstationary processes, the same
analysis was repeated for variables in first and second differences, as well as for the mixture:
second differences for TFP, and R&D stock variable and first difference of PR, to ensure
that the data under analysts is stationary (the reasons to test models with mixed orders of
differences will be revealed further). When checking models with the differenced variables,
the cumulative sums in all cases were located within two standard deviation band indicating
parameters’ stability. Therefore, no evidence of possible structural break was found.

Next, the formal tests for unit roots disregarding possible structural change, defined
in Chapter 4 (Section 4.2.1), are applied. There are two important practical issues with
implementing described unit root tests that need to be mentioned:

1) Choosing the lag length. Various information criteria are usually used for making
this decision. Stock (1994), however, argued in favor of the use of BIC (for ADF unit root
test). Thus, decision regarding lag length, where appropriate, was based on minimizing
Bayesian (Schwarz) information criterion; in addition, this is a consistent estimator of a true
lag length.

2) Specification of exogenous variables: constant and/or trend. This decision was
based on graphical analysis of the data. A constant and a trend were included when testing
variables in levels, and only constant was accounted for when testing differenced variables.

The following notations were used for constructing Tables 5.1.2 -5.1.4:

x; - log(TFP), x> log(Trap Stock), x; — log(Inv V Stock), x;— log(PR). Table 5.1.2 shows

the results of three state-specific unit root tests for variables in levels.

" Exponentially weighted moving average
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Table 5.1.2. Individual unit root tests (levels)

AL AZ AR CA ) CT DE FL GA ID 1L IN
ADF  0.0077 0.9969%  (.0000 0.4648% 00233 01277*  00528* 00372 0.0011 02921%  0.0000 0.0000
pp 0.0087 02787%  0.0000 0.0246*  0.0233 0.1541%  00520% 00324 0.0013 02921*  0.0000 0.0000
KPSS  0.065] 02238*  0.0950  0.1515*  0.1461*  0.149t* 00979 0.0741 0.0862 0.1109 0.1949*  0.1631*
A KS KY LA ME MD MA M MN MS MO MT
ADF  0.0016 02728%  0.0308 0.0105 0.0165 00040 04545 0.0003 0.0000 0.0001 0.0000 0.0012
PP 04.0007 0.0042 0.0273 0.0126 0.0152 0.0033 03793*  0.0002 0.0000 0.0001 0.0000 0.0014
KPSS  02311* 00661 0.1909*  0.1927* 01407  0.0606 0.1053 02070%  02827*  0.1617*  0.1564* 00691
X1 NE NV NA NJ NM NY NC ND OH OK OR PA
ADF 0.0004 00740*  0.0075 03031%  0.3533*  04979*  0.7663*  0.0000 0.0000 0.0071 0.0704%* 00267
PP 0.0003 0.0665*  0.0072 04192*  03553*  0.5768*  06772*  0.0000 0.0000 0.0076 0.0704*  0.0242
KPSS  0.083 0.1572* 0069 01421 0.1841*  01621*  0.1026 0.1013 0.0823 (.1024 0.1217*  0.0829
RI SC SD TN X UT VT VA WA WV WI WY
ADF  0.3099*  0.0000 00027 00270 00025 04077%  00968* 03041  0.9447F  05190%  09785*  0.0200
pp 02278%  0.0000 00026 00161 00027  03915%  0.0968*  02972*  09765*  04936*  04274*  0.0255
KPSS 00633 0.0924 0.1509*  0.1429 0.0841 0.0089 0.0614 01112 0.1985*  0.1149 02127* 01154
AL AZ AR CA CO CT DE FL GA ID IL IN
ADF  09935% 0999%*  0.0047 _ 04382%  0999%6*  0.0000 0.0000 0.9935*  0.9935*  0999%*  09997* _ 0.9997*
PP LOO00*  09993*  0.9999*  09998*  0.9993*  (.3286*  03286*  1.0000*  10000*  0.9993*  0.9999%*  .9999%
KPSS  0.0791*  0.1623*  02103*  02246*  0.1623*  0.0979 0.0979 01791*  0.1791%  01623*  02012*  0.2012*
1A KS KY LA ME MD MA MI MN MS MO MT
ADF 09997 09990  0.9987*  0.0047 0.0000 £.0000 0.0000 0.9928*  0.9928* 00047 0.9997*  0.9996*
PP 0.9999%  10000*  1.0000*  09999*  03286*  03286%  03286*  009762*  0.9762*  0.9995%  (.9999*  0.9993*
KPSS  02012*  02136*  02073*  02103* 00979 00979 0.0979 02229%*  02229%  02103*  02012*  0.1623*
X2 NE NV NH NJ NM NY NC ND OH OK OR PA
ADF  09990%  09996*  (.0000  0.0000 0.9996*  0.0000 0.9987*  0.9990* 09997  02184*  04382*  0.0000
PP 1.0000%  09993*  0.3286*  03286®  09993*  0328*  10000*  1.0000%  09999*  07399*  0.9998*  0.3286*
KPSS  02136*  0.1623*  0.0979 0.0979 0.1623* 00979 02073%  02136*  02012* 01439 02246*  0.0979
RI SC SD TN X UT VT VA WA WY Wi WY
ADF  0.0000 0.9935%  0.9990*  0.9987*  02184*  0999%*  0.0000 U99R7*  0.4382*  09987*  09928*  0.9996*
PP G.3286%  LO00*  L.0000*  1O000*  0.7399%  0.9993*  03286%  1.0000*  0.9998*  LOO00*  0.9762%  0.89993*

KPSS 0.0979 0.1791* 0.2136* 0.2073* 0.1439 0.1623* 0.0979 0.2073* 0.2246* 0.2073* 0.2229* 0.1623*

(Continued)
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Table 5.1.2 - (Concluded)

AL AZ AR CA cO CT DE FL GA iD IL IN
ADF 0.7220%* 0.7015* 0.7245% (0.7287* 0.7015* .6920% 0.6929* 0.7220* 0.7220* (.7015* 0.7094* 0.7094*
PP 0.7086* 0.6874* 0.7112* 0.7155* G.6874* 0.6786* 0.6786* 0.7086* 0.7086* 0.6874* 0.6G52% 0.6952*
KPSS 0.1569* 0.1426 (0.1929* 0.2226* 0.1426 0.1503* 0.1503* 0.1569* 0.1569* 0.1426 0.1923* (0.1923*

1A KS KY LA ME MD MA Mi MN MsS MO MT
ADF 0.7094 % 0.7003* 0.6998* 0.7245%* (0.6929* (0.6929* 0.6929* 0.7094* 0.7094* 0.7245* (0.7094* 0.7015*
PP 0.6952* 0.6859* 0.6847* 0.7112* 0.6786* (.6786* 0.0786* 0.6948* (.6948* 0.7112* 0.6952* 0.6874%*
KPSS 0.1923* 0.2019* 0.2018* 0.1929* 0.1503* (.1503* (0.1503* 0.2253* (0.2253* (1.1929* 0.1923* 0.1426

X,

3 NE NV NH NJ NM NY NC ND OH OK OR PA
ADF 0.7003* 0.7015* 0.6929* 0.6920% 0.7015* 0.6929* 0.6998* 0.7003* 0.7094* 0.7178* 0.7287* 0.6929*
PP .6859* 0.6874* 0.6786* 0.6786* 0.6874* 0.6786* 0.6847* 0.6859* (.6952* 0.7044% 0.7155* 0.6786*
KPSS 0.2019* 0.1426 0.1503* 0.1503* 0.1426 0.1503* 0.2018* 0.2019* 0.1923* 0.1965% 0.2226* 0.1503*

RI SC SD N TX UT YT VA WA Wy Wi WY
ADF 0.6929%* 0.7220%* 0.7003* (3.6998* 0,717+ 0.7015* 0.6929* 0.6998* 0.7287* 0.6908* (0.7094* 0.7015*
PP 0.6786* 0.7086* (.6859* 0.6847* 0.7044* 0.6874* 0.6786* 0.6847* 0.7155* (0.6847* 0.6948* 0.6874*
KPSS 0.1503* 0.1569* 0.2019* (0.2018* (.1965* 0.1426 0.1503* 0.2018* 0.2226* .2018* 0.2253* 0.1426

AL AZ AR CA [8(0) CT DE FL GA 1D IL 1IN
ADF 0.0711* 0.0316 0.1368* 0.6538* 0.0425 0.9473* 0.0055 0.1408* 0.0028 0.0747* 0.1620* 0.0744*
PP 0.0666* 0.016% 0.1224* 0.5893* (1.3523* 0.8147* 0.0056 0.1287* 0.0033 0.0600* 0.1620* (3.0569*
KPSS 0.1429 0.0984 0.0804 0.1522* 0.0698 0.1899* 0.1017 (.1595* 0.1019 0.0902 0.0593 0.0959

1A KS KY LA ME MD MA Ml MN MS MO MT
ADF 0.1184* 0.0304 0.1936* 0.1255* 0.0033 0.0048 0.7154* 0.2127% 0.1017* 0.1149* 01197+ G2771*
PP 0.0922* 0.0304 (0.1939% 0.1255* 0.0025 0.0048 0.6074* 0.2127* 0.1311* 0.1291* 0.0847* 0277t*
KPSS 0.1129 0.0476 0.0706 0.0927 0.0898 0.0473 0.1477* (.0858 0.1288 0.1407 0.1089 0.0812

X4 NE NY NH NJ NM NY NC ND OH 0K OR PA

ADF 0.0945% (0.3057* 0.1223* 0.0430 0.8186* 0.0508* 0.0647* 0.3240* 0.2110* 0.2363* 0.3276* 0.1021*
PP 0.0945* 0.3796* 0.1087* 0.0451 0.7228* 0.0466 0.0647* 0.2500* 0.1794* 0.2491* 0.2422* 0.0738*
KPSS 0.0528 (0620 0.1392 0.1185 0.0929 0.1692¢ 0.0998 0.0622 (0.1592% 0.1444 0.0515 0.1058

RI SC SD TN TX Ur VT VA WA WY Wl WY
ADF 0.2683% 3.0192 0.1435% 0.0426 0.4024* 0.1655* 0.2143* 02411* 0.6094* 0.0462 0.5593* 0.0783*
PP 0.1980* 3.0153 0.1456* 0.0426 0.3263* 0.1576* 0.1679* 0.1890* (145926* 0.0467 (0.5266% 0.3146*
KPSS 0.1390 0710 0.0873 0.0651 0.1042 .0462 0.1371 0.0567 0.0797 0.0587 0.1989* 0.0747
Note:  For ADF and PP tests one-sided MacK.innon p-values are given. for KPSS — LM test statistic.

p 24

KPSS critical values: 1% level — 0.216; 5% level — 0.146; 10% level — 0.119.
* indicates UR at 5 % level.



To facilitate reading the previous table, Table 5.1.2, the number of cross-sections
with the identified unit root at 5% level for each test and each variable is given in

Table 5.1.3.

Table 5.1.3. Number of nonstationary series in panels (5% level)

Variable ADF PP KPSS
x; - log(TFP) 20 19 20
x,— log(Trap Stock) 34 48 35
x;-logflnv V Stock) 38 48 40
x;—log(PR) 37 37 7

In most cases the test results are not uniform, but they all indicate that a large
proportion of time series in each of the panels is nonstationary. The only exclusion is that
KPSS test results diverge from ADF and PP results when testing a price ratio. At the same
time, KPSS test is usually used for the purposes of confirmatory analysis: to confirm the
results of ADF and/or PP tests. However, Maddala and Wu (1998) do not recommend
making use of such confirmations claiming that proportion of correct confirmations is low.
Burke (1994) conducted a detailed Monte Carlo study to determine usefulness of the
confirmatory analysis with KPSS test and concluded that using 10% significance level
gives better results than using 5% significance level. In this case, by using 10% level for
testing stationarity of Jog(PR), we arrive at a conclusion that 14 series in a panel are not
stationary. Thus, the results of individual unit root tests indicate that all the variables are

nonstationary in levels. Table 5.1.4 shows results of panel-based unit root tests.
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Table 5.1.4. Panel unit root tests

Fisher-ADF Fisher-PP . Hadri
2 ™S " Chei MW  Choi mMw  LLC  Breitung (hetero)
=
'€ .
s Null - Unit Root Null -
Siationarity
x; -152023 0 -13.0205 464409 -14.6580  3500.833 -142251  2.08218 10.5353
(0.0000)  (0.0000)  (0.0000)  (0.0000) {0.0000)  (0.0000)  (0.9813) (0.0000)
X 114439 118313 496845 154634 261361 18.1776 14,6389 17.7334
(1.0000)  (1.0000)  (1.0000}  (1.0000) (1.0000) (10006}  (1.0000) (0.0000)
x3 227709 230549 106550  -1.7584 880193 -6.4448 -12123 14.9544
(0.0028) (0.0011)  (02168) (0.0393) (07069}  (0.0000)  {0.1127) (0.0000)
Xy -734328 72486 212805  -76033 216181 -1.7878 -29775 5.7767
(0.0000)  ©.0000)  (0.0000y  (0.0000) (0.0000) (00369  (G.0013) (0.0000)
Ax, -51.0247 -36.7684 162204  -35.7998 1579.18 -46.1923 ) 1.9168
(Q.0D0O)  (D.0000)  (0.0000)  (Q.0000)  (0.0000)  {0.0000) (0.0276)
Ax, -65125 57728  260.591  3.6194 53.5002 0.4664 , 9.6481
(0.0000)  (D.0ODDY  (0.0000)  (D.9999)  (0.9999)  (0.6795) (0.0000)
Ax;  -44.1088 -36.4634 150600  -35.4634  1506.00 542235 ] 3.7799
(0.0000)  (0.0000)  (0.0000)  (0.0000) (Q.0000)  (0.0000) (0.0001)
Ax, -434257 337879 140255 344939 145827 -40.8735 22,5517
(0.0000)  (0.0000)  (0.0000)  (0.0000) (0.0000)  (0.0000) ) (0.9946)
Alx, -406119 -348277 148318  -266420 942.00 -7.4131 ) 1.4314
(0.0000y (000003  (0.0000) (000G  (0.0000)  (0.0000) (0.0762)
Al 89717 91826 246739 70255  181.977 -3.3862 0.9795
T ©0000)  (0.0000)  (0.0000)  (©.0000) (0.0000)  (0.0000) - (0.1637)
Aly, 538940 401545  1B7196 257661 884.193 -60.0594 15.4919
© 00000y (0.0000)  (0.0000)  (0.0000) (D.0000)  {0.0000) - (0.0000)

Note: P-values in parentheses. MW — Maddala and Wu statistic; Chor — Cho Z-statistics.
“Hetero™ stands for “heteroskedasticity consistent”.

Here and further “ A " stands for first difference. @ for second difference.

IPS, Fisher-ADF and Fisher-PP tests assume non-zero percent of stationary series
under the alternative, therefore rejection of the null of a unit root often does not mean that
the whole panel is stationary - there may be just a small proportion of stationary series in a
panel. Results of LLC and Breitung tests diverge for some variables in levels. Moon ef al.
(1995) show that Breitung test is more powerful than LLC, therefore it should be given
more weight while analyzing the outcomes. Hadri tests reject the null of stationarity for all

the variables in levels at 5% significance level. In this study the conclusions will be based
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primarily on Hadri test'*. It provides us with the evidence of a unit root in all the variables.
This conclusion is consistent with earlier discussed results. Therefore, all the variables
were differenced.

IPS, Fisher-ADF, Fisher-PP and LLC panel-based tests applied to the first
differences reject the null of nonstationarity for x,, x; and x,. As was mentioned before,
since IPS and Fisher-type tests allow for hererogeneity under the alternative, the rejection
of the null does not necessarily imply that the whole panel is stationary. In its turn, LLC
test indicates stationarity of the whole panel for Ax;, Ax;and Ax,; However, Baltagi
(2000) shows that Fisher-type tests have better size performances than the group mean type
tests. Thus, more attention should be given to IPS, Fisher-ADF, and Fisher-PP rather than
to LLC. The only panel test with the null of stationarity, Hadri, allows us to conclude that
Ax, 1s stationary (as supported by all other tests), but Ax;, Ax>and Ax; are not and
should be differenced one more time.

If for Ax;Fisher-PP and LLC tests support the hypothesis of nonstationarity, i.e.
support results of Hadri, then for Ax; and Ax; there is no such support, and the conclusion
of testing second differences of these variables can be grounded solely on Hadri test
results. Consequently, there is a possibility of overdifferencing for Ax;and Ax;:. However,
choosing between underdifferencing and overdifferencing, one should give preference to
the latter. As shown by Sanchez and Pefia (1998), for forecasting purposes it is better to

overdifference than to underdifference. Therefore, x; x>and x; were differenced twice.

The hypothesis of stationarity cannot be rejected for A’x; and A’x.. The nul} of a

unit root is rejected by all the tests. Thus, uniform outcomes support the conclusion about

" Liu et al. (2008) base their conclusions regarding stationarity solely on Ifadri test.
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stationarity properties of the variables A’x; and A x,. while there is no confidence in
stationarity of A’x;.

Summing it up, x4, log(PR), is found to be I(1), x;, log(TFF), and x,
log(Trap Stock) —1(2). Variable x:, log(Inv }~ Stock), probably needs to be differenced
three times to become stationary, but the interpretation of third-differenced variables may
be very confounding. By this reason, the variable associated with the own-state knowledge
stock and spillovers for inverted-V structure is excluded from further analysis. We proceed
exclusively with a trapezoidal lag structure.

As Juselius (2007) notes, unit roots, though primarily applied to economic data, are
not restricted to it and may be also found in other fields, for example in climate data.
Therefore, exogenous climate variables for temperature and precipitation also passed

panel-based tests and were found to be integrated of order one, I(1).

5.2. Testing for cointegration and causality

Given the evidence that all the series contain unit root, we proceed by determining
whether the series are cointegrated, and if they are, by identifying the cointegrating (long-
run equilibrium) relationships.

Johansen procedure, which permits more than one cointegrating relationship,
requires all variables to be integrated of order one. Since log(PK) was found to be I(1)
while log(TFP) and log(Trap Stock) were found to be I(2), then Alog(TFP),

Alog(Trap Stock), log(PR) will be 1(1).
To determine the lag length for Johansen cointegration test, single-state VARs were

estimated with first difterences for Alog(TEFP), Alog(Trap Stock), log(PR), that is, with
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A log(TFP), X log(trap stock), Alog(PR). For 40 states one lag was selected, according
to Schwarz Information Criterion; it gave us the confidence that one period lag is
appropriate for differenced endogenous variables in the Johansen cointegration test
equation (and in VEC if cointegration is evidenced).

The optimal model for the deterministic components in the system (see Chapter 4,
Section 4.2.2), selected based on Pantula principle, is Model (1) — a model with no
intercept or trend in cointegrating equation (CE) or VAR, Results of trace and maximum
eigenvalue statistics are reported in Table 5.2.1.

Table 5.2.1. Results of Johansen cointegration test

Trace test Maximum eigenvalue test
0.05 Maximum 0.05
Trace e ] ..
H, H, . . critical H, H, eigenvalue  critical
statistic o
values statistic values

r=0* r=0 1872032 2427596 r=0%* r={ 1603.491 17.79730
r<* r=1 2685409 1232090 r—1* r—=2 2655599 11.22480

r<2 r=2 29812 41299006 r=2 r—3 209812  4.129906

Note: r —number of cointegrating equations;
* denotes rejection of the hypothesis at 5% level.

The results reported in Table 5.2.1 indicate the existence of two cointegrating
relations and therefore the presence of long-run linear relationships between three variables
cannot be rejected. The conclusion of two cointegrating vectors is supported by both trace
and maximum eigenvalue statistics.

The natural question arises whether it is a desirable or undesirable to have many
cointegrating relations. Since cointegrating vectors represent constraints that an economic

system imposes on the movements of the variables in the long run, then it seems that the
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more such vectors are present, the more “stable” the system is. As Dickey ef al. (1991)
notes, the fewer the number of cointegrating vectors, the less constrained is the long-run
relationship, and therefore, all other things the same, it 1s desirable for an economic system
to have many cointegrating equations in order to be stationary in as many directions as
possible. Thus, despite unrevealing of the cointegrating relationships among three
variables and an estimation of their respective error correction processes may not be an
easy task in an economic sense, observing several such cointegrating vectors s an
indication of a “stability” of a system in the long run.

Having found the evidence of cointegration, Granger-causality tests were
performed in order to test whether some variables can be treated as exogenous and to
verify the informational relationships between them (Table 5.2.2).

Table 5.2.2. Granger causality tests

Null hypothesis Lags F-statistic P-value
Ajog( PR) does not Granger cause 10 63010 0.0000
A log 1 +P)
A’ log(1#P) does not Granger 2 6.9567 0.00098
cause Alog{ PR)
Af log(1rap _ Stock ) does not Granger cause 10 49165 0.0000
A log(1FF)
A logjj #P) does not Granger 4 35710 0.0067
cause A” log(1rap _Stock)
A log(1rap _Stock)does not Granger cause 5 15.9855 0.0000
Alog( PR)
Alog{ PR) does not Granger 4 17.6879 0.0000

cause A’ log( 1rap _Stock)

The results of Granger causality tests are summarized in Table 5.2.3.
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Table 5.2.3. Summary of results of Granger causality tests

Variable At log(1FP)  Alog PR)  Allog(1rap Stock)
A log( TFP) - Yes Yes
Alog{ PR) Yes - Yes
A log(Trap_ Stock) Yes Yes -

Note:  “Yes” indicates a statistically significant caunsation running from a row variable

to a column vanable at 3% significance level.

According to pairwise Granger causality tests (Table 5.2.2- 5.2.3), all the variables
may be treated as endogenous. For all the pairs of variables there is an evidence of Granger
causality in both directions. Further, Granger causality tests for multivariate VEC
tramework are performed (Table 5.2.4). Number of tags is based on SIC (1 lag).

Table 5.2.4. VEC Granger causality / Block exogeneity Wald tests

Dependent variable: Dependent variable: Dependent variable:
A’ log TFP) A*log(Trap _ Stock) Alog( PR)

Variable Variable Variable

excluded Palue  cluded Pvalue . cluded P-value

Without exogenous climate variables
AN log(trap Stock) 00035  Allog(7#p) 09070 A% log( 1+P) 0.0000
Alog( PR) 0.0000  Alog( PR) 0.0000  A?log(7rap Stock) 02168
All 0.0000  All 0.0000 Al 0.0000
Wrth exogenous climate vanables

Alog(Trap Stock) 00033  Allog(7rp) 09317 A log(1H+P) 0.0000
Alog( PR) 0.0003  Alog( PR) 0.0000  Alog(frap Stock) 02517
All 0.0000 All 0.0000 Al 0.0000

This group of tests justifies previous conclusion regarding endogeneity of the
variables. Also, according to block exogeneity test results, A” log74F)is not useful for
predicting A’ log{ Trap _Stock), and A’ log( Trap _Stock ) does not help in predicting

Alog{ PR) . The most important observation here is that both A* log(7rap _Stock)and
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Alog( PR) are helpful in predicting A* log{ 7FP) . The inference is not changed when

exogenous variables are added to the model.

The findings regarding directions of the causality are consistent with Shaik (1999).
Utilizing time series data for Nebraska agricultural sector, Shaik (1999) found the evidence
of bidirectional causality between TFP and prices conditional {and unconditional) on
supply, and unidirectional causality from R&D investments to productivity (conditional on
demand). Consequently, current panel data analysis does not contradict previous results,
and the conclusion that TFP is affected by both supply-side R&D investments and

demand-side price ratio is supported.

3.3. Estimation of vector error correction model

The presence of cointegrating relations forms the basis of the VEC specification,
which requires the variables to be integrated of the same order and to have a long-run
relationship. Based on conducted tests, we proceed with a VEC mode! which includes
three endogenous variables and two cointegrating vectors.

In a system of equations (5.3.1) a linear combination

(AlogTFP),, | — B Alog Trap _Stock),, , - B, log PR),, ) represents error

Ll
correction term, further denoted as ECT, which is stationary. Differenced variables are also

stationary. Coefficients of the ECT, «,, are referred to as adjustment parameters showing

how quickly the equilibrium is restored if the systems is exposed to shocks. They should
take on absolute values between 0 and 1; the closer the adjustment parameter to 1, the
prompter the system returns to equilibrium. Estimation results are presented in Table 5.3.1.

Number of lags is selected based on SIC.
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(5.3.1)

/ A log(1#P), =

o, (Alog(TFP),, | — ﬁuAIOg(Trap._SIOCk):‘,H — B, log( PR);‘,;, )+
+a, (Al THP),, |, — B, Alog(Trap _Stock),, | ~ B,, log( PR),, \ )+
+ 2N log THP),, , + 2,4’ log( Trap _Stock),,  +z:Alog PR),, | +

+ay Alemp, + w,APrecip , + o ATemp, - APrecip , + €,

A log(Trap_Stock), = a, (Alog TFP),, , — B, Alog(Trap _Stock), _, — B, log( PR),, )+

Alog( PR),

+ oy, (Al TFP), | — fyAlogTrap _Siock),, | — fr logf PR),, 1)) +
+ 2, A log THP),,_, +2,,A log(Trap _Stock),, |+ z,,Alog PR),, | +

+w, Alemp, + w,,APrecip , + w,,Alemp, -APrecip  + g,

it

aBl(A log( TFP);,;-] - /81 lAlog Trap_StOCk)z,:-—l - ﬁu log( PR)f,t 1) +
+ o, (A lOg(TI.'P);,:V ¢ — B Alog( TrapfS[OCk