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ABSTRACT 

 Inventory management in the agriculture industry involves many sources of risk in terms 

of demand uncertainty as well as uncertain margins.  Divulging an optimal inventory strategy 

can prove cumbersome to logistics managers.  In this thesis, inventory is viewed as a real option 

on the ability to operate.  Contingent claims inventory (CCI) analysis, paired with stochastic 

binomial real option valuation, provides a model which values the real option embedded in 

holding inventory and iterates the purchasing strategy until expected profit is maximized.  This 

framework is applied to three industry cases pertaining to: wheat flour milling, fertilizer 

merchandising, and bulk shipments via primary rail contracts.  
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CHAPTER 1. INTRODUCTION 

1.1. Overview 

Uncertainties in supply and demand have plagued logistics managers throughout time.  

Knowing what level of inventory to hold, and the risks associated with that strategy, can prove 

challenging to industry operatives.  As volatility of supply and demand increase, the optimal 

quantities of stock tend to increase.  This increase in buffer stock is credited to the real options 

embedded in holding inventory (Stowe and Su 1997).  Unlike financial options, real options do 

not always hold a monetary value which can be easily traded (Trigeorgis [1996] 1999).  

However, they do process a premium which gauges how valuable holding that option is.   

Uncertainties in supply and demand as well as margin create managerial challenges in the 

agricultural industry.  Whether it is ordering wheat to mill flour, purchasing urea to meet 

fertilizer demand, or managing inventories to meet rail car supply; uncertainties in supply and 

demand as well as margin are ever present.  This thesis applies an inventory management tool 

which utilizes real options, stochastic simulation, and contingent claims inventory analysis to 

optimize inventory strategy and maximize expected profit.  

The agriculture industry is particularly different than conventional industries due to great 

uncertainties in price both intra and intra yearly as well as fluctuation in production.   A severe 

drought throughout the country may lower the production of each commodity which greatly 

impacts both supply and cost.  Alternatively, policy regarding genetically modified organisms 

(GMOs) may impact which commodity is demanded from year to the next.  Conventional 

industries, such as car manufacturing, have a relatively stable demand and price; therefore, JIT 

concepts serve their effectiveness.  
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Real option premiums which are mapped onto uncertainties of supply and demand, 

combined with contingent claim inventory analysis (Stowe and Su 1997), help provide a mode to 

address optimal inventory strategy in the agriculture sector.  This thesis builds a framework 

which uses real options to value inventory and applies this methodology to wheat flour milling, 

fertilizer merchandising, and soybean shuttle shipments. 

1.2. Problem Statement 

Issues in inventory management have been cited since before 600 B.C. (Kodukula and 

Papudesu 2006).  Holding too much inventory ties up capital and accrues interest while not 

having enough may lead to company shutdown and foregone profits.  In recent times, Just-In-

Time manufacturing (JIT) concepts and lean production have moved industries towards 

inventory strategies which hold nearly zero buffer stocks (Ballou [1973] 1992; Jacobs and Chase 

[2008] 2017).  Lean production concepts, if implemented without caution, may lead to stockout 

penalties such as demurrage and have a tenacity to cause congestion at key transfer points 

(Wilson and Dahl 2011). 

Inventory management also has great implications at the industry level where the 

convenience of being able to operate holds value (Working 1949).  Holding inventories creates a 

real option on the ability to sell a product.  This is frequently called the convenience yield in 

commodity trading or processing and explains why firms may hold stocks even though prices 

may be cheaper in the future, simply for the convenience of not losing forgone profit from 

stockouts.  This same option can be applied to a wheat mill needing stock to create flour, a 

fertilizer merchandiser who sells urea, or a shuttle loader who requires grain to fill rail cars. 

Empirical models which address these issues can be analyzed using the theoretical framework 
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developed by Stowe and Su (1997) and stochastic binomial real option valuation (Churchill 

2016; Landman 2017).   

Holding inventory may be viewed as a portfolio of options which grant the owner the 

right to operate.  Long call options establish a floor of value which encompasses net salvage 

value of unused inventory.  A long call option gains value as demand rises until a point where 

they stockout.  At the point of stockout, the owner’s position is equivalent to a short call option 

which loses value as demand continues to increase.  The loss of value represents foregone profit 

and any additional costs associated with stockout.  This portfolio of options, combined with 

initial inventory and net salvage value, generate an expected profit from an inventory strategy.  

This net present value (NPV) can be maximized to determine the optimal level of inventories.  

1.3. Objectives 

The goal of this thesis is to develop a tool which measures the real option value created 

through holding inventory and identify key factors which affect optimal inventory strategy.  The 

goals of this thesis may be subdivided as follows: 

1. Build a framework which maps real option values onto demand.  The real options 

in this study view option premiums as a relative likelihood of that option expiring in the 

money.  Multiplying this premium by a number of options generate an expected value of 

the real option created through holding inventory. 

2. Apply contingent claims inventory (CCI) analysis to three industry cases to 

determine the optimal purchasing strategy.  These include: wheat flour milling, urea 

fertilizer merchandizing, and soybeans for bulk rail transportation. 

3. Conduct sensitivities on the key variables to see how optimal strategy, expected 

profit, and risks associated with expected profit change. 
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1.4. Procedures 

This thesis splits contingent claims inventory (CCI) analysis into module parts before it is 

applied to industry related issues.  Not every situation utilizes CCI analysis in the same way so 

the procedure must be broken down and modified for efficient use.  The framework was applied 

to three cases including: wheat flour milling, fertilizer, and rail shipments.  Each application uses 

module which is closely related to the theoretical framework developed by Stowe and Su (1997) 

and solved using a stochastic binomial real option model (Shreve 2004) to value the real option; 

however, each application has properties which are unique to their specific application. 

The first application is that of a wheat flour mill.  The flour mill requires a quantity of 

bushels of wheat to be milled into flour each month.  This quantity changes each month due to 

variability in the extraction rate, which is the percent of wheat which is milled into flour, and 

percent mill capacity utilization.  Due to the nature of reoccurring demand, a material 

requirement planning (MRP) module is implemented in the overall CCI analysis (Ballou [1973] 

1992).  

The second application pertains to fertilizer merchandizing.  Fertilizer is an uncommon 

agriculture industry because the United States relies heavily on imports to meet demand of 

certain fertilizers (Wilson, et al. 2014).  Interior fertilizer distributors, referred to as country 

centroids, must prepare for fertilizer demand many months before demand occurs.  The demand 

from each country centroid then relies heavily on spatial competition and market boundaries 

related to transportation costs.  Given the nature of the fertilizer industry, a module which 

utilizes spatial arbitrage pricing is used to calculate both expected demand and competitive 

selling price for a representative country centroid (Tomek and Kaiser [1972] 2014). 
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The final application pertains to grain shuttle shipments.  Bulk interior grain shippers 

primarily utilize the railroad when shipping grain (Wilson and Dahl 2011).  There are many 

sources of risk when shipping grain including: secondary rail car prices, rail velocity, soybean 

futures spread, terminal basis spread, and changes in tariff rates.  This application does not utilize 

any additional module parts, however the calculations within the CCI module are relatively 

complex and the real options must also be valued as American style options rather than European 

options (Guthrie 2009). 

Each application combines the module parts into a dynamic iterative model.  The model 

uses Monte Carlo simulation and RiskOptimizer™ to determine an optimal strategy which would 

maximize expected profits.  Each application has key stochastic and structural variables which 

have uncertainties tied to supply and demand as well as price.  Sensitives are conducted on these 

variables to see how optimal strategy and expected profit change with variable shifts. 

1.5. Organization 

The remainder of this thesis is divided into six additional chapters:  

• Chapter 2 provides background and prior studies related to inventory management 

and real options. 

• Chapter 3 develops the theoretical models used in this thesis. 

• Chapter 4 applies theory in an empirical application related to a processor. 

• Chapter 5 applies theory in an empirical application related to the fertilizer industry. 

• Chapter 6 applies theory in an empirical application related to a bulk grain shipper. 

• Chapter 7 discusses the findings in this thesis and its salient implications. 

Chapter 2 provides the reader with the proper background in inventory management and 

real options.  A review of related literature in inventory management discuss previous attempts 
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to model inventory uncertainty, their findings, and their limitations.  A review of real options 

literature presents its place in agriculture related industries, as well as papers which utilize 

stochastic binomial real option valuation in their procedures.  

Chapter 3 presents the detailed theoretical framework of contingent claims inventory 

(CCI) analysis developed by Stowe and Su (1997). Chapter 3 also presents theoretical details of 

binomial real option valuation and its application in stochastic processes (Cox, et al. 1979; 

Shreve 2004; Hull [1995] 2008; Kodukula and Papudesu 2006).  

Chapter 4 applies CCI analysis in the wheat flour milling industry. The application 

develops a representative Hard Red Winter (HRW) wheat mill based on 26 mills located in the 

upper Midwest.  The application includes three module parts of material requirement planning 

(MRP), real option valuation, and contingent claims inventory (CCI). The MRP model is 

developed for four months of milling to capture the effects of markets spread on inventory 

strategy.  The net present value (NPV) output by the CCI module represents the expected profit 

of four months of milling.  The purchasing strategies at the end of each milling month are 

adjusted to maximized expected profit.  

Chapter 5 applies CCI analysis in the urea merchandizing industry.  The demand for urea 

is lumpy and therefore only occurs during certain times of the year, primarily during spring 

planting season.  Urea imports from the US Gulf must be transported by barge, rail, or truck to 

state located in the upper Midwest (Wilson et al. 2014).  This makes for an extended lead time 

during planting season.  Demand must therefore be anticipated with relative certainty to not 

forego fertilizer sales while also limiting excess inventories which accrue great amounts of 

storage and interest if demand is overestimated.  Competitive arbitrage pricing among country 
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centroids makes demand highly volatile even if aggregate demand for urea is relatively stable.  

The urea purchasing strategy to meet uncertain demand is adjusted to maximize expected profit.  

Chapter 6 apples CCI analysis to a representative bulk soybean shipper.  A purchasing 

strategy is developed based on a soybean shipper which owns two primary BNSF one-year 

shuttle contracts.  BNSF rail performance is measured in velocity, or total trips per month.  

Velocity has a large impact on rail car supply and thus the quantity of soybeans demanded to fill 

shuttle trains.  Unused shuttle trains may be sold into the secondary rail market at either a 

premium or discount relative to the tariff rate which is recorded as daily car value (DCV).  Trade 

West Brokerage Co. (2018) provides extensive data on velocity, daily car value, and terminal 

basis bids.  A combination of multiple factors such as DCV, velocity, PNW terminal basis, tariff 

rate, and future market spread greatly impact net salvage value of unused inventory and stockout 

penalty if demand due to car supply is not met. 

Chapter 7 summarizes the finding in chapters four, five, and six as well as their 

implications to the industry.  Included in chapter 7 are also limitations in the applications and 

recommendations for further research. 
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CHAPTER 2. BACKGROUND AND RELEVANT STUDIES 

2.1. Introduction 

This chapter provides relevant background and literature on the research methods utilized 

in this thesis.  The first portion of the chapter outlines conventional inventory management 

practices.  This part concludes with a review of relevant literature in inventory management 

which utilizes financial theory.  The second part of the chapter outlines the use of real options in 

managerial decisions and concludes with relevant studies which utilize stochastic binomial real 

option models.  

2.2. Inventory Management Background and Relevant Studies 

Over the past 50 years there has been a major movement in Operations and Supply Chain 

Management (OSCM) to reform the supply chain process and move towards lean production 

practices.  The term lean production refers to generating high volume; high quality goods and 

services while also minimizing the use of inventories and raw materials.  The basis of lean 

production originated in Tokyo, Japan when Toyota implemented just-in-time (JIT) 

manufacturing concepts.  These concepts were meant to lower the inventory-to-sales ratio of the 

company.  JIT concepts forecast the demand for certain parts of the supply chain and estimate 

lead times to minimize the number of components at each station (Ballou [1973] 1992; Jacobs 

and Chase [2008] 2017).  Lean production and JIT concepts may help reduce the amount of 

capital being tied up in inventories. 

In OSCM there is a major focus on managing inventories at each station in the supply 

chain.  There are several factors that go into inventory management including, lead time 

uncertainty, convenience yield and future price uncertainty.  These components all lead to the 

major problem in managing inventories which is affected largely by uncertainties in supply, 
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demand and the logistical system.  There is a certain level of risk associated with each of these 

variables.  The level of risk in each variable is positively related with the amount of safety stocks 

(buffer stocks) that need to be readily available (Chang et al. 2015).  

A buffer stock is inventory that is specifically ordered more than the projected 

requirement level (Coyle and Bardi [1976] 1984).  Excess inventory must be well managed as it 

ties up capital and accrues carrying costs.  However, not holding enough inventories in high 

levels of supply and demand uncertainty would leave a company susceptible to disruptions in 

OSCM. These disruptions in OSCM would therefore leave a company vulnerable to stock-out 

penalties.  Seeking the balance between carrying costs and stock-out penalties has resulted in the 

evolution of several supply chain logistics strategy models. 

Most supply chain and logistics models seek to manage inventory levels with the goal to 

either capture an advantage in the market or minimize risk while also maximizing expected 

profit.  The reasons for inventory discussed in this section include: independence of operations, 

flexibility in production scheduling, achieving quantities of size, managing uncertainties of 

supply, and managing uncertainties of demand.  The final two reason, managing uncertainties in 

supply and demand, are the focal point of the research conducted in this paper. 

The first reason for holding inventories is to maintain an independence of operations.  As 

raw materials move through the production phase it would pass many sites of operations until it 

is turned into the final product.  Each of these phases would not take an identical amount of time 

so buffer stocks can be used to keep production moving fluidly.  For example, corn must go 

through a series of phases before it is turned into ethanal.  The ethanal plant would keep some 

level of inventory to serve as a “cushion” to keep the plant in operation.   
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The next reason for holding some level of inventory is to allow for flexibility in 

production scheduling.  Depending on the firm’s style of production, the same area of space in a 

production firm may be used to make different items or parts.  If the same area of space is used, a 

set up phase must take place to convert equipment to make different products.  These set up 

phases in the production process may be costly and take time.  Therefore, it is advantageous to 

produce more of an item and store it while each phase in the process is set up.   

Flexibility in production scheduling leads to the advantage of ordering in quantities of 

size.  Companies generally prefer to deal in quantities of size to reduce the amount of 

management required in moving a product.  This especially becomes the case when dealing with 

transportation of a good.  Shipping costs tend to favor large orders, so greater the shipment order, 

the lower the per-unit cost (Jacobs and Chase [2008] 2017).  For example, a grain buyer may 

offer a premium (or as referred to in the industry, an ‘edge’) to a farmer if he schedules a large 

quantity of bushels to be delivered during a specified period.  The farmer is better off because he 

receives a premium, and the grain buyer is better off because he has relieved some uncertainty in 

supply by scheduling a large quantity. 

The final two reasons covered for holding inventories, and the focus of this paper, is to 

deal with meeting variations in product supply and demand.  First, there can be uncertainties in 

both the quantity and lead time of supply.  The quantity of supply variation would typically 

originate from a raw material producer such as a farm, mine, or oil well.  The raw material 

yielded by the producer would vary from period to period, especially if the raw material producer 

has onsite storage.  When the producer has the ability to store raw materials on site, they may 

choose when and if to deliver depending on the level of price received for the good.  If the price 

per barrel of oil is depressed, the oil producer may decide to turn down production until prices 
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return to a favorable level.  Along with uncertainty in quantity of supply, there may also be 

uncertainties in lead times.  A lead time refers to the amount of time it takes for materials to 

arrive after an order is placed (Coyle and Bardi [1976] 1984).  Sometimes, there are supply 

disruptions that prevent an order of material from arriving on schedule.  The uncertainties in both 

quantity and lead time may lead to stock-out penalties.  If stock-out penalties are high, then the 

level of inventories needed to serve as buffer stocks greatly increases with the increase in 

uncertainty. 

Along with using inventories to deal with the uncertainties of supply, buffer stocks may 

also be used in dealing with the uncertainties of demand.  If each gas station knew the exact 

amount of fuel which would be demanded from the pump each day there would be no need to 

hold an excess of fuel in bulk.  However, the actual level of demand for a product is uncertain 

but can be predicted through forecasting methods to get close to what actual demand would be.  

In the case of the fuel pump, demand can be forecasted as function of both seasonality and the 

price of fuel.  During certain times of the year most business would experience a surge in 

demand for a product.  These surges can be predicted through the use of seasonality trends.  

Price also has a major influence in product demand.  For instance, the underlying price of fuel 

would greatly influence how much people drive and thus how much fuel is demanded from the 

pump.   

2.2.1. Cash, Futures, Basis, and Convenience Yield 

The source of most OSCM disruptions in this paper link back to the underlying price of a 

certain state variable.  Throughout this paper commodity prices are referred to as either cash, 

futures, or basis price.  The producer, end-user, or other market participant would buy or sell the 

physical commodity at a cash price.  The futures prices refer to the everchanging value of the 
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underlying futures contract.  There is generally a difference between what the cash price and 

what the futures price is; this difference in price is what is referred to in the market as basis 

(Kolb and Overdahl [1985] 2006). 

 𝐵𝑎𝑠𝑖𝑠 = 𝐶𝑎𝑠ℎ − 𝐹𝑢𝑡𝑢𝑟𝑒𝑠 (2.1) 

where: 

Basis  = the difference between the cash price and futures price 

Cash  = the price received or paid for the physical commodity 

Futures = the value of the futures contract. 

This cash minus futures relationship is often referred to in the industry when quoting prices at 

local elevators and end-users.  Many firms in the agriculture industry that are involved in 

handling commodities frequently refer to themselves as “basis traders,” as most transactions 

occur on a level of basis rather than referring to a cash price. 

Commodities with futures markets often have multiple months where the contract is 

traded.  These “inter-temporal price relations” between deferred and nearby markets are called 

the carry of the market (Working 1949).   

 𝐶𝑎𝑟𝑟𝑦 = 𝐷𝑒𝑓𝑒𝑟𝑟𝑒𝑑 − 𝑁𝑒𝑎𝑟𝑏𝑦 (2.2) 

where: 

Carry  = intermonth spread between contract prices 

Deferred = contract price of the deferred month 

Nearby  = contract price of the nearby month. 

A normal market occurs when the intermonth spread between futures months is positive (Kolb 

and Overdahl [1985] 2006).  A normal market encourages storage of a commodity to capture the 

carry in the market.  There are different costs associated with carrying a commodity which 
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include storage, insurance, transportation, and interest (Kolb and Overdahl [1985] 2006).  There 

is a calculated cost of carry which considers all factors listed above and reports a value at which 

a storage facility would need to be compensated (Working 1949).  A market is said to be in full 

carry if the intermonth spread is equal to the cost of carry.  Figure 2.1 depicts the general 

interaction between the amount of wheat which is stored in relation to the intermonth spread of 

the commodity price of wheat. 

 

Figure 2.1. Partial Storage Supply Curve (Working 1949). 

When the future price in the deferred month is less than the future price of the nearby 

month the market is said to be in backwardation (Kolb and Overdahl [1985] 2006).  A market 

which is in backwardation discourages holding inventories of the physical commodity because it 

is worth more now than it would be in the future.  However, sometimes a firm would store a 

commodity or good when the returns to storage is negative.  This can occur for several reasons, 

but one explanation is the firm receives some level of convenience yield by holding the 

commodity or good. 

When the market is in backwardation it would be assumed that an individual would sell 

all of their grain now instead of storing the commodity.  The term convenience yield refers to the 

value the individual receives from of holding the physical commodity when the returns to storage 
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are negative (Kaldor 1939).  For example, a wheat flower mill needs to have a steady flow of 

high and low protein wheat to produce flour and wheat-midds.  If the mill were to run out of 

wheat, it would shut down temporarily and the company would suffer losses.  For this reason, 

there is a level of convenience yield the mill possess by holding some inventory, or buffer stocks, 

of high and low protein wheat. 

Figure 2.2 shows how this relationship interacts with the amount of wheat stored in 

relation to the cost of storage.  There is still a significant amount of wheat stored when the price 

of storage is negative or near zero.  Working’s conclusion was that for most potential suppliers 

of storage, the cost of storage was in adjunct with merchandising or processing (Working 1949).  

 

Figure 2.2. Complete Storage Supply Curve (Working 1949) 
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Gibson and Schwartz (1990) present a two-factor model which valued oil-linked assets 

under the assumption that the spot price of oil and the instantaneous net convenience yield of oil 

follow a joint stochastic process.  They were then able to price one barrel of oil at any arbitrary 

future date and found the high importance convenience yield plays for a non-speculative 

commodity (Gibson and Schwartz 1990).  Casassus and Collin-Dufresne (2005) furthered this 

study to also include interest rates and risk premia.  They confirmed that spot prices follow a 

mean reverting process due to the significance of convenience yields (Casassus and Collin-

Dufresne 2005).  

2.2.2. Inventory Models in Operations and Supply Chain Management 

In OSCM there several models that can be used when optimizing inventories when either 

supply, demand, or lead times are uncertain.  The models discussed in the section include the 

single period model, economic order quantity (EOQ), and material requirement planning (MRP). 

Jacobs and Chase depict a general rule of thumb in Figure 2.3 for where each step in the 

“make-to-stock environment” process coincides with the correct inventory model.  However, it is 

also important to understand which type of demand structure is in play.  There are two types of 

demand structures: dependent and independent demand.   
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Figure 2.3. Recommended Inventory Model (Jacobs and Chase [2008] 2017) 

With dependent demand, the need for the inventory item being stocked directly depends 

on the need for another item in the production process (Jacobs and Chase [2008] 2017).  For 

example, there are two major components in the process of making malt: barley and water.  If the 

malting plant knows how much barley it has on hand and how much malt it needs to generate, 

then the amount of water required is a simple calculation (Rosing 2018).  This would be an 

example of the need for water having a dependent demand structure and the Material 

Requirements Planning (MRP) model would be appropriate. 

Independent demand items differ from dependent demand items for obvious reasons, the 

demand for an independent good is unrelated to the demand of other goods in the production 

phase.  The demand for beer on the other hand, has an independent demand structure since its 

demand is independent of the other production phases within the system.  Knowing how much 
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beer needs to be produced and held in stock is therefore an EOQ problem and requires some sort 

of forecast in demand (Jacobs and Chase [2008] 2017). 

The single period model is used when the decision maker is going to submit a onetime 

order for a specified quantity.  Usually this is due to the good becoming obsolete after a specified 

period.  There are many practical situations where products are perishable, or the product 

demand is only available for a specific period of time.  In situations like these, such as meeting 

car supply of the primary rail market, the single period inventory model is appropriate.  In the 

case of the primary rail market, the supply of rail cars over a specified period of time is not 

known with absolute certainty.  The theoretical model assumes that only one order may be 

placed, so how large the single order should be needs to be determined.  To find the optimal 

stocking level (Q*) marginal economic analysis may be used (Ballou [1973] 1992).  Using 

marginal analysis, the optimal stocking level occurs at a point where the marginal benefits of 

stocking one more unit becomes less than the expected costs of that unit.  Jacobs and Chase 

(2017) refer to the classic example of the news vendor to illustrate how the single period model 

may be used to determine the optimal number of newspapers to print each morning to meet 

demand while also not stocking too many newspapers that have no salvage value if demand is 

overestimated.   

The economic order quantity (EOQ) model is used when the demand for an item is 

continuous through time and occurring at a relatively constant rate.  The EOQ model regulates 

inventory levels by specifying the order quantity and how frequently orders should be placed.  

This concept is a balancing act between two conflicting cost patterns: the cost of carry and 

procurement (Ballou [1973] 1992).  This model was originally developed by Ford Harris (1913) 

when he recognized the problem factories where experiencing in ordering too large of quantities 
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and tying up capital.  Harris considered unit cost, set-up cost, interest and depreciation on stock, 

movement (demand), and manufacturing interval (lead time).  Even in 1913, Harris recognized 

his model could not capture all aspects of the management process, however his model provides 

a guideline which managers could use to help minimize production cost (Harris 1913).  Over the 

past century this EOQ model has served as the basis of many current management practices used 

today (Ballou [1973] 1992).  The EOQ model is a derivative of the total cost equation which 

encompasses both procurement and carrying cost.  Jacobs and Chase (2017) outline the 

conditions which must exist for the basic EOQ model to hold: 

1. Demand for the product is constant and uniform throughout the period. 

2. Lead time is constant. 

3.  Price per unit of product is constant. 

4. Inventory holding cost is based on average inventory. 

5. Ordering or setup costs are constant. 

6. All demand for the product would be satisfied. (No backorders are allowed.) 

 Ballou (1992) illustrates an example of a parts manufacturing plant where continuous 

annual demand.  Figure 2.4 shows how this example can be used to illustrate the “saw tooth” 

pattern of a standard inventory depletion and replacement cycle under the conditions laid out by 

Jacobs and Chase (2017). 
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Figure 2.4. EOQ Representation with Reorder Point (Ballou [1973] 1992) 

The basic EOQ model serves as guideline for inventory managers to pick an initial 

strategy.  However, most conditions in the EOQ model do not hold in the real world.  The 

greatest of these condition violations often being the uncertainty in supply or demand but may 

include uncertainty in logistical performance.   

Unlike EOQ models, material requirement planning MRP is used when demand for an 

item is dependent on other items within the system.  Landman (2016) uses MRP to estimate how 

many soybean shuttle trains were needed to meet shipping demand.  The MRP model used by 

Landman (2016) accounted for several factors in the market including rail tariff rate, storage and 

interest, future market spreads, farmer deliveries, among several other variables to determine 

shipping demand. 
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2.2.3. Optimal Inventory Strategy Relevant Literature 

The preceding section outlines the conventional approach to inventory management. This 

thesis uses real options, which is an extension of financial theory as it is applied to inventory 

decisions.  The idea of applying financial theory to inventory management decisions started at 

the end of the 1980s when Kim and Chung (1989) applied a capital asset pricing model (CAPM) 

as an alternative to the profit maximization approach.  Stowe and Su (1997) use the Black-

Scholes (1973) model in a contingent claims approach.  Goel and Gutierrez (2006) were one of 

the first to apply Monte Carlo Simulation and convenience yield.  In more recent times, studies 

have become continuously more interested in the contingent claims approach and the different 

valuation methods in which it is accomplished (Shi et al. 2011; Chang et al. 2015; Li and 

Arreola-Risa 2017). 

Kim and Chung (1989) use capital asset pricing (CAPM) theory to measure the effects of 

risk aversion and output market uncertainty on optimal inventory policy.  They find that the 

optimal order quantity of the risk-adjusted maximizing firm is less than the expected-profit 

maximizing firm.  They conclude that a risk averse firm would decrease their inventory policy in 

the presence of high uncertainty of demand (Kim and Chung 1989).    

Stowe and Su (1997) provide examples of conventional inventory models which map 

uncertainty in demand onto discrete probabilities as well as a continuous demand framework.  

Stowe and Su then propose that payoffs to an inventory can be mapped onto an underlying state 

variable which is used as a proxy for either the discrete probability or a continues case.  The 

value-maximizing NPV of the inventory payoff can then be found using an option-pricing model 

(Stowe and Su 1997). 
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Goel and Gutierrez (2006) determine optimal procurement policies of a stochastic 

inventory system.  They consider marginal convenience yield between spot and futures prices to 

develop a procurement strategy which would minimize inventory costs.  They use Monte Carlo 

simulation to generate 10,000 sample paths of unused inventories based on spot price and 

convenience yield as well as demand assumptions. However, they do not adequately account for 

stockout penalties because they assume additional spot purchases arrive instantaneously (Goel 

and Gutierrez 2006).  

Shi, Wu, Chu, Sculli, and Xu (2011) use a portfolio approach to a multi-stage 

procurement process for a processor with a portfolio of long-term contracts, spot procurements, 

and option-based supply contracts.  Their model is set up as a periodic review inventory policy 

for a material requirement planning schedule and solved using multi-stage stochastic 

programming. Their model accounts for the variability in input price as well as demand for 

products without a hedgeable futures price (Shi et al. 2011).   

Ma, Yin, and Guan (2013) identify the optimal product order, component production and 

replenishment decisions in the presence of volatile spot prices and a random yield production 

process.  They find that if inadequate buffer stocks are held in the presence of a random yield 

process that a “bullwhip” affect could occur and disrupt the supply chain; and, that these effects 

on profit are compounded when spot price is volatile (Ma et al. 2013). 

Chang, Chang, and Shi (2015) develop optimal procurement and inventory policy by 

modeling the inventory as a portfolio of forward contracts.  They use a real-asset martingale 

valuation methodology where the latent stochastic factor is the underlying trade arrival intensity.  

They find similar results to Stowe and Su (1997) in that a higher net salvage value would result 

in a greater initial inventory strategy (Chang et al. 2015). 
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Li and Arreola-Risa (2017) build on financial theory application models which use 

CAPM to aide in inventory management (Kim and Chung 1989).  They extend the theory to 

view supplier capacity as a random variable with a minimum and maximum value. Li and 

Arreola-Risa find the optimal inventory quantity is independent of random supplier capacity 

while firm value is not (Li and Arreola-Risa 2017). 

Of the above literature, the one most closely related to the methodology used in this 

thesis is by Stowe and Su (1997).  Stowe and Su (1997) propose an alternative method to valuing 

inventory stocking decisions through option analysis.  Using options, Stowe and Sus’ 

methodology captures both volatility in supply and demand as well as the time to maturity.  

Osowski (2004) provided an extension of the model framework built by Stowe and Su (1997) to 

develop an optimal inventory strategy in the flour milling industry (2004).  Both Stowe and Su 

(1997) and Osowski (2004) assume prices are known with some degree of certainty and that 

demand is the only random variable.  Not all prices are forward contracted so there is generally 

some degree of uncertainty which needs to be accounted for in future price movements.  

2.3. Real Options: Background and Relevant Studies 

The use of real options has gained in popularity in recent decades for their use of 

managerial flexibility and ability to value opportunity through time.  The research conducted in 

this paper relies heavily on the theory of real options and the payoff functions they represent.  

One of the first sited real options dates back to 600 B.C. when Thales, a famous Sophist 

philosopher, used real options to gain the right to rent olive presses.  Thales paid a premium up 

front to gain the right, but no the obligation, to rent the olive presses a later date (Kodukla and 

Papudesu 2006).  
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A real option gives the owner the right, but not the obligation, to exercise that right at a 

later date at a negotiated price.  Financial options theory defines a “call” option as the right to 

buy and a “put” option as the right to sell.  In the example of Thales and the olive press, Thales 

had purchased a call option from the olive press owners for the right to rent, or “buy,” their olive 

presses in the following year.  The amount Thales paid the olive press owners up front is referred 

to as the option “premium.”  The option premium is a function of time to maturity, current price, 

strike price, interest, and the riskiness of the underlying asset (Trigeorgis [1996] 1999; Dixit and 

Pindyck 1994; Amram and Kulatilaka 1999).  

Options can be classified into two broad categories: financial and real; based on the 

underlying asset.  If the underlying asset is a financial instrument, such as a stock or bond, it is 

classified as a financial option and can generally be traded on an exchange such as the Chicago 

Board Options Exchange and the American Stock Exchange (Kodukula and Papudesu 2006).  A 

real option refers to an option whose underlying asset is real.  Real options are not generally 

traded on any form of exchange and therefore lack liquidity.  However, real and financial options 

share many of the same properties so the same terminology is used.  Table 2.1 illustrates the 

basic similarities and differences between real and financial options. 

Table 2.1. Financial Options vs. Real Options (Trigeorgis [1996] 1999) 

Component Financial Options Real Options 

Underlying Variable: Current value of stock Gross present value of expected 

cash flows 

Strike Value: Exercise price Investment cost 

Time to Maturity: Time to expiration Time until opportunity 

disappears 

Volatility: Stock price uncertainty Project value uncertainty 

Risk-Free Rate: Riskless interest rate Riskless interest rate 
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Another key difference between financial and real options are the different classifications 

within real options.  Each investment has different characteristics and should therefore be 

evaluated differently than other investment decisions.  Trigeorgis (1999) breaks down real 

options into seven common categories which include: option to defer, timing option, option to 

alter operating scale, option to abandon, option to switch, growth options, and multiple 

interacting options.   

2.3.1. ROA vs DCF 

When investors are measuring the overall value of a project they tend to turn to one of the 

many Discounted Cash Flow (DCF) models to aid in the decision-making process.  All these 

models stem from the net present value (NPV) model.  The present value model assumes that a 

dollar is worth more tomorrow than it is today.  For this reason, future values must be discounted 

adequately back to the present time by selecting an appropriate discount rate to reflect the 

riskiness of the investment (Trigeorgis [1996] 1999).  However, most projects generate a stream 

of revenue over time while also requiring additional outlay which highlights the need for a DCF 

model. 

 A DCF model returns a Net Present Value (NPV) which helps decision makers value a 

project.  Normally, if the NPV of a project is positive it is a good investment.  Unfortunately, 

normal NPV analysis through DCF models have fixed assumptions on future cost and sale 

revenue which make it a static model (Kodukula and Papudesu 2006).  The reality in most 

situations is that future cost and sales are dynamic.  Real Option Analysis (ROA), offers 

supplemented methods to address dynamic properties.  ROA is not a substitute for the DCF 

modeling, rather it is a compliment to the valuation process.  ROA has since evolved in recent 
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decades from the foundation of financial option valuation and has become the source of many 

state-of art decision models. 

 The model developed by Fisher Black and Myron Scholes (1973) laid the foundation 

from where real option valuation has grown.  These individuals developed a formula which 

considers time to maturity, current price, strike price, discount interest, and the riskiness of the 

underlying asset to develop what has come to be known as the Nobel Prize-winning Black-

Scholes model.  The model calculates the premium for a European Call option which may only 

be exercised on the date of expiration. 

Due to the nature of the model listed above, the value of a real option increases in value 

as either volatility or the value-to-cost metric increase (Luehrman 1998).  The volatility metric 

has since been referred to as an options extrinsic value and the value-to-cost metric is an option’s 

intrinsic value (Hull [1995] 2008).  The extrinsic value is the time value of the option which 

increase as time to maturity and volatility increases.  The intrinsic value is the amount the option 

is in-the-money, which has a maximum of zero and the value if the option where exercised 

immediately.  Therefore, a call option value can be expressed as max(0, S-X) and put option as 

max(0, X-S).  The calculations in the Black-Scholes model are mathematically complex and can 

only be evaluated in close form.  Cox, Ross, and Rubinstein (1979) developed a method to value 

real options using a binomial tree.   

 The binomial tree has since been expanded to incorporate Monte Carlo Simulation to 

average future state variable forecasts and account for changing volatility.  This method of 

calculating real options is keyed Stochastic Binomial Asset Pricing Model (Shreve 2004).  Boyle 

(1977) uses Monte Carlo simulation in itself to calculate an option value.  Churchill (2016) and 

Landman (2017) combine the Monte Carlo method binomial tree to calculate option premiums.  
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A study done by Churchill (2016) uses Monte Carlo simulation and provides a comprehensive 

framework on how different real options are embedded in biotech license agreements (Churchill 

2016).   Landman (2017) uses stochastic binomial real options to value primary rail contracts 

based on a one-year continuous contract (Landman 2017).  

 Real options do not always value assets that have explicit monetary value.  Bhattacharya 

and Wright (2005) use real options to value human capital through assuming that human capital 

has value, and that the value changes over time.  In their third proposition, Bhattacharya and 

Wright state that firms which have a greater uncertainty of volume, in their case workers 

demanded, should create HR options to alter operating scale (Bhattacharya and Wright 2005).  

The number of workers in this situation is viewed as an “inventory” of human resources in which 

a quantity option is created.  However, Bhattacharya and Wright do note that valuing human 

resources is at best problematic, and at worst impossible (Bhattacharya and Wright 2005).   

2.4. Conclusion 

This chapter provides background and relevant literature related to inventory 

management and real options.  This thesis pairs contingent claim inventory analysis (Stowe and 

Su 1997) with stochastic binomial real option valuation (Churchill 2016; Landman 2017) to 

develop an optimal inventory strategy.  Real options on inventory is complementary to the site-

based view in explaining the significance of maintaining a competitive advantage on the ability 

to operate (Leiblein 2003).  This competitive advantage may be increased through maintaining 

adequate inventories and valued using real options.  
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CHAPTER 3. THEORETICAL MODELS 

3.1. Introduction 

Two theoretical methods are developed in this chapter.  The first theoretical method is for 

contingent claims inventory analysis (Stowe and Su 1997).  The methodology developed by 

Stowe and Su (1997) utilize the Black-Scholes (1973) option-pricing model; however, this thesis 

utilizes stochastic binomial real option valuation (Shreve 2004; Churchill 2016; Landman 2017). 

The second theoretical framework develops option valuation techniques as utilized in this thesis. 

3.2. Theoretical Contingent Claims Inventory Model 

 The theoretical model used in applications of this thesis is a contingent claim inventory 

(CCI) model with its payoff function being mapped onto real options (Stowe and Su 1997).  The 

methodology outputs a net present value (NPV) for an inventory strategy.  CCI analysis entails a 

call option spread combined with valuation of discounted-net-salvage value and initial-inventory 

value.  The call spread is comprised of a portfolio of long call options which represent the ability 

to utilize inventory as demand increases and short call options which represent forgone profits 

when stockout occurs.  The NPV equation (5) in Stowe and Su (1997) is a difference between the 

summation of discounted net salvage value, long call value, and short call value minus the initial 

inventory value.  Equation (3.1) breaks down Stowe and Sus’ equation (5) into its four elements. 

The CCI model which maximizes NPV through adjusting order quantities is shown in 

equation (3.1):  

 𝑁𝑃𝑉 = 𝑄Γ𝑒−𝑟𝑓𝑡 + 𝐿𝑓𝐿 − 𝑆𝑓𝑆 − 𝐼𝑄  (3.1) 

 

 

 



 

28 
 

  where: 

NPV = net present value of inventory stocking level 

 Q = order quantity 

Γ = salvage value of unsold items 

𝑟𝑓 = risk free interest rate 

𝑡 = time to maturity 

L = number of long call options 

 S = number of short call options 

 𝑓𝐿 = long call option premium 

 𝑓𝑆 = short call premium 

 I = investment per unit of inventory. 

Equation (3.1) may be broken into four elements: vertical discount of net salvage value, 

gross revenues from satisfied demand, gross loss from unmet demand, and initial inventory 

value.  The vertical discount, 𝑄Γ𝑒−𝑟𝑓𝑡, considers the salvage value of all initial inventory stocked 

at time, 𝑡0.  The present value of the initial inventory’s salvage value must be discounted at the 

risk-free interest rate, 𝑟𝑓, and time to maturity, 𝑡.  Net salvage value is also a factor of the second 

element which is the gross revenues from satisfied demand. 

Gross revenues from satisfied demand includes two components: the number of long call 

options, L, and the premium per long call option, 𝑓𝐿.  The number of long calls, L, represent the 

additional revenue gained from a one unit increase in the underlying state variable.  L can also be 

expressed as the slope of additional revenue w.r.t. a one unit change in the quantity demanded.  

Mathematically L can be expressed as: 
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𝐿 =

𝜕𝑄𝐷

𝜕Ψ
∗ (Φ − Γ) 

(3.2) 

where: 

 𝑄𝐷 = total quantity demanded for a given firm 

 Ψ = the underlying state variable which corresponds with change in demand 

𝜕𝑄𝐷

𝜕Ψ
 = change in quantity demanded w.r.t. change in state variable level  

Φ = price received per item sold. 

Equation (3.2) subtracts the salvage value, Γ, from the price per item sold, Φ, before it is 

multiplied by the change in quantity demanded w.r.t. the change in the underlying state variable, 

𝜕𝑄𝐷

𝜕Ψ
.  The number of long calls thus has a negative relationship with salvage value. This results in 

a lower number of long call options as the salvage value increases. 

The second component of gross revenue from satisfied demand is the long call premium. 

Premium per long call option, 𝑓𝐿, is obtained through option valuation.  Option premium 

contains both the intrinsic and extrinsic value of the strike level with regards to the current value 

of the underlying state variable.  This relationship also reflects the relative likelihood of the 

option expiring in-the-money, ITM.  The strike value of the long call option, 𝐾𝐿, represents 

demand being equal to zero.  Strike value of 𝐾𝐿 is found outside the system, is specific to each 

situation, and remains static as other values in the model change.  Multiplying the number of 

long calls and long call premium would give the net present value of gross revenues from 

satisfied demand.  In contrast, unmet demand would result in a gross loss per unit increase in the 

underlying state variable. 

Gross loss from unmet demand also includes two components: the number of short calls, 

S, and short call premium,  𝑓𝑆.  S represents both the amount of additional revenue foregone by 
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underestimating demand and stock-out penalties.  If there is no additional stock-out penalty, the 

value of S is equal to the value of L in order to represent a constant level of revenue even if the 

underlying state variable continues to increase. However, if a stockout penalty is present, the 

value of S must represent the change in slope. Mathematically, S is equal to:  

 
𝑆 = 𝐿 + (

𝜕𝑄𝐷

𝜕Ψ
∗ Λ) 

(3.3) 

where: 

 Λ = shortage penalty. 

In a most situations, gross profit is lost in the presence of a stock-out penalty.  A positive 

stock-out penalty would increase the amount of revenue lost through underestimating demand 

and leads to a negative overall slope in the call spread.  However; stock-out penalty can be 

negative and therefore result in overall revenue increasing if demand is underestimated. 

Short call premium,  𝑓𝑆, coincides with the strike level of the short call.  By the nature of 

the call spread used in this model, strike level of the short call would always be higher than strike 

level of the long call.  The mathematical representation the short call strike value is: 

 
𝐾𝑆 = 𝐾𝐿 + (𝑄 ∗

1

𝜕𝑄𝐷

𝜕Ψ

) 
(3.4) 

where: 

 𝐾𝑆 = strike level of the short call option 

 𝐾𝐿 = strike level of the long call option. 

Strike level of the short call option, 𝐾𝑆, is found by adding 𝐾𝐿 to the quantity stocked 

which is then multiplied by the inverse of the change in quantity demanded w.r.t. change in the 

state variable level, 
𝜕𝑄𝐷

𝜕Ψ
.  Given that a call option gives the owner the right to buy, the call option 

with a higher strike level, in this case the short call, would have less value than the call with a 
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lower strike level.  In (3.1), short call premium,  𝑓𝑆, reflects the relative likelihood of stockout; 

therefore, if Q is increased, strike call value, 𝐾𝑆, would increase and 𝑓𝑆 would decrease which 

would decrease the probability of a stock-out. 

 The final component, initial inventory value, is the mark-to-market value of inventory.  

This value can be found by multiplying the mark-to-market investment per unit, I, and the order 

quantity, Q, during the initial period, 𝑡0.   

The first three components of the CCI model dictate the form of the payoff function.  

Figures 3.1 through 3.4 depict the examples used by Stowe and Su (1997).  Figure 3.1 shows 

how the CCI payoff function looks without a salvage value or stockout penalty.  In Figure 3.2 a 

salvage value for unused inventory is incorporated.  Salvage value decreases the slope of 

additional revenue per increase in the underlying state variable; however, the minim payoff 

would increase.  Figure 3.3 adds a positive stockout penalty when demand is greater than the 

underlying state variable.  The addition of the stockout penalty increases the number of short call 

options which has a negative effect on overall payoff.  Figure 3.4 compares each of these cases 

to show their differences in a convenient manor.   
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Figure 3.1. Case 1 – No Salvage Value or Stockout Penalty (Stowe and Su 1997) 

 

Figure 3.2. Case 2 – Salvage Value and No Stockout Penalty (Stowe and Su 1997) 
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Figure 3.3. Case 3 – Salvage Value and Stockout Penalty (Stowe and Su 1997) 

 

Figure 3.4. All Cases (Stowe and Su 1997) 
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3.3. Stochastic Binomial Real Option Valuation 

 Valuation of an option through use of a binomial tree was first published by Cox, Ross, 

and Rubinstein (1979).  The method first divides total life on the option into smaller time 

periods, Δ𝑡.  Binomial tree methodology assumes the underlying state variable moves from its 

original value, Ψ0, to one of two new values, Ψ0𝑢 or Ψ0𝑑, during each period.   Generally, the up 

factor, 𝑢, is greater than 1 and the down factor, 𝑑, is less than 1.  If Ψ0 moves to  Ψ0𝑢 it is 

described as an “up” move.  If Ψ0 moves to  Ψ0𝑑 it is described as a “down” move.  Ψ0 makes 

an up movement with a probability, 𝑝, and a down movemebent with a probability of 1 − 𝑝 (Hull 

[1995] 2008).  This basic one step binomial tree is shown in Figure 3.5.   

 

Figure 3.5. Underlying State Variable Movement Through Time, 𝛥𝑡 

Figure 3.5. shows movement behavior of the underlying state variable in a risk-neutral 

world.  Risk-neutral valuation is necessary to eliminate arbitrage opportunities for riskless profit 

(Cox et al. 1979).  Therefore, the parameters p, u, and d must give correct values for the mean 

and variance of the underlying state-variable-return over time interval Δ𝑡.  For this to happen 

three conditions by Cox, Ross, and Rubenstein must hold.  These conditions deal with expected 

return, variance of return, as well as the “up” and “down” factors of the underlying state variable. 

The first condition is that average return of the underlying state variable must be equal to 

expected return in a risk neutral world.  In a risk neutral world, expected return on the underlying 

state variable is the risk-free interest rate, 𝑟𝑓.  Expected return for the underlying state variable at 
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end of Δ𝑡 is then Ψ𝑒𝑟𝑓Δ𝑡.  Therefore, equation (3.5) must hold to match mean return of the 

underlying state variable.  

 Ψ𝑒𝑟𝑓Δ𝑡 = 𝑝Ψ𝑢 + (1 − 𝑝)Ψ𝑑 (3.5) 

where: 

 Ψ = underlying state variable value at the beginning of the time interval 

 𝑟𝑓 = risk free rate of return 

 Δ𝑡 = time interval 

𝑒𝑟𝑓Δ𝑡 = growth factor 

 𝑝 = probability of an up move 

 𝑢 = up factor 

 𝑑 = down factor. 

The second condition deals with variance of the underlying state variable.  Variance of a 

variable Q is defined as 𝐸(𝑄2) − 𝐸(𝑄)2, where E denotes expected value (Hull [1995] 2008).  

Therefore, it follows that equation (3.6) would equal: 

 𝜎2Δ𝑡 = 𝑝𝑢2 + (1 − 𝑝)𝑑2 − [𝑝𝑢 + (1 − 𝑝)𝑑]2 (3.6) 

where: 

 𝜎2 = the variance of the underlying state variable. 

The third condition is that “up” factor, u, must be the inverse of the “down” factor, d, as 

equation (3.7) shows (Cox et al. 1979): 

 
𝑢 =

1

𝑑
. 

(3.7) 

When Δ𝑡 is small, the three conditions laid out in equations (3.5), (3.6), and (3.7) are 

satisfied by 
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𝑝 =

𝑎 − 𝑑

𝑢 − 𝑑
 

(3.8) 

 𝑢 = 𝑒𝜎√Δ𝑡 (3.9) 

 𝑑 = 𝑒−𝜎√Δ𝑡 (3.10) 

where: 

 𝑎 = 𝑒𝑟Δ𝑡.  

Once appropriate values for p, u, and d have been derived, values for each node are 

calculated until the entire binomial tree is complete.  At period Δ𝑡 the underlying state variable 

has two possible values,  Ψ0𝑢 and Ψ0𝑑.  Due to the nature of the binomial tree, an “up” move 

followed by a “down” move would yield the same result as a “down” move followed by an “up” 

move, so that Ψ0 = Ψ0𝑢𝑑 = Ψ0𝑑𝑢.  Therefore, at period 2Δ𝑡 the underlying state variable has 

three possible outcomes: Ψ0𝑢2, 𝑆0, and Ψ0𝑑2.  Figure 3.6 illustrates a binomial tree through four 

periods.  

 

Figure 3.6. Binomial Tree Through 4𝛥𝑡. 
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Total number on N time periods, Δ𝑡, is determined by preference of the user and 

circumstances in the decision-making process.  A greater number of decision nodes would result 

in a more robust valuation of the option (Hull [1995] 2008). 

A process called backward induction is used when evaluating options which are modeled 

using a binomial tree.  Backward induction first evaluates option value at each terminal node 

during time T and then works backward through time, discounting option value along the way.  

Value of a call option at its terminal node is:  

 max (Ψ𝑇 − 𝐾, 0) (3.11) 

and value of a put option at its terminal node is: 

 max (𝐾 − Ψ𝑇 , 0) (3.12) 

where: 

 Ψ𝑇 = the value of the underlying state variable at a terminal node during time T 

 𝑇 = the total life of the option 

 𝐾 = strike level. 

Total life of the option, T, is broken into N subintervals of equal period length, Δ𝑡.  The 

jth node at time 𝑖Δ𝑡 is referred to as the (𝑖, 𝑗) node, where 0 ≤ 𝑖 ≤ 𝑁 is the number of time 

periods which have transpired, and 0 ≤ 𝑗 ≤ 𝑖 is the number of up movements (Hull [1995] 

2008).  Symbol expression 𝑓𝑖,𝑗 would be defined as the option premium at the (𝑖, 𝑗) node and  

Ψ0𝑢𝑗𝑑𝑖−𝑗 would be defined as the underlying state variable level at the (𝑖, 𝑗) node.  Given 

equation (3.11), call option value at each terminal node after N time intervals is therefore 

 𝑓𝑁,𝑗 = max (Ψ0𝑢𝑗𝑑𝑁−𝑗 − 𝐾, 0). (3.13) 

Once each terminal node is evaluated using equation (3.13) the process of backward 

induction continues by evaluating each node during period 𝑇 − ∆𝑡.  As calculated in equation 
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(3.8), there is a probability, p, of the (𝑖, 𝑗) node at time 𝑇 − ∆𝑡 moving to the (𝑖 + 1, 𝑗 + 1) node 

at time T; and there is also a probity of 1 − 𝑝 for the (𝑖, 𝑗) node at time 𝑇 − ∆𝑡 moving to the 

(𝑖 + 1, 𝑗) node at time T (Hull [1995] 2008).  When the option is European style, i.e., the option 

cannot be exercised before the expiration date, risk-neutral valuation gives 

 𝑓𝑖,𝑗 =  𝑒−𝑟𝑓∆𝑡[𝑝𝑓𝑖+1,𝑗+1 + (1 − 𝑝)𝑓𝑖+1,𝑗]. (3.14) 

This process works backward through the binomial tree for all nodes which 0 ≤ 𝑖 ≤ 𝑁 −

1 and 0 ≤ 𝑗 ≤ 𝑖.  The value at each 𝑇 − ∆𝑡 node is calculated as the expected value at time T 

discounted at the risk-free rate, 𝑟𝑓 .  This process continues at each 𝑇 − 𝑖∆𝑡 node resulting in the 

entire tree being discounted appropriately.  The option value of the initial node, 𝑓0,0, at time 0∆𝑡 

would consider all possible movements of the underlying state variable as defined in the 

binomial tree.  Option premium, 𝑓0,0, would represent the overall option premium required for 

the option in a risk-neutral world.   

When the option is American style each node must also consider the possibility of early 

exercise.  To accomplish this, option premium, 𝑓𝑖,𝑗, in equation (3.14) must be compared with the 

intrinsic value of the option at each (𝑖, 𝑗) node.  Valuation of an American Call option at each 

node is 

 𝑓𝑖,𝑗 = max{Ψ0𝑢𝑗𝑑𝑖−𝑗 − 𝐾,  𝑒−𝑟𝑓∆𝑡[𝑝𝑓𝑖+1,𝑗+1 + (1 − 𝑝)𝑓𝑖+1,𝑗]} (3.15) 

for 0 ≤ 𝑖 ≤ 𝑁 − 1 and 0 ≤ 𝑗 ≤ 𝑖.  The value for 𝑓𝑖,𝑗 at 𝑖∆𝑡 captures not only the possibility of 

early exercise at that node, but also the possibility of early exercise at every subsequent node in 

the binomial tree (Hull [1995] 2008). 

 The short call option demand premium, 𝑓𝑆, reflects the relative likelihood of running out 

of inventory. The relative likelihood may also be referred to as the strike-demand’s Delta, or the 
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probability of expiring in the money (ITM) (Hull [1995] 2008).  The strike-demand delta is the 

absolute value of the calculation is equation (3.15): 

 
Δ𝑆 = |

Δ𝑓𝑆

Δ𝐾𝑆
| 

(3.15) 

where: 

 Δ𝑆 = short call option strike-demand delta  

 Δ𝑓𝑆 = marginal change in short call strike demand premium 

 Δ𝐾𝑆 = marginal change in short call strike demand. 

Monte Carlo simulation is combined with binomial tree valuation to generate a procedure 

referred to as stochastic binomial real option analysis as applied in Churchill (2016) and 

Landman (2017).   The analysis used in this thesis fits a distribution based on data to forecast 

points into the future.  Depending on the style of the option, either the average of the forecast or 

the end value is used as the current state level, Ψ0.  If the option is American style, the average is 

used in order to reflect the ability to exercise the option at any point between 𝑡0 and 𝑇.  If the 

option is European style, the last forecast value is the current state level (Churchill 2016; 

Landman 2017).  

 Volatility of the underlying state variable is found through taking the logarithmic first 

difference of the number of observations determined by the user (Kodukuka and Papudesu 

2006).  Volatility is not constant through time; therefore, in stochastic binomial real option 

analysis the logarithmic first differences of forecast values are also included in the volatility 

calculation.  The standard deviation of the logarithmic first differences is then converted to 

annual volatility by multiplying the standard deviation by the square root of the number of time 

periods within one year (Kodukula and Papudesu 2006).  
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3.4. Summary 

This chapter developed the theoretical methods which are used in this thesis.  Section 3.2 

provides the framework of contingent claims inventory (CCI) analysis (Stowe and Su 1997).  

Section 3.3 provides the framework of binomial tree valuation (Cox et al. 1979) as well as its 

extension into stochastic analysis (Shreve 2004).  The chapter concludes with describing how the 

method used in this thesis calculates the underlying state variable of the real option (Churchill 

2016; Landman 2017) as well as its stochastic volatility (Kodukula and Papudesu 2006).  
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CHAPTER 4. OPTIMAL FLOUR MILL PURCHASING STRATEGY UNDER RISK 

4.1. Introduction 

 Processors in the agricultural industry all face some matter of contention in regard to 

transportation, logistics, and storage strategy.  Weather it is a crushing facility turning soybeans 

into meal and oil, an ethanol plant turning corn into ethanol and DDGS, or a flour mill turning 

wheat into flour and wheat midds; each processor is subject to uncertainties in demand and 

margin.  The optimal level of buffer stocks fluctuates month over month as demand for the main 

processing product changes.  Just-in-time (JIT) manufacturing suggest a minimum of stock 

should be carried over (Ballou 1992; Jacobs and Chase [2008] 2017).  However, this concept 

becomes potentially harmful to profits when demand contains a high level of volatility or 

margins are relatively high (Ptak and Smith [1975] 2011).  Holding wheat in inventory at a flour 

mill is substantially different than holding its product, bread, in a grocery store.  Wheat is a 

storable commodity with volatile prices where as its primary product, bread, is considered highly 

perishable with a low volatility in price.  Stowe and Su (1997) view inventory, especially 

storable inventory, as a portfolio of real options on the ability to operate which also captures the 

effects of foregone profit from missed sales. 

 The value of the real option depends on numerous variables including: variability in 

processor capacity utilization, margin, price spreads, and raw material extraction rates.  Raw 

material extraction rate is an example of a random yield in the production process where 

increased variability in extraction rate dictates increased volatility in required supply to meet the 

same milling demand (Ma et al. 2013).  Wheat flour mills may view buffer stocks of wheat as a 

real option to mill flour.  Stowe and Su (1997) use a continent claim inventory (CCI) model 

which values inventories as a call spread.  The call spread gives the processor the right to operate 
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until a certain level of demand is reached, i.e., long call options.  When demand exceeds 

inventory the processor’s short call options would take effect and limit profits.  The portfolio of 

options outputs a net present value (NPV) which may be viewed as the expected profit given 

current market uncertainties.  CCI analysis may be combined with material requirement planning 

(MRP) to establish a strategy which would maximize the expected profit of the processor. 

 This chapter applies material requirement planning (MRP), stochastic binomial real 

option valuation, and contingent claim inventory (CCI) analysis to a representative wheat flour 

mill.  Output of flour is relatively stable; however, there are uncertainties in mill capacity 

utilization, extraction rate (the amount of flour extracted wheat), stockout penalties, and market 

spreads.  Under these uncertainties, an optimal purchasing strategy to replenish inventory must 

be established which would maximize expected profit while also establishing adequate buffer 

stocks to hedge against uncertainty in demand.  

 This chapter first develops the conceptual model of a representative wheat flour mill.  

Next, the empirical section specifies each component of the MRP system, the stochastic binomial 

real option model, and the contingent claims inventory model.  Then, data sources are defined 

with non-random and random inputs presented.  Finally, the base case results are discussed with 

relevant sensitivities performed on key variables. 

4.2. Conceptual Model 

 CCI analysis as it applies to a flour mill is split into three module parts.  The three 

module parts include:  

• Module 1: an MRP system 

• Module 2: a stochastic binomial real option model 

• Module 3: a contingent claim inventory (CCI) model 
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Module flow of CCI analysis as it applies to a wheat flour mill is displayed in Figure 4.1.  

 

Figure 4.1. CCI Analysis Module Flow: Flour Mill Application 

In this application, a representative flour mill replenishes its inventories at the end of 

each milling month.  The purchasing strategy to replenish inventories is expressed as a percent of 

expected milling demand.  Monthly milling demand is set up as material requirement planning 

(MRP) system for four months of milling.   The MRP outputs four key variables which are 

evaluated using stochastic binomial real options and contingent claims inventory (CCI) analysis.  

The four key variables are total bushels demanded for milling, beginning inventory bushels 

expressed as flour cwt equivalents, cwts of flour milled, and cwts of byproducts milled.  The 

logarithmic first differences of the quantity of bushels demanded is evaluated using real option 

analysis to generate “option-demand-premiums” which serve as proxies for the relative 

likelihood of sales and stockout quantity.  The option-demand-premiums, combined with the 

other three MRP outputs, are evaluated using (CCI) analysis to generate an NPV which 

represents expected profit.   

 Module 1’s MRP system has a beginning inventory, expressed as bushels, which is 

converted to flour cwt equivalents based on a conversation factor which accounts for extraction 

rate.  The flour cwt equivalents are then compared to milling demand.  At the end of each month, 

inventories are evaluated and replenished using a purchasing strategy specified by the milling 

manager.  The beginning inventory of each month is then evaluated as a real option to mill. 
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 Inventory is viewed as a real option to meet uncertain demand (Stowe and Su 1997).  In 

Stowe and Su’s model, demand is tied to an underlying financial asset and the Black-Scholes 

(1973) model values the option.  This application values demand directly as the underlying state 

variable of the real option.  The “option-demand-premium” output from the stochastic-binomial-

real-option model serves as a proxy for the likelihood of that option expiring in-the-money 

(ITM) which is discounted for time value with the risk-free interest rate.  The option demand 

premium is then used in the contingent claim inventory (CCI) model of Module 3 to generate a 

net present value (NPV) of the purchasing strategy. 

 Inventory may be valued with real options as a call spread using contingent claim 

inventory (CCI) analysis (Stowe and Su 1997).  Long calls with a minimum strike demand 

represent the ability to mill flour when demand is above the long call strike and below the short 

call strike demand.  The short calls with a greater strike demand coincide with flour cwt 

equivalents of wheat bushels.  The delta of the short calls represents the likelihood of some level 

of stockout occurring. If demand is greater than the short call strike demand, the mill forgoes 

additional margins and accrues any additional penalties associated with stocking out.  The option 

demand premiums reflect the relative likelihood of both the long and short calls expiring in the 

money, and thus being exercised.  The effect the premiums have on expected profit is tied to the 

number of long and short calls held by the flour mill.  Adjusting the purchasing stagey would 

adjust the short call strike and thus the option demand premium. 

4.3. Empirical Model 

 The empirical model for a representative flour mill builds on the methods developed in 

Chapter 3 pertaining to contingent claims inventory (CCI) analysis (Stowe and Su 1997) and 

stochastic binomial real option valuation (Churchill 2016; Landman 2017).  The application for a 
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flour mill also utilizes a material requirement planning (MRP) system which maps out wheat 

demand for flour milling over time.  This section is divided into three subsections.  First, the 

MRP system of Module 1 is empirically explained as it applies to a flour mill.  Second, 

stochastic binomial real option valuation of Module 2 is developed for wheat.  Finally, the 

elements of the CCI module is derived for the flour mill. 

4.3.1. Module 1: Flour Mill Material Requirement Planning 

 Material Requirement Planning (MRP) is one of the key systems in a production plan 

when raw material is being processed in a consistent manner (Jacobs and Chase [2008] 2017).  

Wheat being milled into flour reoccurs monthly with slight milling demand fluctuations.  Milling 

demand can fluctuate due to changes in extraction rate and mill capacity utilization.  Extraction 

rate refers to the amount of wheat which is processed into flour, expressed as a percentage.  

Wheat which is not processed into flour may be sold as a byproduct.  The amount of wheat 

required to meet milling demand is negatively related with extraction rate which may also affect 

mill capacity utilization.  Each mill has a capacity of flour, measured in hundred weights (cwt), 

which it can process in one day.   Mill capacity utilization may fluctuate from month to month 

from an array of reason including, but not limited to: extraction rate, end-user contract 

requirements, worker efficiency, and number of non-milling days.  

 The MRP developed in this application is based on the model from Orlicky’s Material 

Requirements Planning (Ptak and Smith [1975] 2011, 100).  Figure 4.2 shows the basic model 

setup. 
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Figure 4.2. MRP System Setup (Ptak and Smith [1975] 2011, 100) 

There are several inputs included in the MRP system as outlined in Table 4.1.  Each 

parameter is defined along with its units, symbol, and which system it belongs to. 
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Table 4.1. MRP Module Parameters 

MRP Module Parameter Units Symbol Input System 

Storage Capacity Bushels Ζ MPS 

Daily Milling Capacity Hundred Weights 

(cwts) 
𝐶𝑀 MPS 

Mill Capacity Utilization Percent 𝐶𝑈 External Orders for 

Components 

Days Mill Operates Per Month Days Θ External Orders for 

Components 

Test Weight of Wheat Pounds Per Bushel 𝜓 Product-Structure File 

Pounds Per Hundred Weight Pounds 𝜔 Product-Structure File 

Beginning Wheat Inventory Bushels 𝑄𝐵 Inventory Record File; 

Output 

Wheat Demanded to Meet Milling 

Demand 

Bushels 𝑄𝐷 Dependent Demand 

Forecasts 

Wheat Milled into Flour Bushels 𝑄𝑀 Inventory Record File 

Ending Wheat Inventory Bushels 𝑄𝐸 Inventory Record File 

Wheat Purchased Prior to Milling Month Bushels 𝑄𝑃 MPS 

Wheat Equivalent of Flour Prior to 

Milling 

Hundred Weights 

(cwts) 
𝐹𝐵 Inventory Record; Output 

Flour Demand Hundred Weights 

(cwts) 
𝐹𝐷 Independent Demand 

Forecast 

Flour Milled Hundred Weights 

(cwts) 
𝐹𝑀 Output 

Flour Byproducts Produced Hundred Weights 

(cwts) 
𝐵𝑀 Output 

Extraction Rate Percent 𝜙 Product-Structure File 

Ending Inventory Expressed as Percent of 

Expected Bushels Required 

Percent 𝛾 Inventory Record 

Storage Capacity Expressed as Percent of 

Expected Bushels Required 

Percent 𝜁 MPS 

Purchasing Strategy Expressed as Percent 

of Expected Bushels Required 

Percent 𝛿 MPS 

Unit of Byproduct produced per Unit of 

Flour Produced  

Ratio 𝜒 Product-Structure File 

Conversion Factor of Bushels to One cwt 

of Flour 

Factor 𝜋 Product-Structure File 
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Storage capacity, Ζ, equals the total raw bushels wheat which can be stored at the mill.  

Storage capacity is also expressed as the percent of monthly wheat bushels required, 𝜁, as 

calculated in equation (4.1): 

 
𝜁 =

Ζ

𝐸(𝑄𝐷)
 

(4.1) 

where: 

 𝜁 = storage capacity expressed as a percent of expected bushels required 

 Ζ = storage capacity of raw wheat measured in bushels 

 𝐸(𝑄𝐷) = expected wheat required to meet monthly milling demand. 

The expected wheat required to meet monthly milling demand, 𝐸(𝑄𝐷), multiples the four 

variables of expected wheat bushels required per flour cwt, 𝜋, daily milling capacity, 𝐶𝐷, 

expected mill capacity utilization, 𝐸(𝐶𝑈), and days operating per month.  Expected bushels per 

month is calculated using (4.2): 

 𝐸(𝑄𝐷) = 𝐸(𝜋) ∗ 𝐶𝑀 ∗ 𝐸(𝐶𝑈) ∗ Θ (4.2) 

where: 

 𝐸(𝜋) = expected wheat bushels required per flour cwt, conversion factor 

𝐶𝑀 = milling capacity per day, measured in cwt 

 𝐸(𝐶𝑈) = expected mill capacity utilization 

 Θ = days operating per month. 

 The expected conversion factor, 𝐸(𝜋), equals the expected number of bushels required to 

one cwt of flour and is calculated using (4.3): 

 
𝐸(𝜋) =

𝜔 𝜓⁄

𝐸(𝜙)
 

(4.3) 
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where: 

 𝜔 = pounds per cwt 

 𝜓 = expected pounds per bushel of wheat 

 𝐸(𝜙) = expected extraction rate. 

 Beginning inventory is a logic calculation which multiples the maximum between the 

previous months ending inventory expressed as a percent of expected milling demand, 𝛾𝑖−1, and 

the current months purchasing strategy expressed as a percent of expected milling demand, 𝛿𝑖.  

The maximum of the two variables is multiplied by the expected milling demand, 𝐸(𝑄𝐷).  

Beginning inventory is calculated using (4.4): 

 𝑄𝐵,𝑖 = max(𝛾𝑖−1, 𝛿𝑖) ∗ 𝐸(𝑄𝐷) (4.4) 

where: 

 𝑄𝐵,𝑖 = inventory at the beginning of i processing month  

 𝛾𝑖−1 = inventory at the end of previous milling month expressed as a percent of  

expected milling demand 

 δ𝑖 = purchasing strategy of the i processing month expressed as a percent of  

expected milling demand  

The maximum logic function in equation (4.4), combined with a constraint which has purchasing 

strategy during month i less than or equal to the storage capacity, 𝜁, ensures that beginning 

inventory is always less than or equal to storage capacity. 

 The flour cwt equivalent of wheat, 𝐹𝐵, evaluates the beginning inventory of wheat, 𝑄𝐵, 

with the current milling month’s conversion factor, 𝜋𝑖, as shown in (4.5): 

 
𝐹𝐵,𝑖 =

𝑄𝐵,𝑖

𝜋𝑖
 

(4.5) 
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where: 

 𝐹𝐵,𝑖 = beginning inventory of wheat expressed as flour cwt equivalents during  

milling month i 

 𝑄𝐵,𝑖 = beginning inventory of wheat during milling month i measured in bushels 

 𝜋𝑖 = conversion factor during month i. 

 The amount of flour milled, 𝐹𝑀, evaluates the minimum between beginning cwt flour 

equivalents, 𝐹𝐵,𝑖, and milling demand during month i, 𝐹𝐷,𝑖.  The amount of flour milled, 𝐹𝑀, is 

evaluated as (4.6): 

 𝐹𝑀,𝑖 = min (𝐹𝐵,𝑖, 𝐹𝐷,𝑖) (4.6) 

where: 

 𝐹𝑀,𝑖 = the amount of flour produced in month i measured in cwts 

 𝐹𝐷,𝑖 = amount of flour demanded during month i measured in cwts. 

 The amount of flour demanded during month i, 𝐹𝐷,𝑖, multiplies the three variables of 

milling capacity per day, 𝐶𝑀, milling capacity utilization during month i, 𝐶𝑈,𝑖, and days milling 

during the month, Θ.  The amount of flour demand during month i is calculated using (4.7): 

 𝐹𝐷,𝑖 = 𝐶𝑀 ∗ 𝐶𝑈,𝑖 ∗ Θ (4.7) 

where: 

 𝐶𝑈,𝑖 = mill capacity utilization during month i. 

 To calculate the number of bushels milled into flour during month i, 𝑄𝑀,𝑖; the amount of 

flour produced in month i,𝐹𝑀,𝑖, is multiplied by month i's conversion factor, 𝜋𝑖, as shown in 

(4.8): 

 𝑄𝑀,𝑖 = 𝐹𝑀,𝑖 ∗ 𝜋𝑖 (4.8) 
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where: 

 𝑄𝑀,𝑖 = wheat turned into flour during month i measured in bushels. 

 Inventory at the end of milling month i, 𝑄𝐸,𝑖, is found by subtracting wheat turned into 

flour, 𝑄𝑀,𝑖, from beginning wheat inventory, 𝑄𝐵,𝑖, as shown in (4.9): 

 𝑄𝐸,𝑖 = 𝑄𝑀,𝑖 − 𝑄𝐵,𝑖 (4.9) 

where: 

 𝑄𝐸,𝑖 = ending inventory of wheat after the i milling month measured in bushels 

 The purchasing strategy is expressed as a percent of expected milling demand; therefore, 

ending inventory must also be expressed as a percent of expected milling demand as in (4.10): 

 
𝛾𝑖 =

𝑄𝐸,𝑖

𝐸(𝑄𝐷)
 

(4.10) 

where: 

 𝛾𝑖 = ending inventory of milling month i expresses as a percent of expected  

milling demand. 

 The amount of wheat to purchase as the end of milling month i, 𝑄𝑃,𝑖 is then calculated 

using (4.11): 

 𝑄𝑃,𝑖 = max {[max(𝛾𝑖, 𝛿𝑖) ∗ 𝐸(𝑄𝐷)] − 𝑄𝐸,𝑖, 0} (4.11) 

where: 

 𝑄𝑃,𝑖 = wheat purchased at the end of milling month i measured in bushels. 

 The amount of flour byproducts produced, 𝐵𝑀,𝑖, is a function of both flour milled, 𝐹𝑀,𝑖, 

and the quantity ratio of byproduct produced per unit of flour produced, 𝜒𝑖, as in (4.12): 

 𝐵𝑀,𝑖 = 𝐹𝑀,𝑖 ∗ 𝜒𝑖 (4.12) 
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where: 

 𝐵𝑀,𝑖 = flour byproducts produced measured in cwts 

 𝜒𝑖 = quantity ratio of unit byproduct produced per unit of flour produced 

and 𝜒𝑖 is calculated using (4.13): 

 
𝜒𝑖 =

(1 − 𝜋𝑖)

𝜋𝑖
 

(4.13) 

 Figure 4.3 shows how equations (4.1) through (4.13) were used to set up an MRP system.  

The four key outputs of the MRP system are in the columns highlighted in green.  Columns 

highlighted in grey are part of the production-structure file. Columns highlighted in blue directly 

impact the inventory record file.  Columns in orange are static and specific to each mill.   
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Figure 4.3. MRP System for Wheat Flour Mill
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4.3.2. Module 2: Stochastic Binomial Real Option Valuation 

When a flour mill purchases wheat, they create a real option on the ability to mill flour.  

This real option can be viewed as a long call option which gains value as milling demand 

increases.  Purchasing a set quantity of wheat also creates a short call option.  The short call 

strike demand coincides with the quantity of wheat purchased and caps the ability to mill flour. 

 Long and short call options have an option demand premium which represents the 

relative likelihood of expiring “in the money.”  Generally, options are quoted in a monetary 

value.  However, option demand premiums are simply a proxy value which reflects the riskiness 

of demand given time to maturity, stocking level, forecast demand, and risk-free interest. Module 

2 uses stochastic binomial trees to value the premium for a real option using backward induction 

(Cox, et al., 1979).   

 Table 4.2 shows the five components of an option to mill flour and presents the 

relationship between three types of options, which builds on Table 2.1.   

Table 4.2. Five Components of Option to Sell Fertilizer 

Component Financial Option Real Option Option to Mill Flour 

Underlying 

Variable: 

Current value of stock Gross present value of 

expected cash flows 

Forecast milling 

demand (cwts) 

Strike Value: Exercise price Investment cost Milling demand which 

is supported by 

purchased quantity of 

wheat 

Time to 

Maturity: 

Time to expiration Time until opportunity 

disappears 

Time from wheat 

purchase until end of 

milling month 

Volatility: Stock price 

uncertainty 

Project value uncertainty Milling demand 

volatility 

Risk-Free Rate: Riskless interest rate Riskless interest rate 52 Week T-Bill rate 
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Module 2 requires the five inputs outlined in Table 4.2.  Once inputs are known, 

equations (4.14), (4.15), and (4.16) are used to set up the binomial option tree (Hull [1995] 

2008): 

 
𝑝 =

𝛼 − 𝑑

𝑢 − 𝑑
 

(4.14) 

 𝑢 = 𝑒𝜎√Δ𝑡 (4.15) 

 𝑑 = 𝑒−𝜎√Δ𝑡 (4.16) 

where: 

 𝑝 = probability of an up move 

 𝛼 = growth factor 

 𝑢 = multiplicative up factor 

 𝑑 = multiplicative down factor 

 𝜎 = milling demand volatility; standard deviation of log first differences 

 𝑡 = life of option in terms of a fraction of a year 

 Δ𝑡 = length of one option move; fraction of total moves to 𝑡. 

The growth factor, 𝛼, represents the expected annual growth rate of extraction rate (4.17):  

 𝛼 = 𝑒𝑟𝑑Δ𝑡 (4.17) 

where: 

 𝑟𝑑 = average historical logarithmic first differences of extraction rate. 

Values at terminal nodes are evaluated as a call option using (4.18): 

 max (Ψ𝑡,𝑗 − 𝐾, 0) (4.18) 

where: 

 Ψ𝑡,𝑗 = milling demand values at terminal nodes 𝑡 with 𝑗 up moves 
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𝑗 = number of up moves which have occurred since time zero 

 𝐾 = strike milling demand. 

Option demand premiums work backward through the binomial tree from right to left.  

Premiums are evaluated as American style options using equation (4.19) at each node until the 

final option value is derived at the initial node: 

 𝑓𝑖,𝑗 = max{Ψ𝑖,𝑗𝑢𝑗𝑑𝑖−𝑗 − 𝐾,  𝑒−𝑟∆𝑡[𝑝𝑓𝑖+1,𝑗+1 + (1 − 𝑝)𝑓𝑖+1,𝑗]} (4.19) 

where: 

 𝑓𝑖,𝑗 = option demand premium at node 𝑖, 𝑗 

 𝑖 = number of milling demand moves which have occurred since time zero 

 𝑟 = risk free interest rate. 

 Information from Module 1 is used to forecast milling demand four months forward for 

the months of December, January, February, and March.  This application utilizes an MRP 

system for four months of milling; therefore, individual stochastic binomial trees are set up for 

each milling month.  Forecast milling demand for each month is used as the current state variable 

for each i binomial tree.  A previous month milling demand is used as starting point to calculate 

the logarithmic first difference for each i milling month.  The standard deviation of the four 

logarithmic first differences is multiplied by the square root of 12 to generate annualized forecast 

volatility of milling demand (Kodukula and Papudesu 2006).   

 Table 4.3 shows an iteration example of forecast milling demand, the logarithmic first 

differences, and annualized flour demand volatility.  Table 4.4 provides an example of all inputs 

used in the Module 2 example calculation for March milling.  Figure 4.4 shows how this iteration 

example is input to the stochastic binomial option tree for March to return an option demand 

premium of 5,307 bushels for a short call strike demand of 513,443 bushels of wheat. 
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Table 4.3. Logarithmic First Differences of Milling Demand Calculation 

i Month Milling Demand 

Logarithmic First 

Difference 

0 Previous Month 464,819  

1 December 500,554 0.074 

2 January 486,030 -0.029 

3 February 461,175 -0.052 

4 March 465,478 0.009 

 Volatility Monthly 0.055  

 Volatility Annualized 0.192  

 

Table 4.4. Module 2 Iteration Example Inputs for March Milling 

Parameter Derivation Value 

Forecast Milling Demand Ψ𝑇 465,478 

Strike Demand 𝐾 513,443 

Interest Rate 𝑟 2.6% 

Volatility 𝜎 0.192 

Time Until Expiration 𝑡 4/12 

Period Length Δ𝑡 0.083 

Up Factor 𝑒𝜎√Δ𝑡 1.057 

Down Factor 𝑒−𝜎√Δ𝑡 0.946 

Probability of Up Move 
𝑝 =

1 − 𝑑

𝑢 − 𝑑
 

0.487 

Probability of Down Move 1 − 𝑝 0.513 
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Figure 4.4. Stochastic Binomial Tree (Iteration Example for March Milling) 

4.3.3. Module 3: Flour Mill Inventory Contingent Claim 

Stowe and Su’s contingent claim model is made up of four elements to generate a net 

present value (NPV) of inventory.  The four elements include: salvage value of unused 

inventory, value of long call options, value of short call options, and the initial inventory value.  

The first three elements of the contingent claim module make up potential sources of revenue for 

the purchasing strategy. In this application, salvage value includes one-month worth of storage 

and interest plus any carry in the market if the milling month is before the delivery month of the 

futures contract.  The long call options represent expected revenue gained per cwt of flour milled 

plus an adjustment for byproducts.  The short call options represent expected revenue foregone 

per cwt milling demand missed.  Combining the first three elements generate expected revenues 
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of the purchasing strategy which are discounted at the risk-free interest rate.  The fourth element, 

which values the initial total inventory value, is then subtracted which outputs an overall net 

present value of the purchasing strategy.  The CCI formula of Module 3 results in an NPV and is 

shown in (4.20): 

 
𝑁𝑃𝑉 = ∑ 𝐹𝐵,𝑖Γ𝐵,𝑖𝑒

−𝑟𝑓𝑡 + 𝐿𝑖𝑓𝐿,𝑖 − 𝑆𝑖𝑓𝑆,𝑖 − 𝐼𝐵,𝑖𝐹𝐵,𝒊 

𝑛

𝑖=1

 
(4.20) 

where: 

NPV = net present value for i months of milling 

 𝐹𝐵,𝑖 = purchasing strategy of the wheat cwt equivalents of flour during month i 

Γ𝐸,𝑖 = salvage value for unsold wheat at the end of the i milling month 

𝑟𝑓 = risk free interest rate 

𝑡 = duration of purchasing strategy 

𝐿𝑖 = number of long call options during the i milling month 

 𝑆𝑖 = number of short call options during the i milling month 

 𝑓𝐿,𝑖 = long call option demand premium during the i milling month 

 𝑓𝑆,𝑖 = short call option demand premium during the i milling month 

 𝐼𝐵,𝑖 = investment per wheat cwt equivalents of flour during month i. 

 Each of the four elements are explained in further detail in the following subsection.  The 

first element calculates the discounted salvage value of any unsold wheat at the end of the 

milling month.  Salvage value of any unsold wheat, Γ𝐵,𝑖, considers the investment of wheat cwt 

equivalents of flour, 𝐼𝐵,𝑖, storage and interest costs, and the carry in the market if applicable.  

Equation (4.21) shows the salvage value calculation: 
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 Γ𝐵,𝑖 = 𝐼𝐵,𝑖 − [(𝜋𝑖 ∗ 𝜏) + (𝑟𝐿 ∗ 𝐼𝐵,𝑖)] + Ω𝑖 (4.21) 

  where: 

 𝜋𝑖 = conversion rate during milling month i 

 𝜏 = storage rate per bushel per month 

 𝑟𝐿 = loan rate 

 Ω𝑖 = futures spread if applicable in milling month i. 

 Equation (4.22) shows how investment per wheat cwt flour equivalents is calculated: 

 𝐼𝐵,𝑖 = 𝑃𝑊,𝑖 ∗ 𝜋𝑖 (4.22) 

where: 

 𝑃𝑊,𝑖 = spot price of wheat during milling month i. 

 The second element of the CCI Module calculates the expected revenue gained each cwt 

of flour milled using long call options.  The number of long calls equal the slope of additional 

revenue gained per cwt of flour sold.  The number of long call options subtracts salvage value 

from selling price and multiplies it by the demand increase per unit change in the underlying 

state variable as shown in (4.23): 

 
𝐿𝑖 =

𝜕𝐹𝐷

𝜕Ψ
∗ (Φ𝐹,𝑖 − Γ𝐵,𝑖) 

(4.23) 

where: 

𝜕𝐹𝐷

𝜕Ψ
 = increase in milling demand per increase in underlying state variable 

Φ𝐹,𝑖 = net price received per cwt of flour sold during milling month i. 

The net price received per cwt of flour sold, Φ𝐹,𝑖 adds in revenues from selling the 

byproducts of milling and subtracts the processing cost of wheat into flour.  The processing costs 
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included, 𝑇𝑀, include: freight, packaging, enrichments, commission fees, and overhead milling 

costs (Wilson 2019).  Net price received per cwt of flour sold is calculated in (4.24):  

 Φ𝐹,𝑖 = 𝑃𝐹,𝑖 + (𝜒𝑖 ∗ 𝑃𝐵,𝑖) − 𝑇𝑀 (4.24) 

where: 

 𝑃𝐹,𝑖 = price received per cwt flour sold during milling month i 

 𝜒𝑖 = quantity ratio of byproducts produced per unit flour produced during  

milling month i 

 𝑃𝐵,𝑖 = price received per cwt milling byproducts sold during milling month i 

𝑇𝑀 = total cost of milling. 

The number of long calls is multiplied by the long call option demand premium 

calculated in Module 2 which reflects expected milling demand based on the purchasing strategy.  

The Module 2 calculation of 𝑓𝐿,𝑖 is in terms of bushels; therefore, 𝑓𝐿,𝑖 must be multiplied by the 

conversion factor, 𝜋𝑖, to convert to cwts.  Multiplying 𝑓𝐿,𝑖 and 𝐿𝑖 together generates discounted 

expected revenue gained from selling flour and byproducts.  Expected revenue foregone is then 

calculated in the third element using short calls. 

The short call reduces NPV through the subtraction of expected revenue foregone from 

expected profits.  The number of short calls equals the number of long calls plus the product of 

shortage penalty and milling demand increase.  This application assumes zero shortage penalty in 

the base case, so the number of short calls would equal the number of long calls as shown in 

(4.25): 

 
𝑆𝑖 = 𝐿𝑖 + (

𝜕𝐹𝐷

𝜕Ψ
∗ Λ𝐹,𝑖) 

(4.25) 
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where: 

 Λ𝐹,𝑖 = shortage penalty per unmet milling demand, assumed zero in the base  

case. 

Short call strike demand coincides with the wheat purchasing strategy.  As discussed in 

Chapter 3, this value is found using (4.26): 

 𝐾𝑆,𝑖 = 𝐾𝐿 + (𝐹𝐵,𝑖 ∗
1

𝜕𝐹𝐷
𝜕Ψ

). (4.26) 

where: 

 𝐾𝑆,𝑖 = short call strike demand during milling month i 

 𝐾𝐿 = long call strike demand which is found outside the system of equations  

and assumed to be constant at zero. 

 The short call option demand premium, 𝑓𝑆, reflects the relative likelihood of running out 

of wheat and is calculated in Module 2.  The relative likelihood may also be referred to as the 

strike-demand’s delta, or the probability of expiring in the money (ITM), as calculated in 

Chapter 3 (Hull [1995] 2008).  The strike-demand delta for wheat is the absolute value of the 

calculation is (4.27): 

 
Δ𝑆,𝑖 = |

Δ𝑓𝑆,𝑖

Δ𝐾𝑆,𝑖
| 

(4.27) 

where: 

 Δ𝑆,𝑖 = short call option strike-demand delta during i milling month 

 Δ𝑓𝑆,𝑖 = marginal change in short call strike demand premium during i milling  

month 

 Δ𝐾𝑆,𝑖 = marginal change in short call strike demand during i milling month. 
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The Module 2 calculation of 𝑓𝑆,𝑖 is in terms of bushels; therefore, 𝑓𝑆,𝑖 must first be 

multiplied by the conversion factor, 𝜋𝑖, to convert to cwts.  Multiplying  𝑓𝑆,𝑖 and 𝑆𝑖 together 

generates the discounted expected foregone margin.  The values from the first three elements 

combine and represent total expected revenue gained from the purchasing strategy. Finally, the 

fourth element, initial inventory value, is subtracted to generate an NPV of the purchasing 

strategy. 

Figure 4.5 shows how Module 3 calculate a four-month MRP contingent claim. @Risk™ 

is used to simulate the overall module flow using Monte Carlo Simulation on random inputs.  

RiskOptimizer™ iterates the purchasing strategy until expected profit of the MRP is maximized.  

The process of changing the purchasing strategy and maximizing NPV represents a dynamic 

iterative model. 
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Figure 4.5. Flour Mill Contingent Claim 
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4.4. Data 

 Data analyzed in this application is monthly, quarterly, and annually from January 1998 

through November 2018.  Data is retrieved to form the representative mill parameters, mill 

prices, spreads, and extraction rates.   

Data sources used in this application are found in Table 4.5.  

Table 4.5. Data Sources: Four Mill Application 

Data Source 

Representative Mill Parameters Grain & Milling Annual (2015); Wilson (2019) 

No. 1 Hard Red Winter Wheat, Wholesale Baker 

Flour, and Byproduct Prices  

USDA-AMS; Monthly Feedstuffs Prices; 

Milling and Baking News; Market Fax; USDA-

ERS (2019) 

Kansas City Wheat Futures Spread Chicago Mercantile Exchange; Data Retrieved 

from DTN (2019) 

Extraction Rate USDC-Bureau of the Census’ Flour Milling 

Products; North American Millers Association; 

USDA-NASS (2019) 

 

 The following four subsections discuss data used in the flour mill application along with 

distributions.  The final subsection provides non-random and random inputs of the base case. 

4.4.1. Representative Mill Parameters 

 Representative mill parameters are set up from guidance of industry source contributions 

as well as data from the Grain & Milling Annual (2015).  Industry sources provided guidance in 

forming assumptions for the total cost of milling.  Total cost of milling flour include freight, 

packaging, enrichments, commission fees, and overhead milling costs (Wilson 2019).   

 The representative mill’s storage and daily milling capacity are an average of 24 mills 

located in Kansas, Nebraska, and North Dakota (Grain & Milling Annual 2015).  The maximum 

storage represents the total available space for wheat bushels waiting to be milled.  Milling 
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capacity equals the total hundred weights (cwts) of flour which is able to be processed during 

one day of milling. 

 Data on the 24 mills used in the application are shown in Figure 4.6.  Mill names and 

locations are on the X-axis.  The primary Y-axis measures storage capacity of each mill in 

bushels and the secondary Y-axis measures daily milling capacity in hundred weights. 

 

Figure 4.6. Mill Storage and Capacity: KS, NE, and ND (Grain & Milling Annual 2015) 

4.4.2. Wheat, Flour, and Byproduct Prices 

 Data for No. 1 hard red winter (HRW) wheat, whole sale price of bakery flour, and 

product prices are quarterly from 1988 through 2018 (USDA-ERS 2019a).  
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 Raw data for No. 1 HRW wheat is converted from dollars per hundred weight (cwt) to 

dollars per bushel using a standard conversion factor of 2.28 (USDA-ERS 2019a).  

 The wholesale price of bakery flour is recorded in dollars per cwt and is quoted as mid-

month bakers’ standard patent, bulk press (USDA-ERS 2019a).  

 The price of flour byproducts is recorded as a premium received by the flour mill per cwt 

of flour sold.  The premium is divided by a quantity ratio of .37 to convert to a standard dollars 

per cwt of byproduct (USDA-ERS 2019a). 

 Data for No. 1 HRW wheat, Flour, and Byproducts are graphed in Figure 4.7. 

 

Figure 4.7. Flour Mill Prices (USDA-ERS 2019a) 

 Figure 4.8 shows how wholesale flour margins have changed through time.  The milling 

margin assumes a constant extraction rate of 73% through time (USDA-ERS 2019a). 
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Figure 4.8. Flour Mill Margin (USDA-ERS 2019a) 

 Bestfit™ in @Risk™ is used to fit time series distributions which are used for forecasting 

based on the Akaike information criterion (AIC).  Bestfit™ compares variations of 

autoregressive, moving average, Brownian motion, auto regressive conditional heteroscedasticity 

(ARCH), and generalized auto regressive conditional heteroscedasticity (GARCH) models when 

fitting time series data.  Appendix G shows a complete description of the times series 

distributions compared by Bestfit™.  Bestfit™ detects seasonality, trend, and stationarity to 

make proper transformations before fitting data.  The time series functions use Spearman Rank 

Order correlation of the error terms when fitting the time series distributions (Palisade 2016).  

After the proper time series models have been fit, @Risk™ formulates a forecast based on 

specifications of the user.   

Tables 4.6 and 4.7 report the time series functions and correlations of flour mill prices. 
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Table 4.6. Flour Mill Price Time Series Functions (@Risk™) 

Parameter No. 1 HRW Wheat Wholesale Flour Flour Byproducts 

Distribution: Moving Average I Moving Average I Autor Regressive II 

Function: RiskMA1(0.005243, 

0.09682,0.35961, 

-0.083936) 

RiskMA1(0.0052221, 

0.083184,0.32084, 

-0.095639) 

RiskAR2(0.00225, 

0.21546, -0.040227, 

-0.54279,0.18894, 

-0.26134) 

AIC Score -225.4134 -261.5614 -22.101 

Transformation Logarithmic 

First Difference 

Logarithmic 

First Difference 

Logarithmic 

First Difference 

 

Table 4.7. Flour Mill Price Correlation Matrix (@Risk™) 

Correlation No. 1 HRW Wheat Wholesale Flour Flour Byproducts 

No. 1 HRW Wheat  1.000   

Wholesale Flour  0.865 1.000  

Flour Byproducts  0.380 0.029 1.000 

 

Figures 4.9 through 4.11 show the @Risk™ time series function forecasts.  Negative 

values of the X-axis represent historical data.  Observations greater than zero on the X-axis are 

forecast rail freight values.  The dark line represents the mean of forecast prices, the gray areas 

above and below the mean represent confidence intervals, and the red line is a sample path. 
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Figure 4.9. Time Series Forecast of HRW Wheat Price (@Risk™) 

 

Figure 4.10. Time Series Forecast of Wholesale Flour Price (@Risk™) 
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Figure 4.11. Time Series Forecast of Flour Byproduct Price (@Risk™) 

4.4.3. Future Price Spreads 

 HRW futures spread data is observed monthly from January 1988 through November 

2018 for a total of 371 observations (CME 2019).  Data is recorded by subtracting the nearby 

futures contract from the deferred futures contract.  Prices are record as the closing price of each 

month and rolled over the month prior to delivery. 

The application assumes any excess HRW wheat inventory is hedged using the futures 

price of Kansas City HRW wheat.  If the representative mill hedges in the nearby futures moth, 

any open contracts must be rolled into the deferred futures month to avoid initiation of the 

delivery process.  

Figure 4.12 shows the behavior of HRW wheat price spread through time. 
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Figure 4.12. HRW Futures Price Spread Behavior (CME 2019) 

 A time series forecast using BestFit™ in @Risk™ fits HRW wheat spread as shown in 

Table 4.8. 

Table 4.8. HRW Wheat Futures Spread Time Series Function (@Risk™) 

Variable Distribution Function AIC Score Transformation 

HRW Wheat 

Spread 

Moving Average I RiskMA1(0.0003

7391,0.06319, 

-0.46683, 

-0.092252) 

-999.7492 First Difference 

Additive 

Deseasonalize 

 

 Figure 4.13 shows the @Risk™ time series forecast for HRW wheat futures spread. 
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Figure 4.13. Time Series Forecast of HRW Wheat Spread (@Risk™) 

4.4.4. Extraction Rate 

 Data on extraction rate (the efficiency rate at which wheat is converted to flour) is yearly 

from 1988 through 2018 (USDA-ERS 2019b). The extraction rate data is trending due to 

improvements in technology so a regression via ordinary least squares (OLS) regression is used 

to make the data stationary, see Appendix A for OLS regression results.   

Figure 4.14 shows the raw and detrended data set.  
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Figure 4.14. Extraction Rate Data (USDA-ERS 2019b) 

 Extraction rate is forecast for 2019 for each individual month in the MRP system.  A 

probability density function is fit by BestFit™ to generate a detrended extraction rate.  A trended 

addition of 3.27% is then added to the detrended forecast to generate an extraction rate for 2019.  

Each month’s extraction rate is independently forecast to reflect a realistic variability in 

extraction rate.   

 Table 4.9 shows the distribution properties of extraction rate.  The best fit distribution is 

chosen using Anderson-Darling criterion.  A full set of distribution functions evaluated by 

BestFit™ is shown in Appendix F. 

Table 4.9. Extraction Rate Distribution Function (@Risk™) 

Variable Distribution Function 
A-D 

Statistic 
Mean 

Standard 

Deviation 

Extraction 

Rate 

Normal RiskNormal(0.7386325,0.0076086) 0.38 0.739 0.008 
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The best fit distribution was a Weibull distribution; however, a normal distribution was 

the third best distribution and chosen for its ease in sensitivity analysis.  Figure 4.15 shows how 

the Weibel and Normal distribution compare with the raw data distribution. 

 

Figure 4.15. Detrended Extraction Rate Distribution Fit (@Risk™) 

4.4.5. Random and Non-Random Inputs 

Input parameters are split into two groups: random and non-random inputs.  Random 

input parameters are linked, or have calculations linked, to distributions in @Risk™.  Non-

random inputs are static and do not change during Monte Carlo simulation. Random input 

parameters are summarized in Table 4.10 and non-random inputs are summarized in Table 4.11. 
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Table 4.10. Random Input Means 

HRW Wheat Mill Model 

Inputs Value Units Source 

Dec HRW Price $6.14 $$/bu USDA-ERS 2019a; Calculation 

Jan HRW Price $6.14 $$/bu USDA-ERS 2019a; Calculation 

Feb HRW Price $6.14 $$/bu USDA-ERS 2019a; Calculation 

Mar HRW Price $6.23 $$/bu USDA-ERS 2019a; Calculation 

Dec HRW Conversion 2.161 Factor USDA-ERS 2019b; Calculation 

Jan HRW Conversion 2.161 Factor USDA-ERS 2019b; Calculation 

Feb HRW Conversion 2.161 Factor USDA-ERS 2019b; Calculation 

Mar HRW Conversion 2.161 Factor USDA-ERS 2019b; Calculation 

Feb Spread $0.17 $$/bu CME 2019; Calculation 

Dec Flour Price $14.82 $$/cwt USDA-ERS 2019a 

Jan Flour Price $14.82 $$/cwt USDA-ERS 2019a 

Feb Flour Price $14.82 $$/cwt USDA-ERS 2019a 

Mar Flour Price $14.99 $$/cwt USDA-ERS 2019a 

Dec Byproduct Price $6.41 $$/cwt USDA-ERS 2019a; Calculation 

Jan Byproduct Price $6.41 $$/cwt USDA-ERS 2019a; Calculation 

Feb Byproduct Price $6.41 $$/cwt USDA-ERS 2019a; Calculation 

Mar Byproduct Price $5.90 $$/cwt USDA-ERS 2019a; Calculation 

Dec Storage & Int. $0.21 $$/cwt Calculation 

Jan Storage & Int. $0.21 $$/cwt Calculation 

Feb Storage & Int. $0.21 $$/cwt Calculation 

Mar Storage & Int. $0.21 $$/cwt Calculation 

Dec Capacity Utilization 90.0% Percent Assumption 

Jan Capacity Utilization 90.0% Percent Assumption 

Feb Capacity Utilization 90.0% Percent Assumption 

Mar Capacity Utilization 90.0% Percent Assumption 

Dec Milling Demand 215,942 Cwt Calculation 

Jan Milling Demand 215,942 Cwt Calculation 

Feb Milling Demand 215,942 Cwt Calculation 

Mar Milling Demand 215,942 Cwt Calculation 

Dec Byproduct Ratio 0.296 Quantity Ratio USDA-ERS 2019b; Calculation 

Jan Byproduct Ratio 0.296 Quantity Ratio USDA-ERS 2019b; Calculation 

Feb Byproduct Ratio 0.296 Quantity Ratio USDA-ERS 2019b; Calculation 

Mar Byproduct Ratio 0.296 Quantity Ratio USDA-ERS 2019b; Calculation 

 



 

77 
 

 

Table 4.11. Non-Random Inputs 

HRW Wheat Mill Model 

Inputs Value Units Source 

Milling Capacity Daily 8,890 cwt Grain & Milling Annual 2015 

Storage Capacity 1,520,000 Bushels Grain & Milling Annual 2015 

Mill Utilization 90% Percent Assumption 

Mill Utilization Stdev 3.5% Percent Assumption 

Maximum Capacity Utilization 100% Percent Wilson 2019 

Risk-Free Interest Rate 2.62% APY USDT 2018 

Day Operating Per Month 27 Days Wilson 2019 

HRW Pounds Per Bushel 60 lbs. USDA-ERS 2019a 

Pounds Per CWT 100 lbs. USDA-ERS 2019a 

Shortage Penalty $0.00 $$/cwt Assumption 

Demand Increase 1 CCI Factor CCI Calculation 

Exp(-r*t) 0.998 Discount Factor Calculation 

Expected Extraction Rate 77.1% Mill Extraction Rate USDA-ERS 2019b; Calculation 

Expected Bushels per CWT 2.16 Conversion Factor USDA-ERS 2019b: Calculation 

Expected Bushels Per Month 466,766 Bushels Calculation 

Max Buffer Stock 326% Percent Gain & Milling Annual 2015; 

Calculation 

Total Cost of Milling $2.53 $$/cwt Wilson 2019 

Dec Maturity 0.08 Years Calculation 

Jan Maturity 0.17 Years Calculation 

Feb Maturity 0.25 Years Calculation 

Mar Maturity 0.33 Years Calculation 

Order Interval Monthly Interval Assumption 

Storage Per Bushel 0.07 Monthly Wilson 2019 

Credit Rate 5% APR Assumption 

 

4.5. Base Case Results 

 The empirical modules are applied to a representative mill to develop an optimal 

purchasing strategy for four months of milling where wheat inventories are replenished at the 

end of each milling moth.  Monte Carlo simulation is implemented using @Risk™ to run 10,000 

iterations of the model based on structural and stochastic variables.  RiskOptimizer™ iterates the 
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purchasing strategy of each month until mean expected profit is maximized.  Specific @Risk™ 

settings are shown in Table 4.12. 

Table 4.12. Flour Mill @Risk™ Settings 

@Risk™ Specification @Risk™ Setting 

Sampling Type Latin Hypercube 

Generator Mersenne Twister 

Initial Seed Value 1 

Macros VBA 

 

 Results of the base case, and subsequent sensitivities in Section 4.6, reflect the mean 

values of Monte Carlo simulation for the optimal purchasing strategy.  RiskOptimzer™ 

maximizes equation (4.20) by changing the purchasing strategy expressed as a percent of 

expected milling demand.  Purchasing strategies are changed in step sizes of 1% with constraints 

imposed on RiskOptimzer™ which prevent purchasing strategies less than zero or greater than 

maximum buffer stock.  The base case results are formulated using data and distributions 

discussed in Section 4.4. 

 The optimal average buffer stock of the representative mill is 120% of expected milling 

demand.  The expected profit of four months of milling is $843,564 with a standard deviation of 

$1,623,748.  The deltas for December, January, February and March are 3.7%, 3.0%, 3.6%, and 

4.0% respectively.  This would infer that the mill would use a purchasing strategy which almost 

eliminates any probability of stockouts.  This is attributed to the high convenience yield which 

can be measured using the number of short calls, 1.04. This means the mill would forgo $1.04 in 

additional revenue for each cwt of milling demand missed.  The expected storage and interest is 

$0.21 per cwt which is relatively small compared to the $1.04 per cwt of forgone profit (Table 
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4.10).  The low storage costs relative to forgone profit is a choice example of convenience yield 

in agriculture processing. 

Table 4.13 shows the complete results of the optimal base case. 

Table 4.13. Flour Mill Base Case Results 

Observation Value 

Expected Profit $843,565 

Standard Deviation of Expected Profit $1,623,748 

Average Purchasing Strategy 120.0% 

Average Number of Long Calls 1.04 

Average Long Call Demand Premium 172,753 

Average Number of Short Calls 1.04 

Average Short Call Demand Premium 500 

Total Bushels Demanded 1,866,512 

Standard Deviation of Total Bushels Demanded 36,740 

December Purchasing Strategy 114% 

January Purchasing Strategy 120% 

February Purchasing Strategy 122% 

March Purchasing Strategy 124% 

December Delta 3.7% 

January Delta 3.0% 

February Delta 3.6% 

March Delta 4.0% 

 

 Figure 4.16 shows the payoff function for each milling month.  In the month of January, 

the long call options establish a price floor of a minimum expected profit of -$50,000 which 

represents the expected net salvage value of inventory. When demand surpasses long call strike 

demand, the payoff increases with a slope equal to the number of long call options.  The number 

of long call options hold a monetary value indicating the amount of revenue gained per cwt of 

flour sold.  The number of long call options is greater than the milling margin because of net 

salvage value is incorporated into additional revenue gained. 



 

80 
 

 Net profit continues to increase as milling demand increases until the short call strike 

demand is reached.  In the month of January, this point occurs at a maximum expected profit of 

$240,000.  At this point, inventory would run out and the short strike demand takes effect.  The 

number of short calls represent the amount of additional profits foregone from missed milling 

demand.  If the stockout penalty is zero, the number of short calls is equal to the number of long 

calls (equation 4.23). An equal number of long and short calls would result in a horizontal slope 

in net profits, as seen in Figure 4.16, when milling demand continues to increase past the short 

call strike-demand. 

 The payoff function for the month of February has a higher net salvage value due to the 

futures spread.  The base case has an expected spread of a positive $0.17 per bushel or 

equivalently $0.37 per cwt.  Any excess bushels are hedged through selling futures contracts.  

The short position in HRW wheat futures contracts is rolled into the next futures month at the 

end of February.  A gain in net salvage value occurs when spread is positive; therefore, a $0.37 

increase in net salvage value raised the minimum expected profit to nearly $0.  

 The March payoff function is considerably different from the other three months because 

the margin decreases during the next milling quarter. A decreased margin lowers the number of 

long and short calls.  This lowers the slope of additional payoff and thus the convenience yield of 

holding inventory.  The purchasing strategy is still higher in March due the added time value of 

the real option.  The added time value in the option increases the uncertainty in expected 

demand.  The increase in expected demand means there is a higher possibility for stockout.  Even 

though the convenience yield is lower in March, there is still enough forgone profit for the mill 

to utilize a strategy which further lowers the risk of a stockout occurring. 
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Payoff Functions: Base Case 

 

 

 

   

 

 

 

 

Figure 4.16. Payoff Function Base Case 

 Total expected milling demand follows a normal distribution because both capacity 

utilization and extraction rate follow a normal distribution function.  Expected total milling 
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demand is 1,866,510 bushels with a minimum of 1,741,097 bushels and a maximum of 

2,011,784 bushels.   

Figure 4.17 shows the distribution of total milling demand. 

 

Figure 4.17. Base Case Total Milling Demand (@Risk™) 

 The net present value of equation (4.20) represents the expected profit of four months of 

milling.  Expected profit may change due to changes in margins as well as changes in milling 

demand.  Expected profit of the representative flour mill is $843,564 with a standard deviation of 

$1,623,748.  Minimum expected profit occurs at -$5,8111,756.45 and a maximum of 

$6,966,355.00.  The distribution of profit follows a normal distribution because demand, as well 

as the error in price forecasts are normally distributed. 

 Figure 4.18 shows the distribution of expected profit. 



 

83 
 

 

Figure 4.18. Base Case Distribution of Expected Profit (@Risk™) 

 Figure 4.19 shows the cumulative ascending probability distribution of short call 

premiums.  The short call option premium increases in value the further out the milling month 

would occur.  This relationship is explained by the increase in option value as the time value 

metric increases (Luehrman 1998).  Each option premium has a minimum value of zero, which is 

attributed to the call premium calculations of equation (4.18) and (4.19).  The option demand 

premium of December has a maximum of 16,122.  This means the maximum stockout which 

could occur in December is 16,122 bushels of missed milling demand under the optimal 

purchasing strategy.  The shape of the CDF in March is different because of Marche’s relatively 

higher time value and delta compared to the other milling months.    
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Figure 4.19. CDF: Short Call Option Demand Premiums (@Risk™) 

 The tornado graph in Figure 4.20 ranks random inputs based on their effects on expected 

profit under the optimal purchasing strategy.  The top six effects are all price variables of flour 

inputs and products.  The next three inputs are extraction rate, capacity utilization, and spread.  It 

is evident that these effects are marginal compared to price effects.  This would infer that using 

inventory as a real option serves as an effective hedging mechanism against demand 

uncertainties.  The high level of risk in price may be dealt with forward contracting or some 

other hedging mechanism which is not discussed in this application.   

 Figure 4.20 shows the tornado graph for expected profit. 
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Figure 4.20. Tornado Graph of Expected Profit: Flour Mill Application (@Risk™) 

4.6. Sensitivities 

 The factors with the most influence on expected profit are margin and demand related.  

These factors include extraction rate, capacity utilization, and margin.  Table 4.14 provides a 

summary of the five sensitive analysis conducted on key structural variables. 

Table 4.14. Flour Mill Sensitivity Analysis 

Sensitivity Base Case Sensitivity Low Sensitivity High 

Extraction Rate 

Standard Deviation 

Standard Deviation of 

0.8% 

0.0% 3.0% 

Capacity Utilization 

Standard Deviation 

Standard Deviation of 

3.5% 

2.0% 5.0% 

Market Spread $0.17 -$0.03 $0.37 

Stockout Penalty $0.00 $1.00 $2.00 

Milling Cost $2.53 $2.78 per cwt $3.53 
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 The first two sensitivities of extraction rate and capacity utilization pertain to demand 

uncertainty and do not affect the payoff function.  The other three sensitivities of market spread, 

stockout penalty, and milling cost impact margin and the payoff function but do not affect 

demand.  

4.6.1. Sensitivity: Extraction Rate 

 The first sensitivity of extraction rate effects how efficiently flour is extracted from 

wheat.  A higher extraction rate would lower milling demand and a lower extraction rate would 

increase milling demand.  Increasing the standard deviation of extraction rate increases demand 

uncertainty and thus the value of the real option on the ability to mill.  The effects of extraction 

rate on the demand for bushels required to mill flower represents a random yield in the 

production process (Ma et al. 2013). Increasing the extraction rate from 0.8% to 3% increases the 

average buffer stock from 120% to 125.8% of expected milling demand.  Alternatively, 

decreasing the extraction rate to 0.8% lowers the average buffer stock by .5% indicating current 

extraction rate has little effect on optimal purchasing strategy.   

 Table 4.15 contains the complete set of results on the sensitivity on extraction rate. 
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Table 4.15. Sensitivity Results to Extraction Rate 

Observation Base Case Decrease Increase 

Standard Deviation of Extraction Rate 0.8% 0.0% 3.0% 

Expected Profit $843,564 $844,298 $835,126 

Standard Deviation of Expected Profit $1,587,776 $1,587,867 $1,581,965 

Average Purchasing Strategy 120.0% 119.5% 125.8% 

Average Number of Long Calls 1.04 1.04 1.03 

Average Long Call Demand Premium 172,753 172,753 172,753 

Average Number of Short Calls 1.04 1.04 1.03 

Average Short Call Demand Premium 500 476 958 

Total Bushels Demanded 1,866,512 1,866,325 1,869,177 

Standard Deviation of Total Bushels Demanded 36,740 35,486 50,152 

December Purchasing Strategy 114% 114% 119% 

January Purchasing Strategy 120% 120% 126% 

February Purchasing Strategy 122% 122% 130% 

March Purchasing Strategy 124% 122% 128% 

December Delta 3.7% 3.3% 3.7% 

January Delta 3.0% 2.9% 3.9% 

February Delta 3.6% 3.3% 3.9% 

March Delta 4.0% 4.5% 6.2% 

 

 The demand of extraction rate is very sensitive to an increase in extraction rate standard 

deviation.  Increasing the standard deviation of extraction rate increases the standard deviation of 

total milling demand from 36,981 bushels to 51,247 bushels.  Decreasing the standard deviation 

has a marginal effect on standard deviation of demand. 

Figure 4.21 shows the change in total milling demand. 
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Figure 4.21. Change in Total Demand: Sensitivity to Extraction Rate (@Risk™) 

 In each of the sensitivities on demand there is little effect on the distribution of expected 

profit.  This is because the mill is already utilizing an optimal purchasing strategy which all but 

eliminates stockouts.  Figure 4.22 show how the sensitivity on extraction rate slightly shifts the 

distribution to the left when extraction rate standard deviation increases. 
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Figure 4.22. Change in Expected Profit: Sensitivity to Extraction Rate (@Risk™) 

4.6.2. Sensitivity: Capacity Utilization 

 The sensitivity to capacity utilization affects the uncertainty of how much flour is 

demanded each milling month.  An increase in capacity utilization standard deviation may result 

from an increase in spot flour demand, logistical issues due to weather or some other external 

factor. 

 Decreasing the volatility of capacity utilization standard deviation decreases average 

buffer stock by 7.7%.  The large decrease in purchasing strategy is attributed to the decreased 

risk in demand and thus less need to use real options as a hedging instrument.  Increasing the 

standard deviation increase the purchasing strategy and decreases expected profit. Expected 

profit decreases because of the effect from short calls.  The short call option demand premium is 
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increased by over 200 bushels and thus increases the effect of the short calls relative to the long 

call option which have a relatively unaffected option demand premium. 

 Table 4.16 shows the full results of the sensitivity. 

Table 4.16. Sensitivity Results of Capacity Utilization 

Observation Base Case Decrease Increase 

Utilization Standard Deviation  3.5% 2.0% 5.0% 

Expected Profit $843,564.58  $865,568.59 $856,735.09 

Standard Deviation of Expected Profit $1,587,776 $1,625,896.39 $1,613,991.16 

Average Purchasing Strategy 120.0% 112.3% 126.0% 

Average Number of Long Calls 1.04 1.04 1.04 

Average Long Call Demand Premium 172,753 172,822 172,172 

Average Number of Short Calls 1.04 1.04 1.04 

Average Short Call Demand Premium 500 276 725 

Total Bushels Demanded 1,866,512 1,867,249 1,860,230 

Standard Deviation of Total Bushels Demanded 36,740 22,663 48,607 

December Purchasing Strategy 114% 109% 118% 

January Purchasing Strategy 120% 112% 127% 

February Purchasing Strategy 122% 113% 130% 

March Purchasing Strategy 124% 115% 129% 

December Delta 3.7% 3.3% 3.5% 

January Delta 3.0% 3.2% 2.9% 

February Delta 3.6% 4.0% 3.3% 

March Delta 4.0% 3.6% 5.1% 

 

 Changing capacity utilization has a large impact on the distribution of demand.  When 

standard deviation increases by 1.5%, the standard deviation of total demand decreases by 

13,000 bushels.  When standard deviation increases by 1.5% the standard deviation of total 

demand increases by the same amount. 

 Figure 4.23 shows how the distribution of total demand changes with a change in 

capacity utilization standard deviation and Figure 4.24 shows how the distribution of expected 

profits changes 



 

91 
 

 

Figure 4.23. Change in Total Demand: Sensitivity to Capacity Utilization (@Risk™) 

 

Figure 4.24. Change in Expected Profit: Sensitivity to Capacity Utilization (@Risk™) 
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4.6.3. Sensitivity: Market Spread 

 Changes in market spread affects both the futures market and the expected selling price 

of flour.  Changing the market spread affects margin in the future and thus the payoff functions 

of deferred milling months.  

 When the future market is in an inverse, it is likely the flour market would be in an 

inverse as well because the price of wheat and the price of flour are 86% correlated (Table 4.7) . 

Decreasing the spread lowers average buffer stock to 116.8%; however, the optimal strategy is 

still to carry 16.8% more stocks than expected milling demand.  This result is of interest and 

relates to the conventional interpretation of the convenience yield (Working 1949).  The result 

shows that even though the market is in an inverse (ie negative price of storage), processors 

would still hold excess inventories, although reduced, due to the convenience of doing so.  Here 

it means that even though there is an inverse, the loss associated with storage is less than the 

margin earned from processing.  

 Table 4.17 shows the complete results of the sensitivity on market spread. 
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Table 4.17. Sensitivity Results of Market Spread 

Market Inverse Base Case 

Market 

Inverse 

Increase 

Carry 

HRW Spread $$/cwt $0.17 -$0.03 $0.37 

Monthly Flour Spread $$/cwt $0.00 -$0.20 $0.20 

Expected Profit $843,564 $628,667 $1,058,881 

Standard Deviation of Expected Profit $1,587,776 $1,587,715 $1,587,789 

Average Purchasing Strategy 120.0% 116.8% 123.8% 

Average Number of Long Calls 1.04 0.79 1.29 

Average Long Call Demand Premium 172,753 172,753 172,753 

Average Number of Short Calls 1.04 0.79 1.29 

Average Short Call Demand Premium 500 980 301 

Total Bushels Demanded 1,866,512 1,866,512 1,866,512 

Standard Deviation of Total Bushels 

Demanded 

36,740 36,740 36,740 

December Purchasing Strategy 114% 114% 119% 

January Purchasing Strategy 120% 119% 122% 

February Purchasing Strategy 122% 121% 124% 

March Purchasing Strategy 124% 113% 130% 

December Delta 3.7% 3.7% 1.0% 

January Delta 3.0% 3.6% 2.3% 

February Delta 3.6% 4.0% 3.0% 

March Delta 4.0% 13.6% 2.0% 

 

 The inversion of flour price occurs each month while the inversion of wheat only occurs 

in the month of contract roll over.  This causes January and March milling months to be affected 

differently than February.  In January and February, only the selling price is affected relative to 

the base case which only changes the number of long and short calls but not net salvage value.   

 In the milling month of February both the net salvage value and the number of options 

changes.  A change in net salvage value shifts the floor of expected profit.  Increasing the spread 

raises the floor and causes a higher purchasing strategy to increase during that month. This is 

because the mill is making money whether wheat is stored to collect the carry or if it is milled 

into wheat.  
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 Figure 4.25 shows the change in payoff function with a change in market spread for each 

of the four months in the MRP system. 

Payoff Functions: Change in Market Spread 

 

 

 

   

 

 

 

 

Figure 4.25. Payoff Functions with Change in Market Spreads 

 Figure 4.26 shows how increasing the market spread would shift the distribution of 

expected profit to the right while decreasing the spread would shift the distribution to the left.  In 
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both cases the standard deviation is relatively unchanged because there are not change in demand 

uncertainty. 

 Figure 4.26 shows how the distribution of expected profit changes with changes in 

market spread. 

 

Figure 4.26. Change in Expected Profit: Sensitivity to Market Spread (@Risk™) 

4.6.4. Sensitivity: Stockout Penalty 

 In the base case it is assumed there is no stockout penalty for unmet milling demand.  In 

reality there are stockout penalties which may result from a variety of reasons, such as having to 

redirect demand to fulfill a flour contract (Wilson 2019). 

 Increasing the stockout penalty directly affects the number of short calls options.  The 

increase in short call options increases the effect of the option demand premium on the net 



 

96 
 

present value (NPV).  The increased effect causes the optimal purchasing strategy to increase 

which in turn increases the short call demand strike and lowers the delta. 

 Table 4.18 shows the complete results of the sensitivity on stockout penalty. 

Table 4.18. Sensitivity Results of Stockout Penalty 

Observation Base Case Increase Increase 

Stockout Penalty $0.00  $1.00  $2.00  

Expected Profit $843,564.58  $842,343.72 $841,667.28 

Standard Deviation of Expected Profit $1,587,776 $1,587,715 $1,587,785 

Average Purchasing Strategy 120.0% 125.8% 128.5% 

Average Number of Long Calls 1.04 1.04 1.04 

Average Long Call Demand Premium 172,753 172,753 172,753 

Average Number of Short Calls 1.04 2.04 3.04 

Average Short Call Demand Premium 500 210 136 

Total Bushels Demanded 1,866,512 1,866,512 1,866,512 

Standard Deviation of Total Bushels Demanded 36,740 36,740 36,740 

December Purchasing Strategy 114% 117% 119% 

January Purchasing Strategy 120% 125% 127% 

February Purchasing Strategy 122% 129% 133% 

March Purchasing Strategy 124% 132% 135% 

December Delta 3.7% 1.7% 1.0% 

January Delta 3.0% 1.5% 1.0% 

February Delta 3.6% 1.7% 1.0% 

March Delta 4.0% 1.7% 1.2% 

 

 The addition of a stockout penalty increases the number of short calls which has a direct 

effect on the shape of the payoff function.  Increasing the number of short calls increases the 

slope change when stockout occurs.  The increase in slope change causes the slope in profit to 

become negative during a stockout.  Figure 4.27 shows how the shape of the payoff function 

changes in response to the addition of a stockout penalty. 
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Payoff Functions: Addition of Stockout Penalty 

 

 

 

   

 

 

 

 

Figure 4.27. Payoff Functions with Addition of Stockout Penalty 

 The addition of a stockout penalty has relatively little effect on expected profit in this 

application.  This is because there is a high margin in milling wheat and the optimal strategy 

already had a low likelihood of stockout occurring.  The effects of the stockout penalty would be 
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more abrasive if the milling margin were lower and the base case optimal strategy was closer to 

100% of expected milling demand. 

 Figure 4.28 shows how the distribution of expected profit changes with the addition of a 

stockout penalty. 

 

Figure 4.28. Change in Expected Profit: Sensitivity to Stockout Penalty (@Risk™) 

4.6.5. Sensitivity: Cost of Milling 

 Total cost of milling includes all costs associated with turning wheat into flour.  These 

costs include: freight, packaging, enrichments, commission fees, and overhead milling costs 

(Wilson 2019).  The base case assumes total coast of milling equals $2.53 per cwt.  Sensitivity 

analysis conducted on total cost of milling increases the total cost by $0.25 increments.  There is 

little change in purchasing strategy with the first incremental increase; however, the optimal 
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purchasing strategy decreases at an increasing rate until margin is reduced to a point where the 

optimal purchasing strategy changes drastically.   

The full results of the sensitivity analysis are shown in Table 4.19.   

 



 

  
 

1
0
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Table 4.19. Sensitivity Results of Total Cost of Milling 

Observation Base Case 

Increase 

$0.25 Per Cwt 

Increase 

$0.50 Per Cwt 

Increase 

$0.75 Per Cwt 

Increase 

$1.00 Per Cwt 

Total Milling Cost Dollars Per Cwt $2.53 $2.78 $3.03 $3.28 $3.53 

Expected Profit $843,564.58 $646,823 $431,535 $216,717 $55,706 

Standard Deviation of Expected Profit $1,587,776 $1,521,769 $1,519,644 $1,514,032 $748,519 

Average Purchasing Strategy 120.0% 119.3% 117.3% 113.0% 56.8% 

Average Number of Long Calls 1.04 0.79 0.54 0.29 0.06 

Average Long Call Demand Premium 172,753 172,753 172,753 172,753 172,754 

Average Number of Short Calls 1.04 0.79 0.54 0.29 0.06 

Average Short Call Demand Premium 500 565 776 1,439 98,833 

Total Bushels Demanded 1,866,512 1,866,512 1,866,512 1,866,512 1,866,519 

Standard Deviation of Total Bushels Demanded 36,740 36,740 36,740 36,740 36,936 

December Purchasing Strategy 114% 114% 113% 112% 106% 

January Purchasing Strategy 120% 120% 119% 114% 104% 

February Purchasing Strategy 122% 121% 119% 113% 2% 

March Purchasing Strategy 124% 122% 118% 113% 0% 

December Delta 3.7% 3.7% 4.8% 5.8% 13.9% 

January Delta 3.0% 3.0% 3.6% 7.4% 28.0% 

February Delta 3.6% 4.0% 5.0% 11.0% 100.0% 

March Delta 4.0% 5.1% 7.9% 13.6% 100.0% 
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Of interest is the milling month of March where the optimal purchasing strategy drops 

from 113% of forecast demand to 0% forecast demand in one incremental increase. The drastic 

drop occurs because the number of long calls becomes negative.  A negative amount of long 

calls would mean addition profit decreases with each cwt of flour processed and sold. Therefore, 

the mill would be better off to cease operations then operate with an expected deficit.  Of course, 

other factors must be considered before a manger shuts down the flour mill.   

Figure 4.29 shows the relationship between an increase in cost of milling and the short 

strike delta as well as the optimal purchasing strategy of each month.  The percentages depicted 

in the graph are for the milling month of March. 

 

Figure 4.29. Change in Cost of Milling: Delta and Optimal Purchasing Strategy 

 An increase in total cost of milling decrease the margin and thus decrease the number of 

long and short calls.  Decreasing the slope of long and short calls decreases the amount of 

revenue gained per cwt of flour milled as well as decreases the impact of stockouts on expected 

profit.  Figure 4.30 shows how the sensitivity impacts the base case purchasing strategy for each 
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milling month. In March, an increase of $1.00 in total cost means the number of long calls would 

be less than zero, ie., profit decreases as milling demand increases because the mill is operating 

at a loss.  In this case, the previous minimum of -$50,000 of expected profit in March effectively 

becomes the expected maximum profit. 

Payoff Functions: Change in Total Cost of Milling 

 

 

 

   

 

 

 

 

Figure 4.30. Payoff Functions with Change in Total Cost of Milling 
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 Figure 4.31 shows how the CDFs of each sensitivity analysis on total milling cost would 

affect the cumulative distribution of expected profits for the base case strategy.  In the base case, 

positive expected profit occurs between 60% and 80% of the time.  When total milling cost 

increases to $3.53 per cwt positive expect profit only occurs 40%-60% of the time. 

 

Figure 4.31. CDF: Sensitivity on Total Milling Cost (@Risk™) 

4.7. Conclusion 

 Wheat Mills are exposed to many areas of risk and uncertainty from both milling demand 

and margin.  Just-in-time (JIT) manufacturing concepts suggest that processors should gravitate 

to a minimal level of buffer stocks (Ballou [1973] 1992; Jacobs and Chase [2008] 2017).  This 

concept give way to the issue of optimal inventory strategy.  Recent research has looked into the 

optimal purchasing strategy and different ways of valuing inventory (Shi et al. 2011; Chang et al. 

2015; Li and Arreola-Risa 2017).   



 

104 
 

 

Stowe and Su (1997) view inventory as a real option to operate. This chapter is an 

application of their methodology to a flour mill processor which views inventory as a real option 

to mill.  This methodology, combined with an MRP system and Stochastic Binomial Real Option 

Valuation, gives logistics managers a mode to value the embedded real option in holding 

inventory.  The methodology of real option valuation views option premiums not having 

monetary meaning, but rather a relative likelihood of the real option expiring in the money.  In 

the case of flour milling, or virtually any agricultural processing industry, these relationships are 

important.  In this case there are several sources of uncertainty including demand, extraction 

rates, and price spreads, making inventory decisions critical.  Viewing inventories as a real 

option means that a firm may choose a non-nil level of inventories to have the option of 

processing and earning margin.  The model was developed to determine that level of inventories 

and how factors have an impact on those values. 

This methodology uses Monte Carlo simulation and RiskOptimizer™ to iterate the 

purchasing strategy until expected profit is maximized.  It is found that the optimal purchasing 

strategy of a representative flour mill would be to order buffer stocks in excess of 20% more than 

expected demand.  The high level of buffer stocks represents the high convenience yield in 

holding the real option to mill flour (Working 1949).  

Sensitivity analysis on key variables have relatively predictable results on the optimal 

purchasing strategy.  However; the change in expected profit does not always change in 

proportion to the changes in optimal inventory.  This may indicate that back testing or a statistics 

test should be developed to check how robust the purchasing strategy is.   
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CHAPTER 5. OPTIMAL FERTILIZER PURCHASING STRATEGY UNDER RISK 

5.1. Introduction 

 Fertilizer handlers experience high levels of uncertainty when it comes to fertilizer price 

and demand.  Demand for fertilizer, as it applies to planting, only occurs a few times per year 

and generally in mass quantities.  County centroids located in the upper Midwest must buy 

quantities of fertilizer in advance in anticipation of demand during the spring planting season.  

For the fertilizer handler, two prominent sources of risk are uncertainty in demand due to shifting 

crops and market boundaries as well as uncertainty in margin.  County centroids must evaluate 

these sources of risk and choose a purchasing strategy which maximizes expected profit.  Stowe 

and Su (1997) view inventory as an option on future sales modeled as a call spread.  Similarly, 

an inventory of fertilizer can be viewed as a real option on future sales.  Methodology developed 

by Stowe and Su (1997) combined with competitive arbitrage pricing and real option valuation 

can help fertilizer managers select a purchasing strategy which will maximize their expected 

profit. 

This chapter applies competitive arbitrage pricing, real option valuation, and contingent 

claim inventory (CCI) to address optimal purchasing strategies for a representative fertilizer 

trading firm. First, a conceptual section outlines the application structure and module flow.  

Next, each component of the fertilizer application is specified in the empirical section of the 

chapter.  Data sources and transformations are defined with random and non-random input 

parameters presented.  Finally, base case results are discussed with relevant sensitives 

performed.   
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5.2. Conceptual Model 

 Urea merchandisers buy fertilizer from an array of sources in anticipation of farmer 

demand in the spring.  Merchants are exposed to two main areas of uncertainty: fertilizer demand 

and future fertilizer margin.  This application develops a model which optimizes the net present 

value (NPV) of a urea purchasing strategy.  NPV, which represents expected profit of the county 

centroid, can be maximized by changing the quantity of fertilizer purchased.  County centroids 

are locations which distribute fertilizer to farmers and other elevators to meet urea demand.  

County centroids located in United States may purchase urea from a variety of sources including: 

Canada-USA boarder points, inland transshipment points, USA fertilizer plants, or imports from 

the United States Gulf (Wilson et al. 2014).  Figure 5.1 demonstrates the flow of fertilizer via 

barge, rail, and truck to county centroids.   

 

Figure 5.1. United States Fertilizer Flow by Barge, Rail, and Truck (Wilson et al. 2014) 



 

107 
 

 

Investment per short ton of urea at county centroids accrue three input costs: fertilizer 

price at inland transshipment points, transportation cost, and accrued interest. This application 

assumes a county centroid located in the Upper Midwest would purchase all urea from inland 

transshipment points located on the Mississippi River.  Price of urea at inland transshipment 

points are generally priced off imports from the US Gulf plus barge transportation costs and 

margin.  An efficient way to transport bulk fertilizer from inland transshipment points to Upper 

Midwest county centroids is by rail, so rail freight is the only mode of transportation considered 

to move fertilizer from inland transshipment points to county centroids (Rolf 2019).  County 

centroids tend to purchase fertilizer at least five months prior to the planting season.  This 

application assumes county centroids develop their purchasing strategy in November in 

anticipation of farmer demand in April.  Purchasing fertilizer this far in advance requires county 

centroids to accrue interest costs from the time of purchase until farmer demand is met.   

 This application has three module parts which make up the overall model.  The three 

module parts include: competitive arbitrage pricing, real option valuation, and contingent claim 

inventory.  Module 1 uses competitive arbitrage pricing to determine both the selling price and 

the total demand of urea based on competitive market boundaries.  Forecast demand from 

Module 1 is input to real option valuation in Module 2.  Module 2 generates a theoretical option 

premium which represent the likelihood of the coinciding call options expiring in the money.  

Option premiums from Module 2 are used in the contingent claim inventory evaluation of 

Module 3.  Module 3 is comprised of a portfolio of long and short call options ie., a call spread, 

which generates a NPV of the chosen purchasing strategy.  The overall module flow is shown in 

Figure 5.2. 
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Figure 5.2. Fertilizer Module Flow 

 @Risk™ is used to simulate the overall model using Monte Carlo simulation on random 

input parameters. RiskOptimier™ changes the quantity of urea to purchase until mean NPV is 

maximized.  This process demonstrates a dynamic iterative model.  

5.3. Empirical Model 

 The empirical model builds on methods developed in chapter three pertaining to 

contingent claims inventory (CCI) methodology, developed by Stowe and Su (1997), and real 

options valuation.  This application also uses competitive arbitrage pricing to determine both the 

selling price and the demand in a given market region for a county centroid.  This section first 

explains how the competitive arbitrage pricing from Module 1 applies to fertilizer.  Then, real 

option valuation in Module 2 is empirically applied.  Finally, parameters of CCI evaluation in 

Module 3 are explained in how they pertain to fertilizer. 

5.3.1. Competitive Arbitrage Pricing: Price and Demand Calculation 

 Competitive arbitrage pricing assumes locations in a regional draw area follow the law of 

one price; therefore, difference in pricing is attributed to transportation costs and spatial 

differences (Tomek and Kaiser [1972] 2014).  Locations competing in this way would set their 

prices to eliminate any riskless arbitrage opportunities.  This application assumes location, j, 

would set their price to acquire a minimum market share from any competitive i locations.  The 

price at location j, 𝑃𝑗, is found using equation (5.1): 
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 𝑃𝑗 =  𝑀𝑖𝑛{𝑃𝑖 + [(1 − 𝑆𝑗,𝑖) ∗ 𝑀𝑗,𝑖 ∗ 𝑇] − [𝑆𝑗,𝑖 ∗ 𝑀𝑗,𝑖 ∗ 𝑇]} (5.1) 

where: 

𝑃𝑗 = competitive price at location j 

𝑃𝑖 = price at location i 

𝑆𝑗,𝑖 = minimum percent market share of location j from location i 

𝑀𝑗,𝑖 = miles between location j and location i 

𝑇 = trucking cost per mile per short ton of fertilizer. 

 Once the competitive price at location j is found, market share of location j from all other 

i locations needs to be calculated.  Rearranging equation (5.1) allows location j to find its market 

share, 𝑆𝑗,𝑖, from all remaining i locations using equation (5.2): 

 
𝑆𝑗,𝑖 =

𝑃𝑖 + 𝑀𝑗,𝑖𝑇 − 𝑃𝑗

2𝑀𝑗,𝑖𝑇
 

(5.2) 

where: 

 𝑆𝑗,𝑖 = location j’s percent market share from location i. 

 Total demand at location j is found through summing all 𝑆𝑗,𝑖 percent market share of each 

𝑅𝑗,𝑖 market region as in equation (5.3): 

 
𝐷𝑗 = ∑(𝑆𝑗,𝑖 ∗ 𝑅𝑗,𝑖)

𝑛

𝑖=1

 
(5.3) 

where: 

 𝐷𝑗  = total demand at location j 

 𝑅𝑗,𝑖 = aggregate demand in the j,i market region. 
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Using equations (5.1), (5.2), and (5.3), location j may find its expected demand and 

competitive price based on forecast prices from each i location. The forecast demand level is 

then input to the real option valuation of Module 2. 

5.3.2. Real Option Valuation 

 When merchandisers purchase fertilizer, they create a real option on future sales.  This 

real option can be viewed as a long call option which gains value as demand increases.  

Purchasing a set quantity of fertilizer also creates a short call option.  Short call strike demand 

coincides with the quantity purchased and caps the ability to meet demand. 

 Long and short call options have an option demand premium which represents the 

relative likelihood of expiring “in the money.”  Generally, options are quoted in a monetary 

value.  However, option demand premiums are simply a proxy value which reflects the riskiness 

of demand given time to maturity, stocking level, forecast demand, and risk-free interest. Module 

2 uses stochastic binomial trees to value the premium for a real option using backward induction 

(Cox et al. 1979).   

 Table 5.1 shows the five components of an option to sell fertilizer and presents the 

relationship between three types of options, which builds on Table 2.1.   
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Table 5.1. Five Components of Option to Sell Fertilizer 

Component Financial Option Real Option 

Option to Sell 

Fertilizer 

Underlying 

Variable: 

Current value of stock Gross present value of 

expected cash flows 

Forecast fertilizer 

demand (short tons) 

Strike Value: Exercise price Investment cost Fertilizer demand 

supported by purchased 

quantity 

Time to 

Maturity: 

Time to expiration Time until opportunity 

disappears 

Time of fertilizer 

purchase until end of 

application season 

Volatility: Stock price 

uncertainty 

Project value uncertainty Fertilizer demand 

volatility 

Risk-Free Rate: Riskless interest rate Riskless interest rate 52 Week T-Bill rate 

 

Module 2 requires the five inputs outlined in Table 5.1.  Once inputs are known, 

equations (5.4), (5.5), and (5.6) are used to set up the binomial option tree (Hull [1995] 2008): 

 
𝑝 =

𝛼 − 𝑑

𝑢 − 𝑑
 

(5.4) 

 𝑢 = 𝑒𝜎√Δ𝑡 (5.5) 

 𝑑 = 𝑒−𝜎√Δ𝑡 (5.6) 

where: 

 𝑝 = probability of an up move 

 𝛼 = growth factor 

 𝑢 = multiplicative up factor 

 𝑑 = multiplicative down factor 

 𝜎 = fertilizer demand volatility; standard deviation of log first differences 

 𝑡 = life of option in terms of a fraction of a year 

 Δ𝑡 = length of one option move; fraction of total moves to 𝑡. 
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The growth factor, 𝛼, represents the expected annual growth rate of aggregate fertilizer 

demand in the market region.  Equation (5.7) calculates 𝛼 as: 

 𝛼 = 𝑒𝑟𝑑Δ𝑡 (5.7) 

where: 

 𝑟𝑑 = average historical logarithmic first differences of aggregate demand 

 Option demand premiums at binomial tree terminal nodes are valued as call options using 

equation (5.8): 

 max (Ψ𝑡,𝑗 − 𝐾, 0) (5.8) 

where: 

 Ψ𝑡,𝑗 = fertilizer demand at terminal nodes 𝑡 with 𝑗 up moves 

𝑗 = number of up moves which have occurred since time zero 

 𝐾 = strike fertilizer demand. 

Option demand premiums work backward through the binomial tree from right to left.  

Premiums are evaluated as European style options using equation (5.9) at each node until the 

final option value is derived at the initial node: 

 𝑓𝑖,𝑗 =  𝑒−𝑟∆𝑡[𝑝𝑓𝑖+1,𝑗+1 + (1 − 𝑝)𝑓𝑖+1,𝑗] (5.9) 

where: 

 𝑓𝑖,𝑗 = option demand premium at node 𝑖, 𝑗 

 𝑖 = number of fertilizer demand moves which have occurred since time zero 

 𝑟 = risk free interest rate. 

 Information gained from Module 1 is used to generate a fertilizer demand forecast for 

location j.  Forecast demand is the current state value used in the binomial tree.  Volatility is 

calculated by taking logarithmic first differences of the preceding five years and forecast 
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fertilizer demand. The standard deviation of these six demand levels equals fertilizer demand 

volatility (Kodukula and Papudesu 2006). 

 Table 5.2 shows an iteration example of logarithmic first differences for historical 

fertilizer demand, forecast fertilizer demand, and fertilizer demand volatility.  Table 5.3 provides 

an example of all inputs used in the Module 2 example calculation.  Figure 5.3 shows how this 

iteration example is input to the stochastic binomial option tree to return an option demand 

premium of 30,692 for a short call strike demand of 96,000 short tons. 

Table 5.2. Logarithmic First Differences of Fertilizer Demand Calculation 

Year 

Verona Demand 

Short Tons Logarithmic First Difference 

2013 85,957 - 

2014 69,102 -0.218 

2015 91,586 0.282 

2016 104,700 0.134 

2017 71,976 -0.375 

2018 85,880 0.177 

2019(Forecast) 125,979 0.383 

Forecast Demand: 125,979 

Demand Volatility: 0.296 

 

Table 5.3. Module 2 Iteration Example Inputs 

Parameter Derivation Value 

Forecast Urea Demand Ψ𝑇 125,979 

Strike Demand 𝐾 96,000 

Interest Rate 𝑟 2.7% 

Volatility 𝜎 0.296 

Time Until Expiration 𝑡 5/12 

Period Length Δ𝑡 0.08 

Up Factor 𝑒𝜎√Δ𝑡 1.089 

Down Factor 𝑒−𝜎√Δ𝑡 0.918 

Probability of Up Move 𝑝 =
1 − 𝑑

𝑢 − 𝑑
 

0.484 

Probability of Down Move 1 − 𝑝 0.516 
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Figure 5.3. Stochastic Binomial Tree (Iteration Example) 

5.3.3. Inventory Contingent Claim 

 Stowe and Su’s contingent claim model is made up of four elements to generate a net 

present value (NPV) of inventory.  The four elements include: salvage value of unused 

inventory, value of long call options, value of short call options, and the initial inventory value.   

The first three elements of the contingent claim module make up potential sources of revenue for 

the purchasing strategy. In this application, salvage value includes initial investment per short 

ton of urea minus seven months of storage to hold unsold fertilizer until the next purchasing 

period.  The long call options represent expected revenue gained per ton of urea sold.  The short 

call options represent expected revenue foregone per short ton of urea demand missed.  
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Combining the first three elements generate expected revenues of the purchasing strategy which 

are discounted at the risk-free interest rate.  The fourth element, which values the initial total 

inventory value, is then subtracted which outputs an overall net present value of the purchasing 

strategy.  The CCI formula of Module 3 is shown in equation (5.10): 

 𝑁𝑃𝑉 = 𝑄𝑢Γ𝑢𝑒−𝑟𝑓𝑡1 + 𝐿𝑓𝐿 − 𝑆𝑓𝑆 − 𝐼𝑢𝑄𝑢  (5.10) 

where: 

NPV = net present value of urea purchasing strategy 

 𝑄𝑢 = purchasing strategy quantified in short tons of urea 

Γ𝑢 = salvage value for unsold tons of urea 

𝑟𝑓 = risk free interest rate 

𝑡1 = duration of purchasing strategy 

L = number of long call options 

 S = number of short call options 

 𝑓𝐿 = long call option demand premium 

 𝑓𝑆 = short call option demand premium 

 𝐼𝑢 = overall investment per short ton of urea at county centroid. 

 Each of the four elements are further explained in the remainder of this subsection.  The 

first element calculates the discounted salvage value of any unsold short tons of urea.  Before 

salvage value can be calculated, investment per short ton of urea, 𝐼𝑢, sums the price of urea at 

inland transshipment points, transportation cost to county centroid, and accrued interest from 

time of purchase until urea is sold.  Equation (5.11) shows the calculation of 𝐼𝑢: 

 𝐼𝑢 = 𝑃𝑠 + 𝑇𝑅 + (𝑟𝑙 ∗ 𝑡1 ∗ 𝑃𝑆) (5.11) 
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where: 

 𝑃𝑠 = urea price per short ton at inland transshipment point 

 𝑇𝑅 = transportation cost of rail to county centroid 

 𝑟𝑙 = loan interest rate. 

 Salvage value per short of urea, Γ𝑢, considers interest accrued by urea until the next 

purchasing period.  Γ𝑢 assumes accrued interest is payed before the next purchasing period as in 

equation (5.12): 

 Γ𝑢 = 2𝐼𝑢 − 𝐼𝑢𝑒𝑟𝑙𝑡2 (5.12) 

where 

 𝑡2 = time until next purchasing period from sale period. 

 The first element is discounted at the risk-free interest rate to generate a present value of 

unsold urea short tons.  The second element of the CCI Module calculates the expected revenue 

gained for urea sold using long call options.  The number of long calls equal slope of additional 

revenue gained per short ton sold.  Number of long call options subtracts salvage value from 

selling price, calculated in Module 1, and multiplies it by the demand increase per unit change in 

the underlying state variable as shown in equation (5.13): 

 
𝐿 =

𝜕𝑄𝐷

𝜕Ψ
∗ (Φ𝑢 − Γ𝑢) 

(5.13) 

where: 

𝜕𝑄𝐷

𝜕Ψ
 = increase in fertilizer demand per increase in underlying state variable 

Φ𝑢 = price received per short ton of urea sold, calculated in Module 1. 

The number of long calls is multiplied by the long call option demand premium 

calculated in Module 2 which reflects expected short tons of urea sold based on the purchasing 
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strategy.  Multiplying 𝑓𝐿 and 𝐿 together generates discounted expected revenue gained from 

selling urea.  Expected revenue foregone is then calculated in the third element using short calls. 

The short calls lessons NPV through the subtraction of expected revenue foregone from 

expected profits.  Number of short calls equals number of long calls plus the product of shortage 

penalty and fertilizer demand increase.  This application assumes zero shortage penalty, so the 

number of short calls would equal the number of long calls as shown in equation (5.14): 

 
𝑆 = 𝐿 + (

𝜕𝑄𝐷

𝜕Ψ
∗ Λ𝑢) 

(5.14) 

where: 

 Λ𝑢 = shortage penalty per unmet urea demand, assumed zero in this application. 

 Short call strike demand coincides with the fertilizer purchasing strategy.  As discussed in 

Chapter 3, this value is found in equation (5.15): 

 𝐾𝑆 = 𝐾𝐿 + (𝑄𝑢 ∗
1

𝜕𝑄𝐷
𝜕Ψ

). (5.15) 

where: 

 𝐾𝑆 = short call strike demand 

 𝐾𝐿 = long call strike demand which is found outside the system of equations  

and assumed to be constant at zero. 

The short call option demand premium, 𝑓𝑆, reflects the relative likelihood of running out 

of fertilizer and is calculated in Module 2.  The delta of the short call strike may also be found 

using equation (3.15) to express the probability of a stockout occurring.  The premium itself 

represents the magnitude of stockout expected to occur if the firm experiences a shortage of 

inventory.  Multiplying  𝑓𝑆 and 𝑆 together generates the discounted expected revenue foregone 

from missed fertilizer sales.  The values from the first three elements combine and represent total 
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expected revenue gained from the purchasing strategy.  Finally, the fourth element, initial 

inventory value, is subtracted to generate an NPV of the purchasing strategy. 

5.4. Data 

 Data analyzed in this application is monthly from November 30, 2012 through November 

30, 2018 for a total of 73 observations.  The data is gathered for the county level demand of urea, 

urea price per short ton from three county centroids, SWAP Price, urea price in St. Louis MO, 

SWAP spread, and rail freight.  

 Data sources can be found in Table 5.4. 

Table 5.4. Urea Application Data Sources 

Data Source 

Demand ND County Level  USDA-ERS (2013); USDA-NASS (2013);  

AAPFCO (2011) 

County Centroid Prices Data Transmission Network (2018) 

Inland Transshipment Prices Green Markets (2018) 

Swat Futures Prices Chicago Board of Trade (2018) 

Repetitive Location Parameters Rolf (2019) 

Rail Prices BNSF Distance Calculator (2018); BNSF Rate Item Price List 

(2018a); Rail Cost Adjustment Factor (2018) 

 

 The following four subsections discuss the data used in this application along with 

distributions. The final subsection provides random and non-random input parameters. 

5.4.1. Urea Demand Verona 

County level urea demand was derived using the same data compiled by Wilson et al., 

2014.  County level demand for urea was derived using data on nitrogen use by crop type and 

acres planted. Acres planted were for barley, canola, corn, cotton, peanuts, rice, sorghum, 

soybeans, wheat and potatoes for 2010-2012 (USDA-NASS 2013a). Nitrogen use by crop type 

was obtained from USDA-ERS (2013) and USDA-NASS (2013b) on a state level basis and 
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applied to all counties within the state.  Urea use per county was found by multiplying total 

nitrogen use per county by the state level proportion of urea to total nitrogen (AAPFCO 2011).  

The forecast demand for 2018 was estimated by assuming planted acres by crop within a county 

increase by the average annual rate of change for planted acres from 2000-2012.   

Urea demand is based on data from 2013 and an estimation for 2018.  Aggregate county 

data for 2014-2017 and forecast for 2019 are estimated assuming aggregate demand follows 

trend line consumption between 2013 and 2018.  Urea consumption in the United States has 

followed a relatively stable trendline since 1973 with an adjusted R2 of 0.974 as shown in Figure 

5.4 (USDA-ERS 2018); therefore, it is reasonable to assume county level demand also follows a 

consumption trendline. 

 

Figure 5.4. Aggregate U.S. Urea Consumption (USDA-ERS 2018)  

The representative location for this application is Verona, ND.  Verona is strategically 

located between three county centroids of Cargill Milling Inc., Woodworth Farmers Grain, and 
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Northern Plains Cooperative.  The draw region of Verona is separated into three competitive 

market boundaries.  Urea demand from each draw area depends on competitive arbitrage pricing 

which assumes the market areas are efficient and follow the law of one price (Tomek and Kaiser 

2014).  Thus, urea demand from Verona largely depends on competitor prices and transportation 

costs between markets.  Under this assumption, historical draw areas between Verona and 

competitive county centroids are calculated based off data used by Wilson et al. (2014).   

Transportation costs via truck are built on industry level conversations.  In the base case, 

historical trucking is assumed to be constant at $0.60-per-short-ton-per-mile for a commercial 

trucker transporting urea between rural locations.  Verona will also competitively price at the 

minimum of three 30% Verona market-share-prices from each competitive county centroid.  

Verona’s market share from each of the other two draw areas is calculated based on Verona’s 

competitive price in Module 1. 

Table 5.5 shows counties associated within each draw area, historical trucking cost-per-

short-ton-per-mile, and miles between each county centroid and Verona.   

Table 5.5. Competitive Arbitrage Pricing Specifications 

County 

Centroid 

Historical 

Trucking 

Cost per Mile 

Miles 

from 

Verona 

Competitive 

Market 

Share 

Draw Area 

Color/Pattern 

Counties in Draw 

Area 

Cargill 

Milling Inc. 

$0.60 87 30% 

(Variable) 

Green Dots & 

1/3 Red 

Ransom, Richland, 

Sargent, 

1/3 La Moure 

Woodworth 

Farmers 

Grain 

$0.60 110 30% 

(Variable) 

Orange 

Diagonal Lines 

& 1/3 Red 

Stutsman, Barnes, 

1/3 La Moure 

Northern 

Plains 

Cooperative 

$0.60 83 30% 

(Variable) 

Blue Cross 

Hatch & 1/3 

Red 

Logan, McIntosh, 

Dickey, 

1/3 La Moure 

 

Draw areas and counties are displayed in Figure 5.5.  Counties with green dots represent 

counties in the Cargill Milling Inc. draw area, counties with orange diagonal lines represent 
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counties in the Woodworth Farmers Grain draw area, counties with blue cross hatch represent 

counties in the Northern Plains Cooperative draw area, and all county centroids compete with 

Verona for 1/3 of La Moure county which is in red.  Figure 5.6 shows historical demand for 

Verona based on competitive arbitrage pricing assumptions. 

 

Figure 5.5. Verona, ND Market Boundary Regions (MapChart™ 2019) 



 

122 
 

 

 

Figure 5.6. Historical Verona Demand (Representative Location Based Module 1)  

5.4.2. Urea Prices 

 Urea prices in terms of dollars per short ton were gathered from three county centroids, 

urea Swap Futures, and Western Corn Belt.  Data was extracted from Bloomberg using symbols: 

AMURUSND AFTX DTN Index, AMURUSND AFUI DTN Index, AMURUSND AFPP DTN 

Index, URE1 Comdty, and GCFPURWS Index for Cargill Milling Inc., Woodworth Farmers 

Grain, Northern Plains Cooperative, urea Swap Futures, and St. Louis, respectively; as well as 

instrument variables: GCFPURGB Index and GCFPURSE Index for New Orleans and South 

East spot price.  Data was extracted on a monthly interval using average price of observed data 

from that month.   

There were seven missing data points from Northern Plains Cooperative and three 

missing points from St. Louis.  An instrument variable from New Orleans spot price was used to 

fill in missing data for Northern Plains Cooperative and an instrument variable from South East 
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United States was used to fill in St. Louis.  Regressions used to fit missing data can be found in 

Appendix B and Appendix C.  

The data for urea prices is displayed in Figure 5.7. 

 

Figure 5.7. Urea Price in Dollars per Short Ton (DTN 2018; Green Markets 2018) 

 Price at the county centroids of: Cargill Milling Inc., Woodworth Farmers Grain, and 

Northern Plains Cooperative; the inland transshipment point of the Western Corn Belt; and the 

urea Swap Futures price are all highly correlated.  However, it can be seen in Figure 5.7 that data 

at county centroids are slightly lagged the price at St. Louis which is lagged slightly behind urea 

Swap Futures price.  This results from lagged transportation time up the Mississippi river via 

Barge and from rail transportation time from St. Louis to county centroids. 

Correlation matrix at price levels can be found in Table 5.6. 
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Table 5.6. Urea Price Level Correlation Matrix (@Risk™) 

 

Cargill 

Milling 

Inc. 

Woodworth 

Farmers 

Grain 

Northern 

Plains 

Cooperative 

Urea 

SWAP 

Western 

Corn 

Belt 

Cargill Milling Inc. 1.000     

Woodworth Farmers Grain 0.929 1.000    

Northern Plains Cooperative 0.926 0.923 1.000   

Urea SWAP 0.879 0.883 0.942 1.000  

Western Corn Belt 0.921 0.902 0.962 0.974 1.000 

 

The first differences of urea price were used to forecast price movements from December 

to April. @Risk™ uses Bestfit™ to fit distributions of the first differences automatically.  

@Risk™ compares and chooses the best fit distribution based on Akaike Information Criteria 

(AIC).  Appendix F shows the distributions used by Bestfit™ with descriptions. @Risk™ uses 

Spearman Rank-Order Correlations to fit a correlation matrix to the distributions.  

Forecast price movements are assumed to be spatially correlated but temporally 

independent.  Therefore, the correlation matrix in Table 5.7 is used instead of the correlation 

matrix chosen by @Risk™.  The result is a stochastic price movement which follows the 

individual price distributions but returns a data set which has a correlation similar to price level 

correlations.  Each distribution is truncated to the minimum and maximum price movement of 

the individual dataset to eliminate any nonsense results. 

First difference distributions for the county centroids and urea SWAP price are found in 

Table 5.7.  
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Table 5.7. Urea Price Distributions (@Risk™) 

Variable: 

Cargill Milling 

Inc. 

Woodworth 

Farmers Grain 

Northern Plains 

Cooperative Urea SWAP 

Distribution: Laplace Laplace Triangular Normal 

Function: RiskLaplace 

(0,23.5463, 

RiskTruncate 

(-148.81,55.12)) 

RiskLaplace 

(0,16.3903, 

RiskTruncate 

(-88.18,55.11)) 

RiskTriang 

(-72.814,8.27,55.745, 

RiskTruncate 

(-66.69,52.35)) 

RiskNormal 

(-1.4208,21.13, 

RiskTruncate 

(-49.14,51.71)) 

AIC Score: 652.97 600.80 674.43 646.80 

Mean: 0.00 0.00 -2.93 -1.42 

Standard 

Deviation: 

23.55 16.39 26.54 21.13 

 

The distribution fits for Cargill Milling Inc., Woodworth Farmers Grain, Northern Plains 

Cooperative, and urea Swap Futures are found in Figures 5.8 through 5.11.   

 

Figure 5.8. Cargill Milling Inc. First Difference Distribution Fit (@Risk™) 
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Figure 5.9. Woodworth Farmers Grain First Difference Distribution Fit (@Risk™) 

 

Figure 5.10. Northern Plain Cooperative First Difference Distribution Fit (@Risk™) 
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Figure 5.11. Urea Swap First Difference Distribution Fit (@Risk™) 

The five-month forecast uses the same distribution for each month with its own 

correlation matrix identical to Table 5.6. An example of one iteration of forecast price 

movements for the months of December through April are shown in Figure 5.11. 
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Figure 5.12. Example of Five-Month Price Forecast 

5.4.3. Urea Swap Futures Spread 

 The urea Swap Futures spread is found by subtracting nearby Swap Futures from the 

deferred Swap Futures contract.  Urea Swap Futures contracts are cash settled so the spread may 

be observed up until contract close (CBOT 2018).  Swap Futures prices were gathered from DTN 

ProphetX on monthly intervals using the monthly closing price.  Swap Futures spread follows a 

seasonal pattern, generally, resulting in an inverse during the spring months of the year.  An 

inverse occurs because after spring planting there is very little demand for urea until the next 

application season. 

 Urea Swap Futures spread data is found in Figure 5.13. 
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Figure 5.13. Urea Swap Futures Spread (DTN 2018) 

The urea Swap Futures spread distribution is fit using BestFit™.  The model is only 

concerned with the Swap Futures spread at the end of April, so only six data points were fit at 

levels.  The distribution was truncated with the spread minimum and maximum of the entire 

spread data set to eliminate any nonsense results.    

@Risk™ distribution specifications for SWAP spread are found in Table 5.8. 

Table 5.8. SWAP Spread Distribution (@Risk™) 

Variable Distribution Function AIC Score Mean 

Standard 

Deviation 

SWAP 

Spread 

Gumble 

Minimum 

RiskExtvalueMin 

(-6.5508,11.0655, 

RiskTruncate 

(-51.47,18.63)) 

56.8285 -12.938 14.1921 

 

 Urea SWAP spread distribution is shown if Figure 5.14. 
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Figure 5.14. Urea SWAP Distribution Fit (@Risk™) 

5.4.4. Rail Freight 

 Rail rates are generated on a quarterly basis using information from BNSF (2018a; 2019) 

and the Association of American Railroads (AAR 2018).  Quarterly rates from the fourth quarter 

2012 through the third quarter 2018 are generated using price indexes provided by the AAR.  

Rail rates are then forecast for each of the five months coinciding with the appropriate quarter.  

The average cost to ship fertilizer over the five months is the priced used in this application.  The 

price to ship urea from St. Louis, MO to Verona, ND is observed from the end of fourth quarter 

2018 through beginning of the second quarter 2019.   

The representative county centroid location in Verona, ND purchases urea from St. 

Louis, MO and has it delivered via railroad.  BNSF quotes freight rates from origin to destination 

based on transportation miles.  Distance from Verona, ND to St. Louis, MO is 901 miles using 

the BNSF miles calculator (BNSF 2019).  The price to ship urea from St. Louis, MO to Verona, 
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ND during the third quarter of 2018 was $62.80 (BNSF 2018a).  AAR publishes rail cost 

adjustment factors which are used to calculate freight costs for all remaining quarters from 2012 

through 2018 with quarter four of 2017 as the base quarter (AAR 2018).  

Rail cost from St. Louis, MO to Verona, ND is shown in Figure 5.15. 

 

Figure 5.15. Freight from MO to ND (BNSF 2018a; BNSF 2019; AAR 2018) 

 @Risk™ has the ability to fit time series functions using Bestfit™.  Bestfit™ compares 

variations of autoregressive, moving average, Brownian motion, auto regressive conditional 

heteroscedasticity (ARCH), and generalized auto regressive conditional heteroscedasticity 

(GARCH) models when fitting time series data.  Appendix G shows a complete description of 

the times series distributions compared by Bestfit™.  Bestfit™ detects seasonality, trend, and 

stationarity to make proper transformations before fitting data.  After a proper time series 

function has been fit, @Risk™ formulates a forecast based on specifications of the user. 
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 Rail freight is fit on a quarterly basis to forecast the quarter four 2018, quarter one 2019, 

and quarter two 2019 costs.  Rail freight values for each month in those quarters is then extracted 

from the forecast.   

BestFit™ time series distribution specifications for rail freight are found in Table 5.9. 

Table 5.9. Time Series Function of Rail Freight (@Risk™) 

Variable Distribution Function AIC Transformation 

Rail Freight Moving Average RiskMA1 

(-0.0023252,0.036907, 

-0.20906,0.035975) 

-86.33 Logarithmic; 

First Difference 

 

The time series function in Figure 5.16 provides a sample path of forecast rail freight.  

BestFit™ ranks the MA1 process on the logarithmic first difference transformation of rail freight 

as the best forecasting function.  MA1 is a moving average of forecast errors with one lag and 

four @Risk™ parameters.  The first parameter, -0.0023252, is the mean logarithmic first 

difference of the stochastic process.  The second parameter, 0.036907, is the standard deviation 

of logarithmic first difference errors.  The third parameter, -0.20906, is the 𝛽1 coefficient which 

is multiplied by the lagged one period error term.  The final parameter, -0.035975 is the initial 

error of the MA1 process (Palisade 2016).  In Figure 5.16, the negative values of the X-axis 

represent historical data.  Observations greater than zero on the X-axis are forecast rail freight 

values.  The dark line represents the mean of forecast rail freight, the gray areas above and below 

the mean represent confidence intervals, and the red line is a sample path. 
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Figure 5.16. Rail Freight Time Series Function (@Risk™) 

5.4.5. Random and Non-Random Inputs 

 Input parameters are split into two groups: non-random inputs and random inputs.   Non-

random inputs are static and do not change during sensitivity analysis.  Random input parameters 

are either linked, or have calculations linked, to distributions in @Risk™.  Non-random inputs 

are summarized in Table 5.10 and random input parameters are summarized in Table 5.11.      
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Table 5.10. Non-Random Inputs 

Non-Random Inputs Value Units Source 

Purchase Price St. 

Louis  

$340.00 Dollars Per Short Ton Green Markets 2018 

Rail Miles: St. Louis 

to Verona 

901 Miles BNSF 2019 

Purchasing Period: 

Nov 1-April 1 

5 Month Rolf 2019 

Time Held if Not Sold 7 Month Assumption 

Storage Capacity 

Minimum 

0 Short Ton Assumption 

Storage Capacity 

Maximum 

120,000 Short Ton Assumption 

Increase in Demand 

per Underlying State 

Variable Increase 

1 Short Ton Assumption 

Risk Free Interest Rate 2.70% APY USDT 2018 

Loan Interest Rate 5.00% APR Assumption 

 

Table 5.11. Random Inputs 

Random Input Value Mean Units Source 

Verona Competitive 

Price 

$447.62 Dollars Per Short Ton Module 1 

𝑡1 Accrued Interest $7.08 Dollars Per Short Ton Calculation 

Rail Cost $62.11 Dollars Per Short Ton BNSF 2018a 

Total Investment Per 

Ton 

$409.19 Dollars Per Short Ton Calculation 

Expected Margin $38.43 Dollars Per Short Ton Calculation 

Stockout Penalty $0.00 Dollars Per Short Ton Assumption 

Swap Change -$5.57 Dollars Per Short Ton DTN 2018 

Swap Spread -$12.08 Dollars Per Short Ton DTN 2018 

Verona Demand 93,300 Short Tons USDA-ERS (2013); 

USDA-NASS (2013); 

AAPFCO (2011) 
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5.5. Base Case Results 

Monte Carlo simulation is implemented using @Risk™ to run 1,000 iterations of the 

model based on structural and stochastic variables.   Specific @Risk™ settings are shown in 

Table 5.12. 

Table 5.12. @Risk™ Settings 

@Risk™ Specification @Risk™ Setting 

Sampling Type Latin Hypercube 

Generator Mersenne Twister 

Initial Seed Value 500 

Macros VBA 

 

Results of the base case, and subsequent sensitives, reflect mean values of stochastic 

simulation for a specific purchasing strategy.  RiskOptimizer™ maximizes mean NPV in 

equation (5.10) by changing the quantity of short tons to purchase.  The purchasing quantity is 

changed in discrete step sizes of 2,000 short tons.  Constraints are set on RiskOptimizer™ to 

reflect a minimum purchasing strategy of zero short tons and a maximum strategy of 120,000 

which is the storage capacity of the base case location.  The base case results are formulated 

using distributions from monthly data collected from November 2012 through November 2018.   

Base case results are in Table 5.13. 
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Table 5.13. Base Case Results 

Observation Value 

Hedged: No 

Purchasing Quantity 96,000 

Purchasing Strategy 102.9% 

Inventory NPV: Expected Profit $2,602,162 

Standard Deviation $4,200,135 

Number of Short Calls 51 

Short Call Demand Premium 7,881 

Number of Long Calls 51 

Forecast Demand 93,300 

Selling Price $447.62 

Probability of Positive Profit 75.0% 

Expected Margin $38.43 

 

 The base case optimal purchasing quantity is 96,000 short tons which is a purchasing 

strategy 102.9% of forecast demand.  Figure 5.17 shows the payoff function for the optimal 

purchasing strategy with the base case specifications.   

Urea demand levels are on the X-axis and expected profit is on the Y-axis.  The X-axis 

shows the possibility for demand to be negative; however, this is impossible but is included to 

depict the function the long call strike demand. Mean Expected profit has a minimum which 

occurs at -$1.1 million.  This minimum coincides with the long call strike demand, which is 0, 

and shows the results of net salvage value on an inventory investment of 96,000 short tons.   

The fertilizer merchant is long 51 long call options with a strike demand of zero and short 

51 calls with a strike demand of 96,000.  Strike demand coincides directly with the purchasing 

strategy because it is assumed the merchant does not have any initial inventory from the previous 

year.  If there were carry over fertilizer, strike demand would have to be adjusted by adding the 

purchasing strategy to the initial inventory.  The Number of long calls equals the slope of 

expected profit per one ton increase in demand.  A base case value of 51 means the merchant 
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gains $51.00 per ton in expected profit per one-ton increase of demand.  This number is different 

than expected margin, which is $38.43, because net salvage value is less than investment costs.  

The merchant is also short 51 call options at a strike demand of 96,000 short tons.  When 

demand exceeds this number, the merchant does not gain any additional profit from selling urea, 

i.e., number of short calls equals foregone profit from missed sales.  Profit is therefore net zero 

per one ton increase in demand and the payoff function becomes horizontal. 

 

Figure 5.17. Base Case Payoff Function  

Demand for fertilizer is skewed to the right. The mean demand occurs at 93,300 short 

tons with a standard deviation of 16,231 and a maximum demand of 163,726 short tons.  The 

distribution of demand is shown in Figure 5.18.   
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Figure 5.18. Base Case Distribution of Urea Demand (@Risk™) 

Expected profit has a relatively wide distribution with a mean expected profit of 

$2,602,162 and a standard deviation of $4,200,135.   Expected profit is above zero 75% of the 

time but has a minimum expected profit of -$16,342,337 because the distribution is negatively 

skewed. 

Figure 5.19 shows the base case expected profit probability distribution.  
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Figure 5.19. Base Case Probability Distribution (@Risk™) 

Verona’s market share from each region, which is divided into three regions, is shown in 

Figure 5.20. Verona draws the least from Cargill Milling Inc. because it is the area from which 

Verona prices its fertilizer off the most. 
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Figure 5.20. Base Case Verona Market Share 

5.6. Sensitivities 

 The factors with the most influence on expected profit are the inputs of competitive 

arbitrage pricing which impact both margin and demand.  The greatest factors in competitive 

arbitrage pricing are percentage draw area and transportation costs between locations; as these 

two parameters define market boundaries.  Sensitivities in this section pertain to changes in 

trucking costs between the competitive locations and draw area; as wells as the introduction of 

hedging in urea Swap Futures contracts.   

Sensitivity analysis conducted in this section is summarized in Table 5.14. 

Table 5.14. Urea Sensitivity Analysis Summary 

Sensitivity Base Case Sensitivity Analysis 

Draw Area 30% (Minimum Price) +/- 10% 

Trucking Cost $0.60/mile +$0.20 / -$0.40 

SWAP Hedging No Hedge 100% Hedged in SWAP 
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5.6.1. Draw Area 

 Verona prices urea using competitive arbitrage pricing between Cargill Milling Inc., 

Woodworth Farmers Grain, and Northern Plains Cooperative.  The base case assumes Verona 

prices to acquire a minimum of 30% market share from any one competitor.  The market share 

that Verona acquires from the other two competitors is then adjusted due to spatial differences 

and differences in competitive price.  Increasing market share makes Verona more competitive 

which would decrease margin and increases expected demand.  Contrary, decreasing minimum 

market share gives Verona added flexibility in pricing which would increase margin but 

decreases expected fertilizer demand. 

 Table 5.15 shows the results of draw area sensitivity analysis. 

Table 5.15. Draw Area Sensitivity Results 

Observation 

20% Minimum 

Draw Area 

Base Case: 30% 

Minimum Draw Area 

40% Minimum 

Draw Area 

Purchasing Quantity 78,000 96,000 112,000 

Purchasing Strategy 107.6% 102.9% 98.2% 

Inventory NPV: Expected 

Profit 

$2,629,908 $2,602,162 $2,109,796 

Standard Deviation $3,322,317 $4,200,135 $4,951,456 

Number of Short Calls 61 51 39 

Short Call Demand Premium 6,055 7,881 11,421 

Number of Long Calls 61 51 39 

Forecast Demand 72,489 93,300 114,084 

Selling Price Per Ton $458.56 $447.62 $436.56 

Probability of Positive Profit 79.8% 75.0% 69.4% 

Expected Margin $49.37 $38.43 $27.37 

 

 Decreasing minimum draw area from 30% to 20% causes the purchasing quantity to 

decrease, purchasing strategy to increase, expected profit to increase, and standard deviation of 

expected profit to decrease.  The optimal purchasing strategy increases to 107.6% of forecast 
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demand.  Due to the minimum draw area decreasing, the forecast demand also decreases so an 

increase in percentage purchasing strategy still results in 18,000 less short tones.  The expected 

margin per short increases from $38.43 in the base case to $49.37, i.e., Verona can charge a 

higher price for their fertilizer because their market boundaries move in closer which also makes 

their probability of positive expected profit increase to 79.8%.  Decreasing the minimum draw 

area has positive effects on all aspects of the business.  

Increasing the minimum draw are to 40% decreases the margin to a point where Verona’s 

optimal purchasing strategy is below forecast demand i.e., Verona would rather under purchase 

urea because the cost of storing excess inventories is much greater than margin foregone by 

missing fertilizer sales. 

 The payoff function changes because the price at which Verona can sell their fertilizer 

changes.  Decreasing draw area increases slope of expected profit which is represented by the 

number of long calls.  Increasing minimum draw area to 40% causes Verona to become more 

competitive in their pricing.  A more competitive price means lower expected margins and 

therefore a decreased slope in marginal profit per short ton of urea sold.  Each sensitivity has the 

same salvage value because initial investment costs, rail transportation, and interest costs remain 

unchanged.  Thus, a minimum mean expected profit occurs at -$1.1 million which reflects the net 

salvage value if demand where zero in each sensitivity. 

 Figure 5.21 shows how the payoff function changes when the minimum draw area 

changes relative to the base case purchasing quantity. 
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Figure 5.21. Sensitivity Minimum Draw Area Payoff Function 

  Changing percent draw area has a large impact on the distribution of demand.  

Increasing minimum draw area to 40% shifts the distribution to the right but decreases standard 

deviation of demand.  This causes less risk in demand and for the optimal purchasing strategy to 

have a decreased option demand premium.  A decreased premium on the number of short calls 

represents the relatively likelihood of stocking out, i.e., decreased premium means the elevator 

has higher certainty in their expected demand level.  

Verona would purchase a greater percentage of forecast demand when minimum draw 

area decreases.  This result is caused by two reasons: the margin increases and risk in total 

demand also increases.  Increased risk in demand would cause an increased purchasing strategy 
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because an increase in urea demand volatility causes option demand premiums to increase.   An 

increase in premium causes the effect of short calls in the CCI model to increase which lowers 

expected profit; therefore, a merchandizer will purchase more to lower the option premium; thus, 

lowering this effect. 

 Figure 5.22 shows how distribution of demand changes with an increase and decrease in 

minimum percentage draw. 

 

Figure 5.22. Urea Demand: Sensitivity to Minimum Draw Area (@Risk™)  

The distribution of profits in Figure 5.23 shows how increasing draw area percentage 

widens the distribution of expected profit.  Decreasing the percentage draw causes expected 

profit to cluster around the mean and narrow the distribution. 
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Figure 5.23. Sensitivity Minimum Draw Area Probability Distribution (@Risk™) 

5.6.2. Trucking Cost 

 Transportation cost plays a major role in competitive arbitrage pricing as it is the 

multiplicative component with spatial distance.  Increasing and decreasing trucking cost adds 

and takes away the flexibility of competitive markets.  When transportation costs are zero, all 

prices should be equal under the law of one price to eliminated arbitrage opportunity (Tomek and 

Kaiser 2014).  Therefore, high trucking costs create rigid market boundaries which is why it is a 

sensitivity analysis. 

 Base case trucking costs are assumed to be $0.60 per ton per mile for commercial 

truckers transporting urea between rural locations.  However, this assumption is quite high 
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according to industry sources (Rolf 2019).  Sensitivity on transportation costs lowers trucking to 

$0.20 per ton per mile as well as increases to $0.80.  

 Results of sensitivity on trucking costs are shown in Table 5.16. 

Table 5.16. Trucking Costs Sensitivity Results 

Observation 

$0.20 Trucking 

Cost 

Base Case: $0.60 

Trucking Cost 

$0.80 Trucking 

Cost 

Purchasing Quantity 114,000 96,000 92,000 

Purchasing Strategy 89.3% 102.9% 106.4% 

Inventory NPV: Expected 

Profit 

$1,761,360 $2,602,162 $3,033,772 

Standard Deviation $5,067,804 $4,200,135 $3,989,694 

Number of Short Calls 36 51 58 

Short Call Demand Premium 21,929 7,881 5,412 

Number of Long Calls 36 51 58 

Forecast Demand 127,683 93,300 86,438 

Selling Price Per Ton $432.84 $447.62 $454.92 

Probability of Positive Profit 67.1% 75.0% 78.0% 

Expected Margin $23.65 $38.43 $45.73 

 

 Decreasing trucking costs to an industry acceptable level increases purchasing quantity, 

decreases purchasing strategy, lowers probability of expected profit, and decreases expected 

margin.  The purchasing quantity increases from 96,000 short tons to 114,000 short tons.  The 

purchasing strategy is reduced to ordering only 89.3% of forecast demand.  The expected margin 

falls by almost $15 per short ton of urea to only $23.65 per short ton.  This reduction causes the 

slope of profit increase, which is the number of long calls, to be reduced to 36.  Expected profit 

decreases to $1,761,360 and the standard deviation increases to $5,067,804.  This also lowers the 

probability of experiencing a positive profit to only 67.1%. 

 Figure 5.24 shows how the payoff function changes when trucking cost changes relative 

to base case purchasing quantity.  Decreasing trucking cost lowers maximum expected profit to 
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$2.2 million as shown by the red dotted line.  The green dashed line shows how increasing 

trucking cost, which allows Verona to increase their selling price due to a more rigid market 

boundary, would increase maximum expected profit to $4.4 million.  The minimum expected 

profit, which occurs at -$1.1 million, does not change because net salvage value does not change. 

 

Figure 5.24. Sensitivity Trucking Cost Payoff Function 

 Increasing trucking cost to $0.80 per mile creates a more rigid market boundary for 

competitive arbitrage pricing which increases expected margin per short ton of urea.  Increased 

expected margin also increases the number of long calls to 58.  The increased slope is reflected 

in the green dashed line of Figure 5.24. 
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 Changing trucking costs has a major impact on Verona’s total demand distribution.  

Increasing trucking cost shifts the demand distribution to the left and decreases standard 

deviation because the market boundary has become more rigid.   

When trucking cost is reduced to industry levels, the distribution of demand returns 

nonsense results.  A minimum function is required to be added to the competitive arbitrage 

pricing formula to eliminate nonsense results of over 100% demand.  These nonsense results 

insinuate that urea markets are not efficient at industry levels.   

The distribution of demand under sensitivities to trucking cost are in Figure 5.25. 

 

Figure 5.25. Distribution of Urea Demand: Sensitivity to Trucking Costs (@Risk™) 

 Changing trucking cost also greatly impacts Verona market share from each draw area.  

In Figure 5.26, increasing trucking cost causes Verona’s market share to become narrow at each 
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location and only range from 35% market share to 47% market share.  Decreasing trucking costs 

increases the average market share form each location.  It also causes average market share to 

have a low of 51% at Cargill Milling Inc.’s market and a high at 74% of Northern Plains 

Cooperative’ market.  The competitive arbitrage pricing criteria is still at 30%; therefore, these 

levels of market share and their range further infer inefficient markets at industry level trucking 

cost. 

 

Figure 5.26. Verona’s Market Share: Sensitivity to Trucking Cost 

5.6.3. Urea Swap 

 Urea Swap futures contracts are offered by the Chicago Board of Trade (CBOT) based on 

freight on board (FOB) urea prices in the United State Gulf.  A buyer of a Swap Futures contract 

gains money from the seller when the closing price of FOB US Gulf increases.  Fertilizer 

merchandisers may effectively hedge their long cash position by selling Swap Futures contracts.  

The offsetting contract could gain money if prices fell while the cash position loses money.   
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Under competitive arbitrage pricing assumptions, urea price at Verona, ND has a 

correlation coefficient of 0.93 with Swap Futures at levels and a coefficient of 0.33 when first 

differenced.  Swap futures would not result in a perfect hedge; but, because the hedge is for a 

duration of five months, the coefficient of 0.93 at levels is good enough to justify a hedge.  If the 

duration of the hedge were short term, a correlation coefficient of 0.33 when first differenced 

would indicate a poor hedge (Blank et al. 1991).  

Urea Swap sensitivity compares optimal purchasing strategies of the unhedged base case 

with being 100% hedged using Swap Futures.  Adding the hedging component causes net selling 

price and salvage value to be calculated differently.  Gains or losses from hedging must be added 

into the final calculation of net selling price.  Verona is classified as a “short” hedger because 

they are long cash urea and would therefore short urea Swap Futures contracts.  Their entire long 

urea position is hedged by taking an equal and opposite position in urea Swap Future because it 

is assumed no forward contracting takes place.  If forward contracting took place, the calculation 

for unhedged urea would need to be different from hedged urea.  Change in Swap Future price is 

subtracted from net selling price which adjusts the calculation of long call options (equation 

5.13) as in equation (5.16): 

 
𝐿 =

𝜕𝑄𝐷

𝜕Ψ
∗ (Φ𝑢 − Δ𝑃𝑆𝑤𝑎𝑝 − Γ𝑢) 

(5.16) 

where: 

𝐿 = number of long call options 

𝜕𝑄𝐷

𝜕Ψ
 = increase in fertilizer demand per increase in underlying state variable 

Φ𝑢 = price received per short ton of urea sold, calculated in Module 1 

Δ𝑃𝑆𝑤𝑎𝑝 = change in Swap Futures price 

Γ𝑢 = salvage value of unsold urea. 
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 In addition to changing calculation of long call options, calculation of salvage value 

(equation 5.12) must also be adjusted to account for spreads in Swap Futures contracts.  Swap 

Futures spreads are highly seasonal and are usually inverted at the end of planting season.  An 

inverted Swap Futures spread would lower salvage value of unsold short tons of urea if the 

merchandiser wishes to continue to hedge their position until next purchasing season.   Salvage 

value is now calculated as in equation (5.17): 

 Γ𝑢 = 2𝐼𝑢 − 𝐼𝑢𝑒𝑟𝑙𝑡2 + Ω𝑆𝑤𝑎𝑝 (5.17) 

where 

𝐼𝑢 = overall investment per short ton of urea at county centroid.  

𝑡2 = time until next purchasing period from sale period 

 𝑟𝑙 = loan interest rate 

Ω𝑆𝑤𝑎𝑝 = Swap Futures spread. 

Results of sensitivity on hedging using Swap Futures are shown in Table 5.17. 

Table 5.17. Swap Futures Hedging Sensitivity Results 

Observation Base Case Hedge Using Swap Futures 

Hedged No Yes 

Purchasing Quantity: 96,000 92,000 

Purchasing Strategy: 102.9% 98.6% 

Inventory NPV $2,602,162 $2,969,081 

Standard Deviation $4,200,135 $1,689,750 

Number of Short Calls 51 68 

Short Call Demand Premium 7,881 9,600 

Number of Long Calls 51 68 

Forecast Demand: 93,300 93,300 

Selling Price: $447.62 $453.19 

Probability of Positive Profit: 75.0% 95.2% 

Expected Margin: $38.43 $44.00 
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 When hedging using Swap Futures, the optimal purchasing quantity falls 4,000 short tons 

and optimal purchasing strategy is reduced to 98.6% of forecast demand.  The fall in purchasing 

strategy result is twofold.  The net salvage value for unsold urea decreases because the urea 

Swap Futures spread during the spring months has a mean value of -$12.08 (Table 5.10).  The 

negative spread further lowers net salvage value which further penalizes the urea merchant for 

overestimating urea demand and would lower the purchasing strategy (Stowe and Su 1997). The 

fall in purchasing strategy is also credited to no longer needing additional inventories to hedge 

against price movements, i.e., hedging using Swap Futures lessons the need for maintaining a 

real option.  Expected profit increases to $2,969,081 and standard deviation of expected profit 

falls from $4,200,145 in base case to only $1,689,750 when hedged.  Probability of positive 

expected profit also increases from 75% to 95% of the time. 

 The number of long and short calls increase largely due to salvage value being reduced.  

A lower salvage value means slope of additional profit per sold short ton would increase.  

Expected margin also increases nearly $6.00 per short ton when hedged.  An increase in margin 

further infers that hedging using Swap Futures does not result in a perfect hedge.   

The decreased salvage value plus an increased expected margin causes the payoff 

function to widen out as shown in Figure 5.27.  The minimum expected profit lowers from -$1.1 

million to -$2.2 million if urea demand where zero because urea Swap Futures spread is negative 

which lowers the net salvage value.  Maximum expected profit also increases to $4.1 million 

because hedging using urea Swap Futures is not a perfect hedging mechanism.   The net change 

is typically a negative $5.11 per short ton relative to cash price change which increases the net 

selling price due to expected gains from the short hedge (Table 5.10). 
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Figure 5.27. Sensitivity Hedging using Swap Futures Payoff Function 

The distribution of expected profit moves closer to being normally distributed when 

hedged.  Distribution of profits narrows greatly from a standard deviation of $4.2 million in the 

base case to $1.68 million when hedged using Swap futures.  This major decreases in standard 

deviation of expected profit is good for fertilizer merchants who wish to mitigate their downside 

risk.  However, hedging using Swap Futures also partially eliminates the opportunity to make 

large profits through competitive arbitrage pricing.   

Distribution of being hedged versus being unhedged are shown in Figure 5.28.  
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Figure 5.28. Sensitivity Hedged using Swap Futures: Probability Distribution (@Risk™) 

5.7. Conclusion 

 Fertilizer merchandisers located in interior markets are exposed to large levels of risk 

from both demand and competitive pricing.  Competitive arbitrage pricing uses competitor price 

levels and transportation costs to form artificial market boundaries.  These market boundaries 

shift both inter and intra-yearly which causes great uncertainty in fertilizer demand.  An excess 

purchasing strategy of forecast demand may be used as a real option on futures sales to hedge 

against price and demand uncertainties.  Methodology used by Stowe and Su (1997) combined 

with real option valuation and competitive arbitrage pricing allows fertilizer merchants to 

develop an optimal purchasing strategy which would maximize expected profit. 
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 This chapter used a representative urea merchant located strategically between three 

major competitors.  Contingent claims inventory (CCI) analysis, using methodology from Stowe 

and Su (1997) along with real option valuation and competitive arbitrage pricing, developed a 

way to model uncertainty in fertilizer and maximize expected profit. Monte Carlo simulation and 

stochastic optimization produces a purchasing strategy which would maximize expected profit 

under base case assumptions and data distributions. 

 Stochastic simulation and RiskOptimizer™ allows fertilizer merchants to simulate 

multiple scenarios and choose the best strategy based on maximizing expected profit.  

Sensitivities on market parameters show how optimal quantities and strategy change with shifts 

in key model parameters such as: minimal market share, transportation costs, and hedging using 

urea Swap Futures:  

• Increasing minimal market share, i.e., lowering urea selling price to acquire more 

sales, causes purchasing quantities to increases, margins to decreases, expected profit 

to decrease, and standard deviation of expected profit to increase.   

• Base case transportation costs are considered too high by industry sources, however, 

lowering trucking cost to industry standards causes markets to become inefficient.  

This means one of two things: there is a large area of opportunity in trading fertilizer 

or urea is extremely risky and locations are forced to sell at prices regardless of 

competitor pricing to remain profitable. 

• Hedging a long fertilizer position using Swap Futures contracts based on spot prices 

at New Orleans does not result in a perfect hedge, but it does lower risk substantially.  

Price levels at interior markets are highly correlated with urea Swap Futures but have 

a relatively low correlation coefficient when first differenced.  This indicates an 
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alternative method such as Vector Auto Regression (VAR) or a similar multivariate 

method could be used when hedging for short durations of time. 

There are many sources of risk when merchandising fertilizer.  However, CCI analysis 

and real options provide a way to measure this risk.  When risk is measured it can be managed.  

Merchandizers may then alter their purchasing strategy based on sensitives to market risk to 

make key inventory decisions. 
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CHAPTER 6. OPTIMAL GRAIN PURCHASING STRATEGY UNDER RISK 

6.1. Introduction   

Shippers are exposed to several areas of risk including: velocity of shuttle trains, market 

carry, and price of rail cars on the secondary market.  Purchased grain can be viewed as a real 

option to ship grain.  This builds on Stowe and Stu (1997) which views inventory as a real option 

on future sales using a contingent claim inventory (CCI) model.  In this case, the CCI model is 

interpreted as a call spread.  Long calls represent the option to sell and short calls represents 

forgone profit when there is a shortage of inventory.  Shippers can apply this same model to the 

option to ship grain.  A shipper that purchases primary rail contracts up to 12+ months forward 

has an uncertain supply of rail cars due to randomness in velocity.  To accommodate uncertain 

car supply, among other market variables, the shipper determines an optimal grain purchasing 

strategy.  The CCI model outputs a net present value (NPV), which represents expected profit, of 

the purchasing strategy which can be maximized by altering the quantity of bushels purchased 

over time. 

The optimal purchasing strategy of a shipper depends on three main components: velocity 

of rail cars, market carry, and secondary-rail-market prices.  These three components can be 

translated into car supply, salvage value, and stockout penalty.  Velocity of rail cars effects how 

many shuttle trains arrive over a one-month period and thus shipping demand due to car supply.  

Market carry, which is comprised of terminal basis spread, futures spread, and tariff spread, has a 

great impact on unshipped bushels because shippers roll their positions into the next shipping 

period which affects net salvage value of the purchasing strategy.  Underestimating car supply 

leads to excess shuttle trains being sold into secondary market.  Shuttle trains sold into the 

secondary market are for either a premium or discount and thus either a negative or positive 
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stockout penalty.  Given these components, an optimal purchasing strategy can be found using 

Stowe and Su’s contingent claims inventory (CCI) model (1997).  The CCI model derives NPV 

which is interpreted as a shipper’s expected profit given the current market characteristics.  

Shippers can maximize their NPV by obtaining an optimal purchasing strategy through 

stochastic optimization. 

This chapter presents an empirical model for determining an optimal purchasing strategy 

for a bulk shipper.  First, a conceptual model outlines the application structure and input 

parameters.  Next, each component is derived along with data sources and distributions of 

stochastic variables.  Finally, results of the base case are presented, followed by relevant 

sensitivities. 

6.2. Conceptual Model 

 The model represents a typical shuttle elevator located in the great plains who ships 

soybeans using primary rail contracts.  This model represents a single-elevator shipper but could 

be adapted to utilize multiple locations.  The shipper procures soybeans from producers via 

forward contracts and resells soybeans to terminal markets located in the Pacific Northwest 

(PNW).  The elevator ships soybeans by rail, using BNSF primary rail contracts.  Current 

primary contracts offered by the BNSF are for a one-year duration of continuous shipments 

(TradeWest Brokerage Co. 2018).  In the base case, the shuttle elevator only buys and sells 

soybeans and does not buy additional rail cars on the secondary market.  However, the elevator 

can sell unused trains into the secondary market at either a premium or discount.  This model 

represents a purchasing strategy for three months - or fourteen weeks - of soybean forward 

contracts.  This timeline matches new-crop delivery of soybeans which starts in September and 

goes through November.  This application assumes a shipper makes one purchasing strategy for 
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three months which may be adjusted over time.  However, as Stowe and Su (1997) state, this 

model can be expanded to a material requirement planning (MRP) model which would reflect 

weekly inflows and outflows of grain as well as account for randomness in spot deliveries. 

 There are two module components in the overall model: Module 1 which consists of a 

stochastic-binomial-option-valuation tree and Module 2 which is a purchasing strategy 

contingent claim.  The module operates as follows: 

• First, option strike velocities are derived from input parameters based on a chosen 

purchasing strategy.   

• Second, option strike velocities are evaluated using stochastic binomial valuation 

from Module 1.   

• Finally, derived premiums of Module 1 are used in the CCI module to generate an 

NPV of the purchasing strategy.   

This process continues using adjusted purchasing strategies until NPV of the shipper is 

maximized.  This is a dynamic iterative model and uses @Risk™ and RiskOptimizer™ which 

are products of Palisade Software (Winston 2008).  RiskOptimizer™ changes the quantity of 

bushels in the purchasing strategy until NPV is maximized.  Stowe and Su (1997) manually 

iterate their model until a closed form derivative is equated which coincides with maximizing 

NPV.  Their model does not include distribution functions and does not need stochastic 

simulation; therefore, a closed form solution was possible.  

Module flow is shown in Figure 6.1. 
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Figure 6.1. Module Flow 

Stowe and Su (1997) map demand of a product onto the price level of an underlying state 

variable.  For Stowe and Su, the underlying state variable is a financially traded asset so Black-

Schole’s model is used to value option premium.  In this application, the underlying state 

variable is velocity of rail cars and binomial trees are used to value the real option 

Stochastic binomial option pricing trees calculate option premiums for both long and 

short call options.  The three-month purchasing strategy is divided into weekly intervals for a 

total of 14 moves.  Note: if this were set up as an MRP model, it would need 14 individual 

binomial trees (Landman 2017).  Weekly intervals demonstrate how often a shuttle train may 

arrive and thus represents the frequency of evaluation.  Options are valued as American style 

because an option to ship may be exercised at any time during the option life.  Table 6.1 shows 

the five components of the option to ship and presents the relationship between the three types of 

options, which builds on Table 2.1.   
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Table 6.1. Five Components of Option to Ship 

Component Financial Option Real Option Option to Ship 

Underlying 

Variable: 

Current value of stock Gross present value of 

expected cash flows 

Forecast velocity of 

shuttle trains 

Strike Value: Exercise price Investment cost Velocity coinciding 

with car supply 

Time to 

Maturity: 

Time to expiration Time until opportunity 

disappears 

Duration of purchasing 

strategy 

Volatility: Stock price 

uncertainty 

Project value uncertainty Velocity Volatility 

Risk-Free Rate: Riskless interest rate Riskless interest rate 52 Week T-Bill rate 

 

Stowe and Su developed a contingent claims model for a processing firm which treats 

inventory as a strategic variable.  The firm can view their inventory as a real option because it 

may be used for futures sales, i.e., as an option on future sales.  Model framework developed by 

Stowe and Su is used in this study.  The problem for a shipper which orders rail cars via primary 

rail markets is to determine an optimal level of grain purchases to meet car supply.  In concept, 

grain shippers would buy an excess amount of grain than forecast car supply which may be used 

as a real option.  An excess purchasing strategy results in part to randomness of velocity which 

results in uncertainty of rail cars supplied.  If velocity is greater than forecast, it would be in the 

shipper’s interest to have a surplus grain held in inventory as an option to ship. 

6.3. Empirical Model 

This section has two parts.  First, it explains calculations in binomial tree evaluation of 

Module 1 as it applies to shuttle velocity.  Second, each component of the CCI model is 

developed in its application to a shuttle elevator.   

6.3.1. Stochastic Binomial Real Option Module 

Stowe and Su use Black-Schole’s model to evaluate option premiums.  This application 

uses backward induction via binomial tree from Cox, Ross, and Rubinstein (1979).  The 
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stochastic binomial option module for velocity requires five components: forecast velocity of 

shuttle trains, strike velocity, duration of option, velocity volatility, and risk-free interest rate.  

These components ultimately provide inputs into Module 1 (Figure 6.1). Once inputs are known, 

equations (6.1), (6.2), and (6.3) are used to set up the binomial option tree: 

 
𝑝 =

𝑎 − 𝑑

𝑢 − 𝑑
 

(6.1) 

 𝑢 = 𝑒𝜎√Δ𝑡 (6.2) 

 𝑑 = 𝑒−𝜎√Δ𝑡 (6.3) 

where: 

 𝑝 = probability of an up move 

 𝑎 = growth factor 

 𝑢 = multiplicative up factor 

 𝑑 = multiplicative down factor 

 𝜎 = velocity volatility; annualized standard deviation of log first differences 

 𝑡 = life of the option in terms of fraction of a year 

 Δ𝑡 = length of one option move; fraction of total moves to 𝑡. 

Velocity is the underlying state variable in this real option valuation module. Velocity 

volatility is the standard deviation of logarithmic first differences of forecast values.  Growth 

factor, 𝑎, equals one in this application because the module is valuing a real option on an asset 

that does not experience a constant expected growth (Hull [1995] 2008). 

Values at terminal nodes are evaluated as a call option using equation (6.4): 

 max (Ψ𝑡,𝑗 − 𝐾, 0) (6.4) 
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where: 

 Ψ𝑡,𝑗 = velocity value at terminal nodes 𝑡 with 𝑗 up moves 

𝑗 = number of up moves which have occurred since time zero 

 𝐾 = strike velocity. 

Option premiums work backward through the tree from right to left.  Premiums are 

evaluated as American style options using equation (6.5) at each node until the final option value 

is derived at the initial node: 

 𝑓𝑖,𝑗 = max{Ψ𝑖,𝑗𝑢𝑗𝑑𝑖−𝑗 − 𝐾,  𝑒−𝑟∆𝑡[𝑝𝑓𝑖+1,𝑗+1 + (1 − 𝑝)𝑓𝑖+1,𝑗]} (6.5) 

where: 

 𝑓𝑖,𝑗 = option premium at node 𝑖, 𝑗 

 𝑖 = number of velocity moves which have occurred since time zero 

 𝑟 = risk free interest rate. 

@Risk™ fits a time series forecast based on historical data.  This forecast generates 14 

weeks of expected velocity.  Average velocity of this forecast is the current state value for the 

binomial tree.  The average is used because car supply occurs each week, so simply taking the 

last value would give an inaccurate forecast of car supply over 14 weeks.  To calculate volatility, 

logarithmic first differences for each week are derived as shown in equation (6.6): 

 𝐿𝑜𝑔 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑎𝑡 𝑊𝑒𝑒𝑘𝑖 = ln(𝑤𝑒𝑒𝑘𝑖) − ln (𝑤𝑒𝑒𝑘1−𝑖). (6.6) 

where: 

 𝑤𝑒𝑒𝑘𝑖 = velocity forecast value at week 𝑖. 

The standard deviation of logarithmic first differences over a 14-week time span is the 

weekly velocity volatility (Kodukula and Papudesu 2006).  Weekly volatility is converted to 
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annual through the multiplication by the square root of 52.  Table 6.2, Table 6.3, and Figure 6.2 

show the results of one iteration from the stochastic binomial real option model.  Table 6.2 

shows an example of logarithmic first differences for forecast velocity, velocity volatility, and 

the forecast velocity state variable.  Table 6.3 provides an example of all values taken from the 

short call option calculation in Module 1.  Figure 6.2 shows how the stochastic binomial option 

tree returns an option premium of 0.23 when strike velocity is 3.04 and the iteration forecast 

velocity is 3.16. 

Table 6.2. Velocity Logarithmic First Differences 

Forecast Week Forecast Velocity Logarithmic Difference 

Week 0 2.90 - 

Week 1 3.00 0.035 

Week 2 3.03 0.008 

Week 3 2.89 -0.048 

Week 4 3.08 0.064 

Week 5 3.09 0.003 

Week 6 3.04 -0.015 

Week 7 3.09 0.014 

Week 8 3.14 0.017 

Week 9 3.38 0.073 

Week 10 3.38 0.001 

Week 11 3.26 -0.035 

Week 12 3.29 0.007 

Week 13 3.26 -0.008 

Week 14 3.35 0.027 

Velocity Volatility; Weekly: 0.033 

Velocity Volatility; Annualized: 0.239 

Forecast State Velocity: 3.16 
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Table 6.3. Binomial Tree Inputs Example 

Parameter Derivation Value 

Forecast State Velocity Ψ𝑇 3.16 

Strike Velocity 𝐾 3.04 

Interest Rate 𝑟 2.7% 

Volatility 𝜎 0.239 

Time Until Expiration 𝑡 14/52 

Period Length Δ𝑡 0.019 

Up Factor 𝑒𝜎√Δ𝑡 1.034 

Down Factor 𝑒−𝜎√Δ𝑡 0.967 

Probability of Up Move 
𝑝 =

1 − 𝑑

𝑢 − 𝑑
 

0.492 

Probability of Down Move 1 − 𝑝 0.508 
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Figure 6.2. Short Call Binomial Tree: One Iteration
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6.3.2. Contingent Claim Module 

 The contingent claim inventory (CCI) model developed by Stowe and Su (1997) is broke 

into four elements: salvage value of unused inventory, long call payoff, short call payoff, and 

initial inventory value.  The CCI module evaluates NPV of the purchasing strategy using Stowe 

and Su’s equation (5) as discussed in chapter 3.  The CCI module objective function, as it applies 

to a grain purchasing strategy, is: 

 𝑁𝑃𝑉 = 𝑄𝑏Γ𝑏𝑒−𝑟𝑡 + 𝐿𝑓𝐿 − 𝑆𝑓𝑆 − 𝐼𝑏𝑄𝑏  (6.7) 

where: 

NPV = net present value of inventory stocking level 

 𝑄𝑏 = purchasing strategy quantified in bushels of soybeans 

Γ𝑏 = salvage value for unsold soybeans 

L = number of long call options 

 S = number of short call options 

 𝑓𝐿 = long call option premium 

 𝑓𝑆 = short call premium 

 𝐼𝑏 = elevator cash price to producers for soybeans. 

The first of four equation elements is a vertical discount.  Vertical discount considers 

salvage value of the purchasing strategy discounted at the risk-free interest rate and time to 

maturity.   

In this application, salvage value equals return to storage of unsold soybeans.  Returns to 

storage is comprised of three parts: investment per bushel of soybeans, market carry, and the cost 

of carry.  Investment per bushel is the shipper’s cash price to producers.  The shipper’s cash 

price is derived by first adding nearby futures price to terminal basis at the Pacific Northwest 
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(PNW); then, subtracting rail tariff per bushel and the shipper’s gross margin per bushel as 

shown in equation (6.8): 

 𝐼𝑏 = 𝑃𝑓 + 𝐵𝑃𝑁𝑊 − 𝑇𝑏 − 𝑀𝐺  (6.8) 

where: 

 𝑃𝑓 = futures market price 

 𝐵𝑃𝑁𝑊 = terminal basis at the Pacific Northwest 

 𝑇𝑏 = rail road tariff per bushel 

 𝑀𝐺  = elevator gross margin per bushel. 

The shipper’s gross margin per bushel encompasses all shipper overhead costs, handling 

charge, and the price per bushel of the primary instrument.  It is assumed that the gross margin 

per bushel is constant at $0.20 per bushel. 

Market carry is defined as a combination of futures market spread, PNW basis spread, 

change in tariff rate, and the spread of daily car values (DCV).  DCV is accounted for in the 

shortage penalty element of the model; therefore, DCV is left out of the salvage value 

calculation.  Futures market spread is accounted for because it is assumed shippers hedge their 

position in the nearby futures month after each transaction and would therefore need to roll any 

unshipped bushels into the next futures month.  Furthermore, PNW basis spread is evaluated 

because it is assumed shippers do not forward contract sales with PNW terminal markets; 

instead, they sell spot to maintain flexibility to ship or store bushels.  Tariff rate per bushel is not 

hedged, as it is charged at the time of shipment.  However, a change in tariff rate affects market 

carry.   

Market carry is calculated as in equation (6.9): 
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 𝐶𝑀𝑎𝑟𝑘𝑒𝑡 = 𝐹𝑆𝑝𝑟𝑒𝑎𝑑 + 𝐵𝑆𝑝𝑟𝑒𝑎𝑑 − 𝑇𝑆𝑝𝑟𝑒𝑎𝑑 (6.9) 

where: 

 𝐶𝑀𝑎𝑟𝑘𝑒𝑡 = overall carry in the soybean market per bushel 

 𝐹𝑆𝑝𝑟𝑒𝑎𝑑 = deferred futures price minus nearby futures price per bushel 

 𝐵𝑆𝑝𝑟𝑒𝑎𝑑 = deferred PNW basis minus nearby PNW basis per bushel 

 𝑇𝑆𝑝𝑟𝑒𝑎𝑑 = deferred tariff rate minus nearby tariff rate per bushel. 

Cost of carry considers interest cost on stored bushels as well as any costs associated with 

maintaining the condition of soybeans.   

Cost of carry is calculated in equation (6.10) as:  

 𝐶𝐶𝑜𝑠𝑡 = [𝑟𝐿 ∗ 𝑡 ∗ 𝐼𝑏] + [𝑠𝑟 ∗ Δ𝑡] (6.10) 

where: 

𝐶𝐶𝑜𝑠𝑡  = cost of carry 

 𝑟𝐿  = loan interest rate 

 𝑠𝑟  = weekly storage rate of soybeans 

 𝑡  = total time of storage 

 Δ𝑡  = increments of time; weekly. 

Salvage value for unsold soybeans is calculated by adding the market carry to investment 

per bushel and then subtracting cost of carry as in equation (6.11).  

 Γ𝑏 = 𝐼𝑏 + 𝐶𝑀𝑎𝑟𝑘𝑒𝑡 − 𝐶𝐶𝑜𝑠𝑡 (6.11) 

 The second element of Module 2 is the value of long call options in the call spread.  The 

number of long calls equates marginal profit gained per one unit increase in velocity.  The 

number of long calls, 𝐿, is calculated as: 
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𝐿 =

𝜕𝑄𝐷

𝜕Ψ
∗ (Φ𝑏 − Γ𝑏) 

(6.12) 

where: 

𝜕𝑄𝐷

𝜕Ψ
 = increase in shipping demand due to car supply per unit of velocity 

Φ𝑏 = price received per bushel of soybeans sold. 

Shipping demand due to car supply for soybeans per unit increases in velocity, 
𝜕𝑄𝐷

𝜕Ψ
, 

depends on shuttle capacity and number of primary contracts.  A shipper with a storage capacity 

of 5,000,000 bushels and a turnover ratio of six would plan on shipping 30,000,000 bushels 

annually.  Rail shuttles offered by BNSF railroad have 110 cars.  Each rail car holds 3,500 

bushels of soybeans which means each shuttle train received holds 385,000 bushels.  The number 

of bushels per shuttle train can be calculated in equation (6.13): 

 𝐵𝑡 = 𝐵𝑐 ∗ 𝑅𝑡 (6.13) 

where: 

𝐵𝑡 = number of bushels per shuttle train 

𝐵𝑐 = number of bushels per rail car 

𝑅𝑡 = number of rail car per shuttle train. 

As an example of the assumption made in this chapter, if expected velocity of a BNSF 

rail shuttle is three, a shipper can expect 36 trains in one year.   Therefore, one primary contract 

would have an expected shipping capacity of 13,860,000 bushels per year.  Therefore, a shipper 

which plans to ship 30,000,000 bushels of soybeans per year would purchase two primary 

contracts.   
𝜕𝑄𝐷

𝜕Ψ
 is calculated by multiplying together number of months in purchasing strategy, 

number of primary rail contracts, and bushels per shuttle train as shown in equation (6.14): 
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 𝜕𝑄𝐷

𝜕Ψ
= 𝑀𝑁 ∗ 𝐶𝑁 ∗ 𝐵𝑡 

(6.14) 

where: 

 𝑀𝑁 = number of months in purchasing strategy 

 𝐶𝑁 = number of primary contracts owned by elevator. 

Given the assumptions on the shipper, shipping demand due to car supply would increase 

2,310,000 bushels of soybeans per one unit increase in velocity.   

Selling price per unit is the net value for each bushel loaded by a shipper.  The shipper is 

a “basis trader,” so an elevator’s profit comes from the margin.  Selling price is calculated by 

adding margin to elevator cash price as in equation (6.15): 

 Φ𝑏 = 𝐼𝑏 + 𝑀𝐺 . (6.15) 

Price received per bushel can also be calculated by evaluating futures price, PNW basis, 

and tariff; however, equation (6.15) is a simplified approach.  The number of long calls is now 

calculated using equation (6.12).   

 Long call premium, 𝑓𝐿, is found in Module 1.  However, long call strike velocity, 𝐾𝐿, is 

found outside the system of equations.  Long call strike velocity coincides with the velocity at 

which car supply would be zero.  Car supply is zero when velocity is zero, so the long call strike 

velocity will always be zero. 

 Module 2’s third element is the value of short calls which is found by multiplying the 

number of short calls by short call premium.  The number of short calls equates marginal profit 

lost per one unit increase in velocity.   

The formula for short calls as found in Chapter 3 is calculated using equation (6.16): 
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𝑆 = 𝐿 + (

𝜕𝑄𝐷

𝜕Ψ
∗ Λ𝑏) 

(6.16) 

where: 

 Λ𝑏 = shortage penalty per bushel of unmet car supply; observed as -DCV. 

By default, the number of short calls equals the number of long calls if there is no shortage 

penalty.  However, in this model, unmet car supply results in shuttle trains being sold into 

secondary rail markets at either a premium or discount.  This value is recorded as daily car value 

(DCV) per bushel of soybeans.  A positive DCV would result in a negative shortage penalty. 

 Short call strike velocity coincides with soybean purchasing strategy.  As discussed in 

Chapter 3, this value is found in equation (6.17): 

 𝐾𝑆 = 𝐾𝐿 + (𝑄𝑏 ∗
1

𝜕𝑄𝐷
𝜕Ψ

). (6.17) 

where: 

 𝐾𝑆 = short call strike velocity 

 𝐾𝐿 = long call strike velocity is found outside the system of equations and  

assumed to be constant at zero. 

Short call premium is now found by inputting short call strike velocity into Module 1.  The delta 

of the short call strike may also be found using equation (3.15) to express the probability of a 

stockout occurring.  The premium itself represents the magnitude of stockout expected to occur 

if the firm experiences a shortage of inventory. 

 Module 2’s fourth element is the initial outlay.  Initial outlay is the purchasing strategy 

multiplied by the investment per bushel of soybeans.  NPV in equation 6.7 can now be calculated 

based on input parameters calculated in equations (6.8) through (6.17) with premiums calculated 

in Module 1. 
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6.4. Data 

 Data analyzed in this application comes from soybean crop marketing years of 2013/14 

through 2016/17.  Data is weekly and is from September 5, 2013 through August 25, 2017 for a 

total of 208 observations.  Data obtained includes terminal basis at Pacific Northwest (PNW), 

secondary rail market premiums expressed as daily car value (DCV), spread in the soybean 

futures market, rail tariff rate per bushel shipped, and velocity.  At the end of this section base 

case random and non-random input parameters are presented. 

Data sources can be found in Table 6.4.  

Table 6.4. Data Sources 

Data Source Assembled By 

Basis: PNW Trade West Brokerage Co. 2018; 

Thomson Reuters Eikon 2018 

Bruce Dahl 

Jesse Klebe 

Daily Car Value (DCV) Trade West Brokerage Co. 2018; 

Thomson Reuters Eikon 2018 

Bruce Dahl 

Jesse Klebe 

Soybean Futures CBOT 2018a Jesse Klebe 

Tariff Rate USDA-AMS 2018 Jesse Klebe 

Velocity Trade West Brokerage Co. 2018 Bruce Dahl 

 

6.4.1. Basis at PNW 

 Terminal basis at PNW is the selling point of soybeans relative to the soybean futures.  

Of the 208 data points, there were 14 missing observations.  An instrument variable from 

Thompson Reuters Eikon is implemented to fit the missing observations using symbol “SYB-

TERM-PORT” and subtracting the active soybean futures contract to obtain PNW basis.  

Appendix D shows the regression equation used to generate missing values.   Figure 6.3 shows 

PNW Basis behavior through time and across different years.   
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Figure 6.3. PNW Basis (TradeWest Brokerage Co. 2018; compiled by Klebe 2018) 

6.4.2. Daily Car Value 

 Daily car value (DCV) is expressed in dollars per bushel by dividing rail car values by 

3,500.  Of the 208 data points, there were 18 missing observations.  An instrument variable form 

Thompson Reuters Eikon is implemented to fit missing observations using symbol “BNSF-

RCSHT-C1”.  The regression equation used to fit missing values is in Appendix E.  Figure 6.4 

shows behavior of DCV through time.  There were excessively high DCV rates in the soybean 

marketing year of 2013/14 and at the beginning of 2014/15, as well as high rates during winter 

months of 2016/17.  These excessively high rates come from fundamental factors in the market 

and cannot be predicted with certainty. 
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Figure 6.4. Daily Car Value (TradeWest Brokerage Co. 2018; compiled by Klebe 2018) 

6.4.3. Futures Spread 

 Futures spread in the soybean market compares deferred soybean price to nearby futures 

price on a weekly basis.  Data was extracted from Data Transmission Network (DTN) ProphetX.  

Futures spread between nearby and deferred months is recorded until the second Monday of 

delivery month.  After the second Monday, spread is reported as the difference between the next 

two future month contracts.  Spread represents the forward curve in the market.  Futures markets 

holds a carry when deferred futures price is higher than nearby futures price. Figure 6.5 shows 

how soybean future spread behaves through time.   
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Figure 6.5. Soybean Futures Spread (CBOT 2018a; compiled by Klebe 2018) 

A major inverse at the end of 2013/14 crop year and beginning of 2014/15 crop year 

resulted from several factors including a large Brazil soybean crop in those years; and 

concurrent, a substantially improved logistical performance.  Improved logistics put downward 

pressure on port basis values in the PNW which competes directly with Brazil.  

6.4.4. Tariff Rate 

 Tariff rate is how much BNSF railroad charges per car to ship grain from Fargo, ND to 

Tacoma, WA (GTR-AMS 2018).  Tariff values per car is divided by 3,500 to report data in terms 

of dollars per bushel of soybeans.  Tariff rate generally only changes once a year.  Still, a change 

in tariff affects margin to ship grain and is accounted for in the model.  Figure 6.6 illustrates how 

tariff rate has changed through time. 
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Figure 6.6. Tariff Rate (USDA-AMS 2018) 

6.4.5. Velocity 

 Velocity at which shuttle trains arrive is taken from TradeWest Brokerage Co.  The data 

set only has one missing value.  The average of the week before and after is used to fill in the 

missing value.  As shown in Figure 6.7, velocity of shuttle trains generally is in the range of 1.9 

to 3.3.  Typically, low levels of velocity are matched with high secondary rail market prices.  

This relationship exists because velocity also functions as a supply of transportation. 
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Figure 6.7. Velocity (TradeWest Brokerage Co. 2018; compiled by Dahl 2018) 

6.4.6. Stochastic Distributions 

 Data from the 2015/16 soybean crop year is used for base case results. Fundamentally, 

2015/16 did not have any abnormalities regarding transportation or supply and demand 

fluctuations.  Stochastic variables for PNW basis, DCV, soybean futures spread, and tariff rate 

are inputs of pricing variables in the model.  For price variables, the model uses ex post 

probability density functions based on past year’s price behavior because it contains the most 

relevant information regarding current fundamental factors.  Velocity is the car supply variable 

in the model; therefore, a time series forecasting method is used to generate estimates.  

@Risk™ uses Bestfit™ to fit distributions automatically.  @Risk™ compares and chooses the 

best fit distribution based on Akaike Information Cristea (AIC).  Appendix F shows the 

distributions used by Bestfit™ with descriptions. @Risk™ uses Spearman Rank-Order 

Correlations to fit a correlation matrix to the distributions.  
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Time series distributions require different fitting practices when developing a forecast.  

Bestfit™ compares variations of autoregressive, moving average, Brownian motion, auto 

regressive conditional heteroscedasticity (ARCH), and generalized auto regressive conditional 

heteroscedasticity (GARCH) models when fitting time series data.  Appendix G shows a 

complete description of the times series distributions compared by Bestfit™.  Bestfit™ detects 

seasonality, trend, and stationarity to make proper transformations before fitting data.  After a 

proper time series models has been fit, @Risk™ formulates a forecast based on specifications of 

the user.  Tables 6.5, 6.6, and 6.7 report distributions and correlations of stochastic variables.   

Table 6.5. Base Case Distribution Fits (@Risk™) 

Variable: Basis PNW DCV Futures Spread Tariff 

Distribution: Triangular Log-Logistic Gumbel Inverse Gaussian 

Function: RiskTriang 

(0.36211,1,1

.4551) 

RiskLogLogistic 

(-0.15605, 

0.14238,3.3535) 

RiskExtValueMin 

(0.025535, 

0.070599) 

RiskInvGauss 

(0.0043971, 

1.65019e-006, 

RiskShift(1.5371413)) 

AIC Score -4.02 -112.14 -102.62 -1116.80 

Mean 0.94 0.01 -0.02 1.54 

Standard 

Deviation 

0.22 0.11 0.09 0.23 

 

Table 6.6. Base Case Correlation Matrix (@Risk™) 

 Basis PNW DCV Futures Spread Tariff 

Basis PNW 1.000    

DCV 0.426 1.000   

Futures Spread -0.461 -0.538 1.000  

Tariff 0.022 0.304 -0.222 1.000 
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Table 6.7. Base Case Time Series Function (@Risk™) 

Variable Distribution Function AIC Transformation 

Velocity Moving 

Average 

RiskMA1(0.0078431,0.085296,-

0.0057506,-0.0078885) 

-105.567 First Difference 

 

The time series distribution in Figure 6.8 provides a sample path of forecast velocity.  

BestFit™ ranks the MA1 process on the first difference transformation of velocity as the best 

forecasting function.  MA1 is a moving average of forecast errors with one lag and four 

@Risk™ parameters.  The first parameter, 0.0078431, is the mean first difference of the 

stochastic process.  Second parameter, 0.085296, is the standard deviation of first difference 

errors.  Third parameter, -0.0057506, is the 𝛽1 coefficient which is multiplied by the lagged one 

period error term.  The final parameter, -0.0078885 is the initial error of the MA1 process 

(Palisade, 2016).  Negative values of the X-axis represent historical data.  Observations greater 

than zero on the X-axis are forecast velocity values.  The dark line represents mean of forecast 

velocity, the gray areas above and below the mean represent confidence intervals, and the red 

line is a sample path.  
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Figure 6.8. Velocity Time Series Distribution (@Risk™) 

 Distributions for PNW basis, DCV, futures spread, and tariff are in Figures 6.9 through 

6.13.  Histograms show clumping of historical data.  The red line shows best fit distribution to 

the data. 
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Figure 6.9. PNW Basis Distribution Fit (@Risk™) 

 

Figure 6.10. Daily Car Value Distribution Fit (@Risk™) 
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Figure 6.11. Soybean Futures Spread Distribution Fit (@Risk™) 

 

Figure 6.12. Tariff Distribution Fit (@Risk™) 
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6.4.7. Input Parameters 

 Input parameters are split into two groups: random and non-random inputs.  Random 

input parameters are either linked, or have calculations linked, to distributions in @Risk™.   

Non-random inputs are static and do not change during sensitivity analysis.  Non-random inputs 

are summarized in Table 6.8 and random input parameters are summarized in Table 6.9.  In 

Table 6.8 the returns to storage equals soybean futures spread; this is a coincidence.  In the base 

case, market carry equals $0.24 per bushel as wells as storage and interest equals $0.26 per 

bushel.  Subtracting market carry from storage and interest equals -$0.02 per bushel which is the 

same as soybean futures spread.  

Table 6.8. Random Model Inputs 

Random Inputs Input Mean Units Source 

Forecast State Velocity: 2.96 Shuttle Trains Per 

Month 

TradeWest 

Brokerage Co. 2018 

Velocity Volatility: 21% Annual Percentage 

Change 

Calculation 

Deferred PNW Basis: $0.94 Dollars Per Bushel TradeWest 

Brokerage Co. 2018 

DCV: $0.01 Dollars Per Bushel TradeWest 

Brokerage Co. 2018; 

Calculation 

Soybean Futures Spread: -$0.02 Dollars Per Bushel CBOT 208 

Deferred Tariff Rate: $1.54 Dollars Per Bushel USDA-AMS 

PNW Basis Spread: $0.26 Dollars Per Bushel Calculation 

Tariff Spread: $0.00 Dollars Per Bushel Calculation 

Market Carry: $0.24 Dollars Per Bushel Calculation 

Returns to Storage: -$0.02 Dollars Per Bushel Calculation 

Shortage Penalty: -$0.01 Dollars Per Bushel Calculation 

Salvage Value: $8.60 Dollars Per Bushel Calculation 
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Table 6.9. Non-Random Model Inputs 

Non-Random Inputs Value Units Source 

Current State Velocity: 2.9 Trains Per Months TradeWest 

Brokerage Co. 2018 

SB Bushels/Car: 3500 Soybean Bushels BNSF 2016 

Cars Per Shuttle: 110 Rail Cars BNSF 2016 

Bushels/Shuttle:  385000 Soybean Bushels Calculation 

Number of Contracts: 2 Primary Rail Contract Assumption 

Number of Months in Purchasing 

Strategy: 

3 Months Assumption 

Min # Trains: 0 Shuttle Trains Assumption 

Max # Trains: 24 Shuttle Trains Assumption 

Increase Shipping Demand due to Car 

Supply per Velocity Increase: 

2,310,000 Soybean Bushels Calculation 

Risk Free Interest Rate: 2.7% Interest Rate USDT 2018 

Loan Interest Rate: 5.0% Interest Rate Assumption 

Purchasing Strategy Maturity:  0.27 Years Calculation 

Nearby Futures: $9.67 Dollars Per Bushel CBOT 2018 

Nearby PNW Basis: $0.68 Dollars Per Bushel TradeWest 2018 

Nearby RR Tariff: $1.54 Dollars Per Bushel USDA-AMS 2018 

Elevator Margin: $0.20 Dollars Per Bushel Assumption 

Investment/Bushel: $8.62 Dollars Per Bushel Calculation 

Net Price Per Bushel Sold: $8.82 Dollars Per Bushel Calculation 

Weekly Storage Rate:  $0.01 Dollars Per Bushel Assumption 

Storage and Interest of Unsold Bushels: $0.26 Dollars Per Bushel Calculation 

 

6.5. Base Case Results 

 Monte Carlo simulation is implemented using @Risk™ to run 1,000 iterations of the 

model based on structural and stochastic variables.   Specific @Risk™ settings are shown in 

Table 6.10. 
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Table 6.10. @Risk™ Settings 

@Risk™ Specification @Risk™ Setting 

Sampling Type Latin Hypercube 

Generator Mersenne Twister 

Initial Seed Value 150,000 

Macros VBA 

 

Results of the base case, and subsequent sensitives, reflect mean values of stochastic 

simulation for a specific purchasing strategy.  RiskOptimizer™ maximizes mean NPV by 

changing the quantity of bushels to purchase.  Purchasing strategy is changed in discrete step 

sizes of 10,000 bushels.  Step sizes equivalent to a full shuttle train were not used to allow for 

flexibility in farmer deliveries on forward contracts.  Using a smaller step size also increases 

sensitivity to random variables and gives a result that possesses a higher level of accuracy.  

Constraints are set on RiskOptimizer™ to reflect a minimum purchasing strategy of zero bushels 

and a maximum strategy of 9,240,000.  9,240,000 bushels would be enough to meet a car supply 

of 24 trains over the course of three months.  24 trains are chosen because it is assumed the 

maximum a shipper can load is four trips per months per primary contract.  The base case results 

are formulated using distributions from data collected in the soybean crop marketing year of 

2015/16.   

Base case results are in Table 6.11. 
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Table 6.11. Base Case Results 

Observation Value 

Purchasing Strategy 7,150,000 

Trains Prepared for Based on Purchasing Strategy 19 

Percent of Forecast 105% 

NPV $874,873 

Standard Deviation $139,087 

Short Call Strike Velocity 3.10 

Number Short Call 463,854 

Short Call Premium 0.091 

Number Long Calls 487,218 

Long Call Premium 2.96 

 

 The optimal purchasing strategy is 7,150,000 bushels of soybeans for a shipper 

possessing two primary contracts over the course of three months (assuming initial inventory is 

zero).  This value is 105% of forecast car supply.  Forecast car supply is 2.96 trains per month 

per contract.  A purchasing strategy of 7,150,000 bushels is enough to meet a rail velocity of 3.1, 

which exceeds the forecast car supply.   

Figure 6.13 shows a payoff function for the optimal purchasing strategy which reflects a 

call spread on the option to ship.  The shuttle elevator is long 487,218 call options at a strike 

velocity of zero.  Being long 487,218 contracts at a strike velocity of zero means the elevator 

possesses the right to ship grain whenever velocity is greater than zero.  Elevator’s profit would 

increase $487,218 per one unit increase in velocity.   In Figure 6.13 the shipper has a minimum 

profit level of -$73,500 when velocity is zero.  This value reflects a moderate salvage value for 

unshipped bushels.   

 The shipper is short 463,854 call options at a strike velocity of 3.1.  This means if 

velocity is at or above 3.1, the shipper would lose $463,854 in profit per one unit increase in 

velocity.  However, the shipper still possesses 487,218 long call options at a strike velocity of 
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zero.  Therefore, the shipper’s net profit per unit increase in velocity is $23,364 when velocity is 

above 3.1.  Figure 6.13 reflects the decrease in marginal profit by flattening the payoff function 

after a velocity of 3.1.  

The payoff function in Figure 6.13 shows how a shipper’s profit would change (Y-axis) 

relative to changes in Velocity (X-axis).  The X-axis shows a possibility for velocity to be below 

zero, however this is impossible.  Velocity values below zero are depicted graphically to show 

relevance in possessing long calls with a strike velocity of zero.   

 

Figure 6.13. Base Case Payoff Function. 

 Figure 6.14 shows the probability distribution of NPV for 1,000 iterations.  Base case 

results are highly clustered between $800,000 and $1,000,000.  Standard deviation of NPV is 



 

189 
 

$139,086 and is slightly skewed to the left.  The 90% confidence interval is between $601,000 

and $1,036,000 which further demonstrates the NPV distribution skewness.   

 

Figure 6.14. Base Case: NPV Distribution (@Risk™) 

The tornado graph in Figure 6.15 ranks input variables by their effect on the mean NPV.  

PNW basis has the greatest effect followed by DCV and velocity volatility.  These are inputs 

which sensitivity analysis are conducted on later in the chapter. 
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Figure 6.15. Tornado Graph of NPV Input Effects (@Risk™) 

 Figure 6.16 is an E-V frontier of different purchasing strategies.  Strategies are reported 

as a percentage of the forecast car supply.  The X-axis represents the standard deviation of 

purchasing strategies in 100,000’s.  The Y-axis represents expected NPV of the purchasing 

strategy.  The base case purchasing strategy of 105% has a maximized mean NPV of $874,873 

and a standard deviation of $139,087.  However, a purchasing strategy of 93% has the lowest 

risk with a standard deviation of $87,251 but a mean NPV of $851,234.  A 93% purchasing 

strategy has an expected profit $23,639 less than the optimal strategy of 105%; however, risk in 

expected profit is reduced by more than $50,000. 
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Figure 6.16. E-V Frontier: Base Case 

6.6. Sensitivities 

 Variables which have the greatest effect on mean NPV of the purchasing strategy are 

PNW basis, DCV, and velocity volatility.  Sensitivity analysis is conducted by shifting the input 

means of stochastic variables.  PNW basis is an input to market carry which directly influences 

salvage value.  Market carry is equally affected through changing any one distribution for PNW 

basis, futures spread, or change in tariff.  Therefore, sensitivity analysis on market carry is 

equally explained through any one of these three variables.   

Sensitivity analysis is also conducted on DCV, which has a direct effect on stockout 

penalty; as well as velocity volatility which influences option premium.  A final sensitivity, 
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which alters transferability of the primary instrument, changes the logic of salvage value 

calculation as well as stockout penalty.  Table 6.12 summarizes the sensitivity analyses 

conducted on optimal purchasing strategy. 

Table 6.12. Rail Sensitivity Analysis Summary 

Sensitivity Variable Mean Sensitivity Analysis 

Market Carry $0.25 +/- $0.10 

Daily Car Value $0.01 +/- $0.15 

Velocity Volatility 21% 0% and 50% 

Transfer Option Non-Transferable Fully-Transferable 

 

6.6.1. Market Carry 

 Market carry affects the salvage value for grain which is carried into the next purchasing 

period.   Several variables affect market carry in this application which is comprised of PNW 

basis, soybean futures spread, and change in railroad tariff.  The combined effect influences 

market carry and therefore the incentive to store.  Market carry is compared to the cost of storage 

and interest to generate the returns to storage. 

In the base case, market carry equals $0.24 per bushel and cost of storage and interest 

equals $0.26 per bushel.  Return to storage is therefore -$0.02 per bushel.  In Figure 6.13, 

salvage value causes the profit function to be near zero if velocity were to be 0.  This is because 

market carry, $0.24 per bushel, is very close to cost of storage and interest for unshipped bushels.  

Table 6.13 shows how shifting the distribution of carry affects the optimal purchasing strategy. 
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Table 6.13. Sensitivity to Change in Carry 

Observation 

Decrease Carry 

$0.10 Base Carry 

Increase Carry 

$0.10 

Gross Market Carry $0.14 $0.24 $0.34 

Storage and Interest $0.26 $0.26 $0.26 

Returns to Storage -$0.12 -$0.02 $0.08 

Purchasing Strategy 6,670,000 7,150,000 9,240,000 

Trains Prepared for Based 

on Purchasing Strategy 

17 19 24 

Percent of Forecast 98% 105% 135% 

NPV $844,808 $874,873 $994,757 

Standard Deviation $111,397 $139,087 $494,313 

Short Strike Velocity 2.89 3.10 4.00 

Number Short Call 694,854 463,854 232,854 

Short Call Premium 0.184 0.091 0.001 

Number Long Calls 718,218 487,218 256,218 

 

Increasing market carry by $0.10 per bushel causes optimal purchasing strategy to be 

135% of the forecast velocity.  The assumption that the shipper does not forward contract 

soybeans to be delivered to PNW allows the option to ship or store to be retained by the shipper.  

When optimal purchasing strategy is 135% of forecast car supply, the shipper has the option to 

either ship excess soybeans as trains arrive or store soybeans until the next shipping period.  A 

shipper maintains this flexibility to ship or store bushels but assumes added risk of being at the 

mercy of PNW basis.  The drastic increase in purchasing strategy is due to salvage value being 

raised to levels where a shipper would benefit from both shipping or storing the grain.   Simply, 

when market carry is large and positive, a shipper would over-purchase grain relative to expected 

car supply.  If they receive more cars than expected, they simply ship.  If they do not, they store 

the extra grain and accrue earnings to storage.  Hence, the incentive to buy more grain than 

forecast car supply.  
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Similarly, if market carry decreases, there is less incentive to store and a shipper would 

purchase less soybeans.  A lower purchasing strategy creates a greater probability of not meeting 

car supply and thus not storing bushels for a loss in value. Figure 6.17 shows how shifts in 

market carry affect minimum level of profit. 

 

Figure 6.17. Purchasing Strategy Payoff: Change in Carry Relative to Base Strategy 

The green dashed line in Figure 6.17 shows that a shuttle elevator would still gain over 

$500,000 in profit if no bushels were shipped.  Decreasing market carry lowers the vertical 

discount, which exposes the shuttle elevator to more risk if they overestimate car supply and are 

forced to carry bushels into the next shipping period.  A decrease in salvage value thus 

discourages excess grain to be stored.   
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Figure 6.18 shows how NPV distribution of the base case purchasing strategy changes 

with differences in market carry.  An increase in market carry raises mean NPV and lowers the 

risk of expected profit.  Contrary, a decrease in market carry decreases mean NPV while 

increasing standard deviation. 

 

Figure 6.18. Carry Change NPV Distribution (@Risk™) 

Figure 6.19 displays the E-V frontier of different purchasing strategies under each market 

carry sensitivity.  When market carry decreases, an optimal purchasing strategy of 98% is 

relatively close to the least risky strategy of 92% with very little difference in expected profit or 

risk.  When market carry increases, optimal purchasing strategy gains $400,000 in risk to gain 

$133,000 in expected profit.  Added benefit to risk parameter in this situation is very low and 

should be considered before an optimal purchasing strategy is made. 
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Figure 6.19. E-V Frontier: Market Carry 

6.6.2. Sensitivity: Daily Car Value (DCV) 

Daily car value (DCV) reflects the market value of excess shuttle trains on the secondary 

rail market.  DCV represents stockout penalty in this application.  If a shipper underestimates rail 

velocity, car supply would be greater than inventory.  When this happens, a shipper would sell 

excess rail cars into the secondary market at either a premium or discount.  The base case 

example has DCV at $31/car or about $0.01/bushel.  A premium or discount affects the number 

of short calls.  When there is no stockout penalty, the number of short calls is equal to the 

number of long calls.  When the two values are equal, slope in profit is flat.  The base case of 
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$0.01/bushel acts as a negative stockout penalty.  A negative stockout penalty reduces the 

number of short calls and causes net profit of unmet car supply to be slightly increasing.   

Sensitivity on DCV shifts the mean value to a negative $0.14 per bushel and a positive 

$0.16 per bushel as shown in Table 6.14. 

Table 6.14. Change in DCV 

Observation 

Decrease DCV 

$0.15/Bu Base DCV 

Increase DCV 

$0.15/Bu 

DCV $/Bu -$0.14 $0.01 $0.16 

DCV $/Car -$494 $31 $556 

Purchasing Strategy 7,540,000 7,150,000 0 

Trains Prepared for Based 

on Purchasing Strategy 

20 19 0 

Percent of Forecast 110% 105% 0% 

NPV $848,940 $874,873 $1,094,446 

Standard Deviation $188,820 $139,087 $813,682 

Short Strike Velocity $3 $3 $0 

Number Short Call 810,354 463,854 117,354 

Short Call Premium 0.046 0.091 2.958 

Number Long Calls 487,218 487,218 487,218 

 

A decrease in DCV from $31/car to -$494/car results in a large stockout penalty.  A large 

stockout penalty increases the number of short calls which decreases overall profit level when 

car supply is not met as shown by the red dashed line in Figure 6.20.  When DCV decreases, 

optimal purchasing strategy increases to 110%; however, expected profit decreases by $25,900.  

This occurs due to a high stockout penalty, i.e., selling cars at a discount, which increases 

number of short calls by 346,500 while number of long calls stays the same.  An increase in short 

call options causes net profit gained after a strike velocity of 3.1 to decreases to a negative 

$323,136.  The red dashed line in Figure 6.20 shows this change in slope.  Simply put, when 
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DCV becomes negative; the shipper will purchase more bushels to avoid incurring a stockout 

penalty. 

 

Figure 6.20. Purchasing Strategy Payoff: Change in DCV Relative to Base Case 

Alternatively, an increase in DCV reduces the number of short calls and results in a profit 

increase when car supply is not met.  When supply is not met the shipper makes money by 

selling their primary instrument into the secondary market, despite not having inventory to sell.  

The shipper thus sells excess rail cars for a profit.  In Table 6.14, optimal purchasing strategy is 

reduced to zero when DCV increases by $0.15/bushel.  The shipper intends to sell all shuttle 

trains which arrive into the secondary market for spot DCV and make more money on selling 

freight than shipping grain. 
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Figure 6.21 shows how the NPV distribution of the base case purchasing strategy changes 

with differences in DCV.  An increase in DCV increases mean NPV and increases standard 

deviation.  The increase in standard deviation is caused from instances of stockout resulting in 

higher profit and thus widening the distribution to the right.  A decrease in DCV lowers mean 

NPV and lowers standard deviation.  When DCV is lower, instances of stockout have a great 

negative effect on profit and narrow NPV distribution to the left. 

 

Figure 6.21. DCV Change: NPV Distribution (@Risk™) 

 The E-V frontier in Figure 6.22 shows different purchasing strategies under each DCV 

sensitivity.  A decrease in DCV has an optimal purchasing strategy which is maximized near the 

upper left of the frontier.  If DCV decreases and the shipper were to decreases their purchasing 

strategy to 0%, they would have a mean NPV of negative $964,513.  A negative expected profit 
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occurs because all shuttle trains are sold into secondary market and the shipper must pay other 

entities to take all shuttle trains.    

When DCV increases, mean NPV is maximized to the upper right of the frontier with a 

purchasing strategy of 0% and a high level of risk.  Not only is added benefit to risk ratio .2, but 

the frontier is flipped relative to the base case.  A flipped frontier means a decrease in purchasing 

strategy along the frontier causes an increase in expected profit. 

 

Figure 6.22. E-V Frontier: Daily Car Value 

6.6.3. Sensitivity: Velocity Volatility 

 Velocity volatility affects the riskiness of how many shuttle trains will arrive per month.  

Increasing velocity volatility adds uncertainty to car supply.  This uncertainty greatly impacts the 
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expected profit of a shipper’s purchasing strategy.  Unlike the previous two sensitivities, 

changing velocity volatilely does not affect the shape of the payoff function.  However, it does 

have a great impact on standard deviation of NPV as well as short call premium.   

Table 6.15 shows how changing velocity volatility affects NPV of the purchasing 

strategy. 

Table 6.15. Sensitivity to Velocity Volatility 

Observation Decrease Volatility Base Volatility Increase Volatility 

Velocity Volatility 0.00 0.21 0.50 

Purchasing Strategy 7,010,000 7,150,000 7,340,000 

Trains Prepared for Based 

on Purchasing Strategy 

18 19 19 

Percent of Forecast 103% 105% 107% 

NPV $904,257 $874,873 $795,878 

Standard Deviation $108,419 $139,087 $234,899 

Short Strike Velocity 3.04 3.10 3.18 

Number Short Call 463,854 463,854 463,854 

Short Call Premium 0.043 0.091 0.228 

Number Long Calls 487,218 487,218 487,218 

 

Table 6.15 shows if velocity volatility decreases to zero, the optimal purchasing strategy 

decreases, expected profit increases, and the standard deviation decreases. Simply, if there is no 

risk in velocity, a shipper has a high degree of certainty in the number of shipments.  As a result, 

the shuttle elevator would buy fewer bushels.  A lower purchasing strategy of 103% would have 

an increase in expected profit and a decrease in standard deviation.   

When velocity volatility increases, the purchasing strategy increases to compensate for 

the added risk of stockout.  The NPV decreases even though the purchasing strategy increases 

because an increase in velocity volatility increases short call premium which reflects the 

likelihood of incurring a stockout.  A shipper would increase its purchasing strategy to increases 
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strike velocity of short calls which has a lower option premium.  Even so, a velocity volatility of 

.5 causes option premium to be more than double that of base case. This increase in call premium 

increases the effect of short calls on NPV and thus lowers NPV even though the purchasing 

strategy is increased.   

Figure 6.23 shows how the NPV distribution of base case changes with differences in 

velocity volatility.  An increase in velocity volatility decreases mean NPV and increases standard 

deviation.  Alternatively, when velocity volatility decreases, mean NPV increases and standard 

deviation decreases.  The NPV distribution is negatively skewed, so a decrease in standard 

deviation narrows the distribution to the right and increases mean expected profit. 

 

Figure 6.23. Velocity Volatility Change: NPV Distribution (@Risk™) 
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 The E-V frontier in Figure 6.24 show different purchasing strategies under each velocity 

volatility.  The E-V frontier for a decrease in velocity volatility causes the frontier to shift up and 

to the left.  Expected profit is both higher and has a lower standard deviation.  Conversely, a 

higher velocity volatility shifts down and to the right.  Expected profit thus decreases with an 

increase in standard deviation.  The E-V frontier further supports why an increase in purchasing 

strategy causes a decrease in NPV when velocity volatility increases. 

 

Figure 6.24. E-V Frontier: Velocity Volatility 

6.6.4. Sensitivity: Transfer Option 

 Transferability of the primary rail instruments play a key role in both salvage value and 

stockout penalty for a shipper.  The base case model assumes a shipper can sell unused cars into 
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the secondary market but does not possess the option to purchase additional secondary cars if 

they want to continue to ship.  There are two sensitivities in this section: the first sensitivity 

which does not allow any transferability of the primary instrument, and a second which grants a 

shipper the right to both buy and sell secondary rail shuttles.   

The first sensitivity shows how the payoff function changes when the primary rail 

instrument is non-transferable.  Some railroads do not give primary contract holders the ability to 

buy or sell secondary shuttles.  Shippers in this situation have limited options to: cancel primary 

contract in its entirety, buy spot bushels at an inflated value, or pay demurrage fees in dollars per 

car per day.  Cancelling a primary contract will cancel all subsequent shuttle shipments; shippers 

normally do not choose this option and therefore it is not considered a viable option (Landman 

2017).  The other two options are to buy spot bushels or pay demurrage fees.  When elevators 

run out of grain they may buy bushels at an inflated price less than or equal to potential 

demurrage fees.  Demurrage fees for BNSF railroad equal $75 per car per day which is just over 

$0.02 per bushel per day (BNSF 2018b).  The number of days a shuttle train may sit in 

demurrage follows a Pearson VI distribution with a mean of 7.6 days and standard deviation of 

1.9 (Wilson et al. 2004).  The amount an elevator would pay in addition to spot price varies with 

expected amount of demurrage.  Therefore, the sensitivity when the primary instrument is non-

transferable only evaluates stockout penalty due to demurrage fees when a shipper runs out of 

bushels and does not have the option to transfer rail ownership.   

The distribution specification for number of days in demurrage is shown in Table 6.16 

(Wilson et al. 2004).  
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Table 6.16. Days of Demurrage Distribution (Wilson et al., 2004) 

Variable Distribution Function Mean Standard Deviation 

Days of 

Demurrage 

Pearson VI RiskPearson6 

(280,17.61,0.45) 

7.6 1.9 

 

The stockout penalty under the first sensitivity is calculated as shown in equation (6.18): 

 Λ𝑏 = 𝛿𝑑 ∗ 𝑓𝛿,𝑏 (6.18) 

where: 

 Λ𝑏  = shortage penalty per bushel of unmet car supply 

 𝛿𝑑  = days of demurrage 

 𝑓𝛿,𝑏  = demurrage fee per bushel per day. 

The second sensitivity considers full transferability of the primary instrument which 

gives a shipper the option to purchase secondary cars at spot DCV in addition to selling surplus 

cars in secondary markets.  This option affects salvage value of the CCI model by adding a logic 

function into salvage value calculation as shown in equation (6.19): 

 Γ𝑏 = 𝐼𝑏 + max(𝐶𝑀𝑎𝑟𝑘𝑒𝑡 − 𝐶𝐶𝑜𝑠𝑡, −𝐷𝐶𝑉𝑏) (6.19) 

where: 

Γ𝑏  = salvage value per bushel 

𝐼𝑏  = investment per bushel 

𝐶𝑀𝑎𝑟𝑘𝑒𝑡 = market carry in dollars per bushel 

𝐶𝐶𝑜𝑠𝑡  = cost of carry in dollars per bushel 

𝐷𝐶𝑉𝑏  = daily car value in dollars per bushel. 

DCV per bushel is negative because a negative DCV indicates that the shipper would receive a 

premium when purchasing rail cars from secondary markets if they are currently selling at a 

discount.   
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Table 6.17 shows optimal purchasing strategy results from the two transfer option 

sensitivities relative to the base case.   

Table 6.17. Sensitivity: Transfer Option 

Observation 

Primary 

Instrument Non-

Transferable Base Case 

Primary 

Instrument Fully-

Transferable 

Option to Buy Spot 

Secondary Shuttles 

No No Yes 

Option to Sell Spot 

Secondary Shuttles 

No Yes Yes 

Purchasing Strategy 7,550,000 7,150,000 9,240,000 

Trains Prepared for Based 

on Purchasing Strategy 

20 19 24 

Percent of Forecast 110% 105% 135% 

NPV $845,099 $874,873 $993,054 

Standard Deviation $196,499 $139,087 $273,644 

Short Call Strike Velocity 3.27 3.1 4 

Number Short Call 862,764 463,854 237,637 

Short Call Premium 0.046 0.091 0.001 

Number Long Calls 487,218 487,218 261,001 

 

Table 6.17 shows optimal purchasing strategy increases to 110% when the primary 

instrument is non-transferable and increases to 135% when the option is fully-transferable.  

Optimal purchasing strategy increases in both instances; however, the reasons for an increase are 

quite different.    

The purchasing strategy increases when the primary instrument is non-transferable due to 

a high stockout penalty which increases the number of short calls to 862,764.  The high stockout 

penalty is because the shipper will pay demurrage fees with certainty if they run out of inventory. 

Simply, if the shipper is certain of incurring a stockout penalty, the shipper will purchase more 

bushels to ensure a stockout doesn’t happen.  An increase in number of short calls increases the 

negative effect of short call element in the CCI model.  A shipper thus increases purchasing 
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strategy to lower the effect of short call element and increase mean NPV to $845,099 which is 

still almost $30,000 lower than base case. 

When primary instrument is fully-transferable, the purchasing strategy increases to 135% 

due to an increase in mean salvage value relative to base case.  Option to ship or store excess 

bushels causes salvage value to increase relative to bases case.  Increase occurs because a shipper 

can now maximize salvage value by either shipping or storing the excess bushels until the next 

shipping period; whichever option returns a greater return.   

The orange dashed line in Figure 6.25 shows how the increase in salvage value increases 

vertical shift of long call option payoff when primary instrument is fully-transferable.  

Purchasing additional bushels would further increase vertical shift which is why a shipper would 

choose to max out inventory and purchases 135% of forecast car supply.  The green dashed line 

shows how demurrage fees cause a negative slope of profit when shipping demand due to car 

supply is greater than purchased bushels.  The green dashed line further shows why a shipper 

would want to purchase more bushels to increase their short call strike and lower their 

probability of experiencing a stockout.  
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Figure 6.25. Purchasing Strategy Payoff: Option to Buy Secondary Cars 

The pie chart in Figure 6.26 compares which option returns the highest salvage value 

when primary instrument is fully-transferable.  Buying spot secondary cars is the best strategy 

48% of the time under base case price distributions.   
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Figure 6.26. Shuttle Elevator’s Best Option: Purchase Secondary Cars or Store 

In Figure 6.27 the NPV distributions of both sensitives are compared to the base case 

strategy. When primary instrument is fully-transferable, expected profit increases by $47,500 and 

risk is reduced by over $63,000.  When the primary instrument is non-transferable, the expected 

profit decreases close to $40,000 but the standard deviation also decreases by $16,000.  Standard 

deviation decreases because a shipper now has certainty in experiencing a positive stockout 

penalty when car supply is not met.  This certainty also causes the NPV distribution to move 

closer to normal which further explains why a decreased standard deviation would result in a 

lower expected profit level relative to the negatively skewed base case. 
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Figure 6.27. Option to Purchase Secondary Cars: NPV Distribution (@Risk™) 

The E-V frontier in Figure 6.28 shows expected profit and risk of different purchasing 

strategies under the transfer option sensitivity.  When the primary contracts are fully-

transferable, every point on the E-V frontier has a higher mean NPV than the bases case.  

Furthermore, a fully-transferable contract is the only scenario where least risky purchasing 

strategy occurs above 100% of forecast car supply.  When the primary instrument is non-

transferable, the E-V frontier shifts down and to the left.  Expected profit also decreases rapidly 

when the purchasing strategy is decreased.  This occurs because there is a higher certainty of 

experiencing a stockout and incurring demurrage fees. 
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Figure 6.28. E-V Frontier: Option to Purchase Secondary Rail Cars 

6.7. Conclusion 

 Shuttle elevators with primary rail contracts have several risks to consider when 

developing a grain purchasing strategy.   Sources of uncertainty arise from the market spread of 

soybeans, changes in secondary rail car values, and fluctuation in velocity.  Shuttle elevators are 

left with the task of developing an optimal purchasing strategy which would maximize their 

expected profit. 

This chapter applies the contingent claim inventory (CCI) model as developed by Stowe 

and Su (1997) to aid shuttle elevators in developing an optimal purchasing strategy.  Real option 

methodology is used to value uncertainty in velocity, which is the demand to ship grain due to 
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car supply.  A shipper gains the right to ship grain when bushels are purchased.  A shipper also 

loses the right to ship grain if he/she runs out of inventory when velocity increases beyond short 

exercise velocity. This relationship results in a call spread.   

Base case results use data from soybean crop marketing year of 2015/16 when relatively 

stable market conditions existed.  The optimal purchasing strategy from base case shows that an 

elevator should purchase 5% more bushels than forecast velocity to account for volatility in car 

supply.   

Sensitivities on the input parameters of market carry, daily car value, and velocity 

volatility change the optimal purchasing strategy in predictable ways.  An increase in market 

carry by $0.10 causes the shipper to max out their storage capacity and purchase 135% of 

forecast car supply.  In this situation, a shipper possesses the right to either ship bushels for their 

marginal value or store bushels and collect carry.  Either way, a shipper would make money, and 

thus encourages an excessive purchasing strategy.  When DCV is increased by $0.15, the optimal 

purchasing strategy was to not buy any bushels and sell all available shuttle trains into the 

secondary market for a profit.  This strategy is profit maximizing but is also very risky.  

Changing velocity volatility from 21% to 50% causes the elevator to purchase more bushels to 

avoid possibility of stockout but will also decrease the expected profit.   

A fourth sensitivity focused on transferability of the primary instrument.  When the 

primary instrument is non-transferable, the optimal purchasing strategy increases to 110% and 

expected profit decreases.  Conversely, when primary instrument is fully-transferable, expected 

profit increases and the risk is reduced substantially. 

 The overall result from this analysis is that due to uncertainties, from numerous sources, 

shippers would buy more grain than forecast need.  This is not an obscure idea in grain trading 
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and marketing.  Indeed, processors would routinely buy or store more grain than needed; growers 

would normally under-hedge their production in anticipation of random yields (Blank et al. 

1991; McKinnon 1967); traders would under hedge their position, or offset it with an option 

strategy, if they anticipate counterparty risk; among other examples.  In all these cases there is 

some type of uncertainty and it affects a risk mitigation decision.  In this case, there are several 

uncertainties and the shipper would appropriately respond in most cases by either overbuying or 

assuring he/she has more grain available than expected car supply.  Hence, in this application, 

excess inventory of grain can be viewed as a real option. 

Implications of the model developed in this application provide shippers a tool which 

aids in formulating an optimal grain purchasing strategy.  Stochastic simulation and optimization 

enable managers to see possible outcomes based on distribution of PNW basis, futures spread, 

changes in rail tariff, daily car values, and velocity.  The purchasing strategy is adjusted to 

maximize expected profit of the shipper; however, a shipper should also evaluate the E-V 

frontier of different strategies.  Sensitivities are run on the model to account for a shipper’s bias 

to market values to see how they should adjust their grain purchasing strategy. 
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CHAPTER 7. CONCLUSION 

7.1. Review of Problem 

Issues in inventory management have been around since before 600 B.C. (Kokukula and 

Papudesu 2006).  Holding too much inventory ties up capital and accrues storage and interest 

while not having enough may lead to company shutdown and foregone profits.  In recent times, 

Just-in-Time manufacturing (JIT) concepts and lean production have moved industries towards 

inventory strategies which hold zero buffer stocks (Ballou [1973] 1992; Jacobs and Chase [2008] 

2017).  In commodity marketing industries, there are important differences including those 

related to uncertainties in supply and demand, logistical performance and costs, as well as 

margins; all of which play a major role in inventory strategy.  Whether it is wheat in flour 

milling, urea in fertilizer merchandising, or shipping soybeans via rail; effective inventory 

management and purchasing strategies play a key role in profitability. The methodology 

developed by Stowe and Su (1997) evaluates the real option to operate embedded in holding 

excess inventories.  In this thesis, this methodology along with stochastic binomial real options, 

has been applied to three industry applications to develop optimal strategies which maximize 

expected profit. 

7.2. Review of Procedures 

In Chapter 2 inventory management and real options were explained to develop an 

adequate background for addressing the problem.  Relevant literature in both areas was presented 

to identity the significance of inventory strategy and the role real options play in decision 

making. Chapter three provided the theoretical framework of the procedures used in this thesis 

paper.  
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The methodology developed by Stowe and Su (1997) maps the payoff function of 

inventories as a call spread combined with discounted net salvage value and initial inventory 

value.  The value of both long and short call options was calculated using stochastic binomial 

real option valuation techniques similar to Churchill (2016) and Landman (2017).  The model 

was simulated using Monte Carlo simulation and optimized using RiskOptimizer™.  

RiskOptimizer™ would change the strategy until expected profit was maximized. 

7.3. Review of Results 

Chapters 4, 5, and 6 were independent applications of contingent claims inventory (CCI) 

analysis in agricultural related industries.  Chapter 4 addressed optimal purchasing strategies for 

a processor which milled wheat into flour and byproducts.  Chapter 5 applied this methodology 

to the fertilizer industry and used competitive arbitrage pricing to address uncertainties of margin 

and demand.  Chapter 6 applied the methodology to develop a three-month purchasing strategy 

for a bulk soybean shipper using primary rail contracts. 

7.3.1. Wheat Flour Mill Results and Sensitivities 

In chapter 4 a representative flour mill would utilize a purchasing strategy of 120% 

expected demand which would be replenished at the end of each processing month.  This 

strategy is a result of large margins and a relatively low storage and interest cost. When the 

futures market is in backwardation, the optimal purchasing strategy was still 114% of expected 

milling demand.   Though the optimal inventory strategy was reduced due to the inverse, it is still 

large and is s attributed to the high convenience yield in maintaining stocks when margins are 

high (Working 1949). 

The current extraction rate behavior has little effect on optimal purchasing strategy; 

however, if it were to increase in standard deviation even a marginal amount, there would be 
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major impacts on the flour milling industry.  The current extraction rate of flour from hard red 

winter wheat has a standard deviation of only 0.8% (USDA-ERS 2019).  When the standard 

deviation is reduced to 0%, the optimal purchasing strategy is reduced only .5%; however, when 

the standard deviation is increased to 3%, the optimal purchasing strategy increases to 125.8% of 

expected milling requirements. 

7.3.2. Urea Merchandizing Results and Sensitivities 

Fertilizer is the unique application of the thesis in which demand is very lumpy.  If 

fertilizer demand is overestimated, the storage and interest costs associated with caring inventory 

until the next purchasing period are relatively high.  This causes the base case purchasing 

strategy to be only 102.9% of forecast demand.   

Competitive arbitrage pricing was implemented in the application.  The base case 

assumes the representative fertilizer location would maintain a minimum of 30% market share 

from any competitive region.  When minimum market share was decreased from 30% to 20%, 

the purchasing strategy increased to 107.6% of expected demand; however, the total purchasing 

quantity decreased because expected demand is lower when a county centroid is competing for 

less market share.  The merchant is also able to charge a higher price for their fertilizer which 

increases expected margin and the probability of a positive profit. 

Currently, the only futures hedging instrument in urea is a urea Swap Futures contract 

which is based off the spot price at the US Gulf.  This is far from a perfect hedging instrument 

but may be used for a hedge over a longer duration of time.  If the county centroid uses a 

hedging mechanism, they would take an equal and opposite position by selling Swap Future 

contracts and applying any gains or losses from the Swap Futures contract to their net revenue 

from selling cash urea.  They would also need to consider the spread of urea Swap Futures 
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contracts for any fertilizer which was not sold.  The spread of urea Swap Futures contracts in the 

spring of the year is generally highly inverted.  The inversion decreases the net salvage value 

which would decrease the optimal inventory strategy ceteris paribus (Stowe and Su 1997).  

Implementing the hedging instrument reduced the risk by 90% and increased positive expected 

profit to 95% of the time.  However, due to the seasonal trend of Swap Futures spread, and its 

effect on net salvage value, the optimal purchasing strategy was reduced to 98.6% of expected 

demand, i.e., the country centroid would purchase less fertilizer than expected demand to avoid 

an inverted Swap Future spread as well as high storage and interest cost effects on net salvage 

value for any unsold urea. 

7.3.3. Bulk Soybean Shipper Results and Sensitivities 

The representative shipper in Chapter 6 was that of a shuttle elevator located in interior 

markets who ships soybeans via rail to terminal markets located on the coast.  The shipper must 

develop a three-month purchasing strategy of soybeans under uncertainties in both car supply 

and margin.  The shipping demand due to rail car supply is directly dependent on the 

performance of the railroad measured in velocity of total trips per month.  The shipper is also 

susceptible to uncertainties in margin which result from terminal market basis spread, futures 

market spread, secondary market daily car value (DCV), and changes in tariff rate.  Under base 

case assumptions and distributions, the optimal purchasing strategy occurred at 105% of 

expected shipping demand due to car supply.   

Changes in futures market spreads, the carry in the market, have a great impact on the 

salvage value of unshipped soybeans.  When the soybean futures market is inverted, the optimal 

purchasing strategy dropped to 95%, i.e., the shipper would buy less soybeans than forecast car 

supply because storing any unshipped bushels would lose more value than the foregone profits 
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from stocking out.  Contrary, when the spread in the futures market increases, i.e., there were 

great returns to storage, the shipper would max out their storage capacity and purchase 135% of 

forecast car supply.  In this situation the shipper gains money from shipping soybeans but also 

gains money from storing soybeans until the next shipping period. 

The secondary market daily-car-value (DCV) represented the price which the elevator 

could transfer any unused shuttle trains to another market participant.  DCV acted as a stockout 

penalty to transfer any trains which arrive when the shipper ran out of soybean inventory; 

however, a positive DCV would act as a negative salvage value which meant profit would 

continue to increase if a stockout occurred.  When DCV was decreased by $0.15 per bushel the 

optimal purchasing strategy increased to 110% of forecast car supply.  When DCV was 

increased, the optimal purchasing strategy was reduced to 0% of forecast car supply.  A 0% 

purchasing strategy occurs because it would be more profitable to sell all primary rail trains into 

the secondary market than assume the risk of purchasing soybeans to ship. 

The performance of the railroad, measure in velocity, dictates how many shuttle trains 

arrived each month.  A change in velocity volatility would affect the uncertainty in car supply 

and thus the riskiness of expected profit. When velocity volatility increased, the optimal 

purchasing strategy increased to 107% of forecast car supply.  An increase in purchasing strategy 

would be used as a real option to hedge against the increased volatility of car supply.   

The final sensitivity on a bulk shipper dealt with the transferability of the primary 

instrument.  In the base case, the shipper was only allowed to sell any unused shuttle trains into 

the secondary market.  The shipper was not given the option to purchase additional secondary 

rail cars if buying secondary rail cars to ship grain returned a greater profit than storing excess 
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bushels.  Granting the shipper this option increased the purchasing strategy to 135% of forecast 

car supply and increased expected profit by 12.7%. 

7.3.4. Generalization of Results 

In several cases of agricultural marketing there are an array of uncertainties in demand 

and margins.  The factors impacting demand and margin will remain volatile, but inventory 

choice and targets are a management decision.  If managers become short inventory they would 

forgo margin and possibly accrue stockout penalties.  If managers have excess inventory they 

would accrue storage and interest costs.  This thesis provides the framework of contingent claims 

inventory (CCI) analysis which may aide in this crucial management decision.  CCI analysis 

finds, in most cases, that it is optimal to carry excess inventory because inventory holds a real 

option on the ability to operate.  Sensitivity analysis finds the optimal level of inventory varies 

with demand volatility, net salvage values, margins, and possible stockout penalties.  There are a 

number of commonalities among these applications, including: 

• Increasing volatility in supply or demand increases the optimal inventory strategy. 

• As net salvage values increase the optimal inventory strategy increases. 

• Increased margins increase the optimal inventory strategy and make the optimal 

strategy less sensitive to changes in other aspects of inventory management. 

• An addition of stockout penalties increase optimal inventory strategy.  

Inventory management becomes very complex when factors relating to supply and 

demand as well as margins are considered.  A real option on inventory using CCI analysis helps 

value strategies under ever changing market conditions.  Stochastic simulation and optimization 

aide in developing a strategy which maximizes expected profit while also accounting for risky 



 

220 
 

distributions of random inputs.  CCI analysis using stochastic binormal real option models serves 

as an effective tool which may be utilized in strategic supply chain management decisions. 

7.4. Contributions to Literature 

The idea of applying financial theory to inventory management decisions started at the 

end of the 1980s when Kim and Chung (1989) applied a capital asset pricing model (CAPM) as 

an alternative to the profit maximization approach.  Stowe and Su (1997) use the Black-Scholes 

(1973) model in a contingent claims approach.  Goel and Gutierrez (2006) were one of the first 

to apply Monte Carlo Simulation and convenience yield.  In more recent times, studies have 

become continuously more interested in the contingent claims approach and the different 

valuation methods in which it is accomplished (Shi et al. 2011; Chang et al. 2015; Li and 

Arreola-Risa 2017). 

This thesis is an application of Stowe and Su (1997) paper which models inventory as a 

real option on the ability to operate.  This thesis applies stochastic binomial real options to 

capture uncertainties in margin as well as supply and demand.  The real option valuation 

techniques are extensions of Landman (2017) and Churchill (2016) in capturing uncertainties in 

the forecast underlying state variable and changing volatility. 

This thesis applies real option premiums in a different way than previous literature.  Real 

option techniques used in this paper use demand as the underlying state variable rather than an 

asset with monetary value.  The term keyed “option demand premium” is used as a proxy for 

demand uncertainty with relation to time-value and volatility.  Bhattacharya and Wright (2005) 

extend real options in a similar way through valuing human capital which does not explicitly 

hold monetary value.  Option demand premium, when combined with Stowe and Su’s contingent 

claim inventory model, results in a net present value (NPV) which is used to evaluate strategy.  
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This is possible because the number of options in Stowe and Su’s paper represent the slope of 

increased revenue per increase in the underlying state variable.  Multiplying the number of 

options, which have monetary meaning, by an option demand premium, which is discounted for 

time value, outputs a value which represents expected value of the real option embedded in 

holding inventory.  

7.5. Limitations 

The results found in this thesis follow the theoretical framework of Stowe and Su (1997). 

However, there are assumptions made in this thesis which may be disputable by industry firms 

and should be accounted for before key management decisions are made.   

In wheat, it is assumed all flour produced forward contracted at the beginning of the 

purchasing month.  In reality, flour is contracted through out time with varying contract terms in 

regard to time, quantity, delivery, among other specifications. 

In fertilizer, aggregate demand for urea is assumed to follow an aggregate trendline for 

each individual county.  However, aggerate demand is susceptible to shifts in crops planted due 

to broken crop rotations and changes in application rate.  The assumption that commercial 

trucking costs are $0.60 per mile in the current environment is arguably unrealistic (Rolf 2019); 

however, the high assumption was needed to generate results that adequately satisfied 

competitive arbitrage pricing.   

In rail shipments, there are a few key assumptions which need to be taken lightly.  First, 

most country shuttle elevators handle more commodities than only soybeans.  Secondly, this 

application assumes all soybean deliveries are forward contracted.  In reality, the randomness in 

farmer spot deliveries should also be considered.  Finally, interior market shuttle elevators 

generally have other options in terminal markets than just the Pacific Northwest.  
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7.6. Further Research 

This thesis provides the framework for many areas of further research in inventory 

management using contingent claims inventory (CCI) analysis paired with stochastic binomial 

real option valuation.  Extensions and further research may also be conducted on the applications 

in this thesis through the following ways:  

• In wheat, the application assumes a stockout penalty could occur that may reflect the 

need to reroute flour.  Many companies own multiple facilities throughout the United 

States.  Therefore, an application may be developed which encompasses the option to 

switch contract fulfilment to an alternative location which would thus lower the need 

for buffer stocks. 

• For fertilizer, competitive arbitrage pricing may be extended to encompass not only 

county centroids, but also Canada-USA boarder points and USA domestic fertilizer 

plants (Wilson et al. 2014).  Further research may be required to acquire a better 

hedging instrument for urea.  Research into a better hedging instrument which 

follows interior market prices would help further lower the risk in fertilizer 

merchandizing.  The current relationship between interior country centroids and urea 

Swap Futures is lagged which cause poor correlation when first difference.  The poor 

relationship would make short term hedging ineffective (Bland et al. 1991). 

• As stated in Chapter 6 for rail shipments, to properly assess a one-year primary rail 

contract, an MRP model should be built to encompass 12 months of shipping.  

However, this type of extension, given the complexity of the existing application, 

becomes strenuous on Monte Carlo simulation and optimization using current 

software packages.  The application could also be extended account for multiple 
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terminal locations which would offer competitive bidding.  Select sensitives in rail 

shipping suggest a nil purchasing.  This strategy may have effects which are not 

accounted I the model which pertain to customer relationships and ethics. 

From a risk perspective, there are several areas which could be either improved or 

extended:   

• Value at Risk (VaR) could be implemented to address a minimum expected profit 

with a certain degree of confidence.   

• This thesis correlates stochastic variables using Spearman Rank Order Correlations.  

Research has found that using a Copula may accomplish results which capture risk in 

a way which may outperform conventional correlation matrixes (Durrleman et al. 

2000).  At best, Copula’s may also be used as tool which proves how robust results 

are based on correlation matrices.   

• Inventory strategies may be compared using stochastic dominance rather than simply 

maximizing mean expected profit.   

• Stochastic efficiency with respect to a function (SERF) may be used to determine the 

worth of switching from one strategy to another under the same market conditions. 

From a policy prospective, this model could be used to capture the effects of foreign trade 

policy on U.S. ending stocks.  The nature of this model, which views volatility as a forward 

calculation on random forecasts, captures several different scenarios on what could happen given 

a certain trade policy.  Sensitives on the model can be run to see how adjustments to the trade 

policy, eg., how many metric tons of soybeans China pledges to import from the United States, 

would change the level of either supply and demand as well as its distribution. 
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APPENDIX A. DETRENDED EXTRACTION RATE (OLS) 

Regression Statistics 
    

Multiple R 0.78367 
    

R Square 0.614139 
    

Adjusted R Square 0.600834 
    

Standard Error 0.007739 
    

Observations 31 
    

      

ANOVA 
     

  df SS MS F Significance F 

Regression 1 0.002764 0.002764 46.15668 1.85E-07 

Residual 29 0.001737 5.99E-05 
  

Total 30 0.004501       

      

  Coefficients Standard Error t Stat P-value 

Intercept 0.738633 0.002714 272.167 5.74E-51 

Time T 0.001056 0.000155 6.793871 1.85E-07 
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APPENDIX B. ST. LOUIS INSTRUMENT VARIABLE (OLS) 

Regression Statistics 
    

Multiple R 0.973514 
    

R Square 0.947729 
    

Adjusted R Square 0.946961 
    

Standard Error 17.03375 
    

Observations 70 
    

      

ANOVA 
     

  

df SS MS F 

Significance 

F 

Regression 1 357729.7 357729.7 1232.919 2.61E-45 

Residual 68 19730.11 290.1486 
  

Total 69 377459.8 
   

      

 
Coefficients 

Standard 

Error t Stat P-value 

Intercept -22.6792 10.27033 -2.20822 0.030604 

South East Spot (Florida) 1.028668 0.029296 35.11294 2.61E-45 
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APPENDIX C. NORTHERN PLAINS INSTRUMENT VARIABLE (OLS) 

Regression Statistics 

Multiple R 0.936942 

R Square 0.877859 

Adjusted R Square 0.875951 

Standard Error 33.65248 

Observations 66 

ANOVA 

df SS MS F Significance F 

Regression 1 520930 520930 459.9865 6.37E-31 

Residual 64 72479.34 1132.49 

Total 65 593409.4 

Coefficients Standard Error t Stat P-value 

Intercept 116.66 16.55255 7.047859 1.53E-09 

NOLA Spot 1.188751 0.055427 21.4473 6.37E-31 
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APPENDIX D. PNW INSTRUMENT VARIABLE (OLS) 

Regression Statistics     

Multiple R 0.75     

R Square 0.56     

Adjusted R Square 0.56     

Standard Error 0.28     

Observations 193.00     

ANOVA      

  df SS MS F Significance F  

Regression 1.00 18.63 18.63 244.71 0.00 

Residual 191.00 14.54 0.08   

Total 192.00 33.17    

  Coefficients Standard 

Error 

t Stat P-value 

  

Intercept 0.26 0.06 4.33 0.00  

TR_Basis_PNW 0.85 0.05 15.64 0.00  



 

234 
 

APPENDIX E. DAILY CAR VALUE INSTRUMENT VARIABLE (OLS) 

Regression Statistics     

Multiple R 0.93     

R Square 0.86     

Adjusted R 

Square 

0.86 

    

Standard Error 449.55     

Observations 184.00     

ANOVA      

  df SS MS F Significance F 

Regression 1.00 227340375.58 227340375.58 1124.91 0.00 

Residual 182.00 36781461.08 202095.94   

Total 183.00 264121836.65    

  Coefficients Standard Error t Stat P-value  

Intercept 35.25 38.79 0.91 0.36  

TR_DCV 0.92 0.03 33.54 0.00  
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APPENDIX F. DISTRIBUTION FITS (@RISK™) 

@Risk™ Distribution Distribution Description 

RiskBetaGeneral(alpha1,alpha2, 

 minimum,maximum) 

beta distribution with defined minimum and 

maximum, and shape parameters alpha1 and alpha2 

RiskExpon(beta) exponential distribution with mean beta 

RiskExtvalue(alpha,beta) extreme value (or Gumbel) distribution with location 

parameter alpha and scale parameter beta 

RiskExtValueMin(alpha, beta)  extreme value min distribution with location 

parameter alpha and shape parameter beta 

RiskGamma(alpha,beta) gamma distribution with shape parameter alpha and 

scale parameter beta 

RiskInvGauss(mu,lambda) inverse gaussian (or Wald) distribution with mean mu 

and shape parameter lambda 

RiskKumaraswamy(alpha1,alpha2, 

minimum,maximum) 

Kumaraswamy distribution with shape parameters 

alpha1 and alpha2 and minimum and maximum. 

RiskLaplace(μ,σ)  Laplace distribution with location parameter μ and 

scale parameter σ 

RiskLevy(a,c)  Levy distribution with location a and continuous 

scale parameter c 

RiskLogistic(alpha,beta) logistic distribution with location parameter alpha 

and scale parameter beta 

RiskLoglogistic(gamma,beta, alpha) log-logistic distribution with location parameter 

gamma, scale parameter beta, and shape parameter 

alpha 

RiskLognorm(mean,standard deviation) lognormal distribution with specified mean and 

standard deviation 

RiskNormal(mean,standard deviation) normal distribution with given mean and standard 

deviation 

RiskPareto(theta,alpha) Pareto distribution with parameters theta and alpha 

RiskPearson5(alpha,beta) Pearson type V (or inverse gamma) distribution with 

shape parameter alpha and scale parameter beta 

RiskPearson6(beta,alpha1, alpha2) Pearson type VI distribution with scale parameter 

beta and shape parameters alpha1 and alpha2 

RiskTriang(minimum,most likely,  

maximum) 

triangular distribution with given minimum, most 

likely, and maximum values 

RiskUniform(minimum, maximum) uniform distribution between minimum and 

maximum 

RiskWeibull(alpha,beta) Weibull distribution with shape parameter alpha and 

scale parameter beta 
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APPENDIX G. TIME SERIES FUNCTIONS (@RISK™) 

@Risk™ Time Series Function Description 

RiskAR1(mu,Sigma,A,R0,  

StartValue,WhatToReturn) 

Calculates an auto-regressive AR(1) series with these 

parameters 

RiskAR2(mu,Sigma,A1,A2,R0, RNeg1, 

StartValue,WhatToReturn) 

Calculates an auto-regressive AR(2) series with these 

parameters 

RiskARCH(mu,Omega,A,R0,  

StartValue,WhatToReturn) 

Calculates an auto-regressive conditional 

heteroskedastic series with these parameters 

RiskARMA(mu,Sigma,A1,B1,R0,  

StartValue,WhatToReturn) 

Calculates an auto-regressive moving average time 

series with these parameters 

RiskGARCH(mu, Omega, A,B,R0,  

Sigma0, StartValue,WhatToReturn) 

Calculates a generalized auto-regressive conditional 

heteroskedastic series with these parameters 

RiskGBM(mu,Sigma,  

StartValue,WhatToReturn) 

Calculates a geometric brownian motion series with 

these parameters 

RiskGBMJD(mu,Sigma,Lambda, 

JumpMu,JumpSigma,Times, 

StartValue,WhatToReturn) 

Calculates a geometric brownian motion with jump 

diffusion series with these parameters 

RiskBMMR(mu,Sigma,Alpha,R0, 

StartValue,WhatToReturn) 

Calculates a geometric brownian motion with mean 

reversion series with these parameters 

RiskBMMRJD(mu,Sigma,Alpha,R0, 

Lambda,JumpMu, JumpSigma, Times, 

StartValue,WhatToReturn) 

Calculates a geometric brownian motion with mean 

reversion and jump diffusion series with these 

parameters 

RiskMA1(mu,Sigma, B1, 

StartValue,WhatToReturn) 

Calculates a moving average MA(1) series with these 

parameters 

RiskMA2(mu,Sigma, B1, B2, 

StartValue,WhatToReturn) 

Calculates a moving average MA(2) series with these 

parameters 

 

 


