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ABSTRACT 

This thesis examines the relationship between spot prices, futures prices, and ending stocks 

for storable commodities.  We used Granger causality and DAGs to determine causal relationships 

and cointegration tests to determine long-run relationships.  We use VAR/VECM and consider 

innovation accounting techniques to see how volatility in one market affects the price behavior 

and volatility in the other market.  Results suggest that for agricultural commodities, innovations 

in futures price permanently increase the level of spot prices while accounting for much of spot 

price variance over time. For national oil, shocks to futures price decrease the level of spot price 

in the long run. In regional oil markets, there are transitory impulse responses. Futures price plays 

a small role in the volatility of spot prices for oil over time.  Overall results are mixed, with oil 

suggesting futures markets may have a price stabilizing effect and agriculture commodities 

indicating spot price destabilization. 
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1. INTRODUCTION 

Commodities, particularly energy and agricultural commodities, are known to have volatile 

markets that exhibit large price fluctuations.  We can look back only a few years for an example of 

this extreme volatility; in July of 2014 the spot price of WTI crude at Cushing, OK was around 

$100 per barrel, by early January 2015 the price had declined by over half and was less than $50 

per barrel.  Other commodities tend to exhibit the same types of volatility.  The nature and causes 

of commodity price volatility have been explored in academic literature as well as debated among 

politicians, market participants, and the general public.   

Futures markets have received much widespread attention over the last few years. This is 

partly because national and international commodity markets have become more integrated and 

partly because of the increased financialization of the commodity markets with commodities more 

frequently being included as an asset class as part of a diversified investment portfolio.  The general 

public sentiment with regards to futures trading appears to be more negative than positive with the 

widespread belief that speculation within futures markets leads to adverse effects on the market.  

However, much of the literature and empirical evidence suggests that futures trading, to include 

speculative trading, allows for price stabilization. 

It is believed that organized futures markets developed organically to meet the needs of 

market participants and as a response to the price volatility seen in commodities (Telser and 

Higinbotham 1977).  The participants within the commodity markets faced not only price risk, but 

quantity and quality risk, and were searching for avenues to reduce their marketing risk and make 

trade more efficient.  It is unclear exactly when and where standardized futures trading began. 

However, some trace its roots back to the Dōjima Rice Market in Japan where trading standardized 

rice contracts began in 1730 (Kolb and Overdahl 2006; Schaede 1989).  The trading of futures 
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contracts in the U.S. is thought to have developed for the grain trade in Chicago in the 1860s.  Since 

then, futures trading has taken off on a global scale with contracts for many different commodities 

and financial instruments as well as exchanges in the U.S. and around the world.  

These futures markets allow for price discovery by market participants, the smoother 

allocation of commodities over time, as well as the transfer of risk from hedgers to speculators.  

Price discovery is the process of participants making bids to buy and sell the commodity which 

allows for the market forces to reveal information about future prices of a commodity. This process 

enables market participants to know the going rate for a commodity in the future, and the 

transparency of an organized market also allows for information to be disseminated to non-market 

participants. Since futures contracts for storable commodities specify the delivery of a product at 

some point in the future, these contracts can link someone who has the commodity to someone who 

needs the commodity at a set point in the future.  This allows economic agents to link supply and 

demand needs of products while allowing for a smoother allocation of commodities.  Finally, 

futures markets allow speculators to enter in search of profit.  Since hedgers are looking to alleviate 

a portion of their risk, speculators provide liquidity to the market by taking the opposite side of a 

transaction.  In doing so, speculators bear some risk of adverse price changes by providing insurance 

to hedgers.  These speculators are generally happy to bear this risk since they believe they can 

profit. Thus, the distribution of products through time, price discovery and risk transfer are believed 

to alleviate some of the erratic price movements, or volatility, that is common in the commodity 

markets.  However, this price stabilizing belief does not always play out in practice. For this reason, 

we examine the relationship between the futures price and spot prices for oil and agricultural 

commodities. 
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The objective of this study is to add to the body of literature looking at how futures markets 

affect spot price behavior.  While not conclusive, much of the literature in this area suggests that 

futures markets either have no effects on spot prices or they have a price stabilizing effect.  We are 

able to apply a methodology that, to our knowledge, has not been applied to this particular area of 

research. 

Our study is focusing on four storable commodities: soybeans, corn, hard red spring wheat, 

and crude oil.  We consider monthly data for futures prices, spot prices, and ending stocks.  For the 

agricultural commodities, we are looking at spot price and stock data for North Dakota, and for oil, 

we look at spot price and stock data nationally as well as regionally for four of the five PAD 

districts.  We utilize VAR/VECM as well as impulse responses and variance decompositions to 

examine the relationships among the variables. 

Our agricultural results do not agree with much of the conclusions from previous studies in 

this area.  For the agricultural commodities, we find that futures markets increase the level of spot 

prices and they account for a large portion of the variability of spot prices over time.  In addition, 

this increased price level remains elevated up to 36 months with no sign of a decrease, leading us 

to conclude these effects are likely permanent.  The oil results seem to conform more to the previous 

literature, with futures markets decreasing the level of spot prices in the long run at the national 

level, and futures markets accounting for a much smaller portion of that volatility overall and over 

time compared to the agricultural commodities. The PADD’s results indicate transitory increases 

in spot price levels with futures prices accounting for a small portion of volatility.  

The remainder of the thesis is organized as follows.  Section two will discuss the relevant 

literature.  In section three we discuss the theoretical model and its derivation.  The data and data 

construction methods are discussed in the fourth section.  The empirical methodology is discussed 
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in the fifth section, to include unit root tests, cointegration tests, Granger causality and directed 

acyclic graphs, VAR/VECM, as well as impulse responses and variance decomposition.  Finally, 

the results of our estimated models are discussed in section 6 and concluding remarks in section 7. 
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2. LITERATURE REVIEW 

There are generally two views on commodity prices, the theory of storage and the idea that 

futures prices can be fragmented into an expected risk premium and an expected future spot price 

(Fama and French 1987).  The theory of storage suggests that the basis, or the difference between 

the futures price and spot price,  can be explained by the interest rate, the storage cost and the 

convenience yield (Kaldor 1939, Working 1948; Brennan 1958; Telser 1958).  The convenience 

yield is the return of holding inventory, which arises because of inventories’ role in reducing 

production and marketing costs as well as the reduced risk of stockout (Pindyck 2001). The idea 

that futures price is made up of a risk premium and the expected future spot price can be expressed 

in basis form, where the basis is equal to the sum of the expected risk premium and an expected 

change in spot price.  Fama and French (1987) examined these two competing theories of 

commodity pricing and found that basis varies in response to interest rates and convenience yields, 

lending support for the theory of storage. They also found forecast power for ten commodities, and 

time-varying expected premiums for five commodities. 

  Grossman (1977) showed with the introduction of futures markets, there is a benefit to 

insurance, and the transfer of information from informed to uninformed traders allows for the better 

allocation of goods through time.  Pindyck (2001) explains the short run dynamics of commodity 

markets and shows how spot prices, futures prices, and inventories are related.  He examines these 

market dynamics and interrelationships for crude oil, heating oil, and gasoline.   

In 1958, the U.S. banned futures trading in onions due to the belief that they increased 

variability in cash prices so much so that it outweighed the hedging benefits that futures provide.  

Working (1960) examined the onion market and found that, in years following World War II where 

there was substantial hedging activity, there was reduced intraseasonal and intramonth variability 
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in spot onion prices.  Gray (1963) compared seasonal ranges of onion spot prices for four different 

time periods, the period 1922-1941 which preceding futures trading, a period 1942-1949 with 

futures trading but with little trading activity, the period 1949-1958 where there was significant 

futures trading activity, and the period 1958-1962 for the period after futures trading was banned.  

Gray found that the two periods without futures trading and the period with little trading activity 

exhibited similar and larger seasonal price ranges than the price range found in the period where 

there was significant futures trading activity.  Johnson (1973) also examined the onion market for 

the period 1930-1968.  He updated both Workings’ and Grays’ previous studies with more recent 

data and found that the period of substantial hedging activity and the period following the ban of 

futures trading showed similar price patterns for both time periods.  Johnson ultimately conducted 

his own analysis by using a few different methods of price performance.  Ultimately, taking all 

results together, Johnson concluded that futures markets have no significant effect on price 

performance. 

Powers (1970) analyzed pork bellies and live cattle weekly cash prices using the variate 

difference method for four years prior to futures trading and four years after the introduction of 

futures trading; Powers found that after the introduction of futures trading, the variance of the 

random element of prices was reduced for both live cattle and pork bellies.  Tomek (1971) examined 

wheat for two different 20-year periods, 1841-1860 to represent a period before futures trading and 

1891-1910 to represent a period after futures trading had been introduced.  Tomek found the 

average cash price difference for each month in each period and discovered in 10 out of 12 months 

the average difference was smaller for the latter period with futures trading.  Taylor and Leuthold 

(1974) examined cash live cattle where they analyzed Chicago and Omaha cash price for 1957-

1964, a period prior to live cattle futures markets, and 1965-1972 for a period after the introduction 
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of futures.  They found that the monthly and weekly cash live cattle price variance was significantly 

reduced for the period 1965-1972 while the annual variation was reduced but not significantly 

changed.   The price effects of futures trading for onions, potatoes, pork bellies, lean hogs, live 

cattle, and frozen concentrated orange juice were investigated by Cox (1976).  Cox found that in 

periods of futures trading, market information was increased, and the markets were more efficient, 

with six of seven commodities having a reduced coefficient of variation with futures markets.  

Cattle and Hog prices were also examined by Tomek (1980) by the variate difference method, 

finding that on balance, futures trading does not have a significant effect on the variability of the 

random price component.  Brorsen et al. (1989) studied the period 1957-1982 using daily data and 

found that the presence of live cattle futures increased the standard deviation of the daily cash 

market changes.  Weaver and Banerjee (1990) found that live cattle futures did not affect the cash 

market volatility.  Antoniou and Foster (1992) utilized a GARCH model with weekly data before 

and after the introduction of futures trading for Brent crude oil to find that futures had no effect of 

the spot market volatility while improving the efficiency of the spot market.  Netz (1995) using data 

from 1858-1890 found that the introduction of wheat futures caused a significant decline in the 

coefficient of variation of spot price. 

Futures trading for the housing/mortgage industry was introduced in 1975 when futures 

contracts based on mortgage-backed bonds guaranteed by the Government National Mortgage 

Association (GNMA) were introduced.  These GNMA futures have been studied several times to 

see the effects of the futures on the spot market.  Froewiss (1978) regressed weekly percent changes 

in spot GNMA prices against ten-year U.S. government bonds for before and after the introduction 

of futures trading.  Froewiss concludes that the introduction of futures markets has not had a 

destabilizing effect of the spot market.  Contrary to Froewiss, Figlewski (1981) found that GNMA 
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futures trading led to increased volatility in the GNMA spot market.    Futures trading had no effect 

on the GNMA spot market volatility in the study by Simpson and Ireland (1982).  Corgel and Gay 

(1984) used intervention analysis to determine that the GNMA cash market saw a significant 

decline in volatility after the introduction of futures trading.   

There have also been several studies done in relation to financial futures other than GNMA.  

Bortz (1984) found that treasury bond futures decrease the volatility of the treasury bond spot 

market. Simpson and Ireland (1985) found that futures markets had no effect on the cash market 

for treasury bills.  Harris (1989) found that the introduction of S&P 500 index futures had no 

economically significant effect on the S&P 500 stocks’ cash market volatility. Gulen and Mayhew 

(2000) examined stock market volatility in 25 countries before and after the introduction of equity 

index futures trading.  For the U.S. and Japan, futures trading increased volatility while volatility 

was either unchanged or reduced in all other countries. Board et al. (2001) examined the effect of 

futures trading volume on the volatility of the equity spot market.  They use a stochastic volatility 

(SV) model for the study. SV models, unlike a GARCH, assume that an unobserved factor is the 

driver of conditional volatility.  They conclude that futures trading has no effect on the spot market 

volatility, and spot trading has no effect on spot market volatility.    

Dimpfl et al. (2017) looked at the relationship between spot and futures prices for corn, 

wheat, soybeans, soybean oil, soybean meal, feeder cattle, live cattle, and lean hogs.  They use 

information share methodology of Hasbrouck to estimate the contribution of spot and futures prices 

to price discovery.  For all commodities Dimpf et al. find that the spot market is the primary 

determinant of the long run efficient price and futures markets contribute less than 10% to the 

common efficient price variance showing that futures markets play only a small role in price 
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discovery.   Thus, the authors conclude that futures speculation does not distort spot markets in the 

long run.  

Irwin et al. (2009) claim the argument that speculation is the cause for bubbles in commodity 

prices is false.  The authors make a few points to support their position: (1) critics of speculators 

have a misunderstanding of how futures markets work, (2) in times of price volatility, activity in 

futures markets has not been “excessive”, (3) Granger causality tests show there is no causation 

between futures price changes and position changes.  Buyuksahin and Harris (2011) used Granger 

causality to find that hedge funds and noncommercial traders position changes do not Granger cause 

crude oil price changes.  Sanders and Irwin (2011) examine commodity index positions for corn, 

soybeans, as well as Kansas City and Chicago wheat for 2004-2009.  Granger causality suggests no 

causal relationship between commercial index positions and commodity price changes while long-

horizon regressions cannot reject the null hypothesis that commercial index positions have no 

impact on futures prices.  The literature related to speculation and oil prices was surveyed by 

Fattouh et al. (2013).  They find that the evidence does not support the idea that speculation drives 

oil spot price and instead conclude that the prices within the oil market are reflected by economic 

fundamentals.  Killian and Murphy (2014) utilize a VAR to examine the oil markets and account 

for the role of inventories, which much of the previous literature has not done.  They show that the 

business cycle is the main driver of the real oil price and the drastic increase in oil price from 2003-

2008 was primarily driven by shifts in the demand for oil consumption and not speculation.  

There are a few studies that examine how futures trading/speculation affects the volatility 

of spot prices.  Crain and Lee (1996) studied how thirteen different government farm programs over 

the period 1950-1993 have affected wheat spot and futures price volatility.  They observed that spot 

and futures volatility generally move together and for a majority of the period spot volatility was 
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higher than futures volatility.  Among other things, using Granger causality, they found evidence 

that volatility moves from the futures market to the spot market for wheat.  Less prominently, 

volatility in the spot market also Granger causes futures market volatility.  However, futures 

volatility has a larger and more persistent impact on spot volatility.  Yang et al. (2005) studied 

futures trading volume and cash price volatility with Granger causality and forecast error variance 

decomposition.  They examine seven commodities (corn, soybeans, sugar, wheat, cotton, hogs, and 

cattle) in two different sub-periods (1992-1995, 1997-2001) and found that unexpected futures 

trading volume Granger causes cash price volatility for all seven commodities in both subperiods.  

Looking at the Indian markets, Sehgal et al. (2012) filtered futures trading volume into expected 

and unexpected components using the Hodrick-Prescott filter, and then used Granger causality and 

GARCH to analyze the effect of futures trading volume on spot price volatility of guar seeds, 

turmeric, soya bean, black pepper, barley, maize, and castor seed over the period of April 2004 to 

March 2012.  The authors found that unexpected increased futures trading volume is associated 

with increased spot price volatility for 5 out of the 7 commodities they studied.  In the case of black 

pepper, the reverse was observed where an increase in spot price volatility tended to affect futures 

trading volume.   

Bohl and Stephan (2013) examine whether futures speculation destabilizes commodity spot 

price.  GARCH is used to examine how conditional spot price volatility is affected by speculative 

open interest for corn, crude oil, natural gas, soybeans, sugar, and wheat over two different ten-year 

periods, Oct. 1992-Sep. 2002 and Oct. 2002-Sep. 2012.  They are not able to find evidence that 

growing futures speculation destabilize commodity spot price.  Futures markets speculation and 

spot price destabilization was also tested by Kim (2015) for 14 different commodities.  Kim used a 

GARCH model to measure the effect of futures trading activity on spot volatility.  Kim finds that 
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speculative trading activity either decreases or has no significant effect on spot price volatility 

except for live cattle.  Sharma and Malhotra (2015) also examined the effect of futures trading 

activity on the volatility of the guar seed spot market.  They also use Granger causality and find 

that an unexpected increase in futures volume precedes increased volatility in the guar seed spot 

market.  Using a GARCH model, they find that there is a positive relationship between futures 

trading volume and spot price volatility.   

Gupta and Varma (2016) looked at how futures markets affect the spot market for Indian 

rubber.  Using Granger causality, they found two-way causality between futures volatility and spot 

volatility.  They also found two-way Granger causality between spot volatility and futures volume. 

Mayer et al. (2017) looked at the effects of futures trading on spot price volatility for metals; 

specifically, copper, gold, palladium, platinum, and silver over the period of January 1993 – 

December 2013.  The authors used Granger causality tests to examine the causal relationship 

between trading activity and spot price volatility. To observe relationships between trading 

positions and volatility, Mayer et al. use an EGARCH model. Their results suggested that there is 

less evidence that futures trading activity has a substantial effect on spot prices and volatility, but 

there is stronger evidence to suggest that spot prices and volatility drive changes in trading activity.   

The application of DAGs has been gaining traction in the economics literature, especially 

in conjunction with VAR and ECM.  Bessler and Akleman (1998) use a DAG and VAR to examine 

retail beef and pork prices.  Roh and Bessler (1999) use a DAG to show that vehicle occupant death 

is caused by vehicle safety devices, income, and vehicle mileage.  Bessler et al. (2003) look at the 

relationships of five international wheat markets with DAG’s, VAR and VECM’s, finding U.S. and 

Canada are the leaders in pricing wheat.  Bessler and Yang (2003) employ DAG’s to determine 

causal orderings of innovations for VAR and ECM for analysis of the world’s largest stock markets.  
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Awokuse and Bessler (2003) use DAG’s and VAR to replicate Sims’ 1986 model of the U.S. 

Economy; interestingly, they present DAG’s with a significance level of up to 30% to achieve an 

unambiguous causal path.  Grain prices in Illinois, grain prices at the U.S. Gulf, and the barge 

market were examined with DAG’s and ECM’s by Haigh and Bessler (2004), discovering the 

Illinois grain market is strongly affected by the barge and commodity export markets.  Awokuse 

(2005) used DAG’s and VAR/ECM to examine how macroeconomic policy effects agricultural 

prices.  Yang et al. (2006) use DAG’s along with VAR to investigate the transmission of inflation 

among G-7 nations, finding U.S. inflation to have a large effect of other nations inflation. Refalo 

(2009) found that China had little impact on the price volatility of international oil markets using 

DAGs and ECM. Ji (2012) utilized DAGs along with partial least squares and VECM to look at 

what mechanisms are driving crude oil prices.  Li et al. (2013) used DAG’s to examine foreign 

direct investment and economic growth, finding economic growth causes foreign direct investment 

into developing countries, as well as foreign direct investment causing economic growth in 

developed countries. Ji and Fan (2015) examined five international oil markets using DAG and 

ECM, with results suggesting oil markets have diverged from equilibrium since 2010 and WTI 

beginning to reflect local supply/demand conditions.  Miljkovic et al. (2016) applied DAGs to show 

direct causal relations among variables within the energy complex and illustrate endogeneity issues 

among variables.  Xu (2017) employed DAG’s and ECM to examine corn prices across seven 

Midwestern states and found that Iowa dominated corn pricing throughout the crop year.  Ji et al. 

(2018) look at the drivers of natural gas price using a DAG and ECM and find oil price causes 

natural gas price. 
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3. ECONOMIC MODEL 

We follow Kawai (1983) to derive our economic model.  The use of this particular model is 

justified since it follows from Muth’s (1961) work on rational expectations and it takes into account 

consumption, production, and storage while explaining the behavior of spot price volatility in the 

absence of futures markets as well as in the presence of futures markets.  Thus, following Kawai, 

we derive mathematically the decision-making problems faced by risk-averse price taking 

consumers, producers, inventory holding dealers, and pure speculators. 

3.1. Agents Optimizing Behavior 

3.1.1. Consumer 

The price taking consumer can maximize utility subject to a budget constraint to obtain the 

demand for a commodity at time 𝑡.  Their demand can be expressed as, 

𝐶𝑡
𝑖 = 𝑎0

𝑖 − 𝑎𝑖𝑠𝑡 + 휀𝑡
𝑖 (1) 

where 𝐶𝑡
𝑖 is the demand, 𝑖 is an individual consumer, 𝑎0

𝑖  and 𝑎𝑖 are fixed constants, 𝑠𝑡 is the spot 

price at time 𝑡, and 휀𝑡
𝑖 is a disturbance term that represents an individual’s characteristics. 

3.1.2. Commodity Producer 

Producers make a production decision at time 𝑡 for an output that will be produced at time 

𝑡 + 1.  When the decision is made at time 𝑡, the spot price in period 𝑡 + 1, 𝑠𝑡+1, is not known.  

However, the output in period 𝑡 + 1, 𝑄𝑡+1, is known.  We assume the producer holds no inventories.  

The producer will maximize their expected utility of profit: 

𝐸𝑡𝑈
𝑝(Π𝑡+1

𝑝 ) (2) 

s.t.  Π𝑡+1
𝑝 = 𝑠𝑡+1𝑄𝑡+1

𝑝 − 𝜌𝐺(𝑄𝑡+1
𝑝 ) (3) 
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where 𝑝 is an individual producer, 𝐸𝑡 is the expectation operator, 𝑈𝑝(⋅) is a strictly concave von 

Neuman-Morgenstern utility function, Πt+1
𝑝

 is producer’s profit at time 𝑡 + 1, 𝐺(⋅) is a strictly 

convex cost function which is known to the producer at time 𝑡, and 𝜌 is the market rate of interest 

plus one. This market rate of interest plus one, 𝜌, is utilized since capital resources are committed 

at time 𝑡 and profit is not realized until 𝑡 + 1. 

We assume the cost function is quadratic to ensure a linear form of commodity production 

can be obtained.  Thus, the cost can be represented as 𝐺(𝑄𝑡+1
𝑝 ) =

1

2
𝑔(𝑄𝑡+1

𝑝 + 휀𝑡
𝑝)
2
, 𝑔 > 0, where 

휀𝑡
𝑝
 is a disturbance affecting the cost function.  Thus, the new profit can be represented as:  

Π𝑡+1
𝑝 = 𝑠𝑡+1𝑄𝑡+1

𝑝 −
𝜌𝑔

2
(𝑄𝑡+1

𝑝 + 휀𝑡
𝑝)
2

(4) 

We also assume constant absolute risk aversion (CARA), implying an agent will hold less risky 

assets as wealth increases.  Hence our utility function has the form,  

𝑈𝑝(Π) = −𝑒−𝑟
𝑝Π (5) 

where 𝑟𝑝 is the Arrow-Pratt coefficient of absolute risk aversion.  Thus, the larger 𝑟𝑝 is, the more 

risk averse the agent is. The final assumption is that 𝑠𝑡+1 is normally distributed.  This gives our 

expected utility function the form, 

𝐸𝑡𝑈
𝑝(Π𝑡+1

𝑝 ) = −𝑒−𝑟
𝑝EtΠ𝑡+1

𝑝
+
1

2
(𝑟𝑝)2𝑉𝑡Π𝑡+1

𝑝

(6)  

where 𝑉𝑡 is the conditional variance operator such that 𝑉𝑡Π𝑡+1
𝑝

 is defined as 𝐸𝑡(Π𝑡+1
𝑝 − 𝐸𝑡Π𝑡+1

𝑝 )
2
.   

Mathematically, the same result as maximizing the expected utility, 𝐸𝑡𝑈
𝑝(Π𝑡+1

𝑝 ), can be 

achieved by maximizing: 

𝐸𝑡Π𝑡+1
𝑝 −

1

2
𝑟𝑝𝑉𝑡Π𝑡+1

𝑝
(7) 
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Thus, we must maximize 𝐸𝑡(𝑠𝑡+1)𝑄𝑡+1
𝑝

−
𝜌𝑔

2
(𝑄𝑡+1

𝑝
+ 휀𝑡

𝑝
)
2
−
1

2
𝑟𝑝𝑉𝑡(𝑠𝑡+1)(𝑄𝑡+1

𝑝
)
2
.  Taking 

the partial derivative with respect to 𝑄𝑡+1
𝑝

 and solving yields the optimal production quantity, 

𝑄𝑡+1
𝑝 =

𝐸𝑡𝑠𝑡+1 − 𝜌𝑔휀𝑡
𝑝

𝜌𝑔 + 𝑟𝑝𝑉𝑡𝑠𝑡+1
(8) 

which shows optimal production is positively related to the expected spot price, 𝐸𝑡𝑠𝑡+1.  It is 

inversely related to the discount factor 𝜌, the cost function 𝑔, the cost function disturbance 휀𝑡
𝑝
, the 

risk aversion coefficient 𝑟𝑝, and the variance of spot price, 𝑉𝑡𝑠𝑡+1.   

We can now consider maximizing expected utility in the presence of futures trading.  The 

producer can enter into a forward contract with a known price at time 𝑡 to deliver or receive delivery 

of a quantity of the commodity at time 𝑡 + 1.  The producer will now maximize 𝐸𝑡𝑈
𝑝(Π𝑡+1

𝑝∗ ) where: 

Π𝑡+1
𝑝∗ = 𝑠𝑡+1𝑄𝑡+1

𝑝∗ − 𝜌𝐺(𝑄𝑡+1
𝑝∗ ) + 𝑅𝑡

𝑝(𝑠𝑡+1 − 𝑓𝑡) (9) 

The quantity of futures contracts, 𝑅𝑡
𝑝
, can be positive, negative, or zero.  The futures price 

𝑓𝑡 is for delivery in period 𝑡 + 1.  The presence of the futures market is denoted by ∗ in the 

superscript.  Assumptions are the same as before with the cost function being quadratic, constant 

absolute risk aversion, and normally distributed spot price.  Thus, we must maximize: 

𝐸𝑡(𝑠𝑡+1)(𝑄𝑡+1
𝑝∗

+ 𝑅𝑡
𝑝
) −

𝜌𝑔

2
(𝑄𝑡+1

𝑝∗
+ 휀𝑡

𝑝
)
2
− 𝑅𝑡

𝑝
𝑓𝑡 −

1

2
𝑟𝑝(𝑄𝑡+1

𝑝∗
+ 𝑅𝑡

𝑝
)
2
𝑉𝑡𝑠𝑡+1 (10) 

We find the optimal number of futures contracts by taking the partial derivative with respect 

to 𝑅𝑡
𝑝
  to obtain, 

𝑅𝑡
𝑝
= −𝑄𝑡+1

𝑝∗
+ 𝑍𝑡

𝑝
(11a) 

where, 

𝑍𝑡
𝑝 =

𝐸𝑡𝑠𝑡+1 − 𝑓𝑡
𝑟𝑝𝑉𝑡𝑠𝑡+1

(11b) 
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Substituting the optimal futures contracts back into the expected utility and taking the partial 

derivative with respect to 𝑄𝑡+1
𝑝∗

 yields the optimal production quantity: 

𝑄𝑡+1
𝑝∗ =

𝑓𝑡
𝜌𝑔

− 휀𝑡
𝑝

(11c) 

Thus, the optimal production depends on the futures price 𝑓𝑡, the cost function disturbance 

휀𝑡
𝑝
, the discount factor 𝜌, and the cost function coefficient 𝑔.  The optimal quantity of futures 

contracts is the sum of 𝑍𝑡
𝑝
 and the negative quantity of production.  We can see that the optimal 

production does not depend on attitudes of risk or expected spot price and is independent of the 

futures trading decisions.   

The quantity of futures contracts is divided into two parts; the hedging component which is 

the opposite of the production decision, −𝑄𝑡+1
𝑝∗

, and the speculative component 𝑍𝑡
𝑝
.  The speculative 

component reflects the producer potential gain per unit of the commodity purchased in futures 

which is the difference of the expected future spot price 𝐸𝑡𝑠𝑡+1 and futures price 𝑓𝑡.  Therefore, the 

producer uses futures trading to hedge as well as to earn speculative profits when the opportunity 

arises.   

3.1.3. Inventory Holding Dealer 

When commodities are storable, there may exist agents who hold inventories of 

commodities from period to period.  We can call these agents inventory holding dealers.  When we 

take the case of a risk-averse, price taking dealer in the absence of futures trading, the dealer 

maximizes 𝐸𝑡𝑈
𝑑(Π𝑡+1

𝑑 ) such that, 

Π𝑡+1
𝑑 = 𝑠𝑡+1𝐼𝑡

𝑑 − 𝜌𝑠𝑡𝐼𝑡
𝑑 − 𝐻(𝐼𝑡

𝑑) (12) 

where 𝑑 represents an individual dealer, 𝐼𝑡
𝑑 is the stock of commodity inventory purchased in time 

𝑡, and 𝐻(⋅) is the holding cost of inventory with the usual convexity property.  Like before, the 
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discount factor 𝜌 is multiplied to the purchase cost of the commodity in time 𝑡.  Kawai assumes the 

holding cost of inventory is made up of the cost of deviating from a target level of inventory 𝐼�̅� +

휀𝑡
𝑑 (where 휀𝑡

𝑑 is a disturbance affecting the target stock at time 𝑡) and also has a quadratic form 

𝐻(𝐼𝑡
𝑑) =

1

2
ℎ(𝐼𝑡

𝑑 − 𝐼�̅� − 휀𝑡
𝑑)
2
, ℎ > 0.  The holding cost is the difference between the direct cost of 

holding inventories of the commodity which is increasing and convex in 𝐼𝑡
𝑑, and the benefit of 

carrying a larger inventory which reduces the probability of stockout and the loss of customers.   

With the quadratic holding cost, a CARA utility function, and normally distributed spot 

price, we can maximize: 

𝐸𝑡(𝑠𝑡+1)𝐼𝑡
𝑑 − 𝜌𝑠𝑡𝐼𝑡

𝑑 −
1

2
ℎ(𝐼𝑡

𝑑 − 𝐼�̅� − 휀𝑡
𝑑)
2
−
1

2
𝑟𝑑𝑉𝑡(𝑠𝑡+1)𝐼𝑡

2 (13) 

Taking the partial derivative with respect to 𝐼𝑡
𝑑 yields the optimal inventory, 

𝐼𝑡
𝑑 =

ℎ(𝐼�̅� + 휀𝑡
𝑑) + 𝐸𝑡𝑠𝑡+1 − 𝜌𝑠𝑡

ℎ + 𝑟𝑑𝑉𝑡𝑠𝑡+1
(14) 

which depends positively on the target level of inventory 𝐼�̅� + 휀𝑡
𝑑, and the expected capital gain of 

holding a unit of a commodity 𝐸𝑡𝑠𝑡+1 − 𝜌𝑠𝑡.  It depends negatively on the holding cost coefficient 

ℎ, the risk aversion coefficient 𝑟𝑑, and the spot price variance 𝑉𝑡𝑠𝑡+1. Inventory carrying cost allows 

for the “convenience yield” for a small level of inventory (𝐼𝑡
𝑑 < 𝐼�̅� + 휀𝑡

𝑑) so that when the expected 

capital gain is negative (𝐸𝑡𝑠𝑡+1 − 𝜌𝑠𝑡 < 0), a positive quantity of stocks can be held due to the 

convenience of holding physical stocks.  The possibility of negative inventory exists but we assume 

it is not probable due to high convenience yield for carrying commodities forward through time.  

When we add the possibility of futures trading the inventory holding dealer can enter into 

one period ahead futures contracts to get a profit function of, 

Π𝑡+1
𝑑∗ = 𝑠𝑡+1𝐼𝑡

𝑑∗ − 𝜌𝑠𝑡𝐼𝑡
𝑑∗ − 𝐻(𝐼𝑡

𝑑∗) + 𝑅𝑡
𝑑(𝑠𝑡+1 − 𝑓𝑡) (15) 
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with 𝑅𝑡
𝑑 being the quantity of futures contracts purchased or sold.  Thus, like the producer, the 

inventory holding dealer can maximize expected utility by maximizing, 

𝐸𝑡(𝑠𝑡+1)𝐼𝑡
𝑑∗ − 𝜌𝑠𝑡𝐼𝑡

𝑑∗ −
1

2
ℎ(𝐼𝑡

𝑑∗ − 𝐼�̅� − 휀𝑡
𝑑)
2
+ 𝐸𝑡(𝑠𝑡+1)𝑅𝑡

𝑑 − 𝑅𝑡
𝑑𝑓𝑡 

−
1

2
𝑟𝑑(𝐼𝑡

𝑑 + 𝑅𝑡
𝑑)
2
𝑉𝑡(𝑠𝑡+1) (16) 

which gives us the optimal futures contracts and optimal inventory demand: 

𝑅𝑡
𝑑 = −𝐼𝑡

𝑑∗ + 𝑍𝑡
𝑑 (17a) 

where, 

𝑍𝑡
𝑑 =

𝐸𝑡𝑠𝑡+1 − 𝑓𝑡
𝑟𝑑𝑉𝑡𝑠𝑡+1

(17b) 

and,  

𝐼𝑡
𝑑∗ = 𝐼�̅� + 휀𝑡

𝑑 +
𝑓𝑡 − 𝜌𝑠𝑡

ℎ
(17c) 

The optimal futures position is again separated into a hedging component and a speculative 

component like the producer.  It is determined by the opposite inventory decision, the expected spot 

price, futures price, risk aversion coefficient, and the variance of spot price.  Optimal inventory 

depends on the current spot price, futures price, the discount factor, and the holding cost parameters. 

3.1.4. Pure Speculator 

When futures trading is introduced, it is possible that agents without underlying cash 

positions may enter the futures market in the hopes of obtaining profits.  We would categorize these 

agents as pure speculators; the pure designation is used to indicate they are speculating on the price 

movements and not making any commitments to the physical commodity market.  Because we 

assume futures trading to be costless (no transaction costs, no capital outlays, and no margin 

requirements) the size of a futures position is not subject to the speculator’s capital constraints.  The 



 

19 

objective of the risk-averse pure speculator “s” is to maximize their expected utility 𝐸𝑡𝑈
𝑠(Π𝑡+1

𝑠 ) 

where their profit function can be represented by: 

Πt+1
𝑠 = 𝑍𝑡

𝑠(𝑠𝑡+1 − 𝑓𝑡) (18) 

Under CARA (with risk aversion coefficient 𝑟𝑠) and normally distributed spot prices the 

pure speculator is maximizing: 

𝐸𝑡(𝑠𝑡+1)𝑍𝑡
𝑠 − 𝑍𝑡

𝑠𝑓𝑡 −
1

2
𝑟𝑠(𝑍𝑡

𝑠)2𝑉𝑡𝑠𝑡+1 (19) 

Maximization yields the optimal volume of speculation, 

𝑍𝑡
𝑠 =

𝐸𝑡𝑠𝑡+1 − 𝑓𝑡
𝑟𝑠𝑉𝑡𝑠𝑡+1

(20) 

which is similar to the speculative component of both the producer and dealers’ optimal futures 

positions except for the individual risk aversion characteristics.  

3.2. Determining Spot and Futures Prices 

3.2.1. Commodity Markets without Futures Trading 

We can now determine the equilibrium prices by taking all individual agents supply and 

demand behaviors together.  We assume homogeneity between agents within groups; i.e., 

consumers are similar with respect to their demand coefficients and disturbances, producers have 

identical cost functions and risk aversion coefficients, dealers have identical holding costs and risk 

aversion coefficients, and pure speculators have the same risk attitudes. Producers, dealers, and 

pure speculators have rational expectations in the sense of Muth (1961), which is to say they utilize 

all available market information to form expectations about the next period spot price.  Information 

is symmetric among agents.  

The scenario of no futures market is considered first.  We can aggregate consumer demand, 

production quantity, and inventory demand equations over a fixed number of agents. 
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𝐶𝑡 = 𝛼0 − 𝛼𝑠𝑡 + 𝑢𝑡 (21a) 

𝑄𝑡 =
1

𝜌
𝛽
+
𝜃
𝜐

(𝐸𝑡−1𝑠𝑡 +
𝜌

𝛽
𝜐𝑡−1) (21b)

 

𝐼𝑡 =
1

1
𝛾 +

𝜃
𝑣

(
1

𝛾
𝐼 ̅ + 𝐸𝑡𝑠𝑡+1 − 𝜌𝑠𝑡 +

1

𝛾
𝑤𝑡) (21c)

 

𝑄𝑡 + 𝐼𝑡−1 = 𝐶𝑡 + 𝐼𝑡 (21d) 

where 𝛼0, 𝛼, 𝛽, 𝜐, 𝛾, 𝑣, 𝐼,̅ 𝜃, 𝑢𝑡 , 𝜐𝑡, and 𝑤𝑡 are defined as, 

𝛼0 = 𝑛𝑖𝑎0, 𝛼 = 𝑛𝑖𝑎, 𝛽 =
𝑛𝑝

𝑔
, 𝜐 =

𝑛𝑝

𝑟𝑝
, 𝛾 =

𝑛𝑑

ℎ
, 𝑣 =

𝑛𝑑

𝑟𝑑
, (21e)   

𝐼 ̅ = 𝑛𝑑𝐼�̅�, 𝜃 = 𝑉𝑡𝑠𝑡+1, 𝑢𝑡 = 𝑛𝑖휀𝑡
𝑖 , 𝜐𝑡 = −𝑛

𝑝휀𝑡
𝑝, 𝑤𝑡 = 𝑛

𝑑휀𝑡
𝑑 , 

where the fixed number of consumers, producers, and dealers are 𝑛𝑖, 𝑛𝑝, and 𝑛𝑑.  The sources of 

stochastic prices are the disturbances 𝑢𝑡, 𝜐𝑡−1, and 𝑤𝑡 in equations (21a), (21b), and (21c), (𝑢𝑡, 

𝜐𝑡−1, and 𝑤𝑡 are data at time 𝑡 and thereafter).  We assume 𝑢𝑡, 𝜐𝑡, and 𝑤𝑡 are all pairwise 

uncorrelated and serially independent with means 0 and variances 𝜎𝑢
2, 𝜎𝜐

2, and 𝜎𝑤
2 .  The random 

variables assumed serial independence makes 𝑉𝑡𝑠𝑡+1 independent of time and allows us to treat 𝜃 

as a constant. 

When we substitute the aggregated equations (21a), (21b), and (21c) into the spot market 

clearing equation (21d), some algebraic manipulation yields: 

−
1

1
𝛾
+
𝜃
𝑣

(𝐸𝑡𝑠𝑡+1 − 𝜌𝑠𝑡 − 𝐸𝑡−1𝑠𝑡 + 𝜌𝑠𝑡−1) + 𝛼𝑠𝑡 +
1

𝜌
𝛽
+
𝜃
𝜐

(𝐸𝑡−1𝑠𝑡)

= −
1

𝜌
𝛽
+
𝜃
𝜐

(
𝜌

𝛽
𝜐𝑡−1) −

1

1
𝛾 +

𝜃
𝑣

[
1

𝛾
(𝑤𝑡−1 − 𝑤𝑡)] + 𝛼0 + 𝑢𝑡                                         (22) 

Multiplying both sides by −(
1

𝛾
+
𝜃

𝑣
) and manipulating yields equation (23): 
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𝐸𝑡𝑠𝑡+1 − [𝜌 + 𝛼 (
1

𝛾
+
𝜃

𝑣
)] 𝑠𝑡 − [1 +

1
𝛾 +

𝜃
𝑣

𝜌
𝛽
+
𝜃
𝜐

] 𝐸𝑡−1𝑠𝑡 + 𝜌𝑠𝑡−1         

                 = −(
1

𝛾
+
𝜃

𝑣
) (𝛼0 + 𝑢𝑡) +

𝜌

𝛽
(

1
𝛾 +

𝜃
𝑣

𝜌
𝛽
+
𝜃
𝜐

)𝜐𝑡−1 −
1

𝛾
(𝑤𝑡 − 𝑤𝑡−1) (23) 

Since we are operating in a rational expectation’s framework, market participants know that the 

relationships in (23) always hold.  The conditional expectations operator 𝐸𝑡−1 applied to both sides 

of (23), with the assumption 𝐸𝑡−1𝑢𝑡 = 𝐸𝑡−1𝑤𝑡 = 0 yields, 

𝐸𝑡−1[𝑠𝑡+1 − (1 + 𝜌 + 𝜙)𝑠𝑡 + 𝜌𝑠𝑡−1] = 𝐸𝑡−1 [− (
1

𝛾
+
𝜃

𝑣
)𝛼0 +

𝜌

𝛽
(

1

𝛾
+
𝜃

𝑣
𝜌

𝛽
+
𝜃

𝜐

) 𝜐𝑡−1 +
1

𝛾
𝑤𝑡−1] (24a)  

where 𝜙 is defined as 

𝜙 = (𝛼 +
1

𝜌
𝛽
+
𝜃
𝜐

)(
1

𝛾
+
𝜃

𝑣
) > 0 (24b) 

Applying the lag operator 𝐿 (where 𝐿𝑘𝑠𝑡 = 𝑠𝑡−𝑘) to the term in the square brackets on the left hand 

side of equation (9a), [𝑠𝑡+1 − (1 + 𝜌 + 𝜙)𝑠𝑡 + 𝜌𝑠𝑡−1], yields, 

𝐿−1[1 − (1 + 𝜌 + 𝜙)𝐿 + 𝜌𝐿2]𝑠𝑡 (24c) 

We let 𝜙 have the form, 

𝜙 =
(𝜌 − 𝜆)(1 − 𝜆)

𝜆
(25) 

where 𝜆 satisfies the restriction 0 < 𝜆 < 1 <
𝜌

𝜆
.  Factoring (24c), we can obtain the following: 

𝐿−1 [1 − (1 + 𝜌 +
(𝜌 − 𝜆)(1 − 𝜆)

𝜆
)𝐿 + 𝜌𝐿2] 𝑠𝑡 = 𝐿

−1 (1 −
𝜌

𝜆
𝐿) (1 − 𝜆𝐿)𝑠𝑡

= −
𝜌

𝜆
(1 −

𝜆

𝜌
𝐿−1) (1 − 𝜆𝐿)𝑠𝑡                                                                                        (26) 
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Recalling the general geometric series representation 
1

1−𝑥
= ∑ 𝑥𝑘∞

𝑘=0 , we can divide both sides of 

(24a) by −
𝜌

𝜆
(1 −

𝜆

𝜌
𝐿−1) to get:  

𝐸𝑡−1(1 − 𝜆𝐿)𝑠𝑡 = 𝐸𝑡−1 [

1

𝛾
+
𝜃

𝑣
𝜌

𝜆
−1
𝛼0 −

𝜆

𝛽
(

1

𝛾
+
𝜃

𝑣
𝜌

𝛽
+
𝜃

𝜐

)∑ (
𝜆

𝜌
)
𝑗

𝜐𝑡−1+𝑗 −
𝜆

𝛾𝜌
∑ (

𝜆

𝜌
)
𝑗

𝑤𝑡−1+𝑗 + 휀𝑡
∞
𝑗=0

∞
𝑗=0 ] (27)  

The process 𝐸𝑡−1휀𝑡 =
𝜌

𝜆
휀𝑡−1 is denoted by 휀𝑡, which is explosive except for the case when 휀𝑡 = 0.  

For 휀𝑡 = 0, we can eliminate speculative bubbles and ensure a unique path for 𝐸𝑡−1𝑠𝑡.  For 𝑗 > 0, 

𝐸𝑡−1𝑣𝑡−1+𝑗 = 𝐸𝑡−1𝑤𝑡−1+𝑗 = 0.  Thus, letting 휀𝑡 = 0, 𝑗 = 0, and solving for 𝐸𝑡−1𝑠𝑡 yields, 

𝐸𝑡−1𝑠𝑡 =

1
𝛾 +

𝜃
𝑣

𝜌
𝜆
− 1

𝛼0 + 𝜆𝑠𝑡−1 −
𝜆

𝛽
(

1
𝛾 +

𝜃
𝑣

𝜌
𝛽
+
𝜃
𝜐

)𝜐𝑡−1 −
𝜆

𝛾𝜌
𝑤𝑡−1 (28) 

We can move (28) ahead one period to obtain 𝐸𝑡𝑠𝑡+1: 

𝐸𝑡𝑠𝑡+1 =

1
𝛾 +

𝜃
𝑣

𝜌
𝜆
− 1

𝛼0 + 𝜆𝑠𝑡 −
𝜆

𝛽
(

1
𝛾 +

𝜃
𝑣

𝜌
𝛽
+
𝜃
𝜐

)𝜐𝑡 −
𝜆

𝛾𝜌
𝑤𝑡 (29) 

Working towards the rational expectation’s equilibrium solution for spot price, we substitute (29) 

into (23) which yields: 

1

𝛾
+
𝜃

𝑣
𝜌

𝜆
−1
𝛼0 + 𝜆𝑠𝑡 −

𝜆

𝛽
(

1

𝛾
+
𝜃

𝑣
𝜌

𝛽
+
𝜃

𝜐

)𝜐𝑡 −
𝜆

𝛾𝜌
𝑤𝑡 − [𝜌 + 𝛼 (

1

𝛾
+
𝜃

𝑣
)] 𝑠𝑡 − [1 +

1

𝛾
+
𝜃

𝑣
𝜌

𝛽
+
𝜃

𝜐

] 𝐸𝑡−1𝑠𝑡 + 𝜌𝑠𝑡−1  

= −(
1

𝛾
+
𝜃

𝑣
) (𝛼0 + 𝑢𝑡) +

𝜌

𝛽
(

1

𝛾
+
𝜃

𝑣
𝜌

𝛽
+
𝜃

𝜐

)𝜐𝑡−1 −
1

𝛾
(𝑤𝑡 − 𝑤𝑡−1) (30)  

Manipulating (30) we can obtain, 

[𝜌 − 𝜆 + 𝛼 (
1

𝛾
+
𝜃

𝑣
)] 𝑠𝑡 = −[1 +

1

𝛾
+
𝜃

𝑣
𝜌

𝛽
+
𝜃

𝜐

] 𝐸𝑡−1𝑠𝑡 + 𝜌𝑠𝑡−1 + (
1

𝛾
+
𝜃

𝑣
) (𝛼0 + 𝑢𝑡) −

𝜌

𝛽
(

1

𝛾
+
𝜃

𝑣
𝜌

𝛽
+
𝜃

𝜐

) 𝜐𝑡−1  

+
1

𝛾
(𝑤𝑡 − 𝑤𝑡−1) +

1

𝛾
+
𝜃

𝑣
𝜌

𝜆
−1
𝛼0 −

𝜆

𝛽
(

1

𝛾
+
𝜃

𝑣
𝜌

𝛽
+
𝜃

𝜐

) 𝜐𝑡 −
𝜆

𝛾𝜌
𝑤𝑡 (31)  
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Substituting (28) into (31), dividing both sides by [𝜌 − 𝜆 + 𝛼 (
1

𝛾
+
𝜃

𝑣
)], and simplifying allows us 

to obtain, 

𝑠𝑡 = [
1

𝜌 − 𝜆 + 𝛼 (
1
𝛾 +

𝜃
𝑣)
(
𝜌

𝜆
− 1 −

1
𝛾 +

𝜃
𝑣

𝜌
𝛽
+
𝜃
𝜐

)]

1
𝛾 +

𝜃
𝑣

𝜌
𝜆
− 1

𝛼0

+ [
1

𝜌 − 𝜆 + 𝛼 (
1
𝛾 +

𝜃
𝑣)
(
𝜌

𝜆
− 1 −

1
𝛾 +

𝜃
𝑣

𝜌
𝛽
+
𝜃
𝜐

)] 𝜆𝑠𝑡−1 +
1

𝜌 − 𝜆 + 𝛼 (
1
𝛾 +

𝜃
𝑣)
(
1

𝛾
+
𝜃

𝑣
) 𝑢𝑡

−
𝜆

𝛽 (
𝜌
𝛽
+
𝜃
𝜐)
[

1

𝜌 − 𝜆 + 𝛼 (
1
𝛾 +

𝜃
𝑣)
(
1

𝛾
+
𝜃

𝑣
) 𝜐𝑡

+ {
1

𝜌 − 𝜆 + 𝛼 (
1
𝛾 +

𝜃
𝑣)
(
𝜌

𝜆
− 1 −

1
𝛾 +

𝜃
𝑣

𝜌
𝛽
+
𝜃
𝜐

)} (
1

𝛾
+
𝜃

𝑣
) 𝜐𝑡−1]

+
1

𝜌
[

𝜌 − 𝜆
𝛾

𝜌 − 𝜆 + 𝛼 (
1
𝛾 +

𝜃
𝑣)
𝑤𝑡

− {
1

𝜌 − 𝜆 + 𝛼 (
1
𝛾 +

𝜃
𝑣)
(
𝜌

𝜆
− 1 −

1
𝛾 +

𝜃
𝑣

𝜌
𝛽
+
𝜃
𝜐

)}
𝜆

𝛾
𝑤𝑡−1]                                                  (32) 

Letting 𝜂 =
𝜌−𝜆

𝛾(
1

𝛾
+
𝜃

𝑣
)
 gives us: 
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𝑠𝑡 = [
1

𝜌 − 𝜆 + 𝛼 (
1
𝛾 +

𝜃
𝑣)
(
𝜌

𝜆
− 1 −

1
𝛾 +

𝜃
𝑣

𝜌
𝛽
+
𝜃
𝜐

)]

1
𝛾 +

𝜃
𝑣

𝜌
𝜆
− 1

𝛼0

+ [
1

𝜌 − 𝜆 + 𝛼 (
1
𝛾 +

𝜃
𝑣)
(
𝜌

𝜆
− 1 −

1
𝛾 +

𝜃
𝑣

𝜌
𝛽
+
𝜃
𝜐

)] 𝜆𝑠𝑡−1 +
1

𝛼 + 𝛾𝜂
𝑢𝑡

−
𝜆

𝛽 (
𝜌
𝛽
+
𝜃
𝜐)
[

1

𝛼 + 𝛾𝜂
𝜐𝑡 + {

1

𝜌 − 𝜆 + 𝛼 (
1
𝛾 +

𝜃
𝑣)
(
𝜌

𝜆
− 1 −

1
𝛾 +

𝜃
𝑣

𝜌
𝛽
+
𝜃
𝜐

)}(
1

𝛾
+
𝜃

𝑣
) 𝜐𝑡−1] 

+
1

𝜌
[

𝜂

𝛼 + 𝛾𝜂
𝑤𝑡 − {

1

𝜌 − 𝜆 + 𝛼 (
1
𝛾 +

𝜃
𝑣)
(
𝜌

𝜆
− 1 −

1
𝛾 +

𝜃
𝑣

𝜌
𝛽
+
𝜃
𝜐

)}
𝜆

𝛾
𝑤𝑡−1] (33a) 

Now setting �̅� =

1
1
𝛾
+
𝜃
𝑣

 − 
𝜆

(𝜌−𝜆)(
𝜌
𝛽
+
𝜃
𝜐
)

𝛼+𝜆
1

𝜌
𝛽
+
𝜃
𝜐

𝛼0, and simplifying (33a) yields, 

𝑠𝑡 = �̅� +
1

𝛼+𝛾𝜂
(∑ 𝜆𝑗 [

1

𝜌−𝜆+𝛼(
1

𝛾
+
𝜃

𝑣
)
(
𝜌

𝜆
− 1 −

1

𝛾
+
𝜃

𝑣
𝜌

𝛽
+
𝜃

𝜐

)]

𝑗

∞
𝑗=0 𝑢𝑡−𝑗 −

1

𝛽(
𝜌

𝛽
+
𝜃

𝜐
)
[𝜆𝜐𝑡 + {𝛼 (

1

𝛾
+
𝜃

𝑣
) + 𝜌} ⋅

∑ 𝜆𝑗∞
𝑗=1 [

1

𝜌−𝜆+𝛼(
1

𝛾
+
𝜃

𝑣
)
(
𝜌

𝜆
− 1 −

1

𝛾
+
𝜃

𝑣
𝜌

𝛽
+
𝜃

𝜐

)]

𝑗

𝜐𝑡−𝑗] +
1

𝜌
(𝜂𝑤𝑡 − {

𝛼

𝛾
} ⋅ ∑ 𝜆𝑗∞

𝑗=1 [
1

𝜌−𝜆+𝛼(
1

𝛾
+
𝜃

𝑣
)
(
𝜌

𝜆
− 1 −

1

𝛾
+
𝜃

𝑣
𝜌

𝛽
+
𝜃

𝜐

)]

𝑗

𝑤𝑡−𝑗))                                                                                                                                   (33b)  

Thus, we have the rational expectations equilibrium spot price.  Previously, we assumed normal 

random prices.  We can see that 𝑠𝑡 is normally distributed if 𝑢𝑡 , 𝜐𝑡, and 𝑤𝑡 are also normally 

distributed, confirming the previous assumption.  To get the equilibrium excepted spot price (34) 

and variance (35) T periods forward, which is conditional on information at time t, we can lead 

(33b) forward 𝑇 periods, for 𝑇 ≥ 1: 
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𝐸𝑡𝑠𝑡+𝑇 = �̅� +
1

𝛼+𝛾𝜂
{𝜆𝑇 [

1

𝜌−𝜆+𝛼(
1

𝛾
+
𝜃

𝑣
)
(
𝜌

𝜆
− 1 −

1

𝛾
+
𝜃

𝑣
𝜌

𝛽
+
𝜃

𝜐

)]

𝑇

} ⋅ (∑ 𝜆𝑗∞
𝑗=0 [

1

𝜌−𝜆+𝛼(
1

𝛾
+
𝜃

𝑣
)
(
𝜌

𝜆
− 1 −

1

𝛾
+
𝜃

𝑣
𝜌

𝛽
+
𝜃

𝜐

)]

𝑗

⋅

𝑢𝑡−𝑗 −
𝛼(

1

𝛾
+
𝜃

𝑣
)+𝜌

𝛽(
𝜌

𝛽
+
𝜃

𝜐
)
⋅ ∑ 𝜆𝑗∞

𝑗=0 [
1

𝜌−𝜆+𝛼(
1

𝛾
+
𝜃

𝑣
)
(
𝜌

𝜆
− 1 −

1

𝛾
+
𝜃

𝑣
𝜌

𝛽
+
𝜃

𝜐

)]

𝑗

⋅ 𝜐𝑡−𝑗 −
𝛼

𝛾𝜌
⋅

∑ 𝜆𝑗∞
𝑗=0 [

1

𝜌−𝜆+𝛼(
1

𝛾
+
𝜃

𝑣
)
(
𝜌

𝜆
− 1 −

1

𝛾
+
𝜃

𝑣
𝜌

𝛽
+
𝜃

𝜐

)]

𝑗

⋅ 𝑤𝑡−𝑗)                                                                      (34)  

 

𝑉𝑡𝑠𝑡+𝑇 = (
1

𝛼+𝛾𝜂
)
2

⋅

(

 
 
1−𝜆2𝑇[

1

𝜌−𝜆+𝛼(
1
𝛾
+
𝜃
𝑣
)
(
𝜌

𝜆
−1−

1
𝛾
+
𝜃
𝑣

𝜌
𝛽
+
𝜃
𝜐

)]

2𝑇

1−𝜆2[
1

𝜌−𝜆+𝛼(
1
𝛾
+
𝜃
𝑣
)
(
𝜌

𝜆
−1−

1
𝛾
+
𝜃
𝑣

𝜌
𝛽
+
𝜃
𝜐

)]

2 𝜎𝑢
2 +

1

𝛽2(
𝜌

𝛽
+
𝜃

𝜐
)
2

[
 
 
 
 

{𝜌 − 𝛾𝜂 (
1

𝛾
+
𝜃

𝑣
)}
2

+ {𝛼 (
1

𝛾
+

𝜃

𝑣
) + 𝜌}

2
𝜆2[

1

𝜌−𝜆+𝛼(
1
𝛾
+
𝜃
𝑣
)
(
𝜌

𝜆
−1−

1
𝛾
+
𝜃
𝑣

𝜌
𝛽
+
𝜃
𝜐

)]

2

−𝜆2𝑇[
1

𝜌−𝜆+𝛼(
1
𝛾
+
𝜃
𝑣
)
(
𝜌

𝜆
−1−

1
𝛾
+
𝜃
𝑣

𝜌
𝛽
+
𝜃
𝜐

)]

2𝑇

1−𝜆2[
1

𝜌−𝜆+𝛼(
1
𝛾
+
𝜃
𝑣
)
(
𝜌

𝜆
−1−

1
𝛾
+
𝜃
𝑣

𝜌
𝛽
+
𝜃
𝜐

)]

2

]
 
 
 
 

𝜎𝑣
2 +

[
 
 
 
 

(
𝜂

𝜌
)
2

+ (
𝛼

𝛾𝜂
)
2

⋅

𝜆2[
1

𝜌−𝜆+𝛼(
1
𝛾
+
𝜃
𝑣
)
(
𝜌

𝜆
−1−

1
𝛾
+
𝜃
𝑣

𝜌
𝛽
+
𝜃
𝜐

)]

2

−𝜆2𝑇[
1

𝜌−𝜆+𝛼(
1
𝛾
+
𝜃
𝑣
)
(
𝜌

𝜆
−1−

1
𝛾
+
𝜃
𝑣

𝜌
𝛽
+
𝜃
𝜐

)]

2𝑇

1−𝜆2[
1

𝜌−𝜆+𝛼(
1
𝛾
+
𝜃
𝑣
)
(
𝜌

𝜆
−1−

1
𝛾
+
𝜃
𝑣

𝜌
𝛽
+
𝜃
𝜐

)]

2

]
 
 
 
 

𝜎𝑤
2

)

 
 
                                               (35)  

 

3.2.2. Commodity Markets with Futures Trading 

When we introduce the possibility of futures trading, commodity producers and inventory 

holding dealers may have their decisions altered by the ability to enter into forward contracts to 

maximize expected utility.  Futures trading also makes it possible for pure speculators to enter the 

market to maximize their utility.  Like before, we can aggregate consumer demand (36a), 

production (36b), and inventory demand (36c) over a fixed number of agents as well as aggregated 
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futures speculation (36d).  We also have the overall spot market clearing (36e) and futures market 

clearing condition’s (36f): 

𝐶𝑡
∗ = 𝛼0 − 𝛼𝑠𝑡

∗ + 𝑢𝑡 (36a) 

𝑄𝑡
∗ =

𝛽

𝜌
𝑓𝑡−1 + 𝜐𝑡−1 (36b) 

𝐼𝑡
∗ = 𝐼̅ + 𝛾(𝑓𝑡 − 𝜌𝑠𝑡

∗) + 𝑤𝑡 (36c) 

𝑍𝑡 =
𝜒

𝜃∗
(𝐸𝑡𝑠𝑡+1

∗ − 𝑓𝑡) (36d) 

𝑍𝑡−1 = 𝐶𝑡
∗ + 𝐼𝑡

∗ (36e) 

𝑄𝑡+1
∗ + 𝐼𝑡

∗ = 𝑍𝑡 (36f) 

where 𝑠𝑡
∗ is the spot price in the presence of a futures market and 𝜒 and 𝜃∗are defined as:  

𝜒 = 𝜐 + 𝑣 + 𝜔, 𝜔 =
𝑛𝑠

𝑟𝑠
, 𝜃∗ = 𝑉𝑡𝑠𝑡+1

∗ , (36g) 

We defined 𝛼0, 𝛼, 𝛽, 𝜐, 𝛾, 𝑣, and 𝐼  ̅in (21e), stated again: 

𝛼0 = 𝑛
𝑖𝑎0, 𝛼 = 𝑛𝑖𝑎, 𝛽 =

𝑛𝑝

𝑔
, 𝜐 =

𝑛𝑝

𝑟𝑝
, 𝛾 =

𝑛𝑑

ℎ
, 𝑣 =

𝑛𝑑

𝑟𝑑
, 𝐼 ̅ = 𝑛𝑑𝐼�̅� 

Here, 𝑛𝑠is defined as the fixed number of pure speculators.  Proceeding in a similar fashion 

as before, we will see that in general, the conditional variance of spot price in the presence of a 

futures market, 𝜃∗, is different than the conditional variance of spot price without a futures market, 

𝜃.  We will also see that 𝜃∗ is independent of time when we assume 𝑢𝑡, 𝜐𝑡, and 𝑤𝑡 have constant 

variance (𝜎𝑢
2, 𝜎𝜐

2, and 𝜎𝑤
2 ).   

Consumer demand (36a) is identical to before. Summing (11c) and (17c) over identical 

agents gives us the production (36b) and inventory demand (36c) equations.  We can see that unlike 

before [eq. (21b) and (21c)], production and inventory demand do not depend on price uncertainty.  

We showed previously there are speculative components in the futures contract decisions for 
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producers and inventory holding dealers. Thus, to obtain the market demand for futures speculation 

(36d), we must aggregate the speculative demand of producers, inventory holding dealers, as well 

as that of pure speculators: 𝑍𝑡
𝑝, 𝑍𝑡

𝑑, and 𝑍𝑡
𝑠.    

The amount purchased by speculators (to include pure speculators as well as the speculative 

activities of producers and dealers) in one period, say 𝑡 − 1, does not appear until the next period, 

𝑡.  Since producers and dealers are committed as hedgers in period 𝑡 − 1 for delivery in period 𝑡, 

only speculators have a supply of spot commodities for sale in time 𝑡.  We get the spot market 

clearing condition (36e) since speculators are the only agents with a supply of spot commodities 

for sale and consumers and dealers are the only agents who demand the spot commodities.  

For the futures market clearing condition, we see that the supply of futures contracts is made 

up of the producers and dealers hedging activities, 𝑄𝑡+1
∗ + 𝐼𝑡

∗.  That is equal to the futures contracts 

demanded by speculators, 𝑍𝑡.  Thus, we have: 

𝑄𝑡+1
∗ + 𝐼𝑡

∗ = 𝑍𝑡 =
𝜒

𝜃∗
(𝐸𝑡𝑠𝑡+1

∗ − 𝑓𝑡),
𝜒

𝜃∗
≥ 0 (37) 

Therefore, we can see that 𝐸𝑡𝑠𝑡+1
∗ − 𝑓𝑡 and 𝑄𝑡+1

∗ + 𝐼𝑡
∗ must have the same sign.  Since hedgers are 

likely to take a net short position (𝑄𝑡+1
∗ + 𝐼𝑡

∗ > 0 as long as 𝐼𝑡
∗ > 0), the expected gain on the price 

movements (𝐸𝑡𝑠𝑡+1
∗ − 𝑓𝑡 > 0) will compel speculators to take a net long position (𝑍𝑡 > 0). 

Speculators take net long positions when the expected future spot price is greater than the current 

futures price. We can see that this corresponds to the case of a market in normal backwardation.  

Normal backwardation is the belief that futures prices tend to rise over the life of a contract due to 

the desire of hedgers to collectively be net short (Kolb and Overdahl 2006). Hence, we can only 

have contango when there is a short stock of inventory.  Contango is the belief that prices tend to 

fall over the life of a contract, occurring when hedgers are net long with futures prices above the 

expected future spot price (Kolb and Overdahl 2006). Thus, the futures market allows hedgers to 
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be insured by speculators where hedgers pay an insurance price, or risk premium, of 𝐸𝑡𝑠𝑡+1
∗ − 𝑓𝑡 to 

the speculators to accept the risk of open positions.  

To obtain the physical resource constraint, we can lag the futures market clearing condition 

(36f) by one period, substitute the spot market clearing conditions (36e) and manipulate the 

expression to obtain:  

𝑄𝑡
∗ = 𝐶𝑡

∗ + (𝐼𝑡
∗ − 𝐼𝑡−1

∗ ) (38) 

This tells us that the quantity produced is expended by consumer demand and the change in 

inventory.   

Toward finding the rational expectations equilibrium spot and futures price, we can begin 

by substituting 𝑄𝑡+1
∗  (36b moved ahead one period), 𝐼𝑡

∗, and 𝑍𝑡 into (36f): 

𝑓𝑡 =
1

𝛽
𝜌 + 𝛾 +

𝜒
𝜃∗

(−𝐼 ̅ +
𝜒

𝜃∗
𝐸𝑡𝑠𝑡+1

∗ + 𝛾𝜌𝑠𝑡
∗ − 𝜐𝑡 −𝑤𝑡) (39)

 

Lagging (39) by one period and then substituting into (36d) also lagged by one period yields: 

𝑍𝑡−1 =
𝜒

𝜃∗
[𝐸𝑡−1𝑠𝑡

∗ −
1

𝛽
𝜌 + 𝛾 +

𝜒
𝜃∗

(−𝐼 ̅ +
𝜒

𝜃∗
𝐸𝑡−1𝑠𝑡

∗ + 𝛾𝜌𝑠𝑡−1
∗ − 𝜐𝑡−1 − 𝑤𝑡−1)] (40) 

 

Substituting (36a) and (36c) into (36e) yields, 

𝑍𝑡−1 = 𝛼0 + 𝛼𝑠𝑡
∗ + 𝑢𝑡 + 𝐼̅ + 𝛾(𝑓𝑡 − 𝜌𝑠𝑡

∗) + 𝑤𝑡 (41) 

and substituting (39) into (41) gives us: 

𝑍𝑡−1 = 𝛼0 + 𝛼𝑠𝑡
∗ + 𝑢𝑡 + 𝐼̅ + 𝛾 [

1
𝛽

𝜌
+𝛾+

𝜒

𝜃∗

(−𝐼 ̅ +
𝜒

𝜃∗
𝐸𝑡𝑠𝑡+1

∗ + 𝛾𝜌𝑠𝑡
∗ − 𝜐𝑡 − 𝑤𝑡) − 𝜌𝑠𝑡

∗] + 𝑤𝑡 (42)  

Setting (42) equal to (40) and manipulating yields: 
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𝜒

𝜃∗
[𝐸𝑡−1𝑠𝑡

∗ −
1

𝛽
𝜌 + 𝛾 +

𝜒
𝜃∗

(−𝐼 ̅ +
𝜒

𝜃∗
𝐸𝑡−1𝑠𝑡

∗ + 𝛾𝜌𝑠𝑡−1
∗ − 𝜐𝑡−1 − 𝑤𝑡−1)]

= 𝛼0 + 𝛼𝑠𝑡
∗ + 𝑢𝑡 + 𝐼̅

+ 𝛾 [
1

𝛽
𝜌 + 𝛾 +

𝜒
𝜃∗

(−𝐼 ̅ +
𝜒

𝜃∗
𝐸𝑡𝑠𝑡+1

∗ + 𝛾𝜌𝑠𝑡
∗ − 𝜐𝑡 − 𝑤𝑡) − 𝜌𝑠𝑡

∗] + 𝑤𝑡                               (43) 

Continued manipulating gives us: 

𝐸𝑡𝑠𝑡+1
∗ − [𝜌 + 𝛼 {

1

𝛾
+ (1 +

𝛽

𝛾𝜌
)
𝜃∗

𝜒
} + 𝛽

𝜃∗

𝜒
] 𝑠𝑡

∗ − (1 +
𝛽

𝛾𝜌
)𝐸𝑡−1𝑠𝑡

∗ + 𝜌𝑠𝑡−1
∗

= −
𝛽

𝛾𝜌
⋅
𝜃∗

𝜒
𝐼 ̅ − {

1

𝛾
+ (1 +

𝛽

𝛾𝜌
)
𝜃∗

𝜒
} (𝛼0 + 𝑢𝑡)

+
𝜃∗

𝜒
𝜐𝑡 +

1

𝛾
𝜐𝑡−1 −

1

𝛾
{(1 +

𝛽

𝜌
⋅
𝜃∗

𝜒
)𝑤𝑡 − 𝑤𝑡−1}                                                              (44) 

We can see that (44) has different coefficients but takes a similar form to the stochastic difference 

equation in the absence of futures trading, i.e., equation (23).  Thus, the magnitude of the 

coefficients is changed when futures trading is introduced.  

We employ the same procedure to obtain the rational expectations spot price in the presence 

of futures markets: 

𝑠𝑡
∗ = �̅�∗ +

1

𝛼+𝛾𝜂∗
(∑ 𝜆∗𝑗∞

𝑗=0 [
1

𝜌−𝜆∗+𝛼{
1

𝛾
+(1+

𝛽

𝛾𝜌
)
𝜃∗

𝜒
}+𝛽

𝜃∗

𝜒

(
𝜌

𝜆∗
− 1 −

𝛽

𝛾𝜌
)]

𝑗

⋅ 𝑢𝑡−𝑗 − (
𝜌−𝜂∗

𝜌
) 𝜐𝑡 − (1 +

𝛼

𝛾𝜌
)∑ 𝜆∗𝑗∞

𝑗=1 [
1

𝜌−𝜆∗+𝛼{
1

𝛾
+(1+

𝛽

𝛾𝜌
)
𝜃∗

𝜒
}+𝛽

𝜃∗

𝜒

(
𝜌

𝜆∗
− 1 −

𝛽

𝛾𝜌
)]

𝑗

𝜐𝑡−𝑗 +
1

𝜌
(𝜂∗𝑤𝑡 −

𝛼

𝛾
∑ 𝜆∗𝑗∞
𝑗=1 [

1

𝜌−𝜆∗+𝛼{
1

𝛾
+(1+

𝛽

𝛾𝜌
)
𝜃∗

𝜒
}+𝛽

𝜃∗

𝜒

(
𝜌

𝜆∗
− 1 −

𝛽

𝛾𝜌
)]

𝑗

𝑤𝑡−𝑗))                                                  (45a)  
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We define �̅�∗, 𝜆∗, and 𝜂∗ in (45b). 

�̅�∗ = [
𝛼0 {

1
𝛾 + (1 +

𝛽
𝛾𝜌)

𝜃∗

𝜒 } +
𝛽
𝛾𝜌
𝜃∗

𝜒 𝐼
̅

𝛼 {
1
𝛾 + (1 +

𝛽
𝛾𝜌)

𝜃∗

𝜒 } + 𝛽 (
𝜆∗

𝛾𝜌 +
𝜃∗

𝜒 )
] (1 −

𝛽𝜆∗

𝛾𝜌2
) ,

(𝜌 − 𝜆∗)(1 − 𝜆∗)

𝜆∗
= 𝛼 {

1

𝛾
+ (1 +

𝛽

𝛾𝜌
)
𝜃∗

𝜒
} + 𝛽 (

1

𝛾𝜌
+
𝜃∗

𝜒
) ,   0 < 𝜆∗ < 1 <

𝜌

𝜆∗
 ,

𝜂∗ =
𝜌 − 𝜆∗ + 𝛽

𝜃∗

𝜒

𝛾 {
1
𝛾 + (1 +

𝛽
𝛾𝜌)

𝜃∗

𝜒 }
 .

}
 
 
 
 

 
 
 
 

(45b) 

 

The expected spot price and variance in period 𝑡 + 𝑇 conditional on information at time 𝑡 are: 

𝐸𝑡𝑠𝑡+𝑇
∗ = �̅�∗ +

1

𝛼+𝛾𝜂∗
{𝜆∗𝑇 [

1

𝜌−𝜆∗+𝛼{
1

𝛾
+(1+

𝛽

𝛾𝜌
)
𝜃∗

𝜒
}+𝛽

𝜃∗

𝜒

(
𝜌

𝜆∗
− 1 −

𝛽

𝛾𝜌
)]

𝑇

} (∑ 𝜆∗𝑗∞
𝑗=0 [

1

𝜌−𝜆∗+𝛼{
1

𝛾
+(1+

𝛽

𝛾𝜌
)
𝜃∗

𝜒
}+𝛽

𝜃∗

𝜒

(
𝜌

𝜆∗
− 1 −

𝛽

𝛾𝜌
)]

𝑗

⋅ 𝑢𝑡−𝑗 − (1 +
𝛼

𝛾𝜌
) ⋅

∑ 𝜆∗𝑗∞
𝑗=0 [

1

𝜌−𝜆∗+𝛼{
1

𝛾
+(1+

𝛽

𝛾𝜌
)
𝜃∗

𝜒
}+𝛽

𝜃∗

𝜒

(
𝜌

𝜆∗
− 1 −

𝛽

𝛾𝜌
)]

𝑗

⋅ 𝜐𝑡−𝑗 −
𝛼

𝛾𝜌
⋅

∑ 𝜆∗𝑗∞
𝑗=0 [

1

𝜌−𝜆∗+𝛼{
1

𝛾
+(1+

𝛽

𝛾𝜌
)
𝜃∗

𝜒
}+𝛽

𝜃∗

𝜒

(
𝜌

𝜆∗
− 1 −

𝛽

𝛾𝜌
)]

𝑗

𝑤𝑡−𝑗)                                                  (46)  

𝑉𝑡𝑠𝑡+𝑇
∗ = (

1

𝛼+𝛾𝜂∗
)
2

[
 
 
 
 1−𝜆∗2𝑇[ 1

𝜌−𝜆∗+𝛼{
1
𝛾
+(1+

𝛽
𝛾𝜌
)
𝜃∗

𝜒
}+𝛽

𝜃∗

𝜒

(
𝜌

𝜆∗
−1−

𝛽

𝛾𝜌
)]

2𝑇

1−𝜆∗2[
1

𝜌−𝜆∗+𝛼{
1
𝛾
+(1+

𝛽
𝛾𝜌
)
𝜃∗

𝜒
}+𝛽

𝜃∗

𝜒

(
𝜌

𝜆∗
−1−

𝛽

𝛾𝜌
)]

2 𝜎𝑢
2 +

{
 
 

 
 

(
𝜌−𝜂∗

𝜌
)
2

+ (1 +
𝛼

𝛾𝜌
)
2

⋅

𝜆∗2[
1

𝜌−𝜆∗+𝛼{
1
𝛾
+(1+

𝛽
𝛾𝜌
)
𝜃∗

𝜒
}+𝛽

𝜃∗

𝜒

(
𝜌

𝜆∗
−1−

𝛽

𝛾𝜌
)]

2

−𝜆∗2𝑇[
1

𝜌−𝜆∗+𝛼{
1
𝛾
+(1+

𝛽
𝛾𝜌
)
𝜃∗

𝜒
}+𝛽

𝜃∗

𝜒

(
𝜌

𝜆∗
−1−

𝛽

𝛾𝜌
)]

2𝑇

1−𝜆∗2[
1

𝜌−𝜆∗+𝛼{
1
𝛾
+(1+

𝛽
𝛾𝜌
)
𝜃∗

𝜒
}+𝛽

𝜃∗

𝜒

(
𝜌

𝜆∗
−1−

𝛽

𝛾𝜌
)]

2

}
 
 

 
 

⋅ 𝜎𝑣
2 +
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{
 
 

 
 

(
𝜂∗

𝜌
)
2

+ (
𝛼

𝛾𝜌
)
2

⋅

𝜆∗2[
1

𝜌−𝜆∗+𝛼{
1
𝛾
+(1+

𝛽
𝛾𝜌
)
𝜃∗

𝜒
}+𝛽

𝜃∗

𝜒

(
𝜌

𝜆∗
−1−

𝛽

𝛾𝜌
)]

2

−𝜆∗2𝑇[
1

𝜌−𝜆∗+𝛼{
1
𝛾
+(1+

𝛽
𝛾𝜌
)
𝜃∗

𝜒
}+𝛽

𝜃∗

𝜒

(
𝜌

𝜆∗
−1−

𝛽

𝛾𝜌
)]

2𝑇

1−𝜆∗2[
1

𝜌−𝜆∗+𝛼{
1
𝛾
+(1+

𝛽
𝛾𝜌
)
𝜃∗

𝜒
}+𝛽

𝜃∗

𝜒

(
𝜌

𝜆∗
−1−

𝛽

𝛾𝜌
)]

2

}
 
 

 
 

⋅ 𝜎𝑤
2

]
 
 
 
 

           (47)  

We can get 𝐸𝑡𝑠𝑡+1
∗  from (46),  and substitute it along with 𝑠𝑡

∗ into (39) to obtain the rational 

expectations futures price: 

𝑓𝑡 = 𝑓̅ +
1

𝛼+𝛾𝜂∗

{
 
 

 
 𝜒

𝜃∗
𝜆∗[

1

𝜌−𝜆∗+𝛼{
1
𝛾
+(1+

𝛽
𝛾𝜌
)
𝜃∗

𝜒
}+𝛽

𝜃∗

𝜒

(
𝜌

𝜆∗
−1−

𝛽

𝛾𝜌
)]+𝛾𝜌

𝛽

𝜌
+𝛾+

𝜒

𝜃∗

⋅ [∑ 𝜆∗𝑗∞
𝑗=0 [

1

𝜌−𝜆∗+𝛼{
1

𝛾
+(1+

𝛽

𝛾𝜌
)
𝜃∗

𝜒
}+𝛽

𝜃∗

𝜒

(
𝜌

𝜆∗
−

1 −
𝛽

𝛾𝜌
)]

𝑗

⋅ 𝑢𝑡−𝑗 − (1 +
𝛼

𝛾𝜌
) ⋅ ∑ 𝜆∗𝑗∞

𝑗=0 [
1

𝜌−𝜆∗+𝛼{
1

𝛾
+(1+

𝛽

𝛾𝜌
)
𝜃∗

𝜒
}+𝛽

𝜃∗

𝜒

(
𝜌

𝜆∗
− 1 −

𝛽

𝛾𝜌
)]

𝑗

⋅ 𝜐𝑡−𝑗 −

𝛼

𝛾𝜌
⋅ ∑ 𝜆∗𝑗∞

𝑗=0 [
1

𝜌−𝜆∗+𝛼{
1

𝛾
+(1+

𝛽

𝛾𝜌
)
𝜃∗

𝜒
}+𝛽

𝜃∗

𝜒

(
𝜌

𝜆∗
− 1 −

𝛽

𝛾𝜌
)]

𝑗

𝑤𝑡−𝑗]

}
 
 

 
 

                                            (48a)  

The long term expected value of the futures price, 𝑓,̅ can be expressed as: 

𝑓̅ = lim
𝑇→∞

𝐸𝑡𝑓𝑡+𝑇 =
1

𝛽

𝜌
+𝛾+

𝜒

𝜃∗

(−𝐼̅ + (
𝜒

𝜃∗
+ 𝛾𝜌) [

𝛼0{
1

𝛾
+(1+

𝛽

𝛾𝜌
)
𝜃∗

𝜒
}+

𝛽

𝛾𝜌

𝜃∗

𝜒
𝐼̅

𝛼{
1

𝛾
+(1+

𝛽

𝛾𝜌
)
𝜃∗

𝜒
}+𝛽(

𝜆∗

𝛾𝜌
+
𝜃∗

𝜒
)
] (1 −

𝛽𝜆∗

𝛾𝜌2
))                      (48b)  

The conditional variance of futures price is found in the same fashion as for spot price, and is 

expressed as: 
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𝑉𝑡𝑓𝑡+𝑇 = (
1

𝛼+𝛾𝜂∗
)
2

{
 
 

 
 

1

(
𝛽

𝜌
+𝛾+

𝜒

𝜃∗
)
2 (

𝜒

𝜃∗
𝜆∗ [

1

𝜌−𝜆∗+𝛼{
1

𝛾
+(1+

𝛽

𝛾𝜌
)
𝜃∗

𝜒
}+𝛽

𝜃∗

𝜒

(
𝜌

𝜆∗
− 1 −

𝛽

𝛾𝜌
)] + 𝛾𝜌)

2

⋅ [𝜎𝑢
2 + (1 +

𝛼

𝛾𝜌
)
2

𝜎𝑣
2 + (

𝛼

𝛾𝜌
)
2

𝜎𝑤
2] ⋅

1−𝜆∗2𝑇[
1

𝜌−𝜆∗+𝛼{
1
𝛾
+(1+

𝛽
𝛾𝜌
)
𝜃∗

𝜒
}+𝛽

𝜃∗

𝜒

(
𝜌

𝜆∗
−1−

𝛽

𝛾𝜌
)]

2𝑇

1−𝜆∗2[
1

𝜌−𝜆∗+𝛼{
1
𝛾
+(1+

𝛽
𝛾𝜌
)
𝜃∗

𝜒
}+𝛽

𝜃∗

𝜒

(
𝜌

𝜆∗
−1−

𝛽

𝛾𝜌
)]

2

}
 
 

 
 

                                     (49)  

3.3. Spot Price Volatility with and Without Futures Trading 

3.3.1. General Comparison of Price Volatility 

Continuing from Kawai, we examine if the introduction of a futures market changes the 

volatility of spot prices.  To examine this volatility, we take into consideration the conditional 

variance of spot price (𝑉𝑡𝑠𝑡+𝑇 and 𝑉𝑡𝑠𝑡+𝑇
∗ ).  We deem the short-term variance as that which pertains 

to 𝑇 = 1 and the long-term variance when 𝑇 > 1.   

We can see that a general comparison between the conditional variance of spot price with a 

futures market and without a futures market is quite difficult.  As Kawai points out, “the difficulty 

arises from the fact that an indicator of price uncertainty 𝜃 (or 𝜃∗) is one of the structural 

coefficients, which in turn determines the equilibrium spot price and its conditional variances 

including 𝜃 = 𝑉𝑡𝑠𝑡+1 (or 𝜃∗ = 𝑉𝑡𝑠𝑡+1
∗ ) itself, so that complicated nonlinear relationships exist 

among the structural parameters” (Kawai 1983, pg. 449).  This nonlinear relationship may lead to 

problems of nonexistence and nonuniqueness of a rational expectations solution (McCafferty and 

Driskill 1980; Kawai 1983). 

Thus, we can express again our conditional variances of spot price that we found earlier: 
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𝑉𝑡𝑠𝑡+𝑇 = (
1

𝛼+𝛾𝜂
)
2

⋅

[
 
 
 
 1−𝜆2𝑇[ 1

𝜌−𝜆+𝛼(
1
𝛾
+
𝜃
𝑣
)
(
𝜌

𝜆
−1−

1
𝛾
+
𝜃
𝑣

𝜌
𝛽
+
𝜃
𝜐

)]

2𝑇

1−𝜆2[
1

𝜌−𝜆+𝛼(
1
𝛾
+
𝜃
𝑣
)
(
𝜌

𝜆
−1−

1
𝛾
+
𝜃
𝑣

𝜌
𝛽
+
𝜃
𝜐

)]

2 𝜎𝑢
2 +

(

 
 
{
𝜌−𝛾𝜂(

1

𝛾
+
𝜃

𝑣
)

𝛽(
𝜌

𝛽
+
𝜃

𝜐
)
}

2

+

+{
𝛼(

1

𝛾
+
𝜃

𝑣
)+𝜌

𝛽(
𝜌

𝛽
+
𝜃

𝜐
)
}

2 𝜆2[
1

𝜌−𝜆+𝛼(
1
𝛾
+
𝜃
𝑣
)
(
𝜌

𝜆
−1−

1
𝛾
+
𝜃
𝑣

𝜌
𝛽
+
𝜃
𝜐

)]

2

−𝜆2𝑇[
1

𝜌−𝜆+𝛼(
1
𝛾
+
𝜃
𝑣
)
(
𝜌

𝜆
−1−

1
𝛾
+
𝜃
𝑣

𝜌
𝛽
+
𝜃
𝜐

)]

2𝑇

1−𝜆2[
1

𝜌−𝜆+𝛼(
1
𝛾
+
𝜃
𝑣
)
(
𝜌

𝜆
−1−

1
𝛾
+
𝜃
𝑣

𝜌
𝛽
+
𝜃
𝜐

)]

2

)

 
 
𝜎𝑣
2 +

{
 
 

 
 

(
𝜂

𝜌
)
2

+

+(
𝛼

𝛾𝜌
)
2
𝜆2[

1

𝜌−𝜆+𝛼(
1
𝛾
+
𝜃
𝑣
)
(
𝜌

𝜆
−1−

1
𝛾
+
𝜃
𝑣

𝜌
𝛽
+
𝜃
𝜐

)]

2

−𝜆2𝑇[
1

𝜌−𝜆+𝛼(
1
𝛾
+
𝜃
𝑣
)
(
𝜌

𝜆
−1−

1
𝛾
+
𝜃
𝑣

𝜌
𝛽
+
𝜃
𝜐

)]

2𝑇

1−𝜆2[
1

𝜌−𝜆+𝛼(
1
𝛾
+
𝜃
𝑣
)
(
𝜌

𝜆
−1−

1
𝛾
+
𝜃
𝑣

𝜌
𝛽
+
𝜃
𝜐

)]

2

}
 
 

 
 

𝜎𝑤
2

]
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𝑉𝑡𝑠𝑡+𝑇
∗ = (

1

𝛼+𝛾𝜂∗
)
2

[
 
 
 
 1−𝜆∗2𝑇[ 1

𝜌−𝜆∗+𝛼{
1
𝛾
+(1+

𝛽
𝛾𝜌
)
𝜃∗

𝜒
}+𝛽

𝜃∗

𝜒

(
𝜌

𝜆∗
−1−

𝛽

𝛾𝜌
)]

2𝑇

1−𝜆∗2[
1

𝜌−𝜆∗+𝛼{
1
𝛾
+(1+

𝛽
𝛾𝜌
)
𝜃∗

𝜒
}+𝛽

𝜃∗

𝜒

(
𝜌

𝜆∗
−1−

𝛽

𝛾𝜌
)]

2 𝜎𝑢
2 +

{
 
 

 
 

(
𝜌−𝜂∗

𝜌
)
2

+ (1 +
𝛼

𝛾𝜌
)
2

⋅

𝜆∗2[
1

𝜌−𝜆∗+𝛼{
1
𝛾
+(1+

𝛽
𝛾𝜌
)
𝜃∗

𝜒
}+𝛽

𝜃∗

𝜒

(
𝜌

𝜆∗
−1−

𝛽

𝛾𝜌
)]

2

−𝜆∗2𝑇[
1

𝜌−𝜆∗+𝛼{
1
𝛾
+(1+

𝛽
𝛾𝜌
)
𝜃∗

𝜒
}+𝛽

𝜃∗

𝜒

(
𝜌

𝜆∗
−1−

𝛽

𝛾𝜌
)]

2𝑇

1−𝜆∗2[
1

𝜌−𝜆∗+𝛼{
1
𝛾
+(1+

𝛽
𝛾𝜌
)
𝜃∗

𝜒
}+𝛽

𝜃∗

𝜒

(
𝜌

𝜆∗
−1−

𝛽

𝛾𝜌
)]

2

}
 
 

 
 

𝜎𝑣
2 +

{
 
 

 
 

(
𝜂∗

𝜌
)
2

+

(
𝛼

𝛾𝜌
)
2

⋅

𝜆∗2[
1

𝜌−𝜆∗+𝛼{
1
𝛾
+(1+

𝛽
𝛾𝜌
)
𝜃∗

𝜒
}+𝛽

𝜃∗

𝜒

(
𝜌

𝜆∗
−1−

𝛽

𝛾𝜌
)]

2

−𝜆∗2𝑇[
1

𝜌−𝜆∗+𝛼{
1
𝛾
+(1+

𝛽
𝛾𝜌
)
𝜃∗

𝜒
}+𝛽

𝜃∗

𝜒

(
𝜌

𝜆∗
−1−

𝛽

𝛾𝜌
)]

2𝑇

1−𝜆∗2[
1

𝜌−𝜆∗+𝛼{
1
𝛾
+(1+

𝛽
𝛾𝜌
)
𝜃∗

𝜒
}+𝛽

𝜃∗

𝜒

(
𝜌

𝜆∗
−1−

𝛽

𝛾𝜌
)]

2

}
 
 

 
 

𝜎𝑤
2

]
 
 
 
 

                (47)  

 

where parameters {𝜃, 𝜆, 𝜂} and {𝜃∗, 𝜆∗, 𝜂∗} are related through the relationships: 
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𝜃 = (
1

𝛼 + 𝛾𝜂
)
2

⋅

[
 
 
 
𝜎𝑢
2 + {

𝜌 − 𝛾𝜂 (
1
𝛾 +

𝜃
𝑣)

𝛽 (
𝜌
𝛽
+
𝜃
𝜐)

}

2

⋅ 𝜎𝑣
2 + (

𝜂

𝜌
)
2

⋅ 𝜎𝑤
2

]
 
 
 

(50) 

(𝜌 − 𝜆)(1 − 𝜆)

𝜆
= (𝛼 +

1

𝜌
𝛽
+
𝜃
𝜐

)(
1

𝛾
+
𝜃

𝑣
) , 0 < 𝜆 < 1 (51) 

𝜂 =
𝜌 − 𝜆

𝛾 (
1
𝛾 +

𝜃
𝑣)

(52)
 

𝜃∗ = (
1

𝛼 + 𝛾𝜂∗
)
2

⋅ [𝜎𝑢
2 + (

𝜌 − 𝜂∗

𝜌
)
2

⋅ 𝜎𝑣
2 + (

𝜂∗

𝜌
)
2

⋅ 𝜎𝑤
2] (53) 

(𝜌 − 𝜆∗)(1 − 𝜆∗)

𝜆∗
= 𝛼 {

1

𝛾
+ (1 +

𝛽

𝛾𝜌
)
𝜃∗

𝜒
} + 𝛽 (

1

𝛾𝜌
+
𝜃∗

𝜒
) ,    0 < 𝜆∗ < 1 (54) 

𝜂∗ =
𝜌 − 𝜆∗ + 𝛽

𝜃∗

𝜒

𝛾 {
1
𝛾 + (1 +

𝛽
𝛾𝜌)

𝜃∗

𝜒 }
 (55) 

Due to the problematic nature of simultaneously solving for the triplets {𝜃, 𝜆, 𝜂} and {𝜃∗, 𝜆∗, 𝜂∗}, a 

general comparison of 𝑉𝑡𝑠𝑡+𝑇 and 𝑉𝑡𝑠𝑡+𝑇
∗  is “virtually impossible” (Kawai 1983).  Also, due to 

nonuniquenss and nonexistence mentioned earlier, it could also be the case that these triplets may 

not exist, or multiple solutions could be obtained. Kawai notes that the origins of the disturbances 

are what is important for making meaningful comparisons between the different spot price 

variances.  To do this, we resort to numerical illustrations.  

3.3.2. Numerical Illustrations 

We seek to quantitatively compare our derivation results to Kawai’s, as well as examine 

what happens to the spot price variance when different disturbances are dominant within the market.  

We utilize identical parameter values as Kawai.  Thus, we try different combinations of parameter 

values with 𝛾 = 1.2, 1.4, or 1.8, 𝛼 and 𝛽 taking values between 0.4 and 3.0, 𝜐 = 𝑣 = 1, 𝜌 = 1.1, 
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and 𝜎𝑢
2, 𝜎𝑣

2, 𝜎𝑤
2 = 1 or 100.  Different speculator risk attitudes are also accounted for, with 𝜔 = 0 

representing infinitely risk adverse speculators and 𝜔 = 100 representing approximately risk 

neutral pure speculators.  We utilize the python language to construct a program to solve for the 

triplets {𝜃, 𝜆, 𝜂} and {𝜃∗, 𝜆∗, 𝜂∗} as well as compute 𝑉𝑡𝑠𝑡+𝑇, 𝑉𝑡𝑠𝑡+𝑇
∗ , and 𝑉𝑡𝑓𝑡+𝑇.  For all cases, we 

are able to obtain the same results as Kawai indicating that for the chosen parameter values, our 

derivation is essentially equivalent to Kawai.  The results of our numerical illustration can be seen 

in table 1. 

We can see that when consumption, production, and inventory disturbances are all equal 

(𝜎𝑢
2, 𝜎𝑣

2, 𝜎𝑤
2 = 1), we cannot say whether spot price is stabilized in the presence of a futures market 

since we have some ambiguity depending on the parameter choice.  If the consumption disturbance 

is dominant (𝜎𝑢
2 = 100 and 𝜎𝑣

2, 𝜎𝑤
2 = 1) the presence of a futures market stabilizes the volatility of 

spot price in the short and long term no matter the risk attitudes of speculators (𝑉𝑡𝑠𝑡+𝑇
∗ < 𝑉𝑡𝑠𝑡+𝑇 for 

𝑇 = 1 or 𝑇 → ∞). When production is the dominant disturbance (𝜎𝑣
2 = 100 and 𝜎𝑢

2, 𝜎𝑤
2 = 1) we 

see that spot price is destabilized in the short run, but may or may not be stabilized in the long run 

(𝑉𝑡𝑠𝑡+𝑇
∗ > 𝑉𝑡𝑠𝑡+𝑇 for 𝑇 = 1 and 𝑉𝑡𝑠𝑡+𝑇

∗ ≷ 𝑉𝑡𝑠𝑡+𝑇 for 𝑇 → ∞).  Finally, we can see that when the 

inventory demand disturbance is the main stochastic factor (𝜎𝑤
2 = 100 and 𝜎𝑢

2, 𝜎𝑣
2 = 1) futures 

markets tend to destabilize spot price at both time horizons and speculative risk attitudes (𝑉𝑡𝑠𝑡+𝑇
∗ >

𝑉𝑡𝑠𝑡+𝑇 for 𝑇 = 1 and 𝑇 → ∞).  Thus, we cannot make any blanket statements in regards to the price 

stabilizing/destabilizing nature of futures markets. 
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Table 1. Numerical Illustrations 

α β γ

0.4 0.4 1.2 1.0 1.0 1.0 2.5844 3.1246 1.6091 2.0295 1.3308 1.1823 1.8621 0.6978

1.0 3.0 1.4 1.0 1.0 1.0 0.4051 0.4549 0.3487 0.3842 0.0674 0.3424 0.3959 0.0542

1.6 1.2 1.4 1.0 1.0 1.0 0.2211 0.2902 0.2214 0.2858 0.1079 0.2163 0.2960 0.0806

2.6 2.2 1.8 1.0 1.0 1.0 0.0961 0.1240 0.0974 0.1242 0.0385 0.0967 0.1280 0.0316

3.0 2.6 1.4 1.0 1.0 1.0 0.0914 0.1161 0.0938 0.1177 0.0343 0.0938 0.1219 0.0283

0.4 0.4 1.2 100.0 1.0 1.0 619.5172 619.5292 197.7421 197.7696 140.7523 114.8432 127.9596 55.3020

1.0 3.0 1.4 100.0 1.0 1.0 97.8255 97.8371 24.4645 24.4696 3.3650 21.6595 22.4770 1.7371

1.6 1.2 1.4 100.0 1.0 1.0 37.7224 37.7336 18.8623 18.8758 6.9752 14.2910 15.3200 1.9360

2.6 2.2 1.8 100.0 1.0 1.0 13.9879 13.9984 7.3383 7.3471 1.8671 6.0541 6.3980 0.5304

3.0 2.6 1.4 100.0 1.0 1.0 10.4333 10.4433 6.2563 6.2618 1.0079 5.5988 5.7928 0.2947

0.4 0.4 1.2 1.0 100.0 1.0 5.0200 26.0402 113.8442 113.9761 231.2386 22.5557 58.5602 55.0074

1.0 3.0 1.4 1.0 100.0 1.0 0.6695 2.1900 2.3617 2.9239 6.7348 1.3700 4.8054 3.6410

1.6 1.2 1.4 1.0 100.0 1.0 0.5564 3.9690 4.3729 4.9184 21.1459 1.2159 6.4457 5.5744

2.6 2.2 1.8 1.0 100.0 1.0 0.2308 1.6472 0.8664 1.5748 5.1263 0.4016 2.4687 2.1349

3.0 2.6 1.4 1.0 100.0 1.0 0.1731 1.4117 0.3969 1.3819 3.2994 0.2606 2.0697 1.8488

0.4 0.4 1.2 1.0 1.0 100.0 6.7564 8.3592 15.8858 16.1325 12.5615 23.4801 25.9686 3.8585

1.0 3.0 1.4 1.0 1.0 100.0 2.6141 3.4296 11.2006 11.2098 1.4244 12.4914 12.9327 0.7071

1.6 1.2 1.4 1.0 1.0 100.0 1.7842 2.5366 4.7698 4.9011 5.8648 7.0493 8.3114 1.7744

2.6 2.2 1.8 1.0 1.0 100.0 1.0055 1.4341 2.5629 2.6361 2.4972 3.4719 4.0937 0.8074

3.0 2.6 1.4 1.0 1.0 100.0 1.0719 1.5888 2.8818 2.9458 2.9808 3.7066 4.4210 0.9522

Numerical Illustrations: υ = ν = 1.0, ρ = 1.1

Commodity Market 

without Futures

Commodity Market with Futures    

(ω = 0)

Commodity Market with Futures     

(ω = 100)

lim
𝑇→∞

𝑉𝑡𝑠𝑡+𝑇
∗ lim

𝑇→∞
𝑉𝑡𝑓𝑡+𝑇
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4. DATA 

4.1. Oil 

There are five Petroleum Administration for Defense Districts (PADDs) in the US, each 

corresponding to a different geographic region. They are conveniently named PADD I (eastern US), 

II (Midwest and central plains region), III (southern US from AL to NM), IV (Rocky Mountain 

region), and V (western US).  The Energy Information Administration (EIA) keeps data on monthly 

ending stocks by PADD for Crude Oil in the United States.  We obtain a monthly time series of 

ending stocks by PADD for crude oil from January 1990-December 2017. The sum of all PADD’s 

ending stocks is the national ending stocks.  All the stock data was obtained from EIA. 

 The EIA keeps track of data for U.S. Crude Oil Domestic Acquisition Cost by Refiners.  

Refiner acquisition cost (RAC) of crude oil refers to the cost of crude oil, including transportation 

and other fees paid by the refiner. The refiner acquisition cost does not include the cost of crude oil 

purchased for the Strategic Petroleum Reserve (SPR), and the domestic portion refers to Crude oil 

produced in the U.S. or from its "outer continental shelf" (EIA; Petroleum & Other Liquid).  This 

cost was chosen because the EIA keeps track of it for every PADD as well as nationally which 

allows us to examine regional and national oil markets.  RAC will be used as a to represent the spot 

price of crude oil.  We have obtained a monthly series for the national price from January 1990 to 

December 2017 and by PADD from January 2004 to December 2017.  For West Texas Intermediate 

(WTI) futures prices, we obtained a monthly series of closing prices for the NYMEX (New York 

Mercantile Exchange) WTI front contract (the contract nearest expiration) from Bloomberg for 

January 1990-December 2017. 
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4.2. Corn 

There is not monthly corn stock data available for North Dakota.  We constructed the 

monthly ending stock data manually which runs from January 2002-December 2016.  In order to 

construct our monthly corn stocks data, we begin with the quarterly stocks of North Dakota corn 

measured in bushels.  These quarterly stocks are available from the United States Department of 

Agriculture (USDA) National Agricultural Statistics Service (NASS) quick stats for the first of 

March, the first of June, the first of September, and the first of December of each year.   

Next, we find the monthly production of corn; which is the number of bushels of corn 

harvested in a given month.  To accomplish this, we get the yearly total production of corn in 

bushels for North Dakota from NASS.  We obtain the weekly percentage harvested for North 

Dakota from the USDA crop progress reports (NASS Quick Stats).  Since these reports are weekly, 

we choose the report for the week which has an ending date that is the closest to the last day of the 

month, which sometimes results in the choice of a report for a week which ends in the next month.  

Since the report’s percentages are cumulative, we subtract the percent harvested in earlier months 

from a given report to obtain the percent harvested in that particular month.  However, since the 

last crop progress report that corn appears on usually does not show that 100% of corn has been 

harvested, we add the remaining percentage to the last month of harvest (usually November) to 

make the total percentage harvested equal to 100%.  Once we have a monthly percentage harvested, 

we take that percentage multiplied with the yearly bushels of corn produced to get a monthly 

number of bushels produced. 

To find out the amount of corn which is exported from North Dakota each month we use 

the North Dakota Grain and Oilseed Transportation Statistics report which is produced each year 

by the Upper Great Plains Transportation Institute (UGPTI) (Vachal and Benson 2017). In these 
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reports, we find the grain movements by month which show the total number of bushels for each 

particular grain that are transported each month and also the total number of bushels transported for 

a given year.  Next, we find the North Dakota corn shipments by destination which shows the total 

number of bushels shipped yearly to specific destinations.  Within these destinations is a section 

for the number of bushels shipped to a destination in North Dakota.  Since we want to know the 

number of bushels that are exported from ND, we take the number of bushels with a destination of 

ND and divide it by 12 to get an average number of bushels with a destination of ND per month.  

We subtract this average from the number of bushels moved in each month.  Now we have an 

estimate for the number of bushels exported from ND each month.   

Next, we must get the number of bushels of corn that are used for ethanol production in ND.  

There are currently five ethanol plants in ND with each coming online since 2007.  Previously there 

were two small ethanol production facilities in the state with one ceasing operation around July 

2012 and the other around October 2007.  To get an idea of the number of bushels these facilities 

use, we get each plant’s yearly production capacity.  The Nebraska Energy Office keeps track of 

each plant’s yearly ethanol production capacity in millions of gallons of ethanol for each month 

(Ethanol Production Capacity by Plant). However, the Nebraska Energy Office only has this data 

from January 2005 onwards, so we must assume that the production capacity was the same going 

back to December 2001 which is reasonable since the capacity is small to begin with and also since 

we are unable to obtain any information on capacity changes at the plants operating over that time 

period.  Therefore, we assume that each plant is operating at full capacity for each month it is in 

operation.  To convert this ethanol production capacity into an amount of bushels used we take the 

annualized capacity every month, multiply it by 1 million to show the total capacity (not represented 

in millions of gallons), divide this by 2.8 (to represent 1 bushel of corn producing 2.8 gallons of 
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ethanol; North Dakota Ethanol Industry),  and then divide that number by 12 in order to get a 

monthly value of the bushels of corn used for ethanol production.  It is important to note here that 

we are assuming that each plant is operating at full capacity for each month since we do not know 

at what percent capacity they are operating at in each month.  The North Dakota Ethanol Council 

(NDEC) says on their website that over 80% of the corn used for ethanol production in ND is 

purchased from ND farmers (North Dakota Ethanol Industry).  Therefore, we take our previous 

number of bushels used and multiply it by 85%; the extra 5% is included since the NDEC only says 

over 80%. 

Finally, to construct our monthly series of ending stocks, we start with the NASS beginning 

stocks for December 2001, we add our calculated value for production in that month, subtract the 

calculated exports for that month, and subtract the estimated bushels used for ethanol for that month.  

The result is our estimated ending stocks for December 2001.  Intuitively it makes sense that the 

ending stocks of one month are also the beginning stocks for the next month; hence, our estimated 

ending stocks for December 2001 are also our beginning stocks for January 2002.  We find January 

2002 ending stocks in the same fashion that we found the December 2001 ending stocks.  We 

incorporate the NASS quarterly stock data by utilizing their stock number for the beginning stocks 

for each month that they have data and using it as the ending stocks of the preceding month.    We 

calculate our stocks in this way and utilize the NASS data for the months that it is available and 

then rely on our calculated estimates for all other months.   

For spot price, we utilize the monthly price receive in dollars per bushel for North Dakota 

which was obtained from NASS.  For futures prices, we use a series of the monthly closing price 

for the front contract of the Chicago Board of Trade (CBOT) corn futures contract which was 

obtained from Bloomberg. 
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4.3. Soybeans 

Like corn, we were unable to obtain a previously compiled series of monthly stocks for 

soybeans.  We construct the monthly ending stocks in much the same way that we previously did 

for corn using the same type of NASS and UGPTI data.  The major differences are that there may 

be no significant users of soybeans within the state that we are aware of, so we have no inclusion 

of “use” data in our monthly soybean’s stocks. However, even in the absence of “use” data, we are 

still able to obtain an estimate of monthly inventories.  Our constructed series for soybeans also 

runs from January 2002-December 2016.   

Again, for spot price, we utilize the monthly price received in dollars per bushel for North 

Dakota obtained from NASS.  For futures prices, we use a series of the monthly closing price for 

the front contract of the Chicago Board of Trade (CBOT) soybeans futures contract which was 

obtained from Bloomberg.    

4.4. Hard Red Spring Wheat (HRS) 

Like the other agricultural commodities, there was no monthly stock data for HRS for North 

Dakota.  Therefore, to construct our stock data for HRS, we once again use the same NASS and 

UGPTI data for wheat.  Similar to soybeans, we cannot find sources or proxies for the number of 

bushels of hard red spring wheat used in ND, so we have not included “use” figures in our monthly 

ending stocks calculation.  Another issue we faced for HRS is that the NASS quarterly stocks has 

data for durum wheat and total wheat.  According to the NASS’s small grains annual summary 

(usda.library.cornell.edu), they estimate that the production distribution of other spring wheat 

(excluding durum) by class is 100% HRS for the state of ND for every year of our study.  Also, 

based on the small grain’s annual summary, the amount of winter wheat produced yearly is 

minuscule compared to HRS and Durum.  Therefore, since HRSW is the dominant spring wheat in 
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ND and winter wheat is minuscule we can obtain the quarterly stock estimate for HRS by taking 

the NASS total wheat stock minus the NASS Durum stock for each observation to obtain an HRS 

estimated quarterly stock.  The calculation of the monthly ending stocks continues in the same 

fashion as we did for the other two commodities.  We obtain monthly stocks of HRS for the period 

as the other two commodities, January 2002-December 2016.   

For spot price, we obtain the monthly price received (in dollars per bushel) for spring wheat 

(excluding Durum) for North Dakota from NASS.  For futures prices, we use a series of the monthly 

closing price for the front contract of the Minneapolis Grain Exchange (MGE) HRS futures contract 

which was obtained from Bloomberg. 
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5. METHODOLOGY 

5.1. Unit Root Tests 

Unit root testing provides a way to understand if a series of data has changing mean and/or 

variance over time.  If it is the case that mean or variance of a series are changing over time, we 

can say that the series has a unit root.  A nonstationary time series contains one or more unit roots 

while a stationary series does not have a unit root.  Nonstationary time series do not have a constant 

probability distribution in time, and hence, they exhibit a trend.  Stationary time series have a 

constant probability distribution in time which is favorable for analysis.  Therefore, when dealing 

with time series data, it is essential to know if the series is stationary.  To do so, we utilize unit root 

tests.   

The two tests we employ are the augmented Dickey-Fuller (ADF) test and the Kwiatkowski, 

Phillips, Schmidt, Shin (KPSS) test (Dickey and Fuller 1979; Kwiatkowski et al. 1992).  The ADF 

tests a null hypothesis that the given series has a unit root while the KPSS test has a null hypothesis 

that the given series is stationary, essentially testing for no unit root.  For our purposes, the ADF 

test is employed in the next section when examining cointegration, while we use the KPSS test for 

our series of data.  The KPSS test is generally believed to be a higher-powered unit root test, and 

we use it here to identify which series are stationary and their order of integration. 

When dealing with time series data, the unit root tests are first performed on the level data.  

If the level data is determined to be nonstationary, the series can be differenced and retested which 

will usually solve the nonstationary issue and result in a stationary series.  A series that has not been 

differenced is said to be integrated of order zero, or 𝐼(0). When a series has been differenced once, 

it is said to be integrated of order one, or 𝐼(1).  The order of integration is important because 

variables should be integrated of the same order when estimating a model.  Table 2 has results of 



 

44 

the KPSS test for our oil data while Table 3 carries results for the agricultural data.  We ran the 

KPSS test for each variable with a constant as the only exogenous variable.  If the level data 

appeared to be nonstationary, we also performed the test on the first differences. 

 We see that for the national oil data we can soundly reject the null hypothesis of stationarity 

on the levels for all three variables.  When differenced once, we fail to reject the null hypothesis 

for the national oil variables which lends support that the first difference of the variables is now 

stationary.  When investigating the PADD oil data, we do not see the same type of results.  It appears 

that for the PADD data, the futures price is now stationary in the level (we are testing over a 

different period), as well as the RAC for each PADD.  However, it appears that the ending stocks 

for each PADD are not stationary in the level but are stationary in the first difference. 

The results of the KPSS tests for the agricultural data suggests that most of the data contain 

a unit root.  For corn, we can reject the null hypothesis for all three variables at the 1% significance 

level for the level variables, while the first differences appear stationary.  Soybean results also 

suggest nonstationary in the levels, with futures price and price received able to reject the null at 

the 1% level, while ending stocks can do so at the 5% level. Once again, all three soybean variables 

are stationary in the first difference.  HRS Wheat futures price and price received are also 

nonstationary in the levels with 5% significance while ending stocks appears to be stationary.  Both 

futures price and price received are stationary in the first difference. 
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Table 2. Kwiatkowski-Phillips-Schmidt-Shin test - Oil 

Null Hypothesis: The series is stationary     

Variables 
Time 

Period 

Exogenous 

Variables 

LM-stat 

(level) 

LM-stat 

(first diff.) 

Oil Futures 

Price 
1990-2017 Constant 1.543756*** 0.051773 

National 

RAC 
1990-2017 Constant 1.540272*** 0.069808 

National Oil 

Ending 

Stocks 

1990-2017 Constant 0.761872*** 0.131924 

Oil Futures 

Price 
2004-2017 Constant 0.284237   

PADD 2 

RAC 
2004-2017 Constant 0.283311   

PADD 2 

Ending 

Stocks 

2004-2017 Constant 1.427856*** 0.04278 

PADD 3 

RAC 
2004-2017 Constant 0.302991   

PADD 3 

Ending 

Stocks 

2004-2017 Constant 0.99518*** 0.072617 

PADD 4 

RAC 
2004-2017 Constant 0.270123   

PADD 4 

Ending 

Stocks 

2004-2017 Constant 1.345832*** 0.197414 

PADD 5 

RAC 
2004-2017 Constant 0.321593   

PADD 5 

Ending 

Stocks 

2004-2017 Constant 0.060231   

*     10% Significance       

**    5 % Significance       

***  1% Significance       
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Table 3. Kwiatkowski-Phillips-Schmidt-Shin test - Agriculture 

Null Hypothesis: The series is stationary     

Variables 
Time 

Period 

Exogenous 

Variables 

LM-stat 

(level) 

LM-stat 

(first diff.) 

Corn 

Futures 

Price 

2002-2016 Constant 0.796674*** 0.106941 

Corn Price 

Received 
2002-2016 Constant 0.821863*** 0.16515 

Corn 

Ending 

Stocks 

2002-2016 Constant 1.494899*** 0.110254 

Soybeans 

Futures 

Price 

2002-2016 Constant 1.055223*** 0.095598 

Soybeans 

Price 

Received 

2002-2016 Constant 1.084456*** 0.152715 

Soybeans 

Ending 

Stocks 

2002-2016 Constant 0.481147** 0.188342 

HRS Wheat 

Futures 

Price 

2002-2016 Constant 0.574659** 0.078475 

HRS Wheat 

Price 

Received 

2002-2016 Constant 0.605427** 0.112178 

HRS Wheat 

Ending 

Stocks 

2002-2016 Constant 0.307603   

*     10% Significance       

**    5 % Significance       

***  1% Significance       
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5.2. Engle-Granger Cointegration Test 

For variables that are integrated of the same order, if a linear combination of these variables 

is stationary, the variables are said to be cointegrated.  More formally, the components of some 

vector 𝑣𝑡 = (𝑣1𝑡, 𝑣2𝑡 , … , 𝑣𝑛𝑡)′ are cointegrated of order 𝑑, 𝑏, denoted 𝑣𝑡~𝐶𝐼(𝑑, 𝑏) if: (1) all 

elements of vector 𝑣𝑡 are integrated of order 𝑑, 𝐼(𝑑), and (2) there exists some cointegrating vector 

𝛿 = (𝛿1, 𝛿2, … , 𝛿𝑛) such that a linear combination 𝛿𝑣𝑡 = 𝛿1𝑣1𝑡 + 𝛿2𝑣2𝑡 +⋯+ 𝛿𝑛𝑣𝑛𝑡 is integrated 

of order (𝑑 − 𝑏) where 𝑏 > 0 (Engle and Granger 1987; Enders 2010).  Hence, variables with a 

different order of integration cannot be cointegrated.   

We test for cointegration using the Engle-Granger (1987) method.  The test is a unit root 

test on residuals obtained from a regression. The Engle-Granger method employs the ADF unit root 

test mentioned in the previous section.  The first step in the procedure is to employ unit root tests 

to ensure all variables are integrated of the same order, which was done in the previous section (see 

Table 2 and Table 3).  Next, we estimate the long-run equilibrium relationship for the different time 

series.  For two arbitrary series integrated of order one, 𝑥𝑡 and 𝑦𝑡, this can be done by estimating 

the regression 𝑦𝑡 = 𝛽0 + 𝛽1𝑥𝑡 + 휀𝑡.  The series of regression residuals is then tested for a unit root.  

The ADF test is used in determining cointegration, where we obtain two test statistics, the tau-

statistic (t-statistic) and the normalized autocorrelation coefficient which we refer to as the z-

statistic.  Critical values for the statistics can be found in MacKinnon (1996).  If the residuals do 

not contain a unit root (are stationary), we can say that 𝑦𝑡 and 𝑥𝑡 are cointegrated of order (1,1) 

(Enders 2010).  Overall, the Engle-Granger test has a null hypothesis that the series are not 

cointegrated since the null hypothesis of the unit root test is that the series contains a unit root.  The 

results of our cointegration tests are contained in Table 4.   
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We can see that for oil futures price and national RAC, both the tau-statistic and the z-

statistic suggest we can soundly reject the null hypothesis, letting us conclude that they are 

cointegrated.  For national oil ending stocks and oil futures, when ending stocks is the dependent 

variable, we can reject the null hypothesis; however, on balance, the results suggest they are not 

cointegrated.  Similarly, for national oil ending stocks and national RAC, only when ending stocks 

is the dependent variable, we can reject the null. Therefore, the series do not have a cointegrating 

relationship.  For corn futures price and corn price received, we can soundly conclude they are 

cointegrated.  The null hypothesis is also rejected for soybeans futures, and soybeans price received, 

indicating a cointegrating relationship.  Lastly, there is strong evidence that HRS wheat futures and 

price received are also cointegrated.  
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Table 4. Engle-Granger Cointegration Test 

Null Hypothesis: Series are not cointegrated 

Dependent 

Variable 
tau-statistic Prob.^ z-statistic Prob.^ 

Oil Futures 

Price 
-6.734058 0.0000*** -92.43425 0.0000*** 

National RAC -6.655748 0.0000*** -90.40870 0.0000*** 

Oil Futures 

Price 
-2.043983 0.5058 -8.117879 0.4841 

National Oil 

Ending Stocks 
-2.439838 0.3083 -24.74891 0.0188** 

National RAC -2.366635 0.3423 -11.05719 0.2998 

National Oil 

Ending Stocks 
-2.462531 0.2981 -25.28565 0.0167** 

Corn Futures 

Price 
-4.489999 0.0018*** -40.76904 0.0003*** 

Corn Price 

Received 
-4.322672 0.0031*** -37.78037 0.0007*** 

Corn Futures 

Price 
-2.031089 0.5133 -8.003023 0.4885 

Corn Ending 

Stocks 
-0.301972 0.9755 -1.020473 0.9669 

Corn Price 

Received 
-1.699799 0.6787 -5.434000 0.6939 

Corn Ending 

Stocks 
-0.364870 0.9719 -1.222639 0.9609 

Soybeans 

Futures Price 
-5.658662 0.0000*** -64.87981 0.0000*** 

Soybeans Price 

Received 
-5.401981 0.0001*** -58.96047 0.0000*** 

Soybeans 

Futures Price 
-2.246499 0.4026 -8.190861 0.4747 

Soybeans 

Ending Stocks 
-0.612376 0.9531 -2.258879 0.9191 

Soybeans Price 

Received 
-2.002835 0.5280 -5.934239 0.6525 

Soybeans 

Ending Stocks 
-0.616608 0.9527 -2.216826 0.9212 
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Table 4. Engle-Granger Cointegration Test (continued) 

 

Dependent 

Variable 
tau-statistic Prob.^ z-statistic Prob.^ 

HRS Wheat 

Futures Price 
-7.124047 0.0000*** -79.48459 0.0000*** 

HRS Wheat 

Price Received 
-6.709667 0.0000*** -72.32971 0.0000*** 

HRS Wheat 

Futures Price 
-2.787629 0.1748 -14.09031 0.1671 

HRS Wheat 

Ending Stocks 
-1.361484 0.8124 -5.649003 0.6758 

HRS Wheat 

Price Received 
-2.392476 0.3317 -10.37244 0.3320 

HRS Wheat 

Ending Stocks 
-1.329392 0.8225 -4.986089 0.7304 

^MacKinnon (1996) p-values. 

*     10% Significance       

**    5% Significance       

***  1% Significance       

 

5.3. Granger Causality 

Granger (1969) causality tests are commonly utilized to discover causal relationships among 

different time series.  These tests can also be useful in informing about the endogeneity of certain 

variables in a system.  To do this, the test examines if the lags of one variable are useful in 

explaining another variable.  Thus, in performing a Granger causality test, two regressions are 

estimated.  For two series 𝑌 and 𝑋, we regress 𝑌 against lagged values of 𝑌 and lagged values of 𝑋 

which gives us our unrestricted regression.  For the restricted regression, we regress 𝑌 against only 

lagged values of itself.  We then perform an F-test to see if the group of coefficients related to the 

lagged values of 𝑋 are significantly different from zero. If they are significant, we can reject the 

hypothesis that 𝑋 does not Granger cause 𝑌, since past values of 𝑋 help explain the current level of 

𝑌.  When the lags of one variable are useful in explaining another variable, we can then say that 𝑋 
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Granger causes 𝑌. If the results indicate that 𝑋 Granger causes 𝑌, and 𝑌 Granger causes 𝑋,  then 

we can say that it is likely one or more variables cause 𝑋 and 𝑌, indicating they are endogenous 

variables in the system.  Table 5 contains our results of the Granger causality test for the oil related 

variables while Table 6 contains the results for the agricultural variables.   

 We can reject the null hypothesis for national oil RAC Granger causing oil futures price, 

and in turn, we can also reject the null hypothesis that oil futures price Granger causes national oil 

RAC.  Hence, Granger causality suggests that national oil RAC and oil futures price are endogenous 

variables. There is also some weaker evidence (10% significance) that national ending stocks and 

futures price may be endogenous.  At 1% significance, we can see two-way Granger causality 

between PADD 2 RAC and futures price.   For PADD 3 RAC and futures price, we have two-way 

Granger causality with 10% significance.  Similarly, we can see that PADD 4 RAC and futures 

price are also endogenous variables.  Lastly, we can see that futures price and PADD 5 RAC 

Granger cause each other.  

 For our agricultural variables, we can see that they follow a similar pattern with regards to 

Granger causality as did the oil variables. For corn, we can see that futures price Granger causes 

price received but somewhat unexpectedly we fail to reject the null hypothesis for price received 

Granger causing futures price.  However, we do find two-way causality between soybeans futures 

price and soybeans price received.  Lastly, we also see strong evidence that HRS wheat futures and 

price received are endogenous variables.  
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Table 5. Granger Causality test – Oil 

Null Hypothesis: Lags: 3 F-Statistic Prob. 

National RAC does not Granger Cause 

Futures Price 
278.342 0.0000*** 

Futures Price does not Granger Cause 

National RAC 
10.3409 0.0000*** 

National Ending Stocks does not Granger 

Cause Futures Price 
2.43778 0.0645* 

Futures Price does not Granger Cause 

National Ending Stocks 
4.91727 0.0024*** 

Ending Stocks does not Granger Cause 

National RAC 
0.70106 0.5520 

National RAC does not Granger Cause 

National Ending Stocks 
3.90972 0.0091*** 

PADD2 RAC does not Granger Cause 

Futures Price 
149.507 0.0000*** 

Futures Price does not Granger Cause 

PADD2 RAC 
4.73155 0.0034*** 

PADD2 Ending Stocks does not Granger 

Cause Futures Price 
0.88012 0.4528 

Futures Price does not Granger Cause 

PADD2 Ending Stocks 
2.9547 0.0343** 

PADD2 Ending Stocks does not Granger 

Cause PADD2 RAC 
0.1224 0.9468 

PADD2 RAC does not Granger Cause 

PADD2 Ending Stocks 
5.4585 0.0014*** 

PADD3 RAC does not Granger Cause 

Futures Price 
97.9619 0.0000*** 

Futures Price does not Granger Cause 

PADD3 RAC 
2.43538 0.0668* 

PADD3 Ending Stocks does not Granger 

Cause Futures Price 
1.91392 0.1295 

Futures Price does not Granger Cause 

PADD3 Ending Stocks 
2.26213 0.0834* 

PADD3 Ending Stocks does not Granger 

Cause PADD3 RAC 
1.79852 0.1497 

PADD3 RAC does not Granger Cause 

PADD3 Ending Stocks 
1.07634 0.3609 

PADD4 RAC does not Granger Cause 

Futures Price 
105.253 0.0000*** 
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Table 5. Granger Causality test – Oil (continued) 

 

Null Hypothesis: Lags: 3 F-Statistic Prob. 

Futures Price does not Granger Cause 

PADD4 RAC 
3.56641 0.0156** 

PADD4 Ending Stocks does not Granger 

Cause Futures Price 
3.18091 0.0256** 

Futures Price does not Granger Cause 

PADD4 Ending Stocks 
1.29596 0.2778 

PADD4 Ending Stocks does not Granger 

Cause PADD4 RAC 
3.23118 0.024*** 

PADD4 RAC does not Granger Cause 

PADD4 Ending Stocks 
1.12416 0.3411 

PADD5 RAC does not Granger Cause 

Futures Price 
65.6667 0.0000*** 

Futures Price does not Granger Cause 

PADD5 RAC 
4.73045 0.0035*** 

PADD5 Ending Stocks does not Granger 

Cause Futures Price 
0.03242 0.9921 

Futures Price does not Granger Cause 

PADD5 Ending Stocks 
0.25966 0.8544 

PADD5 Ending Stocks does not Granger 

Cause PADD5 RAC 
0.04459 0.9874 

PADD5 RAC does not Granger Cause 

PADD5 Ending Stocks 
0.12175 0.9472 

*      10% Significance       

**    5% Significance       

***  1% Significance       
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Table 6. Granger Causality test – Agriculture 

Null Hypothesis: Lags: 3 F-Statistic Prob. 

Corn Price Received does not Granger Cause 

Corn Futures Price 
0.43585 0.7276 

Corn Futures Price does not Granger Cause 

Corn Price Received 
47.5034 0.0000*** 

Corn Ending Stocks does not Granger Cause 

Corn Futures Price 
0.4745 0.7004 

Corn Futures Price does not Granger Cause 

Corn Ending Stocks 
0.90792 0.4385 

Corn Ending Stocks does not Granger Cause 

Corn Price Received 
1.67607 0.1740 

Corn Price Received does not Granger Cause 

Corn Ending Stocks 
1.39044 0.2475 

Soybeans Price Received does not Granger 

Cause Soybeans Futures Price 
4.05667 0.0081*** 

Soybeans Futures Price does not Granger 

Cause Soybeans Price Received 
27.3454 0.0000*** 

Soybeans Ending Stocks does not Granger 

Cause Soybeans Futures Prices 
1.66839 0.1757 

Soybeans Futures Price does not Granger 

Cause Soybeans Ending Stocks 
2.33926 0.0753* 

Soybeans Ending Stocks does not Granger 

Cause Soybeans Price Received 
2.67468 0.0489** 

Soybeans Price Received does not Granger 

Cause Soybeans Ending Stocks 
2.02005 0.1130 

HRS Wheat Price Received does not Granger 

Cause HRS Wheat Futures Price 
8.92827 0.0000*** 

HRS Wheat Futures Price does not Granger 

Cause HRS Wheat Price Received 
66.6385 0.0000*** 

HRS Wheat Ending Stocks does not Granger 

Cause HRS Wheat Futures Price 
0.01928 0.9963 

HRS Wheat Futures Price does not Granger 

Cause HRS Wheat Ending Stocks 
0.89517 0.4449 

HRS Wheat Ending Stocks does not Granger 

Cause HRS Wheat Price Received 
0.58933 0.6228 

HRS Wheat Price Received does not Granger 

Cause HRS Wheat Ending Stocks 
1.79332 0.1503 

*      10% Significance       

**    5% Significance       

***  1% Significance       
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5.4. Directed Acyclic Graphs 

A directed acyclic graph (DAG) is an alternative technique to determine causal relations 

among variables.  DAGs present an alternative to the Granger causality tests insofar as DAGs 

explore non-time sequence asymmetry in causal relations as opposed to the Granger test which 

exploits the time sequence asymmetry (Yang et al. 2006).  These causal relations are determined 

by computer algorithms which produce graphs with nodes (vertices, variables) and edges between 

nodes.  Visually, a DAG is a graph, which is an ordered triple 〈𝑉,𝑀, 𝐸〉.  Here, 𝑉 is the vertex set, 

which is a non-empty set that contains nodes, 𝑀 is a non-empty set of marks which shows the 

directedness of an edge, and 𝐸 is the edge set, containing ordered pairs representing edges between 

nodes (Bessler and Yang 2003).  These edges indicate a causal relationship between nodes and can 

be either directed or undirected edges (indicated by the marks).  For two arbitrary nodes A and B, 

with a directed edge (indicated by a line with an arrow) from node A to node B, we can say that 

node A is a cause of node B.  For an undirected edge (indicated by a line between nodes) between 

node A and node B, we can say one of the following: a.) node A is a cause of node B, b.)  node B 

is a cause of node A, c.) there is some unmeasured confounder of A and B, d.) both a. and b., or e.) 

both b. and c. In determining endogeneity from these graphs, we can say that variables which have 

no causal input are exogenous while variables that are not exogenous are endogenous (Spirtes et 

al., 2000). 

Mathematically, following Miljkovic et al. (2016), a DAG is represented as the conditional 

independence by the recursive product decomposition: 

𝑃𝑟(𝑣1, 𝑣2, … , 𝑣𝑛) = ∏ 𝑃𝑟(𝑣𝑖|𝑝𝜋𝑖)
𝑛
𝑖=1 (56)

in which 𝑃𝑟 represents the probability of variables (𝑣1, 𝑣2, … , 𝑣𝑛).  The product operator is 

represented by Π, and 𝑝𝜋𝑖 represents the realization of some subset of variables that causes 𝑉𝑖 in 
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order (𝑖 = 1, 2, … , 𝑛).  Pearls’ (1995) work on d-separation allows independencies and causes to 

be translated graphically.  In explaining d-separation, consider the three variable set X, Y, and Z.  

If the flow of information between these nodes is blocked, we can say these variables are d-

separated.  This so-called d-separation can occur in two ways: (1) if one variable is the cause of the 

other two variables, i.e. Y in 𝑋 ← 𝑌 ⟶ 𝑍, or if there is a passthrough variable, i.e. Y in 𝑋 → 𝑌 →

𝑍; (2) when a variable is caused (effected) by two variables, i.e. Y in 𝑋 → 𝑌 ← 𝑍.  This notion of 

d-separation was incorporated into the PC algorithm by Spirtes et al. (1993). 

For our DAG’s, we utilized the PC algorithm and FGES algorithm with the TETRAD 

software version 6.5.4.  We chose these two algorithms because they complement each other nicely 

while providing alternatives for discovering relationships within the data.  The PC algorithm begins 

with a connected graph containing undirected edges between all nodes. The algorithm proceeds by 

performing independence and conditional independence tests on edges between nodes in order to 

remove edges.  For zero order conditioning, the algorithm tests if the conditional correlation 

between nodes is significantly different from zero using Fisher’s z (Awokuse and Bessler 2003). If 

the algorithm fails to reject the null hypothesis that the correlation between nodes is not significantly 

different from zero, then the edge between the nodes is removed (Li et al. 2013). The surviving 

edges are tested with first-order partial correlation; the edges between two nodes where first-order 

partial correlation is not statistically different from zero are removed (Ji et al., 2018). For N 

variables, this process continues for higher order partial correlation until an N − 2 order partial 

correlation test is finished or if no edges are remaining (Ji et al., 2018). Any remaining edges are 

directed via the theory of sepset.  For a more in-depth explanation of sepset’s see Yang and Bessler 

(2008). 
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The FGES algorithm is an optimized version of the GES algorithm that searches over 

equivalence classes of DAG’s and returns a model with the best Bayesian score (Chickering 2003; 

Ramsey et al. 2017). The algorithm begins its search with an unconnected graph. It then performs 

a forward search, adding the edge with the largest improvement in the Bayesian Information 

Criterion (BIC) in each step.  Once the algorithm reaches a point where no edges will improve the 

BIC, the algorithm moves to the backward stepping search.  For the backward stepping search, it 

begins with the previously discovered graph and then iteratively removes an edge in each step that 

gives the largest improvement in the Bayesian score until no more deletions will improve the score 

(Ramsey et al. 2017).  When the BIC cannot be improved by removing more edges, the algorithm 

returns the resulting graph.  

Our graphs produced by each algorithm can be seen in table 7.  For the PC algorithm, we 

have a significance level of 10%.  For total oil, we see both FGES and PC algorithms produce 

similar graphs containing an undirected edge between the futures price and RAC, suggesting that 

they are endogenous variables while ending stocks appears to be an exogenous variable.  The PADD 

2 FGES algorithm also produces a graph with an undirected edge between futures price and RAC, 

while the PC produces a cyclic undirected graph with all variables connected.  While the DAG 

results for PADD 2 appear to be ambiguous, if we also take the findings from PADD 2’s Granger 

causality test into account, we see that both the Granger test as well as the FGES algorithm lend 

credence to futures price and RAC being endogenous variables.  PADD 3 has both algorithms 

producing a connected graph, with undirected edges between both futures price and price received, 

as well as futures price and ending stocks, suggesting three endogenous variables.  The graphs for 

PADD 4 and PADD 5 are similar to each other for both algorithms, with an undirected edge between 

futures price and RAC, suggesting endogeneity of futures and RAC.    
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The agricultural graphs are similar to the oil graphs with many suggesting endogeneities 

between futures price and price received.  The corn graph suggests endogeneity for futures price 

and price received with the FGES algorithm, while the PC algorithm produces a graph with 

undirected edges between futures price and price received, as well as between ending stocks and 

futures price.  The algorithms for soybeans both suggest futures price and price received are 

endogenous.  The algorithms achieve a similar result for HRS wheat as they did for corn, with 

FGES suggesting futures price and price received are endogenous, and the PC showing undirected 

edges between price received and futures as well as ending stocks and futures. 
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Table 7. Directed Acyclic Graph Results 

  

Total Oil FGES algorithm Total Oil PC algorithm 

 

  

PADD 2 FGES algorithm PADD 2 PC algorithm 

  
PADD 3 FGES algorithm PADD 3 PC algorithm 

  

PADD 4 FGES algorithm PADD 4 PC algorithm 

  
PADD 5 FGES algorithm PADD 5 PC algorithm 
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Table 7. Directed Acyclic Graph Results (continued) 

 

  
Corn FGES algorithm Corn PC algorithm 

  
Soybeans FGES algorithm Soybeans PC algorithm 

  
HRS Wheat FGES algorithm HRS Wheat PC algorithm 

 

 

5.5. Vector Autoregression 

One of the goals of this thesis is to examine the dynamic relationships and interrelationships 

between ending stocks, and spot and futures price.  Given that aim and the fact that much of the 

previous results suggest that spot price and futures price are endogenous, we can utilize a vector 

autoregression (VAR) or vector error correction model (VECM). Sims (1980) introduced VAR as 

a new approach to estimating multiple equation models.  
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Interrelated time series are commonly estimated using VAR (Wilson and Miljkovic 2013).  

A VAR is a system of equations where all endogenous variables are a function of lagged values of 

itself, lagged values of the other endogenous variables, and any other exogenous explanatory 

variables that are deemed appropriate for the model.  Thus, mathematically we can represent a VAR 

as: 

𝑌𝑡 = 𝐵0 + 𝐵1𝑌𝑡−1 +⋯+ 𝐵𝑝𝑌𝑡−𝑝 + 𝐴0𝑋𝑡 + 𝐴1𝑋𝑡−1 +⋯+ 𝐴𝑝𝑋𝑡−𝑝 + 휀𝑡 (57) 

where  𝑌𝑡 is an 𝑛 × 1 vector of endogenous variables, 𝐵0, is an 𝑛 × 1 vector of intercept terms, 

𝐵1,…, 𝐵𝑝 are 𝑛 × 𝑛 matrices of coefficients to be estimated for lagged endogenous variables, 

𝐴0,…,𝐴𝑝 are 𝑛 × 𝑛 matrices related to coefficients of current and lagged exogenous variables, and 

휀𝑡 is an 𝑛 × 1 vector of innovations.  The innovations are not correlated with their own lagged 

values and are uncorrelated with all explanatory variables but may be contemporaneously correlated 

(Wilson and Miljkovic 2013).  Since all right-hand side explanatory variables are the same, ordinary 

least squares (OLS) yields efficient estimates (Enders 2010).   

5.6. Vector Error Correction 

When cointegration is present, we must change our estimation approach.  Since VAR 

models cannot deal with cointegration, we can restrict the VAR to achieve an error correcting 

approach.  VECM allow us to examine the short-term adjustments of cointegrated variables to their 

long-run equilibrium.  Similar to a VAR, in a VECM the differenced endogenous variables are a 

function of lagged differenced values of itself, lagged differenced values of other endogenous 

variables, differenced exogenous variables, and one or more cointegrating vectors which are the 

difference between the two cointegrated variables. Thus, we can represent a VECM mathematically 

as: 

Δ𝑌𝑡 = 𝐵0 + 𝜋𝑧𝑡−1 + 𝐵1Δ𝑌𝑡−1 +⋯+ 𝐵𝑝Δ𝑌𝑡−𝑝 + 𝐴0Δ𝑋𝑡 + 휀𝑡 (58) 
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where Δ is the difference operator, 𝐵0, is an 𝑛 × 1 vector of intercept terms, 𝐵1,…, 𝐵𝑝 are 𝑛 × 𝑛 

matrices of coefficients to be estimated for lagged endogenous variables, 𝑌𝑡 is an 𝑛 × 1 vector of 

endogenous variables, 𝑧𝑡−1 is a 1 × 𝑛 vector containing the difference of cointegrating variables 

forming our cointegrating vector, 𝜋 is an 𝑛 × 1 vector of adjustment coefficients related to our 

cointegrating vector, 𝐴0 is 𝑛 × 𝑛 matrices related to coefficients of our exogenous variables (we 

may include lagged exogenous variables in a VECM as well), and 휀𝑡 is an 𝑛 × 1 vector of 

innovations.  Note that if all elements of 𝜋 are zero, we simply have a VAR in first differences 

(Enders 2010).  

5.7. Impulse Response 

Impulse response functions allow us to observe over time how endogenous variables 

respond to an exogenous shock to itself as well as a shock to other endogenous variables.  Based 

on the dynamic structure of a VAR or VECM, a shock to one endogenous variable will affect that 

variable but can also affect other endogenous variables.  Thus, with impulse response functions, we 

can observe how a shock to one variable filters through the model to affect the other variables within 

the model (Pindyck and Rubinfeld 1998).  This technique ultimately allows us to examine what 

effect a shock in the futures market has on the time path of the spot market and vice versa.  

Following Enders (2010), we can express a VAR as a vector moving average (VMA) in 

matrix form for two arbitrary variables 𝑦𝑡 and 𝑧𝑡: 

[
𝑦𝑡
𝑧𝑡
] = [

�̅�
𝑧̅
] +∑[

𝑎11 𝑎12
𝑎21 𝑎22

] [
𝑒1𝑡−𝑖
𝑒2𝑡−𝑖

]

∞

𝑖=0

(59) 

We can rewrite the vector of errors as: 

[
𝑒1𝑡
𝑒2𝑡
] =

1

1 − 𝑏12𝑏21
[
1 −𝑏12

−𝑏21 1
] [
휀𝑦𝑡
휀𝑧𝑡
] (60) 

Combining (59) and (60) to express 𝑦𝑡 and 𝑧𝑡 in terms of 휀𝑦𝑡 and 휀𝑧𝑡 gives us: 
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[
𝑦𝑡
𝑧𝑡
] = [

�̅�
𝑧̅
] +

1

1 − 𝑏12𝑏21
∑[

𝑎11 𝑎12
𝑎21 𝑎22

]
𝑖

[
1 −𝑏12

−𝑏21 1
] [
휀𝑦𝑡−𝑖
휀𝑧𝑡−𝑖

]

∞

𝑖=0

(61) 

To simplify the notation, we can define the matrix 𝜙𝑖, whose elements are 𝜙𝑚𝑛(𝑖), as follows: 

𝜙𝑖 =
𝐴1
𝑖

1 − 𝑏12𝑏21
[
1 −𝑏12

−𝑏21 1
] (62) 

Thus, the vector moving average of a VAR in matrix form can be expressed as: 

[
𝑦𝑡
𝑧𝑡
] = [

�̅�
𝑧̅
] +∑[

𝜙11(𝑖) 𝜙12(𝑖)

𝜙21(𝑖) 𝜙22(𝑖)
] [
휀𝑦𝑡−𝑖
휀𝑧𝑡−𝑖

]

∞

𝑖=0

(63) 

Here the coefficients 𝜙11(𝑖), …, 𝜙22(𝑖) are the impulse response functions.  We can see that 𝜙11(0) 

is the instantaneous impact of a one unit change in 휀𝑦𝑡 on 𝑦𝑡 while 𝜙11(𝑖) represents the i-th period 

impact of a one unit change in 휀𝑦𝑡−𝑖 on 𝑦𝑡 (Enders 2010).  We can plot the impulse response 

functions to see the time path of the responses to shocks.  

 Since an estimated VAR is under-identified, the impulse responses require additional 

restrictions to be identified (Enders 2010). We utilize Choleski decomposition to orthogonalize the 

innovations to obtain our impulse responses (Wilson and Miljkovic 2013). Thus, the restriction 

alters the system so that 𝑦𝑡 will not contemporaneously effect 𝑧𝑡.  Again, following Enders (2010), 

we decompose the error terms in (60) such that: 

𝑒1𝑡 = 휀𝑦𝑡 − 𝑏12휀𝑧𝑡 (64) 

𝑒2𝑡 = 휀𝑧𝑡 (65) 

Thus, 휀𝑧𝑡 has a contemporaneous direct effect on both 𝑧𝑡 and 𝑦𝑡, while 휀𝑦𝑡 has a direct effect on 𝑦𝑡 

and an indirect effect on 𝑧𝑡 through lagged values of 𝑦𝑡.  Hence, the impulse response functions 

allow us to observe how endogenous variables respond to shocks within the system.  The results of 

our impulse responses can be found in section 6, along with the results of our estimated models.   
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5.8. Variance Decomposition 

The dynamic structure of our models can also be examined using variance decomposition, 

which breaks down the variance of the forecast errors for every endogenous variable into the 

percentage of the variance that can be credited to the other endogenous variables (Pindyck and 

Rubinfeld 1998).  This can be useful in identifying how large a role one variable has in effecting 

the variation of another variable over time.  

Once again, following Enders (2010), we can express the VMA in terms of its forecast 

errors. First, (63) can be expressed more compactly as: 

𝑥𝑡 = 𝜇 +∑𝜙𝑖휀𝑡−𝑖

∞

𝑖=0

(66) 

The n-period ahead forecast of (66) can be expressed as: 

𝑥𝑡+𝑛 = 𝜇 +∑𝜙𝑖휀𝑡+𝑛−𝑖

∞

𝑖=0

(67) 

Hence, we can represent the n-period ahead forecast error as: 

𝑥𝑡+𝑛 − 𝐸𝑡𝑥𝑡+𝑛 =∑𝜙𝑖휀𝑡+𝑛−𝑖

𝑛−1

𝑖=0

(68) 

Thus, for the variable 𝑦𝑡, we see the n-step ahead forecast error: 

𝑦𝑡+𝑛 − 𝐸𝑡𝑦𝑡+𝑛 = 𝜙11(0)휀𝑦𝑡+𝑛 + 𝜙11(1)휀𝑦𝑡+𝑛−1 +⋯+ 𝜙11(𝑛 − 1)휀𝑦𝑡+1 

                 +𝜙12(0)휀𝑧𝑡+𝑛 + 𝜙12(1)휀𝑧𝑡+𝑛−1 +⋯+ 𝜙12(𝑛 − 1)휀𝑧𝑡+1 (69) 

Where the n-period forecast error variance of 𝑦𝑡 is 𝜎𝑦(𝑛)
2: 

𝜎𝑦(𝑛)
2 = 𝜎𝑦

2[𝜙11(0)
2 + 𝜙11(1)

2 +⋯+ 𝜙11(𝑛 − 1)
2] 

                  +𝜎𝑧
2[𝜙12(0)

2 +𝜙12(1)
2 +⋯+ 𝜙12(𝑛 − 1)

2] (70) 
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Note that as the forecast horizon increases, so too will the forecast error variance due to the 

nonnegativity of all 𝜙𝑚𝑛(𝑖)
2 terms.   We can represent the proportion of 𝑦𝑡’s n-period forecast error 

variance due to shocks to 휀𝑦𝑡 as follows, 

𝜎𝑦
2[𝜙11(0)

2 + 𝜙11(1)
2 +⋯+ 𝜙11(𝑛 − 1)

2]

𝜎𝑦(𝑛)2
(71) 

also, the proportion due to shocks to 휀𝑧𝑡: 

𝜎𝑧
2[𝜙12(0)

2 + 𝜙12(1)
2 +⋯+ 𝜙12(𝑛 − 1)

2]

𝜎𝑦(𝑛)
2

(72) 

The proportion of 𝑧𝑡’s n-period ahead forecast error variance can be decomposed in a similar 

fashion.  We also employ Choleski decomposition for our variance decomposition in the same 

manner as (64) and (65). Thus, for the one period ahead forecast error variance, all the variation in 

𝑧𝑡 is due to 휀𝑧𝑡 (Enders 2010).  We use this variance decomposition to see what percentage of the 

variance in futures price can be attributed to spot price over time or what percentage of the variation 

in spot price can be attributed to futures price.  The results of our variance decompositions are 

located in section 6 along with the results of our estimated models.  
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6. RESULTS 

The first step in our estimation process uses unit root testing to determine if each variable 

is stationary in levels or first differences.  We use the Engle-Granger cointegration test to determine 

if we estimate a VAR or a VECM.  If cointegration is present, we estimate a VECM; otherwise, we 

estimate a VAR.  For the VECM, we first estimate a restricted model where we impose a restriction 

on the speed of adjustment coefficients by setting them equal to test if futures price and spot price 

adjust at the same rate.  If we can reject that restriction, we then estimate a VECM with no 

restrictions on the speed of adjustment coefficients.  The endogenous variables are determined 

based on the results of the Granger causality and DAGs, keeping in mind that DAGs are a more 

powerful method since there are no a priori assumptions of the causal nature of the data (Li et al. 

2013).  The number of endogenous lags to include is determined by AIC, except for our national 

oil VECM, where we used our intuition to select the second-best model based on AIC. 

Once we estimate a model, we examine the impulse responses and variance decomposition.  

The impulse responses allow us to examine the size and duration of the impact a shock to one 

endogenous variable has in another endogenous variable.  The variance decomposition allows us to 

account for the percentage of variation in an endogenous variable which is made up by itself as well 

as by other endogenous variables over time.  For the innovation accounting, we are interested in 

how the futures market affects the spot market over a period of 36 months.  

6.1. National Oil 

For national oil, we found that futures price, RAC, and ending stocks are stationary in the 

first differences. The Engle-Granger cointegration test indicated that futures price and RAC are 

cointegrated.  The Granger tests had two-way causality between futures price and RAC significant 

at the 1% level as well as two-way causality between ending stocks and futures price at the 10% 
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level.  The DAG results suggest endogeneity between futures price and RAC.  Thus, on balance, 

futures price and RAC are endogenous and ending stocks can be treated as exogenous.  These results 

indicate that a VECM is appropriate; we estimate a model with three lags.  The results of the 

estimation are in table 8.  We see that we fail to reject the restriction on the speed of adjustment 

coefficients, indicating that futures and spot prices adjust at the same rate.  

We see that for the explanation of both the change in futures price and the change in RAC, 

the cointegration equation is significant indicating both RAC and FUTP adjust towards their long-

run equilibrium.  In the explanation of the first difference in futures price, we see that all three lags 

of ΔFUTP are significant with negative coefficients, while all three lags of RAC are significant 

with positive signs.  In the explanation of ΔRAC, the first two lags of futures price are significant 

with negative signs while the first two lags of RAC are significant with positive coefficients.  We 

see that the change in ending stocks is also significant at the 10% level with a negative coefficient.   

We can see the impulse responses and variance decompositions in Figure 1 and 2 below.  

The response of futures price to a shock in RAC leads to an increase in FUTP which appears to be 

permanent.  RAC response to a shock in futures price indicates an initial increase but ultimately a 

decreased price level around 15 months after the shock which remains permanently lower 

thereafter.  For the variance decompositions,  we see that RAC accounts for nearly 90% of the long-

term variance of futures price.  Futures price accounts for about 25% of RAC variance initially but 

accounts for only about 3% of the variance in the long run.  
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Table 8. National Oil Restricted VECM 

Cointegration Restrictions:   

      𝜋11 = 𝜋21  
Convergence achieved after 3 iterations. 

Not all cointegrating vectors are identified 

LR test for binding restrictions (rank = 1):  

Chi-square(1) 2.4606  
Probability 0.1167  

Cointegrating 

Eq: 
CointEq1 

  

FUTP(-1) -0.3761  
RAC(-1) 0.3440  

C 1.8085   

Error 

Correction: 
ΔFUTP ΔRAC 

CointEq1 
0.3682*** 0.3682*** 

[ 2.91725] [ 2.91725] 

ΔFUTP(-1) 
-0.8797*** -0.3020*** 

[-11.7452] [-3.26785] 

ΔFUTP(-2) 
-0.5223*** -0.2095** 

[-6.35323] [-2.06536] 

ΔFUTP(-3) 
-0.1170** -0.0197 

[-2.01945] [-0.27571] 

ΔRAC(-1) 
1.3365*** 0.6976*** 

[ 19.3245] [ 8.17531] 

ΔRAC(-2) 
0.7506*** 0.3468*** 

[ 7.44699] [ 2.78870] 

ΔRAC(-3) 
0.1874* -0.0761 

[ 1.94051] [-0.63854] 

C 
0.0006 0.0751 

[ 0.00427] [ 0.43173] 

ΔSTOCK 
0.0000 -0.00003* 

[ 0.95533] [-1.77404] 

R-squared 0.7432 0.4041 

t - statistics in [ ] 

*     10% Significance  
**    5% Significance  
***  1% Significance  
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Figure 1. Restricted National Oil Impulse Responses 

 

 

Figure 2. Restricted National Oil Variance Decomposition 
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6.2. Regional Oil 

6.2.1. PADD 2 

For PADD 2, we found that futures price and PADD 2 RAC are stationary in the levels 

while PADD 2 ending stocks is stationary in the first difference.  Thus, since 2 of the three variables 

are stationary, we cannot have a cointegrating vector between any of the three variables.  Granger 

causality indicates two-way causality between futures price and RAC. The FGES algorithm 

suggests endogeneity between futures price and RAC while the PC algorithm resulted in a cyclical 

graph.  Thus, 2 of the three causality tests suggest we can treat futures price and RAC as 

endogenous.   Since cointegration is not possible, we estimate a VAR model in the levels for PADD 

2 with three endogenous lags suggested by AIC.  The results are contained in Table 9.  

In the explanation of FUTP, the second and third lags of FUTP are significant with positive 

coefficients, all three lags of RAC are significant, where the first lag has a positive coefficient and 

the second and third lags have negative coefficients.  In explaining RAC, the first lag of FUTP is 

significant with a negative coefficient, and the third lag of FUTP is significant with a positive 

coefficient.  The first lag of RAC is significant with a positive coefficient while the third lag is 

significant at the 10% level with a negative coefficient.  Finally, the change in ending stocks is 

significant with a negative coefficient. 

Impulse responses in Figure 3 indicate that innovations in either endogenous variable have 

transitory effects. The variance decomposition in Figure 4 indicates that RAC plays an increasing 

role in the variation in FUTP, accounting for nearly 90% by the 36th period.  FUTP also plays a 

decreasing role in the variation of RAC while accounting for 27% in the first period and only 7% by 

the 36th period.   
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Table 9. PADD 2 VAR 

  FUTP 
PADD2 

RAC 

FUTP(-1) 
-0.1047 -0.3794*** 

[-1.15603] [-3.20409] 

FUTP(-2) 
0.2265** -0.0355 

[2.59759] [-0.31127] 

FUTP(-3) 
0.3284*** 0.2171** 

[4.28703] [2.16743] 

PADD2     

RAC(-1) 

1.4506*** 1.6677*** 

[20.4559] [17.9834] 

PADD2      

RAC(-2) 

-0.4053*** -0.1996 

[-2.97043] [-1.11864] 

PADD2     

RAC(-3) 

-0.5258*** -0.3197* 

[-4.12921] [-1.91980] 

C 
2.5901 3.8435 

[2.76032] [3.13229] 

ΔPADD2 

STOCKS 

0.0000 -0.0002** 

[-0.52013] [-2.44462] 

R-squared 0.9808 0.9683 

t - statistics in [ ] 

*     10% Significance  
**    5% Significance  
***  1% Significance  
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Figure 3. PADD 2 Impulse Responses 

 

 

Figure 4. PADD 2 Variance Decomposition 
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6.2.2. PADD 3 

Futures price and PADD 3 RAC are stationary in the levels while PADD 3 ending stocks is 

stationary in the first difference.  Once again, two of the three variables are stationary, so we cannot 

have a cointegrating vector between any of the three variables.  RAC Granger causes futures price 

at the 1% level while futures price Granger causes RAC at the 10% level. For DAGs, both 

algorithms produce graphs with an undirected edge between futures price and RAC, and between 

futures price and ending stocks. Thus, DAGs suggest three endogenous variables, so we estimate a 

VAR with all three variables as endogenous where AIC suggests three lags.  

The results of PADD 3 VAR can be seen in Table 10. For the explanation of the change in 

ending stocks, we can see that the differenced third lag of PADD3 STOCKS is significant with a 

negative sign, while the first lag of FUTP is significant with a positive sign and the second lag of 

FUTP is significant with a negative sign.  For FUTP we see the differenced first lag of ending stocks 

is significant, all three lags of FUTP are significant with positive signs with the first significant at 

the 10% level, while all three lags of RAC are significantly different from zero with the first having 

a positive sign and the latter two having negative signs.  In the explanation of RAC, we see that 

only the first and second lag of RAC are significant with the first having a positive sign and the 

second having a negative sign.   

The impulse responses and variance decompositions of our second PADD 3 model can be 

seen in Figure’s 5 and 6. We can see that a shock to FUTP or RAC does not prompt much of a 

response in PADD 3 stocks and the minor effects are over within a few months.  The response of 

FUTP to an innovation in ending stocks causes a decrease in price which appears to be slowly 

decaying back towards zero in the long run while a shock to RAC causes an increased price which 

also appears to be slowly reverting towards zero in the long run.  A shock to ending stocks prompts 
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a similar response in RAC as it did in FUTP, while a shock to futures price causes an initial increase 

in RAC’s before returning to near zero. For the variance decompositions, we can see that ending 

stock variance is mostly accounted for due to its own innovations, while the variance of futures 

price is about 70% due to RAC in the long term.  RAC’s variance is also mostly accounted for by 

its own innovations.   
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Table 10. PADD 3 VAR 

  
ΔPADD3 

STOCKS 
FUTP 

PADD3 

RAC 

ΔPADD3 

STOCKS(-1) 

0.1267 -0.00008** 0.0000 

[1.61619] [-2.13913] [-1.52744] 

ΔPADD3 

STOCKS(-2) 

0.0108 0.0000 0.0000 

[0.13580] [0.42115] [0.47446] 

ΔPADD3 

STOCKS(-3) 

-0.2168*** 0.0000 0.0000 

[-2.72393] [-1.04923] [-0.50655] 

FUTP(-1) 
408.8833** 0.1783* -0.1766 

[2.03406] [1.93884] [-1.61193] 

FUTP(-2) 
-423.9653** 0.2674*** -0.0927 

[-2.33122] [3.21488] [-0.93533] 

FUTP(-3) 
148.7819 0.2949*** 0.1051 

[0.85927] [3.72384] [1.11399] 

PADD3     

RAC(-1) 

-230.2248 1.359*** 1.6061*** 

[-1.30829] [16.8821] [16.7446] 

PADD3     

RAC(-2) 

-152.2992 -0.7224*** -0.3676** 

[-0.49394] [-5.12212] [-2.1872] 

PADD3      

RAC(-3) 

267.8779 -0.4278*** -0.1325 

[0.99388] [-3.46948] [-0.90207] 

C 
-915.0586 3.5975 4.267 

[-0.37020] [3.18174] [3.16705] 

R-squared 0.1178 0.9747 0.9704 

t - statistics in [ ]   

*     10% Significance   

**    5% Significance   

***  1% Significance   
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Figure 5. PADD 3 Impulse Responses 
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Figure 6. PADD 3 Variance Decomposition 
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6.2.3. PADD 4 

For PADD 4, again we have futures price and PADD 4 RAC as stationary in the levels while 

PADD 4 ending stocks is stationary in the first difference.  Granger causality indicates two-way 

causality between futures price and RAC. The DAGs suggest endogeneity between futures price 

and RAC.  Thus, we estimate a VAR in the levels with three lags based on AIC, with the results in 

Table 11. 

In explaining FUTP, the second and third lag of FUTP are significant with positive 

coefficients,  the first and third lag of RAC are significant with the first having a positive coefficient 

and the third having a negative coefficient.  In the explanation of RAC, the first and third lag of 

FUTP is significant with the first having a negative coefficient and the third lag having a positive 

coefficient.  The first and third lag of RAC are also significant with the first having a positive 

coefficient and the third having a negative coefficient.  

Once again, in Figure 7, we see that a shock to an endogenous variable has increasing effects 

in the short term, but they are ultimately transitory as the effects are practically nonexistent by the 

36th month.  For the variance decomposition results in Figure 8, we find that once again RAC plays 

an increasing role in the variation of FUTP as time increases.  FUTP accounts for about 33% of 

RAC variance in the first period, dips to about 24% in the third period, and rises to about 30% again 

by the 36th period.   
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Table 11. PADD 4 VAR 

  FUTP 
PADD4 

RAC 

FUTP(-1) 
-0.0093 -0.3219** 

[-0.09629] [-2.36133] 

FUTP(-2) 
0.2339** 0.1606 

[2.41308] [1.17159] 

FUTP(-3) 
0.1920*** 0.2043** 

[2.98048] [2.24168] 

PADD4     

RAC(-1) 

1.1771*** 1.4907*** 

[16.9714] [15.1951] 

PADD4      

RAC(-2) 

-0.1619 -0.1336 

[-1.3628] [-0.79502] 

PADD4     

RAC(-3) 

-0.3866*** -0.4596*** 

[-3.50636] [-2.94706] 

C 
0.4341 3.7973 

[0.43726] [2.70422] 

ΔPADD4 

STOCKS 

0.0004 -0.0002 

[0.92816] [-0.26875] 

R-squared 0.9755 0.9411 

t - statistics in [ ] 

*     10% Significance  
**    5% Significance  
***  1% Significance  
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Figure 7. PADD 4 Impulse Responses 

 

 

Figure 8. PADD 4 Variance Decomposition 
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6.2.4. PADD 5 

In PADD 5, the final PADD, we see that futures price, RAC and ending stocks are all 

stationary in the levels.  Granger causality indicates two-way causality between futures price and 

RAC while the DAGs indicate endogeneity between futures price and RAC.  Therefore, we estimate 

a VAR in the levels with three lags based on AIC, with the results in Table 12. 

The results for PADD 5 suggests that all three lags of FUTP and RAC are all significant in 

explaining FUTP.  We see that the signs of the three FUTP lags and the first RAC lag are all positive 

while the second and third lags of RAC have negative signs.  In the explanation of RAC, the first 

lag of FUTP and third lag of RAC are significant with both having a negative coefficient, while the 

first lag of RAC is also significant with a positive sign.  

PADD 5 impulse responses in Figure 9 show similar patterns as other PADDs.  A shock to 

RAC has an increasing effect in the first few months but begins decreasing thereafter.  While it 

does not entirely return to zero, FUTP response appears to be trending toward zero by the 36th 

period. A shock to FUTP also appears to have transitory effects on RAC after an early increase in 

standard deviation dissipates.  Again, variance decomposition for PADD 5, indicated in Figure 10, 

suggests RAC plays an increasing role in FUTP variance as time passes.  Conversely, FUTP plays 

a decreasing role in RAC variance as time passes.   
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Table 12. PADD 5 VAR 

  FUTP 
PADD5 

RAC 

FUTP(-1) 
0.2342** -0.3978*** 

[ 2.48305] [-3.59301] 

FUTP(-2) 
0.3929*** 0.1337 

[ 3.95812] [ 1.14756] 

FUTP(-3) 
0.1694** 0.1436 

[ 2.03740] [ 1.47141] 

PADD5 

RAC(-1) 

1.1047*** 1.6176*** 

[ 13.2874] [ 16.5750] 

PADD5 

RAC(-2) 

-0.4910*** -0.2588 

[-3.54446] [-1.59164] 

PADD5 

RAC(-3) 

-0.4511*** -0.2935** 

[-3.77787] [-2.09373] 

C 
0.2519 1.9961 

[ 0.03893] [ 0.26281] 

PADD5 

STOCKS 

0.0001 0.0000 

[ 0.44847] [ 0.29025] 

R-squared 0.9671 0.9630 

t - statistics in [ ] 

*     10% Significance  
**    5% Significance  
***  1% Significance  
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Figure 9. PADD 5 Impulse Responses 

 

 

Figure 10. PADD 5 Variance Decomposition 
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6.3. Corn 

Unit root testing for corn indicated that futures price, price received (SPOT), and ending 

stocks are all stationary in their first differences. Cointegration testing suggests the presence of a 

cointegrating vector between futures price and SPOT.  Granger causality does not indicate any two-

way causality, only futures price Granger causing spot price. The FGES algorithm suggests 

endogeneity of futures price and SPOT, while the PC algorithm produced a graph with undirected 

edges between futures price and SPOT as well as between futures price and ending stocks.  

Although the endogeneity is not entirely clear, given the data-driven approach and higher power of 

DAGs, we are comfortable moving forward with endogenous variables of FUTP and SPOT.  Thus, 

we estimate a VECM where AIC indicated one lag is the best specification.  In Table 13, we see 

that we can reject the speed of adjustment coefficient, indicating futures and spot price adjust at 

different rates. The results of our unrestricted VECM are contained in Table 14.  

For the cointegrating vector, we see that the lag of SPOT is significant with a negative 

coefficient.  In explaining the first difference of futures price, we find that only the first lag of FUTP 

price is significant with a negative sign.  In explaining the first difference of spot price, we see that 

the cointegrating vector is significant with a positive coefficient suggesting spot price adjusts 

towards the long run relationship with futures price.  Also, the first lag of FUTP is significant with 

a positive coefficient, the first lag of SPOT is significant with a negative sign, and the first 

difference of ending stocks is significant while the coefficient rounded to 4 decimal places is 0; 

however, we can see that it is negative, indicating an increase in ending stocks has a very small 

negative impact on spot price.   

The impulse responses for corn are located in Figure 11.  We see that an innovation in SPOT 

has a permanent decreasing effect to FUTP level by nearly $0.10 in the long run.  Conversely, a 
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shock to FUTP appears to have a permanent increasing effect to the level of SPOT by over $0.40 

in the long run.  Investigating the variance decompositions in Figure 12, we see that SPOT accounts 

for a tiny percentage of the variability of FUTP at only about 2% by the 36th period.  On the other 

hand, FUTP has a significant increasing role in the volatility of SPOT through time, accounting for 

97% of the variance in the 36th period. Thus, in the long run, futures markets increase the level of 

spot price and are a key driver of volatility. 
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Table 13. Corn Restricted VECM 

Cointegration Restrictions:   

      𝜋11 = 𝜋21  
Convergence achieved after 4 iterations. 

Not all cointegrating vectors are identified 

LR test for binding restrictions (rank = 1):  

Chi-square(1) 5.3135  
Probability 0.02116**  
Cointegrating 

Eq: 
CointEq1 

  

FUTP(-1) -2.5251  
SPOT(-1) 2.835474  

C 0.0780   

Error 

Correction: 
ΔFUTP ΔSPOT 

CointEq1 
-0.1125*** -0.1125*** 

[-7.63874] [-7.63874] 

ΔFUTP(-1) 
-0.1966* 0.1050** 

[-1.94025] [ 2.29121] 

ΔSPOT(-1) 
0.0034 -0.1715*** 

[ 0.02733] [-3.02790] 

C 
0.0091 0.0093 

[ 0.27721] [ 0.63005] 

ΔSTOCK 
0.0000 0.0000*** 

[ 0.76798] [-3.66922] 

R-squared 0.0240 0.5033 

t - statistics in [ ] 

*     10% Significance  
**    5% Significance  
***  1% Significance  
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Table 14. Corn VECM 

Cointegrating 

Eq: 
CointEq1 

  

FUTP(-1) 1.0000  

SPOT(-1) 
-1.0994***  
[-32.4578]  

C -0.1143   

Error 

Correction: 
ΔFUTP ΔSPOT 

CointEq1 
0.1093 0.2912*** 

[ 1.31364] [ 7.74185] 

ΔFUTP(-1) 
-0.1847** 0.1064*** 

[-1.82344] [ 2.32353] 

ΔSPOT(-1) 
0.0052 -0.1759*** 

[ 0.04149] [-3.09864] 

C 
0.0090 0.0093 

[ 0.27453] [ 0.63093] 

ΔSTOCK 
0.0000 0.0000*** 

[ 0.74490] [-3.66512] 

R-squared 0.0212 0.5026 

t - statistics in [ ] 

*     10% Significance  
**    5% Significance  
***  1% Significance  
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Figure 11. Corn Impulse Responses 

 

 

Figure 12. Corn Variance Decomposition 
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6.4. Soybeans 

The KPSS test for soybeans suggests that all three variables are stationary in the first 

differences.  Engle-Granger indicates a cointegrating relationship between futures price and price 

received (SPOT).  Two way Granger causality exists between futures price and price received.  Both 

DAG algorithms suggest endogeneity between FUTP and SPOT.  Thus, we estimate a VECM with 

three lags.  Table 15 indicates we can reject the speed of adjustment restriction; results for the 

unrestricted VECM are located in Table 16.  

In the cointegrating equation, lagged SPOT is significant with a negative coefficient.  In 

explaining the first difference of FUTP, the third lag of FUTP is significant with a negative sign 

while the first two lags of SPOT are significant with positive signs. In explaining the first difference 

of SPOT, the cointegrating vector is significant with a positive adjustment coefficient, while the 

first lag of FUTP and the first difference of STOCK are significant at the 10% level. 

The soybean impulse responses are located in Figure 13 while the variance decomposition 

is located in Figure 14.  A shock to SPOT prompts a permanent increase in FUTP by nearly $0.20 

in the long run.  Similarly, an innovation in FUTP elicits a permanently increased response in the 

standard deviation of SPOT by almost $0.80 in the long run.  SPOT also comprises only a small 

portion of FUTP variance, accounting for only 4% in the 36th period.  A large portion of SPOT 

variance is made up of FUTP, which accounts for 95% of the variance by the 36th month.   
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Table 15. Soybeans Restricted VECM 

Cointegration Restrictions:   

            𝜋11 = 𝜋21  

Convergence achieved after 4 iterations. 

Not all cointegrating vectors are identified 

LR test for binding restrictions (rank = 1):  

Chi-square(1) 12.1863  
Probability 0.0005***  
Cointegrating 

Eq: 
CointEq1 

  

FUTP(-1) -2.4268  
SPOT(-1) 2.7277  

C -0.6460   

Error 

Correction: 
ΔFUTP ΔSPOT 

CointEq1 
-0.1414*** -0.1414*** 

[-5.26514] [-5.26514] 

ΔFUTP(-1) 
-0.0993 0.0972 

[-0.69228] [ 1.55799] 

ΔFUTP(-2) 
-0.1580 0.0122 

[-1.20074] [ 0.21322] 

ΔFUTP(-3) 
-0.3841*** -0.0829* 

[-3.52441] [-1.74966] 

ΔSPOT(-1) 
0.5591*** 0.0386 

[ 2.64322] [ 0.42009] 

ΔSPOT(-2) 
0.6224*** 0.0071 

[ 3.16849] [ 0.08350] 

ΔSPOT(-3) 
-0.1346 -0.0596 

[-0.84841] [-0.86412] 

C 
0.0199 0.0279 

[ 0.30284] [ 0.97655] 

ΔSTOCK 
0.0000 0.0000* 

[ 0.22118] [-1.79880] 

R-squared 0.1519 0.4335 

t - statistics in [ ] 

*     10% Significance  
**    5% Significance  
***  1% Significance  
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Table 16. Soybeans VECM 

Cointegrating 

Eq: 
CointEq1 

  

FUTP(-1) 1.0000  

SPOT(-1) 
-1.0870***  
[-48.1708]  

C -0.0677   

Error 

Correction: 
ΔFUTP ΔSPOT 

CointEq1 
-0.1888 0.2791*** 

[-1.18789] [ 3.99476] 

ΔFUTP(-1) 
-0.0328 0.1105* 

[-0.22842] [ 1.74986] 

ΔFUTP(-2) 
-0.1175 0.0214 

[-0.89542] [ 0.37160] 

ΔFUTP(-3) 
-0.3637*** -0.0780 

[-3.34896] [-1.63313] 

ΔSPOT(-1) 
0.5212** 0.0263 

[ 2.47882] [ 0.28444] 

ΔSPOT(-2) 
0.6140*** -0.0018 

[ 3.14131] [-0.02114] 

ΔSPOT(-3) 
-0.1022 -0.0631 

[-0.63985] [-0.89862] 

C 
0.0163 0.0277 

[ 0.24854] [ 0.96286] 

ΔSTOCK 
0.0000 0.0000* 

[ 0.21704] [-1.76599] 

R-squared 0.1572 0.4249 

t - statistics in [ ] 

*     10% Significance  
**    5% Significance  
***  1% Significance  
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Figure 13. Soybeans Impulse Responses 

 

 

Figure 14. Soybeans Variance Decomposition 
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6.5. Hard Red Spring Wheat 

For HRS wheat, futures price and price received are stationary in the first differences, while 

ending stocks are stationary in the levels. The cointegration tests provide evidence of a cointegrating 

relationship between futures price and price received.  Granger causality tests indicate two-way 

causality between futures price and price received.  The FGES algorithm suggests endogeneity 

between futures price and price received while the PC algorithm provides a graph with an 

undirected edge between futures price and price received and an undirected edge between futures 

price and ending stocks.  On balance, the evidence suggests futures price and price received are 

endogenous variables.  We estimate a VECM with four lags, with the results in Table 17.  We can 

see that we fail to reject the restriction the speed of adjustment coefficient, indicating futures and 

spot price adjust at the same rate.  

We see that the cointegration equation is significant with a negative coefficient in explaining 

the first difference of futures price and spot price.  For futures price, the fourth lag of FUTP is 

significant with a positive coefficient, and the first and third lags of SPOT are significant with 

negative coefficients. In explaining ΔSPOT, the first lag of futures price is significant with a 

positive coefficient, the first and second lags of SPOT are significant with the first having a positive 

coefficient and the second having a negative coefficient. The change in ending stocks is also 

significant with a negative coefficient rounded to zero at decimal four places suggesting an increase 

in ending stocks has a small inverse effect on spot price.  

Impulse responses and variance decompositions are contained in Figure 15 and 16.  We can 

see that a shock to SPOT decreases FUTP by about $0.50 in the long term.  An innovation in FUTP 

prompts a permanent long-term increase in the level of spot price by about $1.20.  For the 
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decomposition of FUTP variance, SPOT accounts for about 13% of the long run variance.  Futures 

price accounts for about 87% of the variance of spot price in the long run.  
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Table 17. HRS Wheat Restricted VECM 

Cointegration Restrictions:   

      𝜋11 = 𝜋21  
Convergence achieved after 3 iterations. 

Not all cointegrating vectors are identified 

LR test for binding restrictions (rank = 1):  

Chi-square(1) 1.8634  
Probability 0.1722  
Cointegrating 

Eq: 
CointEq1 

  

FUTP(-1) -3.1454  
SPOT(-1) 3.4326  

C -0.0021   

Error 

Correction: 
ΔFUTP ΔSPOT 

CointEq1 
-0.1227*** -0.1227*** 

[-5.98533] [-5.98533] 

ΔFUTP(-1) 
0.1291 0.1930** 

[ 0.64163] [ 2.52463] 

ΔFUTP(-2) 
0.3201 0.0427 

[ 1.63952] [ 0.57512] 

ΔFUTP(-3) 
0.2536 -0.0136 

[ 1.42089] [-0.20008] 

ΔFUTP(-4) 
0.3823*** 0.0314 

[ 3.25612] [ 0.70520] 

ΔSPOT(-1) 
-1.2193*** -0.3538*** 

[-4.40519] [-3.36563] 

ΔSPOT(-2) 
-0.0886 0.2362** 

[-0.33096] [ 2.32307] 

ΔSPOT(-3) 
-0.4803** -0.0834 

[-2.01267] [-0.92018] 

ΔSPOT(-4) 
0.2504 -0.0450 

[ 1.44574] [-0.68481] 

C 
0.0154 0.0104 

[ 0.25960] [ 0.46373] 

ΔSTOCK 
0.0000 0.0000*** 

[-1.42095] [-3.27995] 

R-squared 0.2239 0.6253 

t - statistics in [ ] 

*     10% Significance  
**    5% Significance  
***  1% Significance  
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Figure 15. Restricted HRS Wheat Impulse Responses 

 

 

Figure 16. Restricted HRS Wheat Variance Decomposition 
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7. CONCLUSIONS 

To examine the relationships between futures prices, spot prices, and inventory levels we 

utilized VAR/VEC models.  We used unit root testing which, for the most part, suggested prices 

and inventories were stationary in the first differences.  Cointegration testing revealed that futures 

prices and spot prices have a long-run equilibrium relationship for all commodities except for the 

regional oil PADD’s. We determined endogeneity of variables using both Granger causality and 

DAG techniques which mostly suggested futures price and spot price were endogenous while 

ending stocks are exogenous.  Impulse responses revealed that shocks in the futures market have a 

permanent increasing effect on the price level of the agricultural spot markets while national oil 

spot prices decrease in the long run and the regional oil PADD’s impulses have transitory increasing 

effects.  From our variance decompositions, we see that futures markets account for over 90% of 

the long-term variance in spot prices for the corn, soybeans, and nearly 90% for wheat.  For oil, we 

see that futures markets play a much small role in the spot price variance over time while most of 

the long-term futures price variance can be attributed to the spot market. 

It has generally been believed among scholars and experts that futures markets have a 

stabilizing effect on spot prices.  The underpinnings of this price stabilizing relationship seem to 

make sense on an intuitive level.  However, our empirical results for the agricultural commodities 

run counter to what one would expect to find.  Our findings of price destabilization coupled with 

the theory would indicate that the dominant stochastic factor in agricultural markets is either 

inventory demand disturbances or production disturbances.  We see oil price is destabilized initially, 

while the national oil is stabilized in the long run and regional oil returns to nearly no effects long 

term.  The theory would seem to indicate that production disturbances are the dominant stochastic 

factor in the oil markets.  To us, the contradictory nature of some of the results indicates that there 
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may still be phenomena at play in the related markets for storable commodities which are not fully 

understood.  We do not believe our results should serve as the end of the discussion on the 

stabilizing/destabilizing nature of futures markets; they should serve as a prompt that more work 

should be done to better understand the effects of futures markets on the volatility and behavior of 

spot prices of storable commodities. 

Given that there is no clear consensus on the effects of futures markets on spot markets in 

this thesis or the field in general, we feel it to be entirely premature to draw any type of policy 

conclusions from our results.  As mentioned, more research must be done in this area so we may at 

some point come to a uniform understanding of the relationship between futures market and spot 

market volatility.  It is also possible that, given our differing results between oil and agricultural 

commodities, this area may be too nuanced for a uniform policy response (if one is necessary) 

across the board.  We hope that this thesis and future works by scholars in this area will reveal more 

clearly any policy implications that arise due to the relationship between futures and spot markets. 
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