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ABSTRACT 

Production and consumption of edible berries are increasing rapidly in the United States, 

mostly due to their superior flavor profile, and popular diet-related value with their human health 

relevant bioactives and nutritional benefits. However, bioactive and nutritional qualities, 

especially human health protective phenolic antioxidants and associated non-communicable 

chronic disease (NCD) relevant health benefits of berries vary widely among accessions/cultivars 

and due to different production practices (organic vs conventional). Therefore, the aim of this 

thesis was to screen and select high phenolic and high antioxidant serviceberry and blackberry 

accessions/cultivars and to investigate the effect of different weed management and fertilization 

(organic vs. conventional) practices on phenolic bioactive linked antioxidant and anti-diabetic 

properties of blackberry using in vitro assay models. Overall, high phenolic-bioactive linked 

antioxidant and anti-hyperglycemic properties were observed in both serviceberry and blackberry 

accessions/cultivars and further for blackberry it was significantly higher under organic weed 

management and fertilization practices. 
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CHAPTER 1. INTRODUCTION 

1.1. Background to Introduction 

As non-communicable chronic disease (NCD) burden increases globally from poor diets 

that are rich in macronutrients largely from soluble carbohydrate dense foods and poor intake of 

fruit and vegetables, there is increase need to identify diverse range of fruits and vegetables as 

antidotes to NCD through our diets. Among the NCD challenges, oxidative stress-linked early 

stages of type 2 diabetes, such as hyperglycemia and its complications towards hypertension can 

be countered by improved diets rich in fruits and vegetables. Therefore, the focus of this thesis is 

on screening different cultivars/genotypes and targeted organic production strategies towards 

understanding the potential of select berries such as antioxidant rich serviceberry (Amelanchier 

spp.) and blackberry (Rubus spp.) as potential antidotes to counter hyperglycemia and 

hypertension using in vitro assay models. This study will then provide a foundation to improve 

the diversity of fruits and vegetables available to counter NCD related challenges. 

1.2. Non-communicable Chronic Disease Epidemic 

Non-communicable chronic diseases (NCDs) are the leading causes of death worldwide, 

accounting for 71% of all deaths and share a common pathogenesis linked to oxidative stress-

induced metabolic breakdowns and associated cellular dysfunctions (Ceriello and Motz 2004; 

Lin and Beal 2006; WHO 2017). Such oxidative stress-induced common pathogenesis involved 

in NCD incidence and development  can lead to chronic inflammatory state which is associated 

with several macro- and micro-vascular complications in humans (Ceriello and Motz 2004; Lin 

and Beal 2006). In general, NCDs encompass a wide range of oxidative stress-linked non-

infectious diseases such as diabetes mellitus (DM), cardiovascular diseases (CVDs), cancers, 

respiratory disease, musculo-skeletal disorders, and dyslipidemia (Unwin et al. 2006). With 
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regard to these common NCDs, the most prevalent with greater morbidity and mortality are 

CVDs, cancers, respiratory disease (COPD), and type 2 diabetes (T2D) (WHO, 2016). Several of 

these NCDs can be prevented and it has been estimated that up to 80% of T2D and CVDs, and 

40% of all cases of cancer could be prevented with better diets and healthy lifestyle choices (Ley 

et al. 2016; Unwin and Alberti 2006). In this context of healthy diet and lifestyle choices, higher 

consumption of nutritionally balanced foods, avoiding smoking, exercising at least 30 minutes 

per day, moderate consumption of alcohol, and having a BMI of less than or equal to 25 kg/m2 

are widely recommended in order to reduce the risks of NCDs (Piernas et al. 2016). Furthermore, 

higher intake of nutritionally balanced diet is especially most critical in overall prevention and 

management of diet and lifestyle-linked NCDs, such as T2D, and CVDs. Diet related factors that 

have been associated with increased risk of T2D and CVDs include; higher intake of hyper-

processed and calorie dense foods; higher daily consumption of refined carbohydrates; higher 

intake of trans fatty acids and sugar-sweetened beverages; low intake of vegetables and fruits; 

and higher consumption of alcohol (Ley et al. 2016). On the contrary, diet rich in dietary fiber, 

minerals, and phytochemicals such as different plant-based whole foods provide protective 

functions against diet and lifestyle-linked NCDs and therefore can be targeted in preventative 

dietary support strategies to counter the rapidly emerging epidemic of NCDs, especially higher 

prevalence of T2D and associated CVDs (Ley et al. 2016). Based on these dietary benefits and 

potential NCD protective functions of plant-based whole foods, the aim of this thesis was to 

investigate the anti-hyperglycemic, antioxidant and anti-hypertensive properties of berries, 

including some cold hardy accessions such as serviceberry and blackberry using rapid in vitro 

screening strategies with goal to advance their dietary support strategies or to develop health 
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targeted edible ingredients for overall prevention and management of early stages of T2D and 

associated chronic inflammation and hypertension.  

Type 2 diabetes is linked to chronic metabolic disorders and the pathogenesis of T2D 

involves insulin resistance, insulin insensitivity, impaired insulin production, beta-cell 

dysfunction, chronic hyperglycemia, and chronic oxidative stress (Cheung et al. 2012; Egan and 

Dinneen 2019; Khangura et al. 2000; Odegaard et al. 2016; Shanmugam et al. 2016; Vijan 2016). 

Several of these metabolic disorders are interconnected and widely characterized as “Metabolic 

Syndrome” or “Syndrome X”. In the context of “Metabolic Syndrome” and associated T2D, 

there are different oxidative-stress induced metabolic and physiological breakdowns which can 

lead to several micro-vascular (retinopathy, nephropathy, and neuropathy), and macro-vascular 

complications (heart attacks, stroke, and peripheral vascular disease) (Cerf 2013; Cheplick et al. 

2015; Dal et al. 2016).  Due to such metabolically-linked interrelated and common pathogenesis 

involving vascular complications, T2D has been shown to increase the risk of other NCDs, 

especially 2-3 folds higher risks of CVDs which include stroke and myocardial infarction, 

(Abdul-Ghani et al. 2017; Almdal et al. 2004). Among all pathogenesis, chronic hyperglycemia 

due to improper balance of glucose homeostasis is a major cause of T2D development. 

Therefore, managing chronic hyperglycemia and countering associated vascular complications is 

most critical to prevent and reduce the risks of T2D associated morbidity and mortality globally.  

1.3. Type 2 Diabetes and Chronic Hyperglycemia 

Development of T2D is a multistage process and involves insulin resistance, beta-cell 

dysfunction, and associated chronic hyperglycemia (Egan and Dinneen 2019). The progression 

from pre-diabetic stage to actual development of T2D is directly linked to increasing fasting and 

postprandial glucose level in the blood due to chronic hyperglycemia (Fonseca 2009). 
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Additionally, onset of hyperglycemia can trigger both insulin resistance and beta cell dysfunction 

and therefore can escalate the progression of T2D development in pre-diabetic individuals (Cerf 

2013). Other risk factors and indicators associated with progression and development of chronic 

hyperglycemia-linked T2D are higher body mass index (BMI), chronic hypertension, high 

triglycerides, and lower level of HDL cholesterol (Cerf 2013). Furthermore, chronic 

hyperglycemia may also lead to or cause several additional diabetes-associated vascular 

complications including chronic oxidative stress-linked inflammation and chronic hypertension 

(Dal et al. 2016). Therefore, managing chronic hyperglycemia is not only just important for 

countering T2D, but also essential reduce the risks of chronic hypertension and inflammation 

commonly associated with T2D.  

1.4. Type 2 Diabetes, Oxidative Stress, and Inflammation 

Chronic oxidative stress and associated inflammation are closely linked to the 

development of T2D and other NCDs (Odegaard et al. 2016). Chronic oxidative stress is mostly 

caused by an imbalance between reactive oxygen species (ROS) and antioxidant defense systems 

which increases the production of ROS in cells and leads to chronic inflammation as part of the 

temporary response of the innate immune system towards redox imbalance (Betteridge 2000; 

Velasquez 2014). Higher concentration of ROS and subsequent breakdown of redox homeostasis 

are believed to be responsible for the development of several NCDs, such as T2D, CVDs, and 

hypertension (Yuliandra et al. 2017). This oxidative stress-induced common pathogenesis could 

explain how both hypertension and CVDs are prevalent among diabetic individuals and up as 

80% of diabetic patients die mostly from CVDs and associated vascular complications (Dal and 

Sigrist 2016; Mohan et al. 2010; Vijan 2016).   
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The pathology of chronic oxidative stress and inflammation in individuals with T2D is 

commonly attributed to T2D-associated chronic hyperglycemia (Dal et al. 2016). Hyperglycemia 

causes oxidative stress through the production of free radicals and the impairment of antioxidant 

defense systems (Maritim et al. 2002). Additionally, chronic hyperglycemia also causes excess 

cellular energy (ATP) to build up in the body and the process is directly linked to the oxygen 

malfunction in the mitochondria. This excess of ATP most often results in the incomplete 

reduction of oxygen to occur in the mitochondria, ultimately leading to the generation of ROS 

and subsequent development of chronic oxidative stress (Ceriello and Motz 2004; Lin and Beal 

2006).  

Chronic hyperglycemia subsequently causes both localized and systemic inflammation, 

through raising the level of pro-inflammatory proteins and causing macrophages to expel 

inflammatory cytokines (Dal et al. 2016). Furthermore, chronic oxidative stress has been shown 

to cause inflammation and such higher inflammatory states can also lead to aggravated oxidative 

stress and reduce overall cellular antioxidant capacity (Joseph et al. 2014; Khansari et al. 2009; 

Reuter et al. 2010; Tarique et al. 2016) Therefore, countering chronic oxidative stress and 

associated inflammation to prevent and manage T2D and associated vascular complications such 

as chronic hypertension is essential (Akash et al. 2013; Dembinska et al. 2008; Maritim et al. 

2002).  

1.5. Type 2 Diabetes and Hypertension 

Among several type 2 diabetes associated macro-vascular complications, hypertension, 

also known as “high blood pressure”, is the most prevalent NCDs in the United States and the 

most attributable risk factor for death globally (Hewett 2010). Chronic hypertension resulting in 

elevated blood pressure and blood glucose that occurs due to several metabolic breakdowns 
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including chronic oxidative stress, and chronic hyperglycemia both commonly associated with 

T2D (Hewett 2010). Additionally, inflammation associated with oxidative stress-linked T2D 

could potentially explain higher occurrence of hypertension in diabetic patients (Cheung et al. 

2012; Dembinska et al. 2008; Maritim et al. 2002). Furthermore, hypertension associated 

inflammation could also contribute to the pathology of T2D as inflammation has been shown to 

be involved in diabetes pathogenesis and is highly common in individuals with T2D (Cheung et 

al. 2012; Dembinska et al. 2008; Maritim et al. 2002; Savoia et al. 2006; Vijan 2016). Due to 

such common metabolically linked pathogenesis, hypertension has been estimated to be 1.5 to 3 

times more common in individuals with T2D than in non-diabetic population (Vijan 2016). In 

the United States, 50% - 80% of individuals with T2D have been diagnosed with hypertension 

(Cheung et al. 2012; Khangura et al. 2000). In addition, the coexistence of T2D and hypertension 

has been shown to play a crucial role in the progression and initiation of other macro-vascular 

diseases (ie: peripheral vascular disease, stroke, ischemic heart disease) and individuals with 

both T2D and hypertension have a 4-fold higher risk of developing such CVDs (Khangura et al. 

2000; Khangura et al. 2018). Therefore, managing hypertension is essential for prevention of 

both T2D and CVDs and to address the NCD challenges globally. Due to such complex 

mechanism in pathogenesis of these development and their interconnections, it is important to 

address these NCD-linked health challenges using holistic integrated strategies. Plant-based 

foods rich in health promoting compounds can be targeted as part of such holistic disease 

preventative strategies, and can be advanced complementarily with other therapeutic strategies to 

address the global epidemic of T2D and associated CVDs.  
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1.6. Plant-Based Foods as a Dietary Antidote against Type 2 Diabetes 

Plant-based foods, especially fresh and whole foods are rich in health protective 

bioactives such as phenolic antioxidants with diverse human health relevant functionalities 

(Attele et al 2002; DeFuria et al. 2009; Hanhineva et al. 2010; Kowalska and Olejnik 2016; 

Lehtonen et al 2010; Shama et al. 2014; Ştefănuţ et al. 2013; Zhang et al. 2012). Therefore, 

higher intake of such bioactive enriched plant-based foods as part of daily diet is highly 

recommended for prevention and management of oxidative stress-linked NCDs, especially early 

stages of T2D and associated health complications such as chronic inflammation and 

hypertension (Hanhineva et al. 2010; Shama et al. 2014). In general, exogenous supply of 

antioxidants is important to maintain cellular redox homeostasis specially to counter NCD-

induced chronic oxidative stress. In this context, higher consumption of plant based foods rich in 

antioxidants such as phenolic bioactives with higher antioxidant potentials is the safe and most 

inexpensive strategy to counter T2D and other NCD-induced chronic oxidative stress and 

associated metabolic breakdowns (Hanhineva et al. 2010). Additionally, plant-based foods rich 

in phenolic antioxidants have also been shown to have anti-hyperglycemia, anti-inflammatory, 

and anti-hypertension functionalities (Barbosa et al. 2011; Cheplick et al. 2015). Therefore, 

plant-based foods rich in such phenolic antioxidants such as berries are important dietary sources 

which can be targeted as part of safe and inexpensive dietary intervention strategies for the 

prevention and management of T2D and associated health complications (Carlsen et al. 2010). 

 In general, berries are rich source of phenolic bioactives, and have shown high in vitro 

anti-hyperglycemic and anti-inflammatory properties linked to early stages of T2D (Cheplick et 

al.2007; 2010; 2015; Pinto et al. 2008; 2010a; 2010b; 2010c; Sarkar et al. 2016; 2017). 

Additionally, epidemiological studies have also suggested an association between higher 
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consumption of berries and reduced risk of T2D and associated macro and micro-vascular 

complications (Castro-Acosta 2016). Therefore, berries can be targeted as dietary antidote to 

manage chronic hyperglycemia, and chronic oxidative stress commonly associated with early 

stages of type 2 diabetes and associated health complications. Based on this rationale of T2D 

linked health benefits of berries, we have hypothesized that berries such as serviceberry and 

blackberry rich in phenolic bioactives would also have high anti-hyperglycemic and antioxidant 

functionalities relevant for dietary prevention and management of early stages T2D and 

associated chronic inflammation and chronic hypertension. 
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CHAPTER 2. REVIEW OF LITERATURE 

2.1. Berries as a Healthy Food Choice 

Consumers across different geographic locations, ethnic origins, and economic 

backgrounds are becoming increasingly aware about fresh and healthy food choices and 

therefore driving the rising demand for fresh fruit produce with value-added nutritional profiles. 

In this context, fresh fruits such as berries are highly sought agricultural commodities and 

demand for these healthy fresh foods is increasing both in the United States and in the global 

market (Lucier et al. 2006; Monson 2009). The per capita consumption of berries has risen by 

55% from 1990 to 2004 in the United States alone (Monson 2009). According to the current 

market estimate, fresh berries are available in the retail market throughout the year in the United 

States and berry producers can earn higher economic returns per unit of land than any other 

agricultural commodity produce (Sobekova et al. 2013).  

Berries are high-value specialty crops with very high dietary antioxidants and other 

health promoting phenolic bioactives among commonly consumed fresh fruits and vegetables 

(Carlsen et al. 2010; Lucier et al. 2006; Monson 2009; Pérez-Jiménez et al. 2010). The growing 

interest and demand for fresh berries among consumers is mainly due to their high antioxidant 

profiles with diverse human health benefits. Both serviceberry and blackberry contains 

significant amounts of human health relevant phenolics (anthocyanins, flavols and ellagitannins) 

with high antioxidant activity (Jurikova et al. 2013; Kaume et al. 2011; Lavola et al. 2012;  

Moyer et al. 2002; Szajdek and Borowska 2008). Such high phenolic-linked antioxidant activity 

of serviceberry and blackberry is also associated with different health relevant functionalities and 

can be targeted in value-added dietary application as fresh fruits and as functional food 

ingredients to counter non-communicable chronic diseases (NCDs) such as T2D and CVDs.  
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Previous research has indicated that berries have anti-inflammatory activities (Srivastava et al. 

2010), higher antioxidant activities (Kähkönen et al. 2001; Srivastava et al. 2010; Wang and Lin 

2000), and glucose metabolism enzyme inhibitory activities (Cheplick et al. 2007; McDougall et 

al. 2005; Sarkar et al. 2016; Tundis et al. 2010; Zhang 2012). Therefore, berries in general are 

ideal targets to be utilized in value-added dietary strategies to prevent and manage NCDs 

including T2D and associated health risks.  

However, the future domestic and export market of berries will largely depend on 

understanding and improving the different value-added quality parameters such as critical human 

health relevant bioactive profiles, sensory qualities, and other post-harvest preservation qualities 

such as shelf-life of berries. These value-added qualities of berries, including human health 

relevant nutrient profiles, of serviceberry and blackberry varies widely among cultivars, different 

cultivation practices, growing conditions, time of harvest, and storage conditions (Cheplick et al. 

2016; Sarkar et al. 2016; Talcott 2007; Wang and Lin 2000). Therefore, based on our previous 

findings and consistent body of preliminary evidence from published literature, the major aim of 

this thesis was to investigate human health relevant phenolic bioactive profiles and associated 

antioxidant, anti-hyperglycemic and anti-hypertensive properties in cultivars and accessions of 

serviceberry and blackberry, including select winter hardy accessions under both organic and 

conventional production practices using rapid in vitro screening strategies.  

2.2. Phenolic Bioactives of Berries 

Phenolic compounds are plant secondary metabolites mostly produced in response to 

abiotic and biotic stresses. Such stress-induced phenolic compounds are widely present across 

plant-based foods and can be found as simple phenolic acids, stilbenoids, lignans, or flavonoids 

(Anhe et al. 2013). When consumed as part of a diet, phenolic bioactives from plant-based food 
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sources can provide diverse T2D relevant protective functions such as anti-hyperglycemia 

countering benefits through their inhibition of key glucose metabolism relevant enzymes such as 

α-amylase, and intestinal lumen α-glucosidase, and through improving insulin function, 

sensitivity, and the uptake of glucose in adipocytes and muscle cells (Anhe et al. 2013; 

Hanhivena et al. 2011). Additionally, phenolic bioactives also serve as powerful dietary 

antioxidants for defense against oxidative stress due to their structural composition and 

associated functions; containing at least one aromatic carbon ring and one or more hydroxyl 

groups (Rice –Evans et al. 1997). Such structure-function relationship gives phenolic compounds 

the ability to act as hydrogen donors, to delocalize or stabilize unpaired electrons, and to chelate 

transition metal ions and overall ability to scavenge oxidative stress-induced ROS (Clark 2002; 

Hanhivena et al. 2011). Additionally, phenolic bioactives can act as antioxidants by modulating 

enzymatic reactions and cellular metabolic pathways that are involved in ROS generation and/or 

inhibiting enzymes responsible for ROS formation (Song et al. 2005). In recent times, dietary 

antioxidants and the antioxidant functionalities of phenolic bioactives of plant-based foods are 

gaining increasing attention, especially for their potential incorporation in dietary intervention 

strategies as humans largely depend on external plant-derived antioxidants to combat NCD-

induced chronic oxidative stress and to manage its associated inflammatory complications 

(Hanhineva et al. 2010).   

2.3. Berry Phenolics: Antioxidant and Anti-inflammatory Properties 

Several previous in vivo studies with human health-related models have concluded that 

berries are beneficial in T2D due to their capacity to reduce oxidative stress (Kowalska and 

Olejnik 2016). In humans, berries reduce oxidative stress by modulating both lipid and protein 

oxidation and the improvement of total antioxidant status (Kowalska and Olejnik 2016). The 
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most effective antioxidants found among berry phenolic compounds are anthocyanins and 

therefore targeting anthocyanin-rich berries has significant relevance in dietary support strategies 

to counter T2D associated chronic oxidative stress (Yang et al. 2018). Both the anthocyanin 

components of berries and the total berry phenolics have been shown to reduce inflammation in 

numerous in vivo human studies through favorably impacting both the inflammatory and immune 

processes contributing to chronic inflammation (Joseph et al. 2014). This suggests that 

anthocyanins and other phenolic acids are not only an important bioactives for contributing to 

antioxidant capacity of berries, but also its potential anti-inflammatory properties. Additionally, 

phenolic compounds have been shown to cause this anti-inflammatory effect through quenching 

of free radicals, by directly blocking inflammatory cytokine expression, NFKB activity, and 

MAPK pathways (Anhe et al. 2013). The treatment of chronic inflammation with plant-based 

foods including berries and other plant-based herbal medicines have been practiced for centuries 

in different parts of the world, including in the United States. Specifically, in the United States, 

American Indians traditionally used plant sources, including berries, for treating several types of 

health issues associated with metabolic disorders and breakdown in body functions. Therefore, 

such traditional therapeutic approach has significant relevance to investigating the potential to 

manage oxidative stress and chronic inflammation associated with common NCDs, such as T2D, 

and to improve overall well-being in contemporary life. Therefore, berries, especially phenolic 

bioactives of these berries including winter-hardy cultivars and accessions, can be targeted for 

evaluation to potentially manage chronic oxidative stress-induced inflammation commonly 

associated with T2D and other common NCDs. 
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2.4. Berry Phenolics: Anti-Hyperglycemic Properties 

One of the strategies to manage T2D is to suppress postprandial hyperglycemia via 

lessening the amount of absorbed glucose in the bloodstream through the inhibition of α-amylase 

and/or α-glucosidase enzymes (Barbosa et al. 2011; Cheplick et al. 2015).  α -Amylase is an 

enzyme responsible for catalyzing the hydrolysis of starch alpha-1, 4-glucosidic linkages and α-

glucosidase is an enzyme responsible for catalyzing the last step in the digestion of 

carbohydrates in the small intestine and absorption of glucose into the bloodstream (Barbosa et 

al. 2011; Wang et al. 2012). Blackberry (Rubus spp.), raspberry (Rubus idaeus), blueberry 

(Vaccinium spp.), strawberry (Fragaria x ananassa Duch.), black currant (Ribes nigrum L.), red 

currant (Ribes rubrum L.), gooseberry (Ribes uva-crispa), and serviceberry (Amelanchier 

alnifolia Nutt.) all exhibited significant α-amylase and/or α-glucosidase enzyme inhibitory 

activities in in vitro studies (Cheplick et al. 2007; 2010; 2015; Pinto et al. 2008; 2010b; 2010c; 

Sarkar et al. 2016; Wang et al. 2012; Zhang et al. 2012). Similarly, several berries have 

demonstrated in vivo anti-hyperglycemic functionalities in both animal and human models 

(Bispo et al 2015; Hanhineva et al. 2010). Blueberries (Vaccinium ashei and Vaccinium 

corymbosum) were reported to attenuate insulin resistance in vivo in mice; Panax ginseng (Panax 

ginseng) berries were reported to significantly improve glucose tolerance, blood glucose levels, 

reduce in serum insulin levels in vivo in mice; serviceberries (Amelanchier alnifolia Nutt.) were 

reported to lower post-prandial blood glucose concentrations, inhibit intestinal a-glucosidase, and 

delay the absorption of carbohydrate in vivo in mice; blackberries (Rubus fruticosus) and 

mulberries (Morus nigra L.) were reported to decrease glucose levels in vivo in mice; sea 

buckthorn (Hippophae rhamnoides ssp. turkestanica) berries were reported to help stabilize 
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postprandial hyperglycemia in vivo in humans (Attele et al 2002; DeFuria et al. 2009; Lehtonen 

et al 2010; Ştefănuţ et al. 2013; Zhang et al. 2012) . 

Synthetic pharmaceutical drugs, such as Acarabose, that target inhibition of these key 

enzymes (α-amylase and α-glucosidase), have been reported to cause adverse side effects 

including: meteorism, flatulence, abdominal distention, and possibly diarrhea (Barbosa et al. 

2011; Kwon et al. 2006). Current research suggest that fresh fruits and vegetables rich in 

phenolic bioactives with high anti-hyperglycemic functionalities could be targeted in safe dietary 

intervention strategies and could be used complementarily with synthetic drugs to inhibit α-

amylase and α-glucosidase enzymes in order to control postprandial hyperglycemia without any 

adverse side effects (Barbosa et al. 2011).  Therefore, berries such as serviceberry and blackberry 

rich in phenolic antioxidants are ideal dietary targets to counter both chronic oxidative stress and 

chronic hyperglycemia commonly associated with early stages of T2D. Additionally, finding 

safe dietary sources to manage chronic hypertension commonly associated with T2D and CVDs 

is also of great interest. 

2.5. Anti-hypertensive Properties of Berries 

Inhibition of angiotensin-I-converting enzyme (ACE) is a common therapeutic target for 

hypertension management, especially in patients with weak kidney functions (Anderson et al. 

2010). ACE is an enzyme that catalyzes the conversion of angiotensin I to angiotensin II, which 

acts as an effective vasoconstrictor. Inhibition of ACE is the current pharmaceutical method for 

managing hypertension (Wagner et al. 1991).  However, many synthetic ACE inhibitors have 

shown significant side effects including hypotension, diarrhea, cough and rash (Townsend et al. 

2018). Therefore, finding safe dietary sources with ACE inhibitory potential is important, 

especially to control chronic hypertension associated with T2D (Forbes et al. 2002). 
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Several berries, such as raspberries (Rubus spp.), cranberries (Vaccinium spp.), and 

strawberries (Fragaria X ananassa Duch.) exhibited in vitro ACE inhibition in previous studies 

(Cheplick et al. 2007; 2010; Pinto et al. 2010a). Additionally, several berries and berry-derived 

products [ie: grapes (Vitis spp.), cherries (Prunus spp.), chokeberries (Aronia spp.), bilberries 

(Vaccinium spp.), blueberries (Vaccinium spp.), and strawberries (Fragaria spp.)] have 

demonstrated anti-hypertensive functionalities, in vivo, in human studies including reduction of 

systolic blood pressure, diastolic blood pressure, augmentation index, central pulse wave 

velocity, and improving arterial stiffness (Kowalska and Olejnik 2016). However, the anti-

hypertensive potential of serviceberry and blackberry especially ACE inhibitory properties of 

these berries were not extensively investigated. Therefore, rapid in vitro screening strategies for 

determining anti-hypertensive and anti-diabetic properties of different cold hardy cultivars of 

these berries are needed prior to targeting them in dietary intervention strategies to prevent and 

manage early stages of T2D and associated complications. 

2.6. Serviceberry as a Model Crop 

Serviceberry was used in traditional medicinal practices of Native Americans, including 

for management of what was suspected to be T2D type “sugar disease” for centuries (Zhang et 

al. 2012). Recent in vitro and in vivo studies have also found several anti-diabetic functionalities 

in serviceberries (Burns et al 2008; Zhang et al. 2012). In previous in vitro studies, serviceberries 

have shown to have anti-hyperglycemic (improvement of glucose uptake, inhibition of aldose 

reductase, a-glucosidase inhibition), high antioxidant [2, 2-diphenyl-1-picrylhydrazyl radical 

(DPPH), 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)], and anti-inflammatory 

properties (nitric oxide, lipid peroxidation inhibition, COX-2, TNF-induced expression) (Burns 

et al. 2008; Juríková et al. 2013; Zhang et al. 2012). Similarly, previous in vivo study also found 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Jurikova%20T%5BAuthor%5D&cauthor=true&cauthor_uid=24126375
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anti-hyperglycemic effect and α-glucosidase enzyme inhibitory functions of serviceberry in diet-

induced obese rats (Zhange et al. 2012). In general, serviceberries are rich in human health 

relevant bioactive profiles (Jennings et al. 1988). Some of these bioactives include: quercetin, 

rutin, cyanidin-3-galactoside, and cyanidin-3-glucoside and have shown to impart two or more of 

the following anti-diabetic relevant functionalities of a-amylase inhibition, a-glucosidase 

inhibition, or angiotensin-converting enzyme (ACE) inhibition activity using in vitro and/or in 

vivo models (Adefegha et al. 2018; Adisakwattana et al. 2004; Akkarachiyasit et al. 2011; 

Kaume 2011; Oboh 2014; Ożarowski et al. 2018; Sarinya Akarachiyasit 2010). However, 

phenolic bioactives and associated T2D relevant health benefits of serviceberry vary widely 

among cultivars and further due to different growing conditions and cultivation practices. 

Therefore, it is important to screen existing cultivars of serviceberry for their potential 

antioxidant, anti-hyperglycemic, and anti-hypertensive properties using rapid in vitro screening 

strategy prior to incorporating them in health targeted dietary solutions against early stages T2D 

and associated health risks. 

2.7. Blackberry as a Model Crop 

Similar to serviceberry, blackberry is also rich source of phenolic bioactives with high 

antioxidant potential. In addition, previous studies have reported several anti-diabetic 

functionalities in blackberry in both in vitro and in vivo models (Azofeifa et al. 2016; Cuevas-

Rodríguez et al. 2010; Sarkar et al. 2016; Srivastava et al 2010; Ştefănuţ et al. 2013; Verma et al. 

2014). Previous in vitro studies have found high anti-hyperglycemic (α-amylase and α-

glucosidase enzyme inhibitory activities), antioxidant, and anti-inflammatory properties in 

different blackberry cultivars (Cuevas-Rodríguez et al. 2010; Sarkar et al. 2016; Srivastava et al 

2010). Furthermore, in vivo studies with diabetic rats also reported both antioxidant and anti-



17 
 

hyperglycemic properties in blackberry and blackberry derived products (Azofeifa et al. 2016; 

Ştefănuţ et al. 2013). Interestingly, the anti-hyperglycemic activity of whole blackberry fruits 

was present even after 5-6weeks of administration of whole blackberry fruits to the rats 

(Azofeifa et al. 2016; Ştefănuţ et al. 2013). These previous studies suggest that blackberry with 

rich phenolic bioactive profile have potentials to manage chronic hyperglycemia and chronic 

oxidative stress commonly associated with early stages T2D and other NCDs (Jennings et al. 

1988). Common phenolic bioactives present in blackberry are ellagic acid, rutin, catechin, 

protocatechuic acid, gallic acid (Lugasi et al. 2011). However, the phenolic acid content and 

phenolic profile of blackberry vary widely among cultivars, and due to different cultivation 

practices and growing environment. Therefore, optimization of these different variables 

(cultivars and cultivation practices) is essential in order to produce blackberry with rich phenolic 

bioactive profiles and to target them in health-focused food solutions. 

2.8. Impact of Cultivar Differences, Growing Condition, Growth Stages, and Cultivation 

Practices on Berry Bioactives and Associated Health Benefits 

The content and profile of phenolic bioactives of berries vary widely between cultivation 

practices, cultivars/genotypes, different maturation stages, different cultivation practices and due 

to growing conditions (Kaume et al. 2011; Zia-Ul-Iaq et al. 2014). Additionally, phenolic 

bioactive-linked functionalities, such as antioxidant, anti-hyperglycemic (α-amylase and α-

glucosidase enzyme inhibitory activities), and antihypertensive properties vary between 

cultivars, growing conditions and due to different cultivation practices (organic vs conventional) 

(Aneta et al. 2013, Conti et al. 2014, Mishra et al. 2017; Sarkar et al. 2016; 2017). Plants grown 

under high abiotic stress environments, such as higher latitude, cold and temperate climate, and 

with higher biotic stress pressure (common under organic production system) produce higher 
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amount of stress inducible secondary metabolites such as phenolics as part of their natural stress 

adaptive responses (Ankolekar et al. 2012; Zhang et al. 2015; Lavola et al. 2012; Ribas-Agusti 

2017; Schulz et. al. 2016; Wang et. al. 2013; Zhang et al. 2015). Based on this rationale, we 

hypothesize that berries grown under the high latitude, cold temperate conditions of the Northern 

Plains have higher concentration of stress-induced phenolic metabolites and therefore can be 

targeted for diet-based strategies to prevent and manage NCDs such as early stages of T2D and 

associated complications. However, the commercial production of blackberry and serviceberry is 

limited in North Dakota. Like many leading states with berry production such as Maine, New 

York, and Vermont, North Dakota also has similar climatic conditions and agricultural 

infrastructure with good potential for production of high-value serviceberry and blackberry in 

this region. However, lack of sufficient winter-hardy cultivars and the sufficient know-how on 

production practices restrict the expansion of berry production in North Dakota and other parts of 

the Northern Plains. Furthermore, the current productivity of serviceberry and blackberry, both 

floricane and primocane cultivars, is significantly low (especially after overwintering) and not 

economically viable for commercial production. Therefore, it is essential to screen winter-hardy 

cultivars of serviceberry and blackberry with superior health targeted nutritional profiles prior to 

expanding their commercial production in the Northern Plains. Based on these needs of better 

defining the value added health relevant functionalities of winter hardy cultivars of serviceberry 

and blackberry, the primary goal of this thesis was to screen existing serviceberry and blackberry 

cultivars for their phenolic bioactive-linked antioxidant, anti-hyperglycemic and anti-

hypertensive properties using rapid in vitro assay models. Furthermore, the effect of different 

environmental conditions (crop year differences in serviceberry) and cultivation practices 
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(organic vs. conventional in blackberry) on berry phenolics and associated T2D relevant health 

benefits were also determined using same rapid in vitro screening strategy.  
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CHAPTER 3. OBJECTIVES 

The major objective of this thesis was to screen health relevant phenolic bioactive profile 

and associated T2D-linked health benefits of serviceberry and blackberry, including winter-

hardy cultivars in order to target them in long-term diet based interventions against early 

stageT2D and associated health risks. Furthermore, the goal was also to support growing 

consumer demands of locally grown value-added fresh berries by better defining and optimizing 

their T2D-linked health benefits using rapid in vitro screening strategies. With this broad aim, 

the specific objectives of this thesis were: 

• To screen serviceberry cultivars, including those that are winter-hardy from two 

different crop years for phenolic bioactive–linked antioxidant, anti-

hyperglycemic, and anti-hypertensive properties using rapid in vitro assay 

models. 

• To analyze and compare phenolic-linked antioxidant and anti-hyperglycemic 

functionalities of two blackberry cultivars grown under organic and conventional 

cultivation practices. 
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CHAPTER 4. SCREENING OF SERVICEBERRY 

ACCESSIONS/CULTIVARS FOR PHENOLIC BIOACTIVE-

LINKED ANTIOXIDANT, ANTI-HYPERGLYCEMIC, AND 

ANTI-HYPERTENSIVE FUNCTIONALITIES USING IN VITRO 

ASSAY MODELS 

4.1. Abstract 

Serviceberry (Amelanchier spp.), a cold-tolerant native berry commonly found in 

temperate regions of the Northern Hemisphere and also known as Saskatoon and Juneberry is 

widely used in ethnic foods and traditional medicines of many Native American tribes. Recent 

human health-focused in vitro and in vivo studies have also found high antioxidant and high anti-

diabetic properties (α-glucosidase enzyme inhibitory activity) in leaf, twigs, and fruits of 

Serviceberry. However, such health relevant phenolic bioactive profile and associated 

antioxidant and anti-diabetic properties of serviceberry potentially vary among different 

accessions or cultivars and under different environmental (under cold and other abiotic stress 

pressure) conditions. Therefore, it is essential to screen existing cold-hardy accessions and 

commercial cultivars of serviceberry for their phenolic antioxidant-linked anti-diabetic properties 

prior to incorporating them in health-targeted dietary interventions for potential management of 

chronic oxidative stress and chronic hyperglycemia commonly associated with early stages of 

type 2 diabetes (T2D). Based on this rationale, the aim of this study was to screen 12 

serviceberry accessions (North Dakota biotypes) and 8 cultivars from two different crop years 

(2016 and 2017) for their total soluble phenolic content, phenolic acid profiles, antioxidant 

activity, anti-hyperglycemia relevant α-amylase, α-glucosidase enzyme inhibitory and anti-
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hypertensive relevant angiotensin-I-converting enzyme (ACE) inhibitory activities using rapid in 

vitro assay models. Overall, very high phenolic content (2.1-3.0 mg/g F.W.), high antioxidant 

activity (79-92% DPPH inhibition), high T2D management relevant α-amylase (63-100%) and 

high α-glucosidase (80-93%) enzyme inhibitory activity was observed in all serviceberry 

accessions and cultivars. Significant differences (p<0.05) in phenolic antioxidant-linked anti-

hyperglycemic properties were also observed between accessions/cultivars and between different 

crop years. Additionally, moderate to high anti-hypertensive relevant ACE enzyme inhibitory 

activity (44-85%) was found in all serviceberry accessions/cultivars evaluated in this study. 

Therefore, this in vitro study provides biochemical rationale to screen and select high phenolic, 

high antioxidant serviceberry accessions and cultivars (ND 12-1, ND 41-1, Parkhill, Smoky, 

Buffalo) to incorporate them in potential dietary intervention strategies especially for healthy 

ethnic food design to counter oxidative stress-linked T2D epidemic in contemporary indigenous 

and non-indigenous communities of North America and globally.  

4.2. Introduction 

Serviceberry, Saskatoon berry or Juneberry (Amelanchier alnifolia Nutt.) is a temperate 

edible berry native to and grown widely in the Northern Plains region of the United States and in 

Canada. The name Saskatoon was derived from the Cree name “misaskwatomin” and this native 

berry is widely used in ethnic foods and traditional medicines including for the ailment of several 

chronic diseases by many Native American tribes. Serviceberry grows well in semi-shaded or 

sunny environments, is extremely tolerant to several abiotic stresses (salt, drought, extreme soil 

pH, ranging from around 5.5 to 7.0, and cold tolerant, even up to -600C), and is grown for both 

for commercial and non-commercial purposes in North America, Europe, and temperate regions 

of the Asia (Donno et al. 2016; UMN Extension). However, the commercial production and its 
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economic importance is mostly restricted in North America, especially in Canada, where the 

current demand is greater than the actual supply (Jurikova et al. 2013). Most of the commercial 

cultivars were developed in Canada and the common cultivars of serviceberry are Martin, 

Regent, Northline, Thiessen, Honeywood, and Smoky. In general, serviceberry and other 

common small fruits grown under cold temperate climate of the North America are regarded as 

one of the best sources of dietary antioxidants and other health promoting bioactives such as 

phenolic compounds (Heinonen 2007). Additionally, serviceberry has been shown to have higher 

antioxidant capacity than other native berries, including blueberry (Guerrero et al. 2010; Li et al. 

2009). 

Berries rich in such phenolic antioxidants and other human health promoting bioactives 

have shown diverse health benefits including anti-inflammatory, anti-diabetic, anti-hypertensive, 

vascular health protective, and gut health relevant functions (Beattie et al. 2005; Yang and 

Kortesniemi 2015). Due to such diverse health protective functions, berries are gaining 

increasing interest among consumers to integrate them as part of healthy dietary choices and 

therefore can be targeted in dietary interventions to manage oxidative stress-linked common non-

communicable chronic diseases (NCDs) such as T2D and associated cardiovascular 

complications. In this context of NCD-linked health benefits of berries, several in vitro, in vivo 

and epidemiological studies have suggested an association between higher consumption of 

berries and reduced risk of T2D and associated macro and micro-vascular complications (Castro-

Acosta 2016; Nile and Park 2014; Yang and Kortesniemi 2015).  Previously, blackberry (Rubus 

spp.), raspberry (Rubus spp.), blueberry (Vaccinium spp.), strawberry (Ribes uva-crispa), black 

currant (Ribus rubrum L.), and serviceberry all exhibited significant anti-hyperglycemia relevant 

α-amylase and/or α-glucosidase enzyme inhibitory activities both in in vitro and in vivo assay 
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models-based studies and these studies indicated strong and positive correlation between 

phenolic content and antioxidant and anti-hyperglycemic properties in these berries (Cheplick et 

al. 2007; 2010; 2015; Pinto et al. 2008; 2010b; Sarkar et al. 2016; 2017; Wang et al. 2012; Zhang 

et al. 2012).  The diverse group of phenolic compounds and other bioactives widely distributed 

in these berries, especially in serviceberry also have other human health relevant protective 

functions such as anti-inflammatory and anti-hypertensive properties and therefore can be 

targeted in dietary support strategies to manage chronic oxidative stress, hyperglycemia and 

hypertension commonly associated with early stages of T2D and other NCDs (Donno et al. 2016; 

Seeram 2008).  

Furthermore, serviceberry is traditionally consumed fresh, in processed foods, and in the 

preparation of Native American meats has significant dietary relevance for improving overall 

health outcomes of contemporary Native American communities facing higher NCD-linked 

health disparities including T2D epidemic. On average, Native American mortality attributed to 

diabetes is three times greater than all races in the United States combined (Indian Health 

Service, 2015). Additionally, Traditional Native American medicine uses native plants, such as 

serviceberry, for healing and the promotion of health opposed to conventional medicine which 

Native American’s tend to reject (Koithan and Farrell 2010; Zhang et al. 2012). 

The major human health relevant bioactives of serviceberry include anthocyanins, 

specifically cyanidin-based anthocyanins that comprise ~63% of the phenols, flavanes, flavonols, 

and hydroxycinnamic acids. Among these bioactives, quercetin, rutin, cyanidin-3-galactoside, 

and cyanidin-3-glucoside commonly found in serviceberry, have shown to impart diverse human 

health benefits including anti-inflammatory, anti-diabetic, and anti-hypertensive functionalities 

(Fontana Pereira 2011; Jurikova 2013; Lavola 2012; Li 2009; Oboh 2014; Ożarowski 2018; 
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Sarinya Akarachiyasit 2010; Wagner et al. 1991). Though these previously published studies 

have validated the antioxidant and anti-diabetic potential of the serviceberry using in vitro and in 

vivo models, there is need for further research on serviceberry accession/cultivar screening. Such 

screening strategies are especially required to obtain winter-hardy accessions and cultivars for 

the Northern Plains to advance their use for wider value-added applications in contemporary 

health-focused dietary strategies to counter T2D and associated health risks as part of overall 

preventive health management approaches through better diets. Further, similar to other berries, 

phenolic bioactive content and associated health benefits such as T2D relevant benefits of 

serviceberry potentially vary among different accessions and cultivars (differences in genetic 

make-up), due to different growing conditions (soil and cultivation practices), and with 

environmental variations (abiotic and biotic stress) (Green and Mazza 1986; Sarkar et al. 2017). 

Therefore, prior to targeting serviceberry in contemporary ethnic and non-ethnic healthy food 

design, it is important to screen existing winter–hardy accessions and cultivars for phenolic 

bioactive-linked health benefits using rapid and inexpensive screening strategies. 

Based on this rationale, the aim of this study was to screen different accessions and 

cultivars of serviceberry grown under cold temperate climate of the Northern Plains for phenolic 

bioactive-linked antioxidant, anti-hyperglycemic, and anti-hypertensive properties using rapid in 

vitro assay models. Furthermore, the screening of serviceberry accessions/cultivars was 

conducted for two years, to determine any potential impact of crop years (environmental 

variations) on phenolic bioactive associated health benefits of serviceberry accessions/cultivars 

(Lavola et al. 2011). We hypothesized that winter-hardy serviceberry accessions and cultivars 

grown under cold temperate climate of the Northern Plains would have higher stress inducible 

phenolic bioactives and proportionately higher human health relevant functionalities when 
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compared to low abiotic stress tolerant accessions/cultivars of serviceberry (Lavola et al. 2012; 

Schulz et. al. 2016; Zhang et. al. 2015). Therefore, advancing the screening of winter-hardy 

accessions and cultivars of serviceberry for phenolic bioactive linked anti-diabetic and anti-

hypertensive properties using rapid in vitro assay models has significant relevance, especially for 

selecting high phenolic and high antioxidant serviceberry accessions and cultivars for 

incorporating in dietary support strategies or for future clinical studies targeting T2D-linked 

health benefits. 

4.3. Materials and Methods 

4.3.1. Serviceberry accessions/cultivars and growing conditions: Twelve North Dakota 

(ND) serviceberry accessions (ND 1-2, 1-4, 1-5, 1-6, 1-7, 12-1, 14-2, 16-1, 17-1, 18-1, 41-1, and 

48-2) and eight commercial cultivars (Buffalo, Honeywood, Martin, Parkhill, Pearson, Regent, 

Smoky, and Thiessen) from two crop years (2016 and 2017) were collected from North Dakota 

State University Horticulture Research Farm and Arboretum located near Absaraka, North 

Dakota (46°58′41″N 97°23′40″W.). All serviceberry plants were propagated in tissue culture in 

2012 and planted in the field in 2012, according to a randomized complete block design 

(RCBD). In 2016 and 2017, serviceberries were grown under conventional production systems. 

All berries were harvested at full maturation according to visual and brix data and frozen at -

20oC immediately after harvest.  Other than specifically mentioned, all chemicals used in this 

study were of analytical grade and were purchased from Sigma Chemical Company (St Louis. 

MO, USA).  

 4.3.2. Preparation of berry extracts: Total weight of 20 g of whole berry fruits were 

added to 50 mL of distilled water and homogenized using a Waring laboratory blender (Winsted, 

CT) set on high for 5 min. The remaining homogenate was then centrifuged at 10,000g for 20 
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min. The supernatant was then removed and again centrifuged at 10,000g for additional 15 min. 

After two consecutive centrifugations, berry supernatant was then removed and transferred into 

1.5 mL Eppendorf tubes and stored in -20oC for less than 2 weeks until all in vitro assays were 

conducted. For each cultivar or accession, twelve total replications were used and the in vitro 

assays were repeated two times from each crop year.  

4.3.3. Total soluble phenolics assay: Total soluble phenolics were determined by the 

Folin-Ciocalteu method based on the modifications by Shetty et al. (1995). Briefly, 0.5 mL of 

distilled water and 0.5 mL of serviceberry sample extract were combined and transferred to a 10 

mL test tube. After initial dilution with distilled water, 1 mL of 95% ethanol and 5 mL of 

distilled water was added to this mixture. Then 0.5 mL of 50% (vol/vol) Folin-Ciocalteu reagent 

was added and the mixture was vortexed. After 5 min, 1 mL of 5% Na2CO3 was added to the 

reaction mixture and was incubated in the dark at room temperature for 60 min. After the 

incubation period, the absorbance was read at 725 nm. A standard curve was created using 

various concentrations of gallic acid in distilled water and the results were represented as mg of 

gallic acid per gram of sample fresh weight (FW). 

4.3.4. 2, 2-diphenyl-1-picrylhydrazyl radical (DPPH) inhibition antioxidant assay: 

Antioxidant activity of serviceberry cultivars was determined by using DPPH radical cation 

decolorization assay method modified by Kwon et al. (2006). Briefly, 1.25 mL of 60 μM DPPH 

stock solution prepared in 95% ethanol was added to 250 μL of berry sample extract (initially 

12.5 μL of each serviceberry extract was diluted in 237.5 μL of distilled water for 1:20 dilution, 

prior to conducting the assay). The decrease in absorbance was monitored after 5 min at 517 nm. 

The absorbance of a control, using distilled water instead of sample extract, was also recorded 
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after 5 min at the same wavelength for comparison. The percentage of inhibition was then 

calculated by the following equation: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐼𝐼𝐼𝐼ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐼𝐼 (%) =
(𝐴𝐴𝑖𝑖𝐴𝐴 𝑐𝑐𝑖𝑖𝐼𝐼𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐 − 𝐴𝐴𝑖𝑖𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠)

𝐴𝐴𝑖𝑖𝐴𝐴 𝑐𝑐𝑖𝑖𝐼𝐼𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐
× 100 

4.3.5. 2,2′‐azinobis(3‐ethylbenzothiazoline‐6‐sulfonic acid) (ABTS) antioxidant assay: 

Additionally, antioxidant activity of serviceberry cultivars was determined by using ABTS 

radical cation decolorization assay (Re et al. 1999). The ABTS radical cation was created by 

combining 5 mL of 7-mM ABTS solution with 88 mL of 140-mM K2S2O4 solution. The solution 

was then kept at room temperature in the dark for 12-16 hours before use. Before the assay, the 

solution was combined with 95% ethanol to create a 1:88 dilution (ABTS solution: 95% ethanol) 

and the absorbance was adjusted accordingly at 734 nm to 0.70. Then1 mL of the adjusted ABTS 

solution was added to 50 µL of sample extract (initially 2.5 µL of serviceberry extract was 

diluted with 47.5 µL of distilled water) and the solution was then vortexed for 30 seconds. After 

vortexing, solution was then incubated at room temperature for 2.5 minutes and then absorbance 

of the incubated mixture was recorded at 734 nm using UV-VIS spectrophotometer. The 

antioxidant activity of the sample extracts was then represented as percent inhibition of ABTS 

radical formation and calculated using the formula:  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐼𝐼𝐼𝐼ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐼𝐼 (%) =
(𝐴𝐴𝑖𝑖𝐴𝐴 𝑐𝑐𝑖𝑖𝐼𝐼𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐 − 𝐴𝐴𝑖𝑖𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠)

𝐴𝐴𝑖𝑖𝐴𝐴 𝑐𝑐𝑖𝑖𝐼𝐼𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐
× 100 

4.3.6.α-Amylase enzyme inhibition assay: The α-Amylase inhibitory activity of 

serviceberry accessions/cultivars was measured by using an in vitro assay method modified from 

Worthington Enzyme Manual (Worthington Biochemical Corp. 1993a). Briefly, a solution of 

500 μL of serviceberry sample extract and 500 μL of 0.02 M sodium phosphate buffer (pH 6.9 

with 0.006 M NaCl) containing α−amylase solution (0.5 mg/mL) was incubated at 25°C for 
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10 min. After incubation, 500 μL of 1% starch solution, diluted in 0.02 M sodium phosphate 

buffer (pH 6.9 with 0.006 M NaCl), was added and then the test tubes were incubated again at 

25°C for 10 min. Afterwards, 1.0 mL of dinitrosalicylic acid was added and the solution 

mixtures were incubated in boiling water for 10 min. After taking out from the water bath, 

solution mixtures were allowed to cool at room temperature. A volume of 10 mL   distilled water 

was then added to the solution to adjust the baseline reading of the control at 1.0 ±0.2 and the 

absorbance was measured at 540 nm.   

 The absorbance of sample blank (buffer instead of enzyme solution) and a control 

(buffer in place of sample extract) were recorded as well. The final absorbance (A540 extract) of 

the extract was obtained by subtracting its corresponding sample blank reading. Additionally, 1:2 

and 1:5 dilution of the sample extract (250 μL sample + 250 μL of distilled water and 100 

μL sample + 400 μL of distilled water respectively) were performed to investigate potential dose 

dependence. The a-amylase inhibitory activity was calculated according to the equation below: 

𝛼𝛼 − 𝐴𝐴𝑠𝑠𝐴𝐴𝑐𝑐𝑠𝑠𝐴𝐴𝑠𝑠 𝐼𝐼𝐼𝐼ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐼𝐼 (%) = (
𝐴𝐴𝑖𝑖𝐴𝐴 𝑐𝑐𝑖𝑖𝐼𝐼𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐 − (𝐴𝐴𝑖𝑖𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠 − 𝐴𝐴𝑖𝑖𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠 𝐴𝐴𝑐𝑐𝑠𝑠𝐼𝐼𝐵𝐵)

𝐴𝐴𝑖𝑖𝐴𝐴 𝐶𝐶𝑖𝑖𝐼𝐼𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐
× 100 

4.3.7. α-Glucosidase enzyme inhibition assay: The in vitro assay method in this study 

was modified from the Worthington Enzyme Manual for a−glucosidase inhibition (Worthington 

Biochemical Corp. 1993b, McCue et al. 2005). A volume of 50 μL of sample extract diluted with 

50 μL of 0.1 M potassium phosphate buffer (pH 6.9) and 100 μL of 0.1 M potassium phosphate 

buffer (pH 6.9) containing glucosidase solution (1.0 U/mL) was incubated in 96-well plates at 

25 °C for 10 min. After pre-incubation, 50 μL of 5 mM p-nitrophenyl- a-d-glucopyranoside 

solution in 0.1 M potassium phosphate buffer (pH 6.9) was added to each well at timed intervals. 

The reaction mixtures were incubated at 25 °C for 5 min. Before and after incubation, 

absorbance readings (A405 extract) were recorded at 405 nm by a microplate reader 

https://www-sciencedirect-com.ezproxy.lib.ndsu.nodak.edu/science/article/pii/S0304423816305052#bib0245
https://www-sciencedirect-com.ezproxy.lib.ndsu.nodak.edu/science/article/pii/S0304423816305052#bib0245
https://www-sciencedirect-com.ezproxy.lib.ndsu.nodak.edu/science/article/pii/S0304423816305052#bib0100


30 
 

(Thermomax; Molecular Devices Co., Sunnyvale, CA) and compared to a control which had 

50 μL of buffer solution in place of the extract (A405 control). The a-glucosidase inhibitory 

activity was expressed as a percentage of inhibition and calculated as follows: 

𝛼𝛼 − 𝐺𝐺𝑐𝑐𝐺𝐺𝑐𝑐𝑖𝑖𝐴𝐴𝑖𝑖𝐺𝐺𝑠𝑠𝐴𝐴𝑠𝑠 𝐼𝐼𝐼𝐼ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐼𝐼 (%) =
(∆ 𝐴𝐴𝑖𝑖𝐴𝐴 𝑐𝑐𝑖𝑖𝐼𝐼𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐 − ∆ 𝐴𝐴𝑖𝑖𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠)

∆ 𝐴𝐴𝑖𝑖𝐴𝐴 𝑐𝑐𝑖𝑖𝐼𝐼𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐
× 100 

4.3.8. Angiotensin-I-converting enzyme (ACE) inhibition assay: Anti-hypertensive 

function relevant ACE inhibitory activity of serviceberry accessions/cultivars was determined 

using an in vitro assay method modified by Kwon et al. (2006). A volume of 50 μL of sample 

extract was incubated with 200 μL of 0.1 M NaCl-borate buffer (0.3 M NaCl, pH 8.3) containing 

2 mU of ACE enzyme solution at 25°C for 10 min. After pre-incubation, 100 μL of a 5.0 mM 

substrate (hippuryl-histidyl-leucine) solution was added to the reaction mixture. Test solutions 

were then incubated in water bath at 37°C for 1 h. Sample blanks (buffer in place of enzyme and 

substrate), a control (distilled water instead of sample extract) and a blank (buffer instead of 

sample extract and enzyme) were also included. The reaction was then stopped by adding 150 μL 

of 0.5 N HCl to all reaction mixtures. The hippuric acid formed was detected by using High 

Performance Liquid Chromatography (HPLC) based quantification protocol. For HPLC analysis, 

a volume of 5 μL of sample was injected using an Agilent ALS 1200 auto-sampler into an 

Agilent 1260 series HPLC (Agilent Technologies, Palo Alto, CA) equipped with a DAD 1100 

diode array detector. The solvents used for the gradient were (A) 10 mM phosphoric acid (pH 

2.5) and (B) 100% methanol. The methanol concentration was increased to 60% for the first 

8 min and to 100% for 5 min and then decreased to 0% for the next 5 min (total run time, 

18 min). The analytical column used was Agilent Zorbax SB-C18, 250 − 4.6 mm i.d., with 

packing material of 5 μm particle size at a flow rate of 1 mL/min at room temperature. During 

each run the absorbance was recorded at 228 nm and the chromatogram was integrated using the 
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Agilent Chemstation enhanced integrator for detection of liberated hippuric acid. Pure hippuric 

acid was used to identify the spectra and retention time. The percentage of inhibition was 

calculated considering the area of the hippuric acid peak according to the equation below: 

𝐴𝐴𝐶𝐶𝐴𝐴 𝐼𝐼𝐼𝐼ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐼𝐼 (%) =
((𝐴𝐴𝑖𝑖𝐴𝐴 𝑐𝑐𝑖𝑖𝐼𝐼𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐 − 𝐴𝐴𝑖𝑖𝐴𝐴 𝑖𝑖𝑐𝑐𝑠𝑠𝐼𝐼𝐵𝐵)− 𝐴𝐴𝑖𝑖𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠)

( 𝐴𝐴𝑖𝑖𝐴𝐴 𝑐𝑐𝑖𝑖𝐼𝐼𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐 − 𝐴𝐴𝑖𝑖𝐴𝐴 𝑖𝑖𝑐𝑐𝑠𝑠𝐼𝐼𝐵𝐵)
× 100 

4.3.9. High performance liquid chromatography (HPLC) for phenolic acid 

characterization: The serviceberry sample extracts (2 mL) were filtered through a 0.2 μm filter. 

A volume of 5 μL of sample was injected using an Agilent ALS 1200 auto-sampler into an 

Agilent 1260 series HPLC (Agilent Technologies, Palo Alto, CA) equipped with a D1100 CE 

diode array detector. The solvents used for gradient elution were (A) 10 mM phosphoric acid 

(pH 2.5) and (B) 100% methanol. The methanol concentration was increased to 60% for the first 

8 min and to 100% over the next 7 min, then decreased to 0% for the next 3 min and was 

maintained for the next 7 min (total run time, 25 min). The analytical column used was Agilent 

Zorbax SB-C18, 250 − 4.6 mm i.d., with packing material of 5 μm particle size at a flow rate of 

0.7 mL/min at room temperature. During each run the absorbance was recorded at 306 nm and 

333 nm and the chromatogram was integrated using Agilent Chem station enhanced integrator. 

Pure standards of chlorogenic acid, gallic acid, ellagic acid, catechin, rutin, benzoic acid, and p-

coumaric acid in 100% methanol were used to calibrate the standard curves and retention times. 

4.3.10. Data analysis: Two extractions were performed for each serviceberry sample, and 

all in vitro assays were replicated six times for each extraction (n = 12). Means, standard errors, 

and standard deviations were calculated from replicates using MS-Excel. All data was subjected 

to a two-way ANOVA using the Statistical Analysis Software (SAS; version 9.4; SAS Institute, 

Cary, NC), and the least mean square differences for cultivar, crop years, and accessions/cultivar 

× crop year interactions were compared using Tukey’s test (p <0.05). 
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4.4. Results and Discussions 

4.4.1. Total soluble phenolic content and phenolic acid profile of serviceberry cultivars: 

The total soluble phenolic (TSP) content of serviceberry extracts was determined using the 

Folin-Ciocalteu based spectrophotometric assay. Overall, all 12 serviceberry accessions and 8 

cultivars had very high TSP content (2.1-3.3 mg gallic acid equivalent (GAE) /g F.W.) (Fig. 4.1). 

Previously, Donno et al. (2016) reported around 5.3 mg GAE/g F.W. of total phenolic content in 

a cultivated genotype of Amelanchier canadensis (L.) Medik, which is a similar serviceberry 

species as in this study. In this current study, significant differences (p <0.05) in TSP content 

was observed among different serviceberry accessions/cultivars, due to different crop years 

(2016 vs. 2017), and further due to accessions/cultivars × crop year interactions (Fig 4.1.) 

(Appendix II).  

 

Figure 4.1. Total soluble phenolic (TSP) content (mg/g F.W.) of 20 serviceberry 
accessions/cultivars from two different crop years (2016 & 2017). Different capital letters for 
each bar represent significant differences in TSP content between accessions/cultivar × crop year 
interactions at the p<0.05 level. 
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Overall, serviceberry accessions ND 12-1 and ND 41-1 had significantly (p <0.05) higher 

TSP content (≥3.0.) followed by Parkhill, Smoky, and Buffalo serviceberry cultivars.  Among all 

serviceberry accessions and cultivars investigated in this study, accessions ND 18-1 and ND 14-

2, and cultivars Regent and Thiessen had comparatively lower TSP content. Overall, 

serviceberry fruits from 2017 crop year had significantly (p <0.05) higher TSP content when 

compared to berry fruits from 2016 crop year (Figure 4.1). Variations in environmental 

conditions (temperature and rainfall) between these two crop years may have contributed to these 

significant differences in stress inducible TSP content of serviceberry accessions and cultivars 

(Appendix I). Overall, 2017 had lower mean temperature than 2016, and potentially cold stress 

may have resulted in significantly higher TSP content in serviceberry fruits harvested in 2017 

crop year. Therefore, this current study indicated that both accessions/cultivars and 

environmental conditions (crop year) had significant impact on TSP content of serviceberry. 

Previously, Green and Mazza (1986) reported significant variations of anthocyanin, total 

phenolic content, and soluble solid content in 8 different serviceberry cultivars. Similar to the 

results of the current study, Sarkar et al. (2017) found significant effect (p <0.05) of genotype × 

environment (crop years and locations) interactions on phenolic content and associated health 

benefits of rabbit-eye blueberry (Vaccinium virgatum). Not only just TSP content but individual 

phenolic acid content of berry fruits also varies significantly among cultivars and due to 

variations in environmental conditions.  

In this current study, characterization and determination of individual phenolic acids 

content of the serviceberry accessions/ cultivars were carried out using HPLC-based 

chromatographic analysis. Overall, major phenolics found in this current study were rutin, 

caffeic acid, catechin, chlorogenic acid, gallic acid, and benzoic acid (Table 4.1.). Previously, 
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Donno et al. (2016) reported caffeic acid, chlorogenic acid, coumaric acid, ferulic acid, 

quercetin, rutin, ellagic acid, and epicatechin as major phenolics in serviceberry genotype.  

Table 4.1. Individual phenolic content (µg/g F.W.) of serviceberry accessions/cultivars from two 
different crop years. 
Accession

s/ 
Cultivars 

Benzoic Acid Caffeic Acid Catechin Chlorogenic 
Acid 

Gallic Acid Rutin 

µg/g F.W. 
2016 2017 2016 2017 2016 201

7 
2016 201

7 
201

6 
201

7 
2016 2017 

1-2 0.8±0 0.9±0 0.9±0.
1 6.5±0 0.5±0.

1 
2.1±

0 0.3±0 0.9±
0 

0.4±
0 

0.6±
0 4.5±0 6.8±0 

1-4 
0.8±0.

1 1±0 0.4±0 5.6±0 0.4±0.
2 

2.5±
0 N.D. 0.7±

0 
0.6±

0 
0.5±

0 4.2±0 6.6±0 

1-5 0.6±0 0.9±0 0.3±0 4.4±0 0.3±0.
2 

1.6±
0 N.D. 0.7±

0 
0.3±

0 
0.5±

0 2.5±0 6.7±0 

1-6 0.6±0 1.2±0 3.9±0 5.4±0 2.8±0 2.8±
0 0.8±0 0.9±

0 
0.7±

0 
0.6±

0 7.5±0 6.4±0 

1-7 0.7±0 0.9±0 4.2±0 6.8±0 1.4±0 3±0 0.8±0 0.8±
0 

0.4±
0 

0.4±
0 6.6±0 7.4±0 

12-1 0.7±0 1±0 6.5±0 5.3±0 1.7±0 4.5±
0 2±0 2.2±

0 
0.7±

0 
0.6±

0 16.8±0 27±0 

14-2 0.8±0 1.2±0 19.6±
0 4.6±0 5.6±0 5.9±

0 1.8±0 0.9±
0 

0.4±
0 

0.6±
0 12.4±0 15.4±0 

16-1 0.8±0 1.1±0.
1 0.5±0 8.9±0 0.3±0 1.7±

0 N.D. 1.6±
0 

0.2±
0 

0.3±
0 6.8±0 15.6±0 

17-1 0.7±0 1±0 7.8±0 4.7±0 2.7±0 2.8±
0 1.2±0 0.7±

0 
0.6±

0 
0.5±

0 11±0 6±0 

18-1 0.7±0 1.1±0 4.7±0 16.2±
0 1±0 4.1±

0 1±0 3.2±
0 

0.2±
0 

0.7±
0 4.6±0 24±0.1 

41-1 0.9±0 1±0.2 0.7±0 12.6±
0 

0.2±0.
1 

4.2±
0 0.3±0 2.8±

0 
0.5±

0 
0.4±

0 12.5±0 16.3±0
.1 

48-2 0.9±0 0.9±0 1.1±0 4.1±0 0.3±0 1.7±
0 0.2±0 0.6±

0 
0.2±

0 
0.5±

0 3.6±0 5.7±0 

Buffalo 0.6±0 1.1±0 1.1±0.
1 

9.2±0.
1 

0.3±0.
1 

2.8±
0 0.4±0 1.4±

0 
0.6±

0 
0.7±

0 12.2±0 17.5±0 

Honeywo
od 

0.4±0.
1 1±0 0.4±0 5±0 0.2±0 3.4±

0 N.D. 2.2±
0 

0.3±
0 

0.8±
0 6.9±0 23.5±0 

Martin 
0.4±0.

2 1±0.1 4.2±0 5.3±0 2±0 2.1±
0 0.8±0 0.7±

0 
0.2±

0 
0.4±

0 16.2±0 18.4±0 

Parkhill 0.4±0 0.9±0 2.7±0 6.2±0 0.6±0 3.5±
0 0.8±0 0.8±

0 
0.1±

0 
0.6±

0 3.7±0 7.4±0 

Pearson 0.3±0 0.9±0 6.7±0 4.3±0 2.5±0 1.3±
0 0.6±0 0.5±

0 
0.4±

0 
0.4±

0 10.7±0 9.3±0 

Regent 0.2±0 1±0 5.2±0 3.1±0 2±0 1.6±
0 0.9±0 0.7±

0 
0.5±

0 
0.5±

0 5.8±0 6.2±0 

Smoky 0.3±0 1.1±0 11.5±
0 5.5±0 3.3±0 8.4±

0 
1.6±0.

8 1±0 0.6±
0 

0.5±
0 

17.2±0
.2 15.6±0 

Thiessen 0.5±0 1±0.2 5.8±0 3.9±0 3.2±0 1.5±
0 1±0 0.6±

0 
0.4±

0 
0.3±

0 20.3±0 14.8±0 

± Standard Error 
N.D. Not Detected 
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Furthermore, mean content of individual phenolic acids of serviceberry accessions and 

cultivars were significantly higher in 2017 crop year when compared to fruits of same 

accessions/cultivars from 2016 crop year. Therefore, these results on individual phenolic acid, 

suggested that both differences in accessions/cultivars and impact of crop years (environmental 

variations) had significant effect on phenolic acid composition and their concentration in 

serviceberry fruits. Such variations in composition and concentration of individual phenolic acids 

of serviceberry accessions/cultivars may also have relevance in the associated health benefits 

such as antioxidant, anti-hyperglycemic and anti-hypertensive properties.  

4.4.2 Antioxidant activity of serviceberry cultivars: Total antioxidant activity of 

serviceberry fruit extracts was quantified using the DPPH and ABTS-based radical scavenging 

activity assays. We hypothesized that serviceberry accessions/cultivars with high TSP content 

would also have higher total antioxidant activity, as many previous studies reported strong 

correlation between TSP content and antioxidant activity of berry fruits (Cheplick et al. 2010; 

Henonen et al. 1998; Sarkar et al. 2016; 2017; Sariburun et al. 2010; Sellappan et al. 2002). In 

this study, very high antioxidant activity (both ABTS and DPPH based assays) was observed in 

all serviceberry accessions/cultivars (Figure 4.3 A & B).  

Due to such high antioxidant potentials (close to 100 % DPPH and ABTS free radical ion 

inhibition in undiluted sample), serviceberry fruit extracts were further diluted to 1:5 for DPPH 

based antioxidant assay and 1:20 for ABTS based antioxidant assay. Overall, 51-98 % ABTS 

free radical inhibition (1:20 diluted samples) and 62-100% DPPH free radical inhibition (1:5 

diluted samples) were observed in serviceberry accessions/cultivars investigated in this study.  
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Figure 4.2. Total antioxidant activities (A- ABTS free radical scavenging % inhibition & B- 
DPPH free radical scavenging % inhibition) of serviceberry accessions/cultivars from two 
different crop years (2016 &2017). Different capital letters for each bar represent significant 
differences in total antioxidant activity between accessions/cultivar × crop year interactions at 
the p<0.05 level. 

 

The positive control resveratrol, in 1 mg/ mL had 55-60% DPPH based inhibition which 

was lower than the DPPH based inhibition (62-100) value of all serviceberry extracts (0.2 mg/ 
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mL). Previous studies also reported very high antioxidant activity similar to the result of the 

current study, in fresh, stored and processed serviceberry fruits (Cazares-Franco et al. 2014; 

Donno et al. 2016; Michalczyk and Macura 2010).Significant differences (p <0.05) in 

antioxidant activity (in both ABTS and DPPH-based assays) were observed among serviceberry 

accessions/cultivars, due to different crop years (2016 vs. 2017), and also between 

accessions/cultivars × crop year interactions. Furthermore, similar to TSP content, significantly 

high antioxidant activity (in both ABTS and DPPH-based assays) was observed in serviceberry 

accessions ND 12-1, ND 41-1, and cultivars Parkhill, Smoky, and Buffalo, while comparatively 

low antioxidant activity was found in ND18-1, ND 14-2 serviceberry accessions and in Regent 

and Thiessen cultivars.  Therefore, this result validated our hypothesis that antioxidant activity of 

serviceberry accessions/cultivars is associated with their TSP content. Furthermore, serviceberry 

fruits from 2017 crop year had significantly higher (p <0.05) antioxidant activity (in both ABTS 

and DPPH-based assays) when compared to fruits from 2016 crop year. Therefore, both 

accessions/cultivars differences and environmental variations (crop years) had significant impact 

on phenolic-linked antioxidant activity of serviceberry. Previously, similar effect of genotypes 

and crop years on differences in antioxidant activity of serviceberry was reported by Lachowicz 

et al. (2017). Overall, results of the current study indicated that serviceberry accessions ND 12-1, 

ND 41-1, and cultivars Parkhill, Smoky, and Buffalo with high TSP content and high antioxidant 

activity can be targeted towards strategies for dietary interventions to counter chronic oxidative 

stress commonly associated with diet and lifestyle-linked NCDs such as T2D and associated 

complications. It is also possible that these high phenolic and high antioxidant serviceberry 

accessions and cultivars screened in this study may have other human health benefits relevant 
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functions such as anti-hyperglycemic and anti-hypertensive properties and therefore such 

analysis were undertaken.  

4.4.3 Anti-hyperglycemic property relevant α-amylase and α-glucosidase enzyme 

inhibitory activity of serviceberry cultivars: To determine the anti-hyperglycemic potentials of 

serviceberry, key glucose metabolism relevant α-amylase and α-glucosidase enzyme inhibitory 

activities of serviceberry accessions/cultivars from two different crop years (2016 & 2017) were 

analyzed using rapid in vitro assays. Overall, all serviceberry accessions/cultivars had high α-

amylase enzyme inhibitory activity (62-100%) in undiluted sample (Table 4.2). Even after half 

(1:2) and one-fifth (1:5) dilution, all serviceberry accessions/cultivars had significant in vitro α-

amylase enzyme inhibitory activity (31-80 % in half dilution and 10-32% in one-fifth dilution) 

(Table 4.2). Previously, α-amylase enzyme inhibitory activity was observed in A. parviflora var. 

dentata (Zengin et al. 2018). In the current study, among serviceberry accessions and cultivars, 

accessions ND 1-5, ND 14-2 and cultivars Regent and Buffalo had significantly (p <0.05) higher 

α-amylase enzyme inhibitory activity. Overall, similar to TSP content and antioxidant activity, 

significant differences (p <0.05) in α-amylase enzyme inhibitory activity was observed among 

serviceberry accessions/cultivars, between two crop years (2016 & 2017), and 

accessions/cultivars × crop year interactions. However, in contrast to the TSP content and total 

antioxidant activity, mean α-amylase enzyme inhibitory activity of serviceberry 

accessions/cultivars was significantly higher in 2016 crop year when compared to the mean α-

amylase enzyme inhibitory activity of 2017 serviceberry samples.  

Similarly, serviceberry accessions such as ND 1-5, ND 14-2 with higher α-amylase 

enzyme inhibitory activity had comparatively low TSP content and total antioxidant activity. 

However, serviceberry cultivar Buffalo had both high TSP content and high α-amylase enzyme 
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inhibitory activity. Therefore, this result indicated that α--amylase enzyme inhibitory activity of 

all serviceberry accessions/cultivars may not be directly related to TSP content alone.  

Table 4.2. α-Amylase enzyme inhibitory activity of serviceberry accessions/cultivars from two 
different crop years (2016 &2017).  
Accessions/Cult

ivars 

Undiluted (1:1) Half-Diluted (1:2) One-Fifth Diluted (1:5) 

% Inhibition 

2016 2017 2016 2017 2016 2017 

1-2 100±0A 
94.6±0.5B
CD 51.7±1.2HIJ 

46.2±0.8L
MNOP 

20.6±1GHIJ
K 

16.7±0.9JKLM
NOP 

1-4 71.6±0.9M 65.6±0.8N 33.4±1WX 30.8±0.8X 
17±1.1JKL
MNOP 10.8±0.9SR 

1-5 100±0A 95.7±0.7B 80.1±0.8A 77.5±0.8A 32.4±0.8A 
27.7±0.7ABC
D 

1-6 93.9±0.9BCD 
89.1±0.7E
FG 46.1±0.9MNOP 

42.3±0.9O
PQRST 

19.1±0.9HIJ
KLM 

13.1±0.8OPQS
R 

1-7 63.8±0.9N 62.2±0.9N 35.3±1.4VWX 
33.2±0.9
WX 

12.9±0.9OP
QRS 10.2±0.9S 

12-1 100±0A 
97.8±0.9A
B 57.7±0.8FG 

51.4±0.9H
IJKL 

24.7±0.8CD
EFG 22±0.9EFGHI 

14-2 100±0A 100±0A 70.3±1BC 
65.9±0.9C
D 

28.7±0.8AB
C 

24.2±0.9CDEF
G 

16-1 81±0.9JK 
78.8±0.9K
L 

41.2±1PQRST
U 

37.1±0.9U
VW 

16.4±0.9JK
LMNOP 12.6±1PQROS 

17-1 100±0A 
95.2±0.7B
C 53.3±1.2GHI 

55.4±0.9F
GH 

23.1±1DEF
GH 

19.9±1GHIJK
L 

18-1 89.2±1.1EFG 91.1±1DE 45.7±1MNOPQ 
40.8±1.1Q
RSTU 

15.8±0.9KL
MNOPQR 11.2±1QRS 

41-1 86.6±0.8FGH 84±0.9HIJ 
42.9±0.9NOPQ
RS 

38.9±0.9S
TUV 

17.5±0.9IJK
LMNO 

12.8±0.8POQ
RS 

48-2 100±0A 100±0A 59.9±0.8EF 
53.3±1GH
I 

25.6±0.9BC
DEF 20.8±1FGHIJ 

Buffalo 100±0A 100±0A 65.2±0.9CD 63±1DE 
27.6±0.8AB
CD 22.5±1EFGH 

Honeywood 94.9±0.8BCD 
89.4±0.8E
F 

47.8±1.1JKLM
N 

42.9±0.8N
OPQRS 

18.2±0.8HIJ
KLMN 

15.2±0.8LMN
OPQRS 

Martin 89.7±0.8EF 
85.5±0.9G
HI 

45.3±0.9MNOP
Q 

41.2±0.9P
QRSTU 

18.4±0.8HIJ
KLM 

14.5±1MNOP
QRS 

Parkhill 84.3±0.8HIJ 82.6±0.9IJ 
43.1±0.8NOPQ
RS 

38.3±1ST
UVW 

17.5±0.8IJK
LMNO 

13.4±0.9NOP
QRS 

Pearson 95.8±0.9B 
91.5±1CD
E 48.3±0.9IJKLM 

44.8±0.9
MNOPQR 

18.8±0.9HIJ
KLM 

15.1±0.8LMN
OPQRS 

Regent 100±0A 100±0A 75±1AB 72.1±0.9B 30.4±0.9AB 26.4±1BCDE 

Smoky 100±0A 100±0A 51.5±0.6HIJK 
46.4±0.8K
LMNO 

22.2±1EFG
HI 

17.2±0.8IJKL
MNO 

Thiessen 81.1±1JK 76.2±0.9L 
39.9±0.8RSTU
V 

37.3±0.8T
UVW 

16.1±0.9JK
LMNOPQ 12.3±0.9PQRS 

± Standard Error 
*Different capital letters for each dilution represent significant differences in α-amylase enzyme 
inhibitory activity between accessions/cultivar × crop year interactions at the p<0.05 level. 
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Serviceberry is rich source of anthocyanin and previous studies have shown high α-

amylase inhibitory activities in anthocyanin rich berries (Grussu et al. 2011; McDougall et al. 

2005).Therefore, other bioactive compounds of serviceberry beyond just phenolic acids may 

have significant role in dictating their α-amylase enzyme inhibitory activity. Not only just high 

α-amylase enzyme inhibitory activity, but very high α-glucosidase enzyme inhibitory activity 

was observed in all serviceberry accessions and cultivars investigated in this study. The 

inhibitory activity of serviceberry accessions/cultivars against α-glucosidase enzyme was 

quantified to determine the potential of serviceberry fruit to lower the rate of digestion of 

carbohydrates in the small intestine and absorption of glucose in the bloodstream (McDougall 

and Stewart 2005). Overall, all serviceberry accessions/ cultivars had very high α-glucosidase 

inhibitory activity in undiluted samples (80-93%) (Table 4.3). A significant dose dependent 

response in α-glucosidase enzyme inhibitory activity was also observed in all serviceberry 

accessions and cultivars. Even after one-fifth (1:5) dilution, 45-67 % α-glucosidase enzyme 

inhibitory activity was observed in serviceberry fruit extracts. Previously, Zhang et al. (2012) 

reported α-glucosidase enzyme inhibitory activity in serviceberry leaves, twigs, and leaves with 

berry extracts. Overall significant differences (p <0.05) in α-glucosidase enzyme inhibitory 

activity was observed among serviceberry accessions/cultivars, between two crop years (2016 & 

2017), and accessions/cultivars × crop year interactions (Table 4.3). In this current study, 

serviceberry accessions ND 1-5, and ND 12-1 and serviceberry cultivar Parkhill had high α-

glucosidase enzyme inhibitory activity when compared to other serviceberry accessions and 

cultivars. Both ND 12-1 and Parkhill also had high TSP content and high antioxidant activity. 

Therefore, high α-glucosidase enzyme inhibitory activity of some serviceberry accessions and 

cultivars may be linked to the TSP content and composition of phenolics.  
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Table 4.3. α-Glucosidase enzyme inhibitory activity of serviceberry accessions/cultivars from 
two different crop years (2016 &2017).  
Accessions/Cult

ivars 

Undiluted (1:1) Half-Diluted (1:2) One-Fifth Diluted (1:5) 

% Inhibition 

2016 2017 2016 2017 2016 2017 

1-2 
89.5±1CDEFGH
I 

89.9±0.4B
CDEFG 80±0.4BCD 

76.6±0.4D
EFGHI 

62.8±1ABC
D 

52.8±1HIJKL
M 

1-4 90.5±0.6ABCDE 
92±0.4AB
C 81.9±0.3AB 

75.4±0.5G
HIJKLM 63.4±0.8AB 

53.6±0.7GHIJ
KL 

1-5 91.3±1ABCDE 
90.3±0.5A
BCDEF 84±0.7A 

74.1±0.6H
IJKLMN 66±0.6A 

51±1.4KLMN
O 

1-6 90.7±0.7ABCDE 
91±0.3AB
CDE 81.3±0.5ABC 

75.8±0.6E
FGHIJKL 

60.7±0.7BC
DE 

48.9±0.8LMN
OPQ 

1-7 
88.5±0.5DEFGH
IJ 

86.1±0.3J
KLM 

72.6±0.8JKLM
NO 

72±0.4LM
NOP 

51.7±1.2JK
LMNO 

55.3±0.6FGHI
JK 

12-1 93±0.2A 
92.3±0.4A
BC 

79.4±0.3BCDE
F 

75.5±0.5F
GHIJKL 

56.1±1.1EF
GHIJ 

52±0.8IJKLM
N 

14-2 84±0.6ML 
83.8±0.5
MN 68.7±0.6PQR 

67.9±0.8Q
R 42±1.3RS 46±0.8PQR 

16-1 
89.2±0.8CDEFG
HI 

86.7±0.3H
IJKLM 

76.2±1.3DEFG
HIJK 

69.3±0.3O
PQR 

57.8±1.1DE
FG 

47.1±0.7NOP
Q 

17-1 87±0.4GHIJKL 
86.1±0.7IJ
KLM 

73.7±0.6IJKLM
N 

71.6±0.7
MNOPQ 

51.9±0.8IJK
LMNO 45.2±0.7QR 

18-1 84.9±0.3KLM 
85.6±0.5J
KLM 

70.7±0.6NOPQ
R 

70.6±1NO
PQR 

48.4±1.3MN
OPQ 47±0.8OPQ 

41-1 92.7±0.3AB 93±0.4AB 79.5±0.7BCDE 
78.1±0.6B
CDEFG 

59.6±1.1BC
DEF 

47.3±0.7NOP
Q 

48-2 92±0.5ABC 
92.6±0.3A
B 79.8±0.5BCD 

79.6±0.5B
CD 

60.8±0.7BC
DE 

49.4±0.7LMN
OPQ 

Buffalo 88.4±1DEFGHIJ 
92±0.2AB
C 

73.3±1.3IJKLM
N 

76.5±0.9D
EFGHIJ 

50.6±1.1KL
MNOP 

56.7±0.5EFGH
I 

Honeywood 87.4±0.3FGHIJ 80.7±0.3N 
70.4±1.2NOPQ
R 61.1±0.6S 

52.2±0.3IJK
LM 37.7±0.9S 

Martin 92.2±0.6ABC 
91.9±0.2A
BC 

78.8±1.2BCDE
FG 

76.9±0.9D
EFGHI 

62.4±0.4AB
CD 

53.7±0.9GHIJ
KL 

Parkhill 93.3±1A 
92±0.6AB
C 84.8±0.6A 

76.8±0.8D
EFGHI 67.2±0.8A 

51±0.9KLMN
O 

Pearson 90.9±0.5ABCDE 
91.2±0.7A
BCDE 

75.7±1.3EFGHI
JKL 

77.6±0.5C
DEFGH 

62.9±0.7AB
C 58±1.3CDEFG 

Regent 90.7±1ABCDE 
91.4±0.4A
BCD 81.2±0.4ABC 

75.7±0.4E
FGHIJKL 

62.9±0.6AB
C 

53.4±0.8GHIJ
KL 

Smoky 88.3±0.5EFGHIJ 
91±0.4AB
CDE 

72.6±0.7KLMN
OP 

79.4±0.8B
CDE 

49.2±1.2LM
NOPQ 57.3±1.4EFGH 

Thiessen 85.8±0.9JKLM 
84.8±0.5K
LM 

54.5±0.6KLMN
OP 67.1±0.8R 

54.5±0.6GH
IJK 44.9±0.7QR 

± Standard Error 
Different capital letters for dilution represent significant differences in α-glucosidase enzyme 
inhibitory activity between accessions/cultivar × crop year interactions at the p<0.05 level. 
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Previously, high in vitro and in vivo α-glucosidase enzyme inhibitory activity was 

observed with quercetin (rutin) and hydroxycinnamic acid (caffeic) derivatives (Adisakawattana 

et al. 2009; Li et al. 2009; Pereira et al. 2011).Therefore, high rutin and high caffeic acid content 

found in all serviceberry accessions/cultivars may have relevance for high α-glucosidase enzyme 

inhibitory activity of serviceberry that was observed in this current study. Overall, this current 

study provides biochemical rationale to select serviceberry accessions/ cultivars such as ND 1-5, 

ND 12-1, Parkhill for future animal model and possibly clinical studies to validate the anti-

hyperglycemic functionalities of serviceberry and for their potential integration in health-focused 

dietary solutions to counter T2D and associated complications such as chronic hypertension.  

4.4.4. Anti-hypertensive property relevant angiotensin-I-converting enzyme (ACE) 

inhibitory activity of serviceberry cultivars: Chronic hypertension is most common health 

complication directly associated with T2D and other common NCDs (Lukic et al. 2014). The 

higher rate of T2D associated mortality is mostly attributed to higher prevalence of chronic 

hypertension and CVDs in diabetic patients (Hu et al. 2005). Therefore, managing chronic 

hypertension is most critical to counter T2D associated mortality and morbidity. Though there 

are several pharmaceutical drugs currently available such as synthetic ACE inhibitors to manage 

chronic hypertension, but many plant-based foods with ACE inhibitory potentials are safer and 

inexpensive choices to prevent and manage T2D associated chronic hypertension (Guang and 

Philips 2009). Previously, anti-hypertensive relevant ACE inhibitory activity was observed in 

berries such as raspberry (Rubus spp.), red currant (Ribes rubrum), blueberry (Vaccinium spp.), 

and chokeberry (Aronia spp.) (Cheplick et al. 2007; Hellström et al. 2010; Pinto et al. 2010b; 

Wiseman et al. 2010). In this current study, moderate to high ACE inhibitory activity (44-85%) 

was observed in fruit extracts of all serviceberry accessions/cultivars in in vitro assay (Fig 4.4). 



43 
 

Previously, Wagner et al. (1991) reported ACE inhibitory activity in serviceberry leaf extract. 

Overall, serviceberry accessions ND 1-2, and ND 41-1, and serviceberry cultivar Parkhill and 

Smoky had high ACE inhibitory activity when compared to other serviceberry accessions and 

cultivars investigated in this study. 

 

Figure 4.3. Angiotensin-I-Converting Enzyme (ACE) inhibitory activity of serviceberry 
accessions/cultivars from 2016 crop year. 
 

Interestingly, serviceberry accession ND 41-1, and serviceberry cultivar Parkhill and 

Smoky also had high TSP content and high antioxidant activity. Therefore, these serviceberry 

accessions/cultivars can be targeted for countering chronic hypertension and chronic oxidative 

stress commonly associated with T2D and other NCDs. However, animal model-based in vivo 

study and clinical studies will be needed to validate the anti-hypertensive and anti-hyperglycemic 

properties of serviceberry accessions/cultivars which were observed in current in vitro study.  
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4.5. Conclusions 

 Overall, berry fruits are considered as one of the best dietary source of phenolic 

antioxidants and due to such high bioactive-linked health benefits, fresh and processed berries 

are becoming more popular food choice among consumers. Therefore, berries rich in phenolic 

bioactive profiles can be targeted in contemporary health-focused dietary intervention strategies 

to counter diet and lifestyle-linked NCDs, such as early stages of T2D and associated health 

risks. In this context of health benefits of berries, wild and native berries of North America with 

cold-hardy trait such as in serviceberry are rich source of stress inducible phenolic bioactives 

with high antioxidant and anti-hyperglycemic potentials. However, such stress-inducible 

phenolic bioactive profile and associated health benefits of serviceberry potentially vary among 

accessions/cultivars (genotypic), and due to environmental variations (phenotypic). Therefore, 

this study screened and selected high phenolic, high antioxidant serviceberry accessions/cultivars 

suitable to be grown in cold temperate climate of North Dakota and had health relevant phenolic-

linked anti-hyperglycemic and anti-hypertensive functionalities. Therefore, such superior 

accessions/cultivars can be targeted in further dietary support strategies to potentially manage 

chronic hyperglycemia and chronic hypertension commonly associated with early stages of T2D 

and other NCDs. Overall, in this in vitro assay model based rapid screening study, high phenolic-

linked antioxidant, anti-hyperglycemic, and moderate to high anti-hypertensive properties were 

observed in 12 North Dakota (ND) successions and 8 commercial cultivars of serviceberry. 

Furthermore, significant differences in phenolic-linked antioxidant, anti-hyperglycemic (α-

amylase and α-glucosidase enzyme inhibitory activities), and anti-hypertensive (ACE inhibitory 

activity) properties were observed among different accessions/cultivars and due to environmental 

variations (two different crop years). However, it is important to further investigate the anti-
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diabetic and anti-hypertensive properties of these serviceberry accessions and cultivars using 

animal model-based in vivo and clinical studies, prior to incorporating them in dietary and 

therapeutic strategies for T2D-linked health benefits.   
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CHAPTER 5. PHENOLIC BIOACTIVE-LINKED ANTIOXIDANT 

AND ANTI-HYPERGLYCEMIC FUNCTIONALITIES OF 

BLACKBERRY CULTIVARS GROWN UNDER ORGANIC AND 

CONVENTIONAL PRODUCTION PRACTICES 

5.1. Abstract 

Blackberries are a rich source of dietary phenolic bioactives with potential positive 

human metabolism modulating health relevant functionalities. Therefore, blackberries can be 

targeted in dietary support strategies to potentially manage diet and chronic oxidative stress-

linked non-communicable chronic diseases (NCDs) such as early stages of type 2 diabetes 

(T2D). In previous in vitro and in vivo studies high phenolic antioxidant-linked anti-

hyperglycemic functionalities (α-amylase and α-glucosidase inhibitory activity) were observed in 

blackberries. However, such phenolic bioactive-linked antioxidant and anti-diabetic 

functionalities potentially vary widely among cultivars and due to different production practices 

such as organic vs. conventional production systems. Therefore, the aim of this study was to 

screen and compare two blackberry cultivars grown under organic and conventional production 

systems for their phenolic bioactive-linked antioxidant and anti-hyperglycemic functionalities 

using in vitro assay models. Food grade relevant cold water extracts of two blackberry cultivars 

(Prime-Ark 45 & Prime-Ark Freedom) grown under 6 different cultivation practices, 4 organic 

(mulch-based weed management + organic fertilization) and 2 conventional cultivation practices 

(herbicide + chemical fertilizer) were used to determine total soluble phenolic content, phenolic 

acid profile, antioxidant activity, α-amylase, and α-glucosidase enzyme inhibitory activities 

using in vitro assay models. Overall, high soluble phenolic content, high antioxidant activity and 
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high α-amylase and α-glucosidase enzyme inhibitory activities were observed in both blackberry 

cultivars. However, blackberry grown under organic weed management and with organic 

fertilization had significantly higher phenolic-linked antioxidant and anti-hyperglycemic 

properties.  Further, Prime-Ark 45 grown under black fabric and black plastic mulch with feather 

meal had significantly high phenolic-linked antioxidant and anti-hyperglycemic properties and 

therefore such organic production strategy can be advanced to potentially improve phenolic 

content and associated T2D-linked health benefits in blackberry and can be extended to other 

berries. 

5.2. Introduction 

Blackberry (Rubus spp.) is an edible berry with high human health relevant bioactive 

profiles and very high antioxidant potentials among common fruits and vegetables (Jennings et 

al. 1988). Overall, production, acreage, productivity, and consumption of blackberry are 

increasing rapidly in the United States and around the world. Currently, North America is the 

leading producer of blackberry and its production is expected to increase significantly in the 

future to satisfy the growing consumer demand both as fresh fruit and also as processed fruit 

(Kaume et al. 2011). However, the future improvement of domestic market and potential export 

value of blackberry and blackberry-based processed food products will largely depend on 

understanding and enhancing the different value-added quality parameters such as critical human 

health relevant nutritional qualities, sensory qualities, and other post-harvest preservation 

qualities such as shelf-life of berries. In general, the growing interest and demand of fresh berries 

among consumers is mainly due to their diverse human health relevant benefits.  

When comparing the health benefits of berries, blackberry has significant amount of 

human health relevant phenolic bioactives (anthocyanains, flavols and ellagitannins) with high 
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antioxidant activity (Borowska 2008; Kaume et al. 2011; Moyer et al. 2002; Sarkar et al. 2016). 

This high phenolic-linked antioxidant activity of blackberry is also associated with several other 

human health relevant functionalities including anti-diabetic properties and has potential to 

advance value-added dietary application as fresh fruits and as functional food ingredients to 

counter oxidative stress-linked non-communicable chronic diseases (NCDs), such as type 2 

diabetes (T2D), cardiovascular diseases (CVDs), and obesity. Therefore, blackberry is an ideal 

fruit choice to be utilized in value-added dietary strategies to counter and manage NCDs 

including T2D and associated health risks.  Previous research findings have indicated that 

blackberry has anti-inflammatory activities (Srivastava et al. 2010), higher antioxidant activities 

(Kähkönen et al. 2001; Srivastava et al. 2010; Wang and Lin 2000), and glucose metabolism 

relevant enzyme inhibitory activities (McDougall et al. 2005; Sarkar et al. 2016; Tundis et al. 

2010). However phenolic bioactive profile, antioxidant activity, and anti-hyperglycemic 

properties of blackberry vary widely among cultivars and types (Sarkar et al. 2016). 

Furthermore, these value-added qualities of berries including human health relevant nutrient 

profiles of berries also varies widely due to different cultivation practices, growing conditions, 

time of harvest, and storage conditions (Cheplick et al. 2015; Kaume et al. 2011; Sarkar et al. 

2017; Talcott 2007; Wang and Lin 2000; Zia-Ul-Iaq et al. 2014). 

 Therefore, optimizing production practices, especially organic production of blackberry 

to improve human health relevant phenolic bioactive profile has significant merit. The perception 

of higher nutritional and sensory quality, especially human health relevant bioactive profile of 

the organic berries is one major driving factor for its higher demand among consumers. Better 

nutritional quality also could potentially provide significant marketing advantage to organic 

produce and ensure higher economic return to organic berry growers. However, many previous 
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studies with berries were inconclusive and did not find any significant differences in phenolic 

bioactives and associated nutritional qualities of berries between organic vs. conventional 

production systems (Vian et al. 2006; You et al. 2011). Therefore, determination of optimal 

organic or conventional agricultural practices and selecting appropriate cultivar of blackberry are 

required for improving phenolic bioactives and associated health benefits prior to incorporating 

them in dietary strategies to counter chronic oxidative stress and chronic hyperglycemia 

commonly associated with early stages of T2D. 

Furthermore, the commercial production of blackberry both under organic and 

conventional production is limited in North Dakota and other states of the Northern Plains due to 

lack of sufficient winter-hardy cultivars and lack of sufficient knowledge on production 

practices. However, current acreage and production of winter-hardy blackberry in the North 

Dakota can be expanded with innovative organic production strategies for improving nutritional 

and human health relevant functional qualities during production. This approach through new 

innovations, especially organic production of blackberry will help to advance the major 

challenge to have economically viable yield and quality of existing winter-hardy blackberry 

cultivars suitable to grow in the climate of North Dakota and other parts of the Northern Plains. 

In order to address this blackberry production challenges, the aim of the current study was to 

compare the impact of organic and conventional weed control and fertilization management 

practices on phenolic bioactive-linked antioxidant and anti-hyperglycemic functionalities of two 

primocane-fruiting blackberry cultivars grown in North Dakota. In this study, rapid in vitro 

screening strategy was used to determine phenolic bioactive-linked antioxidant and anti-

hyperglycemic functionalities of blackberry relevant for targeting them in dietary support 

strategies to prevent and manage early stages of T2D and associated health risks.  
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5.3. Materials and Methods 

5.3.1. Blackberry cultivars and treatments: Two blackberry cultivars, Prime-Ark 45 and 

Prime-Ark Freedom (Initially released by University of Arkansas primocane breeding program) 

were grown in  North Dakota State University Horticulture Research Farm (NDSU HRF) near 

Absaraka, ND (46°58′41″N 97°23′40″W.) under the following organic or conventional weed 

management and fertilization practices (4 organic cultivation practices, Treatment 1: black 

landscape fabric with feather meal (224 kg/ha N; nitrogen: phosphorus: potassium-12.8:0:0); 

Treatment 2: black landscape fabric with fish emulsion (224 kg/ha  N; nitrogen: phosphorus: 

potassium-9.6:3:0); Treatment 3: black plastic mulch with feather meal (224 kg/ha  N; nitrogen: 

phosphorus: potassium-12.8:0:0); Treatment 4: black plastic mulch with fish emulsion (224 

kg/ha  N; nitrogen: phosphorus: potassium-12.8:0:0); and 2 conventional production practices, 

Treatment 5: application of herbicide +  urea (224 kg/ha  N; nitrogen: phosphorus: potassium-

46:0:0); Treatment 6:  application of herbicide + Environmentally Smart Nitrogen (ESN) (224 

kg/ha  N nitrogen: phosphorus: potassium-44:0:0).For herbicide treatments under conventional 

weed management, Rely280 (Glufosinate) @4.12 lt. /ha + Spartan (Sulfentrazone) @0.72 lt./ha 

were applied using a CO2 pressurized backpack sprayer (20GPA, 8002 FF nozzles) surrounding 

blackberry plants (blackberry plants were covered with cardboard to protect from herbicide drift) 

on 26th June 2018.  The blackberry plants were planted (1st June 2017) from 1 year old root 

stocks and harvested on the second year of growth. For overwintering, the blackberries were 

covered with a 16 cm layer of straw followed by a thermal blanket. The berries were harvested at 

full maturation and immediately frozen in -20oC freezer.  

5.3.2. Chemicals: Other chemicals used in in vitro biochemical assays such as 3,5-

Dinitrosalicyclic acid (DNS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′‐Azinobis(3‐
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ethylbenzothiazoline‐6‐sulfonic acid) (ABTS), Porcine pancreatic a-amylase (EC 3.2.1.1), 

baker’s yeast glucosidase (EC 3.2.1.20), were purchased from  Sigma Chemical Co. (St. Louis, 

MO). 

5.3.3. Preparation of blackberry extracts: Total 40 g of whole blackberry fruits were 

added to 100 mL of distilled water and homogenized in a Waring laboratory blender (Winsted, 

CT) set on high for 5 min. The remaining homogenate was then centrifuged at 10,000g for 20 

min. The supernatant was then removed and again centrifuged at 10,000g for 15 min. The 

supernatant was then removed and transferred into 1.5 mL Eppendorf tubes and stored in -20oC 

for less than 2 weeks until all in vitro assays were conducted. For each cultivar or accession 

extract, six replications were used and the in vitro assays were conducted two times for each 

year.  

5.3.4. Total soluble phenolics assay: Total soluble phenolics were determined by the 

modified method developed by Shetty et al. (1995) based on previous Folin-Ciocalteu method, 

Distilled water of 0.5 mL and 0.5 mL of blackberry sample extract were combined and 

transferred to a 10 mL test tube. After initial dilution with distilled water, 1 mL of 95% ethanol 

and 5 mL of distilled water was added to this mixture. Following this 0.5 mL of 50% (vol/vol) 

Folin-Ciocalteu reagent was added and the mixture was vortexed. After 5 min, 1 mL of 5% 

Na2CO3 was added to the reaction mixture and was incubated in the dark at room temperature for 

60 min. After the incubation period, the absorbance was read at 725 nm. A standard curve was 

created using various concentrations of gallic acid in distilled water and the results were 

represented as mg of gallic acid per gram of sample fresh weight (FW). 

5.3.5. 2, 2-diphenyl-1-picrylhydrazyl radical (DPPH) inhibition antioxidant assay: 

Antioxidant activity of blackberry cultivars grown under organic and conventional production 
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systems was determined by using DPPH radical cation decolorization assay method using the 

modified method developed by Kwon et al. (2006). In this assay 1.25 mL of 60 μM DPPH stock 

solution prepared in 95% ethanol was added to 250 μL of blackberry sample extract. The 

decrease in absorbance was monitored after 5 min at 517 nm. The absorbance of a control, using 

distilled water instead of sample extract, was also recorded after 5 min at the same wavelength 

for comparison. The percentage of inhibition was then calculated by the following equation: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐼𝐼𝐼𝐼ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐼𝐼 (%) =
(𝐴𝐴𝑖𝑖𝐴𝐴 𝑐𝑐𝑖𝑖𝐼𝐼𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐 − 𝐴𝐴𝑖𝑖𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠)

𝐴𝐴𝑖𝑖𝐴𝐴 𝑐𝑐𝑖𝑖𝐼𝐼𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐
× 100 

5.3.6. 2,2′‐azinobis(3‐ethylbenzothiazoline‐6‐sulfonic acid) (ABTS) antioxidant assay: 

Antioxidant activity of blackberry was also determined by using a second ABTS radical cation 

decolorization assay (Re et al. 1999). ABTS radical cation was created by combining 5 mL of 7-

mM ABTS solution with 88 mL of 140-mM K2S2O4 solution. The solution was then kept at 

room temperature in the dark for 12-16 hours before use. Before the assay, the solution was 

combined with 95% ethanol to create a 1:88 dilution (ABTS solution: 95% ethanol) and the 

absorbance was adjusted accordingly at 734 nm to 0.70. Then1 mL of the adjusted ABTS 

solution was added to 50 µL of blackberry sample extract. After vortexing, solution was then 

incubated at room temperature for 2.5 minutes and then absorbance of the incubated mixture was 

recorded at 734 nm using UV-VIS spectrophotometer. The antioxidant activity of the blackberry 

was then represented as percent inhibition of ABTS radical formation and calculated using the 

formula:  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐼𝐼𝐼𝐼ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐼𝐼 (%) =
(𝐴𝐴𝑖𝑖𝐴𝐴 𝑐𝑐𝑖𝑖𝐼𝐼𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐 − 𝐴𝐴𝑖𝑖𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠)

𝐴𝐴𝑖𝑖𝐴𝐴 𝑐𝑐𝑖𝑖𝐼𝐼𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐
× 100 

5.3.7.α-Amylase enzyme inhibition assay: α-Amylase inhibitory activity of blackberry 

was measured by using an in vitro assay method modified from Worthington Enzyme Manual 
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(Worthington Biochemical Corp., 1993a). Briefly, a solution of 500 μL of blackberry sample 

extract and 500 μL of 0.02 M sodium phosphate buffer (pH 6.9 with 0.006 M NaCl) containing 

α−amylase solution (0.5 mg/mL) was incubated at 25°C for 10 min. After incubation, 500 μL of 

1% starch solution, diluted in 0.02 M sodium phosphate buffer (pH 6.9 with 0.006 M NaCl), was 

added and then the test tubes were incubated again at 25°C for 10 min. Afterwards, 1.0 mL of 

dinitrosalicylic acid was added and the solution mixtures were incubated in boiling water for 10 

min. After removing from the water bath, solution mixtures were allowed to cool at room 

temperature. A volume of 10 mL distilled water was then added to the solution to adjust the 

baseline reading of the control at 1.0 ±0.2 and the absorbance was measured at 540 nm.   

 The absorbance of sample blank (buffer instead of enzyme solution) and a control 

(buffer in place of sample extract) were recorded as well. The final absorbance (A540 extract) of 

the extract was obtained by subtracting its corresponding sample blank reading. Additionally, 1:2 

and 1:5 dilution of the sample extract (250 μL sample + 250 μL of distilled water and 100 

μL sample + 400 μL of distilled water respectively) were performed to determine potential dose 

dependence. The a-amylase inhibitory activity was calculated according to the equation below: 

𝛼𝛼 − 𝐴𝐴𝑠𝑠𝐴𝐴𝑐𝑐𝑠𝑠𝐴𝐴𝑠𝑠 𝐼𝐼𝐼𝐼ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐼𝐼 (%) = (
𝐴𝐴𝑖𝑖𝐴𝐴 𝑐𝑐𝑖𝑖𝐼𝐼𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐 − (𝐴𝐴𝑖𝑖𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠 − 𝐴𝐴𝑖𝑖𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠 𝐴𝐴𝑐𝑐𝑠𝑠𝐼𝐼𝐵𝐵)

𝐴𝐴𝑖𝑖𝐴𝐴 𝐶𝐶𝑖𝑖𝐼𝐼𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐
× 100 

5.3.8. α-Glucosidase enzyme inhibition assay: The in vitro assay method in this study 

was modified from the Worthington Enzyme Manual for a−glucosidase inhibition (Worthington 

Biochemical Corp. 1993b, McCue et al. 2005). A volume of 50 μL of blackberry sample extract 

diluted with 50 μL of 0.1 M potassium phosphate buffer (pH 6.9) and 100 μL of 0.1 M potassium 

phosphate buffer (pH 6.9) containing glucosidase solution (1.0 U/mL) was incubated in 96-well 

plates at 25 °C for 10 min. After pre-incubation, 50 μL of 5 mM p-nitrophenyl- a-d-

glucopyranoside solution in 0.1 M potassium phosphate buffer (pH 6.9) was added to each well 

https://www-sciencedirect-com.ezproxy.lib.ndsu.nodak.edu/science/article/pii/S0304423816305052#bib0245
https://www-sciencedirect-com.ezproxy.lib.ndsu.nodak.edu/science/article/pii/S0304423816305052#bib0245
https://www-sciencedirect-com.ezproxy.lib.ndsu.nodak.edu/science/article/pii/S0304423816305052#bib0100
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at timed intervals. The reaction mixtures were incubated at 25 °C for 5 min. Before and after 

incubation, absorbance readings (A405 extract) were recorded at 405 nm by a microplate reader 

(Thermomax; Molecular Devices Co., Sunnyvale, CA) and compared to a control which had 

50 μL of buffer solution in place of the extract (A405 control). The a-glucosidase inhibitory 

activity was expressed as a percentage of inhibition and calculated as follows: 

𝛼𝛼 − 𝐺𝐺𝑐𝑐𝐺𝐺𝑐𝑐𝑖𝑖𝐴𝐴𝑖𝑖𝐺𝐺𝑠𝑠𝐴𝐴𝑠𝑠 𝐼𝐼𝐼𝐼ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐼𝐼 (%) =
(∆ 𝐴𝐴𝑖𝑖𝐴𝐴 𝑐𝑐𝑖𝑖𝐼𝐼𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐 − ∆ 𝐴𝐴𝑖𝑖𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠)

∆ 𝐴𝐴𝑖𝑖𝐴𝐴 𝑐𝑐𝑖𝑖𝐼𝐼𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐
× 100 

5.3.9. Angiotensin-I-converting enzyme (ACE) inhibition assay: Anti-hypertensive 

function relevant ACE inhibitory activity of blackberry was determined using an in vitro assay 

method modified by Kwon et al. (2006). A volume of 50 μL of sample extract was incubated 

with 200 μL of 0.1 M NaCl-borate buffer (0.3 M NaCl, pH 8.3) containing 2 mU of ACE 

enzyme solution at 25°C for 10 min. After pre-incubation, 100 μL of a 5.0 mM substrate 

(hippuryl-histidyl-leucine) solution was added to the reaction mixture. Test solutions were then 

incubated in water bath at 37°C for 1 h. Sample blanks (buffer in place of enzyme and substrate), 

a control (distilled water instead of sample extract) and a blank (buffer instead of sample extract 

and enzyme) were also included. The reaction was then stopped by adding 150 μL of 0.5 N HCl 

to all reaction mixtures. The hippuric acid formed was detected by using High Performance 

Liquid Chromatography (HPLC) based quantification protocol. For HPLC analysis, a volume of 

5 μL of sample was injected using an Agilent ALS 1200 autosampler into an Agilent 1260 series 

HPLC (Agilent Technologies, Palo Alto, CA) equipped with a DAD 1100 diode array detector. 

The solvents used for the gradient were (A) 10 mM phosphoric acid (pH 2.5) and (B) 100% 

methanol. The methanol concentration was increased to 60% for the first 8 min and to 100% for 

5 min and then decreased to 0% for the next 5 min (total run time, 18 min). The analytical 

column used was Agilent Zorbax SB-C18, 250 − 4.6 mm i.d., with packing material of 5 μm 
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particle size at a flow rate of 1 mL/min at room temperature. During each run the absorbance was 

recorded at 228 nm and the chromatogram was integrated using the Agilent Chemstation 

enhanced integrator for detection of liberated hippuric acid. Pure hippuric acid was used to 

identify the spectra and retention time. The percentage of inhibition was calculated considering 

the area of the hippuric acid peak according to the equation below: 

𝐴𝐴𝐶𝐶𝐴𝐴 𝐼𝐼𝐼𝐼ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐼𝐼 (%) =
((𝐴𝐴𝑖𝑖𝐴𝐴 𝑐𝑐𝑖𝑖𝐼𝐼𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐 − 𝐴𝐴𝑖𝑖𝐴𝐴 𝑖𝑖𝑐𝑐𝑠𝑠𝐼𝐼𝐵𝐵)− 𝐴𝐴𝑖𝑖𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠)

( 𝐴𝐴𝑖𝑖𝐴𝐴 𝑐𝑐𝑖𝑖𝐼𝐼𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐 − 𝐴𝐴𝑖𝑖𝐴𝐴 𝑖𝑖𝑐𝑐𝑠𝑠𝐼𝐼𝐵𝐵)
× 100 

However, ACE inhibition was not observed in this study and therefore not presented in 

results and discussion section. 

5.3.10. High performance liquid chromatography (HPLC) for phenolic acid 

characterization: The blackberry sample extracts (2 mL) were filtered through a 0.2 μm filter. A 

volume of 5 μL of sample was injected using an Agilent ALS 1200 autosampler into an Agilent 

1260 series HPLC (Agilent Technologies, Palo Alto, CA) equipped with a D1100 CE diode array 

detector. The solvents used for gradient elution were (A) 10 mM phosphoric acid (pH 2.5) and 

(B) 100% methanol. The methanol concentration was increased to 60% for the first 8 min and to 

100% over the next 7 min, then decreased to 0% for the next 3 min and was maintained for the 

next 7 min (total run time, 25 min). The analytical column used was Agilent Zorbax SB-C18, 

250 − 4.6 mm i.d., with packing material of 5 μm particle size at a flow rate of 0.7 mL/min at 

room temperature. During each run the absorbance was recorded at 306 nm and 333 nm and the 

chromatogram was integrated using Agilent Chem station enhanced integrator. Pure standards of 

chlorogenic acid, gallic acid, ellagic acid, catechin, rutin, benzoic acid, and p-coumaric acid in 

100% methanol were used to calibrate the standard curves and retention times. 

5.3.11. Data analysis: Two extractions were performed for each blackberry sample, and 

all in vitro assays were replicated six times (n = 6). Means, standard errors, and standard 
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deviations were calculated from replicates using MS-Excel. All data was subjected to a two-way 

ANOVA using the Statistical Analysis Software (SAS; version 9.4; SAS Institute, Cary, NC), 

and the least mean square differences for cultivar, treatments, and cultivar × treatments 

interactions were compared using Tukey’s test (p <0.05). 

5.4. Results and Discussions 

5.4.1. Total soluble phenolic (TSP) content and phenolic characterization of blackberry 

grown under organic and conventional production systems: Total soluble phenolic (TSP) 

content was determined in order to understand any potential impact of different production 

practices (organic vs. conventional) and cultivars on phenolic content of blackberry. Overall, 

significant differences (p<0.05) in TSP content was observed between two cultivars and also due 

to different weed and fertilization management practices (Fig 5.1) (Appendix III). Both 

blackberry cultivars had high TSP content, however cultivar Prime-Ark 45 (mean-2.12 mg 

GAE/g F.W.) had significantly high (p<0.05) TSP content when compared to Prime-Ark 

Freedom (mean- 1.71 mg GAE/g F.W.). Previously, Sarkar et al. (2016) reported 1.1-2.1 mg 

GAE/g F.W. of TSP content in 13 blackberry cultivars grown in Alabama. Similarly, Wang and 

Lin (2000) also found 2.0-2.4 mg /g F.W. TSP content in mature blackberry fruits. Among 

different management practices, both blackberry cultivars with feather meal (organic) treatment 

had significantly (p<0.05) high TSP content when compared to fish emulsion, urea 

(conventional), and ESN (conventional). Similarly, blackberry grown under organic weed 

management (black landscape fabric and black plastic mulch) had significantly (p<0.05) high 

TSP content when compared to blackberry grown under conventional weed management practice 

(herbicide). Therefore, the result of this study suggested that organic fertilization and organic 

weed management practices may have positive impact on TSP content of two blackberry 
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cultivars. Previously, Cavender et al. (2014) observed high total phenolic content in blackberry 

with hand weeding treatment when compared to no weed management and weed mat treatments. 

In another study, Crecente-Campo et al. (2012) found high anthocyanin content and high 

ascorbic acid content in organically grown strawberry (Fragaria spp.) (cow manure +organic 

pest management) when compared to strawberry grown under conventional production practices. 

However, they did not observe any significant differences in total phenolic content of strawberry 

from two different production systems (organic vs. conventional). Therefore, it is important to 

conduct multi-year and multi-location studies to validate the findings of the current study. 

Furthermore it is also important to understand the overall impact of organic vs. conventional 

production practices and cultivars on phenolic acid profile of blackberry. 

 

Figure 5.1. Total soluble phenolic content (mg GAE/ g F.W.) of two blackberry cultivars (Prime-
Ark 45 & Prime–Ark Freedom) grown under organic and conventional weed and fertilization 
management practices. Different capital letters represent significant differences in TSP content 
due to different cultivar × treatment interactions at p<0.05.  
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Table 5.1. Individual phenolic acid content (µg / g F.W.) of two blackberry cultivars (Prime-Ark 
45 & Prime–Ark Freedom) grown under organic and conventional weed and fertilization 
management practices. 

Treatments Catechin Gallic Acid  Ellagic Acid Protocatechuic 

acid 

Rutin 

µg / g F.W. 

P. Ark 
45 

P. 
Free
dom 

P. 
Ark 
45 

P. 
Freedo

m 

P. 
Ark 
45 

P. 
Freedo

m 

P. Ark 
45 

P. 
Freedo

m 

P. Ark 
45 

P. 
Freedo

m 
Black 

landscape 
fabric + 

feather meal 
9.8±0.
1 

3.4±
0.1 

0.3±0
.1 

0.5±0.
1 

1.3±0
.3 1.1±0.1 

0.3±0.
1 0.2±0.1 

7.4±0.
6 

5.5±0.
1 

Black 
landscape 

fabric + fish 
emulsion 

14.1±0
.2 

1.3±
0.1 

0.02±
0.1 

0.6±0.
1 

1.5±0
.1 0.9±0.1 

0.2±0.
1 0.3±0.1 

3.8±2.
9 

3.3±0.
1 

Black plastic 
+ feather 

meal 
16.8±0
.1 

1.1±
0.1 

0.1±0
.1 

0.6±0.
1 

1.4±0
.1 0.9±0.1 

0.3±0.
1 0.1±0.1 

6.9±0.
1 

1.8±0.
1 

Black plastic 
+ fish 

emulsion 
28.4±0
.1 

3.1±
0.1 

0.1±0
.1 

0.4±0.
1 

1.8±0
.1 1.4±0.1 

0.3±0.
1 0.2±0.1 

8.2±0.
1 

7.1±0.
1 

Herbicide + 
 urea 

13.1±0
.1 

1.3±
0.1 

0.3±0
.1 

0.6±0.
1 

1.6±0
.1 1.2±0.1 

0.2±0.
1 0.2±0.1 

7.3±0.
1 

6.5±0.
1 

Herbicide +  
ESN 12±0.1 

4.6±
0.1 

0.2±0
.1 1±0.1 

1.6±0
.1 2±0.1 

0.2±0.
1 0.3±0.1 

7.7±0.
2 

6.8±0.
1 

± Standard Error 

In this study, major phenolic compounds found in blackberry were catechin, gallic acid, 

ellagic acid, protocatechuic acid, and rutin (Table 5.1.). Among all phenolic compounds, both 

blackberry cultivars had higher concentration of catechin followed by rutin and ellagic acid. 

Previously, Sellappan et al. (2002) reported high catechin and ellagic acid content in blackberry. 

Similarly, Sarkar et al. (2016) also found high catechin and rutin content in 13 blackberry 

cultivars. In this current study, similar to the result of the TSP content, high catechin, ellagic 

acid, and rutin were observed in cultivar Prime-Ark 45 when compared to Prime-Ark Freedom. 

Among different weed management and fertilization treatments, black plastic mulch + fish 

emulsion treatment resulted in high catechin and rutin in both blackberry cultivars. Therefore, 

these results indicated that different cultivation practices not only have impact on TSP content of 
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blackberry, but also have significant effect on phenolic acid profile of blackberry cultivars. 

Furthermore, differences in TSP content and phenolic profile of blackberry cultivars may also 

have relevance in other human health relevant functions such as antioxidant and anti-

hyperglycemic properties. 

5.4.2. Total antioxidant activity of blackberry grown under organic and conventional 

production systems:  Blackberry fruits are rich in dietary antioxidants, and gaining interest in 

health-focused food market, especially to counter chronic oxidative stress commonly associated 

with major NCDs, such as T2D and CVDs (Huang et al., 2012). In this study, two different free 

radical scavenging (DPPH & ABTS) assay methods were used to determine total antioxidant 

activity of blackberry grown under organic and conventional production systems (Fig. 5.2 A&B). 

Due to very high (100% inhibition) antioxidant activity observed in ABTS-based free radical 

scavenging assay, blackberry extracts were further diluted to 1:10 using distilled water, and 

results of diluted samples is presented (Fig 5.2 B). Overall, very high antioxidant activity (78-

95% DPPH-based free radical inhibition in undiluted sample and 49-94% ABTS-based free 

radical inhibition in 1:10 diluted sample) was observed in both blackberry cultivars (Prime-Ark 

45 & Prime–Ark Freedom) and from all different cultivation practices. Similar high antioxidant 

activity of blackberry cultivars was reported by previous in vitro studies (Sariburun et al., 2010; 

Sarkar et al. 2016; Siriwoharn et al., 2004). In this current study, similar to TSP content, 

significantly high (p<0.05) antioxidant activity (both DPPH & ABTS based assays) was 

observed in Prime-Ark 45 when compared to Prime–Ark Freedom. Furthermore, organic 

fertilization (feather meal and fish emulsion) and organic weed management (black landscape 

fabric and black plastic mulch) resulted in significantly high (p<0.05) antioxidant activity in both 

blackberry cultivars.  
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Figure 5.2. Total antioxidant activity (A- DPPH free radical scavenging % inhibition B-ABTS 
free radical scavenging % inhibition with 1:10 dilution) of two blackberry cultivars (Prime-Ark 
45 & Prime–Ark Freedom) grown under organic and conventional weed and fertilization 
management practices. Different capital letters represent significant differences in TSP content 
due to different cultivar × treatment interactions at p<0.05.  
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Overall, Prime-Ark 45 grown under organic production system had significantly high 

TSP content and total antioxidant activity. In this study positive and strong correlation between 

TSP content and antioxidant activity was observed in blackberry. Previously, Wang et al. (2008) 

reported higher correlation between phenolic content and antioxidant activity (ORAC) in 

organically grown blueberries. Similarly, Mikami-Konishide et al. (2013) found significant 

effect of growing condition and cultivation practices on antioxidant potential of fruit crops 

including berries in Japan. Overall, results of the current study suggested that organic 

fertilization and weed management strategy can be rationally advanced to improve phenolic-

linked antioxidant activity and related human health benefits in blackberry. Such organic 

production innovation will help to advance value-added production of high-quality organic 

berries in North Dakota and other regions of the Northern Plains, and will ensure better 

economic returns to organic growers.  

5.4.3. Anti-hyperglycemia relevant α-amylase and α-glucosidase enzyme inhibitory 

activities of blackberry grown under organic and conventional production systems: In this 

study, potential anti-hyperglycemic functions of blackberry were also determined using in vitro 

assay methods and based on potential inhibition of two key glucose metabolism relevant 

enzymes α-amylase and α-glucosidase. Inhibition of these enzymes help to slow down the 

breakdown of complex carbohydrate into glucose and reduce the immediate absorption of 

glucose in the bloodstream, which is essential to manage postprandial glucose spike in the 

bloodstream and related chronic hyperglycemia (Tundis et al. 2010). Previously, extracts of 

berry fruits have shown high α-amylase and α-glucosidase enzyme inhibitory activities (Cheplick 

et al. 2007; 2010; 2015; Pinto et al. 2008; 2010b; Sarkar et al. 2016; 2017; Wang et al. 2012; 

Zhang et al. 2012).  



62 
 

Similar to the findings of these previous studies, the current study also observed very 

high α-amylase (84-100 % inhibition in undiluted sample) and α-glucosidase (82-99% inhibition 

in undiluted sample) enzyme inhibitory activities in two blackberry cultivars grown under 

organic and conventional production systems (Table 5.2 & 5.3). Significant dose dependent 

responses in α-amylase and α-glucosidase enzyme inhibitory activities were also observed in 

both blackberry cultivars. Overall, Prime-Ark freedom had high α-amylase inhibitory activity 

when compared to Prime-Ark 45. On the contrary Prime-Ark 45 had high and α-glucosidase 

enzyme inhibitory activity in this study, especially in half and one-fifth diluted sample. 

Table 5.2. α-Amylase enzyme inhibitory activity of  two blackberry cultivars (Prime-Ark 45 & 
Prime–Ark Freedom) grown under organic and conventional weed and fertilization management 
practices.  

Accessions/ 

Cultivars 

Undiluted (1:1) Half-Diluted (1:2) One-Fifth Diluted (1:5) 

% Inhibition 

P. Ark 45 P. 
Freedom P. Ark 45 P. 

Freedom P. Ark 45 P. Freedom 

Black landscape 
fabric + feather 

meal 
96.4±0.7B* 100±0A 48.6±0.8CDE 50±1CD 19.6±1BCD 21±0.7BC 

Black landscape 
fabric + fish 

emulsion 
100±0A 100±0A 61.3±0.9B 65.6±0.9A 22.7±1AB 26±0.6A 

Black plastic + 
feather meal 96.9±0.6B 94.5±1B 51.1±0.9C 46.4±0.9D

EFG 
19.6±0.9BC

D 18±0.7CD 

Black plastic + 
fish emulsion 88.7±0.9CD 96.6±0.8B 45.5±0.7EFGH 47.6±0.8C

DEF 18.8±0.8CD 19.3±0.6BCD 

Herbicide + 
urea 87.5±0.7D 84.6±0.6E 43.1±0.9GH 42.6±1.2G

H 16.5±0.9D 17.1±0.8D 

Herbicide + 
ESN 85.9±0.6DE 91.4±0.8C 42.4±0.8H 44.3±0.8F

GH 18.3±0.8CD 17.5±0.8CD 

± Standard Error 
*Different capital letters for each dilution represent significant differences in α-amylase enzyme 
inhibitory activity between cultivar × treatment interactions at the p<0.05 level. 
 

Similar to TSP content and antioxidant activity, organic weed management and 

fertilization treatments also resulted in significantly (p<0.05) high α-amylase and α-glucosidase 

enzyme inhibitory activities in blackberry fruits. The significant differences in α-amylase and α-

glucosidase enzyme inhibitory activities of blackberry due to different cultivation practices 
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(organic vs. conventional) were more prominent in one-fifth diluted sample. Therefore, results of 

the current study suggested that organic production practices may also have role in improving 

anti-hyperglycemic functions in blackberry cultivars. However, future studies with different 

cultivars, multiple years, and multi-locations are required to confirm the findings of this current 

study. Furthermore, organic blackberry can be targeted as dietary antidote against chronic 

oxidative stress and chronic hyperglycemia commonly associated with early stages of T2D and 

other NCDs. 

Table 5.3. α-Glucosidase enzyme inhibitory activity of  two blackberry cultivars (Prime-Ark 45 
& Prime–Ark Freedom) grown under organic and conventional weed and fertilization 
management practices.  
Accessions/Cult

ivars 

Undiluted (1:1) Half-Diluted (1:2) One-Fifth Diluted (1:5) 

% Inhibition 

P. Ark 45 P. 
Freedom P. Ark 45 P. 

Freedom P. Ark 45 P. Freedom 

Black landscape 
fabric + feather 

meal 
99.6±0.3A* 98.3±0.6A

B 94.4±0.3A 92.3±0.5B
CDE 83.1±0.7B 74.9±1.2DEF 

Black landscape 
fabric + fish 

emulsion 
97.8±0.3AB 96.6±0.5B 94±0.3BC 91.8±0.5C

DE 83.3±1.5B 79±1.1BCD 

Black plastic + 
feather meal 99.1±0.6A 97.5±0.4A

B 97.8±0.3A 89.8±1EF 94.1±0.7A 76.2±0.9CDE 

Black plastic + 
fish emulsion 97.9±0.3AB 97.3±0.5A

B 90.9±0.4DEF 92.6±0.6B
CD 71.8±1.2EF 80.7±1.4BC 

Herbicide + 
urea 98.1±0.3AB 82±0.6D 88.9±0.5F 62.8±1.1H 70.3±1.3F 37.6±1H 

Herbicide + 
ESN 98.1±0.4AB 89.7±1.1C 89.9±0.6EF 78±0.8G 73.7±1.4EF 55.6±0.9G 

± Standard Error 
*Different capital letters for each dilution represent significant differences in α-glucosidase 
enzyme inhibitory activity between cultivar × treatment interactions at the p<0.05 level. 
 

5.5. Conclusions 

North Dakota and other regions of the Northern Plains have significant potential to 

become leaders in organic berry production in the United States. However, it is important to 

develop and optimize new organic production strategies to expand and strengthen organic berry 

production, such as production of blackberry in this region. Furthermore, it is also important to 
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understand the effect of different organic production practices and different cultivars on value 

added human health relevant bioactive profiles and associated health benefits of berries, 

including blackberry. Based on these needs, the goal of this study was to determine the impact of 

different organic and conventional weed management and fertilization practices on phenolic 

bioactive-linked antioxidant and anti-hyperglycemic functionalities of two blackberry cultivars 

using rapid in vitro screening strategy. Overall, very high phenolic-bioactive linked antioxidant 

and anti-hyperglycemic properties were observed in both blackberry cultivars (Prime-Ark 45 & 

Prime-Ark Freedom). Furthermore, high TSP content, high antioxidant activity and high anti-

hyperglycemic (α-amylase and α-glucosidase enzyme inhibitory activities) properties were 

observed in blackberry grown under organic weed management and organic fertilization 

treatments when compared to same blackberry cultivars grown under conventional weed 

management and fertilization practices. However, more practical evidences based on future field-

based studies will be needed to confirm the above findings and to advance organic production 

practices for production of high-value berries with superior human health relevant nutritional 

qualities, especially for application as dietary antidote against T2D and other diet-linked NCDs.   
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APPENDIX A. TEMPERATURE OF 2016 AND 2017 

SERVICEBERRY CROP YEARS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



77 
 

APPENDIX B. ANALYSIS OF VARIANCE (ANOVA) TABLE 

FOR SERVICEBERRY 

Variables  DF TSP DP
PH 

AB
TS 

α-amylase 
Inhibitory Activity 

α-glucosidase 
Inhibitory   Activity 

      Undil
uted 

1:2 
diluti

on 

1:5 
dilutio

n 

Undilut
ed 

1:2 
dilutio

n 

1:5 
dilutio

n 
   MS MS MS MS MS MS MS MS MS 
Accessions/culti
vars 

 19 1.7**
* 

203
.8*
** 

432
2.4
8**
* 

2855.
3*** 

3966.
25**

* 

698.8
*** 

214.7**
* 

434.4
*** 

544.6
6*** 

Crop Years  1 4.4 
*** 

814
7.8
*** 

255
9.8
*** 

830.5
*** 

1683.
56**

* 

2134.
5*** 

NS a 1070.
8*** 

5465.
7*** 

Accessions/culti
vars × Crop 
Years 

 19 0.07*
** 

3.4
8**
* 

3.3
5* 

33.8 
*** 

21.92
* 

5.25* 26.71**
* 

110.3
9*** 

315.2
*** 

MS-Mean Sum of Square Value 
*P<0.05 
** p<0.01 
*** p<0.001 
a Not Significant 
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APPENDIX C. ANALYSIS OF VARIANCE (ANOVA) TABLE 

FOR BLACKBERRY 

Variables  DF TSP DP
PH 

AB
TS 

α-amylase 
Inhibitory Activity 

α-glucosidase 
Inhibitory   Activity 

      Undil
uted 

1:2 
diluti

on 

1:5 
dilutio

n 

Undilut
ed 

1:2 
dilutio

n 

1:5 
dilutio

n 
   MS MS MS MS MS MS MS MS MS 
Cultivars  1 6.07*

** 
206
.8*
** 

399
2.7
*** 

138.8
*** 

NS a NS 824.7**
* 

2635.
6*** 

5215.
1*** 

Cultivation 
Practices 

 5 5.95 
*** 

139
7.6
*** 

436
9.7
*** 

718.0
*** 

1371.
3*** 

168.1
*** 

270.3**
* 

1256.
1*** 

3326.
4*** 

Cultivars × 
Cultivation 
Practices 

 5 0.4**
* 

5.5
*** 

35.
4** 

115.3 
*** 

57.2*
** 

17.2* 233.1**
* 

606.5
*** 

1212.
1*** 

MS-Mean Sum of Square Value 
*P<0.05 
** p<0.01 
*** p<0.001 
a Not Significant 
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