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PRODUCING SMOOTH FLOW IN ATOM CIRCUITS BY STIRRING

by

OLATUNDE OLADEHIN

(Under the Direction of Mark Edwards)

ABSTRACT

We studied how smooth flow can be produced by stirring an ultracold atom circuit consist-

ing of a gaseous Bose–Einstein condensate (BEC) confined in a “racetrack” potential. The

racetrack potential was made up of two straight parallel channels of length L connected on

both ends by semicircular channels of the same width and (energy) depth as the straight-

aways. We used the Gross–Pitaevskii equation to simulate the behavior of the BEC in this

potential when stirred by a rectangular paddle at various speeds and barrier heights. We

found that smooth flow could be produced and conducted a systematic study of the flow

produced under various conditions. We also laid the groundwork for the development of a

simple model of the stirring of the BEC. This understanding should enable the design of a

stirring sequence that would produce a given flow on demand.

INDEX WORDS: Bose–Einstein condensate, Atom circuit, Smooth flow
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CHAPTER 1

INTRODUCTION

1.1 Atomtronic Systems

The research project described in this thesis is devoted to studying the feasibility of produc-

ing smooth flow in an atom circuit by stirring. An atom circuit is a thin sheet of atomic gas

that has been shaped by squeezing it with laser light and cooling it to nearly the absolute

zero of temperature. The low temperature of such confined gases enhances the appearance

of the wave–like quantum mechanical nature of the constituent atoms so that they form a

state called a Bose-Einstein condensate (BEC). A horizontal thin sheet of gas in the BEC

state can be molded by the confining laser light into arbitrary closed-loop shapes analogous

to closed electric circuits. The gas can then be stirred by lasers so that it flows around

the closed loop like the electrons in an electric circuit except that the particles are neutral

atoms. The system under study in this work is an example of an atomtronic system.

Atom circuits are examples of “atomtronic” systems which are themselves ultracold–

atom systems that are analogs of electronic systems in which neutral atoms instead of elec-

trons flow through the circuit. These systems are of interest because they could potentially

be used as quantum simulators, in quantum sensing and computation, and as elements in

integrated circuits [2]. As quantum simulators, atomtronic systems can mimic the evolu-

tion of other physical systems whose parameters are fixed and which are not easily probed.

Examples of such systems include electrons in lattice potentials, Superconducting Quan-

13



14

tum Interference Devices (SQUIDs, devices that use the Josephson effect to measure small

variations in magnetic flux [3]), and the fractional quantum Hall effect. In contrast to these

systems, atomtronic systems can be controlled and probed with exquisite precision [4–13].

Atomtronic systems can be used as quantum sensors with applications in precision navi-

gation and in quantum measurement. These systems can be designed to act as sensors of

rotation, magnetic fields, and gravitational fields and these hold the promise of providing a

substantial gain in sensitivity over conventional sensing devices [14–21].

Atomtronic integrated circuit applications include radically new types of quan-

tum devices that exploit the phase coherence and persistent currents characteristic of su-

perfluids. Circuit elements such as diodes, transistors, and Josephson junctions have been

proposed and some of these have been realized in the laboratory [22–30]. Atom circuits

fall into this last category and form the subject of this research project. There are two re-

cent developments that bode well for the future of atom circuits especially for metrological

applications.

1.2 Atom Circuit Technology

The last three years has seen a second revolution in the technology of all-optical atom

trapping. Starting about ten years ago, several techniques were introduced for the optical

confinement of ultracold atoms. These techniques included holographic traps [31, 32],

painted potentials [33], and masks [34]. A common setup has been to confine the atoms
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in the horizontal planar space between a pair of blue-detuned light sheets and then writing

a quasi-2D potential in this plane with a combination of red and blue detuned laser beams

[35–39].

The emergence of spatial light modulators (SLM) and digital micro-mirror de-

vices [40] (DMDs) in the last several years is again causing a sea change in the ability of

experimentalists to manipulate atoms optically. These devices consist of millions of in-

dividually addressable mirrors in a small footprint. The major difference between these

devices and the holographic traps, painted potentials, and masks is the ability to produce

arbitrary optical potentials which also have arbitrary time dependence. The DMD devices,

originally developed for the digital light processing, are capable of 20-KHz full–frame re-

fresh rates and are commercially available at relatively low cost [40]. As theorists, we

believe we now have permission to dream up any kind of atom-circuit potential we can

think of because now almost anything is possible in the lab.

There has also been a recent experimental breakthrough [41] in preparing number–

stabilized ultracold–atom clouds. In the past, the uncertainty in the number of atoms in a

Bose–Einstein condensate has typically been 10–20%. This new technique, in which feed-

back from high–precision Faraday imaging of the cloud performed during the evaporative–

cooling process is used to guide subsequent cooling, enables the production of clouds with

number uncertainty below the shot–noise limit: ∆N <
√

N. The capability to apply time–

dependent, arbitrary planar potentials to number–stabilized BECs represents a significant

boost to the prospects of the field of atomtronics particularly for metrological applications.
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As far as we know, there are no labs that currently have both capabilities in place but we

believe that it is only a matter of time before this happens. These systems provide an ideal

platform for the realization of novel atom circuits.

1.3 Example Atom Circuit: Rotation Sensor

To understand the direction of the overall research effort in atom circuits it is instructive

to give an example of how an atom circuit that is part of a practical device might operate.

Here we describe the possible operation of such an atom circuit. This sequence is shown in

Fig. 1.1. It is important to note that the sequence described here is only an idealized version

of how an atom circuit used for a practical application might work.

The cyan–colored oval shown in the figure represents the shape of a channel

potential created by laser light to confine a Bose–Einstein–condensed gas. We refer to this

potential as the “racetrack” potential which is described in much more detail later in this

thesis. We start by making a BEC in the racetrack potential (top left in the figure). The

racetrack design was chosen to allow room for stirring operations as well as room for new

atom circuit elements to be introduced during the rotation sensing sequence.

After the condensate has been made in the racetrack (top left in the figure), the

condensate is stirred with a barrier (red rectangle, top middle) in order to create smooth flow

in the condensate. Once smooth flow is obtained (top right), a new circuit element, in the

form of a smaller ring with two barriers (red rectangles) and embedded in the lower channel,



17

Make BEC Smooth Flow

Turn Off

Stir

Quantum Rotation Sensor Operation

Turn on Ring
Measure ∆µ

Figure 1.1: Sequence of the operation of an idealized atom circuit designed for rotation

sensing. A BEC is formed in the racetrack potential (top left); stirred (top middle) to

create smooth flow (top right); a new circuit element is morphed on (bottom right); readout

is accomplished by non–destructive imaging (bottom middle); and the device is reset by

stopping the flow with a barrier (blue rectangle, bottom left) and the sequence repeats.

is morphed on (easily done with DMD imaging, bottom right in the figure). Measurement

readout is accomplished by non–destructive imaging (bottom middle). In this case, if the

whole system sits on a platform rotating at speed Ω, the chemical potential difference, ∆µ ,

(equal to the BEC density difference) between the left and right sides of the small ring will

measure Ω. Finally, the device is reset by either using a potential barrier to stop whatever

residual flow is left (bottom left) and stirring again or by making a new condensate.

It is important to mention here that any flow of the condensate will be quantized.

As will be explained in detail later in the thesis, because the behavior of the BEC is modeled

by the Gross–Pitaevskii equation (a nonlinear Schrödinger equation), the velocity distribu-

tion is proportional to the gradient of the phase of the condensate wave function. Since the



18

wave function must be single–valued, it follows that the phase accumulated around a closed

loop must be an integral multiple of 2π and thus only discrete smooth–flow velocities will

be possible.

It is clear that, for this kind of atom–circuit operation to be implemented, it must

be possible for on–demand smooth flow to be created in the condensate by some mecha-

nism. There are several possible methods by which flow could possibly be created. Some

candidates for this are (1) spatially modulating the atom–atom interaction of the conden-

sate using an external magnetic field, (2) tilting the plane of the potential away from the

horizontal so that there is a component of Earth’s gravitational field in the plane, (3) shining

laser light on portions of the condensate to create a phase gradient in the condensate wave

function, and (4) using laser light to create a barrier that stirs the condensate. If there was a

simple model that could predict the amount of flow produced by one of these mechanisms,

this would be valuable for the design of an atom circuit devoted to a particular application.

1.4 Plan of the Thesis

This thesis describes a study of the ability of laser–created barriers to produce smooth flow

on demand by stirring a Bose–Einstein condensate confined in a racetrack potential. The

central questions, some of which are addressed here, are:

• Can stirring a BEC in the racetrack potential actually produce smooth flow? Is is

possible to make flow with a barrier of any shape?
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• If flow can be made, how does the amount of flow produced depend on the stirring

speed and strength (energy height) of the barrier?

• How does the amount of flow produced depend on the shape of the racetrack?

• Is it possible to find a simple model that predicts the amount of flow produced by a

given stirring?

We will see in what follows that stirring can produce smooth flow but not all barrier shapes

produce flow. We found that stirring with a rectangular–shaped barrier will produce flow

but that the amount of flow produced depends on the stir speed, vs, the barrier strength,

Vp,max, and racetrack length, L. Based on these preliminary findings we conducted a sys-

tematic study of the flow produced for different values of vs, Vp,max, and L. We found that,

for a given stirring speed, the amount of flow produced was not a monotonic function of

Vp,max and that the quantized flow can jump by more than one unit as the barrier strength is

increased.

In Chapter 2 we provide the necessary background for understanding the research

study including explaining what a gaseous Bose–Einstein condensate is and describing

the standard theory that governs its behavior. We also briefly describe how lasers can

manipulate atoms so that they can provide the confining potential in which they move

and can stir the condensate. We further write down the potential we assume that atoms

are subjected and include a description of the racetrack potential. Finally we derive the

connection between the phase of the condensate wave function and the condensate velocity
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distribution. Chapter 3 provides the details of the study we conducted to determine if it is

possible to make smooth flow in a BEC confined in a racetrack atom circuit. We describe

how we were unable to make smooth flow with a rotating elliptically shaped barrier. We

also detail how we successfully made smooth flow by stirring with a rectangular barrier

oriented perpendicular to the racetrack. Finally we describe how we carried out a study of

the flow produced when vs, Vp,max, and L were varied systematically and also give the result

of the systematic study. We provide a summary of the work in Chapter 4.



CHAPTER 2

BACKGROUND MATERIAL

In this Chapter we give a brief description of many–body quantum mechanics, describe

what a Bose–Einstein condensate is, give a brief derivation of the Gross–Pitaevskii equation

(GPE) that is the standard theory governing condensate behavior. We also discuss how laser

beams can exert forces on atoms, describe the conditions present in the typical atom circuit

setup, and provide a brief description of how the velocity distribution of the condensate is

related to the gradient of the condensate wave function phase.

2.1 Quantum Mechanics of Many–Body Systems

In the standard version of quantum mechanics, the state of a quantum system is described

by a square–integrable wave function [42]. A measurable quantity, A , is represented by an

operator, Â, that acts on members of the space of valid quantum mechanical wave functions.

These operators are required to be linear and hermitian and to possess a complete set of

eigenvectors.

Âψn = anψn, n = 1,2, . . . (2.1)

The completeness property of the set of eigenvectors means that this set spans the space

of wave functions capable of representing a state of the system. The theory predicts the

outcomes of measurements by postulating that the only possible result of a measurement

is one of the eigenvalues of the operator associated with the quantity measured. The her-

21
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miticity property of these operators guarantees that its eigenvalues will be real numbers.

This is an important attribute of predicted measurement outcomes. If the wave function of

the system at the time of measurement is known, the theory can also predict the probability

of obtaining a particular eigenvalue, say am, when A is measured.

Another postulate of the theory is that, immediately after the measurement of

the quantity A in which the outcome turns out to be eigenvalue am, the wave function of

the system is the associated eigenvector, ψm. This postulate provides the initial condition

for the equation (i.e., the Schrödinger equation) that governs the evolution of the system

between measurements.

The equation postulated by quantum mechanics to govern the system evolution

between measurements is the time–dependent Schrödinger equation (TDSE). For a system

of N identical particles, this equation can be written as

ih̄
∂

∂ t
Ψ(r1, . . . ,rN , t) = ĤMBΨ(r1, . . . ,rN , t), (2.2)

where ĤMB is the operator that represents the total energy of the system and is called the

Hamiltonian. The Hamiltonian for many–body systems of N identical particles that will be

considered in this thesis takes the general form

ĤMB =
N

∑
j=1

[
− h̄2

2M
∇

2
j +V (r j, t)

]
+ ∑

j<k
Vint(r j,rk). (2.3)

The first term in the Hamiltonian is the sum over the kinetic energies of the individual

particles; the second term is the sum over the potential energies of the particles; and the

last term represents pairwise interactions and is a double sum over all pairs of particles
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with no self–interaction. In modeling interactions in Bose–Einstein–condensed systems,

only binary scattering of particles will be considered here.

The wave function solution of the many–body TDSE must also satisfy the nor-

malization condition:

〈Ψ|Ψ〉 ≡
∫

d3r1· · ·
∫

d3rNΨ
∗(r1, . . . ,rN , t)Ψ(r1, . . . ,rN , t) = 1. (2.4)

Note that the above notation implies integration over all 3N–dimensional space. This con-

dition ensures that the sum of the predicted probabilities of outcomes of a particular mea-

surement will be unity.

2.2 What is a Bose–Einstein Condensate?

A gaseous Bose–Einstein condensate is a system of identical bosonic atoms all of whom

have the same matter–wave shape (i.e., they have the same single–particle wave function.)

The BEC state was first predicted by Albert Einstein and Satyendra Nath Bose, an In-

dian Physicist [43], in 1925. Bose-Einstein condensation in dilute atomic gases was first

achieved by Eric Cornell and Carl Wieman in 1995 and marked the beginning of the de-

velopment of ultracold quantum gases [44]. For a more in-depth discussion on the theory

behind BECs see Ref. [43].

In the quantum theory of angular momentum [42], the square of a particle’s spin

angular momentum can only take on the values j( j+1)h̄2 where the quantum number j can

only have either non–negative integer or half–integer values. Elementary particles and ag-



24

gregates of particles, such as atoms, can be classified into two types: fermions and bosons.

Fermions are particles, or aggregates of particles, with half-integer spin while bosons have

integer spin. Systems of identical fermions behave differently from systems of identical

bosons. The many–body wave function describing a system of identical fermions must

obey the Pauli Exclusion Principle. This principle states that, if the coordinate labels (i.e.,

space and spin) of any two identical fermions are interchanged, the many–body wave func-

tion must change its overall sign. The many–body wave function is antisymmetric under

particle exchange. If the many–body wave function of a system of N identical fermions can

be written as the N–fold product of single–particle orbital functions, then the Pauli Prin-

ciple can be restated that no two identical fermions can occupy the same single–particle

(which may include both space and spin variables) quantum state.

On the other hand, The Pauli Principle requires the many–body wave function for

a system of identical bosons to remain unchanged when the space and spin labels of any

pair of particles is interchanged. That is, the many–body wave function must be symmetric

under particle interchange. In the single–particle view where the many–body wave function

is the N–fold product of single–particle orbitals, there is no restriction on the number of

bosonic particles that can occupy the same single–particle state. In fact, as will become

clear later, bosonic particles in equilibrium prefer to occupy the same single–particle orbital

since this is an effective way to lower the total energy of the system.

Atoms are systems of electrons, protons, and neutrons that can exhibit, in aggre-

gate, either bosonic or fermionic character. Electrons, protons, and neutrons are, them-
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selves, spin–1/2 fermions. A neutral atom will be either a boson or a fermion depending

on whether the total number of electrons, protons, and neutrons is even or odd. Accord-

ing the rules [42] for adding quantum angular momenta, the total angular momentum of a

system of two half–integer angular momenta can only have integer character. Thus, if the

total number of electrons, protons, and neutrons in an atom is even, the atom is a boson. If

the total number is odd, the atom is a fermion. For example, neutral lithium has two iso-

topes with large relative abundances: 6Li and 7Li. Lithium has atomic number Z = 3 which

counts the number of protons and the superscripted number is the nucleon number which

counts the total number of protons and neutrons. Thus neutral 6Li has three protons, three

neutrons, and three electrons making a total of nine particles. This makes 6Li a fermionic

atom. On the other hand 7Li has one more neutron for a total of ten particles and so 7Li is

a boson.

2.3 Derivation of the Gross–Pitaevskii Equation

In this section, in order to provide a better understanding of the assumptions of the un-

derlying description of gaseous Bose–Einstein condensates, we present a derivation of the

time–independent Gross–Pitaevskii equation. Much of the results presented in this the-

sis was obtained using the time–dependent Gross–Pitaevskii equation. However, the basic

assumptions for the time–dependent GPE are the same while the derivation is more math-

ematically complicated and tends to obscure the main points we want to convey to the

reader. Even here some of the technical details have been relegated to an appendix. The
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time–independent GPE can be derived at various levels of sophistication and these can be

found in many places in the literature [43, 45]. The derivation presented here is after the

one in Ref. [43].

The standard theory governing the behavior of the Bose–Einstein condensate is

the time–dependent Gross–Pitaevskii Equation. The GPE describes the ground state of a

quantum system of identical bosons using the Hartree–Fock approximation and the contact

interaction model [46]. To reach the Bose–Einstein condensate state, a dilute gas of bosons

is cooled close to absolute zero [47,48] and so the many–body ground state can be assumed

to be that in where all of the N bosons occupy the same single–particle quantum state.

The time–independent GPE can be derived using the variational approximation

method where the trial wave function is assumed to be the N–fold product of a single

single–particle “condensate wave function,” φ(r). Under this assumption, the many–body

wave trial function thus has the form

ΨMB(r1,r2, ...rN) =
N

∏
i=1

φ(ri). (2.5)

with the constraint that the condensate wave function, φ(r) is normalized to unity:

∫
|φ(r)|2 d3r = 1. (2.6)

To carry out the variational procedure we compute the many–body ground–state energy,

E[φ ], using the trial wave function and then minimize this energy by allowing arbitrary

variations of φ subject to the normalization constraint.

The Hamiltonian for this many–body system contains terms for the kinetic and
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potential energy of each atom plus a term that describes pairwise interaction among the

atoms. It has the form

HMB =
N

∑
i=1

(
− h̄2

2M
∇

2
i +V (ri)

)
+∑

i< j
Vint(r1,r2) (2.7)

where the interaction is modeled as binary scattering with a contact interaction.

Vint(ri,r j) = gδ (ri− r j). (2.8)

The atom–atom interaction strength is given by

g =
4π h̄2as

M
(2.9)

where M is the mass of a condensate atom and as is the s–wave (i.e. for head–on collisions)

scattering length. This interaction model is valid only when the atoms are cold and the

gas is dilute. Under these conditions the spacing between atoms is much larger than the

scattering length but smaller than their de Broglie wavelength.

The variational approximation method determines the defining equation for the

unknown condensate wave function by minimizing the ground–state energy functional with

respect to the unknown condensate wave function orbital, φ(r)

E[φ ]≡ 〈ΨMB |HMB|ΨMB〉 (2.10)

subject to the constraint that φ(r) be normalized to unity. The details of calculating this

quantity can be found in Appendix A. This result is

E[ψ] =
∫

d3r

(
− h̄2

2M
|∇ψ(r)|2 +V (r)|ψ(r)|2 + 1

2
g|ψ(r)|4

)
(2.11)
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where ψ(r)≡ N1/2φ(r) and N is the number of condensate atoms.

To find the optimal form of ψ(r), we minimize the energy above with respect

to independent variation of ψ(r) and its complex conjugate ψ∗(r) subject to the condition

that the total number of particles is

N =
∫

d3r|ψ(r)|2 (2.12)

Using a Lagrange multiplier to account for the constraint δE − µδN = 0 where µ is the

chemical potential. This ensures that the particle number remains fixed so that the variation

of ψ(r) and ψ∗(r) may thus be arbitrary. This procedure is equivalent to minimizing the

quantity E−µN at fixed µ .

Letting ψ∗(r) vary arbitrarily as ψ∗(r)→ ψ∗(r)+δψ∗(r) we require the varia-

tion of E−µN with respect to ψ∗(r) to vanish. Define

A[ψ∗(r)] = E[ψ∗(r)]−µN[ψ∗(r)] (2.13)

then we require that

A[ψ∗(r)+δψ
∗(r)]−A[ψ∗(r)] = 0. (2.14)

Using Eq. (2.11) we have{∫
d3r[− h̄2

2M
∇

2(ψ∗(r)+δψ
∗(r))ψ(r)+V (r)(ψ∗(r)+

δψ
∗(r))ψ(r)

g
2
(ψ∗(r)+δψ

∗(r))2
ψ

2(r)]− [µ
∫

d3r(ψ∗(r)+

δψ
∗(r))ψ(r)]

}{∫
d3r[− h̄2

2M
∇

2
ψ
∗(r)ψ(r)+

V (r)ψ∗(r)ψ(r)
g
2

ψ
∗2(r)ψ2(r)µ

∫
d3rψ

∗(r)ψ(r)]

}
(2.15)
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Expanding Eq. (2.15) to first order in δψ∗ we have

∫
d3rδψ

∗(r)

(
− h̄2

2M
∇

2
ψ(r)+V (r)ψ(r)+g|ψ(r)|2ψ(r)−µψ(r)

)
= 0 (2.16)

yields the time–independent GPE

− h̄2

2M
∇

2
ψ(r)+V (r)ψ(r)+g|ψ(r)|2ψ(r) = µψ(r) (2.17)

Where in the above equation, M is the mass of a condensate atom, h̄ is Planck’s constant,

V is the potential to which the condensate atoms are subjected. The solution, ψ(r), is the

condensate wave function, i.e., the single–particle orbital that all condensate atoms share.

The factor µ is the chemical potential which is the energy required to add one more particle

to the condensate. The time–dependent version of the GPE, whose solution is denoted by

Ψ(r, t), is given by

ih̄
∂Ψ

∂ t
=− h̄2

2M
∇

2
Ψ(r, t)+V (r, t)Ψ(r, t)+gN |Ψ(r, t)|2 Ψ(r, t), (2.18)

where here Ψ(r, t) is normalized to unity.

2.4 The signature of smooth flow

Since the goal of this research project is to investigate whether and how smooth flow can be

created in a Bose–Einstein condensate, it is important to define what we mean by smooth

flow. Intuitively, the smooth flow is present when the speed of the condensate is approxi-

mately constant everywhere (although the direction of the velocity may vary in space) and

the condensate density is also approximately constant. The question naturally arises as to
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how the condensate velocity distribution can be extracted from the condensate wave func-

tion. The answer is that, if we write the condensate wave function in terms of its amplitude,

f (r, t), and phase, φ(r, t):

Ψ(r, t)≡ f (r, t)eiφ(r,t), (2.19)

where f and φ are real–valued functions, then the velocity distribution is proportional to

the gradient of the phase

v(r, t) =
h̄
M

∇φ(r, t). (2.20)

Thus we define the signature of “smooth” flow to be the case when (1) the gradient of

the wave function phase is approximately constant and (2) the atom density (given by the

square of the wave function) is also approximately constant. In this section we will sketch a

derivation of the connection between the velocity distribution and the wave function phase

gradient. For clarity some of the details of the derivation will be relegated to an appendix.

2.4.1 The condensate velocity distribution

The condensate velocity distribution can be defined in term of the condensate probability

current. If the current is defined to be

J(r, t) =
h̄

2Mi

(
Ψ
∗(r, t)∇Ψ(r, t)−Ψ(r, t)∇Ψ

∗(r, t)
)

(2.21)

and the atom density is defined as ρ(r, t)≡ |Ψ(r, t)|2, then these quantities satisfy a conti-

nuity equation

∇ ·J(r, t)+ ∂ρ(r, t)
∂ t

= 0. (2.22)
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This follows directly from the Gross–Pitaevskii equation. This is a well–known result if

the underlying equation is the Schrödinger equation. It is not quite so well known if the

underlying equation is the GPE and so the details of this are given in Appendix B.

The condensate velocity distribution, v(r, t), can be quantitatively defined in

terms of the probability current as

J(r, t)≡ ρ(r, t)v(r, t), (2.23)

or in terms of Ψ(r, t) as

v(r, t) =
h̄

2Mi

(
Ψ∗(r, t)∇Ψ(r, t)−Ψ(r, t)∇Ψ∗(r, t)

Ψ∗(r, t)Ψ(r, t)

)
. (2.24)

Now if we insert the phase/amplitude form (Eq. (2.19)) of the condensate wave function

into the above expression for the velocity we obtain the following expression for the veloc-

ity distribution

v(r, t) =
h̄
M

∇φ(r, t). (2.25)

For full details, see Appendix B. We now have two expressions for the condensate velocity

distribution. Equation (2.24), in terms of Ψ, is more convenient for computation while Eq.

(2.25) is more useful for presentation and analysis of final results. More discussion of this

will be found in Chapter 3.

2.5 Optical Potentials and Atom Circuits

Laser light can be used to exert forces on atoms in a gas. The basic mechanism causing this

effect is that the rapidly oscillating electric field produced by the laser beam causes a shift
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in the ground state energy of the atom [43] which has the form

∆Eg =−
1
2

α(ω)〈E (r, t)2〉t (2.26)

where 〈. . .〉t denotes a time average over the optical period of the laser oscillation. The

factor E (r, t) is the space– and time–dependent envelope of the laser electric field and α(ω)

is the dynamic polarizability of the atom. The polarizability measures the atomic dipole

moment induced by the application of an electric field oscillating at optical frequencies.

This effect is often called the AC Stark shift or the light shift [49].

When the envelope of the electric field varies in space, as is the case with fo-

cused laser beams, the light shift of the ground state causes the atoms to move so as to

lower their energy. For alkali atoms, which are the most commonly used atomic species

in ultracold atom systems, it is possible to write a simple approximate expression for their

polarizability:

α(ω)≈ |〈g |d · ε̂|e〉|2

Ee−Eg− h̄ω− 1
2 h̄Γe

(2.27)

where d = −er is the atomic dipole moment operator, ε is the polarization vector of the

laser light and g denotes the ground state of the atom and e denotes the excited state of the

atom quasi–resonantly coupled to the ground state by the laser light. The factor Γe is the

natural linewidth of excited state e.

The shift of the atom’s ground–state energy thus acts like a potential energy for

the atom and can be written as

Vg(r, t) =−
1
2

αr(ω)〈E (r, t)〉t =
h̄ΩR(r, t)2δ

δ 2 + 1
4Γ2

e
, (2.28)
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where αr is the real part of the polarizability. The Rabi frequency, given by

ΩR(r, t) = |〈g |d ·E (r, t)|e〉| , (2.29)

is the frequency at which the atom cycles between the ground and excited states due to

stimulated absorption and stimulated emission processes. The factor δ , defined as

δ = ω− (Ee−Eg)/h̄, (2.30)

is the detuning from resonance of the laser photon energy. When the detuning, δ , is posi-

tive, the energy of the laser photon is greater than the energy difference between the ground

and excited state and the laser causes the ground state of the atom to shift upward. In this

case, we say that the laser is “blue detuned” with respect to the atomic transition. Atoms

tend to move toward the lowest intensity of blue–detuned laser light because this lowers

their internal energy. When δ is negative, the energy of the laser photon is less than the en-

ergy difference between the ground and excited state of the atom and this causes the ground

state of the atom to shift downward. In this case, we say that the laser is “red–detuned”

with respect to the atomic transition. Atoms tend to move toward the highest intensity of

red–detuned laser light. Thus red– and blue–detuned lasers can be used in combination to

confine and manipulate atoms in a gas.
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V(x,y), in the horizontal plane

Laser light writes arbitrary 2D potential,

plane provided by a red−detuned light sheet
Harmonic confinement to a horizontal

x

y

z

Figure 2.1: Our typical atom–circuit setup consists of a red–detuned light sheet to pro-

vide strong harmonic confinement of the atoms into a horizontal plane combined with an

arbitrary planar potential.

2.5.1 Atom circuit optical potential

Figure 2.1 shows a cartoon picture of the typical atom–circuit that we are studying in this

research project. This setup is typical of many recent atomtronics experiments [35, 36]. It

consists of a single red–detuned light sheet (or a pair of parallel blue–detuned light sheets)

oriented in a horizontal plane that provides strong confinement of the gas of atoms to this

plane. In addition, a digital micro–mirror device (DMD) projects an image onto this plane

using red– or blue–detuned light. This image creates a two–dimensional potential with

essentially arbitrary dependence on (2D) space and time.

In our model, we take the optical potential experienced by the atoms under these
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conditions to have the following general form

V (r, t) =
1
2

Mω
2
z z2 +Vac(r)+Vstir(r, t). (2.31)

Here the first term is the strong vertical harmonic potential of the light sheet that molds

the atoms into a thin horizontal sheet of gas. The term Vac represents the potential in

the horizontal plane in which the condensate is initially formed and is produced by DMD

imaging. In our model, this potential takes the shape of a racetrack. Finally, the term

Vstir represents the potential barrier that is used to the stir the condensate in order to make

smooth flow. In our study we consider two stirring potentials, (1) a rotating elliptically

shaped barrier centered near one end of the racetrack and (2) a rectangular barrier that is

oriented perpendicularly to the racetrack path, is twice the width of the path, and that moves

at constant speed along this path. Full details about the racetrack and stirring potentials will

be given in Chapter 3.



CHAPTER 3

ATOM CIRCUIT STIRRING STUDY

In this chapter we present our study of whether and how smooth flow can be created in

an atom circuit by stirring. The majority of this study consisted of simulations of an atom

circuit being stirred for a variety of different cases using the Gross–Pitaevskii equation to

model condensate behavior. In all of the simulations, the initial condensate was confined

by a trap potential, Vtrap(r), with the same basic design. We refer to this as the “racetrack”

potential. Within this model we simulated condensate stirring with two different barrier

shapes: (1) a rotating elliptical barrier (peristaltic pump) and (2) a rectangular barrier ori-

ented perpendicular to the path of the racetrack.

This plan of this chapter is as follows. In Section 3.1 we describe the racetrack

potential in detail and present the parameters that define its shape. In Section 3.2 we de-

scribe and present the results of trying to make smooth flow using the rotating elliptical

barrier. We were unable to make smooth flow using this barrier shape. In Section 3.3 we

describe in detail our attempt to make smooth flow with the rectangular barrier which was

successful. This motivated a systematic study of the amount of smooth flow created with

rectangular barriers moving at different speeds and having different energy heights and for

different racetrack geometries. The details of how the systematic study was conducted are

given in Section 3.4. Section 3.5 describes the results of the study. Finally in Section 3.6,

we extract from the 3D simulations the behavior of the GPE solution along the 1D midline

36
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of the racetrack potential as a function of time during a single simulation. This enables us

to understand better the condensate behavior in the region of the barrier. Furthermore, since

the ultimate goal of the stirring study is to develop a simple model for predicting the flow

created for given stirring conditions. These results show what a correct 1D model should

produce.

R
1

R
2

L

V=0 inside the racetrack = V  elsewhere
0

Figure 3.1: The racetrack atom–circuit potential has two parallel channels of length L and

capped by two semi–circular channels of inner radius R1 and outer radius R2. The potential

is zero inside the track and V0 outside.

3.1 The racetrack potential

In all of our simulations that follow, we assume that the potential in which the condensate

is initially formed is always the same. Thus the condensate present before stirring begins is

always the same. This potential consists of a vertical (z direction) harmonic potential with

frequency ωz and a 2D atom–circuit potential defined only in the xy plane. The full initial
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potential has the form

Vtrap(r) =
1
2

Mω
2
z z2 +Vac(r). (3.1)

In our model the atom–circuit, Vac(r), potential consists of two parallel straight channels of

length L connected together at the ends by semicircular channels. This divides the xy plane

into a region inside the channel where the potential is equal to zero and outside where it is

equal to V0. This potential is shown in Fig. 3.1 and we refer to it as the racetrack potential.

The mathematical form of this potential is

Vac(r) =
1
2

V0

[
tanh(b(R1−ρ(x,y)))+ tanh(b(ρ(x,y)−R2))+2

]
(3.2)

where, ρ(x,y) is given by

ρ(x,y) =


|y| |x| ≤ 1

2L√(
x+ 1

2L
)2

+ y2 x <−1
2L√(

x− 1
2L
)2

+ y2 x > 1
2L


. (3.3)

This potential steps the potential down from outside to inside the channel and up from

inside to outside over a width 1/b.

The shape of the racetrack potential was motivated by the need to make more

room for atom–circuit elements that may be morphed on during operations that might oc-

cur after smooth flow is created by stirring (or by whatever means). This can be seen in the

rotation sensor example presented in Fig. 1.1 of Chapter 1 where the bottom straight chan-

nel was morphed into a channel with a ring in the middle of it. Having the straightaways as

long as possible enable flexible design of atom–circuit elements for applications. The first
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idea we had for pushing condensate atoms along the channel was to mimic the action of a

peristaltic pump.

3.2 Stirring with an elliptical barrier

We tried to mimic how a peristaltic pump works by stirring the racetrack BEC with a

rotating elliptical paddle. A peristaltic pump is a positive displacement pump that is used

to transfer a wide variety of fluids along a tube. It is based on alternating compression and

relaxation of the tube. A pair of rollers alternately pass along the length of the tube totally

compressing it and creating a seal between suction and discharge side of the pump.

3.2.1 Elliptical barrier potential

Inspired by this idea we devised a propeller–like barrier that could be located at the center

of the semicircles at one end of the racetrack. The elliptical barrier potential has the form:

Vellipse(x,y,xc,yc,a,b,θ(t)) =



Vp(t) [x′(x,y,xc,yc,θ(t))]2/a2+

[y′(x,y,xc,yc,θ(t))]2/b2 ≤ 1

0 [x′(x,y,xc,yc,θ(t))]2/a2+

[y′(x,y,xc,yc,θ(t))]2/b2 < 1


(3.4)
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where

x′(x,y,xc,yc,θ(t)) = (x− xc)cos(θ(t))+(y− yc)sin(θ(t)),

y′(x,y,xc,yc,θ(t)) = −(x− xc)sin(θ(t))+(y− yc)cos(θ(t)).

(3.5)

In this potential (xc,yc) are the coordinates of the fixed center of the rotating barrier, θ(t) is

the angle through which the ellipse must be rotated from its orientation at t = 0, and Vp(t)

is the energy height of the potential. The shape of the ellipse is defined by the semi–major

axis length, a, and the semi–minor axis length, b. The parameters that were adjusted for

this potential in the results described below were the ellipse rotation angle function, θ(t),

and the energy height, Vp(t), which can also be a function of time.

We stirred the racetrack BEC with this elliptical barrier in different ways attempt-

ing to create smooth flow in the condensate. The barrier stirring was controlled by varying

its rotation, θ(t), and strength, Vp(t), independently. We tried a number of different com-

binations of these parameters. A selection of different cases are described in detail below.

These combinations include, qualitatively, Case (1) stirring fast with a strong barrier, Case

(2) stir slower with the same barrier strength, Case (3) ramp up the stir speed from zero

over the first half of the simulation, Case (4) same ramp but with a much weaker barrier,

and Case (5) ramp up the barrier speed and then ramp off the barrier strength. As will be

seen, none of these combinations of parameters were successful in producing smooth flow.
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t = 0000 ms t = 0080ms

t = 0240ms

t = 0160ms

t = 0270 ms t = 0330 ms

t = 0390 ms t = 0420 ms t = 0495 ms

Figure 3.2: Optical density for Case (1). Racetrack parameters: V0 = 500 nK, L = 60 µm,

R1 = 15 µm, R2 = 25 µm; Vertical confinement parameter: ωz = 2π × (500Hz); Barrier

and Stir parameters: Vp = 500 nK, Ω = 2π× (30Hz).

3.2.2 Case (1): stir fast with strong barrier

In Case 1 we simulated the stirring of a condensate of N=500,000 sodium atoms confined in

a racetrack potential of length L= 60 µm and the inner and outer radii were R1 = 15 µm and

R2 = 25 µm, respectively. The frequency of the harmonic potential providing vertical con-

finement was ωz = 2π×(500Hz) The shape of the barrier in this case (and in all subsequent
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cases described below) was elliptical with semi–major axis a = R2 = 25 µm and semi–

minor axis b = R1 = 15 µm. The energy height of the ellipse was held fixed at Vp = 500

nK and the rotation angle evolved according to θ(t) = Ωt where Ω = 2π × (30Hz). The

total evolution time of the simulation was Ttotal = 500 ms.

The results of this simulation are shown in Fig. 3.2. This figure contains nine

images. Each image shows a 2D plot of the optical density of the condensate at a fixed time

during the system evolution. The tag appearing at the top of each image is the time elapsed

since stirring of the condensate began and the images are ordered from left to right starting

at the top left.

The 2D optical density of the condensate at point (x,y) in the condensate plane is

the total number of atoms contained in a narrow tube of rectangular cross section (δx×δy)

and oriented perpendicular to the condensate plane. This quantity is computed from the

condensate wave function as

ρopt(x,y, t)≡
∫ +∞

−∞

dz |Ψ(x,y,z, t)|2 . (3.6)

This quantity can be compared directly with CCD (charge-coupled device) images taken of

condensates in the lab. The images in Fig. 3.2 represent the condensate optical density as a

color at each point on a 2D grid of the xy plane containing the condensate.

It is clear from the figure that the result of the stirring in Case (1) does not achieve

the smooth flow (or the droids) that we were looking for. In our definition, smooth flow

requires approximately constant density and phase gradient. The densities seen here are
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turbulent. It is possible that we were stirring too fast. This is addressed by the next case.
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t = 0000 ms t = 0080ms

t = 0240ms

t = 0160ms

t = 0270 ms t = 0330 ms

t = 0390 ms t = 0420 ms t = 0465 ms

Figure 3.3: Optical density for Case (2). Racetrack parameters: V0 = 500 nK, L = 60 µm,

R1 = 15 µm, R2 = 25 µm; Vertical confinement parameter: ωz = 2π × (500Hz); Barrier

and Stir parameters: Vp = 500 nK, Ω = 2π× (6Hz).

3.2.3 Case (2): stir slower with strong barrier

In Case 2 we simulated the stirring of a condensate with the same number of atoms and

confining potential as in Case (1). The energy height of the ellipse was again held fixed

at Vp = 500 nK and the ellipse rotated at a much slower rate, θ(t) = Ωt where Ω = 2π ×
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(6Hz). The total evolution time of the simulation was again Ttotal = 500 ms.

The results of this simulation are shown in Fig. 3.3 where again nine images of

the evolution of the optical density are shown. Comparing this case to Case (1) we see

that stirring more slowly does reduce the amount of turbulence created by the barrier but

it is still there and the flow is definitely not smooth. Another possible cause of turbulence

here is the fact that the barrier is always rotating. We considered the possibility that, if

the ellipse rotation was accelerated from zero up to some maximum speed, then this might

reduce the turbulence. This possibility is investigated in the Case (3).
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t = 0000 ms t = 0080ms

t = 0240ms

t = 0160ms

t = 0270 ms t = 0330 ms

t = 0390 ms t = 0420 ms t = 0495 ms

Figure 3.4: Optical density for Case (3). Racetrack parameters: V0 = 500 nK, L = 60 µm,

R1 = 15 µm, R2 = 25 µm; Vertical confinement parameter: ωz = 2π × (500Hz); Barrier

and Stir parameters: Vp = 500 nK, Ωfinal = 2π× (6Hz).

3.2.4 Case (3): speed ramp with strong barrier

In Case 3 we again simulated the stirring of a condensate with the same number of atoms

and confining potential as in Case (1). The energy height of the ellipse was again held fixed

at Vp = 500 nK and the total evolution time of the simulation was again Ttotal = 500 ms. In
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this case, we accelerated the ellipse from 0 Hz to Ω0 = 6 Hz from t = 0 until t = T = 250

ms and then kept the rotation speed constant after that. The rotation angle function was

thus

θ(t) = 2π×


1
2

(
Ω0
T

)
t2 0≤ t ≤ T

1
2

(
Ω0
T

)
T 2 +Ω0 (t−T ) t ≥ T

 radians. (3.7)

The results of this simulation are shown in Fig. 3.4. It clear to see here that the

density remains smooth at first but starts to turn turbulent at around t = 240 ms. By the end

of the simulation there is obvious turbulence and, once again, no smooth flow.

Another possible cause of turbulence here is that the barrier energy height is too

strong. In Cases (1), (2), and (3), the barrier height was kept constant at Vp = 500 nK which

is the same as the depth of the racetrack potential. It is also significantly higher than the

chemical potential of the initial condensate. Perhaps, if the barrier height were reduced,

then this might get rid of the turbulence. This question is addressed in the next case.
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t = 0000 ms t = 0080ms

t = 0240ms

t = 0160ms

t = 0270 ms t = 0330 ms

t = 0390 ms t = 0420 ms t = 0495 ms

Figure 3.5: Optical density for Case (4). Racetrack parameters: V0 = 500 nK, L = 60 µm,

R1 = 15 µm, R2 = 25 µm; Vertical confinement parameter: ωz = 2π × (500Hz); Barrier

and Stir parameters: Vp = 5 nK, Ωfinal = 2π× (6Hz).

3.2.5 Case (4): speed ramp with weak barrier

In Case 4 we again simulated the stirring of a condensate with the same number of atoms,

confining potential, and stirring schedule (the same θ(t) as in Eq. (3.7)) as in Case (3). The

total evolution time of the simulation was again Ttotal = 500 ms.
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In this case the energy height of the ellipse was drastically reduced from Vp = 500

nK down to Vp = 5 nK, a multiplicative factor of 100. One seemingly major difference be-

tween these two barrier strengths is that condensate atoms should be able to tunnel through

the barrier.

The results of this simulation are shown in Fig. 3.5. One difference between these

results and those of Case (4) is that atoms can now live in the barrier region. Comparing

the upper left panels of Fig. 3.4 with that of Fig. 3.5 shows that there is a definite non–

zero density in the barrier region initially. The presence of atoms in the barrier region

persists throughout the system evolution time. It is also clear however that turbulence is

again present under these conditions although it is much reduced even from Case (3) and

certainly much less than Case (1).

We made one last change in trying to create smooth flow in the racetrack con-

densate. This was to add a ramp off of the barrier strength over the last half of the system

evolution time. This possibility is addressed in Case (5).
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t = 0000 ms t = 1280 ms

t = 1920 ms t = 2160 ms t = 2640 ms

t = 3960 mst = 3360 mst = 3120 ms

t = 0640 ms

Figure 3.6: Optical density for Case (5). Racetrack parameters: V0 = 500 nK, L = 60 µm,

R1 = 15 µm, R2 = 25 µm; Vertical confinement parameter: ωz = 2π × (500Hz); Barrier

and Stir parameters: Vp = 500 nK, Ω = 2π× (30Hz).

3.2.6 Case (5): speed ramp, ramp down barrier

In Case (5) we simulated condensate stirring with the same conditions as Case (4) except

that the total system evolution was increased to Ttotal = 750 ms and the energy height of the

barrier was ramped from Vp = 5 nK down to zero over the last third of the evolution (that
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is, from t = 500 ms to t = 750 ms).

The results of the Case (5) simulation are shown in Fig. 3.6. We once again

see that this helps with the reduction of turbulence. It does not remove it however. At

this point we concluded that, while it might be possible to create smooth flow using a

rotating elliptical barrier in a racetrack condensate, the method would be very difficult to

implement. Turbulence was present in all of the simulations we conducted and our goal

was to have near–constant density and phase gradient. Thus we decided to try a different

stirring mechanism.
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t = 0000 ms

t = 1200 ms

t = 0800 ms

t = 1600 ms t = 2000 ms

t = 2400 ms t = 2800 ms t = 3200 ms

t = 0400 ms t = 0000 ms

t = 1200 ms

t = 0800 ms

t = 1600 ms t = 2000 ms

t = 2400 ms t = 2800 ms t = 3200 ms

t = 0400 ms

Figure 3.7: Optical density (left three columns) and phase distribution (right three columns)

results of a simulation where a ring BEC under the conditions of Ref. [1] was stirred by

a rectangular barrier. Simulation performed by Noel Murray in Edwards Research Group,

2014.

3.3 Stirring with a rectangular barrier

The choice of a new stirring barrier was motivated by the fact that we knew that making

smooth flow by stirring had already been done for ring–shaped condensates both exper-

imentally and theoretically [1]. In fact simulations where smooth flow was created by

stirring a ring–shaped condensate with a rectangular barrier oriented perpendicularly to the

ring had even been done in the Edwards Research Group some years ago by Noel Murray.

Figure 3.7 shows the results of one such simulation where the ring trap conditions matched

that of the experiment in Ref. [1]. The figure shows the optical density (left three columns)
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and the phase distribution (right three columns) during the stir and afterwards over a period

of 3200 ms.

Note that the results of this simulation exhibit the signatures of smooth flow that

we defined earlier: approximately constant density and phase gradient. In particular the

phase distribution is shown as a color plot where the colors map the phase between 0 (deep

blue) and 2π (dark red). Moving along the ring circumference through a rainbow of colors

from blue to red represents a 2π advance of the phase along this path. There should always

be a whole number of rainbows around the ring because the flow is quantized and, if these

rainbows divide the whole path into equal parts (as seen above), this is the signature of

smooth flow.

We therefore decided to investigate whether stirring a condensate confined in

a racetrack potential that mimiced the ring potential used by Murray with a rectangular

barrier would produce smooth flow. It was especially of interest as to whether this type of

barrier could produce smooth flow in an elongated racetrack potential.

3.3.1 Choosing simulation parameters

Since the racetrack potential is ring–shaped when L = 0 µm, we adjusted the inner and

outer radii and the width, b, of the racetrack potential to match the Murray ring potential.

This was a ring harmonic potential

Vmurray(ρ,z) =
1
2

Mω
2
z z2 +

1
2

Mω
2
ρ (ρ−ρ0)

2 , (3.8)
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Figure 3.8: The stir schedule for all rectangular barrier simulations. The rectangular barrier

energy height is ramped up from zero to Vp,max over 500 ms, held at Vp,max for another 500

ms, and then ramped down to zero over 500 ms. The system is then evolved for a further

2500 ms making the total system evolution time 4000 ms.

where ρ is the radial cylindrical coordinate. By matching Taylor expansions of the two

potentials to second order, we determined the optimal values for the racetrack. These turned

out to be R1 = 12 µm, R2 = 36 µm, and b = 24 µm. This gives a soft, nearly harmonic

cross sectional shape to the channel in the racetrack that matches the Murray ring potential

pretty closely. We also chose ωz = 2π × (320Hz) and the number of sodium atoms to be

N=500,000 atoms to match the conditions Murray assumed.
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The mathematical form for the rectangular barrier potential is

Vrect(x,y) = Vp
(
1

− Vup(x′,−L/2,b)Vdn(x′,L/2,b)

× Vup(y′,−W/2,b)Vdn(y′,W/2,b)
)

(3.9)

where Vup and Vdn are up and down step functions:

Vup(x,xup,b) =
1
2
(
tanh(a(x− xup))+1

)
Vdn(x,xdn,b) =

1
2
(tanh(a(xdn− x))+1)

and

x′ = (x− xr)cos(θ)+(y− yr)sin(θ)

y′ = −(x− xr)sin(θ)+(y− yr)cos(θ).

In the above, L and W are the length and width of the rectangle, respectively, (xr,yr) are

the coordinates of the center of the rectangle, b is the sharpness of the rectangle (small b is

a sharp rectangle), and Vp is the energy height of the barrier.

The stirring schedule for the Murray simulation (and all of the simulations pre-

sented from here on) is illustrated in Fig. 3.8. The barrier height is ramped up from zero to

height Vp,max over 500 ms, held constant at Vp,max for another 500 ms, ramped back down

to zero over a further 500 ms, and the system is evolved with the barrier off for another

2500 ms. Thus the total system evolution time is 4000 ms.
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t = 0000 ms t = 0400 ms t = 0800 ms

t = 1200 ms t = 1600 ms t = 2000 ms

t = 2400 ms t = 2800 ms t = 4000 ms

Figure 3.9: Optical density time sequence for L = 30 µm, TR=09, Vp,max = 55 nK

3.3.2 Can the rectangular barrier make smooth flow?

Our attempt to produce smooth flow in a racetrack condensate by stirring with the rectan-

gular barrier oriented perpendicularly to the midline of the racetrack and according to the

stirring schedule illustrated in Fig. 3.8 was successful. Figures 3.9 and 3.10 show, respec-

tively, the time sequence of the optical density and the phase distribution for the case where

the racetrack length is L = 30 µm, the stirring speed was v = 338 mm/s and Vp,max ≈ 54

nK.
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In Fig, 3.9 we see that the optical density is essentially constant. A closer look

will show that there are phonon (sound–wave) ripples on the surface but these are small

compared to the bulk density value. The images in this figure start at t = 0 and advance

by 400 ms each succeding panel except that the last panel is at the end, t = 4000 ms. The

middle panel (center row, center colum) shows the system just after the end of the stirring.

Constant optical density is our first requirement for smooth flow.

The phase density is shown in Fig. 3.10 at the same time tags as in the previous

figure. The first four panels (starting at top left) show the evolution while the condensate is

being stirred. The flow is clearly evolving with the winding number which is the multiple

of 2π through which the phase advances while going around the racetrack (just count the

number of red spots). It can be seen to change from zero to three and then to five. After

the end of the stirring (middle panel), the winding number never changes. At the end of the

simulation (lower right panel), the phase distribution shows that the phase winds through

5× (2π) when we go around the racetrack circumference. We will call this “five units of

flow.” These five 2π windings are equally spaced around the racetrack indicating a constant

phase gradient which is the second signature of smooth flow.
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t = 0000 ms t = 0400 ms t = 0800 ms

t = 1200 ms t = 1600 ms t = 2000 ms

t = 2400 ms t = 2800 ms t = 4000 ms

Figure 3.10: Phase distribution time sequence for L = 30 µm, TR=09, Vp,max = 55 nK

Our success in creating smooth by stirring the condensate with the rectangular

barrier raised the question: how many units of flow are created if we vary the maximum

barrier strength, Vp,max, the stirring speed, vs, and especially the racetrack length, L. Thus

we designed and conducted a systematic study of this question. This study consisted of a

set of simulations each having different values of the triple of parameters: (L,Vp,max,vs).
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3.4 Systematic study methodology

We studied systematically the ability of the rectangular potential to create smooth flow

when used to stir a condensate confined in a racetrack potential. In this study we varied

three parameters: (1) L, the racetrack straightaway length, (2) vs, the stirring speed of the

barrier, and (3) Vp,max, the maximum value of the barrier energy height during the stir (see

Fig. 3.8). Each simulation has a unique set of these three parameters and, in each, the

condensate is stirred according to the stirring schedule described earlier and illustrated in

Fig. 3.8. In the rest of this section we describe the ranges of the three parameters covered by

the collection of simulations carried out in the study. Each simulation required numerical

solution of the time–dependent Gross–Pitaevskii equation. Thus we also provide details on

how this equation was solved on the computer along with a description of what physical

quantities were computed and saved in each simulation.

3.4.1 Simulation parameter space

The parameter space we explored in our set of simulations consisted of seven different

racetrack lengths. These were L = 0, 10, 20, 30, 40, 50, and 60 µm. For fixed L, we stirred

the racetrack condensate with a variety of speeds and barrier strengths.

The different speeds sampled in the study were characterized by the number of

Total Revolutions (TRs) the barrier would make while circling the L = 0 µm (i.e., the ring)

racetrack along its midline track during Ttotal = 4 seconds of system evolution time. Four
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values of TR were sampled in our study. These were TR = 3, 6, 9, and 12 total revolutions

of the ring racetrack. These can be easily translated into speeds, vs, with more familiar

units. The speeds in µm/second are found by equating the product of the speed, vs, with

the total time, Ttotal, with the product of the Total Revolutions with the circumference of

the midline track of the ring racetrack:

vsTtotal = (2π)× 1
2
(R1 +R2)× TR so,

vs =

(
π(R1 +R2)

Ttotal

)
×TR≡ vs0×TR (3.10)

Since R1 = 12 µm and R2 = 36 µm, we have vs0 ≈ 37.7 µm/s and the four different speeds

are 3, 6, 9, and 12 times this basic speed.

For fixed L and TR, we stirred with a number of different maximum barrier

strengths, Vp,max. This maximum barrier strength was scaled by the chemical potential

of the initial condensate and so this scaling parameter will be different for different race-

track lengths, L. The chemical potential is the energy required to add one more atom to the

condensate and we calculated this for a condensate with 500,000 sodium atoms confined in

the racetrack potential for each of the seven different lengths considered. Calculation of µ

can easily be carried out given the wave function of the initial condensate [43].

The maximum barrier strength, Vp,max was varied between 0.5µ and 2.0µ in in-

crements of 0.02µ , that is, 75 different values. A simulation was thus uniquely identified

by the values of parameters of racetrack Length, L, Total Revolutions, TR, and maximum

barrier strength, Vp,max. The full study consists of nearly 2100 separate 3D GPE simulations
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of 4000 ms of system evolution time.

We devised a naming system based on these parameters to identify each sim-

ulation where L is expressed as the racetrack length in µm, the speed is expressed as

the number of TRs, and Vp,max is the maximum barrier height expressed in scaled en-

ergy units where each scaled unit is approximately 0.1 nanoKelvin. Thus the identi-

fier “L_30_TR_09_Vpmax_544.7” denotes a length of L = 30 µm, a speed of vs = 3×

37.7 µm/s, and Vp,max ≈ 54.5 nK. To identify all the simulations with fixed L and TR we

would write “L_30_TR_09” for example. Such identifiers label figures given below con-

taining the central result of this thesis. Tables 3.1 and 3.2 summarize the parameter space

of our systematic study of smooth–flow production.
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L/TR TR = 3, v = 112µm/s TR = 6, v = 225µm/s

L = 00µm Vp,max = .50µ, .52µ, ...,2.0µ Vp,max = .50µ, .52µ, ...,2.0µ

L = 10µm Vp,max = .50µ, .52µ, ...,2.0µ Vp,max = .50µ, .52µ, ...,2.0µ

L = 20µm Vp,max = .50µ, .52µ, ...,2.0µ Vp,max = .50µ, .52µ, ...,2.0µ

L = 30µm Vp,max = .50µ, .52µ, ...,2.0µ Vp,max = .50µ, .52µ, ...,2.0µ

L = 40µm Vp,max = .50µ, .52µ, ...,2.0µ Vp,max = .50µ, .52µ, ...,2.0µ

L = 50µm Vp,max = .50µ, .52µ, ...,2.0µ Vp,max = .50µ, .52µ, ...,2.0µ

L = 60µm Vp,max = .50µ, .52µ, ...,2.0µ Vp,max = .50µ, .52µ, ...,2.0µ

Table 3.1: Smooth flow simulations for TR = 3 and 6 revolutions.

3.4.2 Simulation computational details

Each simulation was carried out by solving the 3D Time–Dependent Gross–Pitaevskii

Equation (TDGPE), using the split–step, Crank–Nicolson algorithm [50]. For computa-

tional purposes, the GPE was expressed in “scaled” units where the length unit, L0, is

chosen and the energy unit, E0, is defined in terms of L0 as E0 = h̄2/(2ML0) and the time

unit is T0 = h̄/E0. In our case, we took L0 = 10−5 meters or 10 micrometers per scaled

length unit.

The parameters used in the numerical solution of the GPE are the number of

points in the x grid Nx = 400, the number of points in the y grid Ny = 200, and the number

of points in the z grid Nz = 50. The x–grid step size dx = 3.75× 10−2 L0 , the y–grid
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L/TR TR = 9, v = 338µm/s TR = 12, v = 450µm/s

L = 00µm Vp,max = .50µ, .52µ, ...,2.0µ Vp,max = .50µ, .52µ, ...,2.0µ

L = 10µm Vp,max = .50µ, .52µ, ...,2.0µ Vp,max = .50µ, .52µ, ...,2.0µ

L = 20µm Vp,max = .50µ, .52µ, ...,2.0µ Vp,max = .50µ, .52µ, ...,2.0µ

L = 30µm Vp,max = .50µ, .52µ, ...,2.0µ Vp,max = .50µ, .52µ, ...,2.0µ

L = 40µm Vp,max = .50µ, .52µ, ...,2.0µ Vp,max = .50µ, .52µ, ...,2.0µ

L = 50µm Vp,max = .50µ, .52µ, ...,2.0µ Vp,max = .50µ, .52µ, ...,2.0µ

L = 60µm Vp,max = .50µ, .52µ, ...,2.0µ Vp,max = .50µ, .52µ, ...,2.0µ

Table 3.2: Smooth flow simulations for TR = 9 and 12 revolutions

step size dy = 3.75× 10−2 L0, and the z–grid stepsize dz = 5.0× 10−2 L0. The number

of time steps in the propagation was Nt = 1.375× 105 steps, the time–grid step size was

dt = 4×10−4 T0.

Each simulation produced a 3D space condensate wave function (on a 400 ×

200× 50–point grid) at each of 100 different times during the 4000 ms system evolution.

Each of these wave functions was used to calculate the optical density, the condensate phase

in the z = 0 plane, the x and y components of velocity field at all grid points in the z = 0

plane, and the z–component of the vorticity (curl of the velocity field).

In order to detect the presence of smooth flow we developed diagnostic software

suitable for analyzing the results of the GPE simulations of stirred atom circuits. These

programs computed the following quantities from each numerically obtained condensate

wave function. (Below we use the notation Ψ(x,y,z, t) = |Ψ(x,y,z, t)|eiφ(x,y,z,t))
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o Optical density: ρ(x,y, t) =
∫

∞

−∞
|Ψ|2dz,

o Velocity x and y components: vx = (h̄/M)∂φ

∂x vy = (h̄/M)∂φ

∂y ,

o Phase distribution: φ(x,y,z = 0, t)

o Vorticity z component: ωz =
∂vy
∂x −

∂vx
∂y .

All of these quantities were computed immediately after calculation of the 100 condensate

wave functions which were computed by the GPE solver program and these derived quan-

tities were then saved on a 2D grid. The condensate wave functions, which occupied 100

gigabytes of space on the hard disk, were then deleted. Saving the wave functions would

have required 200 Terabytes of space and would still be downloading from the NIST su-

percomputer, raritan.nist.gov, where they computed. Some of the simulations were

also performed on the local cluster, talon.georgiasouthern.edu. These quantities were

used to provide insight into the sometimes complicated behavior of the stirred atom circuit.

Figure 3.11 displays examples of each of these quantities. We used the phase distribution

to identify how much smooth flow was present at the end of each simulation.

3.5 Systematic study results and analysis

The result of our study was that stirring the racetrack condensate with a rectangular barrier

was effective in creating smooth flow. We used the color–map plot of the condensate phase

distribution at the end of the system evolution time (t = 4000 ms) to study how effective
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Figure 3.11: Examples of optical density, phase distribution,vorticity z–component, and the

x and y components of the velocity distribution.

this stirring was.

These results are shown in Figs. 3.12 through 3.39. Each individual figure shows

an aggregation of all of the end–of–simulation phase distribution plots for fixed L and TR.

The phase distribution plots in a given figure are ordered from upper left to lower right and

the number just above each small plot is the value of Vp,max as a fraction of µ , the chemical

potential of the initial condensate used in the simulation.

Looking at one of these figures it is easy to see the progression of the flow pro-

duced by stirring a condensate at fixed racetrack length and stir speed. The number of flow

units produced equals the number of red spots in each small picture. These plots form the

central result of this thesis and we will describe some of the interesting features that have
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resulted from this study.

This study of smooth–flow production by stirring with a rectangular barrier has

revealed some interesting features. These include the following

• Stirring a racetrack condensate with a rectangular barrier does produce smooth flow

• The amount of flow produced by stirring, at fixed L and TR, is not a monotonic func-

tion of the the barrier strength Vp,max. We observed oscillations in the flow produced

as Vp,max increases.

• The amount of flow produced by stirring, for fixed L and TR, can jump by more than

one as Vp,max increases.

• For weak barriers no flow is produced but, when the barrier is finally strong enough

to produce non–zero flow, the amount produced isn’t always a single unit of flow.

These features are all present for the case where L = 30 µm and TR = 6 total revolutions

shown in Fig. 3.25. A close look at this figure shows that, for 0.5µ ≤ Vp,max ≤ 0.68µ ,

stirring produces no flow. But then for the next case where Vp,max = 0.70µ , two units of

flow is produced. This skips over one unit of flow unless this happens in the tiny range of

Vp,max between 0.68µ and 0.70µ . From there, after a short stay at two units, it jumps to

three units and thereafter jumps back and forth between two units and three units all the

way up to Vp,max = 2.0µ where we stopped doing simulations. Furthermore, there is a large

range, 1.5µ ≤Vp,max ≤ 1.78µ where the flow produced remains at two units.
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A close look at these graphs shows that this behavior is present to one extent or

another in all of the 28 pairs of L and TR included in the study. We concluded that it would

be interesting to develop a simple 1D model that could predict how much flow would be

obtained under these conditions without having to run a 12–hour 3D GPE simulation every

time. To date we have not been able devise such a model. However, we were able to mine

the 3D simulations to see what a 1D model ought to get. We now briefly describe the results

of this effort.
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Figure 3.12: L_00_TR_03

Figure 3.13: L_00_TR_06
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Figure 3.14: L_00_TR_09

Figure 3.15: L_00_TR_12
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Figure 3.16: L_10_TR_03

Figure 3.17: L_10_TR_06
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Figure 3.18: L_10_TR_09

Figure 3.19: L_10_TR_12
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Figure 3.20: L_20_TR_03

Figure 3.21: L_20_TR_06
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Figure 3.22: L_20_TR_09

Figure 3.23: L_20_TR_12
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Figure 3.24: L_30_TR_03

Figure 3.25: L_30_TR_06
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Figure 3.26: L_30_TR_09

Figure 3.27: L_30_TR_12
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Figure 3.28: L_40_TR_03

Figure 3.29: L_40_TR_06
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Figure 3.30: L_40_TR_09

Figure 3.31: L_40_TR_12
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Figure 3.32: L_50_TR_03

Figure 3.33: L_50_TR_06
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Figure 3.34: L_50_TR_09

Figure 3.35: L_50_TR_12
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Figure 3.36: L_60_TR_03

Figure 3.37: L_60_TR_06
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Figure 3.38: L_60_TR_09

Figure 3.39: L_60_TR_12
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arc length zero

L

stationary barrier

racetrack midline

Figure 3.40: Midline, shown in red, of the racetrack showing where the data from the 3D

GPE was extracted.

3.6 Condensate behavior along the racetrack midline

We mined data from a given 3D GPE simulation by extracting the condensate wave function

values along the midtrack of the racetrack as a function of time. This line is shown in red in

Fig. 3.40. We also plotted this data in the reference frame in which the barrier is at rest. The

wave function 1D coordinate system is referenced to the arc length distance as measured

going counterclockwise from the left end of the bottom straightaway. This starting point is

also shown in the figure.

Figure 3.41 shows an example of data mined from the simulation where L =

30 µm, TR = 09, and Vp,max = 544.7E0 (scaled units) which is Vp,max ≈ 54 nK. The six
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plots show, at six different times, the condensate density (red) and phase (green) along the

racetrack midline and represented in the reference frame in which the barrier is at rest. The

left vertical axis shows the value of the density (in arbitrary units) while the right vertical

axis shows the value of the phase and is measured in units of 2π .

As time progresses, the density develops a dip at the site of the barrier as the

barrier height increases. The density dip eventually reaches the bottom, stays on for a

while, and then disappears. The density stays approximately constant for the rest of the

evolution after the stirring is over. The phase jumps around while the stirring is going on

but we observed that, by the time the barrier starts to ramp off, the final value of the phase

has been set. In the future we hope to develop a 1D model of this process that will match

the behavior mined from the 3D GPE simulations.
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Figure 3.41: Plots of the BEC density (red) and the phase (green) at points along the midline

in the barrier rest frame. See text for details.



CHAPTER 4

SUMMARY

In this thesis we studied theoretically whether and how smooth flow can be produced by

stirring a racetrack atom circuit containing a Bose–Einstein condensate. Smooth flow is

essential if atom circuits are to be useful for applications such as quantum simulators,

quantum sensors, and as elements in integrated circuits. Thus whether smooth flow can be

produced in such circuits is an interesting and topical question.

In our study we tried stirring the racetrack condensate with two kinds of stirrers.

These were (1) a rotating elliptical barrier inspired by the idea of a peristaltic pump and

(2) a rectangular barrier moving along and oriented perpendicular to the racetrack midline

and twice as wide as the racetrack width. We were not able to produce smooth flow using

the elliptical barrier because all of our simulations contained significant amounts of turbu-

lence. While turbulence is an interesting subject in its own right and may be important to

understand in the context of atom circuits, the study of turbulence was not our goal here.

On the other hand we were able to produce smooth flow by stirring with a rect-

angular barrier. We found that this type of barrier was quite effective in producing flow

under a variety of conditions. This result is of some importance to the field of atomtronics

because of the essential nature of flow in atom–circuit operations.

Given the fact that the rectangular barrier can easily produce smooth flow in

the racetrack atom circuit, we decided to conduct a systematic study of how much flow
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will be produced by stirring for different racetrack geometries, stirring speeds, and barrier

strengths. This study was carried out by performing over 2000 simulations each for a

different set of these three quantities.

The results of this study revealed several interesting features regarding the amount

of flow produced by stirring. These features were the following

• Stirring a racetrack condensate with a rectangular barrier does produce smooth flow

• The amount of flow produced by stirring, at fixed L and TR, is not a monotonic func-

tion of the the barrier strength Vpmax. We observed oscillations in the flow produced

as Vpmax increases.

• The amount of flow produced by stirring, for fixed L and TR, can jump by more than

one as Vpmax increases.

• For weak barriers no flow is produced but, when the barrier is finally strong enough

to produce non–zero flow, the amount produced isn’t always one unit of flow.

Based on these phenomena, we decided that developing a simple 1D model that could

easily predict the flow produced by stirring under a given set of conditions.

We have been unable to devise such a model as yet. However, we were able to

mine data from the 3D GPE simulations in order to gain a better understanding of conden-

sate behavior and to test any 1D model that we develop.
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Appendix A

THE GROUND–STATE ENERGY FUNCTIONAL

In this appendix we provide the details of the calculation of the expression for the ground–

state energy when the many–body wave function is assumed to be the N–fold product of

the same single–particle condensate wave function. The variational approximation method

determines the defining equation for the unknown condensate wave function by minimizing

the ground–state energy functional

E[φ∗]≡ 〈ΨMB |HMB|ΨMB〉 (A.1)

subject to the constraint that φ(r) be normalized to unity. In integral form this is

E[φ∗] =
∫

d3r1...
∫

d3rNΨ
∗
MBHMBΨMB (A.2)

E[φ∗] =
∫

d3r1...
∫

d3rNφ
∗(r1)...φ

∗(rN)

×
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2M
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2
i +V (ri)+g
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j−2

∑
i= j

δ (ri− r j)

)
φ(r1)...φ(rN)

(A.3)

E[φ∗] =
∫
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∫
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(A.4)

92



93

E[φ∗] =
∫

d3r1|φ(r1)|2
∫

d3r2|φ(r2)|2...
∫

d3ri−1|φ(ri−1)|2∫
d3riφ

∗(ri)
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(A.5)

So, using the relation

∫ b

a
F(x)δ (x− xo)dx =


f (x0) a < x < b

0 otherwise

 (A.6)

and also since bosonic atoms have the same single-particle state, hence

E[φ ] = N
∫

d3rφ
∗(r)

(
− h̄2

2M
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2 +V (r)

)
φ(r)+
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2
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E[φ ] = N
∫

d3rφ
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(
− h̄2

2M
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2 +V (r)

)
φ(r)+

N(N−1)
2

g
∫

d3r|φ(r)|4 (A.8)

so N N−1
2 is the number of terms in the interaction energy, that is the number of ways of

making pairs of bosons. Considering the uniform Bose gas. In a uniform system of volume

V, the wave function of a particle in the ground state is 1

V
1
2

and therefore the interaction

energy of a pair of particles is g
V . The energy of a state with N boson all in the same state is

this quantity multiplied by the number of possible ways of making pairs of bosons, N(N−1)
2 .

In this approximation, the energy is

E =
N(N−1)

2V
g∼=

1
2

V n2g (A.9)

where n = N
V , we assumed that N >> 1 By introducing the concept of the wave function

Ψ(r) of the condensed state by the definition

ψ(r) = N
1
2 φ(r) (A.10)
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The condensate density is given by n(r) = |ψ(r)|2 and with the neglect of terms of order

1
N , the energy of the system becomes

E[ψ] = N

[∫
d3r

(
− h̄2

2M
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1
2 ψ(r)|2 +V (r)|N−

1
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)] (A.11)

so

E[ψ] =
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2
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Appendix B

CONDENSATE VELOCITY DISTRIBUTION

In this appendix expressions are derived for the condensate velocity distribution as deter-

mined from the wave function referenced to the laboratory frame and also with respect to

a reference rotating about the z axis. In our study of stirred atom circuits, the z axis is

perpendicular to the horizontal plane in which the condensate is strongly confined.

B.1 Lab frame velocity distribution

The lab–frame condensate velocity distribution is the gradient of the phase of the conden-

sate wave function. We start with the time–dependent GPE which, in the lab frame, has the

form

ih̄
∂Ψ(r, t)

∂ t
=− h̄2

2M
∇

2
Ψ(r, t)+V (r, t)Ψ(r, t)+gN|Ψ(r, t)|2Ψ(r, t) (B.1)

We let ρ(r, t) ≡ Ψ∗(r, t)Ψ(r, t) which is the probability density. Differentiating ρ with

respect to t gives

∂ρ

∂ t
=
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∂ t
Ψ+Ψ
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∂ t
(B.2)

The complex conjugate of equation (B.1) is
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2
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if we multiply Eq. (B.1) by Ψ∗(r, t) and equation (B.3) by Ψ(r, t) we have
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Subtracts the two equations, one arrives at the equation

ih̄

(
∂Ψ∗

∂ t
Ψ+Ψ

∗∂Ψ

∂ t

)
=− h̄2

2M
Ψ
∗
∇

2
Ψ+

h̄2

2M
Ψ∇

2
Ψ
∗ (B.6)

(
∂Ψ∗

∂ t
Ψ+Ψ

∗∂Ψ

∂ t

)
=− h̄

2Mi

(
Ψ
∗
∇

2
Ψ−Ψ∇

2
Ψ
∗

)
(B.7)

from equation (B.2), equation (B.7) becomes
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∂x

(
Ψ
∗∂Ψ

∂x
−Ψ

∂Ψ∗

∂x

)
+

∂

∂y

(
Ψ
∗∂Ψ

∂y
−Ψ

∂Ψ∗

∂y

)
+

∂

∂z

(
Ψ
∗∂Ψ

∂z
−Ψ

∂Ψ∗

∂z

)] (B.12)
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Since

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
(B.13)

So

∇ ·

(
Ψ
∗
∇Ψ−Ψ∇Ψ

∗

)
=

∂

∂x

(
Ψ
∗∂Ψ

∂x
−Ψ

∂Ψ∗

∂x

)

+
∂

∂y

(
Ψ
∗∂Ψ

∂y
−Ψ

∂Ψ∗

∂y

)

+
∂

∂z

(
Ψ
∗∂Ψ

∂z
−Ψ

∂Ψ∗

∂z

) (B.14)

hence

∂ρ

∂ t
=− h̄

2Mi

[
∇ ·

(
Ψ
∗
∇Ψ−Ψ∇Ψ

∗

)]
(B.15)

∂ρ

∂ t
=−∇ · h̄

2Mi

(
Ψ
∗
∇Ψ−Ψ∇Ψ

∗

)
(B.16)

So, define the probability current as

J =
h̄

2Mi

(
Ψ
∗
∇Ψ−Ψ∇Ψ

∗

)
(B.17)

Hence equation (B.16) becomes

∂ρ

∂ t
+∇ · J = 0 (B.18)

Which is equal to the equation of continuity. Now let J = ρv. Where v is the velocity

distribution. So, since v = J/ρ we have

v(r, t) =
h̄

2Mi

(
Ψ∗(r, t)∇Ψ(r, t)−Ψ(r, t)∇Ψ∗(r, t)

Ψ∗(r, t)Ψ(r, t)

)
(B.19)

If we write Ψ(r) in term of its amplitude f and phase φ

Ψ(r, t) = f (r, t)eiφ(r,t) (B.20)



98

complex conjugate is,

Ψ
∗(r, t) = f (r, t)e−iφ(r,t) (B.21)

So,equation (B.19) becomes

v =

[ h̄
2Mi

(
f e−iφ

)(
∇ f eiφ + i f ∇φeiφ

)
f e−iφ f eiφ

]
−

[ h̄
2Mi

(
f e−iφ

)(
∇ f eiφ + i f ∇φeiφ

)
f e−iφ f eiφ

] (B.22)

v =

h̄
2Mi

[
f (∇ f + i f ∇φ)e−iφ eiφ − f (∇ f − i f ∇φ)e−iφ eiφ

]
f 2e−iφ eiφ (B.23)

v =

h̄
2Mi

[
f (∇ f + i f ∇φ)− f (∇ f − i f ∇φ)

]
f 2 (B.24)

v =
h̄

2Mi

[
2i f 2∇φ

f 2

]
(B.25)

which becomes

v(r, t) =
h̄
M

∇φ(r, t) (B.26)

Equation (B.26) shows that the motion of the condensate corresponds to potential flow,

since the velocity is the gradient of a scalar quantity. This is the velocity distribution.

B.2 Rotating frame velocity distribution

The GPE equation is given by

ih̄
∂Ψ(R)

∂ t
=− h̄2

2M
∇

2
Ψ

(R)+V (R)(r)Ψ(R)+ ih̄Ωz
∂Ψ(R)

∂Φ
+

gN|Ψ(R)|2Ψ
(R)

(B.27)



99

the complex conjugate of equation (B.27) is

−ih̄
∂Ψ∗(R)

∂ t
=− h̄2

2M
∇

2
Ψ
∗(R)+V (R)(r)Ψ∗(R)− ih̄Ωz

∂Ψ∗(R)

∂Φ
+

gN|Ψ(R)|2Ψ
∗(R)

(B.28)

multiplying equation (B.27) by Ψ∗(R) and equation (B.28) by Ψ(R)

ih̄Ψ
∗(R)∂Ψ(R)

∂ t
=− h̄2

2M
Ψ
∗(R)

∇
2
Ψ

(R)+Ψ
∗(R)V (R)(r)Ψ(R)+

ih̄ΩzΨ
∗(R)∂Ψ(R)

∂Φ
+gN|Ψ(R)|2Ψ

(R)
Ψ
∗(R)

(B.29)

−ih̄Ψ
(R)∂Ψ∗(R)

∂ t
=− h̄2

2M
Ψ

(R)
∇

2
Ψ
∗(R)+Ψ

(R)V (R)(r)Ψ∗(R)−

ih̄ΩzΨ
(R)∂Ψ∗(R)

∂Φ
+gN|Ψ(R)|2Ψ

∗(R)(r)Ψ(R)

(B.30)

subtract equation (B.30) from equation (B.29)

ih̄
(

Ψ
∗(R)∂Ψ(R)

∂ t
+Ψ

(R)∂Ψ∗(R)

∂ t

)
=

h̄2

2M

(
Ψ

(R)
∇

2
Ψ
∗(R)−Ψ

∗(R)
∇

2
Ψ

(R)
)

+ih̄Ωz

(
Ψ
∗(R)∂Ψ(R)

∂Φ
+Ψ

(R)∂Ψ∗(R)

∂Φ

) (B.31)

ih̄
∂

∂ t

(
Ψ
∗(R)

∂Ψ
(R)
)
=−∇ · h̄2

2M

(
Ψ
∗(R)

∇Ψ
(R)−Ψ

(R)
∇Ψ

∗(R)
)
+

ih̄Ωz

(
Ψ
∗(R)∂Ψ(R)

∂Φ
+Ψ

(R)∂Ψ∗(R)

∂Φ

) (B.32)

Now note that in Cartesian

L̂z

(
Ψ
∗(R)

Ψ
(R)
)
=

h̄
i

∂

∂Φ

(
Ψ
∗(R)

Ψ
(R)
)

=
(

yp̂x−xp̂y

)(
Ψ
∗(R)

Ψ
(R)
)

=
h̄
i

(
y

∂

∂x
−x

∂

∂y

)(
Ψ
∗(R)

Ψ
(R)
)

=
∂

∂x

( h̄
i
yΨ
∗(R)

Ψ
(R)
)
+

∂

∂y

( h̄
i
xΨ
∗(R)

Ψ
(R)
)

(B.33)
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we can write now equation (B.33) as the divergence of

−ih̄yΨ
∗(R)

Ψ
(R)(r)î+ ih̄xΨ

∗(R)
Ψ

(R)ĵ

= ih̄
(

yî−xĵ
)

Ψ
∗(R)

Ψ
(R)

= ih̄ρ

(
î sinΦ− ĵ cosΦ

)
=−ih̄ρ ˆΦ(φ)Ψ∗(R)Ψ(R)

(B.34)

so,

h̄
i

(
y

∂

∂x
−x

∂

∂y

)
Ψ
∗(R)

Ψ
(R) = ∇ ·

(
− ih̄ρ ˆΦ(φ)Ψ∗(R)Ψ(R)

)
(B.35)

so,inserting equation (B.35) into equation (B.32) gives

ih̄
∂

∂ t

(
Ψ
∗(R)

∂Ψ
(R)
)
=

−∇ · h̄2

2M

(
Ψ
∗(R)

∇Ψ
(R)−Ψ

(R)
∇Ψ

∗(R)
)
−

ih̄Ωz
∂

∂Φ

(
Ψ
∗(R)

Ψ
(R)
) (B.36)

ih̄
∂

∂ t

(
Ψ
∗(R)

∂Ψ
(R)
)
=

−∇ ·

[
h̄2

2M

(
Ψ
∗(R)

∇Ψ
(R)−Ψ

(R)
∇Ψ

∗(R)
)
−

−ih̄ρΩz
ˆΦ(φ)Ψ∗(R)Ψ(R)

] (B.37)

∂

∂ t

(
Ψ
∗(R)

∂Ψ
(R)
)
+

∇ ·

[
h̄2

2M

(
Ψ
∗(R)

∇Ψ
(R)−Ψ

(R)
∇Ψ

∗(R)
)
−

−ρΩz
ˆΦ(φ)Ψ∗(R)Ψ(R)

]
= 0

(B.38)

defining the rotating frame density and the probability density current

ρ
(R) = Ψ

∗(R)
Ψ

(R) (B.39)
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J(R) =
h̄2

2M

(
Ψ
∗(R)

∇Ψ
(R)−Ψ

(R)
∇Ψ

∗(R)
)
−

−ρΩz
ˆΦ(φ)Ψ∗(R)Ψ(R)

(B.40)

which satisfy the rotating frame continuity equation

∂ρ(R)

∂ t
+∇ ·J(R) = 0 (B.41)

now define the rotating frame velocity distribution as

J(R) = ρ
(R)v(R) (B.42)

or

v(R) =
J(R)

ρ(R)
(B.43)

thus

v(R) =
h̄

2Mi

(
Ψ∗(R)∇Ψ(R)−Ψ(R)∇Ψ∗(R)

Ψ∗(R)Ψ(R)

)
−ρΩz

ˆΦ(φ) (B.44)

Smooth flow has already been produced by stirring ring-shaped BECs both theoretically

[51] and experimentally [1]. Since the racetrack becomes ring if the length L, of the

straightways is set to zero, we are encouraged to try making smooth flow in this racetrack

atom circuit.
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