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Abstract Practitioners analyze the elevation profile of a roadway to detect localized defects 

and to produce the international roughness index. The prevailing method of measuring road 

profiles uses a specially instrumented vehicle and trained technicians, which usually leads 

to a high cost and an insufficient measurement frequency. The recent availability of probe 

data from connected vehicles provides a method that is cost-effective, continuous, and 

covers the entire roadway network. However, no method currently exists that can 

reproduce the elevation profile from multi-resolution features of the vehicle inertial 

response signal. This research uses the wavelet decomposition of the vehicle inertial 
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responses and a nonlinear autoregressive artificial neural network with exogenous inputs 

to reconstruct the elevation profile. The vehicle inertial responses are a function of both the 

vehicle suspension characteristics and its speed. Therefore, the authors normalized the 

vehicle response models by the traveling speed and then numerically solved their inertial 

response equations to simulate the vehicle dynamic responses. The results demonstrate that 

applying the artificial neural network to the wavelet decomposed inertial response signals 

provides an effective estimation of the road profile. 

Keywords: road roughness, profile reconstruction, vehicle response, wavelet analysis, 

neural network 

1. Introduction 

As pavement roughness accelerates vehicle wear, affects ride quality and transportation safety, 

expedites pavement deterioration, and increases fuel consumption, it has long been used as a major criteria 

to assess the road condition and guide the road maintenance and rehabilitation (Zhang, Deng et al. 2015, 

Kong, Abdullah et al. 2017, Qin, Wang et al. 2019). The prevailing method ofroughness measurement uses 

a vehicle instrumented with an inertial profiler to collect road profile data (Spangler and Kelly 1966). The 

inertial profiler collects the road profile information at a highway speed and a sampling rate sufficient for 

further analysis of the profile's spectral composition. Despite its worldwide popularity, the profiling method 

has high cost and labor intensity that prevents agencies from measuring many roads more than once per 

year. As a result, the decisions on road maintenance and rehabilitation are usually made using outdated road 

roughness information. Moreover, infrequent road condition monitoring precludes the detection of severe 

immediate road distresses such as the frost heaves that occurs and vanishes within a year. This situation 

leads to information gaps of roadway safety and thus increases the liability of administrative bureaus (Zhang, 

Deng et al. 2016). 
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The response-type method of roughness evaluation uses the dynamic responses of a probe vehicle 

traversing roughness roads, including the displacements, velocities, and accelerations of multiple 

components of the vehicle, to assess the road roughness severity indirectly. Compared with inertial profiling, 

the response-type method is less expensive because it reduces labor and equipment costs. Hence, this 

method allows more frequent and timely measurement and evaluation of road roughness conditions by 

agencies. Mostly, the response-type method yields an indirect roughness evaluation index through statistical 

analysis and signal processing on the collected data of vehicle responses, which is usually comparable to 

the widely used international roughness index (IRI) (Bridgelall 2014, Bridgelall, Huang et al. 2016). 

Recently, the response-type method has also been used to estimate the road profile by analyzing the 

collected data using advanced signal processing and system identification techniques (Ngwangwa, Heyns 

et al. 2010, Kong, Omar et al. 2014, Qin, Xiang et al. 2018). Literature review finds that there is limited 

research on road profile estimation using probe vehicle responses. All the existing studies use the collected 

signal series as the input to their estimating algorithms without discriminating its frequency composition. 

Vehicle responses, the output of a vehicle under the roughness excitation when travelling across a road 

section, reflects the road information as well as the vehicle characteristics, which compromises its 

representation of the roughness information if without appropriate signal decomposition and filtering. 

Wavelet analysis provides a multi-resolution decomposition of a signal in the time or spatial domain. 

It is widely used for road profile and pavement surface analysis and evaluation. Qin et al. used wavelet 

analysis to extract features from vehicle responses for road roughness classification ( Qin, Xiang et al. 201 7). 

Wei and Fwa characterized road roughness using the wavelet energy statistics developed from a wavelet 

transform and found that it has a high correlation with IRI for both asphalt and concrete pavements (Wei 

and Fwa 2004). De Pont and Scott used wavelet analysis to find local roughness features by comparing the 

magnitude of a certain component with a reference value at that decomposition level (De Pont and Scott 

1999). Papagiannakis et al. used wavelet analysis to decompose the pavement roughness and a truck's 

dynamic axle load and compared their relative energy within different wavelet sub-bands (Papagiannakis, 
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Zelelew et al. 2007, Papagiannakis, Zelelew et al. 2007). Shokouhi et al. used wavelet-based multi

resolution decomposition as a diagnostic tool to determine the location and extent of various frequency 

features of the road profile including pavement defects and surface anomalies (Shokouhi, Gucunski et al. 

2005). Wei et al. used wavelet analysis as a tool to provide in-depth insights into the road profiles including 

the correlation of the IRI with the energy within the sub-bands, the energy distribution difference for 

profiles with close values of IRI, the effect of local features on IRI, and the identification of patterns of 

pavement roughness deterioration (Wei, Fwa et al. 2005). Zhou et al. used wavelet transform together with 

Radon transform to analyze pavement images for the purpose of pavement distress classification (Zhou, 

Huang et al. 2005). 

Daubechies' wavelet family is widely used for signal processing due to their ease ofimplementation 

and their orthogonality that yields stable mathematical behaviors. Among the Daubechies' wavelet family, 

DB3 is the most widely used wavelet for road profile analysis (Wei and Fwa 2004, Wei, Fwa et al. 2005, 

Papagiannakis, Zelelew et al. 2007, Papagiannakis, Zelelew et al. 2007) because of its good resolution in 

both the spatial and frequency domains as well as its orthogonality and maximal flatness. These are 

desirable characteristics to support iterative decomposition in discrete wavelet transforms (Daubechies 

1988). Researchers also use other wavelets from the Daubechies' family to analyze road roughness such as 

DB4 (De Pont and Scott 1999) and DB6 (Shokouhi, Gucunski et al. 2005). 

Machine learning technique is an effective tool for data analysis and information extraction. It has 

been widely used to assess road condition by processing and analyzing the data collected from connected 

vehicles. Ngwangwa et al. used a Bayesian-regularized nonlinear autoregressive exogenous model (NARX) 

neural network to reconstruct road profiles (Ngwangwa, Heyns et al. 2010). Qin et al. used a probabilistic 

neural network (PNN) classifier to determine the road roughness class for a semi-active suspension system 

(Qin, Xiang et al. 2017). Guarneri et al. used a recurrent neural network to predict the dynamic behavior of 

vehicles traversing road irregularities by training the network with outputs from a simulated tire-suspension 

model (Guarneri, Rocca et al. 2008). Attoh-Okine aimed at predicting the IRI and conducted a detailed 
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study on the influence of momentum-term and learning rate in the back-propagation algorithm (Attoh

Okine 1999). Tai et al. detected road anomalies, such as potholes and rutting, by processing the data 

collected from a motorcycle-mounted tri-axial accelerometer using the support vector machine (Tai, Chan 

et al. 2010). Hoffmann et al. developed an online road roughness classification system using bicycles 

instrumented with smartphones imbedded with the Naive Bayes algorithm (Hoffmann, Mock et al. 2013). 

Ward and Iagnemma used support vector machines to process the measured acceleration signal from a 

passenger vehicle to classify terrains after removing the impulses from anomalies including ruts and 

potholes (Ward and Iagnemma 2009). 

Practitioners use the elevation profile data to characterize network-level roughness, estimate the 

spatial wavelength composition of a road segment, localize anomalies, and forecast maintenance needs. 

Therefore, the availability of roadway elevation profiles from widely available connected vehicle data 

sources will provide transportation agencies and users with efficient means to collect road condition data 

continuously, and network-wide. The literature review indicates a lack of research that addresses the 

estimation of a road elevation profile from connected vehicle data. This research contributes to this field by 

applying the NARX artificial neural network to the wavelet decomposed inertial responses from connected 

vehicles to estimate the road elevation profile. The organization of the paper is as follows: Section 2 

describes the mathematical models used for the roughness generation and the vehicle response analysis. 

Section 3 describes the wavelet decomposition of the normalized vehicle responses that serve as inputs to 

the NARX network of road profile reconstruction. Section 4 reconstructs the road profiles by applying the 

NARX network to the wavelet decomposed signal components. Finally, Section 5 presents the conclusions 

and outlines the future work. 
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2. Model Description 

2.1. Vehicle Roughness Interaction 

Figure 1 illustrates the dynamic model of a vehicle and a single dimension road profile. The 

vehicle model is a quarter car that contains a sprung mass ms , an un-sprung mass mu , a suspension 

spring ks, a tire spring ku, a suspension damper cs, and a tire damper cu . Studies of vehicle dynamics 

and ride quality use the quarter car model extensively because of its simplicity and effectiveness [29-32]. 

IRI is defined as the integrated relative difference between the sprung mass velocity and the un-sprung 

mass velocity over the distance traveled, assuming the model travels at a simulated speed of 80 km/h over 

the measured road profile with roughness (Sayers 1995). In particular, IRI is a function of the sprung and 

un-sprung mass motions of a special quarter car that the international standard specifies to represent all 

vehicles, regardless of their actual parameter equivalents. 

JL 
0 X 

,;: road profile 
m,: sprnng mass 
mu: un-sprnng mass 
c,: suspension damper 
cu: tire damper 
k,: suspension spring 
ku: tire spring 

Figure 1. Dynamic model of the vehicle on a road profile 

Suppose that y; and y~ are the absolute displacements of the sprung and un-sprung masses, 

respectively. Let Ys and Yu denote the relative displacement of the sprung mass and the un-sprung mass, 

respectively, such that 

Ys = Y: - Y~ and Yu = Y~ - ; • (2) 

Expressing the equations of motion of the dynamic system in the matrix form yields [33]: 
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MY(t) + CY(t) + KY(t) = R(t) (3) 

where M=[ :• K = s y = Ys y = Ys y = Ys OJ [ k OJ { } {.} { .. } 
Cu ' -ks ku ' Yu ' Yu ' Yu ' 

and 

Solving Eqn. (2) for a given road profile produces the absolute displacements of the sprung and 

un-sprung masses such that 

Y: = Ys + Yu + ~ and Y! = Yu + ~ · (4) 

2.2. Roughness Generation 

The inverse fast Fourier transform (IFFT) of the power spectrum density (PSD) of a road profile ( 

i; ) provides a suitable model to represent profiles of different roughness levels (Wu 2000, Jiang, Cheng 

et al. 2012). The ISO (1995) (Andren 2006) represents the elevation profile as a PSD Ss (K) in the form 

(5) 

where K is the wavenumber in units of cycle/m, K0 is the datum wavenumber in cycle/m, S~ (K) is in units of 

m3/cycle, andSs (K0)is the PSD atK0 or initial PSD in m3/cycle. 

For typical profiles, Cebon (Cebon 1999) recommended n1 =3, n2 = 2.25, andK0 = 1/ 2n 

cycles/m. Table 1 summarizes the qualitative relationship between the roughness classification and the 

initial PSD. That is, higher values of Ss {K0) correspond to rougher roads. 
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Table 1. Relationship between roughness classification and initial PSD (Cebon 1999) 

Roughness classification S~ (K0), 10-6 m3/cycle 

Very good 2-8 

Good 8-32 

Average 32-128 

Poor 128-512 

Very poor 512-2048 

Reference (Sayers and Karamihas 1998) indicates that the IRl quarter car model does not respond 

to spatial wavelengths that fall outside 1.3 m to 30 m. Therefore, a range of K from 0.02 cycle/m to 5 

cycle/m will conservatively excite the IRl quarter car model. Figure 2 shows the 1000-meter road profile 

generated at S~ (K0) = 3.2 x 10-s m3/cycle. 

§ 20 
<:/)~ 

<:I) 0 

! 
5 -20 
I-< 

-40 ~-----~------~------~-----~------~ 
0 200 400 600 800 1000 

x,m 

Figure 2. Generated road profile by IFFT method at S~(K0 ) = 3.2 x 10-s m3/cycle 

3. Wavelet decomposition of vehicle responses 

3.1. Theory of wavelet analysis 

Researchers widely use the Fourier transform (FT) to characterize road profile as the sum of an 

infinite series of harmonic functions, namely the Fourier expansion (Sayers, Gillespie et al. 1986, Hayhoe 

1992). A fundamental disadvantage of the Fourier expansion is that it represents the road profile only in the 

frequency domain and loses all the information in the spatial or time domain. Alternatively, using the 
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Fourier spectra determines the frequency composition of a profile but it cannot detect the location of specific 

spatial characteristics such as the localized distress or defects. 

In comparison, the wavelet transform (WT) represents a signal in the frequency and 

spatial/temporal domains simultaneously. It has the potential to characterize local features of the road 

elevation profile in both domains. Wavelet analysis moves stretched or dilated versions of a wavelet 

function across a signal to produce a correlation with local signal shapes that resemble the selected wavelet 

function. The wavelet y,(t) is a function of time t corresponding to a variable resolution a and location b 

such that (Coifman, Meyer et al. 1992): 

1 t-b 
V'a,b (t) = r yt(-) 

va a 
(6) 

The scale factor a is dimensionless and inversely proportional to the frequency of the selected wavelet, i.e., 

f, as (Addison 2017): 

f = le (7) 
a 

where fc is a constant of the selected wavelet. 

The continuous wavelet transform (CWT) converts the signal s(t) with a selected wavelet function 

lf/a,h(t) in an integral form such that (Coifman, Meyer et al. 1992): 

W,,,h = J: s(t)Y,0 ,h(t)dt (8) 

where Wa,h is the wavelet coefficient corresponding to the scale a and the position b. The CWT traverses 

the scale a continuously and slides the wavelet function across the signal. 
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In comparison, the discrete wavelet transform (DWT) operates only for a certain range of frequency 

bands and selected signal locations. Hence, a representation of the time signal s(t) is a series of sub-band 

signals dm(t) summed together such that (Coifman, Meyer et al. 1992): 

n 

s(t) = L dm (t) (9) 
m=O 

where dm stands for a signal within a certain frequency range m that is preselected. The variation of m shifts 

across the frequency bands that is of interest from Oto n. Essentially, the wavelet transform processes the 

road profile series repeatedly at various resolutions to transform the road profile into different frequency 

bands. The design of the wavelet analysis procedure is such that it identifies both the features at the large 

and small scales. 

3.2. Wavelet decomposition of vehicle responses 

Sensitivity analysis in the authors' previous study (Zhang, Sun et al. 2018) indicates that the 

relationship between the vehicle responses, that is the sprung mass acceleration as the un-sprung mass 

acceleration au and the vehicle speed v can be expressed with an exponential function wherein the power 

index denotes the contribution from the vehicle speed. Therefore, the present study minimizes the influence 

of the vehicle speed by dividing the acceleration to the average of the regressed powers, that is 0.7359 and 

0.7669 for as and au, respectively, which generates the normalized vehicle accelerations, a~ and a~ as shown 

in Eqns. (10) and (11). 
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(10) 

(11) 

The MATLAB Wavelet Toolbox (Misiti, Misiti et al. 2004) is used to apply wavelet decomposition 

to both the road profile and the vehicle responses. Application of the WT requires using the vehicle speed 

to transform the road roughness data collected in the spatial domain to the temporal domain. The authors 

select the wavelet function DB3 from the Daubechies' wavelet family because it is the most widely used 

wavelet function to analyze road roughness and vehicle dynamic responses. Figure 3 plots the shape of the 

DB3 wavelet function. 

1.5 
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] 
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i -0.5 

-1 

-1.5 ~--~--~--~--~--~ 
0 1 2 3 4 

Wavelet parameter t 
Figure 3. Daubechies wavelet function DB3 

5 

The discrete wavelet transform (DWT) produces a sparse representation of the natural signals 

avoiding the redundancy in the continuous wavelet transform (CWT). In DWT, the original signal s(t) 

represents the measured road roughness data or vehicle inertial responses, and t now denotes time. A 

mathematical expression of s(t) is the sum of the wavelet decomposed components such that: 
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s(t) = d1 (t) + dz (t) + ... + dn (t) + an (t), subject to 2n ~ N (12) 

where d;(t), for i = 0,1,2, . .. ,n is the sub-band signal corresponding to the high frequency sub-bands 

selected (detail), an(t) corresponds to the low frequency sub-band at the nth level (approximation), and n is 

the highest level of wavelet decomposition that is subject to the condition that 2n ~ N where N is total 

number of data points (Addison 2017). A trial analysis in this present study indicates that a five-level 

wavelet decomposition provides sufficient details for the road roughness and vehicle inertial response 

analysis. At a sampling rate of 222 Hz, the frequency ranges of d1 , dz, d3 , d4 , d5 and a5 are 56-111, 28-

56, 14-28, 7-14, 3-7, and 0-3 Hz, respectively. The frequency ranges except that of a5 have a upper limit 

equal to two times the lower frequency limit, which is the result of wavelet decomposition using the dyadic 

scales and positions (Misiti, Misiti et al. 2004, Addison 2017). Figure 4 illustrates the structure of the five

level wavelet decomposition. 

Figure 4. Five-level wavelet decomposition 

The DB3 wavelet function decomposed to the fifth level the road profile generated at 

S~ (K0) = 3.2 x 10-s m3/cycle. Figure 5 illustrates the original profile (s) and the decomposed components 

(d1-d5 and a5) . Most of the roughness signal's energy (96.7%) is concentrated in the approximation 

component a5 which resembles the original profiles after denoising. Each of the high frequency components 

(d1-d5) occupy much less energy than a5• Figure 6 shows the wavelet decomposition of the normalized 
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acceleration of a quarter car's sprung mass a~ under the excitation of the roughness profile generated at 

S~ (K0) = 3.2 x 10-s m3/cycle. The travelling speed is 80 km/h. Differing from the frequency components of 

the roughness signal, a considerable portion of energy lies in the 4th and 5th level details of the sprung mass 

acceleration. Specifically, 26.3% and 14.3% of the energy is contained in d4 and d5, respectively. The level 

in a5 contains most (50.8%) of the signal's energy. Section 4 will use the frequency components of the 

sprung mass acceleration from the wavelet analysis and their combinations for road profile reconstruction. 
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Figure 5. Five-level wavelet analysis ofroughness generated at S~ (K0) = 3.2 x 10-5 m3/cycle 
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Figure 6. Five-level wavelet analysis of a~ at S~ (K0 ) = 3.2 x 10-5 m3/cycle 

4. Road Profile Reconstruction 

4.1. NARX neural network 

Artificial neural networks (ANN) consist of simple elements (neurons) that operate in parallel. 

Researchers widely use the ANN to model nonlinear dynamic system due to their adaptability and ready 

availability (Wong and Worden 2007). In this paper, the authors describe the selection and training of one 

type of ANN to identify the inertial response of a vehicle under the excitation of road surface roughness, 

and subsequently to reconstruct the road surface profile. The profile inputs and the vehicle inertial 

responses are linked in a nonlinear manner (Ngwangwa, Heyns et al. 2010). 
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The nonlinear autoregressive network with exogenous inputs (NARX) is a type of ANN that is 

popular in nonlinear dynamic model simulations (Wong and Worden 2007). The NARX network is a 

recurrent dynamic network that has feedback connections enclosing several layers. Wong and Worden 

(Wong and Worden 2007) indicated that a three-layer multilayer perceptron (MLP) NARX is sufficient to 

perform an input-output mapping for any continuous function. The MLP network takes the system input 

u(t - i) and the past output values ;r (t - i) as the input for computing the current output values. The 

operating principle of a NARX network is expressed (Demuth and Beale 2009) as: 

tr(t) = g(u(t- nu), ... ,u(t-1),u(t),t,(t- nJ, ... ,t,(t-1)). (13) 

The function g() is the nonlinear function of the input-output relationship MLP mapping. The function 

u(t) is a vector containing the network input sequences that can be the vehicle sprung mass acceleration 

or its wavelet decomposed components. The function ;r (t) is the network target, which this analysis 

specifies as the profile elevation at time t . The parameters nu and nz are the maximum delays of input and 

output, respectively. 

Figure 7 illustrates the proposed framework using the NARX network to reconstruct the road 

elevation profile. The present study uses the adapted series-parallel architecture to reduce the computational 

cost. The series-parallel architecture does not have the feedback loop that increases the computation efforts 

and applies a static backpropagation method to adjust the model weight parameters. Training and 

implementation of the network assumes a stable vehicle-road system with bounded inputs and outputs 

within the variable model parameters. A Levenberg-Marquardt algorithm trains the initiated network by 

updating the model weights as follows (Demuth and Beale 2009): 
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(14) 

where w new is the vector of new weights in the next round, wold is the vector of current weights, I is the 

identity matrix, E(w 01d) is an error vector of the current point, .J is a Jacobian matrix consisting of the 

derivatives of the error vector E( wold) with respect to the parameters, and ;i is a parameter governing the 

step size of iteration. The method minimizes the error vector E( wold) during the network training. The 

authors select the Levenberg-Marquardt algorithm for the network training due to its efficiency in function 

approximation and high computational efficiency by avoiding the evaluation of the Hessian matrix that is 

much more computationally expensive (Demuth and Beale 2009) . 

. -------------------------------------
Dynamic Model 

Excitations: Vehicle-road inte1·action model: 
( 

5-level wav et transfo1·m using DB3: --J\r-.---i a~ __ _, Normalization 

------------------------------~ 
r-

Inputs: 
( ( t) as the network target 

u(t)=m 

onlinear Autoregressive etwork with Exogenous Inputs (NARX) 

Figure 7. A series-parallel architecture of the NARX model used for road surface profile reconstruction 

4.2. Road Profile Reconstruction 

This subsection demonstrates the proposed methodology introduced in Section 4.1 for road profile 

reconstruction at different roughness levels. Figure 8 illustrates the architecture of the NARX network used 

for road profile reconstruction where x(t) , y(t) denote the input and the prediction. The figure shows that 
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the network has a hidden layer of 10 neurons and an output layer composed of one neuron. The optimization 

with a large number of trial analysis determined that the number of delays should be four. 

The network used applies the embedded training function trainbr in MATLAB to update the model 

parameters using the Levenberg-Marquardt algorithm described via Eqn. (14). The Levenberg-Marquardt 

algorithm optimizes the generalization of the network by minimizing the combined squared errors and 

weights of the model (Bishop 1995, Demuth and Beale 2009). 

x(t) hidden 

10 

Figure 8. The architecture of the NARX network for road profile reconstruction. Modified based on 
(Demuth and Beale 2009). 

The road section used in this study has a length of 1000 m. The authors generated one hundred road 

roughness profiles for each of the roughness categories listed in Table 1, and simulated the quarter car 

model to obtain the corresponding IRI values. These profiles, 600 in total, are inputs to the NARX network 

for training, validation, and testing with a 10-fold cross validation. 

Figure 9(a) illustrates the results of profile reconstruction using the sprung mass acceleration a~ 

from profile roughness generated at S~ (K0) = 3.2 x 10-5 m3/cycle. Figure 9(b) shows more details in an 

amplified section of the plot. The plot "target" is the generated roughness value at a specific location, and 

"output" is the reconstructed roughness using the NARX network. A comparison between the "target" and 

the "output" indicates a high quality of road profile reconstruction using a~ as the input. However, the 

amplified plot of Figure 9(b) illustrates deviations in the local fluctuations. This result indicates that road 

profile reconstruction using a~ as the input is limited because the reproduction lacks local details that may 

indicate defects such as rutting, cracking, and potholes. 
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(a) Comparison between the target and the reconstructed road profile 
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(b) 100-meter amplification 

Figure 9. Results of profile reconstruction using s( a~) at S~ (K0 ) = 3.2 x 10-5 m3/cycle 

Figure lO(a) and l0(b) show the profile reconstruction using the six signal components d 1 ~ d5 

and a5 obtained from the five-level wavelet analysis. In the training process, the NARX network selects 

and combines features from the six wavelet signals of the different frequency bands that contribute the most 

towards minimizing the error at each location of the profile reconstruction. As a result, the reconstructed 

profile using d1 ~ d5 and a5 not only recovers well the overall trend of the target profile but captures the 

local details better than that of the reconstruction using only a~. A contrast of the output shown in Figure 

1 0(b) with that shown in Figure 9(b) indicates a better agreement of the positions and amplitudes of the 

local curvatures with the target profile. Figure ll(a) and (b) illustrate the distribution of the profile 

reconstruction errors using a~ and its wavelet decomposition components d1 ~ d5 and a5 , respectively. 

Both error series apparently follow normal distributions as expected. The mean value is close to zero 
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(7.98x10-5 mm and-7.83x104 mm, respectively). Table 2 summarizes their statistics. A 26% smaller value 

of root mean square quantifies the smaller deviation of the reconstructed profile from zero error, and thus 

denotes a better quality of profile reconstruction using the combined wavelet decomposition components 

d1 ~ d5 and a5 than using a~ . 

Using step functions to represent sharp road bumps serves as another illustration of the 

reconstruction effectiveness. Figure 12 (a) shows the reconstruction quality using only a~ whereas Figure 

12 (b) shows the reconstruction quality using d 1 ~ d5 and a5 • Apparently, the latter results diverge less 

from the target profile. In summary, the application of an ANN to a wavelet decomposition of the vehicle 

inertial responses will further improve the reconstruction quality of the elevation profile in representing 

local road surface defects. 
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Table 2. Statistics of profile reconstruction errors at S~ (K0) = 3.2 x 10-5 m3/cycle 

Signal component used for 
profile reconstruction 

Mean value, mm Standard deviation, mm Root mean square, mm 
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As shown in Figure 13, the authors developed a metric to compare the results of road profile 

reconstruction using different inputs. Table 3 lists the roughness levels labeled on the left side of the figure. 

The "max error" denotes the maximum profile difference divided by the peak value of the target profile; 

the SSE in percentage is the ratio of the sum of squares of errors (SSE) divided by the sum of squares of 

regression (SSR) plus SSE, that is SSE/(SSE+SSR); the IRl error is the relative difference ofIRl. 

Table 3. PSDs of roughness used for profile reconstruction 

S~(K0 ) 1 2x l0-6 m3/cycle 

8xl0-6 m3/cycle 
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S~(Ko)3 3.2x10-5 m3/cycle 

S~(Ko)4 1.28xl04 m3/cycle 

S~(Ko)s 5.12xl04 m3/cycle 

S~(Ko)6 2.048x 10-3 m3/cycle 

Figure 13 shows that for each of the roughness levels from SlK0 ) 1 to S~(K0 ) 6 the profile 

reconstruction using the combined input of d1 ~ ds and as provides the best performance because it has 

the lowest error evaluation indices (max error, SSE, and IR.I error.) The second best performance is achieved 

by profile reconstruction using s (a~), which performs better than that using any single wavelength signal 

component ( d1 , d2 , ••• , d5 or as . ) Figure 13 further indicates that a single wavelet component of the vehicle 

response cannot represent well all the information about the road roughness contained within the response, 

and thus is insufficient for reconstructing the road profile. In addition, a comparison among the sub-figures 

in Figure 13 indicates that the quality of profile reconstruction does not vary significantly between the 

roughness levels. 

Figure 14 evaluates the profile reconstruction quality using a comprehensive evaluation index, the 

integrated error (IE), which is derived by scaling the three evaluation indices shown in Figure 13 to the 

same scale based on their average values, that is then summed and normalized to the range [O 1 ]. The results 

agree with the previous evaluation in that the profile reconstruction, using d1 ~ ds and as , provides the 

best performance at all roughness levels. 
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5. Conclusions and Future Work 

The present study proposes a method of road profile reconstruction using wavelet decomposition 

of probe vehicle inertial responses and artificial neural network. The proposed method is implemented 

through numerical simulation using a quarter vehicle travelling across generated road section of different 

roughness levels from very good to very poor condition. The simulated vehicle response is normalized to 

the travelling speed using the results of sensitivity analysis and statistical regression. This study uses the 

wavelet function DB3 from the Daubechies family to decompose the road profile and vehicle acceleration 

to the fifth level, which shows that the signal energy concentration differs across the frequency bands. The 

selected neural network is a nonlinear autoregressive network with exogenous inputs (NARX) that captures 

the behavior of the nonlinear dynamic vehicle-road interaction system. The authors demonstrated the 

efficiency of the proposed methodology for various roughness levels. Comparison among the profiles 

reconstructed using different wavelet signal components indicates that the combined components from a 

wavelet decomposition of the vehicle responses best reproduces the roughness details of the original 

elevation profile, relative to using the dynamic inertial responses alone. A comprehensive and objective 

evaluation metric demonstrates the superiority of using this approach to reconstruct the road elevation 

profile from connected vehicle data. 

Future work will include a parametric study on the influence from the vehicle properties, 

measurement accuracy, noise level, sampling rate and resolution. It will also include a practical 

implementation of the proposed methodology with field experiments across real road sections. 
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