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ABSTRACT 

The central core of many biologically active natural products and pharmaceuticals contain 

N-heterocycles, the installation of simple/complex functional groups using C-H/N-H 

functionalization methodologies has the potential to dramatically increase the efficiency of 

synthesis with respect to resources, time and overall steps to key intermediate/products. Transition 

metal-catalyzed functionalization of N-heterocycles proved as a powerful tool for the construction 

of C-C and C-heteroatom bonds. The work in this dissertation describes the development of 

palladium catalyzed allylation, and the transition metal catalyzed C-H activation for selective 

functionalization of electron deficient N-heterocycles.  

Chapter 1 A thorough study highlighting the important developments made in transition 

metal catalyzed approaches for C-C and C-X bond forming reactions is discussed with a focus on 

allylation, directed indole C-2 substitution and vinylic C-H activation. 

Chapter 2 describes the development of a selective Tsuji-Trost allylation reaction of 

electron deficient heterocycles. The key issues addressed in this chapter include an extensive 

investigation of mechanistic details, and factors influencing selectivity control of tautomerizable 

heteroarenes to form linear N-allylated products.  

Chapter 3 describes the oxidative allylic C-H amidation reaction of N-heterocycles, an 

efficient and atom economic variant of traditional allylation. A simple protocol avoiding the use 

of expensive catalysts/ ligands or additives for allylation of N-heterocycles is demonstrated. 

Mechanistic investigation indicated the importance of Pd(II)/DMSO catalytic system for the allylic 

C-H activation, allowing for the efficient synthesis of -allylpalladium chloride catalysts.  

Chapter 4 describes a detailed investigation on the development of an unusual -bond 

directed indole C-2 amidation. A mechanism-based reaction optimization, and comparison of 
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effectiveness of both Pd and Ni catalyst system indicated the effectiveness of NiCl2 for the -bond 

directed indole C-2 substitution. Mechanistic studies also shed light on the dual role of solvent 

system (DCE: DMSO), acting both as ligand (DMSO) and as an oxidant (DCE) for the 

regeneration of active Ni(II) catalyst. 

Chapter 5 describes the development of a ruthenium catalyst system for the synthesis of 

fused quinazolinones via vinylic C-H/amide N-H bond activation/alkyne annulation. This chapter 

also describes the utilization of quinazoline core as a masked pyridine template for the synthesis 

highly substituted pyridines via amide alcoholysis.  
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CHAPTER 1. TRANSITION METAL CATALYZED FUNCTIONALIZATION OF 

TAUTOMERIZABLE N-HETEROCYCLES 

1.1. Introduction 

Heterocycles make-up over half of all known organic compounds.1 Quinazoline-4(3H)-

ones represent a unique class of heterocycles that has attracted considerable attention due to their 

wide occurrence in natural products and biologically active compounds (Figure 1).2–5 They exhibit 

a wide range of biological and pharmacological activities including but not limited to 

antibacterial,6 antimalarial,7 antidiabetic,8,9 antiallergic,2 and antifungal10 properties. The selective 

functionalization of these heteroarenes can potentially generate lead molecules for the early drug 

development.  

 

Figure 1.1: Selected biologically active quinazolinones 
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Given this reality, it is of no surprise that there is an immense interest among synthetic 

chemists and significant efforts have been put forth in the development of new and efficient 

reaction methodologies towards their structural elaboration.11–16 The development of new 

methodology in synthetic organic chemistry has the potential to address many crucial challenges 

involved in terms of reactivity and selectivity. In general, functionalization or synthetic 

modifications can be categorized mainly in to three classes (Scheme 1.1).  

1. Classical approaches of functional group interconversion  

2. Cross-coupling reaction 

3. C-H bond functionalization 

Since the inception of organic chemistry, classical approaches to functionalize organic 

compounds consisted of transforming pre-existing functional groups into the desired chemical 

functions. These approaches tend to solve many regio- and/or chemoselectivity issues by using the 

impressive catalogue of organic reactions and a well-designed synthetic route. However, several 

transformations are generally needed for the synthesis of pre-functionalized starting materials. 

This has prompted researchers to investigate more atom and step economical alternatives such as 

transition metal catalyzed cross-coupling reactions and further advancement with C-H activation 

reactions (Scheme 1.1).17–19 

 

 

 

 

 

Scheme 1.1: Overview of different approaches to functionalize organic compounds 
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 Since, the prime focus of this thesis is built upon the functionalization of N-heterocycles 

using transition metal catalysts, we will focus our discussion on transition metal catalysts and their 

utilization in cross-coupling reactions.  Although there has been a vast literature to selectively 

functionalize these heterocycles, for conceptual simplicity and in line with the context of work 

done, only four different approaches (vide infra) with which N-heterocycle functionalization have 

been achieved will be discussed.  

1. Palladium catalyzed allylic substitution/amination by leaving group approach 

2. Palladium catalyzed allylic substitution/amination by C-H oxidation 

3. Transition metal catalyzed indole C-2 amidation 

4. Ruthenium catalyzed directed C-H activation/annulation 

1.2. Transition metal catalysis for functionalization 

Over the past few decades, transition metal catalysis has witnessed a rapid and 

comprehensive development. Especially in 1972, an important discovery in the area of cross-

coupling was reported, using organic halides and Grignard reagents, for generating C-C bonds by 

using nickel or palladium-based catalysts, which is named Tamao-Kumada-Corriu coupling 

reaction.20,21 Subsequently, a myriad development of this powerful synthetic transformation such 

as Sonagashira coupling,22 Negishi coupling,23 Stille coupling,24 Suzuki-Miyaura coupling,25 

Tsuji-Trost allylation26,27 has been witnessed during the last decades. Indeed, use of transition 

metal complexes allowed new disconnections for synthetic chemists to access molecular 

complexity in a rapid, convenient and selective manner. Notably, palladium-catalyzed cross-

coupling emerged as a powerful tool for carbon-carbon or carbon-heteroatom bond formation. Due 

to their significant contribution on homogenous metal catalyzed cross coupling reactions in 

organic synthesis, Richard F. Heck, Ei-ichi Negishi and Akira Suzuki were awarded the 2010 
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Nobel Prize.28 Although the foundation of these cross-coupling reactions was laid in 1960’s, 

constant evolving of scope, selectivity and predictability of the products have made them the most 

widely used reactions both in academia and industry. A simplified mechanism for Pd-catalyzed 

cross-coupling reactions are shown in Scheme 1.2. Traditionally, cross-coupling reactions require 

preoxidized coupling partners, undergoing oxidative addition in the first step of the catalytic cycle 

forming a Pd(II) intermediate.17 

 

Scheme 1.2: General catalytic cycle for Pd-catalyzed cross-coupling reactions 

  The first step, oxidative addition is the case for most of the transition metal catalyzed C-

C or C-X cross coupling reactions. Although mechanistically different from traditional cross 

coupling reactions, Tsuji-Trost reaction or palladium catalyzed allylation, is also one of this type 

of reactions which utilizes oxidized substrates for the formation of C-C and C-X bonds with even 

introduction of chirality.29 This palladium catalyzed cross coupling of allyl electrophiles (most 

commonly allyl acetates, halides, and carbonates) with nucleophiles (-dicarbonyls, enamines, and 
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enolates) has been widely utilized in the literature for various selective functionalizations (Scheme 

1.3). 

 

Scheme 1.3: Convergent transformations from allylic substitution  

1.3. Tsuji-Trost allylation/ palladium catalyzed allylic substitution 

1.3.1. Early discovery/ C-C bond formation  

Wacker process to produce acetaldehyde by the oxidation of ethylene using PdCl2 and 

CuCl2 in aqueous HCl is the first example of palladium catalyzed reaction under homogenous 

conditions.30  Tsuji’s understanding and extension of the Wacker process led to the discovery of 

one of the widely used palladium catalyzed C-C and C-X bond forming reaction.31 The reaction 

mechanism for the Wacker process can be explained in two steps, first step being the formation of 

oxypalladium intermediate 1.01 via a nucleophilic attack of H2O on ethylene complexed with 

palladium. And, the second step follows by elimination of Pd(0) and a hydride shift forming 

carbon-oxygen bond to give acetaldehyde (Scheme 1.4). Tsuji envisioned that since, the reaction 

occurs by nucleophilic attack on ethylene complexed with palladium, any suitable nucleophile can 

potentially attack on this palladium intermediate to generate new C-C and C-X bonds.31 
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Scheme 1.4: Mechanism of acetaldehyde formation by Wacker process 

In fact, his hypothesis was found successful when soft nucleophiles such as malonate or 

acetoacetate were employed under similar conditions to form C-C bonds. By increasing the 

olefinic chain length by one carbon from ethylene to allyl group Tsuji and coworkers were able to 

isolate a stable -allylchloride complex (1.02). This stochiometric complex was then coupled with 

sodium salt of diethyl malonate (1.03) to form carbon-carbon bond with precipitation of black Pd 

metal representing the first example of Tsuji-Trost allylation reaction. For the initial few years, the 

reaction remained stochiometric in palladium whereupon catalytic version was discovered and 

extensively employed by Tsuji, Trost and many others (Scheme 1.4).32 The key to the development 

of catalytic conditions was the utilization of oxidized allyl reagents with a leaving group as the 

reacting partner rather than olefin.33 

 

Scheme 1.4: Development of the Tsuji-Trost allylation 

Since the development of catalytic conditions, it is one of the highly utilized and useful 

reaction in organic synthesis, as it not only forms a C-C and/or C-X bond but also leaves a pendent 
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olefin functionality. The olefin (C=C) functional group is an extremely versatile functional group 

capable of undergoing a multitude of synthetic transformations. Scheme 1.5 depicts some of the 

important transformations, which can be achieved by simple modification to the olefinic 

functionality. This diverse reactivity makes their incorporation in a given synthetic intermediate 

desirable. Furthermore, olefins are often considered as “latent” functional groups as their reactivity 

requires specific conditions or catalysts for activation, which are highly beneficial when 

performing multi-step synthesis.32  

 

Scheme 1.5: Inherent use of pendent olefin of the allyl functionality 

1.3.2. Mechanistic understanding of allylic alkylation 

1.3.2.1. Catalytic cycle 

The allylic alkylation reaction has been the object of numerous investigations, from the 

scope to the mechanism of the catalytic cycle. The generally accepted mechanism of palladium-

catalyzed allylic substitution is shown in Scheme 1.6. An allylic substrate initially binds to a Pd(0) 

active catalyst  forming a η2 -complex, followed by an oxidative addition leading to an intermediate 

(η3 -allyl)Pd(II) complex with the leaving group as counterion. Structurally, the π-allyl palladium 
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intermediate is a square planar 16-electron complex consisting of ligands and a coordinated allyl 

unit. Different possible configurations of the allyl ligand are possible when the allyl moiety is 

substituted: the syn,syn and syn,anti and anti,anti (based on the substituent at C2 position). The π-

allyl intermediate resulting from an E-olefin electrophile typically prefers the syn,syn 

configuration, whereas in a cyclic system, the π-allyl is locked in the anti,anti configuration. 

Nucleophile then attacks at C1 or C3 of allyl termini generating an unstable Pd(0)-olefin complex 

which readily releases the final product regenerating Pd(0) for another catalytic cycle. 27,34 

 

Scheme 1.6: Catalytic cycle in Palladium catalyzed allylic alkylation 

The oxidative addition of allyl electrophiles to Pd proceed with inversion, involving -

complexation with palladium followed by intramolecular nucleophilic displacement of a leaving 

group. It is now well understood that after -complexation Tsuji-Trost reaction proceed via two 

mechanistic pathways depending on the mode of attack of nucleophile on -allylpalladium 

intermediate. Soft or stabilized nucleophiles attack directly on the olefinic carbon of -
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allylpalladium intermediate, where as hard or unstabilized nucleophiles coordinate to palladium 

center followed by transfer to the allylic carbon.35  

1.3.2.2. Regioselectivity in Tsuji-Trost allylation 

When the transiently formed π-allyl Pd-complex is unsymmetrically substituted the issue 

of site-selectivity comes into play. In the case of unsymmetrical substrates such as 1.04 or 1.05, 

the intermediate (3 -allyl)palladium(II) complex formed after ionization can be attacked by 

nucleophiles at both termini of the allylic system, posing the problem of regioselectivity. It is 

generally accepted that in Pd-catalyzed allylic alkylation, the regioselectivity is influenced by 

opposing steric and electronic effects. Steric factors will direct the nucleophilic attack to the less 

hindered allylic terminus to minimize steric interactions with the nucleophile, yielding a linear 

product, rather than the branched isomer (Scheme 1.7). By contrast, electronic factors tend to favor 

the attack at the more electropositive carbon, usually the more substituted terminus.29,36  

 

Scheme 1.7: Regiochemical outcome in Tsuji-Trost reaction 

In general, it is difficult to rationalize the regiochemical outcome of nucleophilic attack on 

allyl complexes since steric effects are often superimposed with electronic effects. There are 

several other factors also that influence the regioselectivity of the reaction such as steric and 

electronic effects of the nucleophiles, nature of the metal, the ligands, solvent, the nature of the 

leaving group, and the presence of additives. Moreover, regioselectivity is also known to be 
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sensitive to the regiochemical memory of the position of the leaving group, the preferred 

configuration and to dynamic exchange in the (η3 - allyl)Pd intermediate.35 

1.3.3. Allyl alcohols in the Tsuji-Trost reaction 

The leaving group ability of various allylic compounds has also been extensively studied, 

and a general reactivity scale was established. Typically, halogens found to be best leaving groups, 

followed by carbonates, acetates, and finally alcohols. The utilization of allylic alcohols directly 

as allylating partner in the Tsuji–Trost type coupling manifolds would be beneficial, because they 

are readily available, are not as toxic as their halogenated counterparts and are often trivial to 

synthesize. Furthermore, the formation of a new C–C bond via the condensation of an alcohol with 

a C–H bond is topologically obvious. Additionally, the generation of water as the only byproduct 

renders this reaction step and atom economic (Scheme 1.8). 

 

Scheme 1.8: Allylic alcohols in Tsuji-Trost reaction 

 Because of the strong C-O bond, and ability of hydroxide as a poor leaving group the 

oxidative addition of allyl alcohols to palladium catalyst is difficult. As a result, a variety of 

strategies have been employed to activate allyl alcohols towards cross-coupling reaction. Most 

common methods to activate alcohols include but not limited to the use of Lewis acids37–39 or 

Bronsted acids40–42 and bases as activators or in situ generation of carbonates via use of CO2 as a 

reversible activator. Although, these activators have been widely used in the literature, they still 

suffer with issues like use of stoichiometric amounts in case of Lewis acids, the scope of reaction 

is limited to weakly basic nucleophiles in case of Bronsted acids and bases and use of specialized 

reaction conditions for using CO2 as an activator. To avoid the use of these specialized reaction 

conditions we have developed a simple and efficient palladium catalyzed allylation of N-
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heterocycles using allyl alcohol in renewable dimethyl carbonate as the solvent. Chapter 2 provides 

a detailed discussion on our approach for the development of this green protocol and a conclusive 

mechanistic detail for the selective N-allylation of tautomerizable heterocycles. 

1.4. Palladium catalyzed allylic C-H activation  

Allylic C-H alkylation reaction, an exemplary of the activating group category of C-H 

activation has been known for more than 50 years; it was initially developed as a two-step process, 

stoichiometric in palladium, by Tsuji and Trost in the 1960s (Scheme 1.9). They reported an initial 

C-H cleavage, effected by a palladium(II) salt generating -allylpalladium intermediate.43 The -

allylpalladium intermediate was then subsequently attacked by a nucleophile, forming an allylic 

C-C bond.33 

 

Scheme 1.9: Stochiometric allylic C-H alkylation 

Despite a strong precedence in stoichiometric reactions, it was not until last decade, there 

was a considerable progress in the development of catalytic reactions. This is in part due to the 

ease of utilization of allyl substrates with different leaving groups, such as acetates, halides, 

carbonates, and phosphonates in allylic substitution reaction, which is famously called Tsuji-Trost 

reaction (Scheme 1.10).27,33 The reaction is very well explored and tolerated a wide range of 

nucleophiles, such as -carbonyls, enamines, and enolates etc. The success of this reaction is 

attributed to the fact that it generally displays a high level of chemo-, and regio- and 
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stereoselectivity.44 However, despite the overwhelming success of the classical Tsuji-Trost 

reaction, the atom efficiency of the overall transformation is hampered by the necessity of a leaving 

group.45 

 

Scheme 1.10: Palladium catalyzed allylation or classical Tsuji-Trost allylation 

 To increase the atom efficiency, and to make use of the inherent reactivity of allylic C-H 

bonds there has been a considerable research over the past few decades to develop a catalytic 

version of the early palladium catalyzed allylation reactions. The fundamental difference between 

both the reactions is the nature of active catalyst, while the Pd catalyst is in zero (0) oxidation state 

is active catalyst in traditional allylation, Pd catalysts in +2 oxidation state is active catalyst in 

allylic C-H reactions. Re-oxidation of Pd(0) generated in the latter case to Pd(II) is essential for 

the development of catalytic reaction (Scheme 1.11).31  
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Scheme 1.11: Mechanistic differences between Tsuji-Trost allylation and allylic C-H activation 

1.4.1. Allylic acetoxylation: development of catalytic allylic C-H activation reactions 

After initial studies on the stochiometric palladium allylic oxidation reactions, Tsuji46 and 

Mcmurray47 independently revealed that using a stochiometric oxidant, the Pd(0) catalyst could be 

reoxidized to the active Pd(II) catalyst (Scheme 1.12) allowing the reaction proceed in catalytic 

palladium salts. Although a groundbreaking discovery, there has been not much follow up 

literature on the utilization of oxidants for catalytic allylic C-H oxidations. 
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Scheme 1.12: Benzoquinone (BQ) role in regeneration of active Pd(II) catalyst  

More recently, reports from White and coworkers led to a surge in development of catalytic 

systems for the selective allylic oxidation of terminal olefins. They reported a Pd(OAc)2/BQ 

catalytic system for the selective formation of allylic acetates employing a DMSO-acetic acid 

solvent system.48 In their initial studies they found the importance of sulfoxide ligation for the 

selective formation allylic products compared to Wacker products (Scheme 1.13). White group 

has also shown that depending on the ligation of sulfoxide ligands, mono vs bis ligation, 

regioselectivity of acetoxylation can be switched from linear to branched isomers respectively.  

 

Scheme 1.13: Effect of sulfoxide ligands in Pd-catalyzed allylic oxidation 
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1.4.2. Palladium catalyzed allylic C-H oxidative C-C bond formation 

Although there has been a tremendous development in allylic C-H acetoxylation48–52 and 

esterification53 reactions, not until recently allylic C-H alkylation reactions were developed. The 

fundamental challenge of combining three dissimilar steps-electrophilic C-H cleavage, 

nucleophilic functionalization, and oxidation regeneration of Pd(II)- in the reaction medium and 

identifying conditions where each of these steps does not interfere with each other’s led to a gap 

in the literature for the development of catalytic allylic C-H alkylation reactions. In 2008, White 

and coworkers,54 Shi and coworkers,55 after extensive studies independently reported a similar 

sulfoxide ligated palladium catalyst for the first allylic C-H oxidative C-C bond forming reaction 

between olefins and carbon nucleophiles (Scheme 1.14). White and coworkers developed an 

intermolecular allylic C-H alkylation using stabilized carbon nucleophiles. During their 

investigation they found that addition of benzoquinone inhibits the reaction rather than 

regeneration of Pd(II). Careful control studies indicated that benzoquinone is incompatible with 

carbon nucleophiles, oxidizing them directly in a Michael reaction,56 leading them to identify a 

more sterically hindered 2,6-dimethylbenzoquinone as an oxidant, which increased the overall 

research on allylic C-H oxidation reactions.54  In a seminal work, Shi and coworkers reported both 

intra and intermolecular allylic C-H alkylation reactions using similar bissulfoxide catalyst. The 

success of their reaction was realized by the utilization of both BQ and O2 gas balloon as the 

oxidants. Since then, there has been a great interest among the researchers for the development of 

allylic C-H alkylation reactions with various carbon centered nucleophiles.57 More recently 

asymmetric allylic C-H alkylation has also been realized by Trost and co-workers by a specially 

designed ligand systems.58–61 Since this thesis is focused on allylic C-H amination further excellent 

studies on allylic C-H alkylations will not be discussed. The discussion and the early development 
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of allylic C-H amination will be focused in chapter 3, followed by our approach and results in the 

development of selective N-allylation via an efficient Pd(II)-DMSO system.  

 
Scheme 1.14: Palladium catalyzed allylic C-H oxidative alkylation reaction  

1.5. Directed indole C-2 functionalization 

1.5.1. C-H activation for indole C-2 functionalization 

The C-2 position of indole is the subject of numerous functionalizations, one of the reason 

being the site is most prone to metalation. Formation of C-C and C-X bonds have been studied 

extensively, and to date aryl, alkenyl, alkynyl, alkyl groups, cyanation and amine groups are 

successfully introduced at C-2 position.62 For most of these reactions, directing groups on N-1 was 

critical to achieve high selectivity. A variety of auxiliaries such as acetyl derivatives, phosphonate, 

sulfonyl, pyridine, and pyrimidine have been employed as directing groups, where the 2-

pyrimidine group has emerged as one of the most versatile and robust auxiliary for the selective 

C-2 carbon-carbon bond formation (Scheme 1.15).  
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Scheme 1.15: Directing groups employed for Indole C-2 functionalization 

1.5.2. Transition metal catalyzed directed dehydrogentative cross-coupling for C-C bond 

formation at indole C-2 position 

1.5.2.1. Directing group on N-1 of indole 

Carbon-carbon bond forming reactions constitute a major part in organic synthesis and is 

perhaps the most important transformation in organic chemistry. Many traditional approaches for 

the synthesis of C-2 substituted indoles involved cross-coupling of preoxidized indole substrate, 

which often require multistep synthesis. On the other hand, last few decades have seen utilization 

of various transition metals for the effective functionalization of indole cross-coupling reactions 

involving C-H bond activation. One of the earliest report by Fagnou and coworkers highlighted 

the importance of pivaloyl directing group in dehydrogentative cross-coupling for the C-2 

arylation of indole (Scheme 1.16) albeit utilizing 60 equiv of benzene as the reacting partner.63  

 

Scheme 1.16: Directing group strategy for indole C-2 arylation 

Since then, there has been a tremendous progress on the dehydrogenative cross-coupling 

of indole with arenes, aryl halides and pseudo halides for selective C-2 and C-3 functionalization. 

In 2012, a seminal report from Miura et al 64 and You et al 65 reported the first dehydrogenative 

cross-coupling of indole with 1,3-azoles and pyridine N-oxide respectively with good yields albeit 
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at higher temperature (Scheme 1.17). Both methods have utilized pyrimidine substitution on indole 

as the directing group for selective C-2 arylation reactions. 

 

Scheme 1.17: Directed C(heteroatom)-C(heteroatom) bond formation 

With the success of directed cross dehydrogenative couplings of indoles with arene 

compounds, similar strategy was also employed for alkenylation and alkylation reactions. Both 

alkynes and alkenes were used as coupling partners for the synthesis of 2-alkenylated and 2-

alkylated indoles. Carretero and coworkers reported the use of 2-pyridylsulfonyl auxiliary for the 

C-2 alkenylation at indole C-2 with an olefin coupling partner to yield corresponding 2-

alkenylindoles with a high functional group tolerance in excellent yields (Scheme 1.18).66  

 

Scheme 1.18: Directing group strategy for indole C-2 alkenylation 
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  Sha and co-workers developed an alternative rhodium catalyzed approach, utilizing a non-

N-heterocyclic directing group, namely o-hydroxy and o-amino aryls for oxidative alkenylation 

employing -unsaturated carbonyl compounds (Scheme 1.19).67 

 

Scheme 1.19: o-Hydroxy- or o-aminoaryl-directed alkenylation. 

 Interestingly, when the carbonyl directing groups (acetyl or benzoyl) were employed along 

with Ir catalysts, -unsaturated carbonyl compounds were successfully coupled with indole to 

form linear or branched alkyl indoles respectively (Scheme 1.20).68 

 

Scheme 1.20: Ir-catalyzed synthesis of 2-alkyl indoles 

1.5.2.2. Directing group on C-3 of indole 

Inspired by the ability of carboxyl and amine groups of tryptophan to direct C-2 

functionalization of indoles with preoxidized substrates, Yoshikai and coworkers utilized an imine 

functionality (PMP = p-methoxyphenyl) on the C-3 position of indole to mediate C-H activation 
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at C-2 position. Subsequent alkylation or alkenylation was carried out in the presence of an iron-

NHC catalyst. Depending on the identity of the coupling partner involved, two distinct products 

were formed. If alkynes were used, 2-alkenyl-3-formyl indoles were formed after acidic workup, 

whereas alkenes furnished 2-alkyl-3-formyl indoles. (Scheme 1.21). Although, directing groups 

on C-3 position can potentially direct C-2 functionalization as effectively as N-1 directing groups, 

there has been not much literature reported for cross-dehydrogenative coupling. During our 

investigation on palladium catalyzed allylic C-H oxidative amidation, we found that allyl group at 

C-3 position was able to direct C-2 amidation. Chapter 4 of this thesis will discuss about directed 

C-2 amination, and our approach to the development and mechanistic details of selective C-2 

functionalization.69,70     

 

Scheme 1.21: Iron-NHC catalyzed C-2 alkenylation and alkylation 

1.6. Ruthenium catalyzed directed C-H activation/annulation 

1.6.1. Initial development/hydroarylation 

 The field of C-H bond activation chemistry emerged in the 1970s; however, Murai and 

coworkers reported the first synthetically useful catalytic functionalization for carbon-carbon bond 

formation in 1993. They have employed aromatic ketone as the directing group for hydroarylation 

of alkenes in the presence of a ruthenium catalyst. It was proposed that carbonyl group of aromatic 

ketone acts as a directing group for C-H activation by ruthenium complexes to form a 5-membered 

hydrometallacycle intermediate. This initial catalytic C-H bond functionalization of aromatic 
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ketone led to the significant development of atom-economical and sustainable processes for C-C 

and C-X bond forming reactions (Scheme 1.22).71  

 

Scheme 1.22: Ruthenium catalyzed Murai hydroarylation 

Murai in the year 1995, reported a carbonyl directed hydroarylation of alkynes with -

tetralones in the presence of ruthenium catalyst. Although the reaction was found to be very 

effective, good stereoselectivity was not achieved. To address the issues of selectivity in 

hydroarylation reactions, base promoted, chelation assisted transition metal catalyzed reactions 

have been developed. Various directing groups such as carbonyl compounds, amides, carbamates, 

sulfoxides, and pyridine-based compounds are employed in the hydroarylation of alkynes (Scheme 

1.23).72,73 

 

Scheme 1.23: Ruthenium catalyzed chelation assisted hydroarylation 
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1.6.2. Annulation reactions with alkynes 

Directed ortho-C-H bond activation usually forms a stable five membered cyclometallated 

intermediate upon deprotonation. This cyclometallated intermediate can undergo a 1,2-insertion 

with alkynes to form a seven-membered metal-alkenyl intermediate. If the reaction is acidic in 

nature, the seven-membered metal complex abstracts the proton forming hydroarylated product, 

where as in basic or oxidative reaction conditions the complex cyclizes to generally form a five or 

six membered ring (Scheme 1.24).73,74 

 

Scheme 1.24: Annulated product formation via ruthenium catalyzed ortho-C-H activation 

With the initial reports from Fagnou and coworkers75 for the annulation reaction to form 

indoles with Rh-catalyst, there has been much progress for the development of annulated products 

via C-H/N-H bond activation. But it was in 2011, Ackerman and coworkers succeeded in inserting 

disubstituted alkynes in to arene C-H bond for the formation of isoquinolone derivatives 

employing a cheaper ruthenium catalyst under oxidative conditions. The regioselective reaction 

involves the functionalization of both ortho-C-H bond of arene and N-H bonds of amide directing 

group forming isoquinolone derivatives at 100 °C (Scheme 1.25). Mechanistic studies suggested 

an irreversible C-H/N-H bond protonation by acetate ligand of Cu(OAc)2 to form a five membered 



 

23 

ruthenacycle. 1,2-insertion of alkynes to ruthenacycle gives a seven-membered ruthenium-alkenyl 

intermediate. Subsequent C-N reductive elimination releases annulated product followed by 

reoxidation of the ruthenium(0) intermediate for the regeneration of the active catalyst (Scheme 

1.25).76 

 

Scheme 1.25: Isoquinolone synthesis via C-H/N-H bond activation under Ru-catalysis 

The same ruthenium catalytic system was also applied to acrylamides to generate 2-

pyridones via vinylic sp2 C-H, amide N-H activation and subsequent annulation with alkynes with 

excellent yields (Scheme 1.26). This methodology is a great improvement from a similar rhodium 

catalytic system as it uses inexpensive ruthenium catalyst, only 1 equiv of Cu(OAc)2·H2O as 

oxidant and lower temperatures. This reaction is also extended to use unsymmetrical arylalkyl and 

dialkyl acetylenes leading to regioselective annulations.77 

 

Scheme 1.26: Ruthenium catalyzed oxidative annulation via C-H/N-H activation  
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 With the literature precedent and increasing interest in the development of annulation 

reactions under ruthenium catalysis, and our ongoing research to synthesize quinazoline based bio 

active molecules we also explored a ruthenium catalyzed (4+2) annulation reaction of styryl 

quinazolinones. Chapter 5 of this thesis will be focused on our approach to the development of 

alkyne annulation reaction via sp2 and sp3 C-H/ amide N-H bond activation. 

1.7. Conclusions and research goals 

While not comprehensive, this review summarizes some of the major developments in 

methods for the allylation and transition metal-catalyzed functionalization of aromatic and 

heteroaromatic C-H bonds. Palladium catalyzed allylation and transition metal catalyzed C–H 

bond functionalization constitutes an exciting class of chemical reactions that is enjoying 

resurgence in the current literature. The direct and selective functionalization of electron-deficient 

heterocycles, most notably tautomerizable heteroarenes, remains a synthetic challenge. This is 

substantiated by the fact that far more accounts of electron rich arenes continue to be reported in 

the literature. Due to the increasing demand for more direct synthetic methods which produce less 

waste and operate under more mild conditions, transition metal catalyzed approaches will surely 

continue to evolve at a rapid pace in the future. Following chapters in this thesis will describe our 

ideas and approach to further the development of effective heterocycle functionalization reactions 

which address some of the unmet challenges in their synthetic methodology. 
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CHAPTER 2. PALLADIUM CATALYZED TSUJI-TROST ALLYLATION OF 

ELECTRON DEFICIENT N-HETEROCYCLES 

2.1. Introduction 

The selective functionalization of heteroaryl systems with multiple reactive centers to 

generate highly functionalized compounds is a significant problem in the early drug development 

process to generate lead molecules.1 Over the years, researchers have developed various strategies 

to selectively functionalize heterocycles to form C-C and C-X bonds. Among numerous developed 

methods, palladium catalyzed allylic substitution (Tsuji-Trost reaction) reaction is one of the 

powerful tool for the construction of C-C and C-X (N, O & S) bonds to obtain structural 

diversity.2,3 The reaction was first reported by Tsuji and coworkers in 1965 using pre-formed (3-

allyl)Pd complexes.2 Thereafter, the reaction was further developed by Trost and coworkers by 

starting from alkenes and additional phosphine ligands.3 Allyl substrates with a wide range of 

leaving groups (acetates, carbonates, halides, phosphonates, carboxylates etc.) can be utilized to 

form -allylpalladium complexes, which can undergo nucleophilic substitution to form C-C/C-X 

bonds (Scheme 2.1).4 A variety of nucleophiles can also be applied in the reaction, such as alkali 

metal enolates or heteroatom nucleophiles, but the most commonly used are soft stabilized carbon 

nucleophiles. 

 

Scheme 2.1: Palladium catalyzed Tsuji-Trost allylation 
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2.2. Mechanism and catalytic cycle 

Mechanistically, the Tsuji-Trost reaction proceeds by coordination of allylic substrate to 

palladium complex forming 2-complex (Scheme 2.2). If the initial catalyst system is a Pd(II) 

complex, then it gets reduced insitu to Pd(0) active catalyst before the coordination to allylic 

substrate. Oxidative addition of allyl electrophiles to palladium catalyst forms a -allylpalladium 

complex with the leaving group as counter ion. The nucleophile, then attacks on the -

allylpalladium complex, yielding a 2-complex between Pd(0) and the newly formed product. In 

the final step, the product is released after dissociation from Pd(0), there by regenerating active 

catalyst for next catalytic cycle.  

 

Scheme 2.2: Catalytic cycle for palladium catalyzed allylic substitution 
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2.2.1. Stereoselectivity in Tsuji-Trost allylation 

After oxidative addition, and formation of -allylpalladium complex, the nucleophilic 

substitution to -allylpalladium complex can then proceed via two general routes, distinguished 

by the nature of the pronucleophiles (Scheme 2.3). Stabilized or “soft” nucleophiles, derived from 

conjugate acids with pKa < 25 attack directly at the allyl termini of the -allylpalladium 

intermediate, with no prior coordination to the Pd-center leading to substitution with overall 

retention of the stereochemistry in the product. On the contrary, unstabilized or “hard” 

nucleophiles, derived from the conjugate acids with pKa > 25 coordinate to Pd-center of -

allylpalladium intermediate, leading to allylic substitution with the inversion of product 

stereochemistry. Thus, the net stereochemical outcome of Tsuji-Trost reaction is determined by 

nature and pKa of the nucleophile. And, since the pKa values are dependent on solvent and 

temperature, modifications to the reactions can alter the reactivity of the nucleophilic partners and 

there by selectivity of the overall reaction. 

 

Scheme 2.3: Stereochemical outcome based on the nature of nucleophiles 

2.2.2. Regioselectivity in Tsuji-Trost allylation 

As shown in Scheme 2.3, when symmetrical allylic systems are employed, no 

regioselectivity issues occur. On the other hand, if the substitution on the allyl groups are different 

(R1 ≠ R2 ≠ H) the nucleophile can potentially attack at either end of the allyl group, forming product 
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as a mixture of regioisomers. In general, allylation occurs at less substituted center because of the 

steric effects, but the nature of R groups and reaction conditions (such as ligand, solvent and 

temperature) play an important role for the dominance of one product over the other possible 

products (Scheme 2.4).5  

 

Scheme 2.4: Regioselectivity in Tsuji-Trost allylation 

Malonate and morpholine being the soft nucleophiles, attack the unsymmetrical -allyl 

complex at the less substituted carbon owing to steric factors. On the other hand, PhZnCl, being a 

hard nucleophile attacks on palladium in the -allyl complex via transmetallation. Ligand and 

nucleophile then orient themselves to form the stable -allyl complex considering the sterics and 

possible coordination. The phenyl group then attacks at the adjacent carbon to give the 

corresponding allylated product (Scheme 2.5) 

 

Scheme 2.5: Stability of -allyl complex with hard nucleophiles 

Controlling the regio- and chemoselectivty is an important consideration when developing 

a new methodology, whether it is for material or medicinal chemistry applications.6 The issue 

becomes even more complicated when ambidentate nucleophiles with tautomeric equilibrium are 

employed.7 Tautomerizable heteroarenes, such as 4-hydroxy quinazoline, or 2-hydroxy pyridine 

for example are a kind of organic molecules having multiple reactive centers, and depending on 
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the reaction conditions employed, can react at O-center or N-center leading to a mixtures of O- 

and N-substituted products. The quinazolinone scaffold, although found as a privileged core 

structure for a vast variety of drug candidates, displaying a wide spectrum of biological and 

pharmacological properties.8–11 very limited examples have been documented till date for their 

selective functionalization. In our group continuous effort to develop new reaction methodology 

for functionalization of biologically active molecules, we chose to develop a selective allylation 

of these tautomerizable heteroarenes. We chose 4-hydroxy quinazoline as a model substrate, which 

when subjected to direct allylic substitution potentially can form at least three products via 

competitive reaction pathways (Scheme 2.6).  

 

Scheme 2.6: Selectivity in Tsuji-Trost allylation of tautomerizable heteroarenes  

 Thus, we wanted to develop a simple and efficient catalytic system for selective allylation 

of quinazolinone and derivatives. The work described below aims to delineate the factors that 

control selectivity during Pd-catalyzed allylic substitution of tautomerizable heteroarenes in the 

context of allylating reagents, reaction conditions, and substrate scope. The work also offers a 

detailed mechanistic insight to rationalize selectivity and develop a generalized green allylation 

protocol. 
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2.3. Optimization of reaction conditions  

2.3.1. Allyl reagent screening under neutral conditions 

Aiming to develop a chemo and regioselective allylation of tautomerizable heteroarenes, 

we started our reaction optimization using 4-hydroxy quinazoline as a model substrate. We focused 

our initial investigation on the effects of leaving groups present on allyl substrates both under base 

free/neutral and basic conditions. Table 2.1 and Table 2.2 described below summarizes the effects 

of leaving group ionization on the palladium catalyzed allylation of hydroxy quinazoline. To begin 

with, a reaction of 4-hydroxy quinazoline 2.01a with different allylating reagents 2.02, in presence 

of Pd(PPh3)4 as catalyst was performed under base free conditions in toluene (Table 2.1). Not 

surprisingly, allylic substrates with easily ionizing groups afforded products in moderate to good 

yields (Table 2.1, entries 2-8). Allyl substrates with less ionizable leaving groups, such as chloride 

2.02a, phenyl ether 2.02i, amine 2.02j, isothiocyanate 2.02l, cyanide 2.02p, and hydrogen 2.02q 

(Table 2.1, entries 1,9,10,12,16 and 17) proved ineffective. We were very glad to find that, in all 

the cases of the product formation, either formation of 2.03a2 (amide-NH allylation) was exclusive 

or with a very high selectivity (Table 2.1, entries 6,11 and 13) towards 2.03a2 was observed. In 

cases where 2.03a2 was major product, a trace amounts of 2.03a1 was also observed. Formation of 

1-allyl quinazolin-4(3H)-one 2.03a3 was not observed in any cases. Hydroxy group, which is 

considered as a weak leaving group surprisingly performed well providing product in comparable 

yields with its activated partners such as aceate and trifluoroacetate. Control reaction, in the 

absence of the Pd-catalyst yielded no product formation, indicating the neccessity of palladium 

complex for the allylic functionalization. 
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Table 2.1: Effect of allyl reagents under neutral conditions on the selectivity and allylation of 

2.01a 

 

Entry  Allylating agent       Conversion (%)a         Yield (%)b, c 

       2.03a1 2.03a2 2.03a3          2.03a2  

1  2.02a; X = Cl    0 0 0  0  

2  2.02b; X = Br    0 76 0  62  

3  2.02c; X = I    0 81 0  68  

4  2.02d; X = OH   0 82 0  70 

5  2.02e; X = OAc   0 85 0  71  

6  2.02f; X = OCOCF3   3 85 0  72  

7  2.02g; X = OCO2Me   0 95 0  88  

8  2.02h; X = OP(O)(OEt)2  0 100 0  86  

9  2.02i; X = OPh   0 0 0  0  

10  2.02j; X = NH2   0 0 0  0  

11  2.02k; X = NCO   4 65 0  52 

12  2.02l; X = NCS   0 0 0  0 

13  2.02m; X = NHCONH2  6 60 0  49  

14  2.02n; X = SMe   0 26 0  15  

15  2.02o; X = SO2Me   0 38 0  25   

16  2.02p; X = CN   0 0 0  0  

17  2.02q; X = Ph    0 0 0  0 

Reaction conditions: 2.01a (0.5 mmol) was treated with 2.02 (2 equiv, 1 mmol), Pd(PPh3)4 (10 

mol %) in toluene (1 mL) at 100 °C for 12 h.  aBased on GC-MS. bIsolated yield of 2.03a2. cNo 

product formation was observed (2.01a was found intact) in absence of catalyst.  
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2.3.2. Allyl reagent screening under basic conditions 

Addition of base was shown to have positive impacts in Tsuji-Trost allylation, both by 

increasing the leaving group ionization and by activation of nucleophile.12 To examine the effect 

of base on chemoselectivity, the entire set of reactions shown in Table 2.1 were reinvestigated in 

the presence of K2CO3 (Table 2.2). No significant difference in the outcomes was observed with 

the exception that 2.02a, 2.02i, 2.02j, and 2.02l, which were ineffective without base, exhibited 

allylation to form 2.03a2. It is interesting to note the formation of 2.03a2 with 2.02j under basic 

conditions. This was likely formed through a nucleophilic ring-opening cascade by allylamine 

rather than ionization of the allyl group as the reaction in the absence of Pd(PPh3)4 also formed 

2.03a2 in appreciable yields. The inability of 2.02p, and 2.02q to form allylic substituted product 

with Pd(0) under neutral/basic conditions could be explained based on the inability of ionization 

of the allylic leaving to form a π-allylpalladium complex.  

Most of the developed methods for Tsuji-Trost allylation employ pre-activated allyl 

substrates for a better leaving group (typically acetate or carbonate) ionization. A logical, greener 

and economical improvement would be to directly use allyl alcohols for increasing atom efficiency 

of the allylation reactions.4,13 Allyl alcohols have been used in the literature even from early studies 

of Tsuji and coworkers,14 however, the reported methods suffer from extended reaction times, high 

temperatures or lack of selectivity. Keeping in mind of all these difficulties, we were delighted to 

find allyl alcohol 2.02d as a very effective allylating reagent for the allylation of 2.01a and further 

studies have been conducted using 2.02d. 
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Table 2.2: Effect of allyl reagents under basic conditions on the selectivity and allylation of 

2.01a 

 

Entry  Allylating agent       Conversion (%)a         Yield (%)b, c 

       2.03a1 2.03a2 2.03a3          2.03a2  

1  2.02a; X = Cl    0 73 0  60  

2  2.02b; X = Br    0 100 0  89  

3  2.02c; X = I    0 100 0  88  

4  2.02d; X = OH   0 92 0  79 

5  2.02e; X = OAc   0 85 0  73  

6  2.02f; X = OCOCF3   3 92 0  79  

7  2.02g; X = OCO2Me   0 92 0  90  

8  2.02h; X = OP(O)(OEt)2  0 100 0  91  

9  2.02i; X = OPh   6 88 0  74  

10  2.02j; X = NH2   0 25 0  12  

11  2.02k; X = NCO   10 85 0  73 

12  2.02l; X = NCS   0 97 0  81 

13  2.02m; X = NHCONH2  6 45 0  27  

14  2.02n; X = SMe   0 38 0  24  

15  2.02o; X = SO2Me   0 51 0  37   

16  2.02p; X = CN   0 0 0  0  

17  2.02q; X = Ph    0 0 0  0 

Reaction conditions: 2.01a (0.5 mmol) was treated with 2.02 (2 equiv, 1 mmol), Pd(PPh3)4 (10 

mol %), K2CO3 (2.0 equiv, 1 mmol) in toluene (1 mL) at 100 °C for 12 h.  aBased on GC-MS. 
bIsolated yield of 2.03a2. cNo product formation was observed (2.01a was found intact) in absence 

of catalyst.  
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2.3.3. Effect of solvents on the tautomeric equilibrium 

Tautomeric equilibrium is susceptible to various reaction conditions such as solvents, 

catalysts (metal salts), temperature, pH etc. which significantly affect the subsequent reaction 

outcomes.15–17 To test whether the selectivity in the reaction of 2.01a was vulnerable to changes 

in the tautomeric composition, the reaction of 2.01a with allyl alcohol 2.02d was performed in 

different solvents (Table 2.3) . No significant difference of the reaction media on selectivity was 

observed, however in solvents like MeOH, EtOH, TFE, and NO2Me, the formation of 2.03a1 was 

detected along with 2.03a2. The use of DMSO and DMC was found optimal, however DMC was 

chosen as the solvent of choice for further studies due of its favorable properties for sustainability 

(renewable, low toxicity and biodegradability).18  
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Table 2.3: Effect of solvents on the selectivity and allylation of 2.01a 

 

Entry Solvent  % Conversiona   Selectivity   Yield (%)a 

             2.03a1   2.03a2   2.03a3       2.03a1 : 2.03a2 : 2.03a3       2.03a2 

1 MeOH   9 60 0  13 : 87 : 00       47 

2 EtOH   5 90 0  05 : 95 : 00      78 

3 TFE   2 97 0  02 : 98 : 00      81 

4 1,4-Dioxane  0 97 0  00 : 100 : 00      84 

5 THF   0 37 0  00 : 86 : 00      25 

6 DMF   0 93 0  00 : 100 : 00      82 

7 DMSO   0 96 0  00 : 100 : 00      85 

8 PhMe   0 83 0  00 : 100 : 00      70 

9 PhH   0 89 0  00 : 100 : 00      75 

10 DCE   0 79 0  00 : 100 : 00      67 

11 DMC   0 100 0  00 : 100 : 00      92 

12 MeNO2  5 46 0  09 : 91 : 00        29 

13 MeCN   0 93 0  00 : 96 : 00      80 

Reaction conditions: 2.01a (0.5 mmol) was treated with 2.02d (2 equiv, 1 mmol) in various 

solvents (1 mL) at 100 °C in presence of Pd(PPh3)4 (10 mol%) for 12 h. aBased on GC-MS.   
cIsolated yield of 2.03a2. 
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2.3.4. Effect of palladium catalysts 

A variety of transition metal-catalyzed allylic substitution are known, and the choice of 

metal and ligand can significantly affect the regioselectivity.19–24 Thus, the reaction of 2.01a with 

2.02d was investigated in the presence of different Pd catalysts (Table 2.4). The formation of 

2.03a2 was observed with all Pd catalysts with varying yield, however Pd(PPh3)4 was found 

distinctly superior. Surprisingly, no effect of catalysts was observed on the overall selectivity 

towards product formation. 

Table 2.4: Effect of palladium catalysts on selectivity and allylation of 2.01a  

 

Entry  Catalyst        % Conversiona            Yield (%)b 

      2.03a1 2.03a2 2.03a3     2.03a2 

1  PdCl2    0 21 0   12 

2  Pd(OAc)2   0 18 0   10 

3  (PPh3)4Pd   0 100 0   91 

4  (PPh3)2PdCl2   0 8 0   traces 

5  (TFA)2Pd   0 41 0   28 

6  [PdCl(C3H5)]2   0 40 0   28 

7  (C6H5CN)2PdCl2  0 13 0   traces 

8  Pd2(dba)3   0 12 0   traces 

9  Pd(dppf)Cl2   0 5 0   traces 

Reaction conditions: 2.01a (0.5 mmol) was treated with 2.02d (2 equiv, 1 mmol) in DMC (1 mL) 

at 100 °C in presence of different Pd-catalysts (10 mol%) for 12 h. aBased on GC-MS.   bIsolated 

yield of 2.03a2. 
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2.3.5. Detailed optimization of all the reaction parameters 

An overall extensive screening of the reaction parameters provided us with the utilization 

of 5 mol% of Pd(PPh3)4, 1.2 equiv of allyl alcohol in dimethyl carbonate at 100 °C for 12h as 

optimal conditions to yield 2.03b as the sole product in 90% yield. 

Table 2.5: Effect of different reaction parameters on the Pd(PPh3)4-catalyzed allylation of 2.01a 

with 2.02da. 

 

Entry  catalyst  equiv   Temp.   Time   Yield 

  (mol%)  (2.02da)  (°C)  (h)   (%)a 

1  0.5   2  100  24   12 

2  1   2  100  24   28 

3  2.5   2  100  24   63 

4  5.0   2  100  24   90 

5  10   2  100  24   90 

6  15   2  100  24   90 

7  5.0   1  100  24   72 

8  5.0   1.2  100  24   90 

9  5.0   1.5  100  24   90 

10  5.0   1.2  rt  24   traces 

11  5.0   1.2  50  24   32 

12  5.0   1.2  80  24   51 

13  5.0   1.2  100  24   90 

14  5.0   1.2  100  4   51 

15  5.0   1.2  100  8   69 

16  5.0   1.2  100  12   90 

17  5.0   1.2  100  16   90 

Reaction conditions: 2.01a (0.5 mmol) was treated with 2.02da under different reaction 

conditions in DMC (1 mL). aIsolated yield of 2.03b.  
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2.4. Mechanistic consideration 

2.4.1. Intermolecular allyl migration 

The predominant formation of 2.03a2 irrespective of conditions tested (allylating reagent, 

base, solvent, catalyst, and ligand) increased our curiosity to investigate possible intramolecular 

allyl migration via intermediacy of 2.03a1 and/or 2.03a3. Under catalysis, 2.03a1, 2.03a1 or 2.03a3 

can potentially rearrange to form any one of the product depending on the parameters employed. 

To investigate allyl migration among the potential products, 2.03a1, 2.03a2 and 2.03a3 were 

prepared independently and subjected to optimized Pd(0) reaction conditions in DMC at 100 °C. 

A smooth conversion of 2.03a1 into 2.03a2 was observed, however 2.03a3 failed to react (Scheme 

2.7) under optimized reaction conditions. We also investigated other rearrangement pathways by 

which 2.03a1 can be transformed to 2.03a2 such as thermal or Lewis acid catalyzed [3,3]-

sigmatropic rearrangement.25,26 2.03a1, when heated in DMC at 100 °C for 12 h with or without a 

Lewis acid [In(OTf)3] did not produce any 2.03a2, ruling out the possibility of any sigmatropic 

rearrangements. On the contrary, addition of palladium catalyst to the reaction mixture containing 

2.03a1 formed product 2.03a2 exclusively, indicating the exclusive role of the Pd-catalyst in allylic 

disposition from 2.03a1 and its possible intermediacy in forming 2.03a2.27,28  

 Amine N-allylated compound 2.03a3, however did not undergo rearrangement to 2.03a2 in 

all the conditions employed viz optimized palladium reaction conditions, thermal or Lewis acidic 

conditions for sigmatropic rearrangement, ruling out the intermediacy of 2.03a3 in palladium 

catalyzed allylation of 2.03a2. 
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Scheme 2.7: Intermolecular allyl rearrangement from preformed 2.03a1, 2.03a3 to 2.03a2   

2.4.2. Plausible mechanistic pathways 

To gain insight in to the possible mechanism of operation in our reaction condition, we 

have proposed different catalytic cycles as shown in Scheme 2.8 for the highly selective allylation 

of N-heterocycles with allyl alcohols. In all the cases, the first step is likely the coordination of 

Pd(PPh3)4 to allyl alcohols followed by oxidative addition of Pd(0) into the allylic alcohol to form 

an allylpalladium hydroxide intermediate (A). Nucleophilic attack on complex A can occur via 

three different pathways (Scheme 2.8). Path-A is the direct pathway, where in direct N-allylation 

of 2.01a with loss of water would form the observed product 2.03a2. Alternatively, O-allylation 

could occur first to form 2.03a1 as an intermediate (Path B). This could re-ionize to form bis allyl 

intermediate B that could produce the product 2.03a2 (Path B-1). Alternatively, exogenous Pd(II) 

could catalyze a stepwise [3,3]-sigmatropic rearrangement to produce the final product (Path B-

2). It should be noted that Path B-1 may be indistinguishable from Path A. 
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Scheme 2.8: Possible mechanistic pathways for the formation of 2.03a2   

2.4.2.1. Control studies to validate pathways B-1 or B-2 

To validate between two pathways, and to investigate allylic rearrangement between O-

allylated product to N-allylated product, the crotyl product 2.04 was prepared and examined under 

the reaction conditions. If the rearrangement were to occur via Path B-1, a mixture of regioisomeric 

products would be expected. Alternatively, if the reaction proceeds through Path B-2, only the 

branched product would result. When 2.04 was subjected to optimized reaction conditions, we 

observed the formation of a mixture of regioisomers 2.05a and 2.05b (92:8; GC-MS) 

demonstrating the ionization pathway B-1 is operative, if the rearrangement were to happen 

(Scheme 2.9). But in optimized reaction conditions, we did not observe any branched product 

indicating that direct allylic substitution (Path-A) is the most plausible pathway for allylation of 

N-heterocycles with allyl alcohols. 
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Scheme 2.9: Control studies to validate different pathways   

2.5. Substrate scope: tautomerizable heterocycles 

With optimization conditions in hand, and with establishing most possible mechanistic 

pathway, we started exploring the generality of the optimized methodology. The scope of 

tautomerizable heteroarenes was examined first. As summarized in Table 6, a wide range of 4-

hydroxy quinazolines bearing alkyl, cycloalkyl, aryl, heteroaryl, and styryl moieties were reacted 

with cinnamyl alcohol 2da affording excellent yield of N-allylated products (2.03b-2.03p). A wide 

range of functional groups involving both electron donating (-OMe, -NMe2), electron withdrawing 

(-NO2, -CN, -Cl, CF3) and sensitive functional groups (-CHO, -COMe, -OCH2O-) were tolerated 

well, validating the robustness of protocol. The applicability of this protocol was further extended 

to other biologically relevant tautomerizable heteroarenes. Compounds which are highly sensitive 

to tautomerization (2.03q-2.03y) were also tested under optimized condition. Gratifyingly, N-

cinnamylation of these compounds also proceeded well with excellent yields. 
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Table 2.6: Cinnamylation of biologically relevant heteroarenes. 

 

  Heteroarenes               Products         Yield (%)a 

 

2.01a: R = H    2.03b: R = H    90  

 2.01b: R = Me    2.03c: R = Me    91 

 2.01c: R = Cy    2.03d: R = Cy    85 

 2.01d: R = Ph    2.03e: R = Ph    88 

 2.01e: R = furyl   2.03f: R = furyl   84 

 2.01f: R = styryl   2.03g: R = styryl   72 

  

2.01g: X = Cl    2.03h: X = Cl    84 

 2.01h: X = OMe   2.03i: X = OMe   90 

 2.01i: X = NO2   2.03j: X = NO2   82 
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Table 2.6: Cinnamylation of biologically relevant heteroarenes (continued). 

 
  Heteroarenes               Products         Yield (%)a 

   

2.01j: R = NMe2   2.03k: R = NMe2   85 

2.01k: R = CF3   2.03l: R = CF3    86 

2.01l: R = CN    2.03m: R = CN   85 

2.01m: R = C(O)H   2.03n: R = C(O)H   90 

2.01n: R = C(O)Me   2.03o: R = C(O)Me   85 

 2.01o:  2.03p:  83 

 2.01p:    2.03q:   81 

 2.01q:    2.03r:   82 

 2.01r:    2.03s:    84 
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Table 2.6: Cinnamylation of biologically relevant heteroarenes (continued). 

 
  Heteroarenes               Products         Yield (%)a 

 2.01s:    2.03t:  89 

 2.01t:    2.03u:   86 

 2.01u:    2.03v:   90 

 2.01v:    2.03w:   86 

 2.01w:    2.03x:   90 

 2.01x:    2.03y:   86  
 

Reaction conditions: Tautomerizable heteroarenes (0.5 mmol) were treated with 2.02da (1.2 

equiv, 0.6 mmol) in DMC (1 mL) at 100 °C in the presence of Pd(PPh3)4 (5 mol %) for 12 h. 
aIsolated yield. 
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2.6. Substrate scope: allyl alcohols 

After the functionalization of heterocycles, we turned our attention towards the allylation 

of 2.01a with a variety of allyl alcohols having either -, -, or -substitution. Our reaction 

conditions were found to be optimal even for substituted allyl alcohols producing the allylated 

products in excellent yields (Table 2.7).29 With regards to regioselectivity, allylation with cinnamyl 

alcohol 2.02da or 1-phenylprop-2-en-1-ol 2.02db resulted in exclusive formation of the linear 

product (>99%; GC-MS) whereas a 94:6 isomeric ratio (linear: branched) was observed in the case 

of 2.02dc or 2.02dd. The reaction of 2.01a with 2-butene-1,4-diol 2.02dh, produced the dienamine 

2.06d in excellent yield. This could serve as model reaction for a generalized one-step synthesis 

of dienamines, alkenyl oxide/sulfide and conjugated dienes, a valuable synthon for pharmaceutical 

and materials applications. This methodology was found to be advantageous in terms of substrate 

scope, functional group tolerance and the use of additives or other promoters.30–36 
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Table 2.7: Pd-catalyzed reaction of 2.01a with different allyl alcohols. 

 

 Allyl alcohol    Product    Yield (%)a 

 2.02d;    2.03a2:   91 

 2.02da:   2.03b:  90 

 2.02db:    2.03b:  88 

 2.02dc:    2.05a:   82b 

 2.02dd:    2.05a:   81b 

 2.02de:    2.06a:   86 

 2.02df:    2.06b:   78 
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Table 2.7: Pd-catalyzed reaction of 2.01a with different allyl alcohols (continued). 

 

Allyl alcohol    Product    Yield (%)a 

 2.02dg:   2.06c:  71 

 2.02dh:   2.06d:   82 

Reaction conditions: 2.01a (0.5 mmol) was treated with allyl alcohol (1-1.5 equiv) in DMC (1 

mL) at 100 °C in the presence of Pd(PPh3)4 (5 mol %) for 12 h. aIsolated yield. bE/Z mixture (10:1). 

A small amount of the branched regioisomer (not shown) was also formed (94:6 linear: branched). 

2.7. Conclusion 

In conclusion, the present work reports the investigation of a wide range of allylating 

reagents, solvents, metal catalysts, and ligands for the chemo- and regioselective allylation of 

heteroarenes bearing multiple interconvertible nucleophilic sites. The process was developed as a 

generalized green protocol for allylation of biologically relevant heteroarenes with allyl alcohols 

using DMC as solvent with wide range of functional groups tolerance. The differential 

nucleophilicity of heteroarenes was examined through intermolecular competition studies 

involving two different heteroarenes and excellent selectivity was observed. Similarly, an excellent 

selectivity was observed during intermolecular competition involving two different allyl alcohols 

demonstrating the differential ability of allyl alcohols to form allylpalladium complexes and react 

with the nucleophile. The direct use of allyl alcohol as an allylating reagent, DMC as solvent, the 

lack of a requirement for additional additives/promoters, and the feasibility of scale up represent a 
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green protocol for the selective allylation of medicinally relevant tautomerizable N-heteroarenes 

and are an important addition to the tool box of medicinal chemists. 

2.8. Experimental procedures 

2.8.1. General information 

Unless otherwise noted, all manipulations were carried out under a nitrogen atmosphere 

using standard Schlenk-line or glovebox techniques. All glassware was oven-dried for at least 1h 

prior to use. THF, toluene, ether, and hexane were degassed by purging with nitrogen for 45 min 

and dried with a solvent purification system (MBraun MB-SPS). DMF, dioxane, dimethoxyethane, 

dichloroethane, methanol, and ethanol were dried over activated 3 Å molecular sieves and 

degassed by purging with nitrogen. All commercially obtained reagents/solvents were purchased 

from Alfa Aesar®, Sigma-Aldrich®, Acros®, TCI America®, Mallinckrodt®, and Oakwood® 

Products, and used as received without further purification. TLC plates were visualized by 

exposure to ultraviolet light. Organic solutions were concentrated by rotary evaporation at ~10 

torr. Flash column chromatography was performed with 32–63 microns silica gel. 1H NMR spectra 

were obtained on a 400 MHz spectrometer, and chemical shifts were recorded relative to residual 

protiated solvent. 13C NMR spectra were obtained at 100 MHz, and chemical shifts were recorded 

to the solvent resonance. Both 1H and 13C NMR chemical shifts were reported in parts per million 

downfield from tetramethylsilane (δ = 0 ppm). 19F NMR spectra were obtained at 282.4 MHz, and 

all chemical shifts were reported in parts per million upfield of CF3COOH (δ = -78.5 ppm). 

Coupling constants (J) are reported in hertz (Hz). Standard abbreviations indicating multiplicity 

were used as follows: s (singlet), br (broad), d (doublet), t (triplet), q (quartet) and m (multiplet). 

Data for 13C NMR spectra are reported in terms of chemical shift (δ ppm).  High-resolution mass 

spectra were obtained from a Bruker Daltronics BioTOF HRMS spectrometer. 
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2.8.2. Synthesis of standard materials of 2.03a1, 2.03a2, and 2.03a3 

2.8.2.1. Synthesis of 4-(allyloxy) quinazoline (2.03a1)
37 

 

In a glove box, to an oven dried 4 mL glass vial equipped with a stir bar, 4-hydroxy 

quinazoline 2.01a (0.146 g, 1 mmol), BOP [(1-Benzotriazol-1-yloxy) tris (dimethylamino) 

phosphonium hexafluorophosphate] (0.885 g, 2 mmol, 2 equiv), Cs2CO3  (0.652 g, 2 mmol, 2 

equiv) followed by dry THF (3 mL) was added and the reaction mixture was stirred at rt for 60 

min. The resulting mixture was evaporated under reduced pressure, Cs2CO3 (0.652 g, 2 mmol, 2 

equiv) and allyl alcohol 2.02d (1.16 g, 20 mmol, 20 equiv) were added followed by stirring at rt 

until TLC (5 h) indicated complete reaction. The reaction mixture was diluted with water (10 mL) 

and extracted with EtOAc (3 x 10 mL). The organic layer was dried over anhyd.  Na2SO4 and 

concentrated under reduced pressure. The crude products were adsorbed on silica gel and pass 

through the column (eluent: Hexane/EtOAc) to get analytically pure product 3a1 (0.130 g, 70%) 

as yellowish liquid; 1H NMR (400 MHz, CDCl3):  8.79 (d, J = 2.9 Hz, 1H), 8.16 (t, J = 2.3 Hz, 

1H), 7.92 (t, J = 3.7 Hz, 1H), 7.82-7.79 (m, 1H), 7.55-7.51 (m, 1H), 6.19-6.12 (m, 1H), 5.48 (dd, 

J = 17.2, 1.5 Hz), 5.34-5.31 (m, 1H), 5.09 (d, J = 0.9 Hz, 1Hz); 13C NMR (100 MHz, CDCl3):  

166.3, 154.3, 151.0, 133.5, 132.3, 127.7, 127.0, 123.5, 118.4, 116.6, 67.5. 
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2.8.2.2. Synthesis of 3-allylquinazolin-4(3H)-one (2.03a2)
38  

 

A mixture of isatoic anhydride, 2.01y (0.163 g, 1 mmol), allylamine, 2.02j (0.086 g, 1.5 

mmol, 1.5 equiv), and triethyl orthoformate (0.41 g, 2.5 mmol) were stirred magnetically at 120 

°C (oil bath temp). After completion of the reaction (TLC, 5 h), the crude reaction mixture was 

recrystallized from EtOH to obtain analytically pure 2.03a2 (0.134 g, 72%) as white solid; 1H 

NMR (400 MHz, CDCl3):  8.34 (d, J = 8.0 Hz, 1H), 8.04 (s, 1H), 7.80-7.72 (m, 2H), 7.55-7.50 

(m, 1H), 6.07- 5.97 (m, 1H), 5.31 (t, J =10.1 Hz, 2H), 4.66 (d, J = 5.7 Hz, 2H); 13C NMR (100.6 

MHz, CDCl3):  160.8, 148.1, 146.2, 134.3, 131.9, 127.5, 127.3, 126.8, 122.1, 118.9, 48.3. 

2.8.2.3. Synthesis of 1-allylquinazolin-4(1H)-one (2.03a3)
39  

 

Step 1: To a solution of isatin (1.47 g, 10 mmol) in DMF (10 mL), potassium carbonate 

(1.65 g, 12 mmol, 1.2 equiv) and allyl bromide (3.62 g, 30 mmol, 3 equiv) were added. After 

reacting at rt for 5 h (monitored by TLC), the mixture was poured into ice water. The precipitate 

formed was filtered, dried and used as such without further purification. 

Step 2: A solution of sodium hydroxide (0.84 g, 21 mmol) in water (10 mL) was cooled in 

an ice-water bath. N-allyl isatin (10 mmol) was then added and dissolved. While maintaining the 
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temperature of below 15 °C, a 30% aqueous solution of hydrogen peroxide (1.8 g, 52.8 mmol) was 

added dropwise. Stirring was continued at 15–20 °C for 2 h (monitored by TLC). The mixture was 

cooled in an ice bath and pH was adjusted to 5–6 with glacial acetic acid. After several hours of 

standing in refrigerator, the precipitate formed was collected by filtration, washed with ice water 

three times, and dried in air to give the 2-(N-allyl amino) benzoic acid. 

Step 3: A mixture of 2-(N-allyl amino) benzoic acid (0.53 g, 3 mmol), ammonium acetate 

(0.69 g, 9 mmol) and triethyl orthoformate (2.22 g, 15 mmol) was stirred at 100 °C for 10 h 

(monitored by TLC). Excess triethyl orthoformate was removed by rotary evaporation, and the 

residue was applied to a silica-gel column and eluted with DCM: MeOH (95:5) to give analytically 

pure 2.03a3 (0.379 g, 68%) as white solid; 1H NMR (400 MHz, CDCl3):  8.24-8.22 (m, 2H), 

7.67-7.62 (m, 1H), 7.41-7.37 (m, 1H), 7.29 (d, J = 8.4 Hz 1H), 6.00 - 5.90 (m, 1H), 5.31-5.28 (m, 

1H), 5.19-5.15 (m, 1H), 4.74 (d, J = 4.9 Hz 2H); 13C NMR (100 MHz, CDCl3):  169.4, 153.3, 

139.2, 133.8,130.6, 128.7, 124.4, 120.4, 119.3, 115.4, 52.2. 

2.8.3. Experimental procedure for the investigation of allylic disposition  

 

In a glove box, to an oven dried 4 mL glass vial equipped with a stirring bar, 2.03a1 (0.093 

g, 0.5 mmol) or 2.03a3 (0.093 g, 0.5 mmol), Pd(PPh3)4 (0.578 g, 0.05 mmol, 10 mol%), followed 
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by DMC (1 mL) was added and the reaction mixture was stirred at 100 °C for 12 h. Then the 

reaction mixture was cooled to rt, diluted with MeOH (2 x 10 mL) and passed through bed of celite 

to remove catalyst. An aliquot portion (100 μL) of the organic layer was taken out, diluted with 

MeOH and subjected to GCMS to observe the selectivity among all the products formed.  

In case where 2.03a1 is used as the starting material, it is completely converted to 2.03a2. 

The organic layer was dried over anhydrous Na2SO4 and concentrated under reduced pressure. The 

crude products were adsorbed on to silica gel and passed through the column (eluent: 

Hexane/EtOAc) to get analytically pure product 2.03a2 as white solid (0.086 g, 93%). 

2.8.4. Investigation of allylic migration from 2.03a1 in different conditions  

Table 2.8: Treatment of 2.03a1 in the presence of different catalysts under reaction conditions. 

 

Entry Catalyst  % Conversiona   Selectivitya   Yield (%)b 

    2.03a2  2.03a3   2.03a2 : 2.03a3  2.03a2 

1 None   0  0  N/A   0   

2 K2CO3   0  0  N/A   0  

3 In(OTf)3  0  0  N/A   0  

4 (PPh3)4Pd  100  0  100 : 00  93   

Reaction conditions: 2.03a1 (0.5 mmol) was subjected to under reaction condition in presence of 

different catalysts/additives in DMC (1 mL) at 100 °C for 12 h. a Based on GC-MS. b Isolated yield 

of 2.03a2 
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2.8.5. Validation of route B-1 / B-2: investigation of allylic migration from 2.04 

2.8.5.1. Synthesis of (E)-4-(but-2-en-1-yloxy)quinazoline (2.04)38  

 

In a glove box, to an oven dried 10 mL glass vial equipped with a stirring bar, 4-hydroxy 

quinazoline 2.01a (0.292 g, 2 mmol), BOP reagent (1.77 g, 4 mmol, 2 equiv), Cs2CO3 (1.304 g, 2 

mmol, 2 equiv) followed by dry THF (6 mL) was added and the reaction mixture was stirred at rt 

for 60 min. The resulting mixture was evaporated under reduced pressure, Cs2CO3 (1.304 g, 4 

mmol, 2 equiv) and 2-buten-1-ol (2.88 g, 40 mmol, 20 equiv) were added followed by stirring at 

the rt until TLC (5 h) indicated reaction completion. The reaction mixture was then diluted with 

water (15 mL) and extracted with EtOAc (3 x 15 mL). The organic layer was dried over anhydrous 

Na2SO4 and concentrated under reduced pressure. The crude products were adsorbed on to silica 

gel and passed through the column (eluent: Hexane/EtOAc) to get analytically pure product 2.04 

(0.288 g, 72%) as yellowish liquid; 1H NMR (400 MHz, CDCl3):  8.80 (s, 1H), 8.19 (dd, J = 

8.2, 0.6 Hz, 1H), 7.95 (d, J = 8.4 Hz, 1H), 7.84-7.80 (m, 1H), 7.57-7.53 (m, 1H), 5.99-7.89 (m, 

1H), 5.87-7.83 (m, 1H), 5.03 (dd, J = 6.2, 0.9 Hz, 1H), 1.78 (d, J = 0.8 Hz, 3H);  13C NMR (100 

MHz, CDCl3): 166.5, 154.4, 150.9, 133.4, 131.6, 127.6, 126.9, 125.2, 123.6, 116.7, 67.6, 17.8; 

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C12H13N2O 201.1028, Found 201.1031. 
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2.8.5.2. Experimental procedure for the validation of route B-1 / B-2 

 

In a glove box, to an oven dried 4 mL glass vial equipped with a stirring bar, 2.04 (0.1 g, 

0.5 mmol), Pd(PPh3)4 (0.578 g, 0.05 mmol, 10 mol%) followed by DMC (1 mL) was added and 

the reaction mixture was stirred at 100 °C for 12 h. The reaction mixture was cooled to rt, diluted 

with MeOH (2 x 10 mL) and passed through bed of celite to remove catalyst. An aliquot portion 

(100 μL) of the organic layer was taken out, diluted with MeOH. and subjected to GCMS to 

observe the selectivity. The organic layer was dried over anhydrous Na2SO4 and concentrated 

under reduced pressure. The crude products were adsorbed on silica gel and passed through the 

column (eluent: Hexane/EtOAc) to get analytically pure product 2.05a as white solid (0.074 g, 

74%). 1H NMR (400 MHz, CDCl3):  8.24 (td, J = 8.1, 1.4 Hz, 1H), 7.98 (s, 1H), 7.67-7.62 (m, 

2H), 7.44-7.39 (m, 1H), 5.76-5.70 (m, 1H), 5.61-5.57 (m, 1H), 4.50 (td, J = 7.4, 2.3 Hz, 2H), 1.67-

1.65 (m, 3H); 13C NMR (100 MHz, CDCl3):  160.9, 160.7, 148.0, 146.2, 146.1, 134.0, 131.0, 

130.0, 127.3, 127.12, 127.10, 126.7, 126.6, 124.8, 123.9, 122.1, 47.8, 42.7, 17.6, 13.1; HRMS 

(ESI-TOF) m/z: [M + H]+ Calcd for C12H13N2O 201.1028, Found 201.1030. 
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2.8.6. Preparation of starting materials 

Compounds 2.01a, 2.01p-2.01w and allyl alcohols were purchased from commercial 

sources and used as such. All other starting materials were prepared by a modified procedure from 

literature. 

 

Figure 2.1: N-Heterocycles employed for the allylation 

2.8.6.1. Experimental procedure for the synthesis of 2.01b 

 

A mixture of isatoic anhydride (0.815 g, 5 mmol), ammonium acetate (0.578 g, 7.5 mmol, 

1.5 equiv), and triethyl orthoacetate (1.22 g, 7.5 mmol, 1.5 equiv) were stirred magnetically at 120 

°C (oil bath temp). After completion of the reaction (TLC, 5 h), the crude reaction mixture was 

recrystallized from EtOH to obtain analytically pure 2.01b (0.640 g, 80%) as white solid.39 1H 
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NMR (400 MHz, CDCl3):  8.27 (dd, J = 7.5, 1.2 Hz, 1H), 7.80-7.78 (m, 1H), 7.71 (d, J = 7.7 Hz, 

1H), 7.52-7.48 (m, 1H), 2.63 (s, 3H); 13C NMR (100 MHz, CDCl3):  164.8, 153.7, 149.8, 135.5, 

127.3, 127.0, 126.5, 120.6, 22.6. 

2.8.6.2. Experimental procedure for the synthesis of 2.01g  

 

A mixture of isatoic anhydride (0.815 g, 5 mmol), ammonium acetate (0.578 g, 7.5 mmol, 

1.5 equiv), and triethyl orthoformate (1.22 g, 7.5 mmol, 1.5 equiv) were stirred under heating at 

120 °C (oil bath temp). After completion of the reaction (TLC, 5 h), the crude reaction mixture 

was recrystallized from EtOH to obtain analytically pure compound 2.01g as an off white solid 

(0.659 g, 73%). 1H NMR (400 MHz, DMSO):  12.47 (s, br, 1H), 8.12 (s, 1H), 8.03 (d, J = 2.4 

Hz, 1H), 7.82-7.79 (m, 1H), 7.67 (d, J = 8.6 Hz, 1H); 13C NMR (100 MHz, DMSO):  160.2, 

147.9, 146.4, 134.8, 131.5, 129.9, 125.3, 124.3. 

2.8.6.3. Experimental procedure for the synthesis of 2.01c-2.01f and 2.01j-2.01o 

 

Anthranilamide (5.0 mmol) and an appropriate aldehyde (6 mmol, 1.2 equiv) were 

dissolved in DMSO (10 mL). Then, the reaction mixture was stirred at 140 oC in an open flask and 

monitored by TLC. After complete consumption of the starting materials (12-36 h), the reaction 

mixture was cooled to rt, the precipitate formed after the addition of water (100 mL) was added to 
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the reaction mixture and collected via filtration. Recrystallization in ethanol afforded pure 4-

hydroxy quinazolines. 

2.8.6.4.  Experimental procedure for the synthesis of (2.01x)40 

 

To a round bottom flask containing a magnetic stir bar was added benzhydrazide (2.0 g, 

14.7 mmol), CH2Cl2 (300 mL) and DIPEA (5.1 mL, 29 mmol, 2 equiv). The flask was fitted with 

a rubber septum containing two needles: one connected to a positive pressure N2 line, the other 

open to air. Triphosgene (1.75 g, 5.9 mmol, 0.4 equiv) and CH2Cl2 (10 mL) were added to a 40 

mL vial; the vial was sonicated until the triphosgene had dissolved. Using a syringe, the 

triphosgene/CH2Cl2 solution was added drop wise to the stirred solution of benzhydrazide. The 

solution was stirred at room temperature; by TLC analysis, the reaction was nearly complete within 

20 minutes (hexanes/EtOAc). The reaction mixture was concentrated by rotary evaporation; the 

crude product was purified by chromatography on silica (gradient elution from hexanes to EtOAc) 

affording 2.01x (0.689 g, 72%) as a white solid; 1H NMR (400 MHz, DMSO-d6): δ 12.51 (br, 1H), 

7.85-7.73 (m, 2H), 7.62-7.53 (m, 3H); 13C NMR (100 MHz, DMSO-d6):  154.7, 154.1, 131.6, 

129.5, 125.5, 124.2.  

2.9. Analytical data of purified starting materials 

2-Cyclohexyl-3H-quinazolin-4-one: Prepared from anthranilamide (5.0 mmol) and 

cyclohexane carboxaldehyde (6 mmol, 1.2 equiv) by the general procedure 

to give 2.01c as a white solid (0.913 g, 80%). 1H NMR (400 MHz, 

DMSO-d6):  12.72 (br, 1H), 8.08 (d, J = 7.5 Hz, 1H), 7.76 (t, J = 7.1 Hz, 

1H), 7.59 (d, J = 8.1 Hz, 1H), 7.45 (t, J = 7.4Hz, 1H), 2.61-2.51 (m, 2H), 1.92-1.77 (m, 4H), 



 

67 

1.69-1.54 (m, 3H), 1.34-1.20 (m, 3H); 13C NMR (100 MHz, DMSO-d6):  162.4; 161.26, 

149.29, 134.7, 127.3, 126.4, 126.1, 121.4, 43.3, 30.6, 25.9, 25.8. 

2-Phenyl-3H-quinazolin-4-one: Prepared from anthranilamide (5.0 mmol) and 

benzaldehyde (6 mmol, 1.2 equiv) by the general procedure to give 2.01d as 

a white solid (0.911 g, 82%). 1H NMR (400 MHz, DMSO-d6):   12.51 (br, 

1H), 8.16 (d, J = 7.5 Hz, 3H), 7.85 (t, J = 7.3 Hz, 1H), 7.78 (d, J = 8.4 Hz, 

1H), 7.66-7.55 (m, 4H); 13C NMR (100 MHz, DMSO-d6): δ 162.5, 152.4, 148.6, 134.7, 132.6, 

131.4, 128.8, 127.5, 127.4, 126.7, 125.7, 120.7. 

2-Furan-2-yl-3H-quinazolin-4-one: Prepared from anthranilamide (5.0 mmol) and 

furfural (6 mmol, 1.2 equiv) by the general procedure to give 2.01e as a white 

solid (0.859 g, 81%); 1H NMR (400 MHz, DMSO-d6):  12.50 (br, 1H), 8.13 

(d, J = 7.4 Hz, 1H), 8.01-7.80 (m, 2H), 7.70-7.64 (m, 2H), 7.50 (t, J = 7.4 Hz, 

1H), 6.76 (q, J = 1.5 Hz, 1H); 13C NMR (100 MHz, DMSO-d6):  162.0, 149.1, 147.1, 146.6, 

144.5, 135.1, 127.7, 126.9, 126.4, 121.6, 114.9, 112.9. 

 2-Styryl-3H-quinazolin-4-one: Prepared from anthranilamide (5.0 mmol) and 

cinnamaldehyde (6 mmol, 1.2 equiv) by the general procedure to give 

2.01f as a white solid (0.307 g, 62%); 1H NMR (400 MHz, DMSO-d6): 

δ 8.32 (d, J = 7.9 Hz, 1H), 7.99 (d, J = 15.3 Hz, 1H), 7.82 (d, J = 3.5 Hz, 

2H) 7.64-7.55 (m, 3H), 7.52-7.49 (m, 1H), 7.35-7.29 (m, 7H), 6.40 (d, J = 15.6 Hz, 1H); 13C NMR 

(100 MHz, DMSO):   162.7, 152.3, 149.7, 138.9, 135.6, 135.1, 130.4, 129.6, 128.2, 127.7, 126.7, 

126.5, 121.8. 
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 2-(4-Dimethylamino-phenyl)-3H-quinazolin-4-one: Prepared from anthranilamide (5.0 

mmol) and 4-(dimethylamino)benzaldehyde (6 mmol, 1.2 equiv) by 

the general  procedure to give 2.01j as a brown solid (0.968 g, 73%); 

1H NMR (400 MHz, DMSO-d6):  12.18 (br, 1H), 8.09-8.14 (m, 3H), 

7.75-7.79 (m, 1H), 7.65 (d, J = 7.6 Hz, 1H), 7.40-7.44 (m, 1H), 6.78 (d, J = 9.1 Hz, 2H), 3.00 (s, 

6H); 13C NMR (100 MHz, DMSO-d6):  162.9, 152.71, 152.70, 149.8, 134.9, 129.3, 127.5, 126.3, 

125.8, 120.9, 119.3, 111.7, 66.5, 40.1. 

 2-(4-Trifluoromethyl-phenyl)-3H-quinazolin-4-one: Prepared from anthranilamide (5.0 

mmol) and 4-(trifluoromethyl)benzaldehyde (6 mmol, 1.2  equiv) by the 

general  procedure to give 2.01k as a white solid (1.16 g, 80%); 1H 

NMR (400 MHz, DMSO-d6):  12.75 (br, 1H), 8.38 (d, J = 8.1 Hz, 1H), 

8.18 (dd, J = 7.9, 1.2 Hz, 1H), 7.92 (d, J = 8.3 Hz, 2H), 7.85-7.89 (m, 1H), 7.78 (dd, J = 8.1 0.6 

Hz, 1H), 7.54-7.59 (m, 1H); 13C NMR (100 MHz, DMSO-d6):  162.6, 151.6, 148.9, 137.1, 135.2, 

131.6 (q, J = 1.33 Hz), 129.2, 128.2, 127.6, 126.4, 125.9 (q, J = 14.8), 123.1, 121.7. 

 4-(4-Oxo-3,4-dihydro-quinazolin-2-yl)-benzonitrile: Prepared from anthranilamide (5.0 

mmol)  and 4-cyanobenzaldehyde (6 mmol, 1.2  equiv) by the general  

procedure to give 2.01l as a white solid (0.964 g, 78%); 1H NMR (400 

MHz, DMSO-d6):  12.7 (br, 1H), 7.35 (d, J = 7.0 Hz, 2H), 8.18 (d, J = 

7.7 Hz, 1H), 8.05 (d, J = 6.7 Hz, 2H), 7.86 (t, J = 7.5 Hz, 1H), 7.77 (d, J = 8.4 Hz, 1H), 7.58 (dd, 

J = 7.5, 7.1 Hz, 1H); 13C NMR (100 MHz, DMSO-d6):  162.5, 160.2, 148.5, 136.9, 135.2, 132.8, 

128.9, 127.7, 127.5, 126.2, 121.5, 118.6, 113.8. 
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 4-(4-Oxo-3,4-dihydro-quinazolin-2-yl)-benzaldehyde: Prepared from anthranilamide 

(5.0 mmol) and terephthalaldehyde (6 mmol, 1.2  equiv) by the  general  

procedure to give 2.01m as a white solid (0.950 g, 76%); 1H NMR (400 

MHz, DMSO-d6):  12.72 (br, 1H), 10.12 (s, 1H), 8.38 (d, J = 8.3 Hz, 

1H), 8.18 (dd, J = 7.9, 1.0 Hz, 1H), 8.07 (d, J = 8.3 Hz, 2H), 7.89-7.85 

(m, 1H), 7.79 (d, J = 8.0 Hz, 2H), 7.58-7.55 (m, 1H); 13C NMR (100 MHz, DMSO-d6):  193.3, 

162.6, 151.9, 148.9, 138.25, 138.19, 135.2, 129.9, 129.0, 129.2, 127.6, 126.4, 121.7. 

 2-(4-Acetyl-phenyl)-3H-quinazolin-4-one: Prepared from anthranilamide (5.0 mmol) 

and 4-  acetylbenzaldehyde (6 mmol, 1.2  equiv) by the  general  

procedure to give 2.01n as a white solid (0.924 g, 70%); 1H NMR 

(400 MHz, DMSO-d6):  12.69 (br, 1H), 8.32 (d, J = 8.5 Hz, 2H), 

8.18 (dd, J = 7.9, 1.1 Hz, 1H), 8.10 (d, J = 8.4 Hz, 2H), 7.85-7.89 (m, 

1H), 7.78 (d, J = 7.8 Hz, 1H), 7.54-7.59 (m, 1H), 2.66 (s, 3H); 13C NMR (100 MHz, DMSO-d6): 

 198.1, 162.6, 151.9, 149.0, 139.0, 137.0, 135.2, 128.8, 128.6, 128.2, 127.5, 121.6, 27.4. 

 2-Benzo[1,3]dioxol-5-yl-3H-quinazolin-4-one: Prepared from anthranilamide (5.0 

mmol) and 4-   piperonal (1,3-Benzodioxole-5-carboxaldehyde) (6 

mmol, 1.2  equiv) by the  general  procedure to give 2.01n as a white 

solid (1.13 g, 85%); 1H NMR (400 MHz, DMSO-d6):   12.36 (br, 1H), 

8.16 (d, J = 7.6 Hz, 1H), 7.85-7.72 (m, 4H), 7.53 (t, J = 7.8 Hz, 1H), 7.12 (d, J = 8.6 Hz, 1H), 6.18 

(s, 2H); 13C NMR (100 MHz, DMSO-d6):   163.7, 147.9, 147.5, 135.8, 134.8, 133.5, 127.6, 125.9, 

123.2, 120.5, 177.4, 114.5, 108.2, 107.7, 101.9. 
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2.10.  Experimental procedure for allylation of N-heterocycles 

In a glove box, to an oven dried 4 mL glass vial equipped with a stirring bar, N-heterocycles 

2.01 (0.5 mmol), cinnamyl alcohol 2.02da (0.067 g, 0.5 mmol, 1 equiv), Pd (PPh3)4 (0.029 g, 0.025 

mmol, 5 mol%) followed by DMC (1 mL) were added and the reaction mixture was stirred at 100 

°C. The reaction mixture was then cooled to rt, diluted with MeOH (2 x 10 mL) and passed through 

bed of celite to remove catalyst. The organic layer was dried over anhydrous Na2SO4 and 

concentrated under reduced pressure. The crude products were adsorbed on to silica gel and 

purified by column chromatography (eluent: Hexane/EtOAc) to get analytically pure product. 

2.11. Analytical data of purified cinnamylated products 

 3-Cinnamyl-3H-quinazolin-4-one: Prepared by general procedure to yield 2.03b as a 

white solid  (0.118 g, 90%); 1H NMR (400 MHz, CDCl3):  8.36 (d, J 

= 7.9 Hz, 1H), 8.12 (s, 1H), 7.73-7.79 (m, 2H), 7.51-7.55 (m, 2H), 7.26-

7.39 (m, 5H), 6.68 (d, J = 15.8 Hz, 1H), 6.32-6.39 (m, 1H), 4.81 (d, J = 2.4 Hz, 2H); 13C NMR 

(100 MHz, CDCl3): 160.9, 148.2, 146.1, 135.8, 134.5, 134.3, 128.6, 128.3, 127.5, 127.3, 126.8, 

126.6, 122.8, 122.2, 48.2; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C17H15N2O 263.1184, Found 

263.1178. 

 3-Cinnamyl-2-methylquinazolin-4(3H)-one: Prepared by general procedure to yield 

2.03c as a white solid (0.126 g, 91%); MP 127-128 oC; 1H NMR 

(400 MHz, CDCl3): δ 8.33 - 8.28 (m, 1H), 7.74 - 7.62 (m, 2H), 7.47 

– 7.45 (m, 1H), 7.43 - 7.21 (m, 5H), 6.55 (dt, J = 16.0, 1.6 Hz, 1H), 

6.30 (dt, J = 16.0, 5.8 Hz, 1H), 4.92 (dd, J = 5.9, 1.6 Hz, 2H), 2.69 (s, 3H); 13C NMR (101 MHz, 

CDCl3): δ 161.9, 154.3, 147.4, 136.0, 134.3, 132.9, 128.6, 128.1, 126.9, 126.7, 126.49, 126.47, 
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122.9, 120.5, 45.9, 23.2; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C18H17N2O 277.1341, Found 

277.1339. 

 3-Cinnamyl-2-cyclohexylquinazolin-4(3H)-one: Prepared by general procedure to yield 

2.03d colorless viscous liquid (0.146 g, 85%); 1H NMR (400 MHz, 

CDCl3): δ 8.34 - 8.31 (m, 1H), 7.74 -7.69 (m, 2H), 7.47 - 7.42 (m, 

1H), 7.39 - 7.25 (m, 5H), 6.53 (dt, J = 16.0, 1.6 Hz, 1H), 6.35 (dt, J 

= 16.0, 5.5 Hz, 1H), 5.01 (dd, J = 5.6, 1.7 Hz, 2H), 2.93 – 2.86 (m, 1H), 1.98 - 1.79 (m, 7H), 1.43 

- 1.38 (m, 3H); 13C NMR (101 MHz, CDCl3): δ 162.4, 160.6, 147.66, 136.2, 134.1, 132.4, 128.6, 

127.9, 127.2, 126.9, 126.5, 126.2, 124.08, 120.4, 44.7, 42.3, 31.7, 26.2, 25.8; HRMS (ESI-TOF) 

m/z: [M + H]+ Calcd for C23H25N2O 345.1967, Found 345.1962.  

 3-Cinnamyl-2-phenylquinazolin-4(3H)-one: Prepared by general procedure to yield 

2.03e as a white solid (0.149 g, 88%); MP 105-106 oC; 1H NMR 

(400 MHz, CDCl3): δ 8.44 - 8.36 (m, 1H), 7.85 - 7.75 (m, 2H), 7.63 

- 7.49 (m, 6H), 7.37 - 7.19 (m, 5H), 6.30 - 6.14 (m, 2H), 4.79 (d, J 

= 5.1 Hz, 2H); 13C NMR (101 MHz, CDCl3): δ 162.1, 156.2, 147.3, 136.2, 135.4, 134.5, 133.6, 

130.0, 128.7, 128.5, 128.1, 127.9, 127.6, 127.1, 126.9, 126.5, 123.3, 120.9, 47.9; HRMS (ESI-

TOF) m/z: [M + H]+ Calcd for C23H19N2O 339.1497, Found 339.1497. 

 3-Cinnamyl-2-(furan-2-yl)quinazolin-4(3H)-one: Prepared by general procedure to 

yield 2.03f as a light yellow solid (0.138 g, 84%); MP 98-100 oC; 

1H NMR (400 MHz, CDCl3): δ 8.34 (dt, J = 7.9, 1.0 Hz, 1H), 7.83 

- 7.73 (m, 2H), 7.67 (dd, J = 1.8, 0.9 Hz, 1H), 7.54 – 7.50 (m, 1H), 

7.38 - 7.11 (m, 6H), 6.64 - 6.42 (m, 2H), 6.33 (dt, J = 15.9, 5.9 Hz, 1H), 5.11 (dd, J = 5.9, 1.5 Hz, 

2H); 13C NMR (101 MHz, CDCl3): δ 162.1, 147.5, 147.4, 146.1, 144.5, 136.3, 134.5, 133.1, 128.5, 
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127.9, 127.6, 127.2, 127.0, 126.5, 123.69, 120.7, 115.5, 112.0, 46.9; HRMS (ESI-TOF) m/z: [M 

+ H]+ Calcd for C21H17N2O2 329.1290, Found 329.1295. 

 3-Cinnamyl-2-((E)-styryl)quinazolin-4(3H)-one: Prepared by general procedure to yield 

2.03g as a light yellow solid (0.131 g, 72%); MP 180-182 oC.1H 

NMR (400 MHz, CDCl3) δ 8.35 (dt, J = 8.0, 1.1 Hz, 1H), 8.02 (d, 

J = 15.4 Hz, 1H), 7.80 - 7.76 (m, 2H), 7.62 - 7.59 (m, 2H), 7.51 - 

7.47 (m, 1H), 7.46 - 7.38 (m, 5H), 7.35 – 7.30 (m, 2H), 7.28 - 7.26 (m, 1H), 7.21 (d, J = 15.4 Hz, 

1H), 6.65 (dt, J = 16.0, 1.7 Hz, 1H), 6.41 (dt, J = 16.0, 5.6 Hz, 1H), 5.10 (dd, J = 5.5, 1.7 Hz, 2H); 

13C NMR (101 MHz, CDCl3): δ 162.0, 152.4, 147.7, 141.2, 136.1, 135.5, 134.4, 132.9, 129.8, 

128.9, 128.6, 128.6, 128.1, 127.8, 127.4, 127.0, 126.5, 126.5, 126.3, 123.4, 120.6, 119.3, 45.5; 

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C25H20N2O 365.1654, Found 365.1658. 

 6-Chloro-3-cinnamylquinazolin-4(3H)-one: Prepared by general procedure to yield 

2.03h as an off white solid (0.133 g, 90%); MP 120-121 oC; 1H 

NMR (400 MHz, CDCl3): δ 8.34 - 8.28 (m, 1H), 8.10 (s, 1H), 

7.72 - 7.66 (m, 2H), 7.40 - 7.25 (m, 5H), 6.69 (dt, J = 16.0, 1.5 Hz, 1H), 6.34 (dt, J = 15.8, 6.5 Hz, 

1H), 4.80 (dd, J = 6.5, 1.4 Hz, 2H); 13C NMR (101 MHz, CDCl3): δ 159.9, 146.6, 146.3, 135.7, 

134.9, 134.7, 133.2, 129.2, 128.7, 128.4, 126.6, 126.2, 123.2, 122.4, 48.3; HRMS (ESI-TOF) m/z: 

[M + H]+ Calcd for C17H14ClN2O 297.0795, Found 297.0792.  

 3-Cinnamyl-6-methoxyquinazolin-4(3H)-one: Prepared by general procedure to yield 

2.03i as a white solid (0.123 g, 84%); MP  172-173 oC; 1H 

NMR (400 MHz, CDCl3): δ 8.02 (s, 1H), 7.71 - 7.63 (m, 2H), 

7.39 - 7.33 (m, 3H), 7.31 - 7.26 (m, 3H), 6.67 (dt, J = 15.9, 1.5 Hz, 1H), 6.36 (dt, J = 15.9, 6.4 Hz, 

1H), 4.80 (dd, J = 6.5, 1.4 Hz, 2H), 3.94 (s, 3H); 13C NMR (101 MHz, CDCl3): δ 160.8, 158.8, 
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144.0, 142.7, 135.8, 134.4 129.1, 128.6, 128.2, 126.6, 124.5, 123.0, 122.9, 106.1, 55.8, 48.2; 

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C18H17N2O2 293.1290, Found 293.1293. 

 3-Cinnamyl-6-nitroquinazolin-4(3H)-one: Prepared by general procedure to yield 2.03e 

as a yellow solid (0.126 g, 82%); MP 145-146 oC; 1H NMR 

(400 MHz, CDCl3): δ 9.22 (d, J = 2.6 Hz, 1H), 8.57 (dd, J = 

8.9, 2.6 Hz, 1H), 8.26 (s, 1H), 7.87 (d, J = 8.9 Hz, 1H), 7.42 – 7.29 (m, 5H), 6.71 (d, J = 15.8 Hz, 

1H), 6.39 - 6.31 (m, 1H), 4.76 (dd, J = 6.6, 1.2 Hz, 2H); 13C NMR (101 MHz, CDCl3): δ 159.8, 

152.1, 149.0, 146.1, 135.6, 135.4, 129.3, 128.8, 128.6, 128.4, 126.7, 123.5, 122.4, 121.7, 48.7; 

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C17H14N3O3 308.1035, Found 308.1033. 

 3-Cinnamyl-2-(4-(dimethylamino)phenyl)quinazolin-4(3H)-one: Prepared by general 

procedure to yield 2.03k as a white semisolid (0.162 g, 85%); 1H 

NMR (400 MHz, DMSO-d6): δ 8.19 - 8.17 (m, 1H), 7.85 - 7.81 (m, 

1H), 7.68 - 7.66 (m, 1H), 7.55 - 7.48 (m, 3H), 7.37 - 7.20 (m, 5H), 

6.80 - 6.77 (m, 2H), 6.36 - 6.23 (m, 2H), 4.77 - 4.73 (m, 2H), 2.97 (s, 6H); 13C NMR (101 MHz, 

DMSO-d6) δ 162.0, 157.2, 151.5, 147.7, 136.6, 134.9, 131.6, 129.9, 129.0, 128.1, 127.6, 126.9, 

126.7, 126.7, 125.3, 122.7, 120.5, 111.5, 48.0, 36.7, 24.8; HRMS (ESI-TOF) m/z: [M + H]+ Calcd 

for C25H24N3O 382.1919, Found 382.1923.  

 3-Cinnamyl-2-(4-(trifluoromethyl)phenyl)quinazolin-4(3H)-one: Prepared by general 

procedure to yield 2.03l as a white solid (0.175 g, 86%); MP 138-

140 oC; 1H NMR (400 MHz, CDCl3): δ 8.40 (dd, J = 8.0, 1.4 Hz, 

1H), 7.84 - 7.72 (m, 6H), 7.60 – 7.56 (m, 1H), 7.34 - 7.24 (m, 5H), 

6.27 - 6.18 (m, 2H), 4.76 (d, J = 5.2 Hz, 2H); 13C NMR (101 MHz, CDCl3): δ 161.8, 154.8, 147.1, 

138.7 (q, JF-CCCC = 1.33 Hz), 135.8, 134.7, 133.7, 132.14 (q, JF-CC = 33.23 Hz) 128.8, 128.6, 
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128.2, 127.6, 127.5, 127.0, 126.5, 125.7 (q, JF-CCC = 3.73 Hz) 123.7 (q, JF-C = 272.38 Hz), 

122.8; 121.0,  47.9; 19F NMR (376 MHz, DMSO-d6) δ -61.18; HRMS (ESI-TOF) m/z: [M + H]+ 

Calcd for C24H18F3N2O 407.1371, Found 407.1368. 

 4-(3-Cinnamyl-4-oxo-3,4-dihydroquinazolin-2-yl)benzonitrile : Prepared by general 

procedure to yield 2.03m as a white solid (0.154 g, 85%); MP 110-

111 oC; 1H NMR (400 MHz, CDCl3): δ 8.39 (dd, J = 7.7, 1.5 Hz, 

1H), 7.84 - 7.81 (m, 3H), 7.76 - 7.71 (m, 3H), 7.60 - 7.56 (m, 1H), 

7.34 - 7.25 (m, 6H), 6.25 - 6.13 (m, 2H), 4.74 (d, J = 5.3 Hz, 2H); 13C NMR (101 MHz, CDCl3): 

δ 161.7, 154.3, 146.9, 139.4, 135.8, 134.8, 133.6, 132.5, 129.2, 128.7, 128.3, 127.7, 127.6, 127.0, 

126.50, 122.8, 120.9, 118.0, 114.0, 48.0; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C24H18N3O 

364.1450, Found 364.1443. 

 4-(3-Cinnamyl-4-oxo-3,4-dihydroquinazolin-2-yl)benzaldehyde: Prepared by general 

procedure to yield 2.03n as a colorless liquid (0.165 g, 90%); 1H 

NMR (400 MHz, CDCl3): δ 10.2 (s, 1H), 8.40 (dd, J = 8.1, 1.0 Hz, 

1H), 8.06 (dd, J = 6.5, 1.8 Hz, 1H), 7.85 - 7.77 (m, 4H), 7.60 - 7.56 

(m, 1H), 7.33 - 7.23 (m, 5H), 6.26 - 7.14 (m, 2H), 4.76 (d, J = 5.0 Hz 2H); 13C NMR (101 MHz, 

CDCl3): δ 191.4, 161.9, 154.9, 147.1, 140.7, 137.2, 135.9, 134.7, 133.7, 129.9, 129.1, 128.6, 128.2, 

127.63, 127.58, 126.5, 122.9, 120.1, 47.9; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C24H19N2O2 

367.1447, Found 367.1448. 

 2-(4-Acetylphenyl)-3-cinnamylquinazolin-4(3H)-one: Prepared by general procedure to 

yield 2.03o as a colorless semisolid (0.162 g, 85%); 1H NMR (400 

MHz, CDCl3): δ 8.39 - 8.37 (m, 1H), 8.12 - 8.10 (m, 2H), 7.86 - 

7.74 (m, 2H), 7.71 – 7.69 (m, 2H), 7.57 - 7.53 (m, 1H), 7.32 - 7.21 
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(m, 5H), 6.25 - 6.15 (m, 2H), 4.75 (d, J = 4.5 Hz, 2H), 2.68 (s, 3H); 13C NMR (101 MHz, CDCl3): 

δ 197.2, 161.2, 155.2, 147.1, 139.5, 138.1, 135.9, 134.6, 133.6, 128.6, 128.6, 128.6, 128.1, 127.6, 

127.5, 126.9, 126.5, 123.0, 120.9, 47.9, 26.8; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for 

C25H21N2O2 381.1603, Found 381.1610. 

 2-(Benzo[d][1,3]dioxol-5-yl)-3-cinnamylquinazolin-4(3H)-one: Prepared by general 

procedure to yield 2.03p as a white solid (0.159 g, 83%); MP 142-

143 oC; 1H NMR (400 MHz, CDCl3): δ 8.38 - 8.36 (m, 1H), 7.81 - 

7.70 (m, 2H), 7.55 – 7.51 (m, 1H), 7.40 - 7.22 (m, 6H), 7.10 - 7.06 

(m, 2H), 6.95 (d, J = 7.8 Hz, 1H), 6.33 – 6.22 (m, 2H), 6.08 (s, 2H), 

4.82 (d, J = 4.7 Hz, 2H); 13C NMR (101 MHz, CDCl3): δ 162.2, 155.7, 149.1, 147.9, 147.2, 136.2, 

134.5, 133.5, 129.0, 128.6, 127.9, 127.5, 127.1, 126.9, 126.5, 123.4, 122.5, 120.9, 108.8, 108.5, 

101.7, 48.2; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C24H19N2O3 383.1396, Found 383.1401. 

 1-Cinnamylpyridin-2(1H)-one:41 Prepared by general procedure to yield 2.03q as a pale 

brown liquid (0.085 g, 81%); 1H NMR (400 MHz, CDCl3): δ 7.39 - 7.24 

(m, 7H), 6.63 - 6.57 (m, 2H), 6.33 (dt, J = 15.9, 6.5 Hz, 1H), 6.19 (td, J 

= 6.7, 1.4 Hz, 1H), 4.73 (dd, J = 6.5, 1.4 Hz, 2H); 13C NMR (101 MHz, CDCl3): δ 162.5, 139.5, 

136.9, 136.0, 128.63, 128.5, 128.1, 126.6, 123.6, 121.2, 106.2, 50.7; HRMS (ESI-TOF) m/z: [M 

+ Na]+ Calcd for C14H13NONa 234.0895, Found 234.0895. 

 3-Cinnamylpyrimidin-4(3H)-one: Prepared by general procedure to yield 2.03r as a 

white solid (0.089 g, 84%); MP 138-140 oC; 1H NMR (400 MHz, 

CDCl3): δ 8.18 (s, 1H), 7.92 (d, J = 6.8 Hz, 1H), 7.41 - 7.30 (m, 5H), 6.67 

(d, J = 16.0 Hz, 1H), 6.51 (dd, J = 6.4, 0.4 Hz, 1H), 6.36-6.29 (m, 1H), 4.73 (dd, J = 6.8, 1.4 Hz, 

1H); 13C NMR (101 MHz, CDCl3): δ 160.7, 153.4, 150.9, 135.6, 135.2, 128.7, 128.4, 126.7, 122.1, 
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116.1, 48.5; HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C13H12N2ONa 235.0847, Found 

235.0845. 

 1-Cinnamylpyrazine-2(1H)-one: Prepared by general procedure to yield 2.03s as a white 

solid (0.089 g, 84%); MP 59-60 oC; 1H NMR (400 MHz, CDCl3) δ 8.21 

(d, J = 1.2 Hz, 3H), 7.44 – 7.25 (m, 19H), 7.19 (dd, J = 4.4, 1.2 Hz, 3H), 

6.68 (dt, J = 15.8, 1.4 Hz, 3H), 6.27 (dt, J = 15.8, 6.7 Hz, 3H), 4.69 (dd, J = 6.7, 1.4 Hz, 6H); 13C 

NMR (101 MHz, CDCl3) δ 156.0, 149.7, 135.8, 135.5, 128.7, 128.5, 127.8, 126.7, 124.0, 121.6, 

50.3. HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C13H12N2ONa 235.0847, Found 235.0844. 

 2-Cinnamylphthalazin-1(2H)-one: Prepared by general procedure to yield 2.03t as a 

white solid (0.117 g, 89%); MP 64-65 oC; 1H NMR (400 MHz, 

CDCl3): δ 8.46 (dd, J = 7.5, 1.8 Hz, 1H), 8.19 (s, 1H), 7.81 – 7.73 

(m, 2H), 7.68 (dd, J = 7.6, 1.6 Hz, 1H), 7.40 - 7.30 (m, 2H), 7.29 - 7.26 (m, 2H), 7.24 - 7.20 (m, 

1H), 6.72 (dt, J = 15.8, 1.4 Hz, 1H), 6.47 (dt, J = 15.8, 6.6 Hz, 1H), 5.02 (dd, J = 6.5, 1.3 Hz, 2H); 

13C NMR (101 MHz, CDCl3): δ 159.2, 138.1, 136.5, 133.7, 133.1, 131.7, 129.7, 128.5, 128.0, 

127.8, 126.7, 126.6, 126.1, 123.7, 53.2; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C17H15N2O 

263.1184, Found 263.1186. 

 1-Cinnamylquinolin-2(1H)-one: Prepared by general procedure to yield 2.03u as a white 

solid (0.112 g, 86%); MP 45-46 oC; 1H NMR (400 MHz, CDCl3): δ 7.74 (d, 

J = 9.5 Hz, 1H), 7.65 - 7.51 (m, 2H), 7.45 (d, J = 8.6 Hz, 1H), 7.35 - 7.20 

(m, 6H), 6.78 (d, J = 9.5 Hz, 1H), 6.57 (dt, J = 15.9, 1.8 Hz, 1H), 6.34 (dt, J 

= 16.0, 5.5 Hz, 1H), 5.14 (dd, J = 5.8, 1.7 Hz, 2H); 13C NMR (101 MHz, CDCl3): δ 162.1, 139.4, 

139.4, 136.3, 132.5, 130.7, 128.94, 128.92, 128.6, 128.5, 127.7, 126.4, 123.5, 122.2, 121.7, 120.9, 
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114.7, 44.2; HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C18H15NONa 284.1051, Found 

284.1047. 

 1-Cinnamylquinoxalin-2(1H)-one: Prepared by general procedure to yield 2.03v as a 

light yellow solid (0.118 g, 90%); MP 91-93 oC; 1H NMR (400 MHz, 

CDCl3): δ 8.38 (s, 1H), 7.93 (dd, J = 8.0, 1.5 Hz, 1H), 7.59 (m, 1H), 7.44 

(dd, J = 8.5, 1.2 Hz, 1H), 7.41 - 7.22 (m, 7H), 6.63 (dt, J = 16.1, 1.6 Hz, 1H), 6.29 (dt, J = 16.0, 

5.8 Hz, 1H), 5.08 (dd, J = 5.8, 1.6 Hz, 2H); 13C NMR (101 MHz, CDCl3): δ 154.7, 150.3, 135.9, 

133.7, 133.6, 132.5, 131.1, 130.7, 128.6, 128.1, 126.5, 123.8, 121.8, 114.3, 43.8; HRMS (ESI-

TOF) m/z: [M + H]+ Calcd for C17H15N2O 263.1184, Found 263.1181. 

 3-Cinnamylbenzo[d]thiazol-2(3H)-one: Prepared by general procedure to yield 2.03w as 

a light yellow solid (0.115 g, 86%); MP 46-47 oC; 1H NMR (400 MHz, 

CDCl3): δ 7.46 (dd, J = 7.8, 1.2 Hz, 1H), 7.38 - 7.25 (m, 6H), 7.21 - 7.13 

(m, 2H), 6.65 (dt, J = 15.9, 1.6 Hz, 1H), 6.26 (dt, J = 15.9, 6.0 Hz, 1H), 

4.76 (dd, J = 6.0, 1.6 Hz, 2H); 13C NMR (101 MHz, CDCl3): δ 169.8, 137.0, 136.0, 133.5, 128.7, 

128.1, 126.6, 126.4, 123.3, 122.7, 122.1, 111.16, 44.6; HRMS (ESI-TOF) m/z: [M + H]+ Calcd 

for C16H14NOS 268.0796, Found 268.0792. 

 3-Cinnamylbenzo[d]oxazol-2(3H)-one: Prepared by general procedure to yield 2.03x as 

a light brown solid (0.113 g, 90%); MP 100-102 oC; 1H NMR (400 MHz, 

CDCl3): δ 7.48 – 7.00 (m, 10H), 6.71 (dt, J = 15.9, 1.6 Hz, 1H), 6.28 (dt, 

J = 15.9, 6.2 Hz, 1H), 4.64 (dd, J = 6.2, 1.6 Hz, 2H); 13C NMR (101 

MHz, CDCl3): δ 154.4, 142.7, 135.8, 134.2, 131.0, 128.7, 128.3, 126.6, 123.9, 122.5, 121.7, 110.1, 

108.9, 44.4; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C16H14NO2 252.1024, Found 252.1030. 
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 3-Cinnamyl-5-phenyl-1,3,4-oxadiazol-2(3H)-one: Prepared by general procedure to 

yield 2.03y as a white solid (0.119 g, 86%); MP 49-50 oC; 1H NMR (400 

MHz, CDCl3): δ 7.90 - 7.64 (m, 2H), 7.54 - 7.42 (m, 5H), 7.37 - 7.27 (m, 

3H), 6.74 (dt, J = 15.9, 1.4 Hz, 1H), 6.33 (dt, J = 15.8, 6.5 Hz, 1H), 4.59 

(dd, J = 6.6, 1.4 Hz, 2H); 13C NMR (101 MHz, CDCl3): δ 148.7, 148.6, 131.2, 130.0, 126.8, 124.2, 

123.9, 123.5, 121.9, 121.0, 119.1, 117.01, 43.2; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for 

C17H15N2O2 279.1133, Found 279.1136. 

 3-Allyl-quinazolin-4(3H)-one: Prepared by general procedure to yield 2.03a2 as a white 

solid (0.084 g, 91%); MP 65-66 oC; 1H NMR (400 MHz, CDCl3):  8.34 (d, 

J = 8.0 Hz, 1H), 8.04 (s, 1H), 7.80-7.72 (m, 2H), 7.55-7.50 (m, 1H), 6.07- 

5.97 (m, 1H), 5.31 (t, J =10.1 Hz, 2H), 4.66 (d, J = 5.7 Hz, 2H); 13C NMR (100.6 MHz, CDCl3): 

 160.8, 148.1, 146.2, 134.3, 131.9, 127.5, 127.3, 126.8, 122.1, 118.9, 48.3; MS (ESI) m/z: 186.1. 

 3-(1-Methylallyl)quinazolin-4(3H)-one: Prepared by general procedure to yield 2.05a as 

a white semi-solid (0.082 g, 82%); 1H NMR (400 MHz, CDCl3):  8.24 

(td, J = 8.1, 1.4 Hz, 1H), 7.98 (s, 1H), 7.67-7.62 (m, 2H), 7.44-7.39 (m, 

1H), 5.76-5.70 (m, 1H), 5.61-5.57 (m, 1H), 4.50 (td, J = 7.4, 2.3 Hz, 2H), 1.67-1.65 (m, 3H); 13C 

NMR (100 MHz, CDCl3):  160.9, 160.7, 148.0, 146.2, 146.1, 134.0, 131.0, 130.0, 127.3, 127.12, 

127.10, 126.7, 126.6, 124.8, 123.9, 122.1, 47.8, 42.7, 17.6, 13.1; HRMS (ESI-TOF) m/z: [M + 

H]+ Calcd for C12H13N2O 201.1028, Found 201.1030. 

 3-(2-Methylallyl)quinazolin-4(3H)-one: Prepared by general procedure to yield 2.06a as 

a colorless liquid (0.085 g, 85%); 1H NMR (400 MHz, CDCl3):  8.25-8.28 

(m, 1H), 7.96 (s, 1H), 7.65-7.72 (m, 2H), 7.43-7.47 (m, 1H), 4.94 (t, J = 1.2 

Hz, 1H), 4.94 (d, J = 0.7 Hz, 1H), 4.53 (s, 2H), 1.74 (d, J = 0.5 Hz, 3H); 13C NMR (100 MHz, 
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CDCl3):  160.8, 148.0, 146.4, 139.8, 134.2, 127.5, 127.2, 126.8, 122.0, 113.5, 50.9, 20.1; HRMS 

(ESI-TOF) m/z: [M + H]+ Calcd for C12H13N2O 201.1028, Found 201.1031. 

 3-(Cyclohex-2-en-1-yl)quinazolin-4(3H)-one: Prepared by general procedure to yield 

2.06b as a white solid colorless liquid (0.088 g, 78%); 1H NMR (400 MHz, 

CDCl3):  8.32-8.35 (m, 1H), 8.19 (s, 1H), 7.70-7.76 (m, 2H), 7.49-7.53 

(m, 1H), 6.22-6.27 (m, 1H), 5.65-5.69 (m, 1H), 5.55-7.56 (m, 1H), 2.17-

2.67 (m, 3H), 1.68-1.82 (m, 3H); 13C NMR (100 MHz, CDCl3):  160.9, 144.7, 134.6, 134.1, 

127.4, 127.1, 126.9, 125.2, 121.9, 49.9, 29.8, 24.6, 19.6; HRMS (ESI-TOF) m/z: [M + Na]+ Calcd 

for C14H14N2ONa 249.1004, Found 249.1006. 

 3-(1,3-Diphenyl-allyl)-3H-quinazolin-4-one: Prepared by general procedure to yield 

2.06c as a white solid (0.120g, 71%); MP 100-101 oC; 1H NMR (400 

MHz, CDCl3) 8.43 – 8.36 (m, 1H), 8.19 (s, 1H), 7.81 – 7.71 (m, 

2H), 7.52 (ddd, J = 8.2, 5.8, 2.6 Hz, 1H), 7.47 – 7.24 (m, 11H), 6.99 

(d, J = 5.9 Hz, 1H), 6.76 – 6.58 (m, 2H); 13C NMR (100 MHz, CDCl3):  160.7, 147.7, 145.2, 

138.2, 135.7, 135.4, 134.4, 129.2, 128.8, 128.5, 128.5, 127.9, 127.6, 127.4, 127.2, 126.8, 125.8, 

122.0, 58.5; HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C23H18N2ONa 361.1317, Found 

361.1318. 

 3-(buta-1,3-dien-1-yl)quinazolin-4(3H)-one: Prepared by general procedure to yield 

2.06d as a white solid (0.081g, 82%); MP 92-93 oC; 1H NMR (400 MHz, 

CDCl3): 8.33 (d, J = 7.8 Hz, 1H), 8.28 (s, 1H), 7.72-7.80 (m, 2H), 7.53 

(t, J = 7.5 Hz, 1H), 7.38 (d, J = 13.2 Hz, 1H), 6.49-6.57 (m, 2H), 5.45 (d, J = 15.9 Hz, 1H), 5.32 

(d, J = 9.4 Hz, 1H); 13C NMR (100 MHz, CDCl3);  159.6, 147.3, 142.5, 134.6, 133.3, 127.76, 
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127.14, 125.9, 123.1,121.6, 120.1; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C12H11N2O 

199.0871, Found 199.0876. 
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CHAPTER 3. PALLADIUM CATALYZED ALLYLIC SP3 C-H OXIDATIVE 

AMIDATION OF N-HETEROCYCLES 

3.1. Introduction 

The ubiquitous nature of the C-H bond is a great resource for creating molecules with high 

complexity but also creates difficulty in designing selective functionalization. Despite intensive 

efforts to advance new synthetic methods in organic chemistry, the development of effective 

strategies to convert C–H bonds to other functional groups en route to a wide range of more 

complicated materials, such as polymers and bioactive molecules, remains a central challenge in 

catalysis.1–4 Alkyl C(sp3)-H bonds, in particular, present both fundamental and practical challenge 

to functionalize due to their robustness. The poor reactivity of C(sp3)–H bonds is often attributed 

to their high bond energies (typically 90–100 kcal/mol), low acidity (estimated pKa = 45 to 60), 

and unreactive molecular orbital profile.1–12  On the other hand, allylic sp3 C-H bonds can be 

exclusively functionalized taking the advantage of the olefin as a directing group and a lower bond 

dissociation energy (~70 kcal/mol). This type of modification greatly improves the atom efficiency 

of the C-C and C-X bond formation avoiding the use of leaving group. However, the methods to 

catalytically activate/oxidize selected allylic carbon-hydrogen bonds is a fundamental challenge 

for chemical synthesis as they often result in a complex mixture of oxidized products including 

linear, branched, and vinyl oxidation or Wacker products. The issues in controlling the selectivity 

of allylic oxidations have limited their use in chemical synthesis in a broad sense. In general, for 

constructing allylic substitution motifs via metal catalyzed allylation, two major approaches are 

commonly employed: (1) Leaving group (LG) approach and (2) C-H activation approach. Leaving 

group approach under palladium catalysis has inherent advantage of easy ionization to form -

allyl complex, leading to faster reactions and higher selectivity upon nucleophile attack.13 
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3.2. Palladium catalyzed allylic C-H oxidative C-N bond formation 

Allylic C-H bond functionalization approach although favorable but is fundamentally 

challenging, because of combining three dissimilar steps-electrophilic C-H cleavage, nucleophilic 

attack, and regeneration of Pd(II) by oxidation of Pd(0) generated after the reaction. Development 

of a Pd(II)/bis-sulfoxide system by White and coworkers14 have laid a solid ground work for 

initially palladium catalyzed allylic acetoxylation,15–18 esterification,19 and expanded to C-C bond 

formation20–23 even with high stereoselectivity.24–26 

3.2.1. Intramolecular allylic C-H amination 

Palladium(II)-promoted addition of nitrogen nucleophiles to olefins (amino palladation) is 

a well-established process leading to many interesting reactions such as oxidative amination,27–30 

aminoacetoxylation,31,32 aminohalogination,33 and deamination.34–36 Allylic C-H amination, on the 

other hand, requires a weak Lewis basic nucleophile preventing its interference with the 

electrophilic C-H cleavage step and acidic enough to be deprotonated by counter ion of the Pd(II) 

catalyst. In the case of intermolecular allylic C-H amination, in addition to reactivity, also face 

regioselectivity and chemoselectivity issue of competing reactivity of olefin moiety.37 Keeping in 

to account all these difficulties, White and coworkers first reported an intramolecular allylic C-H 

amination to generate anti-oxazolidinone products (Scheme 3.1).38 Tethering a nitrogen 

nucleophile (N-tosyl carbamate) was essential for the transformation as independent 

intermolecular study did not yield any product. Mechanistic studies indicated an allylic C-H 

cleavage by electrophilic Pd(II) catalyst forming -allylpalladium intermediate. Palladium catalyst 

counterion, acts as an exogenous base then deprotonates tethered nucleophile paving way for 

nucleophilic substitution on to allyl intermediate forming a stable five membered ring. The 
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catalytic source of weak base then regenerated during the reoxidation of Pd(0) with quinone 

oxidant.  

 

Scheme 3.1: Oxazolidinone synthesis via intramolecular allylic C-H amination 

3.2.2. Intermolecular allylic C-H amination 

Compared to intramolecular, intermolecular allylic C-H amination is even more 

challenging because of the olefin isomerization and meeting the electronic demands on the 

palladium metal center for each individual step of the catalytic cycle. In general, early studies on 

allylic C-H amination for the formation of linear allylic amines selectively relied on utilizing 

solvent quantities of substrate to give the best yields (based on oxidant) limiting their use.39,40  A 

clear development in intermolecular allylic C-H amination was reported by White and coworkers 

by realizing the importance of Lewis acid additives to accelerate the nucleophile functionalization 

from a palladium -allyl dimer (Scheme 3.2).41,42 Catalytic amounts of Cr(salen)Cl was found to 

be most effective Lewis acid promoter for intermolecular allylic C-H amination generating the 

product with excellent E/Z and linear/branched ratio.  

 

Scheme 3.2: Intermolecular allylic C-H amination promoted by Lewis acid 

It was suggested that Lewis acid increases the electrophilic nature of the BQ bound 

palladium -allyl complex, facilitating easy nucleophilic attack.43  On the other hand, reactivity of 
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non-basic nucleophiles (pKa < 25) can be increased by deprotonation using an exogenous base via 

a “nucleophile” activation approach.44 White and coworkers, taking advantage of the 

“nucleophile” activation approach developed a Bronsted base, N,N-diisopropylethylamine 

enhanced allylic C-H amination improving the substrate scope and selectivity (Scheme 3.3).45  

 

Scheme 3.3: Modes of activation for the functionalization of Pd -allyl intermediates with 

nitrogen nucleophiles 

Since this initial report there has been a tremendous interest in the development of catalytic 

systems for allylic C-H amination of variety of amine nucleophiles.46–48 The main caveat among 

the methods reported in the literature for allylic amination is that none of these methods utilized 

cyclic aminating nucleophiles. Even among the acyclic amine nucleophiles, most reported methods 

are focused on the use of different catalysts, and or oxidants restricting amine partner to mostly N-

tosyl or nosyl carbamates.46–48 Cyclic aminating partners, on the other hand poses significant 

challenges both in terms of reactivity and sterics. As part of our continuous efforts on the 

functionalization of heterocycles, we sought to explore the possibility of allylic C-H oxidative 

amidation of electron deficient cyclic N-heterocycles. 

3.3. Results and discussion 

With the success of the palladium catalyzed Tsuji-Trost allylation of N-heterocycles 

established, we sought to explore allylic C-H amination methodology for functionalizing N-

heterocycles to increase the atom efficiency and negate the necessity of leaving group from 
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classical reaction methodology (Scheme 3.4). During the past decade, variety of Pd(II) catalysts 

enabled allylic C-H functionalization reactions such as oxygenation, amination, alkylation, 

carbonylation, silylation, fluorination, and borylation. The direct allylation of electron-deficient 

N-heterocycles remained challenge until our finding. This is in part due to their tautomerizable 

nature, presenting challenges not only with less reactivity but also with regio and chemoselectivity. 

 

Scheme 3.4: Classical Tsuji-Trost reaction vs Allylic C-H activation  

3.4. Preliminary investigation  

3.4.1. Allylic C-H amidation: investigation of literature protocol 

Our preliminary studies were primarily focused on functionalizing tautomeric N-

heterocycles using established protocols of allylic C-H amination rather than developing new 

methodology. We started our investigation, initially examining the utility of the amination protocol 

reported by White7d,7e for the reaction of (4H)-quinazolone 3.01a with allylbenzene 3.02a (Table 

3.1). However, no allylic amidation to form 3.03a/3.03b was observed under these conditions. 

Addition of known activators such as Bronsted base (DIPEA) or Lewis acid [(salen)Cr(III)Cl] also 

did not afford any product formation. 
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Table 3.1: Allylic amidation of 3.01a using 3.02a under White amination protocol 

 

Entry  Additives    Conversiona,b  3.03a : 3.03b : 3.03c       Yield (3.03a)c 

1  None   0   N/A   N/A 

2  DIPEA   0   N/A   N/A  

3  (salen)Cr(III)Cl 0   N/A   N/A 

Reaction conditions: 3.01a (0.2 mmol) was treated with 3.02a (0.3 mmol, 1.5 equiv) under white 

amination protocol. aBased on 1H NMR of the crude reaction mixture (with respect to 3.01a) using 

CH2I2 as internal standard. bStarting 3.01a was found intact. cIsolated yield. 

3.4.2. Screening of modified reaction conditions 

 Since, allylic C-H oxidative reactions tend to be highly selective to reaction conditions, 

and it has been previously shown that change in solvents or temperature could accelerate the rate 

of nucleophilic attack from a palladium -allyl dimer, prompting an examination of these 

conditions. To our disappointment, change in any of these parameters both under Lewis acidic 

(Table 3.2) or Bronsted basic (Table 3.3) conditions did not yield any N-allylated or O-allylated 

product. This led us to believe that the reaction conditions generally employed for allylic C-H 

amination are not efficient for the allylation of electron deficient tautomerizable N-heterocycles 

prompting us to carefully investigate and develop a reaction methodology. 
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Table 3.2: Allylic amidation of 3.01a using 3.02a under modified White amination protocol with 

Lewis acid additive 

 

Entry Solvent Temp   Conversion a,b 3.03a : 3.03b : 3.03c c      Yield 3.03ad 

1 1,4-Dioxane 45  0   N/A   N/A 

2 THF  45  0   N/A   N/A 

3 DMF  45  0   N/A   N/A 

4 DMSO  45  0   N/A   N/A 

5 TBME  100  0   N/A   N/A 

6 1,4-Dioxane 100  0   N/A   N/A 

7 THF  100  0   N/A   N/A 

8 DMF  100  0   N/A   N/A 

9 DMSO  100  <10   100: 0 : 0  N/A  

Reaction conditions: 3.01a (0.2 mmol) was treated with 3.02a (0.3 mmol, 1.5 equiv) under white 

amination protocol with change in conditions. aBased on 1H NMR of the crude reaction mixture 

(with respect to 3.01a) using CH2I2 as internal standard. bStarting 1a was found intact. c1H NMR 

(using CH2I2 as internal standard) and GC-MS analysis of the crude reaction mixture determined 

the ratio of L/B and N/O selectivity respectively. dIsolated yield.  
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Table 3.3: Allylic amidation of 3.01a using 3.02a under modified White amination protocol with 

Bronsted base additive 

 

Entry Solvent Temp   Conversion a,b 3.03a : 3.03b : 3.03c c      Yield 3.03ad 

1 1,4-Dioxane 45  0   N/A   N/A 

2 THF  45  0   N/A   N/A 

3 DMF  45  0   N/A   N/A 

4 DMSO  45  0   N/A   N/A 

5 TBME  100  0   N/A   N/A 

6 1,4-Dioxane 100  0   N/A   N/A 

7 THF  100  0   N/A   N/A 

8 DMF  100  0   N/A   N/A 

9 DMSO  100  <10   100: 0 : 0  N/A  

Reaction conditions: 3.01a (0.2 mmol) was treated with 3.02a (0.3 mmol, 1.5 equiv) under white 

amination protocol with change in conditions. aBased on 1H NMR of the crude reaction mixture 

(with respect to 3.01a) using CH2I2 as internal standard. bStarting 1a was found intact. c1H NMR 

(using CH2I2 as internal standard) and GC-MS analysis of the crude reaction mixture determined 

the ratio of L/B and N/O selectivity respectively. dIsolated yield. 

3.4.3. Reaction optimization: screening of palladium catalysts 

Investigation of different palladium catalysts gave us more insights in to the allylic C-H 

amination of N-heterocycles. A clear effect of palladium catalyst counterion and ligand were 

found. More basic counter ions such as acetate (Table 3.4, entry 1 and 9) (pKa = 4.8) or 

trifluoroacetate (Table 3.4, entry 2) (pKa = -0.25), which are generally considered as very efficient 

for allylic C-H oxidations, were found to be detrimental in case of N-heterocycles. On the other 

hand, chloride counter ions (pKa = -8.0) were very effective for forming product in good yields 

(Table 3.4, entry 3, 5, and 6). Not surprisingly, phosphine ligated palladium complexes, which 
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were found to be ineffective in allylic C-H oxidation reactions,49 were also found detrimental 

(Table 3.4, entry 4 and 7). Among all the tested Pd-catalysts, PdCl2 was found to be optimal for 

the formation of product in good yields.   

Table 3.4: Investigation of Pd-catalysts for the allylic amidation of 3.01a with 3.02a 

 

Entry Pd-catalyst           Conversiona   3.03a : 3.03b : 3.03cc,d  Yield (3.03a)e 

1 Pd(OAc)2   <5b   100 : 0: 0   N/A 

2 Pd(TFA)2   27   100 : 0: 0   13  

3 PdCl2    91   100 : 0: 0   85 

4 (PPh3)2PdCl2   <5b   100 : 0: 0   N/A 

5 (PhCN)2PdCl2   62   100 : 0: 0   55 

6 [PdCl(allyl)]2   69   100 : 0: 0   57 

7 Pd(dppf)Cl2   0b   N/A    N/A 

8 IPrPd(allyl) Cl   21   100 : 0: 0   13 

9 White Catalyst   <10b   100 : 0: 0   N/A  

7 None    0b   N/A    N/A 

Reaction conditions: 3.01a (0.2 mmol) was treated with 3.02a (0.3 mmol, 1.5 equiv) in presence 

of different Pd-catalyst (10 mol %) and DMBQ (2 equiv) in DMSO (0.5 mL) at 100 °C for 24 h. 
aBased on 1H NMR of the crude reaction mixture (with respect to 3.01a) using CH2I2 as internal 

standard. bStarting 3.01a was found intact. c1H NMR (using CH2I2 as internal standard) analysis of 

the crude reaction mixture determined the ratio of E/Z and L/B selectivity. dGC-MS analysis of 

the crude reaction mixture determined the ratio of N/O selectivity. eIsolated yield.  

3.4.4. Reaction optimization: solvent screen 

With optimized PdCl2 as the catalyst, we performed a solvent screen and found that DMSO 

is essential for the formation of product (Table 3.5, entry 10, 12 and 13). We hypothesize that in 

our reaction conditions DMSO can perform multiple functions. 1) It can act as a ligand/ 

coordinating group to palladium forming an active Pd(DMSO)2Cl2 catalyst for a facile C-H bond 
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cleavage. 2) DMSO increases the solubility of 4-Hydroxy quinazolinone (3.01a) 3) DMSO in 

combination with BQ can act as an oxidizing agent for the regeneration of Pd(II). 

Table 3.5: Effect of solvents on the PdCl2-catalylyzed the allylic amidation of 3.01a with 3.02a  

 

Entry  Solvent  Conversiona 3.03a: 3.03b: 3.03cc,d  Yield (3.03a)e 

1  DMF    0b  N/A   N/A 

2  MTBE    0b  N/A   N/A   

3  THF    0b  N/A   N/A  

4  DCE    0b  N/A   N/A  

5  1,4-Dioxane   0b  N/A   N/A 

6  Toluene   0b  N/A   N/A 

7  DMC    0b  N/A   N/A 

8  DME    0b  N/A   N/A  

9  THF: DMSO (4:1)  0b  N/A   N/A 

10  THF: DMSO (1:4)  81  100: 0: 0  63   

11  1,4-Dioxane: DMSO (4:1) 0b  N/A   N/A  

12  1,4-Dioxane: DMSO (1:4) 72  100: 0: 0  58   

13  DMSO    93  100: 0: 0  86 

Reaction conditions: 3.01a (0.2 mmol) was treated with 3.02a (0.3 mmol, 1.5 equiv) in presence 

of PdCl2 (10 mol %) and DMBQ (2 equiv) in different solvents (0.5 mL) at 100 °C for 24 h. aBased 

on 1H NMR of the crude reaction mixture (with respect to 3.01a) using CH2I2 as internal standard. 
bStarting 3.01a was found intact. c1H NMR (using CH2I2 as internal standard) analysis of the crude 

reaction mixture determined the ratio of E/Z and L/B selectivity. dGC-MS analysis of the crude 

reaction mixture determined the ratio N/O selectivity. eIsolated yield. 

3.4.5. Reaction optimization: effect of acids or bases 

Addition of acids or bases were known to increase the overall efficiency of allylic C-H 

amination.42,45 In hope of developing mild conditions, we screened different acids and bases (Table 

3.6). While tertiary amine bases yielded appreciable quantities of the product (Table 3.6, entries 1 
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and 4), addition carboxylate bases completely hindered the reaction (Table 3.6, entries 5-7). 

Addition of acids (Table 3.6, entries 8 and 9) also completely shut down the reaction consistent 

with the Pd-catalyst screening, where Pd(OAc)2 or Pd(TFA)2 did not yield any product highlighting 

the importance of counterion for the smooth formation of the product. 

Table 3.6: Effect of acids/bases on the PdCl2-catalyzed allylic amidation of 3.01a with 3.02a 

 

Entry  Acid/Base     Conversiona     3.03a: 3.03b: 3.03cd,e          Yield (3.03a)f 

1  DIPEA   25b  100: 0: 0   13   

2  DIPA   0c  N/A    N/A 

3  DBU   0c  N/A    N/A  

4  TEA   28b  100: 0: 0   15  

5  NaOAc  0c  N/A    N/A   

6  K2CO3   0c  N/A    N/A  

7  Cs2CO3  0c  N/A    N/A   

8  AcOH   0c  N/A    N/A  

9  TFA   0c  N/A    N/A   

Reaction conditions: 3.01a (0.2 mmol) was treated with 3.02a (0.3 mmol, 1.5 equiv) in presence 

of PdCl2 (10 mol %) and DMBQ (2 equiv) in DMSO (0.5 mL) in presence of acids/bases (20 

mol%) at 100 °C for 24 h. aBased on 1H NMR of the crude reaction mixture (with respect to 3.01a) 

using CH2I2 as internal standard. bUnreacted 3.01a was recovered intact. cStarting 3.01a was found 

intact. d1H NMR (using CH2I2 as internal standard) analysis of the crude reaction mixture 

determined the ratio of E/Z and L/B selectivity. eGC-MS analysis of the crude reaction mixture 

determined the ratio N/O selectivity. fIsolated yield. 

3.4.6. Optimization of reaction conditions 

An overall extensive screening of the reaction parameters provided us with the utilization 

of 10 mol % PdCl2, 1.5 equivalents of 2,6-dimethylbenzoquinone as oxidant in 1M solution of 

DMSO at 100 oC for 24h as optimal conditions to yield 3.03a as the sole product in 92% yield. 
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These conditions are operationally simple and do not require any additional additives, which are 

found to be essential in all the reported literature. 

Table 3.7: Investigation of optimal reaction parameters for the PdCl2-catalyzed allylic amidation 

of 3.01a with 3.02a 

 

Entry       Temperature  Catalyst Solvent  DMBQ      Yield (3.03a) 

  (x °C)    (x mol%) (x mL)  (x equiv) (%)a 

1  120   10         0.5  2  93   

2  100   10  0.5  2  92 

3  80   10  0.5  2  75  

4  50   10  0.5      2  0 

5  rt   10  0.5  2  0 

6  100   15  0.5  2  92 

7  100   5  0.5  2  79 

8  100   2  0.5  2  41 

9  100   10  0.3  2  92 

10  100   10  0.2  2  92 

11  100   10  neat  2  35 

12  100   10  0.2  2  92 

13  100   10  0.2  1.5  92 

14  100   10  0.2  1.2  78 

15  100   10  0.2  1  51 

Reaction conditions: 3.01a (0.2 mmol) was treated with 3.02a (0.3 mmol, 1.5 equiv) in presence 

of different variations of PdCl2, DMBQ in DMSO for 24 h. aIsolated yield  

3.5. Olefin substrate scope for allylic amidation reaction of 4-hydroxy quinazolinone 

Inspired by optimized results using allyl benzene 3.02a, substrate scope with respect to 

olefins were investigated to demonstrate the generality of intermolecular allylic C-H amidation. 

Table 3.8 summarizes the results of the products obtained via allylic amidation of 4-

hydroxyquinazoline 3.01a and terminal olefins. In general, a wide range of either commercially 
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available or readily accessible terminal olefins smoothly underwent allylic C−H amidation 

reaction with 3.01a in high yield and excellent chemo- (N vs O), regio- (linear vs branched), and 

stereoselectivity (E vs Z). It is significant to note that the reaction was seemingly insensitive to the 

electronic feature of the aryl moiety of the olefin substrates as both electron-donating (3.04b and 

3.04c) and electron-withdrawing (3.04d, and 3.04e) substituted allyl benzenes reacted smoothly 

with high yields. Highly substituted and electron withdrawing pentafluorinated olefin (3.04f) also 

reacted well under optimized conditions forming the product in good yield. Olefins attached to 

heteroaryl compounds (3.04h and 3.04i) or sterically demanding naphthyl compounds (3.04j) also 

formed product in excellent yields explaining the versatility of the optimized conditions. Aliphatic 

terminal olefins, which are generally less reactive, also reacted with 3.01a affording products 

3.04k-3.04m, albeit in slightly lower yields. 

 

 

 

 

 



 

99 

Table 3.8: Intermolecular allylic C-H amidation of 3.01a with terminal olefins 

 

Reaction conditions: Reactions were conducted on 0.2 mmol scale, 3.01a (0.2 mmol), 3.02 (1.5 

equiv, 0.3 mmol), PdCl2 (10 mol%), DMBQ (1.5 equiv, 0.3 mmol), DMSO (0.2 mL, 1M), 100 oC, 

24 h. b1H NMR analysis of crude reaction determined the ratio of E/Z and L/B ratio. cGC-MS 

analysis of crude reaction mixture determined N/O ratio of products.  
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3.6. N-Heterocycle substrate scope for allylic C-H amidation of allylbenzene 

We next examined the scope of N-heterocycles as nucleophile in the direct allylic C-H 

amidation of allylbenzene (Table 3.9). Differently substituted quinazolinones reacted well to 

produce high yields with excellent chemo- and regioselectivity towards linear isomer. Both 

electron-withdrawing (3.05a) and electron-donating (3.05b) quinazolinones reacted smoothly 

providing products in good yields. Additionally, more hindered 2-substituted quinazolinones with 

both electron withdrawing and donating substituents at para position also allylated with high 

efficiency (3.05c−3.05f). We envisioned that such an amidation strategy could be extended beyond 

the quinazolinone nucleus to other biologically relevant heterocycles with varying nucleophilicity. 

As shown in Table 3.9, we were delighted to discover that N-heterocycles such as phthalazine 

(3.05g), pyrimidine (3.05h), pyrazine (3.05i), and pyridines (3.05j−3.05m) all reacted well with 

excellent yields and high chemo-, regio-, and stereoselectivities towards N-allylation under 

optimized conditions. This demonstrates the versatility of our methodology to afford a range of 

allylated heterocycles. It is noteworthy to mention the excellent N vs O selectivity for the 

pyridinone and pyrazinone nucleophiles (3.05i-3.05m) as high linear selectivity towards N-

allylation is oftentimes very difficult to achieve due to the labile nature of oxo-hydroxy tautomeric 

equilibria. In these cases of labile equilibrium, we also observed trace amounts of byproducts 

resulting from O-allylation and regioisomeric allylation (linear and branched products). These 

products, albeit in less yields shed light on the possibility of reaction optimization to produce 

exclusively O-allylated products. However, even after extensive optimization we could not form 

O-allylated products in appreciated yields. 
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Table 3.9: Intermolecular allylic C-H amidation with different N-heterocycles 

 

 

Reaction conditions: Reactions were conducted on 0.2 mmol scale, 3.01 (0.2 mmol), 3.02a (1.5 

equiv, 0.3 mmol), PdCl2 (10 mol%), DMBQ (1.5 equiv, 0.3 mmol), DMSO (0.2 mL, 1M), 100 oC, 

24 h. b1H NMR analysis of crude reaction determined the ratio of E/Z and L/B ratio. cGC-MS 

analysis of crude reaction mixture determined N/O ratio of products.  
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3.7. Elucidating the mechanism: possible pathways 

Exclusive or high selectivity towards linear N-allylation prompted us to investigate the 

mechanism of the reaction. To gain insight in to the mechanism of operation in our reaction 

condition, we proposed four different mechanistic pathways that govern the outcome of the allylic 

C-H oxidative amidation (Scheme 3.5). 

Scheme 3.5: Possible catalytic cycles for allylic C-H amidation 
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Path-A includes the Wacker-type aminopalladation/-hydride elimination as the key 

step.50–52 However the mechanism does not correspond to the fact that internal olefins when 

employed under reaction conditions did not yield any product. Further, a Wacker oxidation usually 

results in attack of the nucleophile at the secondary carbon over a primary carbon. As a control 

experiment, allylbenzene, in the absence of 3.01a, underwent isomerization to 3.08 under the 

reaction conditions (∼12%, GC-MS), suggesting that allylbenzene is capable of undergoing C−H 

activation through a Pd-allyl intermediate. Further, no isomerization of 3.08 to 3.02a was 

observed. Thus, it is unlikely that the oxidative amidation process proceeds through an 

aminopalladation pathway (Scheme 3.6). 

 

Scheme 3.6: Control studies for validating Wacker type process 

 Path-B includes the formation of cinnamyl chloride by C-H activation followed by chloride 

attack on the Pd-allyl intermediate, and cinnamyl chloride then undergo Tsuji-Trost reaction to 

give product.53–55 In an independent study, treatment of 3.09 with 3.01a under the reaction 

conditions produced 3.03a only as a trace product (Scheme 3.7).  
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Scheme 3.7: Control study to validate Tsuji-Trost reaction 

 Path-C was based on work by Cheng and Bao on DDQ mediated oxidative coupling of 

diarylallylic C-H bond with methylenic C-H bond. They proposed a mechanism involves the 

formation of allyl cation by quinone mediated oxidation of olefin. However, DMBQ did not afford 

any product in the absence of PdCl2 (Scheme 3.8).
56

 

 

Scheme 3.8: Control study to validate DMBQ mediated allylic C-H amidation 

 Path-D involves formation of -allylpalladium complex as the key intermediate, which is 

formed by the electrophilic allylic C-H bond cleavage by a sulfoxide-assisted palladium catalyst. 

Nucleophilic attack of the nitrogen of N-heteroarenes would form the allylated product 3.03a 

followed by subsequent reoxidation of Pd(0) to Pd(II) by DMBQ to complete the catalytic cycle. 

To validate the pathway, a stoichiometric reaction, excluding nucleophile 3.01a, in DMSO was 

performed and monitored by 1H NMR. A dimeric π-allylpalladium chloride complex-B was 

observed, confirming the allylic C−H bond cleavage. When 3.01a was then added, formation of 

3.03a was observed with similar yield and regioselectivity. In the absence of DMSO (using 

dioxane as solvent), the formation of dimeric π-allylpalladium chloride complex-B was not 

observed, suggesting the sulfoxide ligation to PdCl2 was essential to effect Pd-mediated allylic 

C−H cleavage to form a monomeric π-allylpalladium intermediate that is detected in the form of 
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dimeric complex-B. Single-crystal X-ray structures of the sulfoxide ligated PdCl2 (complex-A) 

and dimeric π-allylpalladium chloride complex-B were obtained to confirm their formation 

(Scheme 3.9). 

 

Scheme 3.9: Control study to validate allylic C-H oxidation/formation of -allylpalladium 

complex 

3.8. Intermolecular competitive studies of terminal olefins 

To gain insight into the effect of electronics on the relative reactivity of allyl arenes in the 

allylation reaction, independent set of competitive reactions were carried between an equimolar 

mixture of allyl benzene 3.02a,  with electron donating 4-allylanisole 3.02b, and allyl benzene 

3.02a with1-allyl-4-(trifluoromethyl) benzene 3.02c, and allyl benzene 3.02a with 2-

allylthiophene 3.02d, and allyl benzene 3.02a with allyl cyclohexane 3.02e were treated with 4-

hydroxy quinazoline 3.01a (Scheme 3.10). Selective amidation with allyl benzene 3.02a took place 

in preference to electron donating (3.02b), heteroaryl (3.02d), and aliphatic olefins (3.02e), 

however, in the case of competition between allyl benzene 3.02a and electron withdrawing (3.02c), 

selectivity favored toward 3.02c. The observed selectivity indicates the differential susceptibility 
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of allylic C−H bond cleavage to form “-allylpalladium” and or the relative electrophilicity allyl 

complex toward nucleophilic addition. In general, electron withdrawing groups on the aryl group 

of terminal olefins increases the reactivity of allylic C-H bond forming -allylpalladium, in 

preference from electron donating substituents. 

 

Scheme 3.10: Intermolecular competitive studies between terminal olefins 

3.9. Summary and conclusion 

In summary, we have developed a general Pd(II)/sulfoxide catalyzed allylic C−H activation 

method for the direct intermolecular amidation of terminal olefins with tautomerizable 

heterocycles (quinazoline, phthalazine, pyrimidine, pyrazine, and pyridine) with excellent chemo, 

regio-, and stereoselectivity. This operationally simple method proceeded with high substrate 

generality under uniform conditions (catalyst, solvent, temperature) offering a valuable tool to 

obtain structurally diverse N-heterocycles amenable for medicinal chemistry applications. 
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3.10. Outlook and future work  

Isolation of palladium complexes A and B directly from PdCl2, DMSO or olefin is an 

important advancement in -allylpalladium chloride catalyst synthesis. This methodology 

provides an easy access to substituted-cinnamylpalladium chloride dimer synthesis that are 

otherwise requires multiple steps and harmful reagents. We envisioned that these readily generated 

complexes could be utilized as precatalysts for a variety of important synthetic transformations.  

Scheme 3.11 highlights one of the challenging reaction of alkyne C-H activation/ N-amination 

reaction catalyzed by insitu formed electron deficient -allylpalladium chloride dimer. 

 

Scheme 3.11: Electron deficient -allylpalladium chloride dimer for alkyne C-H 

activation/amination 

 The electron deficient -allylpalladium chloride dimers were also found to be superior 

catalysts in other cross-coupling reactions (Scheme 3.12) compared to unsubstituted and parent 

cinnamyl derived -allylpalladium chloride catalysts. The future studies in the group are focused 

on isolating the catalysts with varied electronics, to carry out mechanistic studies for the formation 
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of Pd(I) dimers, and to develop an efficient catalyst system for unreactive electrophiles such as 

amides and esters.  

   

Scheme 3.12: Optimized precatalysts for coupling reactions. 

3.11. Experimental section 

3.11.1. General information 

Unless otherwise noted, all manipulations were carried out under a nitrogen atmosphere 

using standard Schlenk-line or glovebox techniques. All glassware was oven-dried for at least 1h 

prior to use. THF, toluene, ether, and hexane were degassed by purging with nitrogen for 45 min 

and dried with a solvent purification system (MBraun MB-SPS). DMF, dioxane, dimethoxyethane, 

dichloroethane, methanol, and ethanol were dried over activated 3 Å molecular sieves and 

degassed by purging with nitrogen. All commercially obtained reagents/solvents were 

purchased from Alfa Aesar®, Sigma-Aldrich®, Acros®, TCI America®, Mallinckrodt®, and 
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Oakwood® Products, and used as received without further purification. TLC plates were 

visualized by exposure to ultraviolet light. Organic solutions were concentrated by rotary 

evaporation at ~10 torr. Flash column chromatography was performed with 32–63 microns silica 

gel. 1H NMR spectra were obtained on a 400 MHz spectrometer, and chemical shifts were recorded 

relative to residual protiated solvent. 13C NMR spectra were obtained at 100 MHz, and chemical 

shifts were recorded to the solvent resonance. Both 1H and 13C NMR chemical shifts were reported 

in parts per million downfield from tetramethylsilane (δ = 0 ppm). 19F NMR spectra were obtained 

at 282.4 MHz, and all chemical shifts were reported in parts per million upfield of CF3COOH (δ 

= -78.5 ppm). Coupling constants (J) are reported in hertz (Hz). Standard abbreviations 

indicating multiplicity were used as follows: s (singlet), br (broad), d (doublet), t (triplet), q 

(quartet) and m (multiplet). Data for 13C NMR spectra are reported in terms of chemical shift 

(δ ppm).  High-resolution mass spectra were obtained from a Bruker Daltronics BioTOF HRMS 

spectrometer. 

3.11.2. Preparation of starting materials 

3.11.2.1. Experimental procedure for the synthesis 2-methyl quinazolones 

 

A mixture of isatoic anhydride (0.815 g, 5 mmol), ammonium acetate (0.578 g, 7.5 mmol, 

1.5 equiv), and triethyl orthoacetate (1.22 g, 7.5 mmol, 1.5 equiv) were stirred magnetically at 120 

°C (oil bath temp). After completion of the reaction (TLC, 5 h), the crude reaction mixture was 

recrystallized from EtOH to obtain analytically pure 2-methyl quinazolone (0.640 g, 80%) as white 

solid; 1H NMR (400 MHz, CDCl3):  8.27 (dd, J = 7.5, 1.2 Hz, 1H), 7.80-7.78 (m, 1H), 7.71 (d, J 

N
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+ CH3C(OEt)3 + NH4OAc
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NH
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= 7.7 Hz, 1H), 7.52-7.48 (m, 1H), 2.63 (s, 3H); 13C NMR (100 MHz, CDCl3):  164.8, 153.7, 

149.8, 135.5, 127.3, 127.0, 126.5, 120.6, 22.6. 

3.11.2.2. Representative experimental procedure for the synthesis of 2-aryl quinazolones 

 

Anthranilamide (5.0 mmol) and an aldehyde (6 mmol, 1.2 equiv) were dissolved in DMSO 

(10 mL). Then, the reaction mixture was stirred at 100 oC in an open flask and monitored by TLC. 

After complete consumption of the starting materials (12-36 h), the reaction mixture was cooled 

to rt. When water (100 mL) was added to the reaction mixture, the precipitate was formed and 

collected by filtration. Recrystallization in ethanol afforded substituted quinazolones. 

3.11.2.3. Experimental procedure for the synthesis terminal alkene  

 

2-Iodothiophene (210 mg, 1mmol) was reacted with Mg turnings (36 mg, 1.5 mmol) in 

diethyl ether to form Grignard reagent. This solution was added dropwise to the reaction mixture 

containing allyl bromide (144 mg, 1.2 mmol) in diethyl ether at 00 C. the reaction mixture was then 

stirred at rt for 4h. Saturated ammonium chloride was then added to the reaction mixture and 

extracted with ethyl acetate (3 x 50 mL). Combined organics were then washed with brine solution, 

dried with sodium sulfate and evaporated under reduced pressure. The crude product was then 

column purified to yield 2-allyl thiophene as colorless liquid (94 mg, 76% yield). 1H NMR (400 

MHz, DMSO-d6) δ 7.33 (dd, J = 5.1, 1.3 Hz, 1H), 6.96 (dd, J = 5.2, 3.4 Hz, 1H), 6.86 (dq, J = 3.4, 

NH2

NH2

O

+
H R

O

DMSO
100 °C, 10 h
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1.1 Hz, 1H), 5.98 (ddt, J = 16.7, 10.0, 6.7 Hz, 1H), 5.23 – 5.04 (m, 2H), 3.57 (dq, J = 6.8, 1.3 Hz, 

2H). 

3.11.3. Experimental procedure for stochiometric study for palladium complexes 

 

      

      

      

      

     

Figure 2.2: ORTEP diagrams of palladium complexes showing 40% probability ellipsoids  

Experimental procedure: To a 1-dram vial fitted with a teflon cap, on a 0.5 mmol scale, 

palladium chloride (1 equiv), dimethyl benzoquinone (1.5 equiv, 0.75 mmol), 2a (2 equiv, 1 

mmol), DMSO (0.5 mL) and magnetic stir bar were added simultaneously under nitrogen 

atmosphere. Then the vial was transferred to a preheated magnetic stir plate at 100 oC and the 

progress of reaction was monitored by 1H NMR. After 3 h, the reaction mixture was cooled to rt, 

layered with MeOH and allowed the crystals to grow. 
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3.11.4. General procedure for inter-molecular competition study involving two different 

terminal olefins 

 

To a 4-dram vial fitted with a teflon cap, on a 0.2 mmol scale, palladium chloride (0.1 

equiv, 0.02 mmol), dimethyl benzoquinone (1.5 equiv, 0.3 mmol), 3.02a (0.2 equiv, 0.2 mmol), 

3.02d (0.2 equiv, 0.2 mmol), 3.01a (0.2 equiv, 0.2 mmol), DMSO (0.2 mL) and magnetic stir bar 

were added simultaneously under nitrogen atmosphere. Then the vial was transferred to a 

preheated magnetic stir plate at 100 oC. After 24 h, the reaction mixture was then cooled to rt, 

diluted with MeOH (2 x 5 mL) and passed through bed of celite to remove catalyst. An aliquot 

portion (100 μL) of the organic layer was taken out, diluted with MeOH and subjected to GCMS 

to observe the selectivity, which reflected 91:09 selectivity in favor of 3.02a 

3.11.5. General experimental procedure for allylic C-H amidation of N-heterocycles 

 

To a 1-dram vial fitted with a teflon cap, on a 0.2 mmol scale, palladium chloride (0.1 

equiv, 0.02 mmol), dimethyl benzoquinone (1.5 equiv, 0.3 mmol), 3.02a (1.5 equiv, 0.3 mmol), 

3.01a (1 equiv), DMSO (0.2 mL) and magnetic stir bar were added simultaneously under nitrogen 

atmosphere. Then the vial was transferred to a preheated magnetic stir plate at 100 oC. After 24 h, 

the reaction mixture was cooled to rt, adsorbed on to silica gel and purified by column 
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chromatography using hexane and ethyl acetate (10%-25%) as mobile phase to get analytically 

pure 3-(3-Phenyl-allyl)-3H-quinazolin-4-one 3.03a as a pale yellow solid (92%).  

3.11.6. Scale up study 

 

To a 6-dram vial fitted with a teflon cap, palladium chloride (177.3 mg, 0.1 equiv, 1 mmol), 

dimethyl benzoquinone (2.0 g, 1.5 equiv, 15 mmol), 3.02a (1.8 g, 1.5 equiv, 15 mmol), 3.01a (1.46 

g, 1 equiv, 10 mmol), DMSO (10 mL) and magnetic stir bar were added simultaneously. Then the 

vial was transferred to a preheated magnetic stir plate at 100 oC. After 48 h, the reaction mixture 

was cooled to rt and diluted with ethyl acetate (20 mL). The organic layer was washed with 

saturated cold brine solution (2*20 mL each) to remove the DMSO and water-soluble contents. 

The aqueous layer was further extracted with ethyl acetate (2*10 mL). To the combined organic 

layer, anhydrous sodium sulfate was added to remove the traces of moisture. The collected organic 

layer was evaporated under reduced pressure. The crude reaction mixture was then adsorbed on to 

silica gel and purified by column chromatography using hexane and ethyl acetate (10%-25%) as 

mobile phase to get analytically pure 3-(3-Phenyl-allyl)-3H-quinazolin-4-one 3.03a (2.3 g, 88%).  

3.12. Analytical data of reported compounds 

 3-(3-Phenyl-allyl)-3H-quinazolin-4-one: Prepared by general procedure to yield 3.03a as 

a white solid (48.2 mg, 93%). 1H NMR (400 MHz, CDCl3) δ 8.40 

– 8.32 (m, 1H), 8.12 (s, 1H), 7.83 – 7.70 (m, 2H), 7.56 – 7.50 (m, 

1H), 7.42 – 7.22 (m, 5H), 6.73 – 6.63 (m, 1H), 6.40 – 6.32 (m, 1H), 4.85 – 4.77 (m, 2H); 13C NMR 

(100 MHz, CDCl3) δ 160.9, 148.2, 146.1, 135.8, 134.5, 134.3, 128.7, 128.3, 127.5, 127.3, 126.8, 
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126.6, 122.8, 122.2, 48.2; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C17H15N2O 263.1184, Found 

263.1178. 

 3-(3-p-Tolyl-allyl)-3H-quinazolin-4-one: Prepared by general procedure to yield 3.04a as 

a pale yellow solid (48.6 mg, 88%). 1H NMR (400 MHz, 

CDCl3) δ 8.36 (ddd, J = 8.1, 1.5, 0.7 Hz, 1H), 8.12 (s, 1H), 

7.82 – 7.72 (m, 2H), 7.54 (ddd, J = 8.2, 6.8, 1.5 Hz, 1H), 7.32 – 7.25 (m, 2H), 7.14 (d, J = 8.0 Hz, 

2H), 6.66 (dt, J = 15.8, 1.3 Hz, 1H), 6.31 (dt, J = 15.8, 6.5 Hz, 1H), 4.80 (dd, J = 6.5, 1.4 Hz, 2H), 

2.35 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 160.9, 148.1, 146.2, 138.2, 134.5, 134.3, 133.0, 129.4, 

127.5, 127.3, 126.8, 126.5, 122.2, 121.7, 48.2, 21.2; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for 

C18H16N2O 277.1341, Found 277.1332. 

 3-[3-(4-Methoxy-phenyl)-allyl]-3H-quinazolin-4-one: Prepared by general procedure to 

yield 3.04b as a pale yellow solid (52 mg, 89%). 1H NMR 

(400 MHz, CDCl3) δ 8.36 (ddd, J = 8.0, 1.5, 0.6 Hz, 1H), 

8.13 (s, 1H), 7.84 – 7.71 (m, 2H), 7.54 (ddd, J = 8.2, 6.9, 1.5 Hz, 1H), 7.38 – 7.30 (m, 2H), 6.90 – 

6.83 (m, 2H), 6.64 (dt, J = 15.8, 1.4 Hz, 1H), 6.22 (dt, J = 15.8, 6.6 Hz, 1H), 4.79 (dd, J = 6.6, 1.4 

Hz, 2H), 3.82 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 161.0, 159.7, 148.2, 146.2, 134.3, 134.1, 

128.5, 127.9, 127.5, 127.3, 126.8, 122.2, 120.4, 114.1, 55.3, 48.3; HRMS (ESI-TOF) m/z: [M + 

H]+ Calcd for C18H16N2O2 293.1290, Found 293.1281. 

 3-[3-(3,4-Dimethoxy-phenyl)-allyl]-3H-quinazolin-4-one: Prepared by general 

procedure to yield 3.04c as a pale yellow solid (56 mg, 

87%). 1H NMR (400 MHz, CDCl3) δ 8.34 (ddd, J = 8.0, 1.5, 

0.7 Hz, 1H), 8.12 (s, 1H), 7.81 – 7.70 (m, 2H), 7.52 (ddd, J = 8.2, 6.8, 1.5 Hz, 1H), 6.95 – 6.88 

(m, 2H), 6.84 – 6.77 (m, 1H), 6.62 (dt, J = 15.7, 1.3 Hz, 1H), 6.22 (dt, J = 15.8, 6.5 Hz, 1H), 4.78 
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(dd, J = 6.5, 1.4 Hz, 2H), 3.87 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 160.9, 149.3, 149.1, 148.1, 

146.2, 134.3, 134.3, 128.8, 127.5, 127.3, 126.8, 122.2, 120.7, 120.1, 111.0, 108.8, 55.9, 55.8, 48.3; 

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C18H16N2O2 293.1290, Found 293.1281. 

 3-[3-(4-Trifluoromethyl-phenyl)-allyl]-3H-quinazolin-4-one: Prepared by general 

procedure to yield 3.04d as a pale yellow solid (53 mg, 

81%). 1H NMR (400 MHz, CDCl3) δ 8.36 (dd, J = 8.0, 1.4 

Hz, 1H), 8.11 (s, 1H), 7.84 – 7.72 (m, 2H), 7.56 (dt, J = 8.1, 7.1 Hz, 3H), 7.47 (d, J = 8.2 Hz, 2H), 

6.69 (d, J = 15.9 Hz, 1H), 6.46 (dt, J = 15.9, 6.2 Hz, 1H), 4.83 (dd, J = 6.2, 1.4 Hz, 2H); 13C NMR 

(100 MHz, CDCl3) δ 160.9, 148.12, 146.02, 139.21, 134.43, 132.76, 130.0 (q, J = 32.6 Hz), 127.60, 

127.50, 126.80, 126.79, 125.6 (q, J = 3.6 Hz), 126.7 (q, J = 272.6 Hz), 122.12, 48.05; 19F NMR 

(376 MHz, DMSO-d6) δ -61.17; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C18H13F3N2O 

331.1058, Found 331.1057. 

 3-[3-(4-Fluoro-phenyl)-allyl]-3H-quinazolin-4-one: Prepared by general procedure to 

yield 3.04e as a pale yellow solid (51 mg, 91%).  1H NMR (400 

MHz, CDCl3) δ 8.35 (dd, J = 8.0, 1.5 Hz, 1H), 8.11 (s, 1H), 

7.83 – 7.71 (m, 2H), 7.54 (ddd, J = 8.1, 6.9, 1.5 Hz, 1H), 7.40 – 7.31 (m, 2H), 7.05 – 6.96 (m, 2H), 

6.64 (dt, J = 15.8, 1.4 Hz, 1H), 6.28 (dt, J = 15.8, 6.4 Hz, 1H), 4.79 (dd, J = 6.3, 1.4 Hz, 2H); 13C 

NMR (100 MHz, CDCl3) δ 162.7 (d, J = 248.9 Hz), 160.91, 148.13, 146.10, 134.33, 133.24, 132.0 

(d, J = 3.4 Hz), 128.2 (d, J = 8.7 Hz) 127.5 (d, J = 15.6 Hz), 126.80, 122.57 (d, J = 2.4 Hz), 122.16, 

115.6 (d, J = 22.6 Hz), 99.99,  48.16; 19F NMR (376 MHz, CDCl3) δ -113.27; HRMS (ESI-TOF) 

m/z: [M + H]+ Calcd for C17H13FN2O 281.1090, Found 281.1082. 
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 3-(3-Pentafluorophenyl-allyl)-3H-quinazolin-4-one: Prepared by general procedure to 

yield 3.04f as a pale brown solid (53 mg, 75%). 1H NMR (400 

MHz, CDCl3) δ 8.35 (ddd, J = 8.0, 1.5, 0.6 Hz, 1H), 8.10 (s, 

1H), 7.86 – 7.72 (m, 2H), 7.55 (ddd, J = 8.2, 6.9, 1.4 Hz, 1H), 

6.71 (dt, J = 16.3, 6.0 Hz, 1H), 6.59 (dt, J = 16.4, 1.4 Hz, 1H), 4.86 (dd, J = 6.0, 1.3 Hz, 2H); 13C 

NMR (100 MHz, CDCl3) δ 160.8, 148.1, 145.8, 144.6 (dm, J = 251.2 Hz), 140.7 (dm, 262.6 Hz), 

136.4 (m), 134.5, 132.3 (ddd, 2.5 Hz), 127.6, 127.6, 126.8, 122.1, 118.5, 110.7 (ddd, 4.4 Hz), 48.7; 

19F NMR (376 MHz, CDCl3) δ -142.16,  -142.28 (m), -154.70 (tt, J = 21.0, 1.7 Hz), -162.23, -

162.59 (m); HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C17H9F5N2O 353.0713, Found 353.0709. 

 3-(3-Benzo[1,3]dioxol-5-yl-allyl)-3H-quinazolin-4-one: Prepared by general procedure 

to yield 3.04g as a brown solid (53 mg, 86%).  1H NMR (400 

MHz, CDCl3) δ 8.34 (ddd, J = 8.1, 1.4, 0.7 Hz, 1H), 8.10 (s, 

1H), 7.82 – 7.70 (m, 2H), 7.52 (ddd, J = 8.2, 6.8, 1.5 Hz, 1H), 6.91 (d, J = 1.7 Hz, 1H), 6.81 (dd, 

J = 8.0, 1.7 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 6.59 (dt, J = 15.8, 1.4 Hz, 1H), 6.17 (dt, J = 15.7, 

6.5 Hz, 1H), 5.95 (s, 2H), 4.77 (dd, J = 6.4, 1.4 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 160.9, 

148.1, 148.1, 147.8, 146.2, 134.3, 134.2, 130.2, 127.5, 127.3, 126.8, 122.2, 121.6, 120.9, 108.3, 

105.8, 101.2, 48.2; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C18H14N2O3 307.1083, Found 

307.1076. 

 3-(3-Thiophen-2-yl-allyl)-3H-quinazolin-4-one: Prepared by general procedure to yield 

3.04h as a dark brown solid (48 mg, 90%).  1H NMR (400 MHz, 

CDCl3) δ 8.35 (ddd, J = 8.0, 1.5, 0.6 Hz, 1H), 8.10 (s, 1H), 7.82 – 

7.70 (m, 2H), 7.53 (ddd, J = 8.2, 6.8, 1.5 Hz, 1H), 7.19 (dt, J = 4.9, 0.9 Hz, 1H), 7.03 – 6.93 (m, 

2H), 6.83 – 6.78 (m, 1H), 6.17 (dt, J = 15.6, 6.5 Hz, 1H), 4.76 (dd, J = 6.6, 1.4 Hz, 2H); 13C NMR 
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(100 MHz, CDCl3) δ 160.9, 148.1, 146.1, 140.7, 134.3, 127.7, 127.5, 127.5, 127.4, 126.8, 126.8, 

125.2, 122.2, 122.1, 47.9; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C15H12N2OS 269.0749, 

Found 269.0742. 

 3-(3-Benzo[b]thiophen-3-yl-allyl)-3H-quinazolin-4-one: Prepared by general procedure 

to yield 3.04i as a pale yellow solid (53 mg, 84%). 1H NMR 

(400 MHz, CDCl3) δ 8.39 – 8.36 (m, 1H), 8.17 (s, 1H), 7.93 – 

7.83 (m, 2H), 7.84 – 7.74 (m, 2H), 7.55 (ddd, J = 8.2, 6.7, 1.6 Hz, 1H), 7.48 (s, 1H), 7.46 – 7.35 

(m, 2H), 7.00 – 6.95 (m, 1H), 6.48 – 6.41 (m, 1H), 4.87 (dd, J = 6.5, 1.5 Hz, 2H); 13C NMR (100 

MHz, CDCl3) δ 160.9, 148.1, 146.1, 140.4, 137.3, 134.4, 132.5, 127.6, 127.4, 126.9, 126.8, 124.7, 

124.5, 124.3, 123.5, 122.9, 122.2, 121.8, 48.5; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for 

C19H14N2OS 319.0905, Found 319.0907. 

 3-(3-Naphthalen-1-yl-allyl)-3H-quinazolin-4-one: Prepared by general procedure to 

yield 3.04j as a pale brown solid (54 mg, 87%).  1H NMR (400 

MHz, CDCl3) δ 8.42 – 8.36 (m, 1H), 8.22 (s, 1H), 8.08 (dt, J = 8.2, 

1.2 Hz, 1H), 7.89 – 7.84 (m, 1H), 7.84 – 7.74 (m, 3H), 7.60 (dt, J 

= 7.3, 1.0 Hz, 1H), 7.58 – 7.51 (m, 3H), 7.51 – 7.41 (m, 2H), 6.40 (dt, J = 15.5, 6.4 Hz, 1H), 4.93 

(dd, J = 6.5, 1.5 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 160.9, 148.1, 146.1, 134.3, 133.6, 133.5, 

132.0, 131.0, 128.6, 128.6, 127.6, 127.4, 126.9, 126.3, 126.0, 125.9, 125.5, 124.3, 123.5, 122.2, 

48.4; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C22H18N2O 327.1497, Found 327.1485. 

 3-(3-Cyclohexyl-allyl)-3H-quinazolin-4-one: Prepared by general procedure to yield 

3.04k as a colorless liquid (31 mg, 57%). 1H NMR (400 MHz, 

CDCl3) δ 8.34 (dd, J = 8.0, 1.4 Hz, 1H), 8.06 (s, 1H), 7.77 (ddd, J 

= 8.3, 6.9, 1.5 Hz, 1H), 7.72 (dd, J = 8.2, 1.4 Hz, 1H), 7.52 (ddd, J = 8.2, 6.9, 1.5 Hz, 1H), 5.76 
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(ddt, J = 15.4, 6.4, 1.3 Hz, 1H), 5.62 – 5.54 (m, 1H), 4.60 (dt, J = 6.3, 1.1 Hz, 2H), 2.07 – 1.94 (m, 

1H), 1.80 – 1.68 (m, 4H), 1.27 – 1.01 (m, 5H), 0.96 – 0.77 (m, 1H); 13C NMR (100 MHz, CDCl3) 

δ 160.9, 148.1, 146.2, 142.4, 134.2, 127.4, 127.2, 126.8, 122.2, 121.0, 48.0, 40.3, 32.5, 26.1, 25.9; 

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C17H20N2O 269.1654, Found 269.1643. 

 3-(4-Phenyl-but-2-enyl)-3H-quinazolin-4-one: Prepared by general procedure to yield 

3.04l as a pale yellow solid (40 mg, 73%).  1H NMR (400 MHz, 

CDCl3) δ 8.36 (dd, J = 7.9, 1.5 Hz, 1H), 8.05 (s, 1H), 7.82 – 

7.68 (m, 2H), 7.53 (ddd, J = 8.1, 7.0, 1.4 Hz, 1H), 7.36 – 7.27 (m, 4H), 7.28 – 7.20 (m, 1H), 6.48 

(dt, J = 15.7, 1.3 Hz, 1H), 6.20 (dt, J = 15.6, 7.1 Hz, 1H), 4.16 (t, J = 7.0 Hz, 2H), 2.75 (qd, J = 

7.1, 1.4 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 161.1, 148.2, 146.5, 136.9, 134.2, 133.7, 128.6, 

127.5, 127.5, 127.3, 126.7, 126.2, 124.9, 122.2, 46.9, 32.7; HRMS (ESI-TOF) m/z: [M + H]+ Calcd 

for C18H16N2O 277.1341, Found 277.1352. 

 3-Oct-2-enyl-3H-quinazolin-4-one: Prepared by general procedure to yield 3.04m as a 

colorless oil (26 mg, 51%). 1H NMR (400 MHz, CDCl3) δ 

8.30 – 8.25 (m, 1H), 8.01 (s, 1H), 7.72 – 7.68 (m, 1H), 7.67 – 

7.64 (m, 1H), 7.47 – 7.43 (m, 1H), 5.81 – 5.70 (m, 1H), 5.62 – 5.54 (m, 1H), 4.56 – 4.53 (m, 3H), 

2.04 – 1.98 (m, 3H), 1.36 – 1.31 (m, 2H), 1.27 – 1.19 (m, 4H), 0.85 – 0.81 (m, 3H); 13C NMR 

(100 MHz, CDCl3) δ 160.8, 148.1, 146.2, 136.6, 134.1, 127.4, 127.1, 126.7, 123.4, 122.1, 47.9, 

32.1, 31.3, 28.5, 22.4, 14.0; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C16H20N2O 257.1654, 

Found 257.1660. 

 6-Chloro-3-(3-phenyl-allyl)-3H-quinazolin-4-one: Prepared by general procedure to 

yield 3.05a as an off white solid (52 mg, 88%) 1H NMR (400 

MHz, CDCl3) δ 8.34 – 8.28 (m, 1H), 8.10 (s, 1H), 7.74 – 7.65 (m, 
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2H), 7.39 (dt, J = 6.1, 1.6 Hz, 2H), 7.33 (ddd, J = 7.5, 6.7, 1.5 Hz, 2H), 7.30 – 7.25 (m, 1H), 6.69 

(dt, J = 15.9, 1.4 Hz, 1H), 6.34 (dt, J = 15.8, 6.5 Hz, 1H), 4.80 (dd, J = 6.6, 1.5 Hz, 2H); 13C NMR 

(101 MHz, CDCl3) δ 159.9, 146.6, 146.3, 135.7, 134.9, 134.7, 133.2, 129.2, 128.7, 128.4, 126.6, 

126.2, 123.2, 122.4, 48.3; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C17H14ClN2O 297.0795, 

Found 297.0792.  

 6-Methoxy-3-(3-phenyl-allyl)-3H-quinazolin-4-one: Prepared by general procedure to 

yield 3.05b as a white solid (52 mg, 89%) 1H NMR (400 MHz, 

CDCl3) δ 8.02 (s, 1H), 7.71 (d, J = 3.0 Hz, 1H), 7.66 (d, J = 8.9 

Hz, 1H), 7.40 – 7.35 (m, 3H), 7.35 – 7.29 (m, 2H), 7.29 – 7.23 (m, 1H), 6.67 (dt, J = 15.8, 1.3 Hz, 

1H), 6.36 (dt, J = 15.9, 6.4 Hz, 1H), 4.80 (dd, J = 6.4, 1.4 Hz, 2H), 3.94 (s, 3H); 13C NMR (100 

MHz, CDCl3) δ 160.8, 158.8, 144.0, 142.7, 135.8, 134.4, 129.1, 128.6, 128.2, 126.6, 124.5, 123.0, 

122.9, 106.1, 55.9, 48.2; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C18H17N2O2 293.1290, Found 

293.1293. 

 2-Methyl-3-(3-phenyl-allyl)-3H-quinazolin-4-one: Prepared by general procedure to 

yield 3.05c as a white solid (49 mg, 89%).  1H NMR (400 MHz, 

CDCl3) δ 8.29 (ddd, J = 8.0, 1.6, 0.6 Hz, 1H), 7.74 (ddd, J = 8.5, 7.1, 

1.6 Hz, 1H), 7.66 – 7.62 (m, 1H), 7.45 (ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 7.38 – 7.33 (m, 2H), 7.32 – 

7.27 (m, 2H), 7.26 – 7.21 (m, 1H), 6.55 (dt, J = 16.0, 1.6 Hz, 1H), 6.30 (dt, J = 16.0, 5.8 Hz, 1H), 

4.92 (dd, J = 5.9, 1.6 Hz, 2H), 2.69 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 161.9, 154.3, 147.4, 

136.0, 134.3, 133.0, 128.6, 128.1, 126.9, 126.7, 126.5, 126.5, 122.9, 120.5, 46.0, 23.2; HRMS 

(ESI-TOF) m/z: [M + H]+ Calcd for C18H17N2O 277.1341, Found 277.1339. 
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 2-Phenyl-3-(3-phenyl-allyl)-3H-quinazolin-4-one: Prepared by general procedure to 

yield 3.05d as a white solid (55 mg, 82%). 1H NMR (400 MHz, 

CDCl3) δ 8.43 – 8.36 (m, 1H), 7.81 – 7.78 (m, 2H), 7.61 – 7.51 (m, 

6H), 7.30 (d, J = 4.2 Hz, 4H), 7.27 – 7.21 (m, 1H), 6.29 – 6.16 (m, 

2H), 4.79 (d, J = 5.1 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 162.1, 156.2, 147.3, 136.2, 135.4, 

134.5, 133.6, 130.0, 128.7, 128.6, 128.1, 127.9, 127.6, 127.1, 126.9, 126.5, 123.3, 121.0, 47.9; 

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C23H19N2O 339.1497, Found 339.1497. 

 2-(4-Dimethylamino-phenyl)-3-(3-phenyl-allyl)-3H-quinazolin-4-one: Prepared by 

general procedure to yield 3.05e as a white semisolid (62 mg, 

81%). 1H NMR (400 MHz, DMSO-d6) δ 8.21 – 8.15 (m, 1H), 7.83 

(ddd, J = 8.4, 7.1, 1.6 Hz, 1H), 7.67 (dt, J = 8.1, 0.9 Hz, 1H), 7.56 

– 7.47 (m, 3H), 7.38 – 7.34 (m, 2H), 7.32 – 7.26 (m, 2H), 7.25 – 7.19 (m, 1H), 6.82 – 6.75 (m, 

2H), 6.37 – 6.19 (m, 2H), 2.97 (s, 6H); 13C NMR (100 MHz, DMSO) δ 162.0, 157.2, 151.5, 147.7, 

136.6, 134.9, 131.6, 129.9, 129.0, 128.1, 127.6, 126.9, 126.7, 126.7, 125.3, 122.7, 120.5, 111.5, 

48.0, 40.2; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C25H24N3O 382.1919, Found 382.1923.  

 3-(3-Phenyl-allyl)-2-(4-trifluoromethyl-phenyl)-3H-quinazolin-4-one: Prepared by 

general procedure to yield 3.05f as a white solid (67 mg, 83%). 1H 

NMR (400 MHz, CDCl3) δ 8.40 (dd, J = 7.9, 1.4 Hz, 1H), 7.84 – 

7.79 (m, 3H), 7.77 (dd, J = 8.1, 1.3 Hz, 1H), 7.75 – 7.71 (m, 2H), 

7.58 (ddd, J = 8.2, 7.0, 1.4 Hz, 1H), 7.35 – 7.23 (m, 5H), 6.28 – 6.11 (m, 2H), 4.77 (dd, J = 5.6, 

0.9 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 161.8, 154.8, 147.1, 138.7, 135.9, 134.7, 133.7, 132.1 

(q, J = 33.0 Hz), 128.8, 128.6, 128.2, 127.6, 127.5, 127.0, 126.5, 125.7 (q, J = 3.8 Hz), 123.7 (q, J 
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= 273.3 Hz), 122.9, 121.0,  47.9; 19F NMR (376 MHz, DMSO-d6) δ -61.18; HRMS (ESI-TOF) 

m/z: [M + H]+ Calcd for C24H18F3N2O 407.1371, Found 407.1368. 

 2-(3-Phenyl-allyl)-2H-phthalazin-1-one: Prepared by general procedure to yield 3.05g as 

a white solid (40 mg, 76%). 1H NMR (400 MHz, CDCl3) δ 8.46 (dd, 

J = 7.5, 1.8 Hz, 1H), 8.19 (s, 1H), 7.81 – 7.71 (m, 2H), 7.69 – 7.67 (m, 

1H), 7.40 – 7.37 (m, 2H), 7.34 – 7.25 (m, 2H), 7.25 – 7.18 (m, 1H), 6.74 – 6.70 (m, 1H), 6.51 – 

6.43 (m, 1H), 5.02 (dd, J = 6.4, 1.3 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 159.2, 138.1, 136.5, 

133.8, 133.1, 131.7, 129.7, 128.5, 128.0, 127.8, 126.7, 126.6, 126.1, 123.7, 53.3; HRMS (ESI-

TOF) m/z: [M + H]+ Calcd for C17H15N2O 263.1184, Found 263.1186. 

 3-(3-Phenyl-allyl)-3H-pyrimidin-4-one: Prepared by general procedure to yield 3.05h as 

a white solid (31 mg, 74%). 1H NMR (400 MHz, CDCl3) δ 8.19 (s, 1H), 

7.92 (d, J = 6.6 Hz, 1H), 7.42 – 7.38 (m, 2H), 7.37 – 7.32 (m, 2H), 7.32 – 

7.29 (m, 1H), 6.68 (dt, J = 16.0, 1.4 Hz, 1H), 6.51 (dd, J = 6.6, 1.0 Hz, 1H), 6.32 (dt, J = 15.9, 6.6 

Hz, 1H), 4.73 (dd, J = 6.6, 1.4 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 160.7, 153.4, 150.9, 135.6, 

135.2, 128.7, 128.4, 126.7, 122.1, 116.1, 48.5; HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for 

C13H12N2ONa 235.0847, Found 235.0845. 

 1-(3-Phenyl-allyl)-1H-pyrazin-2-one: Prepared by general procedure to yield 3.05i as a 

white solid (30 mg, 71%). 1H NMR (400 MHz, CDCl3) δ 8.23 – 8.18 (m, 

1H), 7.42 – 7.38 (m, 2H), 7.38 – 7.36 (m, 1H), 7.36 – 7.32 (m, 2H), 7.32 – 

7.29 (m, 1H), 7.19 (dd, J = 4.4, 1.2 Hz, 1H), 6.68 (dt, J = 15.8, 1.4 Hz, 1H), 6.27 (dt, J = 15.8, 6.7 

Hz, 1H), 4.69 (dd, J = 6.7, 1.4 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 156.0, 149.7, 135.8, 135.5, 

128.7, 128.5, 127.8, 126.7, 124.0, 121.6, 50.3; HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for 

C13H12N2ONa 235.0847, Found 235.0844. 
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 1-(3-Phenyl-allyl)-1H-pyridin-2-one: Prepared by general procedure to yield 3.05j as a 

pale brown liquid (30 mg, 71%). 1H NMR (400 MHz, CDCl3) δ 7.40 – 7.36 

(m, 2H), 7.36 – 7.33 (m, 2H), 7.33 – 7.28 (m, 2H), 7.28 – 7.23 (m, 1H), 6.64 

– 6.56 (m, 2H), 6.33 (dt, J = 15.9, 6.5 Hz, 1H), 6.19 (td, J = 6.7, 1.4 Hz, 1H), 4.73 (dd, J = 6.5, 1.4 

Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 162.5, 139.5, 136.9, 136.0, 134.1, 128.6, 128.1, 126.6, 

123.6, 121.2, 106.2, 50.7; HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C14H13NONa 234.0895, 

Found 234.0895. 

 5-Bromo-1-(3-phenyl-allyl)-1H-pyridin-2-one: Prepared by general procedure to yield 

3.05k as a brown liquid (41 mg, 70%). 1H NMR (400 MHz, CDCl3) δ 7.42 

(d, J = 2.6 Hz, 1H), 7.32 (d, J = 6.9 Hz, 2H), 7.30 – 7.24 (m, 3H), 7.24 – 

7.18 (m, 1H), 6.56 (d, J = 15.8 Hz, 1H), 6.46 (d, J = 9.7 Hz, 1H), 6.22 (dt, J 

= 15.8, 6.5 Hz, 1H), 4.61 (d, J = 6.5 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 160.8, 142.5, 137.0, 

135.8, 134.8, 128.7, 128.4, 128.3, 126.6, 122.9, 122.1, 98.0, 50.9; HRMS (ESI-TOF) m/z: [M + 

Na]+ Calcd for C14H12BrNONa 311.9994, Found 311.9997. 

 5-Methyl-1-(3-phenyl-allyl)-1H-pyridin-2-one: Prepared by general procedure to yield 

3.05l as a brown liquid (32 mg, 72%). 1H NMR (400 MHz, CDCl3) δ 7.40 – 

7.35 (m, 2H), 7.33 – 7.21 (m, 3H), 7.18 (dd, J = 9.2, 2.6 Hz, 1H), 7.10 – 7.06 

(m, 1H), 6.61 – 6.52 (m, 2H), 6.31 (dt, J = 15.8, 6.4 Hz, 1H), 4.69 (dd, J = 

6.5, 1.4 Hz, 2H), 2.06 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 161.7, 142.1, 136.1, 134.4, 133.8, 

128.6, 128.0, 126.6, 123.9, 120.6, 115.2, 50.6, 17.1; HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for 

C15H15NONa 248.1046, Found 248.1049. 
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 1-(3-Phenyl-allyl)-5-trifluoromethyl-1H-pyridin-2-one: Prepared by general procedure 

to yield 3.05m as a colorless liquid (41 mg, 74%). 1H NMR (400 MHz, 

CDCl3) δ 7.75 (dt, J = 3.0, 1.4 Hz, 1H), 7.47 (dd, J = 9.6, 2.7 Hz, 1H), 7.44 

– 7.38 (m, 2H), 7.38 – 7.32 (m, 2H), 7.32 – 7.27 (m, 1H), 6.73 – 6.63 (m, 

2H), 6.31 (dt, J = 15.9, 6.7 Hz, 1H), 4.75 (dd, J = 6.7, 1.4 Hz, 2H); 13C NMR (100 MHz, CDCl3) 

δ 161.72, 136.5 (q, 5.4 Hz), 135.62, 135.36, 135.1 (q, 2.4 Hz), 128.71, 128.45, 126.69, 123.3 (q, J 

= 268.8 Hz), 122.24, 121.6, 109.7 (q, J = 35.1 Hz), 51.4; 19F NMR (376 MHz, CDCl3) δ -62.32; 

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C15H12F3NO 280.0949, Found 280.0945. 
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CHAPTER 4. -BOND DIRECTED C-2 AMINATION OF INDOLES: CATALYTIC 

DEVELOPMENT AND MECHANISTIC INVESTIGATION  

4.1. Introduction 

Indole, a nitrogen-containing heterocycle with a central position in organic chemistry is a 

“privileged” structure in medicinal chemistry. The indole framework is also ubiquitously present 

in natural products (Figure 1), that possess impressive biological activities and therefore constitute 

major targets in organic synthetic chemistry. Indole alkaloids, one of the largest classes of 

nitrogen-containing secondary metabolites, contain one or more indole/indoline moieties. They 

are widely found in plants, bacteria, fungi and animals.1–3 Direct C-H functionalization of indoles 

has been the hot area of research over the years as it represents a step- and atom-economical 

approach over classical protocols.3 However, one of the main challenges associated with this 

approach is the inherent low reactivity of C-H bonds, entailing that harsh reaction conditions are 

often required to provide the target products. 

 

Figure 4.1: Natural products with pyrrolidine-indole core 
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Pioneering examples on indole C-H activation have been reported as early as in the 1980s, 

but it was not until the 2000s that the indole C-H functionalization advance. Although noticeable 

progress has been made in transition metal catalyzed directed C-H functionalization of indoles, the 

direct functionalization of indoles with bioactive N-heteroarenes is still infancy.  

4.2. Transition metal catalyzed directed dehydrogentative cross-coupling for C-N bond 

formation at indole C-2 position 

4.2.1. Directing group at N-1 of indole 

A complementary methodology of Buchwald-Hartwig amination, catalytic direct C-N 

bond formation via C-H activation without the need for pre-functionalized substrates, has been 

extensively reported in the literature. Although directed C-H arylation and alkylation of indoles 

has been well explored, the corresponding C-N bond forming reactions remains very rare.3,4 Li 

and coworkers reported a Rh(III) catalyzed approach for directed C-H amidation of indoles using 

sulfonyl azides as an aminating source (Scheme 4.1).5 They utilized pyrimidine, a well explored 

directing group in indole C-2 functionalization for the selective amination at C-2 carbon forming 

2-aminated indoles in excellent yields. Yi and coworkers also utilized the same directing group for 

the preparation of 2-amidoindoles employing benzoyloxy acetamide as the amidation reagent.6 

 

Scheme 4.1: Rh-catalyzed regioselective indole C-2 amidation 

In 2014, Kanai and coworkers have improved upon the methodology demonstrating the 

first-time utilization of cobalt-catalyst for C-2 selective amidation of indole with the chelation 

assistance from N-pyrimidyl directing group. A readily available [Cp*Co(CO)I2] complex was 
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employed as a precatalysts, to form active Cp*CoIII insitu via base activation. In addition to 

sulfonyl azides, they also employed phosphoryl azides for C-H phosphoamidation of indoles 

(Scheme 4.2).7,8 The process although very effective and one of the rare example of indole C-2 

phosphoamidation, it presents several drawbacks such as long reaction times, sensitivity to steric 

hindrance at the C-3 position, and limited substrate scope.  

 

Scheme 4.2: Co-catalyzed directed C-2 amidation of indoles 

Very recently, Ackerman and coworkers reported a pyridine directed amidation of indoles 

using dioxazolones. A similar co-catalyst system reported by Kanai was employed as the catalyst 

for the C-2 selective amidation (Scheme 4.3).9   

 

Scheme 4.3: Cobalt (III)-catalyzed amidation of indoles with dioxazolones 

4.2.2. Directing group at C-3 of indole 

Nagarajan and coworkers employed a carbonyl group at the C-3 position of the indole as 

the directing group for palladium catalyzed selective C-2 amidation. However, their catalysis 

required prefunctionalized indoles as the substrates (Scheme 4.4).10,11  
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Scheme 4.4: Pd-catalyzed directed C-2 amidation 

 Other than these reports for amidation there is not much progress in selective C-2 amidation 

reactions. Therefore, the development of new and efficient methods for the direct construction of 

2-amido indoles is highly desirable.  

4.3. Initial discovery/origin of work 

During our investigation on the development of Pd-catalyzed allylic C-H oxidative 

amidation reaction using terminal olefins with quinazolone 4.01a, we found an unusual C-2 

amidation of indole with heterocycles (4.03b, 21%, structure confirmed by X-ray crystal) in case 

of 3-allyl indole 4.02a, instead of expected 4.03a. (Scheme 4.5). This was further corroborated by 

the reaction of 4.02a with other N-heteroarene, 2-pyridone 4.04a, to form corresponding indole C-

2 amination product 4.05a.  

 

Scheme 4.5: Selectivity switch during the reaction of 4.01a with 3-allyl indole 4.02a under Pd 

(II)-catalysis 
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Figure 4.2: ORTEP diagrams of 4.03b showing 40% probability ellipsoids 

Surprisingly, such transformations were not observed in other well studied allylic C-H 

activation/amination protocol (White protocol). Indole C-2 substitution was also not observed 

using simple indole 4.02b suggesting the criticality of allyl functionality. Consequently, a detailed 

study was conducted to elucidate this unprecedented reaction and subsequently to find out robust 

catalytic system for a versatile indole C2-H amination using biorelevant tautomerizable N-

heteroarenes (Scheme 4.6). 

 

Scheme 4.6: Control study for indole C-2 amidation under different conditions 
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4.4. Reaction optimization 

4.4.1. Catalyst screening 

With the initial observation of the product 4.03b, and control studies indicating the 

importance of allyl group and catalyst conditions, we started our investigation with the screening 

of different palladium catalysts (Table 4.1). As can be evident, only Pd salts with chloride counter 

ions were effective in the transformation (entry 3 and 5). Most importantly, phosphine or NHC 

ligated complexes also shown to have a negative impact, shutting down the reaction completely. 

In all the cases of optimization, we observed an appreciable quantity of oxindole formation as the 

side product.  

Table 4.1: Investigation of effect of Pd-catalysts on the indole C2-Amination of 4.01a with 4.02a  

 

Entry   Pd-catalyst   Yield (%)/4.03ba 

1   Pd(OAc)2    0b 

2   Pd(TFA)2    0b 

3   PdCl2     32 

4   (PPh3)2PdCl2    0b 

5   (PhCN)2PdCl2    28 

6   [PdCl(allyl)]2    0b 

7   Pd(dppf)Cl2    0b 

8   IPrPd(allyl) Cl    0b 

9   White Catalyst    0b 

10   None     0b 

Reaction conditions: 4.01a (0.2 mmol) was treated with 4.02a (0.4 mmol, 2.0 equiv) in presence 

of different Pd-catalyst (10 mol %), DMBQ (1.5 equiv) in DMSO (0.5 mL) at 100 °C for 24 h. 
aIsolated yield. b3-allyl oxindole was formed as the product 
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4.4.2. Solvent screening 

With establishing simple PdCl2 as the efficient catalyst, we screened different solvents in 

hope of increasing the reactivity and product formation. The reaction of 4.01a with allyl indole 

4.02a was performed in different solvents. As is the case of allylation C-H activation of N-

heterocycles,12 DMSO was found essential in the product formation. Infact, a 1:1 mixture of DCE 

and DMSO was found to be even more effective forming the product in 40% yield. Furthermore, 

the reaction produced improved yields in the absence of oxidant (entry 13, Table 4.2). 

Table 4.2: Investigation of solvent effect on the indole C2-Amination of 4.01a with 4.02a in 

presence of PdCl2 

 

Entry   Solvent   Yield (%)/4.03ba 

1   DMF     0b 

2   MTBE     0b  

3   THF     0b 

4   DCE     0b  

5   1,4-Dioxane    0b  

6   Toluene    0b 

7   TFE     0b 

8   THF: DMSO (1:1)   15c  

9   1,4-Dioxane: DMSO (1:1)  19c  

10   DCE: DMSO (1:1)   40c 

11   Toluene: DMSO (1:1)   20c 

12   DMSO     32c 

13   DCE:DMSO (1:1)   48c,d 

Reaction conditions: 4.01a (0.2 mmol) was treated with 4.02a (0.4 mmol, 2.0 equiv) in presence 

of PdCl2 (10 mol%), DMBQ (1.5 equiv) in different solvents (0.5 mL) at 100 °C for 24 h. aIsolated 

yield bSM remained as such. c3-allyl oxindole was formed as a side product. dNo DMBQ 
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4.5. Development of efficient catalytic system 

4.5.1. Transition metal catalyst screening 

 With results suggesting the -bond directed C-H activation/amination as key mechanistic 

pathway, next, we considered the opportunity to discover high yielding and cost-effective 

alternative of Pd-catalysis.  A reaction of 4.01a with 4.02a was carried out using other transition 

metal catalyst system to form 4.03b. Alternative to palladium, variety of Ru-, Ni-, and Co- based 

catalysts were investigated (Table 4.3). While Co- catalysts were found be ineffective, superior 

yields of 4.03b were observed using RuCl3.xH2O (55%), NiCl2 (52%) and NiCl2.glyme (57%) as 

the catalysts. We further optimized reaction conditions with both Ru and Ni catalyst systems. But 

only Ni-catalyst system development will be discussed in this chapter.  
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Table 4.3: Investigation of different metal catalyst on the indole C2-Amination of 4.01a with 4.02a 

 

Entry   Solvent   Yield (%)/4.03ba 

1  RuCl3. xH2O     55 (52)  

2  RuBr3. xH2O     30   

3  RuCl3      50 (49)  

4  [Ru(COD)Cl2]n    38   

5  [Ru(p-cymene)Cl2]2    42   

6  Ru[PPh3]3(CO)(Cl)H    0b    

7  Ru(PPh3)2(cp)Cl    50   

8  Ru3(CO)12     0b    

9  Tris(1,10-Phen) RuCl2. xH2O   57   

10  Ni(cod)2     35   

11  Ni(OAc)2     0b   

12  NiCl2      52   

13  NiCl2 glyme     57   

14  NiBr2      traces   

15  Ni(acac)2     15   

16  NiCl2(PPh3)2     37   

17  CoCl2      0b  
 

18  CoBr2      0b  
 

Reaction conditions: 4.01a (0.2 mmol) was treated with 4.02a (0.4 mmol, 2.0 equiv) in presence 

of different metal catalysts (10 mol%), in DCE:DMSO (1:1, 0.5 mL) at 100 °C for 24 h. ayields 

were determined by 1H NMR of the crude reaction mixture with Nitromethane as the internal 

standard. bSM remained as such. c3-allyl oxindole was formed as a side product. 
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4.5.2. Solvent screening 

To explore the catalytic activity of NiCl2, we started optimization reaction with screening 

the effect of solvents. A reaction of 4.01a with 4.02a was carried out using NiCl2, in different 

solvents. Surprisingly, the Ni-catalyzed reaction is found to be highly sensitive to the solvents and 

a mixture of DCE and DMSO is essential for the formation of 4.03b (Table 4.4). There was no 

reaction when DCE was used in the absence of DMSO (entry 2), but traces of product were formed 

in DMSO alone (entry 5). The ratio of both the solvents and concentration of the reaction mixture 

also shown to have effect on the overall yield of the product (entries 12-18). A 0.2M solution of 

DCE and DMSO in a 4:1 ratio was found to be optimal yielding the product in 89% yield (entry 

17). Decreasing the concentration had a negative impact on the reaction, decreasing the yield of 

the product (entry 18). 
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Table 4.4: Investigation of concentration and solvent effect on the indole C2-Amination of 4.01a 

with 4.02a 

 

Entry   Solvent   Yield (%)/4.03ba 

1  THF      0b   

2  DCE      0b    

3  1,4-Dioxane     0b   

4  Toluene     0b    

5  DMSO      traces   

6  ACN      0b   

7  DME      0b   

8  THF: DMSO (1:1)    0b    

9  1,4-Dioxane: DMSO (1:1)   0b   

10  DME: DMSO (1:1)    0b   

11  ACN: DMSO (1:1)    0b   

12  DCE: DMSO (1:1)    51  

 13  DCE: DMSO (2:1)    63  

 14  DCE: DMSO (4:1)    75 

 15  DCE: DMSO (1:2)    42 

 16  DCE: DMSO (1:4)    28 

 17  DCE: DMSO (4:1)    89c 

 18  DCE: DMSO (4:1)    70d 

Reaction conditions: 4.01a (0.2 mmol) was treated with 4.02a (0.4 mmol, 2.0 equiv) in presence 

of NiCl2 (10 mol%), in different solvents (0.5 mL) at 100 °C for 24 h. aisolated yield. bSM remained 

as such.c1mL of solvent was used. d2mL of solvent was used 

 

 

 



 

141 

4.5.3. Effect of catalyst loading and temperature 

We then turned our attention to the catalyst loading and temperature required for the 

reaction (Table 4.5). Decreasing the temperature even to 80 °C has a profound effect with a sharp 

decline in the yields. On the contrary, increasing the temperature to 120 °C doesn’t have much 

effect. Decreasing the catalytic loadings to 5 mol%, decreased yields, while increasing to 15 mol% 

doesn’t have much effect. 

Table 4.5: Investigation of effect of catalyst loading and temperature on the indole C2-Amination 

of 4.01a with 4.02a 

 

Entry        Temp (X oC)      Catalyst (mol%)     Yield (%)/4.03ba 

1  60   10   0c   

2  80   10   25   

3  100   10   90   

4  120   10   92   

5  100   5   70   

6  100   15   88  

Reaction conditions: 4.01a (0.2 mmol) was treated with 4.02a (0.4 mmol, 2.0 equiv) in presence 

of NiCl2, in DCE:DMSO (4:1, 1.0 mL) at 100 °C for 24 h. aisolated yield. bSM remained as such. 

4.6. Mechanistic consideration 

Our initial optimization study led us to believe the operation of multiple mechanistic 

pathways leading to product formation. Based on literature studies and our own understanding we 

conducted a careful study to validate each possible pathway listed below under both palladium and 

nickel catalytic conditions. 

1. Allylic C-H activation/ -allyl continuum pathway  

2. Oxidative dearomatization-nucleophilic addition pathway 



 

142 

3. Catellani type C-H activation/amination pathway 

4. -bond directed Friedel–Crafts-type amination pathway 

4.6.1. Allylic C-H activation/ -allyl continuum pathway  

Requirement of allyl group for the selective C-2 functionalization led us to investigate the 

involvement of continuum of -allyl palladium intermediate. In 2015, Trost and coworkers 

reported an unprecedented alternative modes of Pd-catalyzed C(sp3)-H activation of N-allyl 

imines. Initial allylic C-H oxidation formed a -allylpalladium intermediate, which exists in 

equilibrium because of the presence of attached allylic chain. Depending upon the sterics of 

incoming nucleophile, they were able to isolate the product arising from both all-carbon -allyl 

complex A and the product arising from 2-aza -allyl complex B (Scheme 4.7).13 

 

Scheme 4.7: Possible outcomes from nucleophilic attack on -allyl complexes 

We envisioned that even in the case of 3-allyl indole 4.02a, a similar all carbon -allyl 

continuum can occur generating an equilibrium mixture of -allylmetal complexes (C and D). 

Depending upon the conditions employed, these complexes potentially can lead to both the 

products 4.03a and 4.03b (Scheme 4.8). 
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Scheme 4.8: -Allyl continuum for product formation in the case of 3-allylindole 

However, when a substrate with no allylic hydrogens 4.02d was subjected to reaction 

conditions, corresponding C-2 substituted product was formed in good yield, contradicting the 

allylic C-H activation pathway. This was further supported when 3-butenyl indole 4.02i also gave 

the corresponding C-2 substituted product under reaction conditions (Scheme 4.9). 

 

Scheme 4.9: Control experiments to validate -allyl continuum pathway 
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4.6.2. Oxidative dearomatization-nucleophilic addition pathway 

During the optimization of reaction conditions, in some cases where the product formation 

was low, we isolated 3-allyl-1,3-dihydro-indol-2-one (4.06a) as the side product. This gave us an 

insight for a Kornblum type DMSO assisted oxidative dearomatization – amination pathway 

(Scheme 4.10).14 Electrophilic metal catalysts under reaction conditions can attack on the more 

reactive C-3 position of indole forming an intermediate iminium ion, followed by a Kornblum type 

oxidation with DMSO yielding 4.06a.  

 

Scheme 4.10: DMSO assisted oxindole synthesis/amination pathway 

N-heterocycles can then attack on oxindole 4.06a undergoing a nucleophilic amination/ 

rearomatization to form the product 4.03b. In a control study, preformed 4.06a was subjected to 

reaction conditions. Both the starting materials were recovered as such in quantitative yields and 

no product formation indicated that the oxidized product 4.06a was in fact a deleterious side 

product rather than an intermediate for the indole C-2 substitution (Scheme 4.11). 

 

Scheme 4.11: Validation of oxidative dearomatization pathway by preformed 4.06a 

4.6.3. Catellani type C-H activation/amination pathway 

A Catellani reaction or cooperative catalytic action of palladium/norbornene system for 

selective C-H bond functionalization was also considered to be a possible mechanistic pathway 
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for indole C-2 substitution. In 2011, Bach and coworkers reported a Pd(II) catalyzed norbornene 

mediated Catellani type C-H activation for the selective formation of C-2 substituted indoles. They 

also carried out a detailed mechanistic investigation to find out mode of activation and the attack 

of palladium on to indole. Catalytic cycle as shown in Scheme 4.12 was proposed involving N-

palladation of indole via N-H activation followed by syn-aminopalladation of norbornene forms 

IN8. ortho-C-H palladation generates IN4, upon oxidative addition, reductive elimination, and 

norbornene expulsion forms the product and regenerates the catalyst.15,16 

 

Scheme 4.12: Catellani type reaction for selective indole C-2 functionalization  

 We envisioned that even in the case of allyl indole functionalization, intermediates like IN8 

and IN4 can form, where in olefinic bond of allyl group serves the purpose of norbornene. 

Oxidative addition of N-heterocycles followed by reductive elimination forms the C-2 selective 

product (Scheme 4.13) 
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Scheme 4.13: Catellani type pathway for C-2 functionalization of indoles. 

If the reaction was to proceed by this pathway, a free N-H bond is needed for the formation 

of intermediate palladacycle. To validate the pathway, we prepared N-methyl-3-allylindole 4.02c 

and subjected to reaction conditions, to find out the formation of corresponding C-2 amidation 

product 4.03d in respectable yields (Scheme 4.14). Formation of product even with N-substituted 

indole ruled out the possibility of this pathway. To further confirm, we also performed the reaction 

of indole in presence of Pd(II)/norbornene catalytic system under both neutral or basic conditions 

with no formation of product. 

 

Scheme 4.14: Control studies to validate Catellani type pathway for indole C-2 amidation 
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4.6.4. -bond directed Friedel–Crafts-type amination pathway 

Ruling out all the other possible pathways, lastly, we envisioned the -bond directed 

Friedel–Crafts-type amination pathway.17–23 Use of directing groups for selective C-H 

functionalization is very well known and various heteroatom directing groups have been reported 

in the literature.24 The use of carbon-carbon double bond as directing group is relatively under 

explored, and one of the first report for the utilization of olefinic bond as directing group was 

reported by Chang and coworkers.23 In 2012, they reported the utilization of allylic double bond 

as the directing group for Fujiwara-Moritani reaction (Scheme 4.15). 

 

Scheme 4.15: Olefin directed Fujiwara-Moritani reaction 

 To get more insight and to validate the olefin assisted indole C-2 functionalization few 

control experiments were performed (Scheme 4.16)  

(i) Reaction of 3-phenyl indole 4.02e with 4.01a did not yield any product, with both the 

starting materials intact 

(ii) Use of other hetero-atom based -assistance (3-formyl 4.02f & 2-cyano 4.02g) were 

ineffective to facilitate indole C2-H amination 

(iii) Reaction of 3-vinyl indole 4.02h with 4.01a also did not yield any product 

Interestingly, in all the above cases, the -bond is located one carbon less than the allyl 

group, and yielded no product, on the contrary when 3-butenyl indole 4.02i was subjected to 

standard conditions desired product 4.03j was formed. These results are of significant value, 

indicating the appropriately substituted -bond assistance is critical for the progress of reactions. 
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This was further confirmed by the progress of reaction with indole-3-acetonitrile 4.02j, a higher 

chain analog of 4.02g, to form the respective amination product 4.03k. 

 

Scheme 4.16: Control studies validating -bond assisted indole C-2 functionalization 
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 To gain mechanistic insight, deuterium incorporation studies were undertaken (Scheme 

4.17). Treatment of 4.02a in the absence of 4.01a but with MeOD present resulted in 72% and 

40% C-2 deuteration under Pd and Ni catalysis respectively,25 indicating a reversible C−H 

metallation/protonation. We believe that deuteration proceed by -bond-assisted C−H activation 

by metal complexes to generate a metallocycles, followed by its deuteration to give the deuterated 

allyl indole product. In the presence of 4.01a, amination proceeded with no incorporation of 

deuterium. 

 

Scheme 4.17: Deuterium scrambling experiments of 4.02a 

 To further validate the -bond assisted Friedel-Crafts-type pathway, kinetic isotope effect 

(KIE) studies were conducted under both palladium and nickel catalysis. Independent but parallel 

reactions of 4.02a and 4.02a [D] indicated a KIE value of 1.0 and 0.72 under Pd and Ni catalysis 

respectively (Figure 4.3). Although KIE data of Pd-catalyzed reaction did not give much details 

about the mechanism of the reaction, inverse KIE in case of Ni-catalysis provided key details about 

the mechanism. Inverse KIE, a characteristic of the sp2 to sp3 hybridization change indicated the 

possibility of Friedel-Crafts type metal insertion at the indole C-2 position, generating a positive 
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charge at C-3 position, followed by a deprotonation to form intermediate indole C-2 metalated 

species. 

 

 

Figure 4.3: KIE studies of 4.02a and 4.02a [D] under (i) Pd catalysis (ii) Ni catalysis  

This was further validated by the effect of substituent electronics on the overall reactivity 

of indole C-2 amidation, with electron donating groups giving higher yields as compared to 

electron withdrawing groups. Hammett plots with 5-substituted indoles revealed a  value of -

0.71, indicating an increase in the positive charge in the rate determining step.  

 

Figure 4.4: Hammett plot for the electronic effects on indole C-2 amidation  
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Considering all the mechanistic rationale, and control studies we propose a Friedel-Crafts 

type directed metal insertion at indole C-2 position, followed by amidation with heterocycles to 

form indole C-2 aminated product. A plausible catalytic cycle was shown in scheme 4.18. Metal 

catalyst first coordinates to the -bond of the C-3 substituent, followed by a Friedel-Crafts type 

metal insertion at C-2 position forms the intermediate Int-A, leading to an accumulation of positive 

charge at C-3 position (a negative value in Hammett plots). The inverse secondary KIE (0.72) 

in the case of NiCl2, further validates the hybridization change in rate determining step rather than 

C-H bond cleavage. A reversible deprotonation of the Int-A leads to a stable, and aromatic 

intermediate Int-B. N-heterocycles then attack the metal center forming Int-C, which can then 

undergo a reductive elimination to form the product 4.03b, releasing Ni(0). Dichloromethane 

mediated reoxidation od Ni(0) to Ni(II) regenerated the active catalyst for the next catalytic cycle. 

 

Scheme 4.18: Plausible catalytic cycle for the indole C-2 amidation with N-heterocycles 



 

152 

4.7. Substrate scope 

With the optimized conditions in hand, and establishing mechanistic details suggesting a 

-bond directed indole C-2 functionalization, we then examined the scope of the reaction 

methodology (Scheme 4.19). For each substrate, the reactions were performed under optimized 

Pd- and Ni-catalysis. Differently substituted allyl indoles 26 reacted well to produce respective 

products in good to excellent yields. Both EDG (4.03l), EWG (4.03m, 4.03p-4.03r) bearing 

indoles reacted well, however yields were inferior in case of indole with electron withdrawing 

substituent. Halogen functionality also tolerated well with good to excellent yields (4.03n, 4.03o). 

It is noteworthy to mention that reactions were also compatible with sensitive functionalities such 

as –CO2Me (4.03p), -CHO (4.03q), and –CN (4.03r). With respect to quinazolines, reactions were 

compatible with variously C-6/7 substituted quinazolones (6-NO2, 4.03s; 6-OMe, 4.03t; 6-Br, 

4.03u; 6-F, 4.03v; 7-F, 4.03w) to produce the desired product in excellent yields under Ru-/Ni-

catalysis. We envisioned that such an amination strategy could be extended beyond the 

quinazolone nucleus to other biologically relevant N-heteroarenes. As shown below, we were 

delighted to discover that N-heteroarenes such as pyrimidine 4.05a and pyridines (4.05b-4.05c) 

were reacted well with excellent yields and chemoselectivity under Pd-/Ni-catalysis. This 

demonstrates the versatility of developed methodology to afford a range of functionalized-bis-

heterocycles. Although, reaction did not precede with 3-vinyl indole 4.02h in any case, it is 

remarkable to note the excellent yields of products in case differently substituted 3-allyl indoles 

(4.03x, and 4.03j). 
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Scheme 4.19: Substrate scope: C-2 amination of various indoles (4.02) with N-heteroarenes (4.01) 

under optimized conditions for Pd-/Ni-catalysis 
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Scope of other -bonded-directing groups was also examined. Under each optimized metal 

conditions,2-(1H-indol-3-yl) acetaldehyde 4.02k, ethyl 2-(1H-indol-3-yl) acetate 4.02l, 2-(1H-

indol-3-yl)acetonitrile 4.02j reacted elegantly to produce respective indole-2-amination products 

with variable yields, the highest being with nickel (Scheme 4.20). Point to be noted that 2-formyl 

indole, 2-ethoxycarbonyl indole, and 2-cyano indole were failed to deliver the desired product 

under optimized conditions, suggesting the appropriate spacing of directing -bond is critical. 

 

Scheme 4.20: C-2 Amination of indoles - exploitation of other -bonds for directed C-H activation   

4.8. Summary and conclusion 

Overall, these highly chemo- and regioselective indole C2-amination reactions are 

powerful tools for the construction of indole based bis-heterocycles using cost-effective metal-

based catalysts such as nickel and ruthenium via -bond directed C-H bond activation pathway 
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with step economy and in an environmentally friendly fashion. The developed protocol is scalable, 

high yielding and offers broad scopes with high functional group tolerance. The products formed 

are amenable to downstream modification to various synthetically useful compounds of high 

biological and material importance.  

4.9. Experimental procedures 

4.9.1. General information 

Unless otherwise noted, all manipulations were carried out under a nitrogen atmosphere 

using standard Schlenk-line or glovebox techniques. All glassware was oven-dried for at least 1h 

prior to use. THF, toluene, ether, and hexane were degassed by purging with nitrogen for 45 min 

and dried with a solvent purification system (MBraun MB-SPS). DMF, dioxane, dimethoxyethane, 

dichloroethane, methanol, and ethanol were dried over activated 3 Å molecular sieves and 

degassed by purging with nitrogen. All commercially obtained reagents/solvents were purchased 

from Alfa Aesar®, Sigma-Aldrich®, Acros®, TCI America®, Mallinckrodt®, and Oakwood® 

Products, and used as received without further purification. TLC plates were visualized by 

exposure to ultraviolet light. Organic solutions were concentrated by rotary evaporation at ~10 

torr. Flash column chromatography was performed with 32–63 microns silica gel. 1H NMR spectra 

were obtained on a 400 MHz spectrometer, and chemical shifts were recorded relative to residual 

protiated solvent. 13C NMR spectra were obtained at 100 MHz, and chemical shifts were recorded 

to the solvent resonance. Both 1H and 13C NMR chemical shifts were reported in parts per million 

downfield from tetramethylsilane (δ = 0 ppm). 19F NMR spectra were obtained at 282.4 MHz, and 

all chemical shifts were reported in parts per million upfield of CF3COOH (δ = -78.5 ppm). 

Coupling constants (J) are reported in hertz (Hz). Standard abbreviations indicating multiplicity 

were used as follows: s (singlet), br (broad), d (doublet), t (triplet), q (quartet) and m (multiplet). 
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Data for 13C NMR spectra are reported in terms of chemical shift (δ ppm).  High-resolution mass 

spectra were obtained from a Bruker Daltronics BioTOF HRMS spectrometer. 

4.9.2. Initial observation of indole C2-Amination 

 

In a glove box, a 1-dram vial was charged with palladium chloride (0.1 equiv, 0.02 mmol), 

dimethyl benzoquinone (1.5 equiv, 0.3 mmol), 4.02a (2.0 equiv, 0.3 mmol), 4.01a (1 equiv), 

DMSO (0.2 mL) and magnetic stir bar simultaneously. Then the vial was transferred to a preheated 

magnetic stir plate at 100 °C. After 24 h, the reaction mixture was cooled to rt, adsorbed on to 

silica gel and purified by column chromatography (TLC: 40% ethyl acetate in hexane Rf = 0.4) to 

get analytically pure 3-(3-Allyl-1H-indol-2-yl)-3H-quinazolin-4-one, 4.03a (32%). 1H NMR (400 

MHz, CDCl3) δ 9.40 (s, 1H), 8.10 (s, 1H), 8.08 – 8.04 (m, 1H), 7.76 – 7.71 (m, 1H), 7.70 – 7.68 

(m, 1H), 7.67 – 7.63 (m, 1H), 7.39 – 7.35 (m, 1H), 7.19 – 7.12 (m, 2H), 7.06 – 6.99 (m, 1H), 6.01 

(ddt, J = 17.1, 10.0, 6.0 Hz, 1H), 5.13 – 4.99 (m, 2H), 3.48 (dt, J = 6.0, 1.7 Hz, 2H); 13C NMR 

(101 MHz, CDCl3) δ 161.5, 147.5, 146.4, 135.8, 135.0, 134.4, 127.8, 127.7, 127.4, 126.7, 126.6, 

123.5, 121.6, 120.0, 119.5, 116.0, 111.7, 109.1, 27.9. 
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Figure 4.5: ORTEP diagrams of 4.03a showing 40% probability ellipsoids 

4.9.3. Mechanistic investigation  

4.9.3.1. Oxidative dearomatization - nucleophilic addition pathway (3A) 

 

Control study: In a glove box, a 1-dram vial was charged with palladium chloride (0.1 

equiv, 0.02 mmol), 4.06a (2.0 equiv, 0.3 mmol), 4.01a (1 equiv), DMSO (0.5 mL), DCE (0.5 

mL) and magnetic stir bar simultaneously. Then the vial was transferred to a preheated magnetic 

stir plate at 100 oC. After 24 h, the reaction mixture was cooled to rt. NMR analysis of the crude 

mixture shown no product formation with both the starting materials intact, ruling out the 

possibility of oxidative dearomatization-nucleophilic addition pathway.  

4.9.3.2. Norbornene type C–H functionalization/amination pathway (3B)  

 Control study-1: Reaction of 3-allyl-1-methyl indole 
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 In a glove box, a 1-dram vial was charged with palladium chloride (0.1 equiv, 0.02 mmol), 

4.02c (2.0 equiv, 0.3 mmol), 4.01a (1 equiv), DMSO (0.5 mL), DCE (0.5 mL) and magnetic stir 

bar simultaneously. Then the vial was transferred to a preheated magnetic stir plate at 100 oC. After 

24 h, the reaction mixture was cooled to rt. The crude mixture was adsorbed on to silica gel and 

column purified to isolate 4.03d (41% yield). 1H NMR (400 MHz, CDCl3) δ 8.42 (ddd, J = 8.0, 

1.5, 0.6 Hz, 1H), 8.03 (s, 1H), 7.89 (ddd, J = 8.4, 7.0, 1.5 Hz, 1H), 7.84 (ddd, J = 8.2, 1.4, 0.6 Hz, 

1H), 7.69 (dt, J = 8.0, 1.0 Hz, 1H), 7.62 (ddd, J = 8.2, 7.0, 1.5 Hz, 1H), 7.42 – 7.34 (m, 2H), 7.22 

(ddd, J = 8.0, 6.5, 1.6 Hz, 1H), 6.01 – 5.91 (m, 1H), 5.04 (dq, J = 17.0, 1.7 Hz, 1H), 4.98 (dq, J = 

10.0, 1.5 Hz, 1H), 3.61 (s, 3H), 3.54 – 3.47 (m, 1H), 3.45 – 3.37 (m, 1H); 13C NMR (101 MHz, 

CDCl3) δ 161.1, 147.9, 146.6, 135.9, 135.4, 135.1, 129.0, 128.0, 127.9, 127.4, 126.0, 123.3, 122.1, 

120.0, 119.9, 115.7, 109.7, 109.5, 77.3, 77.0, 76.7, 29.4, 28.1. 

 Control study-2: Catellani-type C–H activation/amination 

 

In a glove box, a 1-dram vial was charged with palladium chloride (0.1 equiv, 0.02 mmol), 

4.02b (2.0 equiv, 0.3 mmol), 4.01a (1 equiv), norbornene (2 equiv), K2CO3 (1.5 equiv), DMSO 

(0.5 mL), DCE (0.5 mL) and magnetic stir bar simultaneously. Then the vial was transferred to a 

preheated magnetic stir plate at 100 oC. After 24 h, the reaction mixture was cooled to rt. The crude 

mixture shown no product formation and the SM remained as such in both cases with and without 

the addition of base. 
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4.9.3.3. Allylic C–H activation pathway (3C) 

Control study-1: Reaction of 3-(1,1-Dimethyl-allyl)-1H-indole 

 

In a glove box, a 1-dram vial was charged with palladium chloride (0.1 equiv, 0.02 mmol), 

4.02d (2.0 equiv, 0.3 mmol), 4.01a (1 equiv), DMSO (0.5 mL), DCE (0.5 mL) and magnetic stir 

bar simultaneously. Then the vial was transferred to a preheated magnetic stir plate at 100 °C. 

After 24 h, the reaction mixture was cooled to rt. The crude mixture was adsorbed on to silica gel 

and column purified to isolate 4.03e1 (52% yield). 1H NMR (400 MHz, CDCl3) δ 9.51 (s, 1H), 

8.04 (s, 1H), 7.85 – 7.76 (m, 2H), 7.67 – 7.62 (m, 2H), 7.20 (ddd, J = 8.2, 5.1, 3.3 Hz, 1H), 7.04 

(ddd, J = 8.2, 7.1, 1.1 Hz, 1H), 6.90 (ddd, J = 8.3, 7.0, 1.1 Hz, 1H), 6.59 (d, J = 8.2 Hz, 1H), 6.09 

(dd, J = 17.4, 10.6 Hz, 1H), 5.04 (dd, J = 17.5, 1.2 Hz, 1H), 4.80 (dd, J = 10.6, 1.1 Hz, 1H), 1.51 

(s, 6H); 13C NMR (101 MHz, CDCl3) δ 162.3, 147.6, 147.1, 146.8, 134.9, 134.6, 127.7, 127.5, 

126.4, 125.4, 124.9, 123.1, 121.9, 121.2, 119.3, 118.3, 111.5, 110.9, 38.5, 28.1. 

Control study-2: Reaction of 3-butenylindole 

 

In a glove box, a 1-dram vial was charged with palladium chloride (0.1 equiv, 0.02 mmol), 

4.02i (2.0 equiv, 0.3 mmol), 4.01a (1 equiv), DMSO (0.5 mL), DCE (0.5 mL) and magnetic stir 

bar simultaneously. Then the vial was transferred to a preheated magnetic stir plate at 100 °C. 
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After 24 h, the reaction mixture was cooled to rt. The crude mixture was adsorbed on to silica gel 

and column purified to isolate 4.03j (35% yield). 1H NMR (400 MHz, CDCl3) δ 9.01 (s, 1H), 8.15 

(ddd, J = 8.0, 1.5, 0.6 Hz, 1H), 8.12 (s, 1H), 7.78 (ddd, J = 8.4, 6.9, 1.5 Hz, 1H), 7.75 – 7.71 (m, 

1H), 7.68 (ddt, J = 5.9, 3.1, 0.8 Hz, 1H), 7.44 (ddd, J = 8.2, 6.9, 1.5 Hz, 1H), 7.21 – 7.15 (m, 2H), 

7.13 – 7.08 (m, 1H), 5.83 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.05 – 4.92 (m, 2H), 2.86 – 2.75 (m, 

2H), 2.45 (tdt, J = 7.9, 6.6, 1.4 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 161.5, 147.6, 146.4, 137.7, 

135.1, 135.0, 134.5, 127.9, 127.7, 127.0, 126.8, 126.6, 123.5, 121.7, 120.0, 119.5, 115.5, 111.6, 

34.1, 23.3. 

4.9.3.4. Olefin (-bond) assisted C–H activation/amination pathway (3D) 

Control study-1: Reaction of 3-butenylindole 

 

In a glove box, a 1-dram vial was charged with palladium chloride (0.1 equiv, 0.02 mmol), 

4.02i (2.0 equiv, 0.3 mmol), 4.01a (1 equiv), DMSO (0.5 mL), DCE (0.5 mL) and magnetic stir 

bar simultaneously. Then the vial was transferred to a preheated magnetic stir plate at 100 °C. 

After 24 h, the reaction mixture was cooled to rt. The crude mixture was adsorbed on to silica gel 

and column purified to isolate 4.03j (35% yield). 1H NMR (400 MHz, CDCl3) δ 9.01 (s, 1H), 8.15 

(ddd, J = 8.0, 1.5, 0.6 Hz, 1H), 8.12 (s, 1H), 7.78 (ddd, J = 8.4, 6.9, 1.5 Hz, 1H), 7.75 – 7.71 (m, 

1H), 7.68 (ddt, J = 5.9, 3.1, 0.8 Hz, 1H), 7.44 (ddd, J = 8.2, 6.9, 1.5 Hz, 1H), 7.21 – 7.15 (m, 2H), 

7.13 – 7.08 (m, 1H), 5.83 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.05 – 4.92 (m, 2H), 2.86 – 2.75 (m, 

2H), 2.45 (tdt, J = 7.9, 6.6, 1.4 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 161.5, 147.6, 146.4, 137.7, 
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135.1, 135.0, 134.5, 127.9, 127.7, 127.0, 126.8, 126.6, 123.5, 121.7, 120.0, 119.5, 115.5, 111.6, 

34.1, 23.3. 

Control study-2: Reaction of indole-3-acetonitrile 

 

 In a glove box, a 1-dram vial was charged with palladium chloride (0.1 equiv, 0.02 mmol), 

4.02j (2.0 equiv, 0.3 mmol), 4.01a (1 equiv), DMSO (0.5 mL), DCE (0.5 mL) and magnetic stir 

bar simultaneously. Then the vial was transferred to a preheated magnetic stir plate at 100 °C. 

After 24 h, the reaction mixture was cooled to rt. The crude mixture was adsorbed on to silica gel 

and column purified to isolate 4.03k (32% yield). 1H NMR (400 MHz, DMSO-d6) δ 11.93 (s, 1H), 

8.43 (s, 1H), 8.27 (dd, J = 7.9, 1.5 Hz, 1H), 7.95 (ddd, J = 8.7, 7.2, 1.6 Hz, 1H), 7.85 – 7.79 (m, 

1H), 7.74 (d, J = 7.9 Hz, 1H), 7.70 – 7.64 (m, 1H), 7.48 (d, J = 8.1 Hz, 1H), 7.30 (ddd, J = 8.2, 

7.1, 1.2 Hz, 1H), 7.20 (ddd, J = 8.3, 7.1, 1.1 Hz, 1H), 4.07 (s, 2H); 13C NMR (101 MHz, DMSO) 

δ 160.5, 147.9, 147.4, 135.6, 134.1, 128.9, 128.3, 128.0, 127.1, 125.9, 123.6, 122.2, 120.4, 119.2, 

118.8, 112.3, 100.6, 12.3. 

4.9.3.5. H/D exchange study  

 

Procedure for deuteration reaction: To a 1-dram vial fitted with a teflon cap, and a 

magnetic stir bar on a 0.2 mmol scale, PdCl2 (0.1 equiv, 0.02 mmol), 4.02a (1 equiv), DMSO (0.2 
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mL), DCE (0.8 mL) and MeOD (3 equiv) were added simultaneously under nitrogen atmosphere. 

Then the vial was transferred to a preheated magnetic stir plate at 100 oC. After 24 h, the reaction 

mixture was cooled to rt. The reaction mixture was passed through celite bed washing with 

dichloromethane. The combined organics were concentrated. 1H NMR spectroscopic analysis of 

the crude reaction mixture indicated 72 % deuteration at indole C-2 position. 

 

Figure 4.6: Pd-catalyzed deuterium incorporation of allyl indole under reaction conditions 

4.9.4. Preparation of starting materials 

4.9.4.1. Experimental procedure for the synthesis 3-Allyl-1H-indole 27  

Following a slightly modified reported procedure, oven dried round 

bottom flask was charged with indole (4.5 g, 38.4 mmol), Pd(PPh3)4 (2.217 g, 1.92 

mmol, 0.05 equiv.), allyl alcohol (2.60 mL, 38.4 mmol, 1 equiv.), 1M 

triethylborane in THF (11.52 mL, 11.52 mmol, 0.3 equiv.) in THF (90 mL). The solution was 

heated to 70 °C over 12 h. EtOAc (50 mL) and a saturated aqueous solution of sodium bicarbonate 

(150 mL) were added to the solution. The aqueous layer was extracted with EtOAc (4 x 50 mL), 
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anhydrous sodium sulfate was used to dry the organic layer. The organic layer was concentrated 

under reduced pressure and the crude product was purified by column chromatography 

[hexanes/EtOAc] to give 3-Allyl-1H-indole (5.6 g, 93%) as a yellow oil. 1H NMR (400 MHz, 

CDCl3) δ 7.91 (s, 1H), 7.69 – 7.66 (m, 1H), 7.41 – 7.38 (m, 1H), 7.26 (ddd, J = 8.1, 7.0, 1.2 Hz, 

1H), 7.18 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), 7.02 – 7.01 (m, 1H), 6.19 – 6.09 (m,f 1H), 5.23 (dq, J = 

17.0, 1.8 Hz, 1H), 5.14 (dq, J = 10.0, 1.5 Hz, 1H), 3.59 (dq, J = 6.5, 1.3 Hz, 2H). 13C NMR (101 

MHz, CDCl3) δ 137.3, 136.4, 127.5, 122.0, 121.7, 119.3, 119.1, 115.2, 114.5, 111.1, 29.9. 

4.9.4.2. Experimental procedure for the synthesis of 3-(but-3-en-1-yl) N-H indoles 28  

Following a slightly modified reported procedure, to a solution of the 

indole (0.58 g, 4.9 mmol) in benzene was added a solution of MeMgCl (1.6 

mL, 3.0 M solution in THF) at rt. After 10 min, 4-bromobutene (0.5 mL, 4.2 

mmol) was added and the reaction mixture was heated to reflux. After 27 h, 

the reaction mixture was cooled and quenched with sat. NH4Cl. The organic phase was separated, 

and the aqueous phase was extracted twice with EtOAc. The organic layer was washed with water 

and brine, dried over NaSO4, and concentrated in vacuo. The residue was purified by column 

chromatography on silica gel to afford 3-(but-3-en-1-yl) N-H indoles as yellow oil (0.3 mL, 35%). 

1H NMR (400 MHz, CDCl3) δ 7.87 (m, 1H), 7.73 – 7.67 (m, 1H), 7.39 (dt, J = 8.2, 0.9 Hz, 1H), 

7.30 – 7.24 (m, 1H), 7.22 – 7.18 (m, 1H), 7.03 – 7.02 (m, 1H), 6.07 – 5.97 (m, 1H), 5.23 – 5.13 

(m, 1H), 5.10 – 5.06 (m, 1H), 2.97 – 2.92 (m, 2H), 2.59 – 2.53 (m, 2H); 13C NMR (101 MHz, 

CDCl3) δ 138.8, 136.3, 127.6, 122.0, 121.2, 119.2, 119.0, 116.3, 114.7, 111.1, 34.3, 24.8. 
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4.9.4.3. Experimental procedure for the synthesis of 3-Allyl-1-methylindole  

A solution of 3-Allyl-1H-indole (0.5 g, 3.2 mmol), in DMF (6 mL) was 

cooled to 0 oC, NaH (0.09 g, 3.8 mmol) was added in portion and stirred at rt for 

1h. After 1h, the solution was again cooled to 0 oC, and iodomethane (2.4 mL, 3.8 

mmol) was added dropwise and stirred at rt. After 3h, the solution was poured on to ice and 

extracted twice with EtOAc. The organic layer was washed with water and brine, dried over 

NaSO4, and concentrated in vacuo. The residue was purified by column chromatography on silica 

gel to afford 3-Allyl-1-methylindole as yellow oil (0.46 g, 85%). 1H NMR (400 MHz, CDCl3) δ 

7.81 – 7.73 (m, 1H), 7.47 – 7.35 (m, 2H), 7.30 – 7.25 (m,1H), 6.99 – 6.94 (m, 1H), 6.29 – 6.19 (m, 

1H), 5.34 (dq, J = 17.1, 1.8 Hz, 1H), 5.26 – 5.22 (m, 1H), 3.84 (s, 3H), 3.70 – 3.67 (m, 2H). 

4.9.5. General experimental procedure for indole C2-Amination with N-heterocycles 

4.9.5.1. Pd-catalyzed indole C-2 amidation 

 

To a 1-dram vial fitted with a teflon cap, and a magnetic stir bar on a 0.2 mmol scale, PdCl2 

(0.1 equiv, 0.02 mmol), 4.01a (29.2 mg, 1 equiv), DMSO (0.2 mL), DCE (0.8 mL) and 4.02a (2.0 

equiv, 0.4 mmol) were added simultaneously under nitrogen atmosphere. Then the vial was 

transferred to a preheated magnetic stir plate at 100 oC. After 24 h, the reaction mixture was cooled 

to rt, adsorbed on to silica gel and purified by column chromatography using hexane and ethyl 

acetate (10%-25%) as mobile phase to get analytically pure compound as a yellow solid (51 mg, 

85%). 1H NMR (400 MHz, CDCl3) δ 9.40 (s, 1H), 8.10 (s, 1H), 8.08 – 8.04 (m, 1H), 7.76 – 7.71 
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(m, 1H), 7.70 – 7.68 (m, 1H), 7.67 – 7.63 (m, 1H), 7.39 – 7.35 (m, 1H), 7.19 – 7.12 (m, 2H), 7.06 

– 6.99 (m, 1H), 6.01 (ddt, J = 17.1, 10.0, 6.0 Hz, 1H), 5.13 – 4.99 (m, 2H), 3.48 (dt, J = 6.0, 1.7 

Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 161.5, 147.5, 146.4, 135.8, 135.0, 134.4, 127.8, 127.7, 

127.4, 126.7, 126.6, 123.5, 121.6, 120.0, 119.5, 116.0, 111.7, 109.1, 27.9. 

4.9.5.2. Ni- catalyzed indole C-2 amidation 

 

To a 1-dram vial fitted with a teflon cap, and a magnetic stir bar on a 0.2 mmol scale, NiCl2 

(0.1 equiv, 0.02 mmol), 4.01a (29.2 mg, 1 equiv), DMSO (0.2 mL), DCE (0.8 mL) and 4.02a (2.0 

equiv, 0.4 mmol) were added simultaneously under nitrogen atmosphere. Then the vial was 

transferred to a preheated magnetic stir plate at 100 oC. After 24 h, the reaction mixture was cooled 

to rt, adsorbed on to silica gel and purified by column chromatography using hexane and ethyl 

acetate (10%-25%) as mobile phase to get analytically pure compound as a yellow solid (51 mg, 

85%). 1H NMR (400 MHz, CDCl3) δ 9.40 (s, 1H), 8.10 (s, 1H), 8.08 – 8.04 (m, 1H), 7.76 – 7.71 

(m, 1H), 7.70 – 7.68 (m, 1H), 7.67 – 7.63 (m, 1H), 7.39 – 7.35 (m, 1H), 7.19 – 7.12 (m, 2H), 7.06 

– 6.99 (m, 1H), 6.01 (ddt, J = 17.1, 10.0, 6.0 Hz, 1H), 5.13 – 4.99 (m, 2H), 3.48 (dt, J = 6.0, 1.7 

Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 161.5, 147.5, 146.4, 135.8, 135.0, 134.4, 127.8, 127.7, 

127.4, 126.7, 126.6, 123.5, 121.6, 120.0, 119.5, 116.0, 111.7, 109.1, 27.9. 
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4.9.6. Analytical characterization of purified compounds 

 3-(3-Allyl-1H-indol-2-yl)-3H-quinazolin-4-one: Prepared by general procedure to yield 

4.03b as a yellow solid. 1H NMR (400 MHz, CDCl3) δ 9.40 (s, 1H), 

8.10 (s, 1H), 8.08 – 8.04 (m, 1H), 7.76 – 7.71 (m, 1H), 7.70 – 7.68 (m, 

1H), 7.67 – 7.63 (m, 1H), 7.39 – 7.35 (m, 1H), 7.19 – 7.12 (m, 2H), 7.06 

– 6.99 (m, 1H), 6.01 (ddt, J = 17.1, 10.0, 6.0 Hz, 1H), 5.13 – 4.99 (m, 2H), 3.48 (dt, J = 6.0, 1.7 

Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 161.5, 147.5, 146.4, 135.8, 135.0, 134.4, 127.8, 127.7, 

127.4, 126.7, 126.6, 123.5, 121.6, 120.0, 119.5, 116.0, 111.7, 109.1, 27.9.  

 3-(3-Allyl-1-methyl-1H-indol-2-yl)-3H-quinazolin-4-one: Prepared by general 

procedure to yield 4.03d as a colorless viscous liquid. 1H NMR (400 

MHz, CDCl3) δ 8.42 (ddd, J = 8.0, 1.5, 0.6 Hz, 1H), 8.03 (s, 1H), 7.89 

(ddd, J = 8.4, 7.0, 1.5 Hz, 1H), 7.84 (ddd, J = 8.2, 1.4, 0.6 Hz, 1H), 7.69 

(dt, J = 8.0, 1.0 Hz, 1H), 7.62 (ddd, J = 8.2, 7.0, 1.5 Hz, 1H), 7.42 – 7.34 (m, 2H), 7.22 (ddd, J = 

8.0, 6.5, 1.6 Hz, 1H), 6.01 – 5.91 (m, 1H), 5.04 (dq, J = 17.0, 1.7 Hz, 1H), 4.98 (dq, J = 10.0, 1.5 

Hz, 1H), 3.61 (s, 3H), 3.54 – 3.47 (m, 1H), 3.45 – 3.37 (m, 1H); 13C NMR (101 MHz, CDCl3) δ 

161.1, 147.9, 146.6, 135.9, 135.4, 135.1, 129.0, 128.0, 127.9, 127.4, 126.0, 123.3, 122.1, 120.0, 

119.9, 115.7, 109.7, 109.5, 77.3, 77.0, 76.7, 29.4, 28.1. 

 3-(3-Allyl-5-methoxy-1H-indol-2-yl)-3H-quinazolin-4-one: Prepared by general 

procedure to yield 4.03l as a yellow solid. 1H NMR (400 

MHz, CDCl3) δ 9.30 (s, 1H), 8.09 (s, 1H), 8.06 (ddd, J = 8.0, 

1.5, 0.7 Hz, 1H), 7.73 (ddd, J = 8.3, 6.9, 1.5 Hz, 1H), 7.68 

(ddd, J = 8.2, 1.5, 0.6 Hz, 1H), 7.37 (ddd, J = 8.2, 6.9, 1.5 Hz, 1H), 7.05 (d, J = 2.4 Hz, 1H), 6.93 

(dd, J = 8.8, 0.6 Hz, 1H), 6.81 (dd, J = 8.8, 2.4 Hz, 1H), 6.00 (ddt, J = 17.1, 10.1, 5.9 Hz, 1H), 
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5.10 – 5.01 (m, 2H), 3.89 (s, 3H), 3.44 (dt, J = 6.0, 1.7 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 

161.5, 154.3, 147.5, 146.3, 135.7, 134.9, 129.5, 127.9, 127.8, 127.6, 127.1, 126.7, 121.6, 115.9, 

113.7, 112.5, 108.8, 101.4, 55.9, 27.9. 

 3-(3-Allyl-5-nitro-1H-indol-2-yl)-3H-quinazolin-4-one: Prepared by general procedure 

to yield 4.03m as a yellow solid. 1H NMR (400 MHz, CDCl3) δ 

10.05 (s, 1H), 8.57 (d, J = 2.2 Hz, 1H), 8.13 (s, 1H), 8.06 (dd, J 

= 7.9, 1.4 Hz, 1H), 7.97 (dd, J = 9.0, 2.2 Hz, 1H), 7.79 (ddd, J = 

8.5, 6.8, 1.5 Hz, 1H), 7.73 (dd, J = 8.2, 1.4 Hz, 1H), 7.43 (ddd, J = 8.1, 7.0, 1.4 Hz, 1H), 7.05 (d, 

J = 9.0 Hz, 1H), 6.02 (ddt, J = 16.3, 10.1, 5.9 Hz, 1H), 5.16 – 5.05 (m, 2H), 3.54 (dt, J = 6.2, 1.7 

Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 161.5, 147.2, 145.4, 142.0, 137.1, 135.5, 134.8, 130.0, 

128.3, 127.8, 126.7, 125.9, 125.5, 121.2, 118.9, 117.0, 116.9, 111.5, 27.7. 

 3-(3-Allyl-5-bromo-1H-indol-2-yl)-3H-quinazolin-4-one: Prepared by general 

procedure to yield 4.03n as a light yellow solid. 1H NMR (400 

MHz, CDCl3) δ 9.44 (s, 1H), 8.09 (s, 1H), 8.05 – 7.99 (m, 1H), 7.79 

– 7.68 (m, 3H), 7.37 (ddd, J = 8.2, 6.8, 1.5 Hz, 1H), 7.20 (dd, J = 

8.6, 1.9 Hz, 1H), 6.82 (d, J = 8.6 Hz, 1H), 5.99 (ddt, J = 17.6, 9.6, 5.9 Hz, 1H), 5.11 – 5.03 (m, 

2H), 3.43 (dt, J = 6.1, 1.7 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 161.6, 147.5, 145.9, 135.3, 

135.2, 132.9, 128.3, 128.2, 127.9, 127.8, 126.6, 126.5, 122.1, 121.5, 116.4, 113.4, 113.0, 108.8, 

27.7. 

 3-(3-Allyl-5-fluoro-1H-indol-2-yl)-3H-quinazolin-4-one: Prepared by general procedure 

to yield 4.03o as a light yellow solid. 1H NMR (400 MHz, 

CDCl3) δ 9.54 (s, 1H), 8.10 (s, 1H), 8.03 – 7.94 (m, 1H), 7.76 – 

7.68 (m, 2H), 7.53 (dd, J = 8.8, 5.2 Hz, 1H), 7.34 (ddd, J = 8.2, 
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6.7, 1.8 Hz, 1H), 6.89 (td, J = 9.2, 2.2 Hz, 1H), 6.56 (dd, J = 9.5, 2.3 Hz, 1H), 5.99 (ddt, J = 16.3, 

10.0, 6.0 Hz, 1H), 5.12 – 5.02 (m, 2H), 3.45 (dt, J = 6.1, 1.7 Hz, 2H); 13C NMR (101 MHz, CDCl3) 

δ 161.71, 161.67, 159.3, 147.4, 146.3, 135.3 (J = 44.7 Hz), 134.3 (J = 12.9 Hz), 127.8 (J = 28.4 

Hz), 127.3 (J = 4.4 Hz), 126.6, 122.2 (J = 164.5 Hz), 120.5 (J = 10.4 Hz), 116.2, 109.4, 109.2, 

109.0, 97.9, 97.6, 27.9; 19F NMR (376 MHz, CDCl3) δ -118.6. 

 3-Allyl-2-(4-oxo-4H-quinazolin-3-yl)-1H-indole-5-carboxylic acid methyl ester: 

Prepared by general procedure to yield 4.03p as a light yellow 

solid. 1H NMR (400 MHz, DMSO-d6) δ 12.06 (s, 1H), 8.40 

(s, 1H), 8.32 (d, J = 1.6 Hz, 1H), 8.26 (dd, J = 7.9, 1.5 Hz, 

1H), 7.95 (ddd, J = 8.5, 7.2, 1.6 Hz, 1H), 7.86 (dd, J = 8.6, 1.7 Hz, 1H), 7.80 (dd, J = 8.2, 1.2 Hz, 

1H), 7.69 – 7.63 (m, 1H), 7.53 (dd, J = 8.6, 0.7 Hz, 1H), 5.92 (ddt, J = 17.0, 10.0, 6.1 Hz, 1H), 

5.03 (dq, J = 16.9, 1.6 Hz, 1H), 4.94 (dq, J = 10.1, 1.5 Hz, 1H), 3.88 (s, 3H), 3.46 (dt, J = 6.3, 1.6 

Hz, 2H). 13C NMR (101 MHz, DMSO-d6) δ 167.5, 160.5, 147.9, 147.6, 137.0, 136.6, 135.7, 130.0, 

128.4, 128.1, 127.0, 126.4, 123.9, 122.3, 122.0, 121.2, 116.0, 112.1, 110.0, 52.3, 27.6. 

 3-Allyl-2-(4-oxo-4H-quinazolin-3-yl)-1H-indole-5-carbaldehyde: Prepared by general 

procedure to yield 4.03q as an off light yellow solid. 1H NMR 

(400 MHz, DMSO-d6) δ 12.19 (s, 1H), 10.03 (s, 1H), 8.42 (s, 

1H), 8.35 – 8.23 (m, 2H), 8.00 – 7.91 (m, 1H), 7.85 – 7.75 (m, 

2H), 7.67 (t, J = 7.6 Hz, 1H), 7.60 (d, J = 8.5 Hz, 1H), 5.94 (ddt, J = 16.5, 10.0, 6.2 Hz, 1H), 5.10 

– 5.03 (m, 1H), 4.94 (dd, J = 10.0, 2.1 Hz, 1H), 3.50 (dt, J = 6.6, 1.6 Hz, 2H); 13C NMR (101 

MHz, DMSO) δ 192.9, 160.5, 147.9, 147.5, 137.8, 136.5, 135.7, 130.2, 129.4, 128.4, 128.1, 127.0, 

126.7, 125.1, 122.9, 122.0, 116.1, 112.8, 110.7, 27.7. 
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 3-Allyl-2-(4-oxo-4H-quinazolin-3-yl)-1H-indole-5-carbonitrile: Prepared by general 

procedure to yield 4.03r as a light yellow solid. 1H NMR (400 

MHz, DMSO-d6) δ 12.25 (s, 1H), 8.40 (s, 1H), 8.25 (ddd, J = 8.0, 

1.5, 0.6 Hz, 1H), 8.20 (dd, J = 1.6, 0.8 Hz, 1H), 7.95 (ddd, J = 8.2, 

7.2, 1.6 Hz, 1H), 7.83 – 7.78 (m, 1H), 7.66 (ddd, J = 8.2, 7.3, 1.2 Hz, 1H), 7.63 – 7.57 (m, 2H), 

5.88 (ddt, J = 16.9, 10.0, 6.3 Hz, 1H), 5.04 (dd, J = 17.1, 1.8 Hz, 1H), 4.91 (dd, J = 10.0, 1.7 Hz, 

1H), 3.46 (dt, J = 6.5, 1.5 Hz, 2H).13C NMR (101 MHz, DMSO) δ 160.5, 147.9, 147.4, 136.4, 

136.1, 135.8, 130.7, 128.4, 128.1, 127.0, 126.7, 125.6, 125.6, 122.0, 121.0, 116.1, 113.4, 109.8, 

101.8, 27.5. 

 3-(3-Allyl-1H-indol-2-yl)-6-nitro-3H-quinazolin-4-one: Prepared by general procedure 

to yield 4.03s as a yellow solid. 1H NMR (400 MHz, CDCl3) δ 

8.98 (d, J = 2.7 Hz, 2H), 8.54 (dd, J = 9.0, 2.7 Hz, 1H), 8.29 (s, 

1H), 7.90 (d, J = 8.9 Hz, 1H), 7.64 (dd, J = 6.5, 2.4 Hz, 1H), 7.26 

– 7.12 (m, 3H), 6.01 (ddt, J = 16.3, 10.1, 5.9 Hz, 1H), 5.11 – 5.03 (m, 2H), 3.50 (dt, J = 6.1, 1.7 

Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 160.2, 151.5, 149.3, 146.3, 135.4, 134.5, 129.5, 128.9, 

126.6, 126.4, 124.1, 123.3, 122.1, 120.5, 119.7, 116.3, 111.6, 109.6, 27.9. 

 3-(3-Allyl-1H-indol-2-yl)-6-methoxy-3H-quinazolin-4-one: Prepared by general 

procedure to yield 4.03t as a light yellow solid. 1H NMR (400 

MHz, DMSO-d6) δ 11.61 (s, 1H), 8.26 (s, 1H), 7.75 (d, J = 8.8 

Hz, 1H), 7.62 (d, J = 8.0 Hz, 2H), 7.53 (dd, J = 8.9, 3.0 Hz, 1H), 

7.42 (d, J = 8.1 Hz, 1H), 7.22 (t, J = 7.6 Hz, 1H), 7.10 (t, J = 7.5 Hz, 1H), 5.89 (ddt, J = 16.6, 9.6, 

6.3 Hz, 1H), 5.02 (dd, J = 17.3, 2.1 Hz, 1H), 4.93 – 4.87 (m, 1H), 3.92 (s, 3H), 3.38 (d, J = 6.5 Hz, 
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2H); 13C NMR (101 MHz, DMSO) δ 160.4, 159.0, 145.6, 142.4, 136.8, 134.3, 129.8, 128.5, 126.9, 

124.8, 123.0, 122.9, 119.7, 119.6, 115.7, 112.0, 108.4, 107.1, 56.3, 27.9. 

 3-(3-Allyl-1H-indol-2-yl)-6-bromo-3H-quinazolin-4-one: Prepared by general 

procedure to yield 4.03u as a light yellow solid. 1H NMR (400 

MHz, DMSO-d6) δ 11.62 (s, 1H), 8.45 (s, 1H), 8.36 (d, J = 2.3 Hz, 

1H), 8.06 (dd, J = 8.7, 2.4 Hz, 1H), 7.76 (d, J = 8.7 Hz, 1H), 7.63 

(dd, J = 7.9, 1.1 Hz, 1H), 7.45 (dt, J = 8.2, 0.9 Hz, 1H), 7.24 (ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 7.11 

(ddd, J = 8.0, 7.1, 1.0 Hz, 1H), 5.91 (ddt, J = 17.1, 9.9, 6.3 Hz, 1H), 5.04 (dq, J = 17.1, 1.7 Hz, 

1H), 4.91 (dq, J = 10.0, 1.5 Hz, 1H), 3.42 (dt, J = 6.4, 1.6 Hz, 2H); 13C NMR (101 MHz, DMSO) 

δ 159.5, 148.4, 147.0, 138.4, 136.8, 134.4, 130.4, 129.1, 128.0, 126.9, 123.7, 123.1, 120.8, 119.8, 

119.7, 115.7, 112.1, 108.6, 27.9. 

 3-(3-Allyl-1H-indol-2-yl)-6-fluoro-3H-quinazolin-4-one: Prepared by general procedure 

to yield 4.03v as a light yellow solid. 1H NMR (400 MHz, DMSO-

d6) δ 11.60 (s, 1H), 8.38 (s, 1H), 7.95 (dd, J = 8.6, 2.9 Hz, 1H), 

7.89 (dd, J = 9.0, 5.0 Hz, 1H), 7.83 (td, J = 8.6, 2.9 Hz, 1H), 7.62 

(dd, J = 7.9, 1.1 Hz, 1H), 7.42 (dt, J = 8.2, 1.0 Hz, 1H), 7.22 (ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 7.10 

(ddd, J = 8.1, 7.1, 1.0 Hz, 1H), 5.89 (ddt, J = 17.1, 10.0, 6.3 Hz, 1H), 5.02 (dq, J = 17.1, 1.8 Hz, 

1H), 4.90 (dq, J = 10.0, 1.5 Hz, 1H), 3.40 (dt, J = 6.3, 1.6 Hz, 2H); 13C NMR (101 MHz, DMSO) 

δ 162.4, 160.0, 159.9, 159.9, 147.4 (d, J = 2.16 Hz), 144.9 (d, J = 2.16 Hz), 136.8, 134.4, 131.0 

(d, J = 9.0 Hz), 127.5 (d, J = 122.81 Hz), 124.0 (d, J = 23.83 Hz), 123.5 (d, J = 8.53 Hz), 123.0, 

119.8, 119.7, 115.7, 112.0, 111.8 (d, J = 111.83 Hz), 108.5, 27.9; 19F NMR (376 MHz, CDCl3) δ 

-112.0. 
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 3-(3-Allyl-1H-indol-2-yl)-7-fluoro-3H-quinazolin-4-one: Prepared by general procedure 

to yield 4.03w as a light yellow solid. 1H NMR (400 MHz, CDCl3) 

δ 8.90 (s, 1H), 8.24 (dd, J = 8.9, 6.0 Hz, 1H), 8.14 (s, 1H), 7.69 – 

7.61 (m, 1H), 7.41 (dd, J = 9.3, 2.5 Hz, 1H), 7.27 – 7.14 (m, 4H), 

6.02 (ddt, J = 17.1, 10.1, 5.9 Hz, 1H), 5.14 – 5.02 (m, 2H), 3.50 (dt, J = 6.0, 1.7 Hz, 2H); 13C NMR 

(101 MHz, CDCl3) δ 166.8 (d, J = 256.5 Hz), 160.6, 149.8 (d, J = 12.8 Hz), 147.5, 135.6, 134.4, 

129.7 (d, J = 10.5 Hz), 127.0 (d, J = 56.3 Hz), 123.8, 120.3, 119.7, 118.5, 118.5, 116.6 (d, J = 24.0 

Hz),  116.1, 113.4 (d, J = 22.4 Hz), 111.5, 109.2, 27.9. 19F NMR (376 MHz, CDCl3) δ -112.0 

 3-(3-Allyl-1H-indol-2-yl)-3H-pyrimidin-4-one: Prepared by general procedure to yield 

4.05a as a light brown solid.  1H NMR (400 MHz, DMSO-d6) δ 11.61 (s, 1H), 

8.48 (s, 1H), 8.04 (d, J = 6.8 Hz, 1H), 7.61 (d, J = 7.9 Hz, 1H), 7.40 (d, J = 

8.1 Hz, 1H), 7.21 (t, J = 7.5 Hz, 1H), 7.09 (t, J = 7.5 Hz, 1H), 6.62 – 6.55 (m, 

1H), 5.02 (dq, J = 17.0, 1.8 Hz, 1H), 4.93 (dq, J = 10.0, 1.6 Hz, 1H), 3.36 – 3.34 (m, 2H); 13C 

NMR (101 MHz, DMSO) δ 160.4, 154.3, 153.2, 136.6, 134.3, 127.9, 126.8, 123.1, 119.7, 119.7, 

116.2, 115.7, 112.0, 108.2, 27.8. 

 1-(3-Allyl-1H-indol-2-yl)-5-methyl-1H-pyridin-2-one: Prepared by general procedure to 

yield 4.05b as a light yellow solid. 1H NMR (400 MHz, CDCl3) δ 10.07 (s, 

1H), 7.59 – 7.53 (m, 1H), 7.26 (dd, J = 9.4, 2.5 Hz, 1H), 7.16 (dt, J = 2.1, 1.3 

Hz, 1H), 7.09 – 6.99 (m, 3H), 6.52 (d, J = 9.3 Hz, 1H), 6.03 (ddt, J = 17.1, 

10.0, 6.0 Hz, 1H), 5.11 – 5.04 (m, 2H), 3.44 (dt, J = 6.0, 1.7 Hz, 2H), 2.10 (s, 3H); 13C NMR (101 

MHz, CDCl3) δ 162.4, 143.6, 136.4, 136.3, 134.2, 131.3, 126.7, 122.7, 120.9, 119.5, 119.1, 115.5, 

115.4, 111.7, 106.8, 28.1, 16.9.  
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 1-(3-Allyl-1H-indol-2-yl)-5-bromo-1H-pyridin-2-one: Prepared by general procedure to 

yield 4.05c as a light brown solid. 1H NMR (400 MHz, DMSO-d6) δ 11.56 

(s, 1H), 7.97 (d, J = 2.7 Hz, 1H), 7.68 (dd, J = 9.8, 2.8 Hz, 1H), 7.57 (d, J = 

7.9 Hz, 1H), 7.37 (d, J = 8.1 Hz, 1H), 7.19 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 

7.07 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 6.54 (d, J = 9.8 Hz, 1H), 5.88 (ddt, J = 16.5, 10.0, 6.3 Hz, 

1H), 5.04 (dq, J = 17.1, 1.8 Hz, 1H), 4.95 (dq, J = 10.0, 1.6 Hz, 1H), 3.32 (dt, J = 6.4, 1.6 Hz, 2H); 

13C NMR (101 MHz, DMSO) δ 160.6, 144.3, 139.7, 136.8, 134.1, 130.7, 126.8, 122.8, 122.4, 

119.6, 119.5, 115.6, 111.9, 107.1, 97.4, 28.0. 

 1-(3-Allyl-1H-indol-2-yl)-5-nitro-1H-pyridin-2-one: Prepared by general procedure to 

yield 4.05d as a light yellow solid. 1H NMR (400 MHz, CDCl3) δ 9.15 (s, 

1H), 8.69 (d, J = 3.1 Hz, 1H), 8.17 (dd, J = 10.1, 3.1 Hz, 1H), 7.63 (d, J = 7.7 

Hz, 1H), 7.20 (dddd, J = 15.9, 8.0, 6.3, 1.7 Hz, 3H), 6.64 (d, J = 10.1 Hz, 1H), 

6.03 (ddt, J = 17.1, 10.1, 5.9 Hz, 1H), 5.15 – 5.05 (m, 2H), 3.50 (dt, J = 6.0, 1.7 Hz, 2H); 13C NMR 

(101 MHz, CDCl3) δ 161.6, 140.4, 135.2, 134.2, 134.0, 131.2, 129.2, 126.5, 124.2, 120.5, 120.2, 

119.8, 116.6, 111.6, 108. 6, 28.0. 

 3-[3-(2-Methyl-allyl)-1H-indol-2-yl]-3H-quinazolin-4-one: Prepared by general 

procedure to yield 4.03x as a white solid. 1H NMR (400 MHz, 

CDCl3) δ 9.16 (s, 1H), 8.22 – 8.10 (m, 2H), 7.83 – 7.70 (m, 2H), 7.64 

(dd, J = 6.9, 2.1 Hz, 1H), 7.50 – 7.41 (m, 1H), 7.25 – 7.09 (m, 3H), 

4.80 (s, 1H), 4.69 (s, 1H), 3.43 (s, 2H), 1.77 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 161.3, 147.5, 

146.2, 143.5, 135.0, 134.4, 128.0, 127.8, 127.7, 127.0, 126.8, 123.5, 121.7, 120.1, 119.9, 111.9, 

111.5, 109.0, 32.0, 22.6. 
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 3-(3-But-3-enyl-1H-indol-2-yl)-3H-quinazolin-4-one: Prepared by general procedure to 

yield 4.03j as a light yellow solid. 1H NMR (400 MHz, CDCl3) δ 9.01 

(s, 1H), 8.15 (ddd, J = 8.0, 1.5, 0.6 Hz, 1H), 8.12 (s, 1H), 7.78 (ddd, J = 

8.4, 6.9, 1.5 Hz, 1H), 7.75 – 7.71 (m, 1H), 7.68 (ddt, J = 5.9, 3.1, 0.8 Hz, 

1H), 7.44 (ddd, J = 8.2, 6.9, 1.5 Hz, 1H), 7.21 – 7.15 (m, 2H), 7.13 – 7.08 (m, 1H), 5.83 (ddt, J = 

16.9, 10.2, 6.7 Hz, 1H), 5.05 – 4.92 (m, 2H), 2.86 – 2.75 (m, 2H), 2.45 (tdt, J = 7.9, 6.6, 1.4 Hz, 

2H); 13C NMR (101 MHz, CDCl3) δ 161.5, 147.6, 146.4, 137.7, 135.1, 135.0, 134.5, 127.9, 127.7, 

127.0, 126.8, 126.6, 123.5, 121.7, 120.0, 119.5, 115.5, 111.6, 34.1, 23.3. 

 [2-(4-Oxo-4H-quinazolin-3-yl)-1H-indol-3-yl]-acetonitrile: Prepared by general 

procedure to yield 4.03k as a white solid. 1H NMR (400 MHz, 

DMSO-d6) δ 11.93 (s, 1H), 8.43 (s, 1H), 8.27 (dd, J = 7.9, 1.5 Hz, 

1H), 7.95 (ddd, J = 8.7, 7.2, 1.6 Hz, 1H), 7.85 – 7.79 (m, 1H), 7.74 

(d, J = 7.9 Hz, 1H), 7.70 – 7.64 (m, 1H), 7.48 (d, J = 8.1 Hz, 1H), 7.30 (ddd, J = 8.2, 7.1, 1.2 Hz, 

1H), 7.20 (ddd, J = 8.3, 7.1, 1.1 Hz, 1H), 4.07 (s, 2H); 13C NMR (101 MHz, DMSO) δ 160.5, 

147.9, 147.4, 135.6, 134.1, 128.9, 128.3, 128.0, 127.1, 125.9, 123.6, 122.2, 120.4, 119.2, 118.8, 

112.3, 100.6, 12.3. 

 [2-(4-Oxo-4H-quinazolin-3-yl)-1H-indol-3-yl]-acetic acid methyl ester: Prepared by 

general procedure to yield 4.07b as a white solid. 1H NMR (400 

MHz, Chloroform-d) δ 9.50 (s, 1H), 8.32 (s, 1H), 8.08 – 8.04 (m, 1H), 

7.74 (ddd, J = 8.3, 6.9, 1.5 Hz, 1H), 7.70 (ddd, J = 8.1, 1.5, 0.7 Hz, 

1H), 7.67 – 7.62 (m, 1H), 7.39 (ddd, J = 8.2, 6.9, 1.5 Hz, 1H), 7.21 – 

7.12 (m, 2H), 7.07 – 7.03 (m, 1H), 3.71 (s, 2H), 3.66 (s, 3H); 13C 
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NMR (101 MHz, CDCl3) δ 171.3, 161.3, 147.2, 146.5, 135.1, 134.2, 128.2, 127.9, 127.6, 126.7, 

126.4, 123.8, 121.5, 120.5, 119.2, 111.7, 104.6, 77.4, 77.0, 76.7, 52.3, 29.6. 
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CHAPTER 5. CHEMO- AND REGIO-SELECTIVE C-H/N-H BOND 

FUNCTIONALIZATION OF 2-STYRYL QUINAZOLIN-4(3H)-ONES: EN ROUTE TO 

2-AMINO PYRIDINES  

Carbocyclic/heterocyclic fused 3H-quinazolin-4-one ring is regarded as a “privileged 

structure” owing to its diverse biological activities of naturally occurring alkaloids (Figure 5.1). 1,2 

With a wide spectrum of biological properties like antibacterial, antifungal, anticonvulsant, anti-

inflammatory and anti-HIV to name a few,3–10 development of convenient methods for their 

synthetic analogue rapid syntheses is highly desirable. The general and well explored method for 

the synthesis of tricyclic pyrido-fused quinazolinones involves the lactamization of 2-(pyridin-2-

ylamino)benzoic acid.11,12 However, the traditional synthetic route required multiple steps, 

transition metal catalyzed C-H bond functionalizations become an alternative and have partially 

circumvented the existing shortcomings. Especially directed C-H/N-H bond functionalizations 

followed by alkyne annulation is a more direct way for the synthesis of fused quinazolinones. 

 

Figure 5.1: Representative examples of naturally occurring biologically active fused quinazolin-

4(3H)-ones 
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5.1. Transition metal catalyzed C-H/N-H functionalization/oxidative annulation 

Transition metal catalysts derived from Rh, Ru, Ni, and Pd etc. have been reported for 

functionalization/annulation of aromatic sp2 C−H bonds with alkynes, alkenes, and other 

unsaturated molecules in the presence of an oxidant for generation of carbocycles/heterocycles. 13–

16 Pioneering work in this area revealed that rhodium complexes enabled effective annulation 

reactions of alkynes through chelation assisted chemo- and regioselective functionalization of both 

C-H and N-H bonds. A variety of directing groups have been successfully employed for various 

Rh mediated annulation processes which included, but were not limited to, carboxylic acid, 

phenolic hydroxyl, imine, oxime, benzamide, hydroxamic acid, amide, acetanilide, enamine, azide 

and heterocycles such as imidazole, indole, pyridine etc.15 The high cost of the required rhodium 

(III) catalyst was identified as one of the major limitations of this approach. In contrast, 

significantly less expensive ruthenium (II) complexes were shown as viable catalysts for oxidative 

alkyne annulations. The success of ruthenium (II) catalysis was attributed to their facile 

transformation into cyclometallated species via C−H bond cleavage, their compatibility with 

currently used oxidants, and stability to both air and water.17–19 

After the pioneering work from Ackerman and coworkers on the utilization of low cost Ru-

catalysts for the synthesis of fused indole derivatives.20 There has been immense interest in the 

utilization of Ru-catalysts for effective C-H/N-H functionalization/annulation reactions. Li and 

coworkers utilized the similar protocol for the synthesis of fused quinazolinones via an oxidative 

annulation aromatic C-H bond/quinoline amide C-H bond functionalization (Scheme 5.1).21 

 

Scheme 5.1: Fused quinolizinone synthesis via Ru-catalyzed oxidative annulation 
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5.2. Oxidative annulation of 2-styrylquinazolinones 

While great advances in C-H functionalization/annulation, have been made, the ability to 

selectively functionalized olefinic C-H bonds in presence of others competitive sp2 C-H 

(olefinic/arene) bonds without specific directing groups remains a challenge.22–30 With our interest 

in functionalizing quinazoline core for the synthesis of biologically active compounds, we sought 

to explore oxidative annulation of 2-styryl quinazolinones.31–34 This is particularly challenging 

because of multiple competitive sp2 C-H bonds and tautomerizable X-H (X = N/O) bonds (Figure 

5.2). 

 

Figure 5.2: Possible products formed by oxidative annulation of 2-styryl quinazolinones. 
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5.3. Initial observation of fused quinazolinone via C-H/N-H functionalization 

To investigate the oxidative annulation reaction of 2-styryl quinazolinones with alkynes, a 

reaction of 5.01a with diphenyl acetylene 5.02 with different Ru catalysts in DMF was performed 

using silver acetate as an oxidant. To our delight, [RuCl2(p-cymene)]2 and [Ru(COD)Cl2]n was 

found effective yielding only cyclized product 5.03a from vinylic C-H bond and amide N-H 

functionalization (Entry 3 and 4, Table 5.1).  

Table 5.1: Investigation of ruthenium catalysts for the oxidative annulation of 2-styryl 

quinazolinone 

 

Entry  Catalyst     Yield (%)a  

1  [Rh(C2H4)2Cl]2    0b  

2  RuCl3•xH2O     0b   

3  [Ru(COD)Cl2]n    21   

4  [Ru(p-cymene)Cl2]2    35 

5  Ru(Me-allyl)2(cod)    traces 

6  Ru3(CO)12     traces  

7  RuH2(CO)(PPh3)3    0b  

8  Tris(1,10-Phen)RuCl2.xH2O   0b 

Reaction conditions: 5.01a (0.12 mmol) was treated with 5.02 (0.18 mmol, 1.5 equiv) in presence 

of Ru catalysts (10 mol%) and AgOAc (1 equiv) in DMF (1 mL). aIsolated yield of 5.03a.bStarting 

5.01a was found intact. [e]Isolated yield of 3e in parentheses when reactions were conducted in the 

presence of 1 equiv AgOAc. 
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5.4. Investigation of solvent effects on the oxidative annulation 

Delighted by the effectiveness of the [Ru(p-cymene)Cl2]2 for the selective formation of 

annulated product 5.03a in appreciable yields led us to further investigate the optimized conditions. 

An elaborative screening of solvents indicated the effectiveness of ethereal solvents, with 1,4-

dioxane being the best yielding the product in 46% yield (Entry 6, Table 5.2) 

Table 5.2: Effect of solvents on the selective C-H bond functionalization/annulation of 5.01a 

with 5.02 in presence of [Ru(p-cymene)Cl2]2
 

 

Entry  Solvent      Yield (%)a 

1  EtOH       26   

2  i-PrOH       20   

3  t-BuOH      15  

4  t-Amyl-OH      10  

5  PhMe       26   

6  1,4-Dioxane      46   

7  THF       24  

8  DCE       28  

9  MeCN       25  

10  DME       26   

11  DMF       32    

12  DMSO       10   

13  DMC       21  

14  MeNO2      22 

Reaction conditions: 5.01a (0.12 mmol) was treated with 5.02 (0.18 mmol, 1.5 equiv) in presence 

of [Ru(p-cymene)Cl2]2 (10 mol%) and AgOAc (1 equiv) in different solvents (1 mL) at 120 °C for 

24 h. aIsolated yield of 5.03a. 
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5.5. Investigation of oxidant effects on the oxidative annulation 

Given the fact that the reactions were oxidative in nature, we also examined various 

oxidants for the cyclization of 2-styryl quinazolinones with alkynes. Most of the inorganic oxidants 

screened were found to be effective yielding the product in respectable yield. Organic oxidants, on 

the other hand were found inferior in the oxidative annulation (Entry 9-12, Table 5.03). When a 

combination of two different metal oxidants (AgOAc and Cu(OAc)2·xH2O) were used in the 

reaction mixture, the yields of the cyclized product improved (Entry 13 and 14, Table 5.3)  

Table 5.3: Effect of oxidants on the selective C-H bond functionalization/annulation of 5.01a 

with 5.02 in the presence of [Ru(p-cymene)Cl2]2 in dioxane 

 

Entry  Oxidant      Yield (%)a 

1  AgBF4       30   

2  AgClO4      32   

3  AgOTf       35  

4  AgCO3       38  

5  AgSbF6      40 

6  AgOAc      42 

7  Cu(OAc)2.xH2O     30  

8  CuSO4.5H2O      31  

9  Methyl-p-benzoquinone    15  

10  2,6-Dimethylbenzoquinone    28  

11  2,6-tert-Butyl-1,4-benzoquinone   22  

12  Duroquinone      26  

13  AgOAc : Cu(OAc)2.xH2O (1:1)b   58   

14  AgOAc : CuSO4.5H2O (1:1)b    45   

Reaction conditions: 5.01a (0.12 mmol) was treated with 5.02 (0.18 mmol, 1.5 equiv) in presence 

of [Ru(p-cymene)Cl2]2 (10 mol%) and different oxidants (2 equiv) in dioxane (1 mL) at 120 °C 

for 24 h. aIsolated yield of 3e. bCombination of oxidants as 1 :1 (1 equiv each). 
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5.6.  Investigation of effects of acids/bases on the oxidative annulation 

Addition of acid or base additives were found to be effective in activating transition metal 

catalyst for the deprotonation of C-H bond.35 So, we screened different bases and acids for the 

cyclization reaction. From our previous studies, we found that addition of bases to the 

quinazolinone core inhibits the reactivity, not surprisingly addition of bases inhibited the oxidative 

annulation reaction of 2-styryl quinazolinones with alkynes (Entry 1-7, Table 5.4). On the contrary, 

addition of acids enhanced the reactivity forming product in increased yields (Entry 8 and 9, Table 

5.4), with trifluoroacetic acid being the best.  

Table 5.4: Effect of acids and bases on oxidative annulation of 5.01a with 5.02 in presence of 

[Ru(p-cymene)Cl2]2 in 1,4-dioxane 

 

Entry  Base/Acid      Yield (%)a   

1  K2CO3       12 

2  Na2CO3      14   

3  Kt-OBu      15  

4  LiNH2       10   

5  DBU       13   

6  DMAP       10   

7  TEA       11   

8  AcOH       65   

9  TFA       76   

Reaction conditions: 5.01a (0.12 mmol) was treated with 5.02 (0.18 mmol, 1.5 equiv) in presence 

of [Ru(p-cymene)Cl2]2 (10 mol%) and AgOAc (1 equiv) in DMF (1 mL) in presence of different 

bases and acids (1 equiv) at 120 °C for 24 h. aIsolated yield of 3a. 
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Further screening of the reaction conditions with respect to the amounts of alkyne, oxidants 

and catalyst loading gave the optimized condition to be the use of 5 mol% [Ru(p-cymene)Cl2]2, 20 

mol% of AgOAc, 1 equiv each of Cu(OAc)2·xH2O and TFA in dioxane at 100 °C gave the product 

in 76% yield (Scheme 5.2). 

 

Scheme 5.2: Optimized reaction conditions for oxidative annulation of 2-styryl quinazolinones 

5.7. Optimization and importance of each of reaction components 

A series of control experiments was performed. In the absence of any one of the reaction 

components, either reduced yields or no conversion was observed (Table 5.5). These results show 

that the Ru-catalyst ([Ru(p-cymene)Cl2]2), AgOAc, Cu(OAc)2.xH2O, and TFA are all essential for 

the optimal reaction conditions.  

Table 5.5: Control experiments 

Entry  Ru-catalyst AgOAc Cu(OAc)2.xH2O TFA  Yield   

  (5 mol%) (20 mol%)     (1 equiv)  (1 equiv) (%)a  

1  +  +   +  +  63 

2  +  +   +  -  46 

3  +  +   -  -  11 

5  +  -   -  -  traces 

9  -  -   -  -  0 

6  -  +   +  +  0 

Reaction conditions: 5.01a (35 mg, 0.12 mmol) was treated with 5.02 (32 mg, 0.18 mmol, 1.5 

equiv) under different reaction conditions in 1,4-dioxane (1 mL, 1 : 0.4) at 100 °C for 24 h. 
aIsolated yield of 5.03a 
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5.8. Mechanistic investigation of Ru-catalyzed oxidative annulation 

Assuming a heteroatom directed C-H activation, four different sp2 C-H bonds would be 

accessible for insertion by the catalyst and because of the tautomeric equilibrium at least six 

different annulated products could result (Figure 5.2). Exclusive formation of 5.03a, considering 

the number of possible reaction pathways the was unexpected but gratifying. 

5.8.1. Deuterium incorporation and KIE studies under reaction conditions 

5.8.1.1. Deuterium incorporation 

To gain mechanistic insight, the incorporation of deuterium into the substrate and product 

was examined. When the quinazolinone 5.01b was subjected to the reaction conditions in the 

absence of alkyne but with D2O present, deuterium was found largely at the observed site of 

reactivity Hd (70%) with a trace of incorporation at Hc (10%). No deuterium was observed at Ha 

or Hb, indicating the possibility of a reversible C-H activation/metal insertion. We believe that 

deuteration proceeds by an acetate-assisted C-H activation by Ru(II)-complexes to generate a 

ruthenacycle intermediate followed by its deuteriolysis to give the deuteration product. When 

alkyne 5.02 was added to the reaction mixture containing D2O, annulation proceeded with 

essentially no incorporation of deuterium, suggesting a 5-membered ruthenacycle intermediate 

resulting from N-H and C-H bond insertion was likely (Scheme 5.3). It should also be noted that, 

with two exceptions, all ruthenium-catalyzed alkyne oxidative annulations reported to date involve 

initial cyclometallation to form five-membered ruthenacycles.36,37 
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Scheme 5.3: Incorporation of deuterium in the presence or absence of alkyne 

5.8.1.2. KIE studies for Ru-catalyzed oxidative annulation  

Parallel but independent reactions using 5.01a and [D6]- 5.01a revealed a significant 

kinetic isotope effect (kH/kD ≈ 3) suggesting C-H insertion as the rate determining step. To further 

validate the rate determining step, an intermolecular kinetic isotope effect experiment was 

investigated between 5.01a + [D6]- 5.01a (1:1) and 5.02, the obtained KIE value (PH/PD ≈ 3.2) 

concluded the C-H insertion as the rate determining step (Scheme 5.4). A KIE of this magnitude 

is in good agreement with a concerted acetate-assisted metalation transition state.38,39 
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Scheme 5.4: Kinetic isotopic effect studies of the oxidative annulation reactions 

5.8.2. Catalytic cycle and control studies 

To investigate the effect or importance of extended -conjugation, and whether larger 

ruthenacycle could be formed, quinazolinone 5.05 bearing an extended diene was subjected to the 

optimized reaction conditions in presence of alkyne 5.02 to produce only 5.06 (Scheme 5.5). In 

addition, when aliphatic olefin 5.07 was reacted under optimized conditions also produced 

cyclized product 5.08 in good yield, suggesting that the lability of the C-H due to extended 

conjugation was not critical.40,41 
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Scheme 5.5: Effect of extended conjugation on oxidative annulation  

To further probe the mechanism, we focused our studies on whether the initial attack of 

alkyne occurs at carbon center or nitrogen center prior to cyclization. Independently we prepared 

a potential intermediate 5.09 formed by the initial attack of alkyne on amide nitrogen. Under 

reaction condition, it did not yield any product. This result strongly supports the intermediacy of a 

5-membered ruthenacycle complex with initial bond formation at the carbon rather than at 

nitrogen. We also investigated the importance of the presence of both N-H and C-H bonds for the 

reaction to proceed. When N-blocked 5.10 (N-Me) or C-blocked 5.11 (C-Me) substrates were 

subjected to reaction conditions, no reaction occurred indicating the importance of both C-H and 

N-H bonds (Scheme 5.6). 
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Scheme 5.6: Effect of C-H or N-H blocking on the oxidative annulation 

Based on our mechanistic studies and previous literature reports on ruthenium catalyzed 

C−H activation and functionalization reactions, a catalytic cycle was proposed that accounts for 

the product formation is shown in Scheme 5.7.42,43 Initial step of the catalytic cycle being the 

counter ion exchange between AgOAc and Ru-complex affording the cationic ruthenium acetate 

species [I]. Subsequent concerted acetate-assisted reversible cycloruthenation via rate determining 

C-H insertion would lead to the 5-membered ruthenacycle [II] (step A). Alkyne coordination (step 

B) to the ruthenacycle forms the intermediate [III], which is followed by a migratory insertion 

(step C) to generate a 7-membered ruthenacycle [IV]. Reductive elimination (step D) with 

concomitant CuII-promoted oxidation of Ru(0) back to the RuII species [I], releases the fused 

pyrido[2,1-b]quinazolin-11-ones. 
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Scheme 5.7: Proposed catalytic cycle  

5.9. Substrate scope: synthesis of fused quinazolinones 

With the optimized conditions in hand and understanding the mechanism of the reaction, 

the substrate scope of oxidative annulation was investigated. As depicted in Scheme 5.8, a series 

of 2-styryl quinazolin-4(3H)-ones reacted well with 5.02 to form the analogous products in good 

yields. A wide range of functional groups (5.04a – 5.04k) were tolerated well validating the 

robustness of this protocol. Further, vinyl quinazolines bearing heteroaromatic groups (pyridyl 

5.04n, thiophenyl 5.04o, furyl 5.04p, and indolyl 5.04q) and extended alkenes 5.06 reacted 

smoothly with alkynes demonstrating the utility of the protocol to generate diverse products. A 

variety of internal alkynes with varied electronics were also compatible with the reaction (–Br 

5.04i, -CF3 5.04j, -OMe 5.04k, bisthiophene 5.04t, and dialkyl 5.04u). Using an unsymmetrical 
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alkyl-aryl acetylene, product 5.04v was formed with excellent regioselectivity (89:11) supporting 

the mechanistic hypothesis that C-C bond formation occurred prior to C-N bond formation 

(Scheme 5.7, steps C). In contrast, terminal alkynes were unreactive. Gratifyingly, thio-analogs of 

alkynes smoothly reacted to from 5.04w and 5.04x.  

 

Scheme 5.8: Substrate scope of Ru-catalyzed oxidative annulation of 2-styryl quinazolinones 
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5.10. Amide alcoholysis/2-amino pyridine synthesis 

The cooperative merging of synthetic tools in tandem to achieve more efficient syntheses 

of high value products is a valuable strategy. We envisioned quinazolinone heterocycles could 

serve as a template for C-H bond functionalization affording annulated products as a latent 

pyridine. Upon in situ amide alcoholysis, the fused quinazolinone would open to reveal highly 

substituted 2-aminopyridines (Scheme 5.9) 

 

Scheme 5.9: C-H bond functionalization/amide alcoholysis for 2-aminopyridine synthesis 

Six-membered nitrogen-containing heterocycles are privileged structures present in many 

aspects of the physical and biological sciences. They are prevalent in nature, pharmacophores, as 

well as in supramolecular and organomaterials. The 2-aminopyridyl motif, in particular is an 

important structural component of pharmaceuticals, agrochemicals, natural products and organic 

materials.44–46 As a result, the design and development of general robust methods for the 

preparation of substituted 2-aminopyridines is highly significant. Classical methods for 2-

alkyl/arylaminopyridines rely on the nucleophilic addition and/or aromatic substitution reaction of 

pyridine derivatives including 2-halopyridines,47,48 2-alkoxypyridines,49 pyridinium,50 pyridine-N-

oxides,51 pyridone,52 and transition metal-catalyzed aminations14 (Scheme 5.10). These methods 

often require multiple synthetic steps for required pyridine precursors, high temperature and 

overall offer limited functionalized 2-aminopyridines. A general preparation of 2-aminopyridines 

via the direct construction of the pyridine ring has not been reported.  
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Scheme 5.10: Reported strategies for 2-arylaminopyridine synthesis 

To test our hypothesis and evaluate the tandem C-H bond functionalization/amide 

alcoholysis to access 2-aminopyridines the oxidative alkyne annulation of the diphenylacetylene 

5.02 with tautomerizable quinazolinone 5.01a was investigated as a model reaction. Addition of 

trifluoroethanol to the optimized reaction conditions of annulation protocol underwent complete 

conversion yielding desired 2-arylamino pyridine 5.12a in 66% yield (Scheme 5.11).  

 

Scheme 5.11: Optimized protocol for in situ amide alcoholysis for 2-arylaminopyridine synthesis 
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5.11. Substrate scope: 2-aminopyridine synthesis 

The scope of the tandem annulation/alcoholysis protocol was investigated (Scheme 5.12). 

A series of 2-styryl quinazolin-4(3H)-ones reacted well with alkynes 5.02 to form 2-

aminopyridines in moderate to good yields. A wide range of functional groups (-OMe, -NMe2, -

NO2, -CN, -CF3, -Cl, -F) were tolerated well validating the robustness of this protocol. Substituent 

electronics were seemingly not effective in producing 2-aminopyridine derivatives, as both 

electron donating (5.12c-e, Scheme 5.12) or electron withdrawing (5.12f-j, Scheme 5.12) produced 

similar yields. Further, vinyl quinazolinones bearing heteroaromatic groups (furyl 5.12m, and 

indolyl 5.12n) were also reacted smoothly under the optimized conditions. A fully substituted 2-

amino-3,4,5,6-functionalized pyridines could also be synthesized using a correspondingly 

substituted quinazolinone template (5.12k) with not much change in the yield. This is important 

as there are no reports in the literature for the synthesis of fully substituted 2-aminopyridines. 

Internal alkynes with varied electronics and side chains were also tested and found compatible 

with the reaction conditions (bisthiophene 5.12o, -OMe 5.12p, –Br 5.12q, and dialkyl 5.12r). In 

contrast, terminal alkynes were unreactive for the synthesis of both fused quinazolinones or amino 

pyridines.   



 

196 

 

Scheme 5.12: Substrate scope of in situ amide alcoholysis via C-H functionalization/ annulation 
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5.12.  Conclusion 

In conclusion, we reported a novel route to synthesize fused quinazolinone framework via 

oxidative C-H functionalization/alkyne annulation and synthesis of highly substituted 2-

aminopyridines via a tandem oxidative C-H functionalization-annulation followed by amide 

alcoholysis. Detail mechanistic studies provided insight delineating the origin of the observed 

chemo- and regioselective C-H/N-H annulation to form pyrido[2,1-b]quinazolin-11-ones. 

5.13. Experimental procedures 

5.13.1. General information 

Unless otherwise noted, all manipulations were carried out under a nitrogen atmosphere 

using standard Schlenk-line or glovebox techniques. All glassware was oven-dried for at least 1h 

prior to use. THF, toluene, ether, and hexane were degassed by purging with nitrogen for 45 min 

and dried with a solvent purification system (MBraun MB-SPS). DMF, dioxane, dimethoxyethane, 

dichloroethane, methanol, and ethanol were dried over activated 3 Å molecular sieves and 

degassed by purging with nitrogen. All commercially obtained reagents/solvents were 

purchased from Alfa Aesar®, Sigma-Aldrich®, Acros®, TCI America®, Mallinckrodt®, and 

Oakwood® Products, and used as received without further purification. TLC plates were 

visualized by exposure to ultraviolet light. Organic solutions were concentrated by rotary 

evaporation at ~10 torr. Flash column chromatography was performed with 32–63 microns silica 

gel. 1H NMR spectra were obtained on a 400 MHz spectrometer, and chemical shifts were recorded 

relative to residual protiated solvent. 13C NMR spectra were obtained at 100 MHz, and chemical 

shifts were recorded to the solvent resonance. Both 1H and 13C NMR chemical shifts were reported 

in parts per million downfield from tetramethylsilane (δ = 0 ppm). 19F NMR spectra were obtained 

at 282.4 MHz, and all chemical shifts were reported in parts per million upfield of CF3COOH (δ 
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= -78.5 ppm). Coupling constants (J) are reported in hertz (Hz). Standard abbreviations 

indicating multiplicity were used as follows: s (singlet), br (broad), d (doublet), t (triplet), q 

(quartet) and m (multiplet). Data for 13C NMR spectra are reported in terms of chemical shift 

(δ ppm).  High-resolution mass spectra were obtained from a Bruker Daltronics BioTOF HRMS 

spectrometer. 

5.13.2. Representative experimental procedure for synthesis of fused quinazolinones 

 

Into a 1 dram scintillation vial equipped with a magnetic stir bar was placed Ru(p-

cymene)Cl2]2 (3.67 mg, 0.006 mmol, 5 mol%), AgOAc (4.00 mg, 0.06 mmol, 0.2 equiv), 

Cu(OAc)2.xH2O (21.80 mg, 0.12 mmol, 1 equiv), 5.01a (26 mg, 0.14 mmol), 5.02 (35 mg, 0.12 

mmol, 1 equiv), 0.7 mL of dioxane, and TFA (12 μL, 0.12 mmol 1 equiv). The vial was sealed 

with a silicone-lined screw cap, transferred out of the glovebox, and stirred at 100C for 24 hours. 

The reaction mixture cooled to rt, diluted with MeOH and pass through celite bed to remove the 

inorganic salts. The filtrate was collected, dried and subjected to column chromatography using 

silica to get analytically pure 5.03a (38.71 mg, 76%). 1H NMR (400 MHz, CDCl3) δ 8.21 (ddd, J 

= 8.1, 1.5, 0.7 Hz, 1H), 7.85 – 7.75 (m, 2H), 7.53 (s, 1H), 7.39 (ddd, J = 8.1, 6.7, 1.5 Hz, 1H), 7.25 

– 7.14 (m, 6H), 7.12 – 7.09 (m, 4H), 7.04 – 6.96 (m, 3H), 6.84 – 6.77 (m, 2H); 13C NMR (100 

MHz, CDCl3) δ 160.9, 148.8, 148.5, 148.1, 140.5, 137.9, 136.7, 135.5, 134.7, 131.4, 129.2, 128.9, 

128.7, 128.0, 127.9, 127.4, 127.3, 127.2, 127.1, 126.7, 126.1, 125.5, 124.9, 118.8; HRMS (ESI-

TOF) m/z: [M + H]+ Calcd for C30H20N2O 425.1650, Found 425.1647. 
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Figure 5.3: ORTEP diagrams of 5.03a showing 40% probability ellipsoids; all H atoms in 

compound are omitted for clarity. 

5.13.3. Representative experimental procedure for synthesis of 2-aminopyridines 

 

Into a 1 dram scintillation vial equipped with a magnetic stir bar was placed Ru(p-

cymene)Cl2]2 (3.67 mg, 0.006 mmol, 5 mol%), AgOAc (4.00 mg, 0.06 mmol, 0.2 equiv), 

Cu(OAc)2.xH2O (21.80 mg, 0.12 mmol, 1 equiv), 5.03n (26 mg, 0.14 mmol), 5.02a (35 mg, 0.12 

mmol, 1 equiv), 0.7 mL of dioxane, and 0.3 mL of TFE followed by TFA (12 μL, 0.12 mmol 1 

equiv). The vial was sealed with a silicone-lined screw cap, transferred out of the glovebox, and 

stirred at 100C for 24 hours. The reaction mixture cooled to rt, diluted with MeOH and pass 

through celite bed to remove the inorganic salts. The filtrate was collected, dried and subjected to 

column chromatography using silica to get analytically pure 5.12a (42.9 mg, 63%). 1H NMR (400 
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MHz, CDCl3) δ 10.40 (s, 1H), 8.98 (dd, J = 8.8, 1.1 Hz, 1H), 8.10 (dd, J = 8.1, 1.7 Hz, 1H), 7.57 

(ddd, J = 8.8, 7.1, 1.7 Hz, 1H), 7.41 – 7.31 (m, 2H), 7.25 – 7.19 (m, 3H), 7.13 – 7.09 (m, 3H), 6.98 

– 6.90 (m, 4H), 6.68 (d, J = 8.0 Hz, 1H), 6.62 – 6.56 (m, 2H), 5.94 (s, 2H), 4.74 (q, J = 8.4 Hz, 

2H); 13C NMR (100 MHz, CDCl3) δ 166.8, 156.3, 153.1, 151.5, 147.2, 146.9, 145.5, 140.9, 138.0, 

135.5, 133.4, 131.7, 131.4, 130.1, 127.8, 127.7, 127.5, 127.2, 126.4, 124.5 (q, J = 273.4 Hz), 123.1, 

119.2, 118.4, 112.4, 111.3, 109.8, 107.9, 101.0, 60.6 (q, J = 36.9 Hz);  19F NMR (376 MHz, 

CDCl3) δ -73.49; HRMS (ESI-TOF): m/z [M + H]+ Calcd for C33H23F3N2O4 569.1688, Found 

569.1689. 

 

Figure 5.4: ORTEP diagrams of 5.12a showing 40% probability ellipsoids; all H atoms in 

compound are omitted for clarity. 
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5.13.3.1. H/D exchange study 

 

Figure 5.5: 1H-NMR of deuterium scrambling experiment of 5.01a 
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Figure 5.6: 1H-NMR of cyclized product from 5.01b 

 

Condition for deuteration: Into a 1 dram scintillation vial equipped with a magnetic stir 

bar was placed Ru(p-cymene)Cl2]2 (3.67 mg, 0.006 mmol, 5 mol%), AgOAc (4.00 mg, 0.06 mmol, 

0.2 equiv),  Cu(OAc)2.xH2O (21.80 mg, 0.12 mmol, 1 equiv), 5.01b (31.48 mg, 0.12 mmol), 1.0 

mL of dioxane, 0.3 mL of D2O followed by TFA (12 μL, 0.12 mmol 1 equiv). The vial was sealed 

with a silicone-lined screw cap, transferred out of the glovebox, and stirred at 100C for 24 hours. 

The reaction mixture cooled to rt, diluted with MeOH and pass through celite bed to remove the 

inorganic salts. Deuterium incorporation determined by 1H NMR spectroscopic analysis. The 
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observed deuteration in absence of alkyne indicated that reversible C–H ruthenation occurred 

mainly at one vinyl carbon under the reaction conditions. No other C–H functionalizations of 5.01b 

was observed in presence of alkyne 5.02 indicating that ruthenium is ‘trapped’ between amide-H 

and one of vinylic C-H bond of 5.01b. This N-Ru-C coordinated ruthenium center is involved in 

a reversible step, which on the alkyne insertion followed by reductive elimination to annulated 

products.  

5.13.3.2. Kinetic isotopic effect experiment 

Preparation of substrate 

 

Experimental procedure for the preparation of [D6]-5.01a: Into a 100 mL round bottom 

flask, 2-methyl quinazolone (0.80 g, 5 mmol), benzaldehyde-d6 (0.673 g, 6 mmol, 1.2 equiv), 5 

mL of toluene followed by 5 mL of glacial acetic acid was added. The resultant mixture was 

refluxed for 24 h. The reaction mixture cooled to rt, dried and subjected to column chromatography 

using silica to get analytically pure [D6]-5.01a (0.912 g, 72%).1H NMR (400 MHz, DMSO-d6) δ 

12.34 (s, 1H), 8.12 (dd, J = 7.9, 1.5 Hz, 1H), 7.82 (ddd, J = 8.4, 7.1, 1.6 Hz, 1H), 7.69 (d, J = 8.2 

Hz, 1H), 7.49 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), 7.01 (s, 1H); HRMS (ESI-TOF) m/z: [M + H]+ Calcd 

for C16H6D6N2O 255.1404, Found 255.1408.  
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The reactions were prepared according to the general procedure and stopped after 30, 60, 

95, and 120 minutes and immediately cooled to room temperature. The reaction mixtures were 

filtered through a plug of silica to remove unreacted 5.02. The obtained crude was added 

triphenylmethane as an internal standard, then concentrated under reduced pressure, and analyzed 

by 1H-NMR spectroscopy. The obtained yields were plotted as concentration of 4a vs. time (min). 

From the data, the initial rates were determined. A significant kinetic isotope effect (kH/kD ≈ 3.0) 

was observed, suggesting the reversible C−H cleavage to be the rate-determining step. 

 

kH = 0.0003 mmol.mL-1.min-1 

kD = 0.0001 mmol.mL-1.min-1 

kH/kD = 0.0003/0.0001 = 3 

 

 

Figure 5.7: KIE studies of 5.01a and 5.01a [D] 
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5.13.3.3. Investigation for the formation larger ring ruthenacycles  

 Synthesis of 5.05:

 

Experimental procedure: A mixture of isatoic anhydride (0.815 g, 5 mmol), ammonium 

acetate (0.578 g, 7.5 mmol, 1.5 equiv), and triethyl orthoacetate (1.22 g, 7.5 mmol, 1.5 equiv) were 

stirred magnetically at 120 °C (oil bath temp) for 5 h followed by addition of trans-4-

fluorocinnamaldehyde (0.9 g, 6 mmol, 1.2 equiv) and the stirring was continued for another 5 h. 

The crude reaction mixture was cooled to rt and recrystallized from EtOH to obtain analytically 

pure 2-[4-(4-fluoro-phenyl)-buta-1,3-dienyl]-3H-quinazolin-4-one 5.05 as white solid1 (1.10 g, 

75%). 1H NMR (400 MHz, DMSO-d6) δ 12.44 (s, 1H), 8.12 (dd, J = 7.9, 1.5 Hz, 1H), 8.04 (d, J 

= 16.3 Hz, 1H), 7.86 – 7.74 (m, 2H), 7.71 (dd, J = 8.2, 1.2 Hz, 1H), 7.54 – 7.43 (m, 2H), 7.37 – 

7.27 (m, 2H), 7.12 (d, J = 16.3 Hz, 1H); 13C NMR (100 MHz, DMSO-d6) δ 162.2, 159.7, 151.6, 

149.3, 135.0, 132.1 (d, J = 8 Hz), 131.0, 129.3 (d, J = 3 Hz), 127.7, 126.9, 126.3, 125.6 (d, J = 4 

Hz), 124.2 (d, J = 7 Hz), 123.1 (d, J = 11 Hz), 121.7, 116.6 (d, J = 22 Hz); 9F NMR (376 MHz, 

DMSO-d6) δ -112.38; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C18H13FN2O 293.1090, Found 

293.1090. 
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Reaction of 5.05 with 5.02:  

 

Experimental procedure: Into a 1 dram scintillation vial equipped with a magnetic stir 

bar was placed Ru(p-cymene)Cl2]2 (3.67 mg, 0.006 mmol, 5 mol%), AgOAc (4.00 mg, 0.06 mmol, 

0.2 equiv), Cu(OAc)2.xH2O (21.80 mg, 0.12 mmol, 1 equiv), 5.02 (25.66 mg, 0.14 mmol, 1.2 

equiv), 5.05 (35.08 mg, 0.12 mmol), and 1.0 mL of dioxane followed by TFA (12 μL, 0.12 mmol 

1 equiv). The vial was sealed with a silicone-lined screw cap, transferred out of the glovebox, and 

stirred at 100C for 24 hours. The reaction mixture cooled to rt, diluted with MeOH and pass 

through celite bed to remove the inorganic salts. An aliquot portion (100 μL) of the filtrates was 

taken out and subjected to GC-MS, the remaining filtrates were dried and subjected to column 

chromatography. The exclusive formation of 7-[2-(4-fluoro-phenyl)-vinyl]-8,9-diphenyl-

pyrido[2,1-b]quinazolin-11-one 5.06, (39.92 mg, 71%) indicates the preferred formation of 5-

membered ruthenacycle over higher ring size 6/7-membered ruthenacycles following vinylic 

trapping of Ru. 7-[2-(4-Fluoro-phenyl)-vinyl]-8,9-diphenyl-pyrido[2,1-b]quinazolin-11-one: 

1H NMR (400 MHz, CDCl3) δ 8.18 (dd, J = 8.3, 1.4 Hz, 1H), 7.87 – 7.75 (m, 3H), 7.37 (ddd, J = 

8.2, 6.4, 1.8 Hz, 2H), 7.32 – 7.20 (m, 8H), 7.17 (dd, J = 5.0, 2.0 Hz, 3H), 7.09 – 6.96 (m, 6H), 6.48 

(d, J = 16.1 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 163.0 (d, J = 249.2 Hz), 160.7, 149.2, 148.0, 

143.7, 140.2, 136.58, 135.1, 134.8, 133.7, 132.4 (d, J = 3.5 Hz), 130.9, 129.2, 128.9 (d, J = 8.1 

Hz) 128.4, 128.0, 127.5, 127.4, 127.2, 127.1, 125.9, 124.8, 123.8, 119.7, 118.5, 115.9 (d, J = 21.7 

Hz); 19F NMR (376 MHz, CDCl3) δ -115.72; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for 

C32H21FN2O 469.1716, Found 469.1710. 
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5.13.3.4. Effect of extended conjugation on the oxidative annulation 

Preparation of 5.07:  

 

Experimental procedure: Anthranilamide (0.681 g, 5.0 mmol) and crotonaldehyde (0.42 

g, 6 mmol, 1.2 equiv) were dissolved in DMSO (10 mL). Then, the reaction mixture was stirred at 

100 oC in an open flask for 20 h (TLC). The reaction mixture was cooled to rt, diluted with EtOAc 

and extracted ice-cold water. The collected organic layers were dried and subjected to column 

chromatography to get analytically pure 5.07 (0.62 g, 67%) as white solid. 1H NMR (400 MHz, 

CDCl3) δ 12.10 (s, 3H), 8.31 (ddd, J = 7.9, 1.6, 0.6 Hz, 3H), 7.83 – 7.69 (m, 6H), 7.48 (ddd, J = 

8.1, 6.9, 1.4 Hz, 3H), 7.33 – 7.19 (m, 4H), 6.41 (dq, J = 15.9, 1.7 Hz, 3H), 2.09 (dd, J = 6.8, 1.8 

Hz, 9H), 0.02 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 164.2, 150.9, 149.7, 138.5, 134.8, 127.5, 

126.3, 126.3, 125.3, 120.7, 18.7; Mass (ESI) m/z: = 186.1(M+). 

Reaction of 5.07 with 5.02:  

 

Experimental procedure: Into a 1 dram scintillation vial equipped with a magnetic stir 

bar was added Ru(p-cymene)Cl2]2 (3.67 mg, 0.006 mmol, 5 mol%), AgOAc (4.00 mg, 0.06 mmol, 

0.2 equiv), Cu(OAc)2.H2O (21.80 mg, 0.12 mmol, 1 equiv), 5.07 (22.35 mg, 0.12 mmol), 5.02 

(25.66 mg, 0.14 mmol, 1.2 equiv), and 1.0 mL of dioxane followed by TFA (12 μL, 0.12 mmol 1 

equiv). The vial was sealed with a silicone-lined screw cap, transferred out of the glovebox, and 
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stirred at 100C for 24 hours. The reaction mixture cooled to rt, diluted with MeOH and pass 

through celite bed to remove the inorganic salts. An aliquot portion (100 μL) of the filtrates was 

taken out and subjected to GC-MS, the remaining filtrates were dried and subjected to column 

chromatography to obtain 7-methyl-8,9-diphenyl-pyrido[2,1-b]quinazolin-11-one 5.08 (31.31 mg, 

72%) exclusively. 1H NMR (400 MHz, CDCl3) δ 8.19 – 8.16 (m, 1H), 7.84 – 7.71 (m, 2H), 7.41 

– 7.32 (m, 2H), 7.26 – 7.18 (m, 3H), 7.18 – 7.11 (m, 3H), 7.06 – 7.00 (m, 2H), 7.00 – 6.93 (m, 

2H), 2.08 (d, J = 1.2 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 160.9, 148.9, 148.1, 145.4, 139.6, 

136.7, 135.9, 134.6, 130.7, 130.3, 128.3, 127.9, 127.4, 127.1, 127.1, 126.0, 124.6, 124.2, 118.5, 

21.6; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C25H18N2O 363.1497, Found C25H18N2O 

363.1496. 

5.13.3.5. Investigation of the cascade hyroamidation/C-H activation pathway  

Treatment of preformed 3.09 under optimized conditions  

 

Experimental procedure: Into a 1 dram scintillation vial equipped with a magnetic stir 

bar was added Ru(p-cymene)Cl2]2 (3.67 mg, 0.006 mmol, 5 mol%), AgOAc (4.00 mg, 0.06 mmol, 

0.2 equiv), Cu(OAc)2.H2O (21.80 mg, 0.12 mmol, 1 equiv), 5.09 (51.42 mg, 0.12 mmol), and 1.0 

mL of dioxane followed by TFA (12 μL, 0.12 mmol 1 equiv). The vial was sealed with a silicone-

lined screw cap, transferred out of the glovebox, and stirred at 100C for 24 hours. The reaction 

mixture cooled to rt, diluted with MeOH and pass through celite bed to remove the inorganic salts. 

An aliquot portion (100 μL) of the filtrates was taken out and subjected to GC-MS, the remaining 
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filtrates were dried and subjected to column chromatography to recover 5.09 quantitatively. 1H 

NMR (400 MHz, CDCl3) δ 8.32 (dt, J = 7.9, 1.2 Hz, 1H), 7.92 (d, J = 15.4 Hz, 1H), 7.89 – 7.76 

(m, 2H), 7.55 – 7.47 (m, 4H), 7.44 – 7.32 (m, 8H), 7.19 (s, 5H), 7.02 (d, J = 15.4 Hz, 1H); 13C 

NMR (100 MHz, CDCl3) δ 161.7, 151.8, 147.9, 140.8, 136.8, 135.4, 134.8, 134.5, 134.1, 129.6, 

129.2, 129.1, 129.0, 128.9, 128.5, 128.6, 128.3, 127.8, 127.5, 127.4, 126.6, 125.1, 120.7, 119.3, 

29.7; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C30H22N2O 427.1810, Found 427.1808. 

5.13.3.6. Investigation of the site of primary metal insertion  

(i) Investigation of Amide-NH as primary site of metal insertion 

 

Experimental procedure: Into a 1 dram scintillation vial equipped with a magnetic stir 

bar was added Ru(p-cymene)Cl2]2 (3.67 mg, 0.006 mmol, 5 mol%), AgOAc (4.00 mg, 0.06 mmol, 

0.2 equiv),  Cu(OAc)2.H2O (21.80 mg, 0.12 mmol, 1 equiv), 5.10 (31.48 mg, 0.12 mmol), 5.02 

(25.66 mg, 0.14 mmol, 1.2 equiv), and 1.0 mL of dioxane followed by TFA (12 μL, 0.12 mmol 1 

equiv). The vial was sealed with a silicone-lined screw cap, transferred out of the glovebox, and 

stirred at 100C for 24 hours. The reaction mixture cooled to rt, diluted with MeOH and pass 

through celite bed to remove the inorganic salts. An aliquot portion (100 μL) of the filtrates was 

taken out and subjected to GC-MS, the remaining filtrates were dried and subjected to column 

chromatography to recover 5.10 quantitatively.  
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(ii) Investigation of vinylic-H as primary site of metal insertion 

 Preparation of 5.11 

 

Experimental procedure: Anthranilamide (0.681 g, 5.0 mmol) and β-methyl 

crotonaldehyde (0.50 g, 6 mmol, 1.2 equiv) were dissolved in DMSO (10 mL). Then, the reaction 

mixture was stirred at 100 oC in an open flask for 20 h (TLC). The reaction mixture was cooled to 

rt, diluted with EtOAc and extracted ice-cold water. The collected organic layers were dried and 

subjected to column chromatography to get analytically pure 2-(2-methyl-propenyl)-3H-

quinazolin-4-one 5.11 (0.60 g, 60%) as white solid.2  1H NMR (400 MHz, DMSO-d6) δ 12.01 (s, 

1H), 8.08 (dd, J = 7.9, 1.5 Hz, 1H), 7.77 (ddd, J = 8.5, 7.1, 1.6 Hz, 1H), 7.64 – 7.55 (m, 1H), 7.44 

(ddd, J = 8.1, 7.1, 1.2 Hz, 1H), 6.11 – 6.01 (m, 1H), 2.32 (d, J = 1.3 Hz, 3H), 1.95 (d, J = 1.4 Hz, 

3H); 13C NMR (100 MHz, DMSO) δ 162.2, 152.2, 150.3, 149.4, 134.7, 127.6, 126.3, 126.1, 121.0, 

117.7, 28.2, 21.1; Mass (ESI) m/z: = 200.1(M+). 

Reaction of 5.11 with 5.02 under optimized condition  

 

Experimental procedure: Into a 1 dram scintillation vial equipped with a magnetic stir 

bar was placed Ru(p-cymene)Cl2]2 (3.67 mg, 0.006 mmol, 5 mol%), AgOAc (4.00 mg, 0.06 mmol, 

0.2 equiv), Cu(OAc)2.H2O (21.80 mg, 0.12 mmol, 1 equiv), 5.02 (25.66 mg, 0.14 mmol, 1.2 equiv), 

5.11 (24.03 mg, 0.12 mmol), and 1.0 mL of dioxane followed by TFA (12 μL, 0.12 mmol 1 equiv). 
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The vial was sealed with a silicone-lined screw cap, transferred out of the glovebox, and stirred at 

100C for 24 hours. The reaction mixture cooled to rt, diluted with EtOAc and pass through celite 

bed to remove the inorganic salts. An aliquot portion (100 μL) of the filtrates was taken out and 

subjected to GC-MS, the remaining filtrates were dried and subjected to column chromatography 

to obtain 5.11 quantitatively. 

5.13.3.7. Investigation of regioselective alkyne insertion to ruthenacycle  

  

 

 

 

 

 

 

Figure 5.6: ORTEP diagrams showing 40% probability ellipsoids; all H atoms in compound are 

omitted for clarity 

8-Ethyl-7,9-diphenyl-pyrido[2,1-b]quinazolin-11-one: Prepared by following the 

general procedure for the synthesis of fused quinazolinones to yield 5.04x as a white solid (71%): 

1H NMR (400 MHz, CDCl3) δ 8.17 (dd, J = 8.1, 1.4 Hz, 1H), 7.82 – 7.72 (m, 2H), 7.51 – 7.42 (m, 

8H), 7.41 – 7.32 (m, 4H), 2.40 (q, J = 7.4 Hz, 2H), 0.58 (t, J = 7.4 Hz, 3H); 13C NMR (100 MHz, 

CDCl3) δ 160.6, 149.5, 148.4, 148.0, 139.3, 138.2, 136.9, 134.5, 129.0, 128.5, 128.4, 128.3, 128.2, 

127.8, 127.7, 127.4, 126.3, 126.0, 124.8, 118.8, 21.8, 14.1; HRMS (ESI-TOF) m/z: [M + H]+ Calcd 

for C26H20N2O 377.1654, Found 377.1652. 



 

212 

5.13.4. Mechanistic pathway for the transformation of annulated quinazolone to 2-amino 

pyridines  

 

Scheme 5.13: Control studies for the importance of reaction components 

 

Scheme 5.14: Mechanistic route for alcoholysis of annulated quinazolone to 2-amino pyridines 
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5.13.5. Use of molecular oxygen (O2) as terminal oxidant  

 

Into a 1 dram scintillation vial equipped with a magnetic stir bar was placed Ru(p-

cymene)Cl2]2 (3.67 mg, 0.006 mmol, 5 mol%), AgOAc (4.00 mg, 0.06 mmol, 0.2 equiv), 5.02 

(25.66 mg, 0.14 mmol, 1.2 equiv), 5.01a (29.79 mg, 0.12 mmol), and 0.7 mL of dioxane, TFA (12 

μL, 0.12 mmol 1 equiv). The vial was sealed with a silicone-lined screw cap, transferred out of the 

glovebox, and stirred at 100C for 24 hours in the presence of oxygen balloon. The reaction 

mixture cooled to rt, diluted with MeOH and pass through celite bed to remove the inorganic salts. 

The filtrate was collected, dried and subjected to column chromatography using silica to get 

analytically pure 5.03a (62%). 

5.13.6. Synthesis of starting materials 

 

General experimental procedure: A mixture of isatoic anhydride (0.816 g, 5 mmol), 

ammonium acetate (0.578 g, 7.5 mmol, 1.5 equiv), and triethyl orthoacetate (1.217 g, 7.5 mmol, 

1.5 equiv) were stirred magnetically at 120 °C (oil bath temp) for 5 h followed by addition of 

aldehyde (5 mmol. 1 equiv) and the stirring was continued for another 5 h. The reaction mixture 

was cooled to rt and recrystallized from EtOH to obtain analytically pure compounds.  
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 2-Styryl-3H-quinazolin-4-one (5.01a): 1H NMR (400 MHz, DMSO-d6) δ 12.34 (s, 1H), 

8.12 (dd, J = 7.8, 1.5 Hz, 1H), 7.97 (d, J = 16.2 Hz, 1H), 7.82 (ddd, J = 

8.5, 7.1, 1.6 Hz, 1H), 7.68 (ddd, J = 8.1, 5.4, 1.2 Hz, 3H), 7.54 – 7.38 

(m, 4H), 7.02 (d, J = 16.2 Hz, 1H); 13C NMR (100 MHz, DMSO-d6) δ 

162.2, 151.9, 138.7, 135.5, 134.9, 130.2, 129.5, 128.1 127.5, 126.7, 126.3, 121.6, 40.6, 40.4, 40.2, 

40.0, 39.8, 39.6, 39.4. 

 2-(2-p-Tolyl-vinyl)-3H-quinazolin-4-one (5.01b): 1H NMR (400 MHz, DMSO-d6) δ 

12.27 (s, 1H), 8.11 (dd, J = 8.0, 1.5 Hz, 1H), 7.92 (d, J = 16.1 Hz, 

1H), 7.85 – 7.75 (m, 1H), 7.67 (d, J = 8.1 Hz, 1H), 7.55 (d, J = 7.7 

Hz, 2H), 7.47 (t, J = 7.5 Hz, 1H), 7.27 (d, J = 7.8 Hz, 2H), 6.95 (d, 

J = 16.1 Hz, 1H), 2.34 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 162.3, 152.1, 149.5, 140.1, 

138.7, 134.9, 132.7, 130.1, 128.1, 127.5, 126.5, 126.32, 121.5, 120.5, 21.5. 

 2-[2-(4-Methoxy-phenyl)-vinyl]-3H-quinazolin-4-one (5.01c): 1H NMR (400 MHz, 

DMSO-d6) δ 12.25 (s, 1H), 8.16 – 8.04 (m, 1H), 7.91 (d, J = 16.0 

Hz, 1H), 7.84 – 7.73 (m, 1H), 7.63 (dd, J = 17.2, 8.2 Hz, 3H), 

7.46 (t, J = 7.5 Hz, 1H), 7.02 (d, J = 8.3 Hz, 2H), 6.86 (d, J = 16.1 

Hz, 1H), 3.81 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 162.2, 161.1, 152.2, 149.6, 138.5, 134.9, 

129.7, 128.1, 127.5, 126.4, 126.3, 121.4, 118.9, 115.0, 55.8. 

 2-[2-(4-Dimethylamino-phenyl)-vinyl]-3H-quinazolin-4-one (5.01d): 1H NMR (400 

MHz, DMSO-d6) δ 12.14 (s, 1H), 8.09 (d, J = 7.9 Hz, 1H), 7.87 

(d, J = 16.0 Hz, 1H), 7.77 (t, J = 7.8 Hz, 1H), 7.63 (d, J = 8.2 Hz, 

1H), 7.49 (d, J = 8.4 Hz, 2H), 7.43 (t, J = 7.6 Hz, 1H), 6.84 – 
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6.68 (m, 3H), 2.99 (s, 6H); 13C NMR (100 MHz, DMSO-d6) δ 162.3, 152.7, 151.8, 149.9, 139.4, 

134.8, 129.6, 127.3, 126.3, 125.9, 122.9, 121.2, 115.5, 112.5. 

 4-[2-(4-Nitro-3,4-dihydro-quinazolin-2-yl)-vinyl]-benzonitrile (5.01e): 1H NMR (400 

MHz, DMSO-d6) δ 1H NMR (400 MHz, DMSO-d6) δ 12.40 (s, 

1H), 8.20 – 8.06 (m, 1H), 7.92-7.82 (m, 6H), 7.69 (d, J = 8.1 Hz, 

1H), 7.51 (t, J = 7.5 Hz, 1H), 7.15 (d, J = 16.2 Hz, 1H); 13C NMR 

(100 MHz, DMSO-d6) δ 162.3, 151.8, 149.5, 137.4, 135.0, 134.6, 134.6, 129.8, 129.6, 127.5, 

126.8, 126.4, 122.4, 121.2. 

 2-[2-(4-Trifluoromethyl-phenyl)-vinyl]-3H-quinazolin-4-one (5.01f): 1H NMR (400 

MHz, DMSO-d6) δ 12.32 (s, 1H), 8.12 (d, J = 7.7 Hz, 1H), 7.99 (t, 

J = 16.1 Hz, 3H), 7.87 – 7.62 (m, 4H), 7.51 (s, 1H), 7.14 (d, J = 

16.4 Hz, 1H); 13C NMR (100 MHz, DMSO-d6) δ 162.1, 151.5, 

149.3, 136.9, 136.6, 135.0, 131.7, 130.6, 130.3 (q, J = 32.1 Hz), 127.7, 126.9, 126.4, 124.5 (q, J = 

3.7 Hz) 124.4 (q, J = 273.4 Hz), 123.7, 121.7; 19F NMR (376 MHz, DMSO-d6) δ -61.18; HRMS 

(ESI-TOF) m/z: [M + H]+ Calcd for C17H11F3N2O 317.0902, Found 317.0902. 

 4-[2-(4-Oxo-3,4-dihydro-quinazolin-2-yl)-vinyl]-benzonitrile (5.0g): 1H NMR (400 

MHz, DMSO-d6) δ 12.40 (s, 1H), 8.17 – 8.09 (m, 1H), 7.98 (d, J = 

16.2 Hz, 1H), 7.91 (d, J = 7.9 Hz, 2H), 7.88 – 7.77 (m, 3H), 7.69 

(d, J = 8.2 Hz, 1H), 7.51 (t, J = 7.5 Hz, 1H), 7.15 (d, J = 16.2 Hz, 

1H); 13C NMR (100 MHz, DMSO-d6) δ 162.1, 151.3, 149.3, 140.0, 136.7, 135.1, 133.4, 128.7, 

127.7, 127.1, 126.4, 125.1, 121.7, 119.1, 112.0; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for 

C17H11N3O 274.0980, Found 274.0984. 
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 2-[2-(4-Chloro-phenyl)-vinyl]-3H-quinazolin-4-one (5.01h): 1H NMR (400 MHz, 

DMSO-d6) δ 11.36 (s, 1H), 8.12 (d, J = 8.0 Hz, 1H), 7.94 (d, J = 

16.2 Hz, 1H), 7.81 (d, J = 7.9 Hz, 1H), 7.69 (dd, J = 7.6, 4.2 Hz, 

3H), 7.51 (dd, J = 17.3, 7.8 Hz, 3H), 7.02 (d, J = 16.2 Hz, 1H); 13C 

NMR (100 MHz, DMSO-d6) δ 162.2, 151.8, 149.4, 137.3, 135.0, 134.6, 134.4, 129.7, 129.6, 

127.6, 126.8, 126.3, 122.4, 121.6. 

 6-Chloro-2-styryl-3H-quinazolin-4-one (5.01i): 1H NMR (400 MHz, DMSO-d6) δ 12.51 

(s, 1H), 8.04 (d, J = 2.5 Hz, 1H), 7.96 (d, J = 16.1 Hz, 1H), 7.89 – 

7.78 (m, 1H), 7.68 (dd, J = 12.2, 8.0 Hz, 3H), 7.46 (dt, J = 10.9, 6.5 

Hz, 4H), 7.00 (d, J = 16.1 Hz, 1H); 13C NMR (100 MHz, DMSO-

d6) δ 161.2, 152.4, 148.2, 139.2, 135.3, 135.1, 130.8, 130.4, 129.5, 128.8, 128.2, 125.3, 122.8, 

121.2. 

 2-[2-(2-Fluoro-phenyl)-vinyl]-3H-quinazolin-4-one (5.01j): 1H NMR (400 MHz, 

DMSO-d6) δ 12.44 (s, 1H), 8.12 (dd, J = 7.9, 1.5 Hz, 1H), 8.04 (d, J = 

16.3 Hz, 1H), 7.85 – 7.74 (m, 2H), 7.71 (dd, J = 8.2, 1.2 Hz, 1H), 7.53 

– 7.44 (m, 2H), 7.37 – 7.28 (m, 2H), 7.12 (d, J = 16.3 Hz, 1H); 13C 

NMR (100 MHz, DMSO-d6) δ 159.3 (d, J = 255.1 Hz), 151.6, 149.3, 135.0, 132.1 (d, J=8.8 Hz), 

131.0, 129.3 (d, J = 3.6 Hz), 127.7, 126.9, 126.3, 125.6, 125.7, 124.3(d, J = 6.4 Hz), 123.2 (d, J = 

11.5 Hz), 121.7, 116.7 (d, J = 23.0 Hz); 19F NMR (376 MHz, DMSO-d6) δ -115.73; HRMS (ESI-

TOF) m/z: [M + H]+ Calcd for C16H11FN2O 267.0934, Found 267.0934. 
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 2-(2-Benzo[1,3]dioxol-5-yl-vinyl)-3H-quinazolin-4-one (5.01k): 1H NMR (400 MHz, 

DMSO-d6) δ 12.23 (s, 1H), 7.91 – 7.75 (m, 2H), 7.65 (d, J = 8.1 

Hz, 1H), 7.52 – 7.41 (m, 1H), 7.26 (d, J = 2.2 Hz, 1H), 7.14 (dd, J 

= 8.0, 1.7 Hz, 1H), 7.00 (t, J = 7.0 Hz, 1H), 6.84 (d, J = 16.1 Hz, 

1H), 6.10 (s, 2H); 13C NMR (100 MHz, DMSO-d6) δ 162.2, 152.1, 149.6, 149.3, 148.6, 138.5, 

135.0, 129.9, 127.5, 126.5, 126.3, 124.2, 121.4, 119.6, 109.2, 106.6, 102.0; HRMS (ESI-TOF) 

m/z: [M + H]+ Calcd for C17H12N2O3 293.0926, Found 293.0924. 

 2-(2-Pyridin-3-yl-vinyl)-3H-quinazolin-4-one (5.01l): 1H NMR (400 MHz, DMSO-d6) 

δ 12.39 (s, 1H), 8.84 (d, J = 2.3 Hz, 1H), 8.60 (d, J = 4.8 Hz, 1H), 8.17 

– 8.07 (m, 2H), 7.98 (d, J = 16.3 Hz, 1H), 7.83 (t, J = 7.8 Hz, 1H), 7.70 

(d, J = 8.2 Hz, 1H), 7.55 – 7.46 (m, 2H), 7.13 (d, J = 16.3 Hz, 1H); 13C 

NMR (101 MHz, DMSO-d6) δ 162.2, 151.5, 150.8, 149.7, 149.3, 135.3, 135.0, 134.3, 131.3, 

127.7, 126.9, 126.4, 124.6, 123.6, 121.7. 

 2-(2-Thiophen-2-yl-vinyl)-3H-quinazolin-4-one (5.01m): 1H NMR (400 MHz, DMSO-

d6) δ 12.26 (s, 1H), 8.21 – 8.01 (m, 2H), 7.79 (t, J = 7.1 Hz, 1H), 7.74 – 

7.59 (m, 2H), 7.46 (dp, J = 9.9, 3.2, 2.4 Hz, 2H), 7.16 (p, J = 3.6, 2.9 Hz, 

1H), 6.74 (d, J = 15.8 Hz, 1H); 13C NMR (100 MHz, DMSO-d6) δ 

162.10, 151.60, 149.49, 140.53, 134.95, 131.88, 131.4, 129.2, 129.0, 127.5, 126.5, 126.3, 121.5, 

119.9, 40.6, 40.4, 40.2, 40.0, 39.8, 39.6, 39.3. 

 2-(2-Furyl-2-yl-vinyl)-3H-quinazolin-4-one (5.01n): 1H NMR (400 MHz, DMSO-d6) δ 

12.34 (s, 1H), 8.10 (dd, J = 7.9, 1.6 Hz, 1H), 7.95 – 7.73 (m, 3H), 7.64 

(d, J = 8.2 Hz, 1H), 7.46 (t, J = 7.5 Hz, 1H), 6.90 (d, J = 3.4 Hz, 1H), 

6.77 (d, J = 15.8 Hz, 1H), 6.65 (dd, J = 3.3, 1.8 Hz, 1H); 13C NMR (100 
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MHz, DMSO-d6) δ 162.2, 151.7, 151.5, 149.5, 145.8, 134.9, 127.5, 126.5, 126.3, 125.9, 121.5, 

118.4, 115.1, 113.2. 

 2-[2-(1H-Indol-3-yl)-vinyl]-3H-quinazolin-4-one (5.01o): 1H NMR (400 MHz, DMSO-

d6) δ 12.13 (s, 1H), 11.73 (s, 1H), 8.20 (d, J = 16.0 Hz, 1H), 8.09 

(dd, J = 8.0, 1.5 Hz, 1H), 8.07 – 7.99 (m, 1H), 7.93 (d, J = 2.7 Hz, 

1H), 7.83 – 7.73 (m, 1H), 7.63 (d, J = 8.2 Hz, 1H), 7.55 – 7.47 (m, 

1H), 7.41 (t, J = 7.5 Hz, 1H), 7.24 (qd, J = 7.4, 3.6 Hz, 2H), 6.98 (d, J = 16.0 Hz, 1H); 13C NMR 

(100 MHz, DMSO-d6) δ 162.3, 153.3, 150.0, 137.9, 134.8, 133.7, 131.5, 127.1, 126.3, 125.6, 

125.3, 122.9, 121.2, 121.1, 120.5, 114.7, 113.2, 112.9. 

 2-[2-(2,3,4,5,6-Pentfluoro-phenyl)-vinyl]-3H-quinazolin-4-one (5.01p): 1H NMR (400 

MHz, Pyridine-d5) δ 13.73 (s, 1H), 8.55 (dd, J = 7.9, 1.6 Hz, 1H), 

8.13 (d, J = 16.2 Hz, 1H), 7.95 (d, J = 8.1 Hz, 1H), 7.75 (ddd, J = 

8.3, 7.0, 1.6 Hz, 1H), 7.53 – 7.40 (m, 2H); 13C NMR (100 MHz, 

DMSO-d6) δ 162.5, 151.0, 146.7, 144.3, 144.2, 135.0, 129.2, 128.0, 126.8, 126.5, 122.7, 122.5, 

122.1, 110.9; 19F NMR (376 MHz, Pyridine-d5) δ -141.14, -153.84, -162.54; HRMS (ESI-TOF) 

m/z: [M + H]+ Calcd for C16H7F5N2O 339.0557, Found 339.0558. 

Starting materials 5.01q and 5.01r were prepared from 2-amino benzamide or its analogous 

following general procedure given below  

  

Representative experimental procedure: Anthranilamide (0.681 g, 5.0 mmol) and α-

hexylcinnamaldehyde (1.298 g, 6 mmol, 1.2 equiv) were dissolved in DMSO (10 mL). Then, the 
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reaction mixture was stirred at 100 oC in an open flask for 20 h (TLC). The reaction mixture was 

cooled to rt, water (100 mL) was added to get the precipitate. The precipitates were collected by 

filtration and purified by recrystallization (EtOH) to afforded analytically pure 5.01q (1.097 g, 

66%) as white solid, 2-(1-Benzylidene-heptyl)-3H-quinazolin-4-one (5.01q): 1H NMR (400 MHz, 

DMSO-d6) δ 12.24 (s, 1H), 8.14 (d, J = 8.0 Hz, 1H), 7.82 (t, J = 7.8 Hz, 1H), 7.67 (d, J = 8.2 Hz, 

1H), 7.57 – 7.29 (m, 7H), 2.94 – 2.64 (m, 2H), 1.60 – 1.42 (m, 2H), 1.37 – 1.16 (m, 6H), 0.82 (d, 

J = 6.4 Hz, 3H); 13C NMR (100 MHz, DMSO-d6) δ 162.5, 154.9, 149.1, 136.6, 136.4, 134.9, 

134.5, 129.3, 129.0, 128.4, 127.9, 126.9, 126.3, 121.5, 31.2, 28.9, 28.6, 27.8, 22.4, 14.3; HRMS 

(ESI-TOF) m/z: [M + H]+ Calcd for C22H24N2O 333.1967, Found 333.1965. 

 2-Styryl-3H-thieno[3,2-d]pyrimidin-4-one (5.01r): 1H NMR (400 MHz, DMSO-d6) δ 

12.65 (s, 1H), 8.20 (d, J = 5.3 Hz, 1H), 7.93 (d, J = 16.0 Hz, 1H), 7.66 

(d, J = 7.4 Hz, 2H), 7.44 (dt, J = 16.1, 6.2 Hz, 4H), 7.28 (d, J = 6.5 Hz, 

1H), 7.16 (d, J = 16.2 Hz, 1H); 13C NMR (100 MHz, DMSO-d6) δ 158.6, 

158.5, 153.7, 138.4, 135.7, 135.4, 130.2, 129.5, 128.8, 128.1, 125.6, 121.0, 40.6, 40.4, 40.2, 40.0, 

39.8, 39.6, 39.4; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C14H12N2OS 257.0749, Found 

257.0747. 

5.14. Analytical data of purified compounds 

5.14.1. Spectroscopic data of pyrido[2,1-b]quinazolin-11-one derivatives 

 8,9-Diphenyl-7-p-tolyl-pyrido[2,1-b]quinazolin-11-one: Prepared by general procedure 

of fused quinazolinone synthesis to yield 5.04b (75%). 1H NMR 

(400 MHz, CDCl3) δ 8.20 (ddd, J = 8.2, 1.5, 0.7 Hz, 1H), 7.86 – 

7.73 (m, 2H), 7.52 (s, 1H), 7.38 (ddd, J = 8.1, 6.6, 1.5 Hz, 1H), 7.20 

– 7.14 (m, 3H), 7.13 – 7.07 (m, 2H), 7.05 – 6.96 (m, 7H), 6.88 – 
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6.78 (m, 2H), 2.30 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 160.9, 148.9, 148.5, 148.2, 140.4, 

138.0, 136.7, 135.6, 135.0, 134.7, 131.4, 129.3, 128.9, 128.7, 128.6, 127.4, 127.3, 127.1, 127.0, 

126.7, 126.1, 125.3, 124.8, 118.7, 21.2; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C31H22N2O 

439.1810, Found 439.1812. 

 7-(4-Methoxy-phenyl)-8,9-diphenyl-pyrido[2,1-b]quinazolin-11-one: Prepared by 

general procedure of fused quinazolinone synthesis to yield 5.04c 

(72%).   1H NMR (400 MHz, CDCl3) δ 8.20 (dd, J = 8.1, 1.4 Hz, 

1H), 7.85 – 7.73 (m, 2H), 7.51 (s, 1H), 7.37 (ddd, J = 8.3, 6.7, 1.5 

Hz, 1H), 7.17 (dd, J = 4.9, 2.1 Hz, 3H), 7.09 (dd, J = 6.5, 3.0 Hz, 

2H), 7.06 – 7.00 (m, 5H), 6.86 – 6.79 (m, 2H), 6.76 – 6.68 (m, 2H), 3.77 (s, 3H); 13C NMR (100 

MHz, CDCl3) δ 160.9, 159.4, 149.0, 148.2, 148.1, 140.4, 136.8, 135.7, 134.7, 131.4, 130.3, 130.2, 

129.3, 128.7, 127.4, 127.4, 127.1, 127.0, 126.7, 126.1, 125.0, 124.8, 118.7, 113.4, 55.2; HRMS 

(ESI-TOF) m/z: [M + H]+ Calcd for C31H22N2O2 455.1760, Found 455.1780. 

 7-(4-Dimethylamino-phenyl)-8,9-diphenyl-pyrido[2,1-b]quinazolin-11-one: Prepared 

by general procedure of fused quinazolinone synthesis to yield 

5.04d (70%). 1H NMR (400 MHz, CDCl3) δ 8.18 (ddd, J = 8.1, 

1.4, 0.7 Hz, 1H), 7.84 – 7.71 (m, 2H), 7.52 (s, 1H), 7.34 (ddd, J 

= 8.1, 6.6, 1.5 Hz, 1H), 7.16 (dt, J = 4.4, 2.8 Hz, 3H), 7.12 – 7.07 

(m, 2H), 7.07 – 7.02 (m, 3H), 7.01 – 6.95 (m, 2H), 6.92 – 6.82 (m, 2H), 6.55 – 6.46 (m, 2H), 2.94 

(s, 6H); 13C NMR (100 MHz, CDCl3) δ 160.9, 150.0, 149.3, 148.5, 148.4, 140.3, 137.0, 136.1, 

134.6, 131.6, 130.2, 129.5, 128.8, 127.4, 127.3, 127.0, 126.9, 126.6, 125.9, 125.1, 124.4, 124.0, 

118.5, 111.3, 40.1; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C32H25N3O 468.2076, Found 

468.2072. 
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 7-(4-Nitro-phenyl)-8,9-diphenyl-pyrido[2,1-b]quinazolin-11-one: Prepared by general 

procedure of fused quinazolinone synthesis to yield 5.04e (71%). 

1H NMR (400 MHz, CDCl3) δ 8.21 (dd, J = 8.1, 1.4 Hz, 1H), 8.10 

– 8.04 (m, 2H), 7.88 – 7.76 (m, 2H), 7.54 (s, 1H), 7.45-7.41 (m, 

1H), 7.32 – 7.26 (m, 3H), 7.24 – 7.15 (m, 3H), 7.14 – 7.07 (m, 

2H), 7.07 – 6.98 (m, 3H), 6.83 – 6.76 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 160.6, 147.8, 147.4, 

146.1, 144.5, 141.2, 136.2, 134.9, 134.8, 131.2, 129.8, 128.6, 128.0, 127.7, 127.5, 127.5, 127.3, 

127.2, 126.3, 126.2, 125.5, 123.1; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C30H19N3O3 

470.1505, Found 470.1509. 

 8,9-Diphenyl-7-(4-trifluoromethyl-phenyl)-pyrido[2,1-b]quinazolin-11-one: Prepared 

by general procedure of fused quinazolinone synthesis to yield 

5.04f (78%). 1H NMR (400 MHz, CDCl3) δ 8.24 – 8.18 (m, 1H), 

7.84 (ddd, J = 8.3, 6.8, 1.5 Hz, 1H), 7.81 – 7.76 (m, 1H), 7.52 (s, 

1H), 7.49 – 7.45 (m, 2H), 7.41 (ddd, J = 8.1, 6.8, 1.4 Hz, 1H), 7.25 

– 7.21 (m, 2H), 7.20 – 7.15 (m, 3H), 7.13 – 7.07 (m, 2H), 7.06 – 6.98 (m, 3H), 6.82 – 6.77 (m, 

2H);  13C NMR (100 MHz, CDCl3) δ 160.7, 148.5, 148.0, 146.9, 141.6, 140.9, 136.4, 135.0, 134.8, 

131.3, 130.2, 129.9, 129.2, 128.6, 128.4, 127.6, 127.4, 127.4, 127.2, 127.0, 126.2, 126.0, 125.3, 

125.2 (q, J = 271.7 Hz), 124.9 (q, J = 3.7 Hz), 118.9; 19F NMR (376 MHz, CDCl3) δ -62.7; HRMS 

(ESI-TOF) m/z: [M + H]+ Calcd for C31H19F3N2O 493.1528, Found 493.1536. 
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 4-(11-Oxo-8,9-diphenyl-11H-pyrido[2,1-b]quinazolin-7-yl)-benzonitrile: Prepared by 

general procedure of fused quinazolinone synthesis to yield 5.04g 

(76%). 1H NMR (400 MHz, CDCl3) δ 8.23 – 8.18 (m, 1H), 7.84 

(ddd, J = 8.4, 6.8, 1.5 Hz, 1H), 7.80 – 7.76 (m, 1H), 7.53 – 7.47 (m, 

3H), 7.42 (ddd, J = 8.2, 6.9, 1.3 Hz, 1H), 7.24 – 7.16 (m, 5H), 7.12 

– 7.07 (m, 2H), 7.07 – 6.99 (m, 3H), 6.81 – 6.75 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 160.7, 

148.3, 147.9, 146.4, 142.6, 141.1, 136.2, 135.0, 134.8, 131.7, 131.2, 129.6, 128.6, 128.0, 127.7, 

127.5, 127.2, 127.2, 126.3, 126.1, 125.4, 119.0, 118.3, 111.9; HRMS (ESI-TOF) m/z: [M + H]+ 

Calcd for C32H23N3O3 482.1869, Found 482.1873. 

 7-(4-Chloro-phenyl)-8,9-diphenyl-pyrido[2,1-b]quinazolin-11-one: Prepared by 

general procedure of fused quinazolinone synthesis to yield 5.04h 

(77%). 1H NMR (400 MHz, CDCl3) δ 8.21 – 8.19 (m, 1H), 7.85 – 

7.81 (m, 1H), 7.79 – 7.76 (m, 1H), 7.50 (s, 1H), 7.42 – 7.38 (m, 1H), 

7.19 – 7.17 (m, 5H), 7.11 – 7.01 (m, 7H), 6.82 – 6.77 (m, 2H); 13C 

NMR (100 MHz, CDCl3) δ 160.8, 148.6, 148.0, 147.2, 140.7, 136.5, 136.4, 135.2, 134.8, 134.3, 

131.3, 130.2, 128.7, 128.7, 128.2, 127.5, 127.4, 127.3, 127.1, 126.9, 126.2, 125.7, 125.1, 118.8; 

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C30H19ClN2O 459.1264, Found 459.1254. 

 2-Chloro-7,8,9-triphenyl-pyrido[2,1-b]quinazolin-11-one: Prepared by general 

procedure of fused quinazolinone synthesis to yield 5.04i (76%). 1H 

NMR (400 MHz, CDCl3) δ 8.17 – 8.16 (m, 1H), 7.73 (d, J = 1.8 Hz, 

2H), 7.53 (s, 1H), 7.25-7.15 (m, 6H), 7.12-7.08 (m, 4H), 7.04 – 6.97 

(m, 3H), 6.84 – 6.77 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 159.9, 

148.9, 146.6, 140.5, 137.8, 136.4, 135.3, 135.2, 131.3, 130.4, 129.6, 128.9, 128.7, 128.1, 127.9, 
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127.9, 127.4, 127.1, 126.8, 126.5, 125.5, 119.5; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for 

C30H19ClN2O 459.1264, Found 459.1260. 

 8,9-Bis-(4-bromo-phenyl)-7-phenyl-pyrido[2,1-b]quinazolin-11-one: Prepared by 

general procedure of fused quinazolinone synthesis to yield 5.04j 

(78%). 1H NMR (400 MHz, CDCl3) δ 8.19 (ddd, J = 8.1, 1.6, 0.7 

Hz, 1H), 7.86 (ddd, J = 8.3, 6.8, 1.5 Hz, 1H), 7.82 – 7.79 (m, 1H), 

7.58 (s, 1H), 7.47 – 7.41 (m, 3H), 7.30 – 7.19 (m, 8H), 7.08 – 7.03 

(m, 2H), 6.93 – 6.90 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 160.7, 148.4, 148.1, 147.9, 139.3, 

137.4, 135.3, 135.0, 134.2, 132.8, 130.8, 130.6, 130.1, 128.8, 128.3, 128.3, 128.1, 127.3, 126.2, 

126.0, 125.4, 121.7, 121.4, 118.6; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C30H18Br2N2O 

582.9846, Found 582.9850. 

 7-Phenyl-8,9-bis-(4-trifluoromethyl-phenyl)-pyrido[2,1-b]quinazolin-11-one: 

Prepared by general procedure of fused quinazolinone synthesis to 

yield 5.04k (77%). 1H NMR (400 MHz, CDCl3) δ 8.19 (ddd, J = 

8.1, 1.6, 0.7 Hz, 1H), 7.86 (ddd, J = 8.3, 6.8, 1.5 Hz, 1H), 7.82 – 

7.79 (m, 1H), 7.58 (s, 1H), 7.47 – 7.41 (m, 3H), 7.30 – 7.19 (m, 

8H), 7.08 – 7.03 (m, 2H), 6.93 – 6.90 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 160.6, 148.2, 148.0, 

147.6, 140.0, 139.1, 139.0, 137.1, 135.2, 131.6, 129.6, 129.5, 129.3, 129.2, 128.9, 128.8, 128.5, 

128.3, 128.2, 127.3, 126.5, 126.4, 125.58, 125.2 (q, J = 273.2 Hz), 125.0 (q, J = 271.4 Hz), 124.51, 

124.5 (q, J = 3.74 Hz), 124.3 (q, J = 3.71 Hz), 118.52; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for 

C32H18F6N2O 561.1401, Found 561.1406. 
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 8,9-Bis-(4-methoxy-phenyl)-7-phenyl-pyrido[2,1-b]quinazolin-11-one: Prepared by 

general procedure of fused quinazolinone synthesis to yield 5.04l 

(74%). 1H NMR (400 MHz, CDCl3) δ 8.22 - 8.19 (m, 1H), 7.84 

– 7.74 (m, 2H), 7.49 (s, 1H), 7.40 – 7.36 (m, 1H), 7.26 – 7.18 (m, 

3H), 7.13 – 7.06 (m, 2H), 7.03 – 6.96 (m, 2H), 6.76 – 6.67 (m, 

4H), 6.59 – 6.51 (m, 2H), 3.78 (s, 3H), 3.70 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 161.1, 158.4, 

158.1, 149.0, 148.9, 148.1, 140.5, 138.2, 134.6, 132.4, 129.9, 129.1, 129.0, 128.9, 127.9, 127.7, 

127.4, 126.1, 125.2, 124.8, 118.8, 114.2, 112.9, 112.7, 55.0, 55.0; HRMS (ESI-TOF) m/z: [M + 

H]+ Calcd for C32H24N2O3 485.1865, Found 485.1870. 

 7-(2-Fluoro-phenyl)-8,9-diphenyl-pyrido[2,1-b]quinazolin-11-one: Prepared by 

general procedure of fused quinazolinone synthesis to yield 5.04m 

(72%). 1H NMR (400 MHz, CDCl3) δ 8.25 – 8.18 (m, 1H), 7.87 – 7.76 

(m, 2H), 7.52 (s, 1H), 7.41 (ddd, J = 8.1, 6.6, 1.6 Hz, 1H), 7.19 – 7.15 

(m, 3H), 7.14 – 7.08 (m, 3H), 7.03 (dd, J = 7.5, 1.1 Hz, 1H), 6.99 – 6.93 

(m, 3H), 6.93 – 6.87 (m, 1H), 6.86 – 6.80 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 160.9, 158.8 

(d, J = 245.2 Hz), 148.2 (d, J = 55.2 Hz), 143.4, 140.3, 136.5, 135.20, 134.7, 130.9, 130.6 (d, J = 

2.7 Hz), 130.2 (d, J = 7.9 Hz), 129.7, 128.6, 127.3 (d, J = 13.4 Hz), 127.2, 127.1, 127.1, 126.7, 

126.6, 126.2, 125.9 (d, J = 14.5 Hz), 125.2, 123.7 (d, J = 3.9 Hz), 118.9, 115.4 (d, J = 21.0 Hz); 

19F NMR (376 MHz, CDCl3) δ -112.26; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C30H19FN2O 

443.1560, Found 443.1564. 



 

225 

 7-Benzo[1,3]dioxol-5-yl-8,9-diphenyl-pyrido[2,1-b]quinazolin-11-one: Prepared by 

general procedure of fused quinazolinone synthesis to yield 5.04n 

(75%). 1H NMR (400 MHz, CDCl3) δ 8.21 – 8.18 (m, 1H), 7.85 – 

7.74 (m, 2H), 7.50 (s, 1H), 7.40 – 7.36 (m, 1H), 7.19 – 7.15 (m, 

3H), 7.11 – 7.00 (m, 5H), 6.86 – 6.80 (m, 2H), 6.69 – 6.60 (m, 2H), 

6.54 (d, J = 1.7 Hz, 1H), 5.92 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 160.8, 148.8, 148.1, 148.1, 

147.5, 147.2, 140.5, 136.7, 135.5, 134.7, 131.7, 131.3, 129.2, 128.7, 127.4, 127.2, 127.1, 127.0, 

126.8, 126.0, 125.2, 124.9, 123.2, 118.7, 109.4, 107.9, 101.2; HRMS (ESI-TOF) m/z: [M + H]+ 

Calcd for C31H20N2O3 469.1552, Found 469.1556. 

 8,9-Diphenyl-7-pyridin-2-yl-pyrido[2,1-b]quinazolin-11-one: Prepared by general 

procedure of fused quinazolinone synthesis to yield 5.04o (66%). 1H 

NMR (400 MHz, CDCl3) δ 8.51 – 8.43 (m, 2H), 8.21 (dd, J = 8.3, 1.5 

Hz, 1H), 7.87 – 7.77 (m, 2H), 7.55 (s, 1H), 7.44-7.39 (m, 1H), 7.35-7.32 

(m, 1H), 7.21 – 7.16 (m, 3H), 7.13-7.07 (m, 3H), 7.06 – 6.99 (m, 3H), 

6.83-66.80 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 160.7, 149.2, 149.1, 148.5, 147.9, 144.8, 

141.0, 136.3, 136.1, 134.8, 133.9, 131.3, 128.6, 128.5, 127.7, 127.4, 127.4, 127.2, 127.2, 126.2, 

126.1, 125.3, 122.6, 118.9; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C29H19N3O 426.1606, 

Found 426.1609. 

 8,9-Diphenyl-7-thiophen-2-yl-pyrido[2,1-b]quinazolin-11-one: Prepared by general 

procedure of fused quinazolinone synthesis to yield 5.04p (72%). 1H 

NMR (400 MHz, CDCl3) δ 8.21 – 8.15 (m, 1H), 7.85 – 7.75 (m, 3H), 

7.40 – 7.36 (m, 1H), 7.30 (d, J = 1.2 Hz, 2H), 7.20 – 7.14 (m, 5H), 7.12 

– 7.05 (m, 2H), 7.03 – 6.97 (m, 2H), 6.88 (dd, J = 5.1, 3.7 Hz, 1H), 6.74 
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(dd, J = 3.8, 1.2 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 160.6, 148.7, 148.1, 140.9, 140.8, 139.2, 

136.7, 135.4, 134.8, 131.6, 129.2, 128.6, 128.6, 128.1, 127.8, 127.6, 127.5, 127.3, 127.2, 127.0, 

126.0, 125.0, 124.0, 118.7; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C28H18N2OS 431.1140, 

Found 431.1146. 

 7-Furan-2-yl-8,9-diphenyl-pyrido[2,1-b]quinazolin-11-one: Prepared by general 

procedure of fused quinazolinone synthesis to yield 5.04q (76%). 1H 

NMR (400 MHz, CDCl3) δ 8.22 – 8.13 (m, 1H), 8.03 (s, 1H), 7.83 – 

7.73 (m, 2H), 7.48 (d, J = 1.6 Hz, 1H), 7.38 – 7.32 (m, 1H), 7.27 – 7.22 

(m, 3H), 7.18 – 7.13 (m, 3H), 7.10 – 7.06 (m, 4H), 6.21 (dt, J = 3.4, 1.6 

Hz, 1H), 5.09 (d, J = 3.5 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 160.6, 149.3, 149.1, 148.4, 

143.9, 140.9, 136.7, 136.0, 135.4, 134.7, 131.1, 128.6, 128.0, 127.8, 127.4, 127.1, 127.0, 126.2, 

126.1, 124.8, 120.5, 118.6, 114.1, 112.2; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C28H18N2O2 

415.1447, Found 415.1442. 

 7-(1H-Indol-3-yl)-8,9-diphenyl-pyrido [2,1-b]quinazolin-11-one: Prepared by general 

procedure of fused quinazolinone synthesis to yield 5.04r (73%). 1H 

NMR (400 MHz, DMSO-d6) δ 11.37 (s, 1H), 8.01 – 7.94 (m, 1H), 

7.92 – 7.81 (m, 2H), 7.72 (d, J = 8.3 Hz, 1H), 7.66 (s, 1H), 7.42 – 7.34 

(m, 2H), 7.27 – 6.96 (m, 12H), 6.22 (d, J = 2.8 Hz, 1H); 13C NMR 

(100 MHz, DMSO-d6) δ 160.5, 149.3, 148.6, 142.1, 140.5, 137.4, 136.8, 136.3, 135.1, 131.8, 

129.5, 129.3, 127.9, 127.5, 127.1, 127.1, 127.0, 126.3, 126.2, 124.7, 122.6, 122.5, 120.9, 119.4, 

118.4, 112.6, 111.5, 100.0; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C32H21N3O 464.1763, 

Found 464.1769. 
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 7-Pentafluorophenyl-8,9-diphenyl-pyrido[2,1-b]quinazolin-11-one: Prepared by 

general procedure of fused quinazolinone synthesis to yield 5.04s 

(72%). 1H NMR (400 MHz, CDCl3) δ 8.22 (dd, J = 8.0, 1.4 Hz, 

1H), 7.89 – 7.76 (m, 2H), 7.50 (s, 1H), 7.47 – 7.43 (m, 1H), 7.22 – 

7.14 (m, 3H), 7.14 – 7.08 (m, 2H), 7.08 – 7.00 (m, 3H), 6.91 – 6.84 

(m, 2H); 13C NMR (100 MHz, CDCl3) δ 160.7, 147.8, 147.6, 144.6 

(m), 142.5, 141.3, 139.9 (d, J = 14 Hz), 138.4 (m), 135.9, 134.9, 135.6, 134.1, 129.8, 128.7, 128.4, 

128.3, 127.8, 127.7 (d, J = 23 Hz), 127.4, 127.3, 126.4, 125.8, 119.2, 112.7 (m); HRMS (ESI-

TOF) m/z: [M + H]+ Calcd for C30H15F5N2O 515.1183, Found 515.1186. 

 6-Hexyl-7,8,9-triphenyl-pyrido[2,1-b]quinazolin-11-one: Prepared by general 

procedure of fused quinazolinone synthesis to yield 5.04t (71%). 1H 

NMR (400 MHz, CDCl3) δ 8.21-8.19 (m, 1H), 7.85 – 7.80 (m, 2H), 

7.41-7.36 (m, 1H), 7.23 – 7.16 (m, 3H), 7.17-7.11 (m, 3H), 7.07-7.04 

(m, 2H), 7.01 – 6.96 (m, 2H), 6.91-6.87 (m, 3H), 6.70 (dd, J = 6.7, 2.9 

Hz, 2H), 2.86 – 2.78 (m, 2H), 1.69-1.65 (m, 2H), 1.33 – 1.21 (m, 6H), 0.88 (t, J = 6.8 Hz, 3H); 13C 

NMR (100 MHz, CDCl3) δ 161.8, 148.1, 147.9, 145.6, 138.0, 137.0, 136.9, 136.3, 135.7, 134.2, 

131.2, 129.6, 128.9, 128.5, 127.7, 127.1, 127.1, 127.0, 126.9, 126.9, 126.1, 124.7, 118.8, 31.2, 

29.6, 29.6, 29.2, 22.5, 14.1; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C36H32N2O 509.2593, 

Found 509.2592. 

 7-Phenyl-8,9-di-thiophen-2-yl-pyrido[2,1-b]quinazolin-11-one: Prepared by general 

procedure of fused quinazolinone synthesis to yield 5.04u (70%). 1H 

NMR (400 MHz, CDCl3) δ 8.25-8.23 (m, 1H), 7.86-7.75 (m, 2H), 7.50 

(s, 1H), 7.44-7.40 (m, 1H), 7.34 (dd, J = 4.1, 2.2 Hz, 1H), 7.31 – 7.25 
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(m, 4H), 7.24 – 7.20 (m, 2H), 7.14 (dd, J = 5.1, 1.2 Hz, 1H), 6.94 – 6.89 (m, 2H), 6.77 (dd, J = 

5.1, 3.5 Hz, 1H), 6.69 (dd, J = 3.5, 1.2 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 160.7, 148.5, 

148.4, 147.8, 137.7, 136.9, 136.0, 135.4, 134.8, 130.8, 129.0, 128.4, 128.3, 128.0, 127.4, 127.2, 

126.8, 126.2, 126.1, 126.0, 125.9, 125.3, 124.6, 118.9; HRMS (ESI-TOF) m/z: [M + H]+ Calcd 

for C26H16S2N2O 437.0782, Found 437.0784. 

 7-Phenyl-8,9-dipropyl-pyrido[2,1-b]quinazolin-11-one: Prepared by general procedure 

of fused quinazolinone synthesis to yield 5.04v (65%).1H NMR (400 

MHz, CDCl3) δ 8.36 (dd, J = 8.2, 1.5 Hz, 1H), 7.78 (ddd, J = 8.4, 6.9, 

1.6 Hz, 1H), 7.70 (dt, J = 8.3, 0.9 Hz, 1H), 7.49 – 7.39 (m, 4H), 7.39 – 

7.34 (m, 2H), 7.19 (s, 1H), 3.37 – 3.25 (m, 2H), 2.59 – 2.49 (m, 2H), 1.75 – 1.67 (m, 2H), 1.39 – 

1.32 (m, 2H), 1.02 (t, J = 7.3 Hz, 3H), 0.77 (t, J = 7.3 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 

162.3, 149.9, 148.9, 147.9, 142.7, 138.8, 134.4, 128.4, 128.2, 128.2, 127.1, 126.3, 125.8, 124.6, 

124.5, 118.7, 32.3, 30.8, 23.6, 23.3, 14.3, 14.2; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for 

C24H24N2O 357.1967, Found 357.1967. 

 6,7,8-Triphenyl-1-thia-4,8a-diaza-cyclopenta[b]naphthalen-9-one: Prepared by 

general procedure of fused quinazolinone synthesis to yield 5.04w 

(72%). 1H NMR (400 MHz, CDCl3) δ 7.86 (d, J = 5.3 Hz, 1H), 7.67 (s, 

1H), 7.39 (d, J = 5.3 Hz, 1H), 7.26 – 7.20 (m, 3H), 7.19 – 7.15 (m, 3H), 

7.14 – 7.10 (m, 4H), 7.03 – 6.96 (m, 3H), 6.85 – 6.79 (m, 2H); 13C NMR 

(100 MHz, CDCl3) δ 157.0, 156.4, 150.4, 148.4, 140.8, 137.9, 136.7, 136.2, 135.5, 131.4, 130.3, 

129.0, 128.8, 128.1, 127.9, 127.3, 127.2, 126.9, 126.7, 125.6, 124.4, 118.1; HRMS (ESI-TOF) 

m/z: [M + H]+ Calcd for C28H18N2OS 431.1218, Found 431.1218. 
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5.14.2. Spectroscopic data of 2-aminopyridine derivatives 

 2-(4,5,6-Triphenyl-pyridin-2-ylamino)-benzoic acid 2,2,2-trifluoro-ethyl ester: 

Prepared by general procedure of 2-aminopyridine synthesis to 

yield 5.12 b (66%). 1H NMR (400 MHz, CDCl3) δ 10.42 (s, 

1H), 9.00 (d, J = 8.7 Hz, 1H), 8.10 (d, J = 8.1 Hz, 1H), 7.57 (dd, 

J = 8.8, 6.9 Hz, 1H), 7.40 – 7.34 (m, 2H), 7.27 – 7.19 (m, 6H), 

7.14 – 7.04 (m, 5H), 6.93 (ddd, J = 23.7, 5.2, 2.9 Hz, 4H), 4.74 (td, J = 8.4, 1.6 Hz, 2H); 13C NMR 

(101 MHz, CDCl3) δ 166.8, 156.2, 153.1, 151.9, 145.5, 140.9, 139.6, 137.9, 135.5, 131.7, 131.4, 

130.1, 129.2, 127.8, 127.7, 127.6, 127.5, 127.32, 127.27, 126.3, 123.1 q, J = 278.7 Hz), 121.7, 

119.2, 118.4, 112.4, 111.3, 60.6 (q, J = 34.5 Hz); 9F NMR (376 MHz, CDCl3) δ -73.50; HRMS 

(ESI-TOF) m/z: [M + H]+ Calcd for C32H23F3N2O2 525.1790, Found 525.1794. 

 2-(5,6-Diphenyl-4-p-tolyl-pyridin-2-ylamino)-benzoic acid 2,2,2-trifluoro-ethyl ester: 

Prepared by general procedure of 2-aminopyridine synthesis to 

yield 5.12c (67%). 1H NMR (400 MHz, CDCl3) δ 10.41 (s, 1H), 

8.99 (dd, J = 8.6, 1.1 Hz, 1H), 8.11 (dd, J = 8.1, 1.7 Hz, 1H), 

7.57 (ddd, J = 8.8, 7.2, 1.7 Hz, 1H), 7.43 – 7.33 (m, 2H), 7.27 – 

7.19 (m, 3H), 7.13 – 6.99 (m, 7H), 6.98 – 6.90 (m, 4H), 4.74 (q, 

J = 8.4 Hz, 2H), 2.33 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 166.8, 156.2, 153.1, 151.9, 145.6, 

141.0, 138.2, 137.1, 136.6, 135.5, 131.8, 131.4, 130.1, 129.1, 128.6, 127.8, 127.7, 127.5, 127.3, 

127.2, 126.2, 124.5 (q, J = 279.6 Hz), 121.7, 119.2, 118.4, 112.5, 111.2, 60.6 (q, J = 36.4 Hz), 

21.2; 9F NMR (376 MHz, CDCl3) δ -73.48; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for 

C33H25F3N2O2 539.1946, Found 555. 539.1949. 
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 2-[4-(4-Methoxy-phenyl)-5,6-diphenyl-pyridin-2-ylamino]-benzoic acid 2,2,2-

trifluoro-ethyl ester: Prepared by general procedure of 2-

aminopyridine synthesis to yield 5.12d (62%). 1H NMR (400 

MHz, CDCl3) δ 10.38 (s, 1H), 8.97 (dd, J = 8.8, 1.1 Hz, 1H), 

8.10 (dd, J = 8.1, 1.7 Hz, 1H), 7.58 – 7.54 (m, 1H), 7.38 – 7.32 

(m, 2H), 7.24 – 7.19 (m, 3H), 7.11 – 7.07 (m, 3H), 7.05 – 7.01 

(m, 2H), 6.97 – 6.88 (m, 4H), 6.78 – 6.72 (m, 2H), 4.73 (q, J = 8.4 Hz, 2H), 3.79 (s, 3H); 13C NMR 

(100 MHz, CDCl3) δ 166.8, 158.9, 156.2, 153.1, 151.5, 145.6, 141.0, 138.2, 135.5, 131.9, 131.8, 

131.4, 130.5, 130.1, 127.8, 127.7, 127.5, 127.2, 126.2 (q, J = 275.2 Hz), 119.2, 118.3, 113.3, 112.4, 

111.2, 100.0, 60.7 (q, J = 37.2 Hz), 55.2; 9F NMR (376 MHz, CDCl3) δ -73.50; HRMS (ESI-TOF) 

m/z: [M + H]+ Calcd for C33H25F3N2O3 555.1896, Found 555.1892. 

 2-[4-(4-Dimethylamino-phenyl)-5,6-diphenyl-pyridin-2-ylamino]-benzoic acid 2,2,2-

trifluoro-ethyl ester: Prepared by general procedure of 2-

aminopyridine synthesis to yield 5.12e (65%). 1H NMR (400 

MHz, CDCl3) δ 10.35 (s, 1H), 8.94 (d, J = 8.7 Hz, 1H), 8.09 (dd, 

J = 8.1, 1.7 Hz, 1H), 7.55 (ddd, J = 8.8, 7.1, 1.7 Hz, 1H), 7.34 

(dddd, J = 6.7, 4.3, 3.5, 1.1 Hz, 2H), 7.24 – 7.19 (m, 3H), 7.13 

– 7.08 (m, 3H), 6.99 (s, 1H), 6.98 – 6.92 (m, 5H), 6.56 (d, J = 8.7 Hz, 2H), 4.73 (q, J = 8.4 Hz, 

2H), 2.95 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 166.7, 156.2, 153.1, 151.9, 149.6, 145.7, 141.2, 

138.5, 135.4, 131.9, 131.3, 130.2, 130.0, 127.7, 127.7, 127.4, 127.1, 126.1, 123.1 (q, J = 278.5 

Hz), 119.01, 118.28, 112.33, 111.58, 111.14, 60.5 (q, J = 35.3 Hz), 40.3; 9F NMR (376 MHz, 

CDCl3) δ -73.49; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C34H28F3N3O2 568.2212, Found 

568.2215. 
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 2-[4-(4-Nitro-phenyl)-5,6-diphenyl-pyridin-2-ylamino]-benzoic acid 2,2,2-trifluoro-

ethyl ester: Prepared by general procedure of 2-aminopyridine 

synthesis to yield 5.12f (64%). 1H NMR  (400 MHz, CDCl3) δ 

10.52, 10.51, 9.05, 9.05, 9.03, 9.03, 8.14, 8.14, 8.12, 8.12, 8.10, 

8.09, 8.08, 8.07, 8.07, 7.61, 7.61, 7.59, 7.59, 7.59, 7.57, 7.57, 

7.40, 7.39, 7.38, 7.38, 7.37, 7.29, 7.29, 7.28, 7.27, 7.27, 7.26, 

7.26, 7.25, 7.14, 7.12, 7.11, 7.09, 7.08, 7.07, 7.01, 6.99, 6.97, 6.91, 6.89, 6.89, 6.88, 6.87, 4.78, 

4.75, 4.73, 4.71; 13C NMR (100 MHz, CDCl3) δ 166.9, 156.6, 153.3, 149.6, 147.0, 146.5, 145.2, 

140.3, 137.2, 135.6, 131.6, 131.4, 130.1, 130.0, 128.1, 127.6, 127.1, 126.8, 124.5 (q, J = 274.7 

Hz), 123.1, 121.7, 119.7, 118.6, 111.8, 111.5, 60.6 (q, J = 37.4 Hz); 9F NMR (376 MHz, CDCl3) 

δ -73.46; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C32H22F3N3O4 570.1641, 570.1647. 

 2-[4-(4-Cyano-phenyl)-5,6-diphenyl-pyridin-2-ylamino]-benzoic acid 2,2,2-trifluoro-

ethyl ester: Prepared by general procedure of 2-aminopyridine 

synthesis to yield 5.12g (66%). 1H NMR (400 MHz, CDCl3) δ 

10.49 (s, 1H), 9.01 (dd, J = 8.6, 1.1 Hz, 1H), 8.12 (dd, J = 8.1, 

1.7 Hz, 1H), 7.58 (ddd, J = 8.8, 7.2, 1.7 Hz, 1H), 7.55 – 7.48 

(m, 2H), 7.42 – 7.32 (m, 2H), 7.27 – 7.19 (m, 5H), 7.16 – 7.05 

(m, 3H), 6.98 (ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 6.91 – 6.83 (m, 3H), 4.74 (q, J = 8.4 Hz, 2H); 13C 

NMR (100 MHz, CDCl3) δ 166.9, 156.6, 153.3, 149.9, 145.2, 144.5, 140.4, 137.2, 135.6, 131.7, 

131.6, 131.4, 130.0, 129.9, 127.9, 127.6, 127.6, 127.1 (q, J = 278.5 Hz), 126.7, 124.4, 121.7, 119.6, 

118.6, 118.5, 111.8, 111.5, 111.2, 99.9, 60.6 (q, J = 37.4 Hz); 9F NMR (376 MHz, CDCl3) δ -

73.49; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C33H22F3N3O2 550.1743, Found 550.1747. 
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 2-[5,6-Diphenyl-4-(4-trifluoromethyl-phenyl)-pyridin-2-ylamino]-benzoic acid 2,2,2-

trifluoro-ethyl ester: Prepared by general procedure of 2-

aminopyridine synthesis to yield 5.12h (65%). 1H NMR (400 

MHz, CDCl3) δ 10.47 (s, 1H), 9.01 (d, J = 8.7 Hz, 1H), 8.12 (dd, 

J = 8.1, 1.7 Hz, 1H), 7.61 – 7.55 (m, 1H), 7.49 (d, J = 8.0 Hz, 

2H), 7.42 – 7.35 (m, 2H), 7.24 (dd, J = 7.5, 2.2 Hz, 5H), 7.10 

(ddt, J = 9.1, 7.8, 4.8 Hz, 3H), 7.01 – 6.95 (m, 1H), 6.92 (s, 1H), 6.89 (dt, J = 6.3, 1.7 Hz, 2H), 

4.74 (q, J = 8.4 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 166.8, 156.5, 153.2, 150.5, 145.3, 140.6, 

137.4, 135.5, 131.6, 131.4, 130.0, 129.5, 129.3, 127.9, 127.6, 127.5, 127.4, 126.6, 124.0 (q, J = 

271.8 Hz), 124.8 (q, J = 3.8 Hz), 123.1 (q, J = 276.8 Hz), 119.5, 118.5, 112.1, 111.4, 60.59 (q, J = 

35.4 Hz); 9F NMR (376 MHz, CDCl3) δ -82.58, -73.51; HRMS (ESI-TOF) m/z: [M + H]+ Calcd 

for C33H22F6N2O2 593.1664, Found 593.1668. 

 2-[4-(4-Chloro-phenyl)-5,6-diphenyl-pyridin-2-ylamino]-benzoic acid 2,2,2-trifluoro-

ethyl ester: Prepared by general procedure of 2-aminopyridine 

synthesis to yield 5.12i (65%). 1H NMR (400 MHz, CDCl3) δ 

10.43 (s, 1H), 8.99 (dd, J = 8.8, 1.1 Hz, 1H), 8.11 (dd, J = 8.1, 

1.7 Hz, 1H), 7.57 (ddd, J = 8.9, 7.2, 1.7 Hz, 1H), 7.40 – 7.32 

(m, 2H), 7.27 – 7.17 (m, 5H), 7.16 – 7.01 (m, 5H), 6.96 (ddd, J 

= 8.1, 7.1, 1.1 Hz, 1H), 6.93 – 6.86 (m, 3H), 4.74 (q, J = 8.4 Hz, 2H); 13C NMR (100 MHz, CDCl3) 

δ 166.8, 156.4, 153.2, 150.6, 145.4, 140.7, 138.1, 137.7, 135.5, 133.6, 131.7, 131.4, 130.5, 130.0, 

128.1, 127.8, 127.5, 127.5, 127.4, 126.48, 124.46 (q, J = 277.7 Hz), 121.7, 119.4, 118.4, 112.2, 

111.3, 60.6 (q, J = 36.4 Hz); 9F NMR (376 MHz, CDCl3) δ -73.50; HRMS (ESI-TOF) m/z: [M + 

H]+ Calcd for C32H22ClF3N2O2 559.1401, Found 559.1406. 
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 2-[4-(2-Fluoro-phenyl)-5,6-diphenyl-pyridin-2-ylamino]-benzoic acid 2,2,2-trifluoro-

ethyl ester: Prepared by general procedure of 2-aminopyridine 

synthesis to yield 5.12j (64%). 1H NMR (400 MHz, CDCl3) δ 

10.47 (s, 1H), 9.04 (dd, J = 8.7, 1.1 Hz, 1H), 8.14 (dd, J = 8.1, 

1.7 Hz, 1H), 7.59 (ddd, J = 8.8, 7.1, 1.7 Hz, 1H), 7.48 – 7.41 

(m, 2H), 7.26 (qd, J = 4.6, 4.2, 2.7 Hz, 4H), 7.14 – 6.95 (m, 10H), 4.75 (q, J = 8.4 Hz, 2H); 13C 

NMR (100 MHz, CDCl3) δ 166.8, 160.4, 157.9, 158.0, 152.9, 146.5, 145.5, 140.7, 137.8, 135.5, 

131.4, 131.2 (t, J = 3.2 Hz), 130.1, 129.6 (d, J = 7.8 Hz), 128.7, 127.5 (t, J = 4.7 Hz), 127.3, 126.4, 

123.2 (d, J = 278.2 Hz), 123.7 (d, J = 3.4 Hz), 119.4, 118.4, 115.5, 115.3, 112.8, 111.4, 60.5 (q, J 

= 36.8 Hz); 9F NMR (376 MHz, CDCl3) δ -73.43, 113.8 (hp, J = 2.7 Hz); HRMS (ESI-TOF) m/z: 

[M + H]+ Calcd for C32H22F4N2O2 543.1696, Found 543.1699. 

 2-(3-Hexyl-4,5,6-triphenyl-pyridin-2-ylamino)-benzoic acid 2,2,2-trifluoro-ethyl 

ester: Prepared by general procedure of 2-aminopyridine 

synthesis to yield 5.12k (64%). 1H NMR (400 MHz, CDCl3) δ 

10.63 (s, 1H), 9.28 (dd, J = 8.7, 1.1 Hz, 1H), 8.14 (dd, J = 8.1, 

1.7 Hz, 1H), 7.59 (ddd, J = 8.8, 7.1, 1.8 Hz, 1H), 7.47 – 7.33 

(m, 2H), 7.32 – 7.13 (m, 6H), 7.15 – 6.94 (m, 6H), 6.87 (ddd, J = 5.5, 2.9, 1.6 Hz, 2H), 4.74 (q, J 

= 8.4 Hz, 2H), 2.71 – 2.48 (m, 2H), 1.60 (qd, J = 8.2, 6.5, 3.7 Hz, 2H), 1.36 – 1.16 (m, 6H), 0.86 

(t, J = 6.9 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 167.0, 152.2, 151.6, 151.4, 146.0, 141.0, 138.9, 

138.8, 135.4, 131.6, 131.2, 130.1, 129.4, 128.8, 127.6, 127.5, 127.3, 127.0, 126.7, 125.8, 123.1, 

122.4 (q, J = 276.3 Hz), 118.9, 118.8, 111.2, 61.05 (q, J = 35.7 Hz), 31.2, 29.4, 28.8, 28.5, 22.4, 

14.0; 9F NMR (376 MHz, CDCl3) δ -73.52; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for 

C38H35F3N2O2 609.2729, Found 609.2734. 
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 5-Chloro-2-(4,5,6-triphenyl-pyridin-2-ylamino)-benzoic acid 2,2,2-trifluoro-ethyl 

ester: Prepared by general procedure of 2-aminopyridine 

synthesis to yield 5.12l (61%). 1H NMR (400 MHz, CDCl3) δ 

10.42 (s, 1H), 9.11 (d, J = 9.3 Hz, 1H), 8.05 (d, J = 2.6 Hz, 1H), 

7.52 (dd, J = 9.2, 2.6 Hz, 1H), 7.39 – 7.34 (m, 2H), 7.27 – 7.22 

(m, 6H), 7.14 – 7.07 (m, 5H), 6.95 – 6.89 (m, 3H), 4.74 (q, J = 8.3 Hz, 2H); 13C NMR (100 MHz, 

CDCl3) δ 165.9, 156.1, 152.7, 152.1, 144.2, 140.8, 139.5, 137.8, 135.4, 131.7, 130.4, 130.0, 129.2, 

128.1, 127.9, 127.7, 127.6, 127.42, 127.39, 126.38, 124.3 (q, J = 275.3 Hz), 123.9, 121.6, 120.1, 

118.8, 112.6, 112.1, 60.7 (q, J = 37.4 Hz); 9F NMR (376 MHz, CDCl3) δ -73.39; HRMS (ESI-

TOF) m/z: [M + H]+ Calcd for C32H22ClF3N2O2 559.1401, Found 559.1405. 

 2-(4-Furan-2-yl-5,6-diphenyl-pyridin-2-ylamino)-benzoic acid 2,2,2-trifluoro-ethyl 

ester:  Prepared by general procedure of 2-aminopyridine 

synthesis to yield 5.12m (63%). 1H NMR (400 MHz, CDCl3) δ 

10.46 (s, 1H), 8.97 (dd, J = 8.7, 1.1 Hz, 1H), 8.12 (dd, J = 8.1, 

1.7 Hz, 1H), 7.56 (ddd, J = 8.8, 7.2, 1.7 Hz, 1H), 7.49 – 7.42 

(m, 2H), 7.40 – 7.30 (m, 5H), 7.26 – 7.19 (m, 3H), 7.20 – 7.14 (m, 2H), 6.95 (ddd, J = 8.1, 7.1, 1.1 

Hz, 1H), 6.24 (dd, J = 3.5, 1.8 Hz, 1H), 5.43 – 5.18 (m, 1H), 4.77 (q, J = 8.4 Hz, 2H); 13C NMR 

(100 MHz, CDCl3) δ 166.8, 156.5, 153.7, 150.5, 145.6, 142.5, 140.7, 139.5, 138.6, 135.5, 131.4, 

131.1, 129.9, 128.5, 127.4, 127.37, 127.2, 125.1, 124.5 (q, J = 276.7 Hz), 121.8, 119.2, 118.3, 

112.4, 111.8, 111.2, 107.6, 99.9, 60.6 (q, J = 36.4 Hz); 9F NMR (376 MHz, CDCl3) δ -73.46; 

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C30H21F3N2O3 515.1583, Found 515.1589. 
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 2-[4-(1H-Indol-3-yl)-5,6-diphenyl-pyridin-2-ylamino]-benzoic acid 2,2,2-trifluoro-

ethyl ester:  Prepared by general procedure of 2-aminopyridine 

synthesis to yield 5.12n as a white solid (65%). 1H NMR (400 

MHz, CDCl3) δ 10.37 (s, 1H), 8.96 (d, J = 8.7 Hz, 1H), 8.18 – 

8.00 (m, 2H), 7.85 (d, J = 7.6 Hz, 1H), 7.57 (ddd, J = 8.9, 7.1, 

1.7 Hz, 1H), 7.38 (td, J = 6.1, 5.7, 2.2 Hz, 3H), 7.34 – 7.18 (m, 6H), 7.17 – 7.06 (m, 3H), 7.06 – 

6.98 (m, 2H), 6.95 (t, J = 7.6 Hz, 1H), 6.40 (d, J = 2.6 Hz, 1H), 4.73 (q, J = 8.4 Hz, 2H); 13C NMR 

(100 MHz, CDCl3) δ 166.7, 156.5, 153.2, 145.7, 145.1, 141.2, 139.0, 135.6, 135.4, 131.7, 131.4, 

130.0, 128.0, 127.8, 127.5, 127.1, 126.4, 125.2, 124.5 (q, J = 275.3 Hz), 122.4, 121.8, 120.6, 119.6, 

119.1, 118.3, 114.3, 112.2, 111.3, 60.5 (q, J = 37.4 Hz); 9F NMR (376 MHz, CDCl3) δ -73.49; 

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C34H24F3N3O2 564.1899, Found 564.1902. 

 2-(4-Phenyl-5,6-di-thiophen-2-yl-pyridin-2-ylamino)-benzoic acid 2,2,2-trifluoro-

ethyl ester: Prepared by general procedure of 2-aminopyridine 

synthesis to yield 5.12o as a white solid (64%). 1H NMR (400 MHz, 

CDCl3) δ 10.48 (s, 1H), 9.18 – 9.11 (m, 1H), 8.13 (dd, J = 8.1, 1.8 Hz, 

1H), 7.70 (ddd, J = 8.8, 7.1, 1.8 Hz, 1H), 7.37 – 7.19 (m, 8H), 7.07 – 6.94 (m, 2H), 6.92 – 6.76 

(m, 3H), 6.55 (dd, J = 3.7, 1.1 Hz, 1H), 4.73 (q, J = 8.4 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 

166.9, 153.9, 153.1, 150.0, 145.1, 144.9, 139.1, 138.8, 135.5, 131.3, 129.4, 128.6, 127.7, 127.7, 

127.6, 127.1, 127.0, 124.5 (q, J = 278.2 Hz), 121.7, 119.7, 119.1, 117.8, 111.7, 111.5, 60.6 (q, J = 

36.4 Hz); 9F NMR (376 MHz, CDCl3) δ -73.49; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for 

C28H19F3N2O2S2 537.0919, Found 537.0922. 
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 2-[5,6-Bis-(4-methoxy-phenyl)-4-phenyl-pyridin-2-ylamino]-benzoic acid 2,2,2-

trifluoro-ethyl ester: Prepared by general procedure of 

2-aminopyridine synthesis to yield 5.12p as a white solid 

(63%). 1H NMR (400 MHz, CDCl3) δ 10.38 (s, 1H), 

8.99 (d, J = 8.7 Hz, 1H), 8.10 (dd, J = 8.1, 1.7 Hz, 1H), 

7.61 – 7.54 (m, 1H), 7.38 – 7.31 (m, 2H), 7.24 (q, J = 2.7 Hz, 3H), 7.12 (dd, J = 6.7, 3.0 Hz, 2H), 

6.98 – 6.92 (m, 1H), 6.85 – 6.75 (m, 4H), 6.68 – 6.61 (m, 2H), 4.73 (q, J = 8.4 Hz, 2H), 3.81 (s, 

3H), 3.75 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 166.8, 158.8, 157.9, 155.8, 152.8, 152.1, 145.7, 

139.9, 135.4, 133.5, 132.7, 131.4, 131.3, 130.4, 129.2, 127.8, 127.2, 127.0, 123.1 (q, J = 274.4 

Hz), 119.1, 118.3, 113.3, 113.0, 112.1, 111.2, 60.3 (q, J = 36.5 Hz), 55.2, 55.1; 9F NMR (376 

MHz, CDCl3) δ -73.49; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C34H27F3N2O4 585.2001, 

Found 585.2007. 

 2-[5,6-Bis-(4-bromo-phenyl)-4-phenyl-pyridin-2-ylamino]-benzoic acid 2,2,2-

trifluoro-ethyl ester: Prepared by general procedure of 2-

aminopyridine synthesis to yield 5.12q as a white solid 

(66%). 1H NMR (400 MHz, CDCl3) δ 1H NMR (400 MHz, 

Chloroform-d) δ 10.46 (s, 1H), 8.94 (dd, J = 8.7, 1.2 Hz, 

1H), 8.11 (dd, J = 8.1, 1.7 Hz, 1H), 7.57 (ddd, J = 8.8, 7.2, 1.8 Hz, 1H), 7.42 – 7.36 (m, 2H), 7.29 

– 7.21 (m, 7H), 7.08 (dd, J = 7.6, 1.9 Hz, 2H), 6.98 (ddd, J = 8.1, 7.2, 1.2 Hz, 1H), 6.94 (s, 1H), 

6.76 (d, J = 8.4 Hz, 2H), 4.73 (q, J = 8.4 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 154.8, 153.4, 

152.0, 145.2, 139.5, 139.0, 136.7, 135.5, 133.2, 131.7, 131.4, 131.1, 130.9, 129.1, 128.1, 127.6, 

126.2, 123.2 60.6 (q, J = 277.3 Hz), 121.9, 121.7, 120.8, 119.6, 118.4, 112.7, 111.5, 60.3 (q, J = 
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36.9 Hz); 9F NMR (376 MHz, CDCl3) δ -73.49; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for 

C32H21Br2F3N2O2 682.9982, Found 682.9981. 

 2-(4-Phenyl-5,6-dipropyl-pyridin-2-ylamino)-benzoic acid 2,2,2-trifluoro-ethyl ester: 

Prepared by general procedure of 2-aminopyridine synthesis to 

yield  5.12r as a white solid (65%) 1H NMR (400 MHz, CDCl3) 

δ 10.15 (s, 1H), 8.85 (d, J = 8.7 Hz, 1H), 8.08 (dd, J = 8.1, 1.7 Hz, 

1H), 7.56 (ddd, J = 8.8, 7.1, 1.8 Hz, 1H), 7.50 – 7.40 (m, 3H), 7.37 – 7.30 (m, 2H), 6.91 (ddd, J = 

8.0, 6.8, 1.1 Hz, 1H), 6.64 (s, 1H), 4.71 (d, J = 8.4 Hz, 2H), 2.90 – 2.83 (m, 2H), 2.58 – 2.49 (m, 

2H), 2.01 – 1.91 (m, 2H), 1.47 – 1.39 (m, 2H), 1.13 (t, J = 7.3 Hz, 3H), 0.83 (t, J = 7.3 Hz, 3H); 

13C NMR (101 MHz, CDCl3) δ 166.7, 158.9, 152.2, 151.3, 146.1, 140.5, 135.2, 131.3, 128.5, 

128.1, 127.5, 126.4, 123.2 (q, J = 277.5 Hz), 118.5, 117.8, 111.4, 110.7, 60.4 (q, J = 36.4 Hz), 

36.9, 30.4, 24.3, 22.7, 14.4, 14.3; 9F NMR (376 MHz, CDCl3) δ -73.54; HRMS (ESI-TOF) m/z: 

[M + H]+ Calcd for C26H27F3N2O2 456.2103, Found 456.2107 
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