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ABSTRACT
We discuss a method, which was popularized by E. J. Allen and that is
frequently used in applications to construct SDE models. The deriva-
tion procedure is based on information about the elementary processes
involved in the dynamics and their corresponding probabilities. We for-
mulate criteria for the viability of the resulting models. In particular,
explicit necessary and sufficient conditions are deduced for the non-
negativity and/or boundedness of solutions. Moreover, we show that
the class of deterministic models for which the construction leads to an
admissible SDE extension is strongly limited. Several examples are pre-
sented to illustrate the implications of our results.

1. Introduction

Stochastic differential equations (SDEs) are frequently used in order to model systems where
random effects play a significant role. Since there is no canonical way to formulate an SDE
model, different construction methods have been considered. One derivation procedure that
is widely used was suggested by E. Allen in [1]. It generalizes a classical method to con-
struct ordinary differential equation (ODE) models. All possible changes δ of the considered
stochastic process in a small time interval are determined, together with their corresponding
probabilities p. Given this information, a system of Itô SDEs can be derived, where the coef-
ficients in the equations are given in terms of δ and p. This method has been used to develop
SDE models in various fields; a large variety of applications in mathematical biology can be
found, e.g., in [1, 2]; see also [3–8].

Solutions of models in biological applications typically represent non-negative quantities,
such as population densities or concentrations of chemical substrates, and hence, it is essential
that they attain non-negative values. Models that do not ensure this property are not valid
or break down for small values of the solution. Explicit necessary and sufficient conditions
for systems of ODEs are well-known and allow to characterize the class of non-negativity
preserving models. For systems of SDEs, explicit criteria have also been obtained, however,
they are less known. In fact, various SDE models have been proposed and analyzed in recent
years that produce undesired negative values of the solutions [9, 10].

In [9, 10], we formulated explicit necessary and sufficient conditions for the non-negativity
of solutions of SDE systems and discussed several modeling applications.We now apply these
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results to analyze whether Allen’s derivation procedure leads to SDE models that preserve
non-negativity. In particular, we aim to formulate explicit necessary and sufficient conditions
for the possible changes δ and probabilities p that are easy to verify and allow to classify admis-
sible models. We further point out the limitations of the method when SDE extensions are
constructed based on a given deterministic ODE model.

The interest of such a result is twofold and goes beyond mathematics.
First, our criteria can be used to distinguish viable or admissible models. This is of course

fundamental in applications.
On the other hand, due to the particularity of Allen’s derivation procedure, if an unrealistic

model is obtained, it has direct implications on themodelling assumptions. Indeed, it is based
on information about the underlying stochastic process by analyzing all possible interactions
and the corresponding probabilities. This information is typically justified by arguments about
the nature of the phenomenon under consideration. If the resulting SDE model is not viable,
then

� either the underlying process cannot be decomposed as assumed by Allen’s method and
is richer,

� or some of the interaction probabilities involved have to be modified and interpreted
differently.

In either case, it leads to a deeper understanding of the modeled phenomenon at hand.
We give examples of these situations in Section 4 recalling classical SDE models discussed by
E. J. Allen in [1] and L. J. S. Allen in [2]. Of course, mathematics cannot in general decide
which situation applies and this is precisely where the interaction with other fields comes into
play. However, one case deserves special attention. Namely, when the method is applied to
construct stochastic extensions of deterministic ODE systems, since part of the coefficients
in the SDE are already fixed by the deterministic model. A negative result, i.e., obtaining an
SDE model that is not viable means precisely that the underlying process is not of the form
assumed by the derivation method.

But our results do not only have negative implications. If the resulting model is not viable,
they provide a pragmatic rule for modifications in order to obtain admissible models. Indeed,
as our criteria yield explicit necessary and sufficient conditions for viability, they can be used as
a guide to reformulate and modify the modeling assumptions. We provide examples for this
situation in Section 4.

The paper is organized as follows: In Section 2, we recall Allen’s derivation procedure and
generalize it for an arbitrary number of interacting populations. In Section 3, we formulate
explicit criteria that lead to viable SDE models. Moreover, we analyze the limitations of the
methodwhen SDE extensions are constructed from a given deterministicODEmodel. Finally,
we discuss several examples and modeling applications in Section 4. For the convenience of
the reader, the general invariance criterion for SDE systems, which is the basis of our results,
is given in the Appendix.

2. A derivation procedure for SDEmodels

In this section, we recall themodeling procedure proposed by E. Allen in [1] to derive Itô SDE
models. In order to facilitate the reading of our results, we will adopt the notations in [1].

In the first step, a discrete stochasticmodel is developed by determining all possible changes
δ of the system and the corresponding transition probabilities p in a small time interval �t .
Then, the expectation value and covariance matrix for the change of the discrete process are
calculated, and based on this information the SDEmodel is formulated. The drift coefficient is
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hereby given by the expected change divided by�t and the diffusion coefficient by the square
root of the covariance matrix divided by �t .

Allen’s modeling procedure is described for models with two interacting populations in [1,
2]. We generalize it here for systems with an arbitrary number k of components. Let X (t ) =
(X1(t ), . . . ,Xk(t ))T represent the state of k interacting populations at time t ≥ 0, where we
use the superscript T to denote the transpose of a vector (or a matrix).

� Step 1: All possible interactions with the environment and between the populations Xi,

i = 1, . . . , k, that lead to a change in one of the states are listed, together with the corre-
sponding probabilities for the change up to O((�t )2):
We assume that there are m possible interactions that lead to a change in at least one
of the states. The matrix �X = (δ(1), . . . , δ(m)) ∈ R

m×k contains the coefficients of all
changes, where

δ(i) = (δ
(i)
1 , . . . , δ

(i)
k )T ∈ R

k,

and the corresponding probabilities up to O((�t )2) are given by

pi = Pi(t,X1, . . . ,Xk)�t,

i = 1, . . . ,m. In addition, there is the probability of no change, δ(m+1) = (0, . . . , 0)T ,
which is

pm+1 = 1 −
m∑
i=1

pi.

The hypotheses are summarized in Table 1. Based on this information the coefficients in
the SDE model are determined in the subsequent Steps 2 and 3.

� Step 2: The expected change E(�X ) of the system is computed,

E(�X ) =
m∑
i=1

piδ(i),

and the covariance matrix up to O((�t )2),

E(�X (�X )T ) =
m∑
i=1

pi(δ(i))(δ(i))T .

� Step 3:We define

μ = E(�X )

�t
=

m∑
i=1

Piδ(i),

V = E(�X (�X )T )

�t
=

m∑
i=1

Pi(δ(i))(δ(i))T ,

and denote the square root ofV by

B(t,X1, . . . ,Xk) =
√
V (t,X1, . . . ,Xk).

Finally, the following system of Itô SDEs is considered:

dX (t ) = μ(t,X1, . . . ,Xk)dt + B(t,X1, . . . ,Xk)dW (t ), (1)
X (t0) = X0,
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Table . Changes of the system and corresponding probabilities.

i δ(i) pi


(
δ
(1)
1 , . . . , δ

(1)
k

)T
p1

...
...

...

m
(
δ
(m)
1 , . . . , δ

(m)
k

)T
pm

m + 1 (0, . . . , 0)T 1 − ∑m
i=1 pi

where W = (W1, . . . ,Wk)
T with k independent standard scalar Wiener processes

W1, . . . ,Wk, and dW denotes the corresponding Itô differential.
For details of the derivation procedure, properties of the resulting SDE models, and appli-

cations, we refer to [1, 2].
In order to simplify the presentation of our results, we introduce the following

notation.

Definition 2.1. We denote by (δ, p) a couple of data in R
m×k × R

k as in Table 1 that satisfies
the properties in Step 1. This information contains the modeling assumptions and is the basis
of the constructed model. We call the corresponding system of Itô equations (1) the (δ, p)-
SDE model.

Remark 2.1. As indicated in [1, 2], alternative (equivalent) SDE systems can be formulated
such that their drift part and covariance matrix coincide with the ones corresponding to (1).

For instance, the system

dX (t ) = μ(t,X1, . . . ,Xk)dt +C(t,X1, . . . ,Xk)dW ∗(t ), (2)

whereW ∗ = (W ∗
1 , . . . ,W ∗

m)T withm independent standard scalarWiener processesW ∗
i , and

the matrixC is given by

Ci j = δ
( j)
i

√
p j

�t
= δ

( j)
i

√
Pj

(see [2] for the case k = 2). Then, thematrixC satisfiesCCT = V and the correspondingmean
vector, covariance matrix, and forward Kolmogorov differential equation for the SDE systems
(1) and (2) coincide.

Another diffusion matrix can be obtained using the Cholesky factorization ofV . IfG is the
lower triangular matrix in this factorization, then G satisfies GGT = V and yields a further
equivalent SDE system (see [2]).

To illustrate the method, we recall the derivation of an SDEmodel for two interacting pop-
ulations discussed in [1].

Example 2.1. LetX1 andX2 denote the sizes of two populations, bi and di be the corresponding
birth and death rates, i = 1, 2, andm12 andm21 the rates at which population 1 is transformed
into population 2, and vice versa. Each of these parameters can depend on time t and the
population sizes X1 and X2.

The following table lists the possible changes δ in the population sizes along with the cor-
responding probabilities p.
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i δ(i) pi

 (−1, 0)T d1X1�t
 (1, 0)T b1X1�t
 (0, −1)T d2X2�t
 (0, 1)T b2X2�t
 (−1, 1)T m12X1�t
 (1, −1)T m21X2�t
 (0, 0)T 1 − ∑6

i=1 pi

Computing the expected change and covariance matrix, the derivation procedure leads to
the following (δ, p)-SDE model

dX = μ(t,X1,X2)dt + B(t,X1,X2)dW,

whereW = (W1,W2)
T with two independent standard scalar Wiener processesW1 andW2.

Moreover,

μ =
(
b1X1 − d1X1 − m12X1 + m21X2

b2X2 − d2X2 − m21X2 + m12X1

)

and B = √
V , where

V =
(
b1X1 + d1X1 + m12X1 + m21X2 −m12X1 − m21X2

−m12X1 − m21X2 b2X2 + d2X2 + m21X2 + m12X1

)
.

We omitted here the dependence of the coefficients on t,X1,X2 in order to shorten notations.

3. Viability criteria and limitations of themethod

Our aim is to analyze under which assumptions Allen’s derivation procedure leads to viable
SDE models. In particular, we formulate explicit necessary and sufficient conditions for the
probability functions pi and changes δ

(i)
j such that the resulting (δ, p)-SDE models preserve

non-negativity and/or upper bounds for the solutions. We further point out the limitations of
themethodwhen SDE extensions are constructed based on a given deterministic ODEmodel.
The results are derived from a previous invariance criterion for SDE systems formulated in
[9, 10] (see Theorem A.1 in the Appendix).

3.1. Criteria for non-negativity

Here and in the sequel, we denote the positive cone in R
k by

K+ = {
y ∈ R

k : yi ≥ 0, i = 1, . . . , k
}
.

Definition 3.1. We say that a stochastic system

dX (t ) = f (t,X1, . . . ,Xk)dt + G(t,X1, . . . ,Xk)dW (t ), (3)
X (t0) = X0,

where f : [t0, ∞) × R
k → R

k, G : [t0, ∞) × R
k → R

k×m, and W = (W1, . . . ,Wm)T , pre-
serves non-negativity if for every initial data X0 ∈ K+ and initial time t0 ≥ 0 the correspond-
ing solution X (t ), t ≥ t0, satisfies

P
({
X (t ) ∈ K+, t ∈ [t0, ∞)

}) = 1,
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i.e., it almost surely attains non-negative values.

Theorem 3.1. Let (δ, p) be given data as in Step 1 of the model derivation. Then, the (δ, p)-SDE
model (1) preserves non-negativity if and only if

Pi(t, y)(δ(i)
j )2 = 0, for y ∈ K+ such that y j = 0, t ≥ 0, (4)

for all i = 1, . . . ,m.
In other words, for all 1 ≤ j ≤ k, 1 ≤ i ≤ m such that δ(i)

j 	= 0 it follows that

Pi(t, y) = 0 for y ∈ K+ such that y j = 0, t ≥ 0.

The same result applies to the alternative SDE system (2).

Proof. By Theorem A.1 the SDE system (1) preserves non-negativity if and only if μ and B
satisfy

μi(t, y) ≥ 0, Bi j(t, y) = 0, for y ∈ K+ such that yi = 0,

for all i = 1, . . . , k, j = 1, . . . ,m, and t ≥ 0. Since B = √
V , i.e.,

Vi j(t, y) =
k∑

l=1

Bil(t, y)Bjl(t, y), (5)

this implies thatV satisfies

Vi j(t, y) = 0, for y ∈ K+ such that yi = 0,

for all i = 1, . . . , k, j = 1, . . . ,m, and t ≥ 0. We further observe that

V (t, y) =
k∑

i=1

Pi(t, y)

⎛
⎜⎜⎜⎝

(δ
(i)
1 )2 δ

(i)
1 δ

(i)
2 · · · δ

(i)
1 δ

(i)
k

δ
(i)
1 δ

(i)
2 (δ

(i)
2 )2 · · · δ

(i)
2 δ

(i)
k

...
...

. . .
...

δ
(i)
1 δ

(i)
k δ

(i)
2 δ

(i)
k · · · (δ

(i)
k )2

⎞
⎟⎟⎟⎠,

which leads to condition (4).
On the other hand, if condition (4) holds, thenV satisfies

Vjl(t, y) =
k∑

i=1

Pi(t, y)δ(i)
j δ

(i)
l = 0,

for y ∈ K+ such that either yl = 0 or y j = 0. Using relation (5) for i = j, we deduce that

Vii(t, y) =
k∑

l=1

(
Bil(t, y)

)2
, (6)

for any i = 1, . . . , k. As Vii(t, y) = 0 for y ∈ K+ such that yi = 0, we conclude that for any
l = 1, . . . , k, we have

Bil(t, y) = 0 for y ∈ K+ such that yi = 0. (7)

Moreover, condition (4) certainly implies that

μi(t, y) = 0 for y ∈ K+ such that yi = 0,

i = 1, . . . , k. As a consequence, the assumptions of Theorem A.1 are satisfied and system (1)
preserves non-negativity.
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The proof for the alternative SDE model (2) simplifies and follows by the same
arguments. �
Remark 3.1. Allen’s derivation procedure leads to systems of Itô SDEs, another commonly
used concept is Stratonovich’s interpretation of SDEs. The behavior of solutions generally
depends on the choice of the interpretation, however, there is an explicit transformation for-
mula relating the solutions of both notions (see [11] and the Appendix). It is typically difficult
to decide which interpretation is more appropriate in a particular application. A long debate
about this controversy has been going on, and different arguments have been given to support
either Itós or Stratonovich’s interpretation. For detailed discussions and possible resolutions,
we refer, e.g., to [11–13].

One could ask whether Theorem 3.1 changes if the SDE models were interpreted in the
sense of Stratonovich instead of Itô. In fact, the result is independent of the choice of inter-
pretation, i.e., the necessary and sufficient conditions remain identical if Stratonovich’s inter-
pretation is used for the stochastic systems (1) or (2) (see Theorem A.1 in the Appendix).

Example 3.1. We apply Theorem 3.1 to the SDE model for two interacting populations in
Example 2.1:

The system preserves non-negativity if and only if m12 and m21 satisfy m12(t,X1, 0) = 0
andm21(t, 0,X2) = 0, i.e.,

m12(t,X1,X2) = X2m̃12(t,X1,X2), m21(t,X1,X2) = X1m̃21(t,X1,X2),

for some functions m̃12 and m̃21. All other probabilities certainly fulfil the required conditions.
If the transition rates m12 and m21 do not comply with these conditions, the solutions of

the SDE model can attain undesired negative values.

3.2. Stochastic extensions of deterministic ODEmodels

Allen’s method is often used to construct stochastic extensions of a given deterministic ODE
model. In this case, the drift part μ is, of course, already determined. It can be deduced from
Theorem 3.1 that for a large class of ODE systems that preserve non-negativity, no SDE exten-
sion can be derived by Allen’s method that possesses this property.

We begin by observing a particularity of (δ, p)-SDE models.

Proposition 3.1. Let (δ, P) be given data as in Step 1 of the derivation procedure. If the corre-
sponding (δ, P)-SDE model preserves non-negativity, then the drift term μ satisfies

μ j(t, y) = 0 for y ∈ K+ such that y j = 0, t ≥ 0,

for all j = 1, . . . , k. The same result holds for SDE systems of the form (2).

Proof. According to Theorem 3.1, if an SDE system of the form (1) or (2) preserves non-
negativity, then condition (4) holds. Moreover, the drift term is determined by

μ(t, y) =
m∑
i=1

Pi(t, y)δ(i),

which implies the statement of the proposition. �

This proposition imposes strong constraints on the class of deterministic systems, for
which a non-negativity preserving SDE extension can be constructed by Allen’s method.
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Corollary 3.1. We assume that

dX
dt

= μ(t,X )

is a given deterministic ODE model. If there exist t ≥ 0, 1 ≤ j ≤ k, and y ∈ K+ with y j = 0
such that

μ j(t, y) > 0,

then, any SDE extension derived by Allen’s method does not preserve non-negativity. This applies
to SDE systems of the form (1) and (2).

In particular, if one of the interaction functionsμi contains a constant term, Allen’smethod
leads to an SDE model that produces negative values of the solutions (see Section 4.1 for
examples). In this case, the procedure has to be modified or other methods need to be applied
in order to construct viable stochastic extensions.

Proof. The drift term is determined by μ = ∑m
i=1 Piδ

(i). By assumption, there exist 1 ≤ i ≤
m, 1 ≤ j ≤ k, t ≥ 0, and y ∈ K+ with y j = 0 such that

δ
(i)
j 	= 0, Pi(t, y) 	= 0. (8)

On the other hand, by Theorem 3.1 an SDE system of the form (1) or (2) preserves non-
negativity if and only if condition (4) is satisfied, and this contradicts assumption (8). �
Remark 3.2. The results of this subsection remain valid if the stochastic systems of the form
(1) or (2) were interpreted in the sense of Stratonovich (see Remark 3.1).

3.3. Invariance criteria for rectangular subsets

In biological applications, the solutions often describe quantities that are not only non-
negative, but also bounded by a certainmaximumvalue, e.g., amaximumconcentration or the
carrying capacity of a population. Hence, the admissible ranges for the solutions are intervals
of the form [0, c], c > 0. We now formulate a more general invariance criterion that includes
Theorem 3.1 as a special case. It yields explicit necessary and sufficient conditions for Allen’s
derivation procedure such that the resulting models preserve non-negativity and/or upper
bounds for the solutions.

Definition 3.2. We call the subset K ⊂ R
k invariant for the stochastic system (3) if for every

initial data X0 ∈ K and initial time t0 ≥ 0 the corresponding solution X (t ), t ≥ t0, satisfies

P ({X (t ) ∈ K, t ∈ [t0, ∞)}) = 1,

i.e., solutions almost surely attain values within the set K.

Theorem3.2. Let I ⊂ {1, . . . , k} be a non-empty subset and ai, bi ∈ R ∪ {∞} be such that bi >

ai, i ∈ I. Then, the set

K := {x ∈ R
k : ai ≤ xi ≤ bi, i ∈ I}

is invariant for the system of SDEs (1) derived by Allen’s method if and only if

Pi(t, y)(δ(i)
j )2 = 0 for y ∈ K such that y j = a j or y j = b j,

for all t ≥ 0, i ∈ I and j = 1, . . . , k.
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This result equally applies to the SDE system (2) and is independent of Itô’s or Stratonovich’s
interpretation of SDEs.

Proof. The statement can be deduced from Theorem A.1. The proof follows exactly the same
lines as for Theorem 3.1 and is left to the reader. �
Remark 3.3. Similarly as in Section 3.2, we can formulate conditions such that (δ, p)-SDE
models that are derived from deterministic ODEmodels preserve invariance. It turns out that
the class of ODE systems for which the corresponding stochastic extensions preserve non-
negativity and upper bounds for the solutions is seriously limited.

Example 3.2. We apply the invariance criterion to the (δ, p)-SDE model in Example 2.1 and
derive conditions for the non-negativity and boundedness of the solutions.

Let κ1 and κ2 be given upper bounds for the populations X1 and X2. Then, the solution Xi

attains values within the interval [0, κi], i = 1, 2, if and only if the birth, death, and transition
rates are of the following form:

bi(t,X1,X2) = Xi(κi − Xi)b̃i(t,X1,X2),

di(t,X1,X2) = Xi(κi − Xi)d̃i(t,X1,X2),

mij(t,X1,X2) = X1X2(κ1 − X1)(κ2 − X2)m̃i j(t,X1,X2), i 	= j,

for i, j = 1, 2, and some functions b̃i, d̃i, m̃i j.

4. Applications

We discuss several of the modeling applications presented in [1, 2]. Further SDE models
derived by Allen’s method can be found, e.g., in [3–8].

4.1. Scalar SDE growthmodels

We first recall the simplest example discussed in [2], a scalar SDE model for a birth, death,
and immigration process.

Example 4.1. The random variable X (t ) denotes the size of a population experiencing birth,
death, and immigration. The following table lists the changes and corresponding probabilities,
where α, β , and γ are positive constants.

i δ(i) pi

  αX�t
 − βX�t
  γ�t

The corresponding Itô SDE obtained by Allen’s derivation procedure is

dX = ((α − β)X + γ )dt +
√

(α + β)X + γ dW,

or alternatively, the construction (2) leads to

dX = ((α − β)X + γ )dt + √
αXdW1 +

√
βXdW2 + √

γ dW3,

whereW,W1,W2, andW3 are independent standard scalar Wiener processes.
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Proposition 4.1. The solutions corresponding to non-negative initial data of both SDEs can
attain undesired negative values and these (δ, p)-SDE models are, in fact, not viable.

Moreover, while the underlying deterministic ODE model

dX
dt

= (α − β)X + γ (9)

certainly preserves non-negativity, no SDE extension can be derived by Allen’s method that pos-
sesses this property.

Proof. The first statement is an immediate consequence of Theorem 3.1, since the prob-
ability p3 does not fulfil the required condition. The second observation follows from
Corollary 3.1. �

We can modify the modeling assumptions in order to obtain an admissible SDE model.
Replacing the probability p3, e.g., by γX�t , the procedure leads to the SDE model

dX = ((α − β)X + γX )dt +
√

(α + β)X + γXdW,

or applying the alternative construction, to

dX = ((α − β)X + γX )dt + √
αXdW1 +

√
βXdW2 + √

γXdW3.

Both SDEs preserve non-negativity, but this change of p3 also leads to a modification of the
underlying deterministic model. The immigration rate now depends on the current size of
the population, implying that individuals do not migrate to places where no other individuals
of the species are present, but prefer regions with large population sizes.

Allen’s construction method for SDE models is based on the assumption that the underly-
ing stochastic process can be “decomposed” and is determined by all possible changes of the
system and their corresponding probabilities. Moreover, it leads to a strong correlation of the
drift and diffusion part in the SDE model. For instance, an SDE of the form

dX = ((α − β)X + γX )dt +
√

(α + β)XdW (10)

preserves non-negativity, but cannot be obtained by the derivation procedure. On the other
hand, it can be deduced from the deterministic model (9) by assuming that the parameters
α and β are subject to random perturbations. It would be interesting to investigate whether
Allen’s method can be generalized in such a way that it allows to derive stochastic models of
the form (10).

The second application is the SDE extension of a logistic growth model.

Example 4.2. The classical ODE model for logistic growth is the following:

dX
dt

= αX
(
1 − X

β

)
,

where X (t ) denotes the population size at time t ≥ 0, α the growth rate, and β the carrying
capacity of the population. Certainly, solutions emanating from initial data within the interval
[0, β] are non-negative and bounded from above by β , i.e., [0, β] is invariant for the ODE
model.

By using the modeling procedure in Section 3, two alternative SDE extensions were con-
structed and analyzed in [2] based on the following probability functions pi and p̃i, i = 1, 2,
associated with the possible changes in the population size.
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i δ(i) pi p̃i

  αX�t αX
(
1 − X

2β

)
�t

 − αX 2
β

�t αX 2
2β �t

These hypotheses lead to the SDE models

dX =
(

αX
(
1 − X

β

))
dt +

√
αX

(
1 + X

β

)
dW,

and

dX =
(

αX
(
1 − X

β

))
dt + √

αXdW.

Proposition 4.2. Both SDE extensions preserve non-negativity, however, unlike the deterministic
growth model, solutions emanating from initial data within the interval [0, β] can attain values
exceeding the carrying capacity β.

Proof. All probability functions satisfy the conditions in Theorem 3.1, but only p̃1 fulfils the
conditions required by Theorem 3.2 for the invariance of the interval [0, β]. �

In fact, by taking Theorem 3.2 into account we can modify the modeling assumptions
and suggest alternative SDE extensions that preserve not only non-negativity but also the
upper bound β for the solutions. For example, we can consider the following probability
functions p̂i.

i δ(i) p̂i

  2αX
(
1 − X

β

)
�t

 − αX
(
1 − X

β

)
�t

Allen’s derivation procedure then leads to the modified SDE model

dX =
(

α

(
1 − X

β

))
dt +

√
3αX

(
1 − X

β

)
dW,

for which the interval [0, β] is invariant. Different from Example 4.1, the modified probabili-
ties p̂i do not lead to a change in the drift part of the SDE (i.e., in the underlying deterministic
model), but only alter the diffusion part. These modeling assumptions signify that the prob-
abilities for growth and death vanish when the population size reaches the carrying capacity.

4.2. Models for two interacting populations

A general SDE model for two interacting populations was formulated in Example 2.1 and
taken up in the subsequent sections. We now consider two concrete modeling applications
that are particular cases of this model.



STOCHASTIC ANALYSIS AND APPLICATIONS 235

Example 4.3. The following ODE system describes the dynamics of an epidemic,

dS
dt

= −α
SI
N

+ γ I,

dI
dt

= α
SI
N

− γ I,

where S denotes the susceptible and I the infected sub-population. The total population N =
S + I is preserved. It is a special case of the general model for two interacting populations,
where X1 = S,X2 = I, d1 = d2 = b1 = b2 = 0 and

m12 = α
X2

N
= α

X2

X1 + X2
, m21 = γ .

Allen’s derivation procedure leads to the SDE system

dS =
(

−α
SI
N

+ γ I
)
dt +

√
1
2

(
α
SI
N

+ γ I
)

(dW1 − dW2),

dI =
(

α
SI
N

− γ I
)
dt +

√
1
2

(
α
SI
N

+ γ I
)

(−dW1 + dW2)

(see [1], sec. 5.2.2).

Theorem 3.1 and Corollary 3.1 imply the following observation.

Proposition 4.3. The deterministic ODE model preserves non-negativity of solutions, but
the stochastic extension does not possess this property and solutions can attain negative
values.

In fact, no SDE model can be constructed by Allen’s derivation procedure that preserves non-
negativity.

One possibility to obtain a viable stochastic model is to replace the transition rate m21 by
γX1, which leads to the modified SDE system

dS =
(

−α
SI
N

+ γ SI
)
dt +

√
1
2

(
α
SI
N

+ γ SI
)

(dW1 − dW2),

dI =
(

α
SI
N

− γ SI
)
dt +

√
1
2

(
α
SI
N

+ γ SI
)

(−dW1 + dW2).

As in Example 4.1 this assumption not only alters the stochastic perturbation, but also the drift
part of the SDE andhence, the underlying deterministicmodel. An alternative SDEmodel that
preserves non-negativity is the system

dS =
(

−α
SI
N

+ γ I
)
dt +

√(
α
SI
2N

)
dW1,

dI =
(

α
SI
N

− γ I
)
dt −

√(
α
SI
2N

)
dW1.
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It can be deduced from the ODE model by assuming that only the transition rate α is subject
to random perturbations, but such an SDE system cannot be obtained using Allen’s derivation
method.

We further discuss an SDE system modeling enzyme kinetics (see [2], secs. 7.5 and 9.5).

Example 4.4. The following ODE system describes enzyme kinetics

dN
dt

= −αN(κ − B) + βB,

dB
dt

= αN(κ − B) − (β + γ )B,

where N denotes the number of a nutrient molecule and B the number of molecules formed
when the nutrient binds to an enzyme.

The changes and associated probabilities are listed in the following table, where α, β, γ ,
and κ are positive constants.

i δ(i) pi

 (−1, 1)T αN(κ − B)�t
 (1, −1)T βB�t
 (0, −1)T γ B�t

Based on the table, the drift term μ, the diffusion matrix V , and its square root can be
computed. The derivation procedure leads to the Itô SDE system

dX = μ(X )dt + G(X )dW,

where X = (N,B)T , W = (W1,W2,W3)
T with independent standard scalar Wiener pro-

cessesWi, and

μ(X ) =
( −αN(κ − B) + βB

αN(κ − B) − (β + γ )B

)
,

G(X ) =
(−√

αN(κ − B)
√

βB 0√
αN(κ − B) −√

βB −√
γB

)
.

It is a special case of the general model for two interacting populations, where X1 = N,X2 =
B, d1 = b1 = b2 = 0, d2 = γ , and

m12 = α(κ − B), m21 = β.

Similarly to the previous example, we observe that the (δ, p)-SDEmodel has the following
properties.

Proposition 4.4. The underlying deterministic model preserves the non-negativity of solutions.
However, the probabilities p1 and p2 do not satisfy the conditions in Theorem 3.1 and hence,
solutions of the stochastic enzyme kinetics model can attain undesired negative values.

By Corollary 3.1 no SDE extension can be constructed by Allen’s method that preserves non-
negativity.

4.3. A growthmodel including environmental variability

An SDE extension of a simple growth model was developed in [1]. It takes stochastic fluctua-
tions in the environment into account by considering fluctuation in the birth and death rates.
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The model is based on the deterministic ODE
dX
dt

= bX − dX,

where X denotes the population size and b and d the birth and death rates. An SDE for X is
constructed by Allen’s procedure based on the following table for the possible changes and
corresponding probabilities.

i δ(i) pi

  bX�t
 − dX�t

Moreover, it is assumed that the birth and death rates vary in a randommanner, and SDEs
are derived for b and d according to the following modeling assumptions.

i δ
(i)
b p(b)

i δ
(i)
d p(d)

i

 αb (qb + βb(b0 − b))�t αd (qd + βd (d0 − d))�t
 −αb (qb − βb(b0 − b))�t −αd (qd − βd (d0 − d))�t

Here, αb, αd, βb, βd, qb, and qd are positive constants. The derivation method leads to the
SDE system

dX = (bX − dX )dt +
√

(b+ d)XdW1,

db = (2αbβb(b0 − b))dt +
√
2α2

bqbdW2,

dd = (2αdβd(d0 − d))dt +
√
2α2

dqddW3.

Theorem 3.1 and Corollary 3.1 imply that solutions of the SDE model can attain nega-
tive values. In fact, no SDE extension can be constructed by the modeling procedure that
preserves non-negativity, since the probability functions corresponding to b and d contain
constant terms. We remark that the coefficients in the SDE for X actually satisfy the criterion
in Theorem 3.1, however, the birth and death rates b and d can attain negative values, and this
will also cause problems defining the square root in the first equation.
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Appendix A: Invariance criteria for SDEs: A reminder

We recall a general criterion for SDE systems, which yields explicit necessary and sufficient
conditions for the invariance of rectangular subsets. It slightly extends a previous result by A.
Milian in [14]. For details and the proof we refer to [9, 10, 14].

Let (�,F, P) be a probability space with a right-continuous increasing family F = (Ft )t≥0

of sub-σ -fields of F each containing all sets of P-measure zero. We consider systems of Itô
SDEs of the form

dX (t ) = f (t,X (t ))dt + g(t,X (t ))dW (t ), t ∈ (t0, ∞),

X (t0) = X0, (A.1)

where f = ( fi)1≤i≤k : [0, ∞) × R
k → R

k is a Borel-measurable function, and g =
(gi j) 1≤i≤k

1≤ j≤r

: [0, ∞) × R
k → R

k×r a Borel-measurable mapping into the set of all Rk×r-

matrices. Furthermore,W : [0, ∞) × � → R
r denotes an r-dimensionalF-adaptedWiener

process and dW the corresponding Itô differential. The initial time t0 is non-negative and
X0 ∈ R

k is the given initial data.
The initial value problem is rigorously defined through the integral equation

X (t ) = X0 +
∫ t

t0
f (s,X (s))ds +

∫ t

t0
g(s,X (s))dW (s), t ∈ (t0, ∞),

where the last termdenotes the Itô integral ([11]). An alternative notion that is frequently used
in applications is Stratonovich’s definition of stochastic integrals. The qualitative behavior of
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solutions can depend on the chosen concept, however, there is an explicit transformation for-
mula relating the solutions of both notions. In fact, if X is a solution of system (A.1) and the
SDE is interpreted in the sense of Stratonovich, then X solves the system of Itô SDEs

dX (t ) =
(
f (t,X (t )) + 1

2
h(t,X (t ))

)
dt + g(t,X (t ))dW (t ), t ∈ (t0, ∞),

where h = (hi)1≤i≤k : [0, ∞) × R
k → R

k is given by

hi(t, x) =
r∑

j=1

k∑
l=1

∂gi j
∂xl

(t, x)gi j(t, x), i = 1, . . . , k.

Due to the particular form of h, the invariance property for SDEs is independent of the inter-
pretation, i.e., qualitative properties of solutions such as non-negativity and boundedness do
not depend on the choice of Itô’s or Stratonovich’s interpretation (see [10, 11]).

In the sequel, we denote by ( f , g) stochastic initial value problems of the form (A.1).

Definition A.1. We call the subset K ⊂ R
k invariant for the stochastic system ( f , g) if for

every initial data X0 ∈ K and initial time t0 ≥ 0 the corresponding solution X (t ), t ≥ t0, sat-
isfies

P ({X (t ) ∈ K, t ∈ (t0, ∞)}) = 1,

i.e., the solution almost surely attains values within the set K.

Theorem A.1. Let I ⊂ {1, . . . , k} be a non-empty subset and ai, bi ∈ R ∪ {∞} such that bi >

ai, i ∈ I. Then, the set

K := {x ∈ R
k : ai ≤ xi ≤ bi, i ∈ I}

is invariant for the stochastic system ( f , g) if and only if

fi(t, x) ≥ 0 for x ∈ K such that xi = ai,
fi(t, x) ≤ 0 for x ∈ K such that xi = bi,

gi, j(t, x) = 0 for x ∈ K such that xi ∈ {ai, bi}, j = 1, . . . , r,

for all t ≥ 0 and i ∈ I.
This result applies independently of Itô’s or Stratonovich’s interpretation of SDEs.

One particular and important case in applications is the non-negativity of solutions, i.e.,
the invariance of the positive cone.

Corollary A.1. Let I ⊂ {1, . . . , k} be a non-empty subset. Then, the set

K+ := {x ∈ R
k : xi ≥ 0, i ∈ I}

is invariant for the stochastic system ( f , g) if and only if

fi(t, x) ≥ 0 for x ∈ K+ such that xi = 0,
gi, j(t, x) = 0 for x ∈ K+ such that xi = 0, j = 1, . . . , r,

for all t ≥ 0 and i ∈ I.
This result is valid independent of Itô’s or Stratonovich’s interpretation.
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