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ABSTRACT
In this article, we derive expressions for conditional expectations in
terms of regular expectations without conditioning but involving
some weights. For this purpose, we apply two approaches: the con-
ditional density method and the Malliavin method. We use these
expressions for the numerical estimation of the price of American
options and their deltas in a L�evy and jump-diffusion setting. Several
examples of applications to financial and energy markets are given
including numerical examples.
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1. Introduction

Popular models for the fluctuation of the underlying process in finance and energy mar-
kets are determined by Brownian motions and are therefore continuous in the sense
that they do not generate jumps in the sample paths. Their popularity follows from the
fact that they are easy to handle. However, as it turns out from observed data, the
absence of jumps is not realistic. Therefore, the use and study of discontinuous models
have seen an important boost in the last decades.
In this article, we consider the problem of computing conditional expectations of

functionals of L�evy processes and jump diffusions which are involved in pricing and
hedging procedures as, e.g. of American options, and which usually require numerical
evaluation techniques. In general, it is not possible to obtain analytical expressions for
conditional expectations and thus numerical methods are called for. Fourni�e et al. [1]
derive expressions for the conditional expectations in terms of regular expectations for
models which have a density and for diffusion models using, respectively, the density
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method and the Malliavin calculus. In this article, we generalize these two approaches
to obtain representations for conditional expectations and their derivatives (with respect
to the underlying) in a jump-diffusion setting. The representations we derive are
expressed in terms of regular expectations without conditioning but involving a
Heaviside step function and some weights. We apply the developed theory to the
numerical estimation of American option prices and their deltas.
There is a wide literature on the use of Malliavin calculus in finance, see, e.g.

Montero and Kohatsu-Higa [2]. For an overview, we refer to Nualart [3] for continuous
processes and Di Nunnio et al. [4] for jump processes. As for the numerical computa-
tion of American options, several approaches appeared in this field. von Sydow et al.
[5] compared some approaches grouped as Monte Carlo methods, Fourier methods,
finite difference methods, and radial basis function methods but only for continuous
underlying processes when pricing American options. Broadie and Glasserman [6] built
up a tree in order to obtain a discretisation of the underlying diffusion on a grid (see
also Barranquand and Martineau [7]). Longstaff and Schwartz [8] use a regression
method on a truncated basis of L2 and then choose a basis of polynomials for the
numerical estimation of conditional expectations. Shu et al. [9] and Kovalov et al. [10]
use a partial differential equations approach. Zhang and Oosterlee [11] use a Fourier
method based on Fourier cosine-series expansions. We follow an approach similar to
the one by Mrad et al. [12] and Bally and Pag�es [13] based on a Monte Carlo method.
Considering a random variable F, a scalar random variable G, and a function f on R,

Fourni�e et al. [1] provide the following representation for the conditional expectation

E f Fð ÞjG ¼ 0
� �

¼ E f Fð ÞH Gð Þp
� �
E H Gð Þp½ � ;

where p is a random variable called weight and H is the Heaviside step function
increased with some constant, HðxÞ ¼ 1fx�0g þ c; c 2 R. The authors use two
approaches: the density method and the Malliavin method (MM). The density method
requires that the couple (F, G) has a density p(x, y), ðx 2 R; y 2 RÞ such that its log is
C1 in the second argument. In the Malliavin approach, they use a Malliavin derivative
of the Wiener process and provide expressions for conditional expectations, where F
and G are modeled by continuous diffusions. One of the goals in the present paper is to
relax the conditions imposed on the random variables F and G and in particular to
allow for random variables which do not necessarily have a known density and which
might originate from processes with jumps.
We recall that the density method introduced in [1] requires the knowledge of the

density of (F, G). However when F and G are random variables generated from jump
processes, the density of the couple (F, G) is in general not known or very hard to com-
pute. To overcome this shortcoming, we use the conditional density method introduced
by Benth et al. [14]. For example, in the case of a geometric L�evy process, we only need
the knowledge of the joint density of the continuous parts, which we do know. Thus, to
apply the conditional density method a separability assumption on the random variables
F and G will be required. F and G should consist of a part with known density. The
density of the other part is not necessarily known.
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For the Malliavin method, we work with the Malliavin derivative for jump processes
developed by Petrou [15]. The idea is to use the Malliavin derivative in the direction of
the Wiener term in the jump-diffusion process. Using this approach, there is no separ-
ability assumption imposed, since the Malliavin calculus as presented in [15] does not
require any, as opposed to the Malliavin calculus used in Davis and Johansson [16] or
in Benth et al. [17]. We use this approach to compute conditional expectations in our
setting as was developed in [1] in a continuous set up.
Furthermore, we provide expressions for the derivative of conditional expectations

using both approaches and we illustrate our results with several examples of models
which are commonly used in financial and energy markets. Notice that we present our
study in the one-dimensional case for the ease of notation, although all results can be
extended to a setting in higher dimensions.
The representations that we develop are interesting from a probabilistic point of view.

Indeed we derive expressions for the conditional expectations of functionals of random
variables involving only unconditional expectations of these functionals. Moreover, these
representations are interesting from a numerical point of view. In this article, we apply
them to the numerical estimation of American option prices and their deltas, the delta
being the sensitivity of the option price with respect to the state of the underlying asset.
To perform the numerical experiments, American options are approximated, through

a time discretisation, by Bermudan options as in Bally and Pag�es [13] or Abbas-Turki
and Lapeyre [18]. We make use of a localization technique and a control variate to min-
imize the variance, see, e.g. Glasserman [19]. To reduce the memory capacity of the
algorithm for the estimation of the American option price and the delta, we suggest to
simulate the underlying stock price process backwards in time. This backward simula-
tion technique turns out to be a specific application of L�evy bridges, see Baldeaux [20].
To check the accuracy of the proposed algorithms, we first compute European option prices

and their deltas at time t> 0 where we assume a Merton model for the price process. We
compare the values obtained by our algorithm to the analytical solutions proposed by Merton
[21]. Then considering the same model we estimate the prices and the deltas of American
options, which we in turn compare to estimates found in the literature. In addition we com-
pute for the prices a confidence interval according to Bouchard and Warin [22].
In their article [22], Bouchard and Warin performed a numerical comparison and dis-

cussed the efficiency and the level of complexity of the regression based Longstaff and
Schwartz [8] algorithm and the Malliavin approach algorithm in the continuous setting. In
our numerical examples, we investigate how the CDM and the MM perform in the discon-
tinuous setting. The fundamental difference between the Longstaff–Schwartz approach and
the (conditional) density or Malliavin approach is the way the conditional expectations are
approximated. However, the Longstaff–Schwartz method may show rank deficiency for a
certain choice of the parameters of the model (see Mostovyi [23]) and is unable to provide
an ad hoc method for the computation of the delta. It has to be combined with other meth-
ods such as the likelihood ratio method or pathwise sensitivities based approaches in order
to obtain an approximation of the delta. The approaches presented in this article allow the
computation of the price of the American option for any parameters choice and lead to rep-
resentation formulas for the derivative of conditional expectations and consequently provide
an estimation of the delta using its own specific method.
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The article is organized as follows. In Sections 2 and 3, we develop a representation
for conditional expectations via the conditional density method and the MM, respect-
ively. In Section 4, we present variance reduction techniques to obtain acceptable con-
vergence results in numerical applications. In Section 5, we present numerical examples
to illustrate our results. Section 6 concludes the article.

2. Conditional expectation via the conditional density method

Let ðX;F ;PÞ be a complete probability space equipped with a filtration F :¼ fF tgt2½0;T� for
time horizon T> 0, satisfying the usual conditions (see Protter [24]). We introduce the generic
notation L ¼ fLtg0�t�T , for a L�evy process on the given probability space. We set L0 ¼ 0 by
convention and work with the right-continuous with left limits version of the L�evy process.
Let DLt :¼ Lt�Lt� indicate the jump of the L�evy process L at time t. Denote the L�evy meas-
ure of L by LðdzÞ. Recall that LðdzÞ is a r-finite Borel measure on R0 :¼ R f0g.
In this article, we express the realization of a conditional expectation E½f ðStÞjSs ¼ a�

in terms of regular expectations. Here f is a Borel measurable function (think for
instance of the payoff function of a call option), S is an F-adapted price process which
may have jumps, and a is a real number. We also rewrite its differential w.r.t. a, i.e. the
delta, by only using unconditional expectations.

2.1. Representation results

First, we state a general result for the conditional expectation E½f ðFÞjG ¼ a�, where F
and G are two random variables satisfying the following separability assumptions.

Assumptions 2.1. (Separability). Let F and G be two random variables such that

F ¼ g1 X;Yð Þ and G ¼ g2 U;Vð Þ: (2.1)

The couple (X, U) is independent of (Y, V). Moreover

1. (X, U) has a density pðX;UÞ with respect to the Lebesgue measure,
2. log pðX;UÞðx; �Þ is differentiable, for all x 2 R, and
3. @

@u log pðX;UÞ 2 L2ðR2; pðX;UÞÞ, i.e. E½ð @
@u log pðX;UÞðX;UÞÞ2�<1.

The functions g1 and g2 are Borel measurable and there exist a Borel measurable func-
tion g� and a strictly increasing differentiable function h such that

g2 u; vð Þ ¼ h�1 uþ g� vð Þ
� �

; (2.2)

for all ðu; vÞ 2 Dom g2 \ ðR� Dom g�Þ.
We apply the conditional density method (CDM) as it is developed in Benth et al. [14]. The

CDM method is based on the density method (DM) introduced in Glasserman [19] and used
in Fourni�e et al. [1], but allows for more general dynamics than the latter. Indeed, given F and
G as in (2.1), the CDM does not require the knowledge of the density of the couple (F, G) as it
is the case in the DM but only the knowledge of the density (X, U). The density pðX;UÞ of (X,
U) plays the most important role in this method. The results follow from straightforward
computations based on properties of (conditional) expectations.
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We denote the Heaviside step function increased by an arbitrary number c 2 R by

H xð Þ :¼ 1 x�0f g þ c; (2.3)

and its distributional derivative, the Dirac delta function by d0.
In the upcoming theorem, we present the first representation result of this paper. In

order to make the proof comprehensible, we follow a formal approach. The formal
proof follows similar derivations as in [1, Section 4.1] by Fourni�e et al. The main differ-
ence is that we apply the CDM instead of the DM by conditioning on rðY;VÞ. A rigor-
ous proof is included in Appendix A.

Theorem 2.2. Let F and G be as described in Assumptions 2.1 and let f be a Borel meas-
urable function such that f ðFÞ 2 L2ðXÞ. Then it holds for any a 2 Dom h that

E f Fð ÞjG ¼ a
� �

¼
E f Fð ÞH G�að Þp X;Uð Þ
� �
E H G� að Þp X;Uð Þ
� � ; (2.4)

where

p X;Uð Þ ¼ � @

@u
log p X;Uð Þ X;Uð Þ:

Proof. Formally, for the conditional expectation, we know that

E f Fð ÞjG ¼ a
� �

¼ E f Fð Þd0 G�að Þ
� �
E d0 G� að Þ½ � : (2.5)

Moreover we have that

E f Fð Þd0 G�að Þ
� �

¼ E f g1 X;Yð Þð Þd0 g2 U;Vð Þ�að Þ½ �
¼ E E f g1 X;Yð Þð Þd0 g2 U;Vð Þ�að Þjr Y;Vð Þ

� �� �
;

where rðY;VÞ is the r-algebra generated by Y and V. From Assumptions 2.1(1) we derive

E f Fð Þd0 G�að Þ
� �

¼ E

ð
R

2
f g1 x;Yð Þð Þd0 g2 u;Vð Þ�að Þp X;Uð Þ x; uð Þdxdu

� �
:

For a function / 2 C1 with a single root, the composition rule for the Dirac delta
function (see Raju [25]) states that

d0 / uð Þð Þ ¼
d0 u�u1ð Þ
j/0 u1ð Þj

;

where u1 is such that /ðu1Þ ¼ 0 and /0ðu1Þ 6¼ 0. Because of relation (2.2), we apply this
composition rule to the function /ðuÞ ¼ h�1ðuþ g�ðVÞÞ�a, with root
u1 ¼ hðaÞ�g�ðVÞ, and obtain thatð

R

d0 g2 u;Vð Þ�að Þp X;Uð Þ x; uð Þdu ¼
ð
R

d0 uþ g� Vð Þ�h að Þ
� �

h�1ð Þ0 h að Þð Þ
p X;Uð Þ x; uð Þdu

¼ h0 að Þ
ð
R

d0 uþ g� Vð Þ�h að Þ
� �

p X;Uð Þ x; uð Þdu:

The Dirac delta function is the distributional derivative of the Heaviside step func-
tion. Hence by integration by parts, we find that

STOCHASTIC ANALYSIS AND APPLICATIONS 285



ð
R

d0 g2 u;Vð Þ�að Þp X;Uð Þ x; uð Þdu

¼ �h0 að Þ
ð
R

H uþ g� Vð Þ�h að Þ
� � @

@u
p X;Uð Þ x; uð Þdu

¼ �h0 að Þ
ð
R

H g2 u;Vð Þ�að Þ @

@u
log p X;Uð Þ x; uð Þ

� 	
p X;Uð Þ x; uð Þdu:

Finally we conclude that

E f Fð Þd0 G�að Þ
� �

¼ E E f Fð ÞH G�að Þ � @

@u
log p X;Uð Þ X;Uð Þ


 �
h0 að Þjr Y;Vð Þ

� �� �

¼ E f Fð ÞH G�að Þ � @

@u
log p X;Uð Þ X;Uð Þ


 �� �
h0 að Þ:

Applying the latter result with f 	 1 for the denominator of (2.5) we prove the state-
ment. w

Note that the weights pðX;UÞ in the representation (2.4) are not unique and one can derive
infinitely many of them. This was discussed in the result (4.25)–(4.26) in [1] for random vari-
ables admitting a density. In Proposition 2.1 of this latter article, the authors discussed also
the optimality of the weights in a minimal variance setting. The extension of these results to
our jump-diffusion setting using the CDM is straightforward and follows similar derivations
as in the proof of Theorem 2.2. For more details we refer to Daveloose [26].
In the next theorem, we deduce a representation for the sensitivity of (2.4) with

respect to a.

Theorem 2.3. Let F and G be as described in Assumptions 2.1, where log pðX;UÞ possesses
a second order derivative in its second argument and let the Borel measurable function f
guarantee f ðFÞ 2 L2ðXÞ. Then it holds for any a 2 Dom h that

@

@a
E f Fð ÞjG ¼ a
� �

¼ BF;G f½ � að ÞAF;G 1½ � að Þ�AF;G f½ � að ÞBF;G 1½ � að Þ
AF;G 1½ � að Þ2

h0 að Þ;

where

AF;G �½ � að Þ ¼ E � Fð ÞH G�að Þp X;Uð Þ
� �

;

BF;G �½ � að Þ ¼ E � Fð ÞH G�að Þ �p2X;Uð Þ þ p�X;Uð Þ

� 
h i
;

p X;Uð Þ ¼ � @

@u
log p X;Uð Þ X;Uð Þ; and

p�X;Uð Þ ¼ � @2

@u2
log p X;Uð Þ X;Uð Þ:

Proof. From Theorem 2.2, it follows immediately that

@

@a
E f Fð ÞjG ¼ a
� �

¼
@
@a AF;G f½ � að Þ
� �

AF;G 1½ � að Þ�AF;G f½ � að Þ @
@a AF;G 1½ � að Þ
� �

AF;G 1½ � að Þ2
:

For the derivatives in the right hand side, it holds by the square integrability assump-
tion for f(F) that
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@

@a
E f Fð ÞH G�að Þp X;Uð Þ
� �

¼ �E f Fð Þd0 G�að Þp X;Uð Þ
� �

:

Along the lines of the formal proof of Theorem 2.2, we deriveð
R

d0 g2 u;Vð Þ�að Þ @

@u
log p X;Uð Þ x; uð Þ

� 	
p X;Uð Þ x; uð Þdu

¼
ð
R

d0 uþ g� Vð Þ�h að Þ
� �

h0 að Þ @

@u
p X;Uð Þ x; uð Þdu

¼ �
ð
R

H uþ g� Vð Þ�h að Þ
� �

h0 að Þ @2

@u2
p X;Uð Þ x; uð Þdu

¼ �
ð
R

H g2 u;Vð Þ�að Þh0 að Þ @

@u
log p X;Uð Þ x; uð Þ

� 	2

þ @2

@u2
log p X;Uð Þ x; uð Þ

( )
p X;Uð Þ x; uð Þdu;

which concludes the proof.
w

2.2. Examples: Jump-diffusion models

In many applications in mathematical finance, one can make grateful use of Theorem
2.2. In fact, we are able to express a realization of the conditional expectation of the
form E½f ðStÞjSs ¼ a� in terms of regular expectations. Here, f is a function e.g. a payoff
function, ðStÞt2½0;T� represents a Markovian stock price process, 0< s< t<T, and a is a
real number. We will use Monte Carlo simulations to evaluate these conditional expect-
ations using their representations as regular expectations. In the sequel, we consider dif-
ferent jump-diffusion models for the stock price process to illustrate our results with
specific examples.

Remark 2.4. (Processes with independent and identically distributed increments). In
case it holds that the stock price process S is modeled in terms of a process with incre-
ments which are independent and identically distributed we remark the following about
a conditional expectation of the form E½f ðStÞjSs ¼ a�. Consider for instance S ¼ S0eL

where L denotes a L�evy process. Then, given that Ss ¼ a, it holds, due to the independ-
ence and the identical distribution of the increments, that for any 0< s< t<T

St ¼ Ss
St
Ss

¼ aeLt�Ls ¼d aeLt�s :

Therefore

E f Stð ÞjSs ¼ a
� �

¼ E f aeLt�sð Þ
� �

and the conditional expectation equals a regular expectations which can easily be esti-
mated via a Monte Carlo method. Although it is possible to use Monte Carlo simula-
tions exploiting the independence and stationarity property of the increments, the
application of the obtained representations avoids nested simulations in the pricing of
American options, as explained further on in Remark 5.1. Hence, this allows to obtain
estimations based on a smaller number of simulated paths.
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2.2.1. Jump-diffusion model
The next proposition considers a representation of conditional expectations in terms of
unconditional expectations, when the price process S is an exponential jump-diffusion
process. This type of stock price model is common in finance and conditional expecta-
tions appear when determining (American) option prices (which we will illustrate in
Section 5 with numerical experiments).

Proposition 2.5. Consider a price process S defined by St ¼ eLt ; 8t 2 ½0;T�, where L is a
L�evy jump diffusion process with decomposition Lt ¼ lt þ bWt þ ~Nt. Here W is a stand-
ard Brownian motion, ~N is a compound Poisson process independent of W, and l and b
are constant parameters. Then, for any Borel measurable function f fulfilling
f ðStÞ 2 L2ðXÞ, any strictly positive number a, and 0< s< t<T, it holds that

E f Stð ÞjSs ¼ a
� �

¼
E f Stð ÞH Ss�að Þp
� �
E H Ss � að Þp½ � ;

where

p ¼ tWs�sWt

bs t � sð Þ :

Proof. Following the notation of Theorem 2.2, we set F ¼ St and G ¼ Ss. The random
variables X ¼ bWt;Y ¼ lt þ ~Nt;U ¼ bWs and V ¼ lsþ ~Ns and the functions
giðx; yÞ ¼ exþy; i 2 f1; 2g; g�ðvÞ ¼ v, and hðaÞ ¼ log a, with a 2 Dom h ¼ R

þ
0 , satisfy

Assumptions 2.1. The random variables X and U (resulting from a scaled Brownian
motion) have a joint normal distribution with density function

p X;Uð Þ x; uð Þ ¼
1

2pb2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t�sð Þs

p exp � x2s�2xusþ u2t

2b2 t � sð Þs

 !
:

To determine the weight in (2.4) we calculate

� @

@u
log p X;Uð Þ x; uð Þ ¼

@

@u
x2s�2xusþ u2t

2b2 t � sð Þs
¼ ut�xs

b2 t � sð Þs
;

such that we obtain

p ¼ Ut�Xs

b2s t � sð Þ
¼ tWs�sWt

bs t � sð Þ :

w

Example: Merton model: In the light of the numerical experiments that we perform in
Section 5, we derive the representation (2.4) for the following Merton model given by

St ¼ s0 exp r � b2

2

� 	
t þ bWt þ

XNt

i¼1

Yi

 !
; (2.6)

where r> 0 is the risk-free interest rate, b is a positive constant, and W is a Wiener
process. The jump part is determined by a Poisson process N with jump intensity l and
the random variables Yi are i.i.d. with distribution Nð�d2=2; d2Þ.
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Since the Merton model is a special case of the exponential L�evy jump-diffusion
model, the representations obtained via the conditional density method, i.e. through
Proposition 2.5 and Theorem 2.3, are as follows, for 0< s< t<T and a 2 R

þ
0 ,

E f Stð ÞjSs ¼ a
� �

¼
E f Stð ÞH Ss�að Þps;t
� �
E H Ss � að Þps;t
� � ¼:

At;s f½ � að Þ
At;s 1½ � að Þ

; (2.7)

@

@a
E f Stð ÞjSs ¼ a
� �

¼ Bt;s f½ � að ÞAt;s 1½ � að Þ�At;s f½ � að ÞBt;s 1½ � að Þ
At;s 1½ � að Þ2

1
a
; (2.8)

where

Bt;s �½ � að Þ ¼ E � Stð ÞH Ss�að Þ �p2s;t þ p�s;t
n oh i

;

ps;t ¼
tWs�sWt

bs t � sð Þ ; and p�s;t ¼
t

b2s t � sð Þ
:

2.2.2. Additive model
Now we observe a model which is often used to price energy products (see for example
Benth et al. [27]). The price process is given by an additive model

St ¼ Xt þ Yt; 8t 2 0;T½ � with S0 > 0: (2.9)

The process Y is adapted to the filtration F and does not have to be specified here.
The process X is a so called Cða; bÞ-Ornstein-Uhlenbeck process, see Section 17 in Sato
[28]. Namely, it is a process following the dynamics

dXt ¼ �kXtdt þ dLt; X0 ¼ S0; (2.10)

where k> 0 and L is a subordinator, admitting a stationary distribution for the process
X which is here Cða; bÞ. Hence, this means that Xt has a Cða; bÞ-distribution for all
t> 0. The solution of the stochastic differential equation (2.10) equals

Xt ¼ e�ktS0 þ
ðt
0
ek r�tð ÞdLr:

An interesting property of this type of non-Gaussian OU-processes is the fact that
the autocorrelation is independent of the stationary distribution, see, e.g.
Barndorff–Nielsen and Shephard [29] or Sato [28], it equals

Corr Xt;Xsð Þ ¼ ek s�tð Þ; 80< s< t: (2.11)

Proposition 2.6. Let us observe the additive model described by (2.9) and (2.10). Then it
holds for any Borel measurable function f satisfying f ðStÞ 2 L2ðXÞ; 0< s< t<T, and
a 2 R, that

E f Stð ÞjSs ¼ a
� �

¼
E f Stð ÞH Ss�að Þp
� �
E H Ss � að Þp½ � ;

where

p ¼ 1�a
Xs

þ b
1� q

� v Xt;Xsð Þ
2Xs

I a v Xt;Xsð Þð Þ
I a�1 v Xt;Xsð Þð Þ :
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Herein, I a is the modified Bessel function of the first kind with index a,

q ¼ ek s�tð Þ and v x; uð Þ ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffi
qb2xu

p
1� q

:

Proof. As in Theorem 2.2, we put F ¼ St ¼ Xt þ Yt;G ¼ Ss ¼ Xs þ Ys; ðX;UÞ ¼
ðXt;XsÞ, and hðaÞ ¼ a to satisfy Assumptions 2.1. To obtain the weight we need the
density function of the vector (Xt, Xs). Since X is a Cða; bÞ-OU process we know that Xt

and Xs are both Cða; bÞ distributed and by (2.11) we know that
CorrðXt;XsÞ ¼ ekðs�tÞ ¼: q. According to Brewer et al. [30], the density function of this
bivariate gamma distribution with non-zero correlation equals

p Xt ;Xsð Þ x; uð Þ ¼
b2xuð Þ a�1ð Þ=2

exp � bxþ buð Þ= 1�qð Þ
� �

q a�1ð Þ=2 1� qð ÞC að Þ
Ia�1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
qb2xu

p
1� q

 !
;

where I a is the modified Bessel function of the first kind with index a. We compute

@

@u
log p Xt ;Xsð Þ x; uð Þ ¼

a�1
2u

� b
1� q

þ @

@u
log Ia�1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
qb2xu

p
1� q

 !
:

For the function vðx; uÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
qb2xu

p
=ð1�qÞ, it holds that @v

@u ðx; uÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqb2x=uÞ

p
=ð1�qÞ and @v

@u ðx; uÞ ¼ vðx; uÞ=ð2uÞ. Using the recurrence formulas for
modified Bessel functions (see Bowman [31]), we get

@

@u
log I a�1 v x; uð Þð Þ
� � ¼ 1

I a�1 v x; uð Þð Þ
I 0
a�1 v x; uð Þð Þ

@v
@u

x; uð Þ

¼ 1
I a�1 v x; uð Þð Þ

1
2

Ia�2 v x; uð Þð Þ þ Ia v x; uð Þð Þ
� � v x; uð Þ

2u

¼ 1
I a�1 v x; uð Þð Þ

1
2

I a�2 v x; uð Þð Þ�I a v x; uð Þð Þ
� �þ 2I a v x; uð Þð Þ
� � v x; uð Þ

2u

¼ 1
I a�1 v x; uð Þð Þ

1
2

2 a�1ð Þ
v x; uð Þ

I a�1 v x; uð Þð Þ þ 2Ia v x; uð Þð Þ

 !
v x; uð Þ
2u

¼ a�1ð Þ
v x; uð Þ

þ
I a v x; uð Þð Þ
I a�1 v x; uð Þð Þ

 !
v x; uð Þ
2u

¼ a�1
2u

þ
v x; uð Þ
2u

Ia v x; uð Þð Þ
Ia�1 v x; uð Þð Þ

:

According to (2.4) we conclude the statement. w

3. Conditional expectation via MM

Fourni�e et al. [1] used Malliavin calculus defined for functions on the Wiener space to
obtain representations for the conditional expectations. Therefore, their approach is
applied to continuous diffusions. In this section, we extend their method to allow for the
computation of conditional expectations in a L�evy and a jump-diffusion framework. For
this purpose we use a Malliavin derivative of the combination of Gaussian and pure
jump L�evy noises, see, e.g. Di Nunno et al. [4] and Sol�e et al. [32]. In our setting, we
use the Malliavin derivative developed by Petrou [15].
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Notice that the MM allows for more general dynamics than the conditional density
method (CDM). Indeed, no density is required to be known when using the MM. However,
the CDM is easier to apply and follows using basic knowledge in probability theory.
Let ðX;F ;PÞ be a complete probability space in which L�evy processes are well-

defined. The Malliavin derivative in the Brownian direction is defined by Petrou [15] in
a subspace of L2ðXÞ and is essentially a derivative with respect to the Brownian part of
a L�evy process L. We denote it by Dð0Þ. Its dual, the Skorohod integral is also defined in
[15] and denoted by dð0Þ. In this section we make use of some notations, definitions,
computational rules and properties which are summarized in Appendix B. Recall the
function H defined in (2.3).

3.1. Representation results

The ideas and concepts of the proofs of the results presented in this section are based on
the proofs of Theorem 4.1 and Corollary 4.1 in Fourni�e et al. [1] and follow similar lines
of derivations. The difference in our approach is that we use a Malliavin derivative defined
for L�evy processes. This allows us to generalize the results in [1] to processes with jumps.
In the following theorem we derive a first representation result for the conditional

expectation E½f ðFÞjG ¼ a�, where the function f possesses a bounded and continu-
ous derivative.

Theorem 3.1. Denote by C1
b the space of continuously differentiable functions with

bounded derivative. Moreover, Let f 2 C1
b be a Borel measurable function, F and G be in

D
ð0Þ, u be in Dom dð0Þ such that f ðFÞu is in L2ðX� ½0;T�Þ, and

E

ðT
0
utD

0ð Þ
t Gdtjr F;Gð Þ

" #
¼ 1: (3.1)

Then it holds for any a 2 R that

E f Fð ÞjG ¼ a
� �

¼
E f Fð ÞH G�að Þd 0ð Þ uð Þ�f 0 Fð ÞH G�að Þ

Ð T
0 utD

0ð Þ
t Fdt

h i
E H G� að Þd 0ð Þ uð Þ
h i : (3.2)

Proof. We note that

E f Fð ÞjG ¼ a
� �

¼ lim
e!0þ

E f Fð ÞjG 2
� �

a�e; aþ e½� ¼ lim
e!0þ

E
f Fð Þ1� � e; e G�að Þ½ �
E 1� � e; e G� að Þ½ �:
�

"

As a first step we show that for any e> 0,

1
2
E f Fð Þ1� � e; e G�að Þ½ � ¼ E He G�að Þd 0ð Þ f Fð Þu

� �h i
;

h
(3.3)

where

He xð Þ ¼
ec; x<�e;
1
2

xþ eð Þ þ ec; �e � x< e;

eþ ec; x � e:

8><
>:
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Hereto we approximate the function 1
2 1��e;e½ by a sequence of bounded continuous

functions ðUe;nÞn�1. Specifically, Ue;n has support��e�e=n; eþ e=n½ and equals 1
2 on

½�eþ e=n; e�e=n�. Moreover the graph of Ue;n connects the points ð�e�e=n; 0Þ and
ð�eþ e=n; 1=2Þ and the points ðe�e=n; 1=2Þ and ðeþ e=n; 0Þ via straight lines. Besides,
we define We;nðxÞ :¼

Ð x
�1Ue;nðyÞdy þ ec. Then we have by the duality formula, the chain

rule, and relation (3.1) that

E We;n G�að Þd 0ð Þ f Fð Þu
� �h i

¼ E

ðT
0
f Fð ÞutD 0ð Þ

t We;n G�að Þ
� �

dt

" #

¼ E f Fð ÞUe;n G�að Þ
ðT
0
utD

0ð Þ
t Gdt

" #

¼ E E f Fð ÞUe;n G�að Þ
ðT
0
utD

0ð Þ
t Gdtjr F;Gð Þ

" #" #

¼ E f Fð ÞUe;n G�að Þ
� �

:

Because of the facts that jUe;nj � 1
2 and f ðFÞ 2 L2ðXÞ, the latter expression converges

to 1
2E½f ðFÞ1��e;e½ðG�aÞ� by the definition of the sequence ðUe;nÞn. Besides

jWe;nj � eþ ec; dð0Þðf ðFÞuÞ 2 L2ðXÞ, and the sequence ðWe;nÞn approximates He. Hence
this proves (3.3).
Next, by the integration by parts formula we find

1
2
E½f Fð Þ1� � e; e G�að Þ½ � ¼ E He G�að Þ f Fð Þd 0ð Þ uð Þ�

ðT
0
urD

0ð Þ
r f Fð Þdr

( )" #

¼ E He G�að Þ f Fð Þd 0ð Þ uð Þ�f 0 Fð Þ
ðT
0
urD

0ð Þ
r Fdr

( )" #
:

Then applying the latter result for f 	 1 too, shows that

E f Fð ÞjG ¼ a
� �

¼ lim
e!0þ

E 1
eHe G�að Þ f Fð Þd 0ð Þ uð Þ�f 0 Fð Þ

Ð T
0 urD 0ð Þ

r Fdr
n oh i
E 1

eHe G� að Þd 0ð Þ uð Þ
h i :

Since it holds that j 1eHeðG�aÞj � 1þ c;E½jdð0Þðf ðFÞuÞj�<1; dð0ÞðuÞ 2 L2ðXÞ, and
1
eHeðxÞ ! HðxÞ for e tending to zero, this concludes the proof. w

The latter theorem provides us with a representation formula for the conditional
expectation E½f ðFÞjG ¼ a� for f being a continuously differentiable function. However in
many applications in finance, we often have to consider non-smooth functions. In order
to deal with the potential non-smoothness of f, we include an additional assumption on
the process u introduced in Theorem 3.1 leading to the following theorem.

Theorem 3.2. Let F and G be in D
ð0Þ and f be a Borel measurable function such that

f ðFÞ 2 L2ðXÞ. Consider a process u in Dom dð0Þ, guaranteeing f ðFÞu is in
L2ðX� ½0;T�Þ, satisfying (3.1) and, in addition,
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E

ðT
0
utD

0ð Þ
t Fdtjr F;Gð Þ

" #
¼ 0: (3.4)

Then the following representation holds for a 2 R

E f Fð ÞjG ¼ a
� �

¼
E f Fð ÞH G�að Þd 0ð Þ uð Þ
h i
E H G� að Þd 0ð Þ uð Þ
h i : (3.5)

Proof. i) First, let us consider a Borel measurable function f 2 C1
b, such that we can

apply Theorem 3.1. Because of the properties of conditional expectations and relation
(3.4), we have in representation (3.2) that

E f 0 Fð ÞH G�að Þ
ðT
0
utD

0ð Þ
t Fdt

" #
¼ E E f 0 Fð ÞH G�að Þ

ðT
0
utD

0ð Þ
t Fdtjr F;Gð Þ

" #" #

¼ E f 0 Fð ÞH G�að ÞE
ðT
0
utD

0ð Þ
t Fdtjr F;Gð Þ

" #" #
¼ 0:

Thus we obtain representation (3.5).
ii) Now we observe a Borel measurable function f for which f ðFÞ 2 L2ðXÞ. Let C1

K ðRÞ
and C1

K ðXÞ be the space of infinitely differentiable functions with compact support
respectively defined in R and X. Since C1

K ðXÞ is dense in L2ðXÞ there exists a sequence
of functions fn in C1

K ðRÞ, such that fnðFÞ converges to f(F) in L2ðXÞ. In part i) we con-
cluded that for any function fn in this sequence representation (3.5) holds. By conver-
gence arguments, we conclude that expression (3.5) also holds for the limit function f as
follows. For any fn we denote

gn að Þ :¼ E fn Fð ÞjG ¼ a
� �

¼
E fn Fð ÞH G�að Þd 0ð Þ uð Þ
h i
E H G� að Þd 0ð Þ uð Þ
h i :

Besides we define

g að Þ :¼
E f Fð ÞH G�að Þd 0ð Þ uð Þ
h i
E H G� að Þd 0ð Þ uð Þ
h i :

Via the Cauchy–Schwarz inequality, we derive that

jg að Þ�gn að Þj �
E

���f Fð Þ�fn Fð ÞjjH G�að Þd 0ð Þ uð Þ
���� �

���E H G� að Þd 0ð Þ uð Þ
h i���

�
E jf Fð Þ�fn Fð Þj2
� �1=2

E jH G�að Þd 0ð Þ uð Þj2
h i1=2

���E H G� að Þd 0ð Þ uð Þ
h i��� :
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For any a 2 R we have

E jH G�að Þd 0ð Þ uð Þj2
h i1=2
jE H G� að Þd 0ð Þ uð Þ
h i

j
<1:

By the density argument fnðFÞ converges to f(F) in L2-sense, hence we obtain that

jg að Þ�gn að Þj ! 0; for n ! 1; 8a 2 R:

Thus, gnðaÞ convergences to gðaÞ. Moreover it holds that gnðaÞ converges to
E½f ðFÞjG ¼ a� by the conditional dominated convergence theorem. Therefore, we con-
clude that gðaÞ equals the latter conditional expectation. w

Via the MM we also deduce a representation for the delta in terms of unconditional
expectations.

Theorem 3.3. Consider the same setting as in Theorem 3.2 and assume that

E d 0ð Þ uð Þ
ðT
0
utD

0ð Þ
t Fdtjr F;Gð Þ

" #
¼ 0: (3.6)

Then the delta is given by

@

@a
E f Fð ÞjG ¼ a
� �

¼ BF;G f½ � að ÞAF;G 1½ � að Þ�AF;G f½ � að ÞBF;G 1½ � að Þ
AF;G 1½ � að Þ2

; (3.7)

where

AF;G �½ � að Þ ¼ E � Fð ÞH G�að Þd 0ð Þ uð Þ
h i

;

BF;G �½ � að Þ ¼ E � Fð ÞH G�að Þ �d 0ð Þ uð Þ2 þ
ðT
0
urD

0ð Þ
r d 0ð Þ uð Þdr

( )" #
:

Proof. The structure of formula (3.7) follows clearly from the derivation of representa-
tion (3.5). Now we focus on the derivative

BF;G f½ � að Þ ¼ @

@a
E f Fð ÞH G�að Þd 0ð Þ uð Þ
h i

¼ �E f Fð Þd0 G�að Þd 0ð Þ uð Þ
h i

¼ � lim
e!0þ

1
2e

E f Fð Þ1� � e; e G�að Þd 0ð Þ uð Þ
h i

:
h

i) First, we consider a Borel measurable function f 2 C1
b. It can be shown, as before in

Theorem 3.1, that

1
2
E f Fð Þ1� � e; e G�að Þd 0ð Þ uð Þ

h i
¼ E He G�að Þd 0ð Þ f Fð Þd 0ð Þ uð Þu

� 
h i
;

h
and therefore

BF;G f½ � að Þ ¼ � lim
e!0þ

1
e
E He G�að Þd 0ð Þ f Fð Þd 0ð Þ uð Þu

� 
h i
¼ �E H G�að Þd 0ð Þ f Fð Þd 0ð Þ uð Þu

� 
h i
:
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By the chain rule and the integration by parts formula, we obtain

E H G�að Þd 0ð Þ f Fð Þd 0ð Þ uð Þu
� 
h i

¼ E H G�að Þ f Fð Þd 0ð Þ d 0ð Þ uð Þu
� 


�
ðT
0
d 0ð Þ uð ÞurD 0ð Þ

r f Fð Þ
� �

dr

( )" #

¼ E H G�að Þ f Fð Þ d 0ð Þ uð Þd 0ð Þ uð Þ�
ðT
0
urD

0ð Þ
r d 0ð Þ uð Þdr

( )
�d 0ð Þ uð Þf 0 Fð Þ

ðT
0
urD

0ð Þ
r Fdr

( )" #

¼ E f Fð ÞH G�að Þ d 0ð Þ uð Þ2�
ðT
0
urD

0ð Þ
r d 0ð Þ uð Þdr

( )" #

�E f 0 Fð ÞH G�að Þd 0ð Þ uð Þ
ðT
0
urD

0ð Þ
r Fdr

" #
:

By expression (3.6), the latter expectation equals

E f 0 Fð ÞH G�að Þd 0ð Þ uð Þ
ðT
0
urD

0ð Þ
r Fdr

" #

¼ E E f 0 Fð ÞH G�að Þd 0ð Þ uð Þ
ðT
0
urD

0ð Þ
r Fdrjr F;Gð Þ

" #" #

¼ E f 0 Fð ÞH G�að ÞE d 0ð Þ uð Þ
ðT
0
urD

0ð Þ
r Fdrjr F;Gð Þ

" #" #
¼ 0:

Hence, we conclude that

E f Fð Þd0 G�að Þd 0ð Þ uð Þ
h i

¼ E f Fð ÞH G�að Þ d 0ð Þ uð Þ2�
ðT
0
urD

0ð Þ
r d 0ð Þ uð Þdr

( )" #
: (3.8)

ii) Via a density argument which follows the same lines as the proof of Theorem 3.2,
we conclude that equation (3.8) also holds for a Borel measurable function f such
that f ðFÞ 2 L2ðXÞ.

w

Remark 3.4. Remark that condition (3.6) is fulfilled by a combination of condition
(3.4) and dð0ÞðuÞ being rðF;GÞ-measurable, since in this case

E d 0ð Þ uð Þ
ðT
0
utD

0ð Þ
t Fdtjr F;Gð Þ

" #
¼ d 0ð Þ uð ÞE

ðT
0
utD

0ð Þ
t Fdtjr F;Gð Þ

" #
¼ 0:

Next, some practical examples motivated from financial applications are given.

3.2. Examples: Jump-diffusion models

We start by considering a stock price process which is modeled by a general stochastic
differential equation (SDE). For this model we derive representations based on the
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results developed in Subsection 3.1. Further on, we illustrate these by looking into some
specific types of SDEs such as exponential L�evy and stochastic volatility models. Let S
satisfy the following stochastic differential equation

dSt ¼ l t; St�ð Þdt þ b t; St�ð ÞdWt þ
Ð
R0
c t; St�; zð Þ~N dt; dzð Þ;

S0 ¼ s0 > 0;



(3.9)

where W is a Wiener process and ~N is a compensated Poisson random measure with
L�evy measure L. We assume that bðt; xÞ> 0 for all ðt; xÞ 2 ½0;T� � R. The coefficient
functions lðt; xÞ; bðt; xÞ; cðt; x; zÞ 2 C1

b are Lipschitz continuous in the second argument,
for all ðt; zÞ 2 ½0;T� � R0. The coefficients also satisfy the following linear growth con-
dition

l2 t; xð Þ þ b2 t; xð Þ þ
ð
R0

c2 t; x; zð ÞL dzð Þ � C 1þ x2ð Þ;

for all t 2 ½0;T�, where C is a positive constant. The existence and uniqueness of the
solution S is ensured by Theorem 9.1. Chap IV collected from Ikeda and
Watanabe [33].
The first variation process V related to S equals @S

@s0
and satisfies

dVt ¼ lx t; St�ð ÞVt�dt þ bx t; St�ð ÞVt�dWt þ
Ð
R0
cx t; St�; zð ÞVt� ~N dt; dzð Þ;

V0 ¼ 1:




We assume that the coefficients are such that V is strictly positive. The stock price St
is in D

ð0Þ for all t 2 ½0;T�, and its Malliavin derivative can be expressed in terms of the
first variation process (see Theorem 3 and Proposition 7 in Petrou [15])

D 0ð Þ
s St ¼ Vt Vs�ð Þ�1b s; Ss�ð Þ1 s�tf g: (3.10)

The aim is to find a representation formula for the conditional expectation
E½f ðStÞjSs ¼ a�; 0< s< t<T and a 2 R, containing only regular expectations. First we
mention the following lemma. We do not present the proof since it is an adaptation of
the proof of [1, Lemma 4.1] to our setting.

Lemma 3.5. It holds that

D 0ð Þ
s Vt ¼ bx s; Ss�ð ÞVt�

b s; Ss�ð Þfs�Vt

V2
s�

þ b s; Ss�ð Þft
Vs�

( )
1 s�tf g;

where ft :¼ @2St
@s20

. In other words f is the solution of the SDE

dft ¼ lxx t; St�ð ÞV2
t� þ lx t; St�ð Þft

� �
dt þ bxx t; St�ð ÞV2

t� þ bx t; St�ð Þft
� �

dWt

þ
Ð
R0

cxx t; St�; zð ÞV2
t� þ cx t; St�; zð Þft

� �
~N dt; dzð Þ;

f0 ¼ 0:

8><
>:

Now we have all the ingredients to obtain a useful expression for the conditional
expectation E½f ðStÞjSs ¼ a�, for a 2 R. First we make use of Theorem 3.1 and later on
we apply Theorem 3.2.

Proposition 3.6. Let f 2 C1
b; 0< s< t<T, and a 2 R. In the setting described by the sto-

chastic differential equation (3.9) we assume that
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E

ðT
0

Vr�
b r; Sr�ð Þ

� 	2

dr

" #
<1 and E

ðT
0

1
sVs

Vr�
b r; Sr�ð Þ

� 	2

dr

" #
<1: (3.11)

Then the following representation holds for the conditional expectation

E f Stð ÞjSs ¼ a
� �

¼
E f Stð ÞH Ss�að Þp1�f 0 Stð ÞH Ss�að Þp2
� �

E H Ss � að Þp1½ � ; (3.12)

where the Malliavin weights equal

p1 ¼
1
sVs

ðs
0

Vr�
b r; Sr�ð Þ dWr þ s

fs
Vs

þ
ðs
0

bx r; Sr�ð Þ
b r; Sr�ð Þ Vr��

fr�
Vr�

� �
dr

� 	
and p2 ¼

Vt

Vs
:

(3.13)

Proof. We apply Theorem 3.1 and to fulfill condition (3.1) we define

~ur ¼
Vr�

Vsb r; Sr�ð Þ
1
s
1 r�sf g:

Note that the process V�=bð�; S�Þ is predictable. By the first condition in (3.11) it
turns out that this process is in Dom dð0Þ. Moreover by Lemma 3.5 and the chain rule
it holds that 1=Vs is in D

ð0Þ. The second part of condition (3.11) allows us to conclude
that ~u is in Dom dð0Þ.
The first weight that we calculate is the Skorohod integral of ~u. Thereto we perform

integration by parts,

d 0ð Þ ~uð Þ ¼ 1
Vs

ðT
0

Vr�
b r; Sr�ð Þs 1 r�sf gdWr�

ðT
0

Vr�
b r; Sr�ð Þs 1 r�sf gD

0ð Þ
r

1
Vs

dr:

Because of the chain rule we rewrite this as

d 0ð Þ ~uð Þ ¼ 1
sVs

ðs
0

Vr�
b r; Sr�ð Þ dWr þ

1
s

ðs
0

Vr�
b r; Sr�ð Þ

D 0ð Þ
r Vs

V2
s

dr:

Now we make use of Lemma 3.5 and obtain that the latter equals

1
sVs

ðs
0

Vr�
b r; Sr�ð Þ dWr þ

1
s

ðs
0

Vr�
b r; Sr�ð Þ

1
V2
s

bx r; Sr�ð ÞVs�
b r; Sr�ð Þfr�Vs

V2
r�

þ b r; Sr�ð Þfs
Vr�

" #
dr

¼ 1
sVs

ðs
0

Vr�
b r; Sr�ð Þ dWr þ

ðs
0

bx r; Sr�ð Þ
b r; Sr�ð Þ Vr��

fr�
Vr�

þ fs
Vs

� �
dr

� 	

¼ 1
sVs

ðs
0

Vr�
b r; Sr�ð Þ dWr þ s

fs
Vs

þ
ðs
0

bx r; Sr�ð Þ
b r; Sr�ð Þ Vr��

fr�
Vr�

� �
dr

� 	
;

which is the mentioned expression for p1.
The second weight in (3.2) isðT

0
~urD

0ð Þ
r Stdr ¼

ðT
0

1
Vs

Vr�
b r; Sr�ð Þs 1 r�sf gVt Vr�ð Þ�1b r; Sr�ð Þ1 r�tf gdr ¼

ðs
0

Vt

sVs
dr ¼ Vt

Vs
:

w
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Theorem 3.2 can also be applied in this setting, which is interesting in case of non-
differentiable functions f.

Proposition 3.7. Consider again the setting defined by the stochastic differential equation
(3.9). For any Borel measurable function f for which f ðStÞ 2 L2ðXÞ; 0< s< t<T, and a 2
R it holds, under conditions (3.11), that

E f Stð ÞjSs ¼ a
� �

¼
E f Stð ÞH Ss�að Þp
� �
E H Ss � að Þp½ � ;

where the Malliavin weight p differs from p1 in (3.13) as follows

p ¼ p1�
1

t � s
1
Vs

ðt
s

Vr�
b r; Sr�ð Þ dWr: (3.14)

Proof. For the application of Theorem 3.2, we need the process

ûr ¼
Vr�

Vsb r; Sr�ð Þ
1
s
1 r�sf g�

1
t � s

1 s�r�tf g


 �
¼ ~ur�

Vr�
Vsb r; Sr�ð Þ

1
t � s

1 s�r�tf g: (3.15)

By comparing this with the intermediate process used in the proof of Proposition 3.6,
we conclude that û is in Dom dð0Þ. Moreover by the integration by parts formula and
the fact that V�=bð�; S�Þ is predictable, we obtain

d 0ð Þ ûð Þ ¼ p1 þ d 0ð Þ � Vr�
Vsb r; Sr�ð Þ

1
t � s

1 s�r�tf g

� 	

¼ p1�
1
Vs

1
t � s

ðT
0

Vr�
b r; Sr�ð Þ 1 s�r�tf gdWr þ

1
t � s

ðT
0

Vr�
b r; Sr�ð Þ 1 s�r�tf gD

0ð Þ
r

1
Vs

dr;

where p1 is defined in (3.13). The last term equals zero, since by Lemma 3.5 the
Malliavin derivative Dð0Þ

r ð1=VsÞ introduces a factor 1fr�sg. This concludes the proof. w

In the sequel, we present some models to illustrate our results from Propositions 3.6
and 3.7. The first two are defined by a linear SDE and the third one concerns stochastic
volatility models.

3.2.1. Exponential L�evy model
We consider a stock price process S modeled by a stochastic exponential of a L�evy pro-
cess, therefore let S satisfy the following linear SDE

dSt ¼ lSt�dt þ bSt�dWt þ
Ð
R0

ez � 1ð ÞSt� ~N dt; dzð Þ;
S0 ¼ s0 > 0;




where l and b> 0 are constants. We assume that
Ð
R0
ðez�1Þ2LðdzÞ<1. All assump-

tions imposed on model (3.9) are satisfied. In this particular example, the first variation
process V equals V ¼ S=s0 and f 	 0 and conditions (3.11) are fulfilled. From
Proposition 3.6, we find that the expression (3.12) holds with
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p1 ¼
s0
sSs

ðs
0

1
s0b

dWr þ
ðs
0

1
s0
dr

� 	
¼ s0

sSs

Ws

s0b
þ s
s0

� 	
¼ 1

Ss

Ws

sb
þ 1

� 	
; (3.16)

and

p2 ¼
St=s0
Ss=s0

¼ St
Ss
:

Substitution of the expressions for p1 and p2 into (3.12) leads to

E f Stð ÞjSs ¼ a
� �

¼
E f Stð ÞH Ss�að Þ 1

Ss
Ws
sb þ 1
� 


�f 0 Stð ÞH Ss�að Þ StSs
h i

E H Ss � að Þ 1
Ss

Ws
sb þ 1
� 
h i ;

where f 2 C1
b; 0< s< t<T, and a 2 R.

On the other hand, we apply Proposition 3.7 for the linear SDE we are observing
now. The weight p differs from the weight p1 in Proposition 3.6, when the intermediate
process is of the form (3.15), only by the second term in (3.14). In the present setting,
this term equals

s0
Ss

� 1
t � s

� 	ðt
s

1
s0b

dWr ¼ � 1
bSs

Wt�Ws

t � s
:

Hence combining this with (3.16) gives

p ¼ 1
Ss

Ws

sb
� 1
b
Wt�Ws

t � s
þ 1

� 	
¼ 1

Ss

tWs�sWt

s t � sð Þb þ 1
� 	

: (3.17)

For any Borel measurable function f guaranteeing that f ðStÞ 2 L2ðXÞ; 0< s< t<T,
and a 2 R the conditional expectation can be rewritten as

E f Stð ÞjSs ¼ a
� �

¼
E f Stð ÞH Ss�að Þ 1

Ss
tWs�sWt
s t�sð Þb þ 1

� 
h i
E H Ss � að Þ 1

Ss
tWs�sWt
s t�sð Þb þ 1

� 
h i :

3.2.2. Merton model
In the light of the numerical experiments, we consider again the Merton model (2.6)
which is a special case of the exponential L�evy model. The representations obtained
through the MM, thus via Proposition 3.7 and Theorem 3.3, are as follows, for
0< s< t<T and a 2 R,

E f Stð ÞjSs ¼ a
� �

¼
E f Stð ÞH Ss�að Þps;t
� �
E H Ss � að Þps;t
� � ¼ At;s f½ � að Þ

At;s 1½ � að Þ
; (3.18)

@

@a
E f Stð ÞjSs ¼ a
� �

¼ Bt;s f½ � að ÞAt;s 1½ � að Þ�At;s f½ � að ÞBt;s 1½ � að Þ
At;s 1½ � að Þ2

; (3.19)

with

Bt;s �½ � að Þ ¼ E � Stð ÞH Ss�að Þ �p2s;t þ p�s;t
n oh i

;

where the weight ps;t is given by (3.17) and
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p�s;t ¼ � 1
S2s

b tWs�sWtð Þ�t

b2s t � sð Þ
þ 1

 !

is obtained through similar computations as above in this section.

3.2.3. Stochastic volatility models
Let us consider the following model

dSt ¼ lSt�dt þ v Yt�ð ÞSt�dW 1ð Þ
t þ

Ð
R0

ez � 1ð ÞSt� ~N dt; dzð Þ;
dYt ¼ a t;Yt�ð Þdt þ b t;Yt�ð ÞdW 2ð Þ

t þ
Ð
R0
w zð Þ~N dt; dzð Þ;

8<
: (3.20)

with S0 ¼ s0 > 0 and Y0 > 0. Herein, ~N is the jump measure of a compound Poisson
process with L�evy measure L, and Wð1Þ and Wð2Þ are two correlated standard Brownian
motions with

dW 1ð Þ
t dW 2ð Þ

t ¼ qdt; q 2 �1; 1ð Þ: (3.21)

Moreover l 2 R, the functions a and b on ½0;T� � R are Lipschitz continuous and dif-
ferentiable in the second argument for all t, v is a positive function which is Lipschitz con-
tinuous and differentiable on R;

Ð
R0
ðez�1Þ2LðdzÞ<1, and w is a function on R such thatÐ

R0
w2ðzÞLðdzÞ<1. The process S may then perform the role of the stock price process,

while v(Y) is interpreted as the stochastic volatility process. In many stochastic volatility
models, the volatility v(Y) equals

ffiffiffiffi
Y

p
and some conditions should be included to guarantee

the non-negativity of the process Y. Some interesting examples are the Bates model (see
[34]) and the Ornstein–Uhlenbeck stochastic volatility model (see [29, 35]).
From (3.21) we know there exists a Brownian motion ~W , independent of Wð2Þ, such

that we express Wð1Þ in terms of ~W and Wð2Þ by

W 1ð Þ
t ¼ qW 2ð Þ

t þ
ffiffiffiffiffiffiffiffiffiffiffi
1�q2

p
~Wt:

Using the notations of Propositions 3.6 and 3.7, where we consider the Malliavin
derivative in the direction of the Brownian motion ~W , we have

Vt ¼
St
s0
; b t; St�ð Þ ¼ v Yt�ð ÞSt�

ffiffiffiffiffiffiffiffiffiffiffi
1�q2

p
; and ft ¼ 0: (3.22)

Applying Proposition 3.6, we find for the weights in representation (3.12)

p1 ¼
s0
sSs

ðs
0

Sr�=s0
v Yr�ð ÞSr�

ffiffiffiffiffiffiffiffiffiffiffi
1�q2

p d ~Wr þ
ðs
0

v Yr�ð Þ
ffiffiffiffiffiffiffiffiffiffiffi
1�q2

p
v Yr�ð ÞSr�

ffiffiffiffiffiffiffiffiffiffiffi
1�q2

p Sr�
s0

dr

 !

¼ s0
sSs

1

s0
ffiffiffiffiffiffiffiffiffiffiffi
1�q2

p ðs
0

d ~Wr

v Yr�ð Þ þ
s
s0

 !
¼ 1

Ss

1

s
ffiffiffiffiffiffiffiffiffiffiffi
1�q2

p ðs
0

d ~Wr

v Yr�ð Þ þ 1

 !

¼ 1
Ss

1
s 1� q2ð Þ

ðs
0

dW 1ð Þ
r

v Yr�ð Þ�q
ðs
0

dW 2ð Þ
r

v Yr�ð Þ

( )
þ 1

 !

and p2 ¼ St=s0
Ss=s0

¼ St
Ss
. When we prefer not to use the derivative of the function f, we apply

Proposition 3.7. The weight is then given by
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p ¼ p1�
1
Ss

1

t � sð Þ
ffiffiffiffiffiffiffiffiffiffiffi
1�q2

p ðt
s

d ~Wr

v Yr�ð Þ

¼ p1�
1
Ss

1
t � sð Þ 1� q2ð Þ

ðt
s

dW 1ð Þ
r

v Yr�ð Þ�q
ðt
s

dW 2ð Þ
r

v Yr�ð Þ

( )
:

Considering the model (3.20), we derived a representation for E½f ðStÞjSs ¼ a�. In the
sequel we observe the conditional expectation

E w YTð ÞjST ¼ a½ �; (3.23)

for a certain Borel measurable function w : R7!R0. Our motivation to consider the lat-
ter expression comes from a paper by Martynov and Rozanova [36], where the authors
are interested in the computation of conditional moments of Y. Thus, they consider
(3.23) for w(x) ¼ x and wðxÞ ¼ x2. Moreover, in [37] van der Stoep et al. consider
(3.23) for wðxÞ ¼ v2ðxÞ, which is interesting for the study of stochastic local volatility.
We consider model (3.20) and a function w. It is clear that Dð0Þ

r Yt ¼ 0 since Y only
depends on Wð2Þ, which is independent of ~W . Thus condition (3.4) is satisfied for any
process u in Dom dð0Þ. Thus when condition (3.1) is fulfilled, the conditional expect-
ation can be written in the form (3.5). From expression (3.10) and previous derivations
(3.22) we deduce that

D 0ð Þ
r ST�að Þ ¼ STv Yr�ð Þ

ffiffiffiffiffiffiffiffiffiffiffi
1�q2

p
; for r � T:

Therefore the process satisfying condition (3.1) is given by

ur ¼ TSTv Yr�ð Þ
ffiffiffiffiffiffiffiffiffiffiffi
1�q2

p� 
�1

:

The Skorohod integral of this process is computed similarly as in the proof of
Proposition 3.6 and it equals

d 0ð Þ uð Þ ¼ 1

TST
ffiffiffiffiffiffiffiffiffiffiffi
1�q2

p ðT
0

d ~Wr

v Yr�ð Þ�
ðT
0

1

Tv Yr�ð Þ
ffiffiffiffiffiffiffiffiffiffiffi
1�q2

p D 0ð Þ
r

1
ST

� 	
dr:

By the chain rule, the second term in the last equation equalsðT
0

1

Tv Yr�ð Þ
ffiffiffiffiffiffiffiffiffiffiffi
1�q2

p D 0ð Þ
r ST
S2T

dr ¼
ðT
0

1
TST

dr ¼ 1
ST

:

Finally we conclude that

E w YTð ÞjST ¼ a½ � ¼
E w YTð ÞH ST�að Þ 1

ST
1

T
ffiffiffiffiffiffiffiffi
1�q2

p Ð T
0

d ~Wr
v Yr�ð Þ þ 1

� 	� �

E H ST � að Þ 1
ST

1
T
ffiffiffiffiffiffiffiffi
1�q2

p Ð T
0

d ~Wr
v Yr�ð Þ þ 1

� 	� � :

4. Variance reduction

In the representations considered in the previous sections the random variables whose
expectation should be estimated can have a large variance. To obtain a smaller variance
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and satisfactory convergence results in the context of Monte Carlo simulations, one
might include variance reduction techniques. In Moreni [38], a variance reduction tech-
nique based on importance sampling is proposed for the Monte Carlo pricing of
American options via the Longstaff–Schwartz algorithm. For our conditional expectation
representations, we study in subsection 4.1 the localization technique. This technique
was used in Bally et al. [39] but we adapt it here to our setting. Moreover we include
control variates to reduce the variance. We handle this approach in subsection 4.2.

4.1. Localisation

We adapt the localization technique of Bally et al. [39] for both methods; the condi-
tional density method and the MM. For the proofs of the two following propositions,
we refer the reader to Appendix C.

Proposition 4.1. Assume the setting of Theorem 2.2. Then for any function w :
R7!½0;1Þ satisfying

Ð
R
wðtÞdt ¼ 1 and for all a 2 Dom h, we have

E f Fð ÞjG ¼ a
� �

¼
J w

F;G f½ � að Þ
J w

F;G 1½ � að Þ
;

where J w
F;G½��ðaÞ is given by

J w
F;G �½ � að Þ ¼ E � Fð Þ w G�að Þ @

@u
g2 U;Vð Þ þ p X;Uð Þ H G�að Þ�W G�að Þ½ �

� 	� �

where WðxÞ ¼
Ð x
�1 wðtÞdt.

Proposition 4.2. Assume the setting of Theorem 3.2, then for any continuous function
with bounded derivative w : R 7!½0;1Þ satisfying

Ð
R
wðtÞdt ¼ 1 and for all a 2 R, we

have

E f Fð ÞjG ¼ a
� �

¼
J w

F;G f½ � að Þ
J w

F;G 1½ � að Þ
;

where J w
F;G½��ðaÞ is given by

J w
F;G �½ � að Þ ¼ E � Fð Þ w G�að Þ þ d 0ð Þ uð Þ H G�að Þ�W G�að Þ½ �

� 
h i
where WðxÞ ¼

Ð x
�1 wðtÞdt.

Once we have introduced the localized versions of the representation formulas for
the conditional expectation, one natural question arises, namely what is the optimal
choice of the localizing function w. To find this optimal function, we assume that the
additional constant c in the function H is zero, i.e. HðxÞ ¼ 1fx�0g. Let Z represent either
the factor @

@u g2ðU;VÞ in case of the conditional density method or the factor 1 when
the MM is considered. Then, practically speaking, an expectation of the form

J w
F;G �½ � að Þ ¼ E � Fð Þ w G�að ÞZ þ p H G�að Þ�W G�að Þ½ �

� �� �
is estimated via Monte Carlo simulation. More precisely if we denote by N the number
of simulated values of F and G, we have the following estimation
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J w
F;G �½ � að Þ
 1

N

XN
q¼1

� Fqð Þ w Gq�að ÞZq þ pq H Gq�að Þ�W Gq�að Þ½ �
� �

:

In order to reduce the variance, the idea is to minimize the integrated mean squared
error with respect to the localizing function w. Thus, we have to solve the following
optimization problem (this criterion has been introduced by Kohatsu-Higa and
Petterson [40])

inf
w2L1

I wð Þ; (4.1)

where L1 ¼ fw : R7!½0;1Þ : w 2 C1ðRÞ;wðþ1Þ ¼ 0;
Ð
R
wðtÞdt ¼ 1g and I equals the

integrated variance up to a constant (in terms of w)

I wð Þ ¼
ð
R

E �2 Fð Þ w G�að ÞZ þ p H G�að Þ�W G�að Þ½ �
� �2h i

da: (4.2)

The choice of the optimal localizing function w is given in the following proposition.
It is obvious that the optimal localization function will be different for the numerator
and denominator since the optimization problem is different. (The proof in Bally et al.
[39] can easily be extended to the current setting.)

Proposition 4.3. The infimum of the optimization problem (4.1) with IðwÞ given by (4.2)
and HðxÞ ¼ 1fx�0g, is reached at w?, where w? is the probability density of the Laplace
distribution with parameter k?, i.e. for all t 2 R;w?ðtÞ ¼ k?

2 e
�k?jtj, where

k? ¼ E �2 Fð Þp2½ �
E �2 Fð ÞZ2½ �

 !1
2

: (4.3)

The localizing function defined in the previous proposition is optimal in the sense of
minimal variance, however it is not optimal in numerical experiments when it comes to
the computational effort. Therefore, Bouchard and Warin [22] considered the exponen-
tial localizing function

w xð Þ ¼ k�e�k�x1 x�0f g; (4.4)

where k� is given by (4.3). In paragraph 5.2.4 we show how the use of this function
reduces the computational effort. We perform numerical experiments for both localizing
functions in Section 5.
The representations for the derivatives in Theorems 2.3 and 3.3 have a localized ver-

sion too. We state the localized versions as well as the choice of the optimal localizing
function w in the following propositions. We do not present the proofs since they fol-
low along similar lines as Propositions 4.1, 4.2, and 4.3.

Proposition 4.4. Assume the setting of Theorem 2.3, then for any function w : R 7!½0;1Þ
satisfying

Ð
R
wðtÞdt ¼ 1 and for all a 2 Dom h, we have

BF;G �½ � að Þ ¼ E � Fð Þ w G�að Þ �pð ÞZ þ �p2 þ p�ð Þ H G�að Þ�W G�að Þ½ �
� �� �

where WðxÞ ¼
Ð x
�1 wðtÞdt,
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Z ¼ @

@u
g2 U;Vð Þ; p ¼ p X;Uð Þ; and p� ¼ p�X;Uð Þ:

Proposition 4.5. Assume the setting of Theorem 3.3, then for any continuous function
with bounded derivative w : R 7!½0;1Þ satisfying

Ð
R
wðtÞdt ¼ 1 and for all a 2 R, we

have

BF;G �½ � að Þ ¼ E � Fð Þ w G�að Þ �pð ÞZ þ �p2 þ p�ð Þ H G�að Þ�W G�að Þ½ �
� �� �

where WðxÞ ¼
Ð x
�1 wðtÞdt,

Z ¼ 1; p ¼ d 0ð Þ uð Þ; and p� ¼
ðT
0
urD

0ð Þ
r d 0ð Þ uð Þdr:

The optimal localizing functions minimize the integrated variance

~I wð Þ ¼
ð
R

E �2 Fð Þ w G�að Þ �pð ÞZ þ �p2 þ p�ð Þ H G�að Þ�W G�að Þ½ �
� �2h i

da: (4.5)

Proposition 4.6. The infimum of the optimization problem infw2L1 ~IðwÞ, with ~IðwÞ given
by (4.5), where HðxÞ ¼ 1fx�0g, is reached at ~w, where ~w is the probability density of the
Laplace distribution with parameter ~k, i.e. for all t 2 R; ~wðtÞ ¼ ~k

2 e
�~kjtj, where

~k ¼
E �2 Fð Þ �p2 þ p�ð Þ2
h i

E �2 Fð Þp2Z2½ �

0
@

1
A

1
2

:

4.2. Control variate

Another approach to obtain variance reduction (besides localization) is to include a con-
trol variate, see, e.g., [19, Section 4.1]. The advantage of adding a control variate is to
use the observed error in estimating a known quantity to adjust an estimator for an
unknown quantity. In case of American option pricing, the control variate can be the
corresponding European option price. The price of the American and respectively the
European option with maturity T and payoff function U, on an asset with value a at
time t is denoted by Pðt; aÞ, respectively P Euðt; aÞ. Let us define the function
Pcðt; aÞ :¼ Pðt; aÞ�cP Euðt; aÞ, for a real number c close to 1. Then it holds that

Pc t; að Þ ¼ sup
s2T t;T

Et;a e�
Ð s

t
rudu U Ssð Þ�cP Eu s; Ssð Þ
� �h i

;

where T t;T denotes the set of all stopping times in ½t;T�. The price of the American
option at time 0 is given by Pð0; s0Þ ¼ Pcð0; s0Þ þ cP Euð0; s0Þ and its delta equals
Dð0; s0Þ ¼ Dcð0; s0Þ þ cD Euð0; s0Þ. We rewrite this formula for the American option
price as
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P 0; s0ð Þ ¼ sup
s2T 0;T

E e�
Ð s
0
ruduU Ssð Þ�c e�

Ð s

0
ruduP Eu s; Ssð Þ�P Eu 0; s0ð Þ

n oh i
:

From this expression, the advantage of adding a control variate is clear. Indeed, the
error between P Euð0; s0Þ and an estimation of E½e�

Ð s
0
ruduP Euðs; SsÞ� for each s 2 T 0;T

is used to adjust the estimation of the American option price Pð0; s0Þ ¼
sups2T 0;T

E½e�
Ð s

0
ruduUðSsÞ�.

Example 4.7. (Merton model). The European option price in the Merton model is
derived in Merton [21]. In the setting described in paragraph 2.2.1, where the price pro-
cess is as described in (2.6), the European put option price is given by the series

P Eu t; Stð Þ ¼ P Me t; Stð Þ ¼
X1
n¼0

e�l T�tð Þ l T�tð Þ
� �n
n!

P BS
n t; Stð Þ: (4.6)

Herein l is the jump intensity of the Poisson process N introduced in (2.6) and
P BS
n ðt; StÞ is the Black-Scholes price of the European put option with the same matur-

ity, strike, and interest rate r, and where the underlying stock price process has variance
v2n ¼ b2 þ nd2=2. The first 20 terms in the series are sufficient for a good approximation
for the put option price.

5. Numerical experiments

In this section, we apply our results to estimate the price and delta of American options
at time zero. We illustrate our methods with numerical results in a specified jump-diffu-
sion model.

5.1. Algorithm to estimate prices and deltas of American options

American options can be executed at any time prior to maturity. Since it is practically
impossible to observe the possibility to execute the option at infinitely many times, an
American option is often approximated by a Bermudan option with the same maturity
and payoff function. To obtain this approximation, the time interval ½0;T� is discretised
into n time periods with step size e ¼ T=n. The Bermudan option can then be executed
at the n discrete times iT=n; i ¼ 1; :::; n. When the number of time periods increases,
the Bermudan option converges to the American option (see Bally and Pag�es [13]).
Bermudan options can be priced through a Bellman dynamic programing principle, see
Bellman [41] and Bally et al. [39]. Let U denote the payoff function and S the underly-
ing stock price process with initial value s0. Then the price of the Bermudan option
Pð0; s0Þ follows from the recursive computations

P ne; Sneð Þ ¼ U Sneð Þ ¼ U STð Þ;
P ke; Skeð Þ ¼ max U Skeð Þ; e�reE P kþ 1ð Þe; S kþ1ð Þe

� �
jSke

� �� �
; k ¼ n�1; :::; 1; 0: (5.1)

The sensitivity of the option price with respect to the initial value of the underlying
asset, i.e. the delta of the option Dð0; s0Þ :¼ @s0Pð0; s0Þ, can be derived as follows
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D e; Seð Þ ¼
(
e�re@aE P 2e; S2eð ÞjSe ¼ a

� �
ja¼Se if P e; Seð Þ>U Seð Þ;

@aU að Þja¼Se if P e; Seð Þ ¼ U Seð Þ;
D 0; s0ð Þ ¼ e�re

E D e; Seð ÞjSe ¼ s0
� �

js0¼Se :

Hence to obtain a numerical estimation of the price and the delta at time zero, we
proceed by estimating the prices and the deltas recursively and backwards in time. For
estimations based on simulated values for the underlying stock price, one can simulate
the number of required paths at the discrete time points and store them all before per-
forming the recursive computations. On the other hand, since the pricing program and
computations of the deltas go backwards in time, it is more convenient to simulate the
stock price process simultaneously. Simulating the stock price process backwards in
time too leads to more efficiency concerning memory capacity.

Remark 5.1. (Nested simulations). To estimate the values for Pðke; SkeÞ for
k 2 f0; :::; n�1g, the estimation of the conditional expectation requires the simulation
of N values of Sðkþ1Þe starting from the value of Ske. In total this results into Nk used
simulated values for Ske for any k. The Bellman dynamic programing principle requires
nested simulations to estimate a function of conditional expectations similarly to the
compound option case in [19, Example 1.1.3] and illustrated in Figure 1.3 of that book.
However, by the use of the obtained representations, the number of simulated values
can be considerably reduced. The resulting algorithm needs one single set of simulated
paths. For any k 2 f0; :::; n�1g only N simulated values for Ske will be required.

5.2. Implementations for American put options in a Merton model

We consider American put options on a stock price process S defined by the Merton
model (2.6). The put payoff function equals UðxÞ ¼ ðK�xÞþ. Since we want to compare
our results to the analysis in Amin [42], we use the parameter setting as in his paper.
That explains our choice of this specific connection between the jump mean and jump
variance. This simplifies the Merton formula (4.6).

5.2.1. Representations
The conditional expectations and their derivatives in (5.1) and (5.2) can be estimated
based on the representations we developed in the previous sections. In particular, in the
present Merton setting, the representations are presented in paragraphs 2.2.1 and 3.2.2.
Throughout this section we consider HðxÞ ¼ 1fx�0g.
The regular expectations appearing in the representations (2.7), (2.8), (3.18), and

(3.19) can easily be estimated by a Monte Carlo simulation. For example, consider the
estimation of the numerator of representation (2.7). We require N simulated values of
St, Ss, and ps;t , belonging to the same path. If we denote the j-th simulated values by
Sjt; S

j
s, and pjs;t, then we approximate

E � Stð ÞH Ss�að Þps;t
� �


 1
N

XN
j¼1

� Sjt

� 

H Sjs�a
� �

pjs;t: (5.3)
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5.2.2. Variance reduction techniques
As discussed in paragraph 4.1, we include the localizing technique. The estimation (5.3)
is then replaced by

E � Stð ÞH Ss�að Þps;t
� �


 1
N

XN
j¼1

� Sjt

� 

w Sjs�a
� �

Zj
s þ pjs;t H Sjs�a

� �
�W Sjs�a

� �� �� 

;

where Zs equals Ss in case of the CDM and 1 in case of the MM. The functions w and
W are defined by Proposition 4.3.
On the other hand, we include a control variate, see subsection 4.2. For the estima-

tion of the American option price Pð0; s0Þ and delta Dð0; s0Þ, we include the European
option as a control variate. In the current setting, the European option price and delta
can be obtained through Merton’s approach, see Example 4.7. Consider the algorithm
for the price of Bermudan options (5.1). To introduce the control variate, we proceed
in two steps. First we replace the put payoff function at each time ke; k ¼ 1; :::; n, by

Uc ke; Skeð Þ ¼ U Skeð Þ�cP Me ke; Skeð Þ;

where c is a real number close to one and P Meðke; SkeÞ denotes the European option
price, obtained through Merton’s approach, at time ke. Secondly, in the last step (k¼ 0)
we add cP Með0; s0Þ (respectively cD Með0; s0Þ) to obtain the American option price
Pð0; s0Þ (respectively the American option delta Dð0; s0Þ).

5.2.3. Backward simulation
As remarked at the end of subsection 5.1 the algorithm for the pricing of a Bermudan
option goes backwards in time and we can simulate the different stochastic variables
backwards in time too. For the Brownian motion we base the backward simulation on a
Brownian bridge (see Bally et al. [39]). To simulate the compound Poisson process
backwards in time, we base our method on results of Karatzas and Shreve [43] and
Baldeaux [20]. We split the simulation of a compound Poisson process in the simula-
tion of a Poisson process and in the simulation of the sum of the jump sizes. First we
mention the following proposition implying a backward simulation algorithm for a
Poisson process. This is covered by [20, Lemma 3.1].

Proposition 5.2. Let N be a Poisson process with intensity l. For any time t> 0 it holds
that Nt has a PoissonðltÞ distribution. Moreover for any 0< s< t it holds that Ns, condi-
tioned on Nt ¼ z, follows a Binomialðz; s=tÞ distribution.
Secondly we present the following proposition considering the (conditional) distribu-

tion of sums of independent and identically normal distributed variables. This result is
a consequence of Brownian bridges, see Karatzas and Shreve [43].

Proposition 5.3. Consider the following sum

C kð Þ ¼
Xk
i¼1

Yi;

where Yi are i.i.d. Nðg; �Þ. For any k> 0 it holds that CðkÞ has a Nðkg; k�Þ distribution.
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Moreover for any 0< j< k it holds that CðjÞ, given that CðkÞ ¼ z, has a
Nððj=kÞz; ðj=kÞðk�jÞ�Þ distribution.

The backward simulation technique is interesting in numerical applications and fol-
lowing Baldeaux [20], this technique can also be derived for the Kou model, see
Kou [44].

5.2.4. Reduction of computational effort
Bouchard and Warin [22] observed that the computational effort to estimate the
American option prices by a MM is reduced by sorting the estimated stock prices.
Consider the Bermudan dynamic programing algorithm (5.1). For a fixed k in
fn�1; :::; 1g we estimate the conditional expectations for q ¼ 1; :::;N by our representa-
tions, including localization, as follows

E P kþ 1ð Þe; S kþ1ð Þe
� �

jSke ¼ S
qð Þ
ke

h i


J P kþ1ð Þe
� �

S
qð Þ
ke

� 

J 1½ � S

qð Þ
ke

� 
 ;

where

J �½ � S
qð Þ
ke

� 

¼ 1

N

XN
j¼1

� jð Þ w S jð Þ
ke�S

qð Þ
ke

� 

Z jð Þ
k þ p

jð Þ
k H S jð Þ

ke�S
qð Þ
ke

� 

�W S jð Þ

ke�S
qð Þ
ke

� 
� 
� 

:

If we consider the exponential localizing function (4.4), then it holds that

J �½ � S
qð Þ
ke

� 

¼ 1

N

XN
j¼1

� jð ÞH S
jð Þ
ke�S

qð Þ
ke

� 

ek

�S
qð Þ
ke e�k�S

jð Þ
ke k�Z

jð Þ
k þ p

jð Þ
k

� 

:

Now let us sort the simulated paths such that the values SðqÞke increase for q going
from 1 to N and let us indicate this by the superscript s, say Ss;ðqÞke . Then we write for
each q

E P kþ 1ð Þe; S kþ1ð Þe
� �

jSke ¼ S
s; qð Þ
ke

h i

¼
ek

�
PS

s; qð Þ
ke
PN

j¼q P kþ 1ð Þe; Ss; jð Þkþ1ð Þe

� 

e�k�PS

s; jð Þ
ke k�PZ

s; jð Þ
k þ p

s; jð Þ
k

� 

ek

�
1S

s; qð Þ
ke
PN

j¼q e
�k�1S

s; jð Þ
ke k�1Z

s; jð Þ
k þ p

s; jð Þ
k

� 
 :

Thus for q going from N to 1, the sums in the numerator and denominator get only
one additional term. Hence to estimate E½Pððkþ 1Þe; Sðkþ1ÞeÞjSke ¼ Ss;ðqÞke � for each q, we
make use of the previously performed computations for qþ 1.

5.3. Numerical results for the Merton model

In this subsection, we present the numerical results obtained via our representations in
the context of Bermudan options. We compare our results for the prices to those
reported by Amin [42] and to the regression based method introduced by Longstaff and
Schwartz [8]. For the deltas, we compare our results to those of Hilliard and Schwartz
[45]. To evaluate the accuracy of our representations, we consider European options

308 C. DAVELOOSE ET AL.



since there are analytic formulas at hand in the Merton model, whereas there are non
for Bermudan and American options. To overcome this problem, we compute confi-
dence intervals for the prices as discussed in Section 3.1 in Bouchard and Warin [22].
The following parameter set for a put option on the underlying stock price process S

is used,

S modelled by 2:6ð Þ : s0 ¼ 40; r ¼ 0:08; b2 ¼ 0:05; l ¼ 5; d2 ¼ 0:05;
put option : T ¼ 1;K 2 30; 35; 40; 45; 50f g: (5.4)

5.3.1. Accuracy of the method
European options may only be executed at time of maturity T. However, they can be
traded at any moment between time 0 and T. Consider the risk-free interest rate r and
the underlying stock price process S, then the price at time t> 0 of a European option
with payoff function U equals

P Eu t; að Þ ¼ e�r T�tð Þ
E U STð ÞjSt ¼ a½ �: (5.5)

The delta at time t equals

D Eu t; að Þ ¼ e�r T�tð Þ @

@a
E U STð ÞjSt ¼ a½ �: (5.6)

The conditional expectations and their derivatives appearing in (5.5) and (5.6) are
estimated following the techniques described in subsection 5.2 (except the control vari-
ate). As an example, we estimate the prices PEuðt; aÞ and deltas DEuðt; aÞ of a European
put option with maturity T¼ 1 and strike K¼ 45 on the underlying S described in
(5.4), at times t 2 f0:1; 0:2; :::; 0:9g and for a 2 f35; 36; :::; 45g. We do not consider
European option prices or deltas at time zero since they do not involve conditional
expectations. The estimation of the prices or deltas based on the CDM or MM approach
includes the localizing technique. Each estimate results from the same set of N ¼
5000000 simulated paths. In Table 1, we present the CDM and the MM estimates for
the option prices for a 2 f35; 40; 42g. We also report the relative errors in percentages
to the Merton option prices, see Example 4.7. Similar results were obtained for the
other values of a 2 f35; 36; :::; 45g. Table 2 shows the corresponding results for the

Table 1. Estimates of European put option prices P Euðs; aÞ (5.5) via the CDM and MM approach,
with relative errors to the Merton prices in percentages.

a¼ 35 a¼ 40 a¼ 42

time CDM (r.e. %) MM (r.e. %) CDM (r.e. %) MM (r.e. %) CDM (r.e. %) MM (r.e. %)

0.1 11.6447 (0.10) 11.6438 (0.09) 9.1820 (�0.02) 9.1816 (�0.03) 8.3520 (0.02) 8.3520 (0.01)
0.2 11.4615 (�0.04) 11.4597 (�0.05) 8.9133 (�0.07) 8.9133 (�0.07) 8.0584 (0.01) 8.0589 (0.02)
0.3 11.2838 (0.02) 11.2820 (0.01) 8.6180 (�0.05) 8.6181 (�0.05) 7.7308 (0.03) 7.7307 (0.03)
0.4 11.0765 (�0.03) 11.0730 (�0.06) 8.2936 (0.08) 8.2946 (0.09) 7.3569 (0.02) 7.3573 (0.03)
0.5 10.8633 (0.02) 10.8615 (0.01) 7.9014 (�0.04) 7.9011 (�0.04) 6.9254 (�0.02) 6.9243 (�0.03)
0.6 10.6319 (0.03) 10.6272 (�0.01) 7.4534 (�0.13) 7.4576 (�0.07) 6.4253 (0.00) 6.4269 (0.03)
0.7 10.3970 (0.05) 10.3894 (�0.02) 6.9561 (0.14) 6.9576 (0.16) 5.8288 (0.08) 5.8305 (0.10)
0.8 10.1765 (0.02) 10.1730 (�0.02) 6.3418 (0.07) 6.3398 (0.03) 5.0875 (0.15) 5.0906 (0.21)
0.9 10.0221 (�0.00) 10.0198 (�0.03) 5.6409 (0.05) 5.6392 (0.02) 4.1176 (�0.04) 4.1161 (�0.07)

Parameters are given in (5.4), we fix K¼ 45.
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deltas. It turns out that the relative errors when comparing our approach to the one of
Merton [21] are very small. Hence the algorithm we developed based on our representa-
tions is accurate for European options.

5.3.2. Results for Bermudan option prices and deltas
We consider a Bermudan put option on the stock price process S with parameters given
in (5.4), the strike is fixed at K¼ 45. Amin [42] and Hilliard and Schwartz [45] devel-
oped a tree method to estimate Bermudan and American option prices. In the current
setting their estimate for the option price equals 9.954. The Merton European option
price at time zero equals 9.422. We choose n¼ 10. The dynamic programing algorithm
presented in subsection 5.1 and our representations are used to estimate Pð0; s0Þ
and Dð0; s0Þ.
Figures 1 and 2 illustrate the influence of the variance reduction techniques on the

estimates for the price. The graphs on the right hand side are obtained by zooming in
on the left graphs. Notice the difference in scale between the left and the right graph on
the vertical axis. For N ¼ 250i; i ¼ 1; :::; 60, we simulated N paths of the underlying at
the discrete time points jT/n, j ¼ 1; :::; n, and we estimated the option price at time
zero through the CDM and the MM, with and without control variate and optimal

Table 2. Estimates of European put option deltas DEuðs; aÞ (5.6) via the CDM and MM approach,
with relative errors to the Merton deltas in percentages.

a¼ 35 a¼ 40 a¼ 42

time CDM (r.e. %) MM (r.e. %) CDM (r.e. %) MM (r.e. %) CDM (r.e. %) MM (r.e. %)

0.1 �0.5473 (0.36) �0.5469 (0.29) �0.4372 (0.15) �0.4368 (0.03) �0.3959 (�0.36) �0.3955 (�0.44)
0.2 �0.5703 (0.35) �0.5703 (0.35) �0.4525 (0.06) �0.4534 (0.24) �0.4095 (�0.08) �0.4098 (�0.03)
0.3 �0.5936 (�0.21) �0.5943 (�0.10) �0.4715 (0.24) �0.4703 (�0.01) �0.4266 (0.59) �0.4260 (0.45)
0.4 �0.6243 (�0.28) �0.6233 (�0.45) �0.4927 (0.21) �0.4933 (0.33) �0.4423 (0.40) �0.4417 (0.26)
0.5 �0.6662 (0.38) �0.6660 (0.35) �0.5194 (0.29) �0.5173 (�0.12) �0.4603 (�0.02) �0.4588 (�0.34)
0.6 �0.7147 (0.65) �0.7137 (0.51) �0.5538 (0.29) �0.5546 (0.44) �0.4863 (0.11) �0.4841 (�0.34)
0.7 �0.7749 (0.90) �0.7766 (1.12) �0.6028 (0.36) �0.6038 (0.53) �0.5227 (0.28) �0.5211 (�0.01)
0.8 �0.8403 (0.11) �0.8355 (�0.46) �0.6782 (0.24) �0.6793 (0.40) �0.5801 (0.26) �0.5797 (0.19)
0.9 �0.9156 (�0.44) �0.9171 (�0.27) �0.8123 (0.11) �0.8141 (0.33) �0.7012 (0.57) �0.7006 (0.48)

Parameters are given in (5.4), we fix K¼ 45.

Figure 1. Estimates for the Bermudan put option price obtained through the CDM and MM represen-
tations without control variate and without localization technique, against the number of simulated
paths. In the right graph the vertical axis is restricted to ½0; 100�.
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localization technique. In case the European option is included as a control variate, we
put c ¼ 0:9.
The variance reduction techniques have a remarkable improvement on the results

obtained via the CDM and MM approaches. It appears that the CDM results show
some more variation than the MM results.
Table 3 presents the estimated prices of the Bermudan put option with strikes 30, 35,

40, 45, and 50, obtained through the sorted CDM and MM approach including the con-
trol variate and the exponential localization function. For these estimates, a time discret-
isation is performed for n¼ 10 and 100000 paths were simulated. We include the
estimates for the prices obtained respectively by Amin [42] and by using a regression
based method with control variate as in Longstaff and Schwartz [8].
To evaluate the accuracy of our method, we include confidence intervals for the pri-

ces. The computation of these confidence intervals is discussed in [22, Section 3.1]. In
our case, we include two confidence intervals which we compute using respectively the
CDM and the MM. It turns out that the prices we find lay within the confidence inter-
vals and thus they are in an acceptable range.
As described in paragraph 5.2.4, the computational effort is reduced when we per-

form a sorted algorithm. Table 4 presents the CPU time in seconds for the LSM, CDM,
and MM, respectively. We do not compare the time to Amin [42] and Hilliard and
Schwartz [45] methods since there is no clear indication about how long their

Table 3. Estimates of Bermudan put option prices and confidence intervals for parameter set (5.4),
obtained through the sorted CDM and MM approach with control variate and exponential localiza-
tion and by the Longstaff–Schwartz method [8] with a control variate (LSM). n¼ 10
and N ¼ 100000.

Price Confidence Interval

Strike European Amin LSM CDM MM CDM MM

30 2.621 2.720 2.706 2.716 2.726 ½2:6765; 2:8609� ½2:6873; 2:9422�
35 4.412 4.603 4.580 4.591 4.598 ½4:5223; 4:7555� ½4:5430; 4:8369�
40 6.696 6.995 6.995 7.008 7.011 ½6:9054; 7:1821� ½6:9362; 7:2675�
45 9.422 9.954 9.907 9.920 9.922 ½9:7799; 10:0857� ½9:8106; 10:1876�
50 12.524 13.318 13.254 13.270 13.271 ½13:1457; 13:4084� ½13:1309; 13:5312�
European prices computed via the Merton approach. Bermudan option price estimates from [42] (Amin).

Figure 2. Estimates for the Bermudan put option price obtained through the CDM and MM represen-
tations with control variate and with localization technique, against the number of simulated paths. In
the right graph the vertical axis is restricted to ½9:5; 12�.
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algorithms take. It turns out that when considering 10 time steps, our algorithms are
comparably fast to the regression based algorithm. As analyzed in Bouchard and Warin
[22], the complexity of our algorithms for both the MM and the CDM, when consider-
ing the sorted localizing method is of order OðN ln ðNÞðd�1Þ�1Þ, where d is the dimen-
sion of the underlying factor. The complexity of the LSM method depends on the
choice of the basis of polynomials as well as the number and power of these polyno-
mials. However, this is not the aim of the study of this paper and we refer to many
articles in the literature that studied this issue for LSM. In, e.g. the article by Zhou [46],
the author investigated whether there exists an optimal regression complexity in the
LSM framework for options pricing. See also the analysis in Bouchard and Warin [22]
and in the thesis of Plavsic [47]. Notice that in this latter thesis, the author pointed out
that the computational time for LSM is proportional to the average number of in-the-
money paths (i.e. the option’s moneyness). That explains why for increasing values of
the strike K, the CPU time for LSM increases in Table 4.
Table 5 presents the estimated deltas of the Bermudan put option with strikes 30, 35,

40, 45, and 50, obtained through the sorted CDM and MM approach including the con-
trol variate and the exponential localization function. For these estimates a time discret-
isation is performed for n¼ 10 and 500000 paths were simulated.
We conclude that the extension that we provided to the geometric Brownian motion

model observed in Bally et al. [39] by adding normally distributed jumps to the driving
process leads to numerical results which are in line with those found in the literature.
As is the case in Bouchard and warin [22], the Monte Carlo method showed to be very
promising in the context of jump-diffusions and could be further improved.

Table 4. CPU time in seconds for the different methods to compute the estimates of Bermudan put
option prices for parameter set (5.4), obtained through the sorted CDM and MM approach with con-
trol variate and exponential localization and by the Longstaff–Schwartz method [8] with control vari-
ate (LSM). n¼ 10 and N ¼ 100000.

CPU time in seconds

Strike LSM CDM MM

30 1.56 2.20 2.18
35 1.74 2.17 2.15
40 2.01 2.15 2.17
45 2.29 2.09 2.16
50 2.45 2.09 2.17

Table 5. Estimates of Bermudan put option deltas for parameter set (5.4), obtained through the
sorted CDM and MM approach with control variate and exponential localization. n¼ 10
and N ¼ 500000.

Delta

Strike European H-S CDM MM

30 �0.1645 �0.1744 �0.1772 �0.1745
35 �0.2474 �0.2654 �0.2670 �0.2652
40 �0.3357 �0.3644 �0.3651 �0.3644
45 �0.4227 �0.4656 �0.4656 �0.4653
50 �0.5035 �0.5626 �0.5626 �0.5625

European deltas computed via the Merton approach. Bermudan option delta estimates from Hilliard and Schwartz [45]
(H-S).
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5.4. Numerical results for the additive model

In this subsection, we consider the additive model (2.9) with X as described in (2.10)
and Y given by

dYt ¼ �k0Ytdt þ dL0t; (5.7)

where L0 is a compound Poisson process with intensity l and exponentially distributed
jumps with parameter �.
The aim is to compute the price of Bermudan options as time-discrete approxima-

tions to American options written on such models using the conditional density repre-
sentation. For the numerical example to be relevant for the energy markets, we note
that Benth et al. [48] showed empirically that the spot model fits the Phelix Base electri-
city price index at the European Power Exchange (EEx) very well. In their article, they
estimated the parameters in the suggested model and found the following values

X is as in 2:10ð Þ with k ¼ 0:2008; a ¼ 13:3009; b ¼ 8:5689;
Y is as in 5:7ð Þ with k0 ¼ 0:3333; l ¼ 20=250; � ¼ 0:2;
Put option T ¼ 10=365;K 2 5:5; 5:25; 5; 4:5f g:

(5.8)

We compare our conditional density method to the regression based method as in
Longstaff and Schwartz [8]. Table 6 represents the estimated prices of the American put
option with strikes 5.5, 5.25, 5, 4.5 obtained through the sorted conditional density
method including the exponential localization function. For these estimates, the number
of exercise dates n¼ 10 and 10000 paths were simulated. For the same parameters, we
include the estimates for the prices obtained by the regression method which we denote
in the table by LSM and also the cost in seconds for each method.
In the case, the strike K¼ 5 and n¼ 10 the LSM indicates rank deficiency. That could

explain the difference in the prices given respectively by the LSM and the CDM in the
third row of Table 6. This is due to the fact that the LSM algorithm for pricing
American options is unstable when the time parameter is small. See for example the
discussion in Mostovyi [23].
The CDM with sorting as shown in Table 6 is comparably fast to the LSM. It can

always be applied to compute the price of the American option in contrary to the LSM.

6. Conclusion

Conditional expectations play an important role in the pricing and hedging of financial
derivatives. In the literature, there exist several methods for the numerical computations

Table 6. Estimates of American put option prices for parameter set (5.8), obtained through the
sorted CDM approach with exponential localization. n¼ 10 and N ¼ 10000.

Price CPU time in seconds

Strike LSM CDM LSM CDM

5.5 0.4847 0.5163 0.10 0.16
5.25 0.2439 0.2534 0.10 0.16
5 0.0191 0.0081 0.12 0.16
4.5 0 0 0.09 0.16

American option price estimates using the regression based method as in Longstaff and Schwartz [8].
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of conditional expectations. One of the methods is to use Monte Carlo by rewriting
conditional expectations in terms of expectations without conditioning but involving
weights. This was first discussed in Fourni�e et al. [1] in a continuous framework. In
this paper we extended this latter approach to include L�evy and jump-diffusion proc-
esses. For this purpose we used two approaches: the conditional density method and the
MM. We applied the developed theory to the estimation of Bermudan and American
option prices and their deltas. We used a localization technique and a control variate to
improve the estimation of the involved expectations. Moreover, we illustrated our
results with different examples and found accurate numerical results.
As far as further investigations are concerned, one may study other choices of the

weights in the representation of the conditional expectations. Notice that there are
infinitely many possibilities for the weights and thus infinitely many representations of
the conditional expectations. Moreover, one can study parallelization for the Monte
Carlo method with Malliavin calculus to improve the numerical results as discussed in
Abbas-Turki and Lapeyre [18].
Finally, one can also study the MM for the computation of conditional expectations

where conditioning is considered w.r.t. two random variables. One might think for
example of the hedging of Asian options or spread options. In this context, the
Longstaff–Schwartz method is not suited since the regression with two-dimensional
explanatory data becomes numerically involved. The MM can be promising in this case.
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Appendix A. Proof in Section 2

Proof of Theorem 2.2. We consider the following approximation

E f Fð ÞjG ¼ a
� �

¼ lim
e!0þ

E f Fð ÞjG 2
� �

a�e; aþ e½�

¼ lim
e!0þ

E f Fð Þ1��e;e½ G�að Þ
� �
E 1��e;e½ G� að Þ
� � ;

and know by the conditional density method and Assumptions 2.1(1) that

E½f ðFÞ1��e;e½ðG�aÞ� ¼ E½E½f ðg1ðX;YÞÞ1��e;e½ðg2ðU;VÞ�aÞjrðY;VÞ��

¼ E

�ð
R

2
f ðg1ðx;YÞÞ1��e;e½ðg2ðu;VÞ�aÞpðX;UÞðx; uÞdxdu

�
:

We introduce two functions

U x; e; a; hð Þ :¼ 1��e;e½ h
�1 xð Þ�a

� �
;

W x; e; a; hð Þ :¼
ðx
�1

U z; e; a; hð Þdz þ 2ec0; where c0 ¼ ch0 að Þ:

By relation (2.2) and integration by parts we haveð
R

1��e;e½ g2 u;Vð Þ�að Þp X;Uð Þ x; uð Þdu

¼
ð
R

1��e;e½ h
�1 uþ g� Vð Þ
� �

�a
� �

p X;Uð Þ x; uð Þdu

¼
ð
R

U uþ g� Vð Þ; e; a; h
� �

p X;Uð Þ x; uð Þdu

¼ �
ð
R

W uþ g� Vð Þ; e; a; h
� � @

@u
p X;Uð Þ x; uð Þdu:

Combining the previous steps leads to the observation that

E f Fð ÞjG ¼ a
� �

¼ lim
e!0þ

E
Ð
R

2 f g1 x;Yð Þð Þ 1
2eW uþ g� Vð Þ; e; a; h

� �
� @

@u p X;Uð Þ x; uð Þ
� 


dxdu
h i

E
Ð
R

2
1
2eW uþ g� Vð Þ; e; a; h

� �
� @

@u p X;Uð Þ x; uð Þ
� 


dxdu
h i : (A.1)

Because of the facts that 1
2eWðuþ g�ðVÞ; e; a; hÞ is bounded in e, that E½f 2ðFÞ�<1, and that

E½p2ðX;UÞ�<1, the limit can be brought inside the integrals in the numerator and denominator.
Thus we determine

lim
e!0þ

1
2e

W uþ g� Vð Þ; e; a; h
� �

¼ lim
e!0þ

1
2e

ðuþg� Vð Þ

�1
U z; e; a; hð Þdz þ c0

¼ lim
e!0þ

1
2e

ðuþg� Vð Þ

�1
1��e;e½ h

�1 zð Þ�a
� �

dz þ c0 ¼
ðuþg� Vð Þ

�1
d0 h�1 zð Þ�a
� �

dz þ c0

¼
ðuþg� Vð Þ

�1
d0 z�h að Þð Þh0 að Þdz þ c0 ¼ h0 að Þ1fhðaÞ2��1;uþg�ðVÞ�g þ c0

¼ h0 að Þ1fa�h�1ðuþg�ðVÞÞg þ c0 ¼ h0 að Þ1 g2 u;Vð Þ�a�0f g þ c0 ¼ h0 að ÞH g2 u;Vð Þ�að Þ:
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The numerator of (A.1) therefore equals

E

ð
R

2
f g1 x;Yð Þð ÞH g2 u;Vð Þ�að Þ � @

@u
log p X;Uð Þ x; uð Þ


 �
p X;Uð Þ x; uð Þdxdu

" #
h0 að Þ

¼ E E f Fð ÞH G�að Þ � @

@u
log p X;Uð Þ X;Uð Þ


 �
jr Y;Vð Þ

� �� �
h0 að Þ

¼ E f Fð ÞH G�að Þ � @

@u
log p X;Uð Þ X;Uð Þ


 �� �
h0 að Þ:

Simiatolarly the denominator of (A.1) equals

E H G�að Þ � @

@u
log p X;Uð Þ X;Uð Þ


 �� �
h0 að Þ:

This concludes the proof of Theorem 2.2. w

Appendix B. Malliavin calculus

In this article, we make use of the Malliavin calculus as defined in Petrou [15]. The following
properties and definitions concerning the Malliavin derivative in the direction of the Wiener pro-
cess are applied.

� The Malliavin derivative in the direction of the Brownian motion is denoted by Dð0Þ. The space
D

ð0Þ contains all the random variables in L2ðXÞ that are differentiable in the Wiener direction.
� Chain rule

Let F 2 D
ð0Þ and f 2 C1

b. Then it holds that f ðFÞ 2 D
ð0Þ and

D 0ð Þf Fð Þ ¼ f 0 Fð ÞD 0ð ÞF:

� Skorohod integral dð0Þ

Let dð0Þ be the adjoint operator of the directional derivative Dð0Þ. The operator dð0Þ maps
L2ðX� ½0;T�Þ to L2ðXÞ. The set of processes u 2 L2ðX� ½0;T�Þ such that�����E

ðT
0
utD

0ð Þ
t Fdt

" #����� � CkFkL2 Xð Þ

for all F 2 D
ð0Þ, is the domain of dð0Þ, denoted by Dom dð0Þ. For every u 2 Dom dð0Þ we

define dð0ÞðuÞ as the Skorohod integral in the Wiener direction of u by

E Fd 0ð Þ uð Þ
h i

¼ E

ðT
0
utD

0ð Þ
t Fdt

" #
;

for any F 2 D
ð0Þ. The equation above is called the duality formula.

� Integration by parts
Let Fu 2 L2ðX� ½0;T�Þ, where F 2 D

ð0Þ, and u 2 Dom dð0Þ. Then Fu 2 Dom dð0Þ and

d 0ð Þ Fuð Þ ¼ Fd 0ð Þ uð Þ�
ðT
0
utD

0ð Þ
t Fdt

if and only if the right hand side of the latter equation is in L2ðXÞ.
� Predictable processes

Let u be a predictable process such that E½
Ð T
0 u2t dt�<1. Then u 2 Dom dð0Þ and the

Skorohod integral coincides with the Ito-integral

d 0ð Þ uð Þ ¼
ðT
0
utdWt:
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Appendix C. Proofs localization

Proof of Proposition 4.1. Adding and subtracting the same expression, keeping in mind that
w ¼ W0, we get for the numerator of representation (2.4), the following equality

E f Fð ÞH G�að Þp X;Uð Þ
� �

¼ E f Fð Þw G�að Þ @

@u
g2 U;Vð Þ

� �
þ E f Fð ÞH G�að Þp X;Uð Þ

� �
�E f Fð ÞW0 G�að Þ @

@u
g2 U;Vð Þ

� �
:

The last term equals

E f Fð ÞW0 G�að Þ @

@u
g2 U;Vð Þ

� �
¼ E

ð
R

2
f g1 x;Yð Þð ÞW0 g2 u;Vð Þ�að Þ @

@u
g2 u;Vð Þp x; uð Þdxdu

� �
:

Using the integration by parts formula, we get

E f Fð ÞW0 G�að Þ @

@u
g2 U;Vð Þ

� �

¼ E �
ð
R

2
f g1 x;Yð Þð ÞW g2 u;Vð Þ�að Þ @

@u
p x; uð Þdxdu

� �

¼ E

ð
R

2
f g1 x;Yð Þð ÞW g2 u;Vð Þ�að Þ � @

@u
log p x; uð Þ

� 	
p x; uð Þdxdu

" #

¼ E E f Fð ÞW G�að Þp X;Uð Þjr Y;Vð Þ
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¼ E f Fð ÞW G�að Þp X;Uð Þ
� �

;

and the result follows.
w

Proof of Proposition 4.2. Adding and subtracting the same expression, keeping in mind that
w ¼ W0, we get for the numerator of representation (3.5) that

E f Fð ÞH G�að Þd 0ð Þ uð Þ
h i

¼ E f Fð Þw G�að Þ
� �

þ E f Fð ÞH G�að Þd 0ð Þ uð Þ
h i

�E f Fð ÞW0 G�að Þ
� �

:

Applying the same arguments as in Theorem 3.2, we show that the last term equals

E f Fð ÞW0 G�að Þ
� �

¼ E f Fð ÞW G�að Þd 0ð Þ uð Þ
h i

and the result follows.
w
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