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REVIEW

Forward-backward stochastic differential equation games
with delay and noisy memory

Kristina Rognlien Dahl

Department of Mathematics, University of Oslo, Oslo, Norway

ABSTRACT
The goal of this paper is to study a stochastic game connected to a
system of forward-backward stochastic differential equations
(FBSDEs) involving delay and noisy memory. We derive sufficient and
necessary maximum principles for a set of controls for the players to
be a Nash equilibrium in the game. Furthermore, we study a corre-
sponding FBSDE involving Malliavin derivatives. This kind of equation
has not been studied before. The maximum principles give condi-
tions for determining the Nash equilibrium of the game. We use this
to derive a closed form Nash equilibrium for an economic model
where the players maximize their consumption with respect to recur-
sive utility.
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1. Introduction

The aim of this paper is to study a stochastic game between two players. The game is
based on a forward stochastic differential equation (SDE) for the process X. In applica-
tions to economy, this process can be thought of as the market situation, e.g. the finan-
cial market, the housing market or the oil market. This SDE includes two kinds of
memory of the past; regular memory and noisy memory. Regular memory (also called
delay, see f. ex. the survey paper by Ivanov et al. [1]) means that the SDE can depend
on previous values of the process X. That is, for some given d > 0, X(t) depends on
Xðt � dÞ: For more on stochastic delay differential equations and optimal control with
delay, see Øksendal et al. [2] and Agram and Øksendal [3]. In contrast, noisy memory
means that the SDE may involve an Itô integral over previous values of the process, so
for d > 0, X(t) depends on

Ð t
t�d XðsÞdBðsÞ where fBðsÞgs2½0,T� is a Brownian motion. For

more on noisy memory, see Dahl et al. [4].
Connected to this SDE are two backward stochastic differential equations (BSDEs).

These BSDEs are connected to the SDE in the sense that they depend on fXðtÞgt2½0,T�,
as well as the delay and noisy memory of this process. Hence, this forms an FBSDE sys-
tem. Each of these BSDEs corresponds to one of the players in the stochastic game; cor-
responding to player i¼ 1, 2 is a BSDE in the process fWiðtÞgt2½0,T�: The length of
memory can be different for the two players, so for i¼ 1, 2, player i has memory span
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di. The players may also have different levels of information, which is included in the
model by having (potentially) different filtrations fEðiÞ

t gt2½0,T�, i¼ 1, 2.
Each of the players aim to find an optimal control ui which maximizes their personal

performance (objective) function, Ji. Seminal work in stochastic optimal control has
been done by Krylov and his students, see e.g. Krylov [5, 6]. The performance function
of each of the agents will be defined in such a way that it depends on the player’s profit
rate, the market process X and the process Wi coming from the player’s BSDE (more
on this in Section 2, Equation (11)). This kind of problem, where both players maxi-
mize their performance which depends on an FBSDE, is called an FBSDE stochastic
game, and has been studied by e.g. Øksendal and Sulem [7]. However, they do not
include memory in their model. We study conditions for a pair of controls (u1, u2) to
be a Nash equilibrium for such a stochastic game. That is, we would like to determine
controls such that the players cannot benefit by changing their actions. In order to do
so, we derive sufficient and necessary maximum principles giving conditions for a con-
trol to be Nash optimal. This is done in Sections 3 and 4. Maximum principles for for-
ward-backward stochastic differential equations (FBSDEs) have been studied by
Øksendal and Sulem [7], Wang and Wu [8], Wu [9] and Wang et al. [10], but these
papers do not consider delay and noisy memory.
In connection with these maximum principles, there are adjoint equations (see e.g.

Øksendal [11] for an introduction to stochastic maximum principles and adjoint equa-
tions, or Øksendal and Sulem [12] for maximum principles and adjoint equations where
delay is involved). In our case, these adjoint equations are a system of coupled forward-
backward stochastic differential equations involving Malliavin derivatives (see Di Nunno
et al. [13] for more on Malliavin derivatives). To the best of our knowledge, such equa-
tions have not been studied before. In Section 5 we study a slightly simplified version
of these adjoint FBSDEs, and establish a connection between these equations and a sys-
tem of FBSDEs without Malliavin derivatives. Finally, in Section 6, we apply our results
to a specific example in order to determine the optimal consumption with respect to
recursive utility.

2. The problem

Let ðX,F ,PÞ be a probability space, and let B(t), t 2 ½0,T� be a Brownian motion in
this space. Let ðNð½0, t�,BÞ, 0 � t � T,B � R� f0gÞ be an independent Poisson random
measure. Denote by �ðBÞ the associated L�evy measure such that E½Nð½0, t�,BÞ� ¼ �ðBÞt:
Also, let ~Nðt, �Þ be the corresponding compensated Poisson random measure, i.e.,

~Nðdt, dlÞ :¼ Nðdt, dlÞ � �ðdlÞdt:

Let ðF tÞt2½0,T� be the P-augmented filtration generated by B(t) and ~Nðt, �Þ:
We will consider a game between two players: player 1 and player 2. Let uiðtÞ be the

control process chosen by player i¼ 1, 2, and denote uðtÞ ¼ ðu1ðtÞ, u2ðtÞÞ: Let Ai, i¼ 1,
2, denote the set of admissible controls for player i. It is contained in a given set of
c�adl�ag processes in L2ðX� ½0,T�Þ, with values in a subset V i of R: Let A ¼ A1 �A2 be
the combined controls for both players, and denote by V :¼ V1 � V2: Let di � 0, i¼ 1,
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2 be the memory span of player 1 and 2, respectively. We define d :¼ maxd1, d2 to be
the longest memory span of the two agents.
We consider a controlled forward stochastic differential equation for a process

XðtÞ ¼ Xuðt,xÞ,x 2 X, t 2 ½0,T� determining the market situation (in the following, we
omit the x for notational ease unless it is important to highlight its dependence):

dXðtÞ ¼ bðt,XðtÞ,YðtÞ,KðtÞ, uðtÞ,xÞdt
þrðt,XðtÞ,YðtÞ,KðtÞ, uðtÞ,xÞdBðtÞ
þÐ

R
cðt�,Xðt�Þ,Yðt�Þ,Kðt�Þ, uðt�Þ, f,xÞ~Nðdt, dfÞ, t 2 0,T½ �,

XðtÞ ¼ nðtÞ, t 2 �d, 0Þ,½
(1)

where nðtÞ is some (given) initial process, YðtÞ ¼ ðY1ðtÞ,Y2ðtÞÞ,KðtÞ ¼ ðK1ðtÞ,K2ðtÞÞ,
and YiðtÞ :¼ Xðt � diÞ,KiðtÞ :¼

Ð t
t�di

XðsÞdBðsÞ, and di � 0 for i¼ 1, 2. The superscript
t– means that we are taking the left limit of the process is question (that is, the
value before a potential jump at time t), see Øksendal and Sulem [14] for more
on this.

Remark 2.1. N ote that nðtÞ is a given initial process which can not be controlled (i.e.,
there is no dependency on u in n). Hence, we do not need to define the filtration ðF tÞ
for t 2 ½�d, 0Þ:
Here, the delay processes Yi, and the noisy memory processes Ki correspond to player

i¼ 1, 2 respectively. Hence, the two players may have memories for different time inter-
vals, depending on the values of di. Also, on the coefficient functions

b : 0,T½ � � R� R
2 � R

2 � V ! R� X, (2)

r : 0,T½ � � R� R
2 � R

2 � V ! R� X, (3)

c : 0,T½ � � R� R
2 � R

2 � V � R� X ! R, (4)

we impose the following set of assumptions.

Assumption 2.2.
(1) The functions bðx, t, �Þ, rðx, t�Þ and cðx, t, f, �Þ are assumed to be C1 for each

fixed x, t, f:
(2) The functions bð�, x, y, z,uÞ and rð�, x, y, z, uÞ, and cð�, x, y, z,u, fÞ are predictable

for each x, y, z, u:
(3) Lipschitz condition: The functions b, r are Lipschitz continuous in the variables

x, y, z, with the Lipschitz constant independent of the variables t,u,x. Also, there
exists a function L 2 L2ð�Þ, independent of t,u,x, such that

jcðx, t, x1, y1, z1,u, fÞ � cðx, t, x2, y2, z2,u, fÞj (5)

� LðfÞfjx1 � x2j þ jjy1 � y2jj þ jjz1 � z2jjg, � � a:e:f: (6)

(4) Linear growth: The functions b, r, c satisfy the linear growth condition in the
variables x, y, z, with the linear growth constant independent of the variables
t,u,x Also, there exists a non-negative function K 2 L2ð�Þ, independent of
t,u,x, such that

jcðx, t, x, y, z,u, fÞj (7)
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� KðfÞf1þ jxj þ jjyjj þ jjzjjg, � � a:e:f: (8)

Assumptions 1 and 2 are sufficient to ensure the integrands in Equation (1) have pre-
dictable versions, whenever X is c�adl�ag and adapted. It is always assumed that the
~N-integral is taken with respect to the predictable version of cðt,XðtÞ,YðtÞ,ZðtÞ, uðtÞ, fÞ:
Together with the Lipschitz and linear growth conditions, this ensures that for every
u 2 A, there exists a unique c�adl�ag adapted solution X ¼ Xu to the Equation (1) satis-
fying

E sup
t2 �d,T½ �

jXðtÞj2
� �

< 1: (9)

This can be seen, for example, by regarding Equation (1) as a stochastic functional
differential equation. See Dahl et al. [4] for more on this.
In addition to this, the players (potentially) have different levels of information, rep-

resented by different subfiltrations ðEðiÞ
t Þ0�t�T where EðiÞ

t � F t for all t 2 ½0,T�, i¼ 1, 2.
For i¼ 1, 2, let gið�, x, y,K,wi, zi, kið�Þ, u,xÞ be a given predictable process w.r.t.

ðEðiÞ
t Þ0�t�T , i¼ 1, 2, and let hiðx,xÞ be an FT-measurable function. Associated to the

FSDE (1), we have a pair of backward stochastic differential equations (BSDEs) in the
unknown stochastic processes ðWi,Zi,KiÞ, i¼ 1, 2:

dWiðtÞ ¼ �giðt,XðtÞ,YðtÞ,KðtÞ,WiðtÞ,ZiðtÞ,Kiðt, �Þ, uðtÞ,xÞdt
þZiðtÞdBðtÞ þ

ð
R

Kiðt, fÞ~Nðdt, dfÞ, t 2 0,T½ �,
WiðTÞ ¼ hiðXðTÞ,xÞ:

(10)

Note that these BSDEs are coupled to the SDE (1) due to the dependency on X. Also,
the BSDEs depend on the memory of the market process X, due to the dependency on
the processes Y and K: However, Equation (10) is a standard BSDE with jumps, hence
the conditions for existence and uniqueness of solution are well known, see e.g.
Theorem 1.5 in Øksendal and Sulem [15]. Essentially, we require that g is square inte-
grable w.r.t. t when all other inputs are 0 and that g is Lipschitz in W,Z and K.
For i¼ 1, 2, let fi : ½0,T� � R� R� R�A� X ! R,ui : R ! R,wi : R ! R be

functions representing a profit rate, bequest function and risk evaluation, respectively.
Then, the performance function of each player i¼ 1, 2 is defined by:

JiðuÞ ¼ E
ðT
0
fiðt,XuðtÞ,Yu

i ðtÞ,Ku
i ðtÞ, uiðtÞÞdt þ uiðXuðTÞÞ þ wiðWu

i ð0ÞÞ
" #

, (11)

where we must assume all conditions necessary for the integrals and the expectation
to exist.
Also, note that the performance Ji of player i is a function of the control uðtÞ ¼

ðu1ðtÞ, u2ðtÞÞ, which is determined by both players. Therefore, this problem setting
specifies a stochastic game.
A pair of controls ðû1, û2Þ is called a Nash equilibrium for this stochastic game if the

following holds:

J1ðu1, û2Þ � J1ðû1, û2Þ for all u1 2 A1,
J2ðû1, u2Þ � J2ðû1, û2Þ for all u2 2 A2:

(12)
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In words, this means that in the Nash equilibrium, neither player would like to
change their control.
Assume there exists a Nash equilibrium for this forward-backward stochastic differen-

tial (FBSDE) game with delay and noisy memory. We would like to find this Nash equi-
librium, and we will do so by proving sufficient and necessary maximum principles for
this problem. Therefore, we define a Hamiltonian function for each player i¼ 1, 2 as
follows:

Hiðt, x, y,K,wi, zi, ki, u1, u2, ki, pi, qi, riÞ ¼ fiðt, x, yi,Ki, uiÞ
þ kigiðt, x, y,K,wi, zi, ki, u1, u2Þ þ pibðt, x, y,K, u1, u2Þ
þ qirðt, x, y,K, u1, u2Þ þ

Ð
R
riðfÞcðt, x, y,K, u1, u2, fÞ�ðdfÞ:

(13)

Assume Hi is C1 in x, y1, y2,K1,K2,wi, zi, ki, u1, u2 for i¼ 1, 2. In the following, for
ease of notation, we will use the abbreviation

HiðtÞ ¼ Hiðt, xðtÞ, yðtÞ,KðtÞ,wiðtÞ, ziðtÞ, kiðtÞ, u1ðtÞ, u2ðtÞ, kiðtÞ, piðtÞ, qiðtÞ, riðtÞÞ:
For i¼ 1, 2, we define a system of FBSDEs associated to these Hamiltonians in the

unknown adjoint processes ðki, pi, qi, riÞ :
FSDE in ki (which depends on pi, qi, ri):

dkiðtÞ ¼ @Hi

@wi
ðtÞdt þ @Hi

@zi
ðtÞdBðtÞ þ

ð
R

rkiðHiðt, fÞÞ~Nðdt, dfÞ,
kið0Þ ¼ w0

iðWið0ÞÞ,
(14)

where rkiðHiðt, fÞÞ is the Fr�echet derivative of Hi at ki, see the appendix in Øksendal
and Sulem [7] for a closer explanation of this gradient.
We also define a BSDE in pi, qi, ri, which depends on ki:

dpiðtÞ ¼ E liðtÞjF t½ �dt þ qiðtÞdBðtÞ þ
Ð
R
riðt, fÞ~Nðdt, dfÞ,

piðTÞ ¼ u0
iðXðTÞÞ þ h0iðXðTÞÞkiðTÞ,

(15)

where

liðtÞ ¼ � @Hi

@x
ðtÞ � @Hi

@yi
ðt þ diÞ1 0,T�di½ �ðtÞ �

ðtþdi

t
Dt

@Hi

@Ki
ðsÞ1 0,T½ �ðsÞds

� �
and Dt½�� denotes the Malliavin derivative (see Remark 2.3). Note that the conditional
expectation in (15) is well defined by the extension of the Malliavin derivative intro-
duced by Aase et al. [16], see Remark 2.3. Equations (14) and (15) form an FBSDE-
system involving Malliavin derivatives. To the best of our knowledge, such systems have
not been studied before.

Remark 2.3. We refer to Nualart [17], Sanz-Sol�e [18] and Di Nunno et al. [13] for
information about the Malliavin derivative Dt for Brownian motion B(t) and, more gen-
erally, L�evy processes. In Aase et al. [16], Dt was extended from the space D1, 2 to
L2ðPÞ, where D1, 2 denotes the classical space of Malliavin differentiable FT-measurable
random variables. The extension is such that for all F 2 L2ðFT , PÞ, the following holds:

(i) DtF 2 ðSÞ	, where ðSÞ	 
 L2ðPÞ denotes the Hida space of stochastic
distributions,
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(ii) the map ðt,xÞ ! E½DtFjF t� belongs to L2ðFT , k� PÞ, where k denotes the
Lebesgue measure on ½0,T�:

(iii) Moreover, the following generalized Clark–Ocone theorem holds:

F ¼ E F½ � þ
ðT
0
E DtFjF t½ �dBðtÞ: (16)

See [16], Theorem 3.11, and also [13], Theorem 6.35.
Notice that by combining Itô’s isometry with the Clark–Ocone theorem, we
obtain

E
ðT
0
E DtFjF t½ �2dt

" #
¼ E

ðT
0
E DtFjF t½ �dBðtÞ

� �2
" #

¼ E ðF2 � E F½ �2Þ
h i

: (17)

(iv) As observed in Agram et al. [19], we can also apply the Clark–Ocone theorem
to show the following generalized duality formula:
Let F 2 L2ðFT ,PÞ and let uðtÞ 2 L2ðk� PÞ be adapted. Then,

E F
ðT
0
uðtÞdBðtÞ

" #
¼ E

ðT
0
E DtFjF t½ �uðtÞdt

" #
: (18)

Remark 2.4. N ote that Equation (14) is linear in ki, and hence, if pi, qi, ri were given, it
could be solved by using the Itô formula. However, this solution will depend on the
processes X,Yi,Ki and Wi, so in order to find an explicit solution for ki, we must also
solve the coupled FBSDE system (1)–(10).
The BSDE (15) is linear in pi, and hence, if ki was given, it would be possible to find

a unique solution to this equation by using e.g. Proposition 6.2.1 in Pham [20] or
Theorem 1.7 in Øksendal and Sulem [15]. However, as for the adjoint SDE (14), this
solution will depend on the coupled FBSDE system (1)–(10).

In the remaining part of the paper, we will prove a sufficient (Section 3) and a
necessary maximum principle (Section 4) for this kind of FBSDE game with delay
and noisy memory. Then, we will study existence and uniqueness of solutions of the
FBSDE system (14) and (15) (Section 5). Finally, we will present an example which
illustrates our results: optimal consumption rate with respect to recursive utility (see
Section 6).

3. Sufficient maximum principle for FBSDE games with delay and
noisy memory

We prove a sufficient maximum principle which roughly states that under concavity
conditions, a control ðû1, û2Þ satisfying a conditional maximum principle and an
‘2-condition is a Nash equilibrium for the stochastic game.

Theorem 3.1. Let û1 2 A1 and û2 2 A2 with corresponding solutions
X̂ðtÞ, Ŷ iðtÞ, K̂iðtÞ, Ŵ iðtÞ, Ẑ iðtÞ, K̂ iðtÞ, k̂iðtÞ, p̂iðtÞ, q̂iðtÞ, r̂ iðt, fÞ of the FSDE (1), the BSDE
(10), and the FBSDE system (14) and (15) for i¼ 1, 2. Also, assume that:
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� (Concavity I) The functions x ! hiðxÞ, x ! uiðxÞ, x ! wiðxÞ are concave for i ¼
1, 2.

� (The conditional maximum principle)

ess sup v2A1E½H1ðt, X̂ðtÞ, Ŷ ðtÞ, K̂ðtÞ, Ŵ 1ðtÞ, Ẑ1ðtÞ, K̂ 1ðt, �Þ,
v, û2ðtÞ, k̂1ðtÞ, p̂1ðtÞ, q̂1ðtÞ, r̂1ðt, �ÞÞjEð1Þ

t �
¼ E½H1ðt, X̂ðtÞ, Ŷ ðtÞ, K̂ðtÞ, Ŵ 1ðtÞ, Ẑ1ðtÞ, K̂ 1ðt, �Þ,
û1ðtÞ, û2ðtÞ, k̂1ðtÞ, p̂1ðtÞ, q̂1ðtÞ, r̂1ðt, �ÞÞjEð1Þ

t �,
and similarly

ess sup v2A2E½H2ðt, X̂ðtÞ, ŶðtÞ, K̂ðtÞ, Ŵ 2ðtÞ, Ẑ2ðtÞ, K̂ 2ðt, �Þ,
û1, v, k̂2ðtÞ, p̂2ðtÞ, q̂2ðtÞ, r̂2ðt, �ÞÞjEð2Þ

t �
¼ E½H2ðt, X̂ðtÞ, ŶðtÞ, K̂ðtÞ, Ŵ 2ðtÞ, Ẑ2ðtÞ, K̂ 2ðt, �Þ,
û1ðtÞ, û2ðtÞ, k̂2ðtÞ, p̂2ðtÞ, q̂2ðtÞ, r̂2ðt, �ÞÞjEð2Þ

t �:

� (Concavity II) The functions

Ĥ^
1ðt, x, y1,K1,w1, z1, k1Þ

:¼ ess sup v2A1E H1ðt, x, y1, ŷ2,K1, K̂2,w1, z1, k1, v, û2, k̂1, p̂1, q̂1, r̂1ÞjEð1Þ
t

h i
and

Ĥ^
2ðt, x, y2,K2,w2, z2, k2Þ
:¼ ess sup v2A2E H2ðt, x, ŷ1, y2, K̂1,K2,w2, z2, k2, û1, v, k̂2, p̂2, q̂2, r̂2ÞjEð2Þ

t

h i
are concave for all t a.s.

� Finally, assume that the following ‘2 conditions hold:

E

� ðT
0
fp̂2i ðtÞ½ðrðtÞ � r̂ðtÞÞ2 þ

ð
R

ðriðt, fÞ � r̂ iðt, fÞÞ2�ðdfÞ
�

þðXðtÞ � X̂ðtÞÞ2½q̂2i ðtÞ þ
ð
R

r̂2i ðt, fÞ�ðdfÞ�

þðYiðtÞ � Ŷ iðtÞÞ2½ð@Ĥ i
@z Þ2ðtÞ þ

ð
R

jjrkĤ iðt, fÞjj2�ðdfÞ�

þk̂
2
i ðtÞ½ðKiðtÞ � K̂iðtÞÞ2 þ

ð
R

ðKiðt, fÞ � K̂ iðt, fÞÞ2�ðdfÞ�g� < 1

for i¼ 1, 2.
Then, ðû1, û2Þ is a Nash equilibrium.

Proof. We would like to show that J1ðu1, û2Þ � J1ðû1, û2Þ for all u1 2 A1: Choose u1 2
A1: By the definition of the performance function J1,

D :¼ J1ðu1, û2Þ � J1ðû1, û2Þ ¼ I1 þ I2 þ I3,
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where

I1 ¼ E
ðT
0
ff1ðt, x, y,K, uÞ � f1ðt, x̂, ŷ, K̂, ûÞgdt

" #
,

I2 ¼ E u1ðXðTÞÞ � u1ðX̂ðTÞÞ
� �

,

I3 ¼ E w1ðW1ð0ÞÞ � w1ðŴ 1ð0ÞÞ
� �

:

Note that from the definition of the Hamiltonian,

I1 ¼ E½
ðT
0
fH1ðtÞ � Ĥ1ðtÞ � k̂1ðtÞðg1ðtÞ � ĝ 1ðtÞÞ � p̂1ðtÞðbðtÞ � b̂ðtÞÞ

�q̂1ðtÞðrðtÞ � r̂ðtÞÞ �
ð
R

r̂1ðt, fÞðcðt, fÞ � ĉðt, fÞ�ðdfÞÞgdt�,
(19)

where we have used the abbreviation

Ĥ1ðtÞ :¼ H1ðt, X̂ðtÞ, Ŷ ðtÞ, K̂ðtÞ, Ŵ 1ðtÞ, Ẑ1ðtÞ, K̂ 1ðt, �Þ, ûðtÞ, k̂1ðtÞ, p̂1ðtÞ, q̂1ðtÞ, r̂1ðtÞ,xÞ
and corresponding abbreviations for H1ðtÞ, bðtÞ, b̂ðtÞ, r, r̂ðtÞ, cðtÞ and ĉðtÞ:
Also,

I2 ¼ E½u1ðXðTÞÞ � u1ðX̂ðTÞÞ�
� E½u0

1ðX̂ðTÞÞðXðTÞ � X̂ðTÞÞ�
¼ E½ðp̂1ðTÞ � h01ðX̂ðTÞÞk̂1ðTÞÞðXðTÞ � X̂ðTÞÞ�
¼ E½p̂1ðTÞðXðTÞ � X̂ðTÞÞ� � E½k̂1ðTÞh01ðX̂ðTÞÞðXðTÞ � X̂ðTÞÞ�

¼ E½Ð T0 p̂1ðtÞðdXðtÞ � dX̂ðtÞÞ þ
ðT
0
ðXðtÞ � X̂ðtÞÞdp̂1ðtÞ

þ
ðT
0
q̂1ðtÞðrðtÞ � r̂ðtÞÞdt þ

ðT
0

ð
R

r̂1ðt, fÞðcðt, fÞ � ĉðt, fÞÞ�ðdfÞdt�

�E½k̂1ðTÞh01ðX̂ðTÞÞðXðTÞ � X̂ðTÞÞ�

¼ E½Ð T0 p̂1ðtÞðbðtÞ � b̂ðtÞÞdt þ
ðT
0
ðXðtÞ � X̂ðtÞÞð� @Ĥ1

@x
ðtÞ

� @Ĥ1

@y1
ðt þ d1Þ1½0,T�d1�ðtÞ þ

ðtþd1

t
Dt

�
� @Ĥ1

@K1
ðsÞ�1½0,T�ðsÞdsÞdt

þ
ðT
0
q̂1ðtÞðrðtÞ � r̂ðtÞÞdt þ

ðT
0

ð
R

r̂1ðt, fÞðcðt, fÞ � ĉðt, fÞÞ�ðdfÞdt�
�

�E½k̂1ðTÞh01ðX̂ðTÞÞðXðTÞ � X̂ðTÞÞ�,

(20)

where the first inequality follows from the concavity of u1, the second equality follows
from Equation (15), the fourth equality from Itô’s product rule applied to p̂1X and
p̂1X̂ , the fifth equality follows from Equation (15), the double expectation rule and
Equation (1).
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Also, note that

I3 ¼ E½w1ðW1ð0ÞÞ � w1ðŴ 1ð0ÞÞ�
� E½w0

1ðŴ 1ð0ÞÞðW1ð0Þ � Ŵ 1ð0ÞÞ�

¼ E½k̂1ðTÞðW1ðTÞ � Ŵ 1ðTÞÞ� �
�
E

� ðT
0
ðW1ðtÞ � Ŵ 1ðtÞÞdk̂1ðtÞ

þ
ðT
0
k̂1ðtÞðdW1ðtÞ � dŴ 1ðtÞÞ þ

ðT
0

@Ĥ1

@z1
ðtÞðZ1ðtÞ � Ẑ1ðtÞÞdt

þ
ðT
0

ð
R

rk1Ĥ1ðtÞðK1ðtÞ � K̂ 1ðtÞÞ�ðdfÞdt
�	

¼ E½k̂1ðTÞðh1ðXðTÞÞ � h1ðX̂ðTÞÞÞ� �
�
E

� ðT
0

@Ĥ1

@w1
ðtÞðW1ðtÞ � Ŵ 1ðtÞÞdt

þ
ðT
0
k̂1ðtÞð�g1ðtÞ þ ĝ 1ðtÞÞdt þ

ðT
0

@Ĥ1

@z1
ðtÞðZ1ðtÞ � Ẑ1ðtÞÞdt

þ
ðT
0

ð
R

rkĤ1ðtÞðK1ðtÞ � K̂ 1ðtÞÞ�ðdfÞdt
�	

� E½k̂1ðTÞh01ðX̂ðTÞÞðXðTÞ � X̂ðTÞÞ� �
�
E

� ðT
0

@Ĥ1

@w1
ðtÞðW1ðtÞ � Ŵ 1ðtÞÞdt

þ
ðT
0
k̂1ðtÞð�g1ðtÞ þ ĝ 1ðtÞÞdt þ

ðT
0

@Ĥ1

@z1
ðtÞðZ1ðtÞ � Ẑ1ðtÞÞdt

þ
ðT
0

ð
R

rk1Ĥ1ðtÞðK1ðtÞ � K̂ 1ðtÞÞ�ðdfÞdt
�	

,

(21)

where the first inequality follows from the concavity of w1, the second equality follows
from Equation (14), the third equality follows from Itô’s product rule applied to k̂1Y1

and k̂1Ŷ 1, the fourth equality follows from Equation (10) as well as Equation (14). The
final inequality follows from the concavity of h1 and that k̂1ðTÞ � 0:
Hence,

D ¼ I1 þ I2 þ I3

� E

� ðT
0

�
H1ðtÞ � Ĥ1ðtÞ �

�
@Ĥ1

@x
ðtÞ þ @Ĥ1

@y1
ðt þ d1Þ1½0,T�d1�ðtÞ

þ
ðtþd1

t
Dt

�
@Ĥ1

@K1
ðsÞ
�
1½0,T�ðsÞdsÞðXðtÞ � X̂ðtÞÞdt

	
�
ðT
0

�
@Ĥ1

@w1
ðtÞðW1ðtÞ � Ŵ 1ðtÞÞ þ @Ĥ1

@z1
ðtÞðZ1ðtÞ � Ẑ1ðtÞÞ

þ
ð
R

rk1Ĥ1ðtÞðK1ðt, fÞ � K̂ 1ðt, fÞÞ�ðdfÞ
	
dt

�
:

(22)

Note that by changing the order of integration and using the duality formula for
Malliavin derivatives (see Di Nunno et al. [13]), we get:
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E

� ðT
0

@Ĥ1

@K1
ðsÞðK1ðsÞ � K̂1ðsÞÞds�

¼ E

� ðT
0

@Ĥ1

@K1
ðsÞ
ðs
s�d1

ðXðtÞ � X̂ðtÞÞdBðtÞds�

¼
ðT
0
E

�
@Ĥ1

@K1
ðsÞ
ðs
s�d1

ðXðtÞ � X̂ðtÞÞdBðtÞ�ds

¼
ðT
0
E

� ðs
s�d1

E

�
Dt

�
@Ĥ1

@K1
ðsÞ
�
jF t�ðXðtÞ � X̂ðtÞÞdt

�
ds

¼ E

� ðT
0

ðtþd1

t
E

�
Dt

�
@Ĥ1

@K1
ðsÞ
�
jF t�1½0,T�ðsÞdsðXðtÞ � X̂ðtÞÞdt

�
¼ E

� ðT
0

ðtþd1

t
Dt

�
@Ĥ1

@K1
ðsÞ
�
1½0,T�ðsÞdsðXðtÞ � X̂ðtÞÞdt

�
:

(23)

Also, note that

E
ðT
0

@Ĥ
@y1

ðtÞðY1ðtÞ � bY1ðtÞÞdt
" #

¼ E
ðT
0

@Ĥ
@y1

ðtÞðXðt � dÞ � X̂ðt � d1ÞÞdt
" #

¼ E
ðT
0

@Ĥ
@y1

ðt þ d1Þ1 0,T�d1½ �ðtÞðXðtÞ � X̂ðtÞÞdt
" #

:

(24)

Hence, by the inequality (22) combined with Equations (23) and (24),

D � E

� ðT
0

�
H1ðtÞ � Ĥ1ðtÞ � @Ĥ1

@x
ðtÞðXðtÞ � X̂ðtÞÞ � @Ĥ1

@y1
ðtÞðY1ðtÞ � Ŷ 1ðtÞÞ

� @Ĥ1

@K1
ðtÞðK1ðtÞ � K̂1ðtÞÞdt � @Ĥ1

@w1
ðtÞðW1ðtÞ � Ŵ 1ðtÞÞ � @Ĥ1

@z1
ðtÞðZ1ðtÞ � Ẑ1ðtÞÞ

þ
ð
R

rk1Ĥ1ðtÞðK1ðt, fÞ � K̂ 1ðt, fÞÞ�ðdfÞgdt�:
(25)

Fix some t 2 ½0,T�: By assumption, Ĥ1ð~xÞ :¼ Ĥ1ðt,~xÞ is concave, so it is superdiffer-
entiable1 (see Rockafellar [21]) at the point ~x :¼ ðX̂ , Ŷ 1, K̂1, Ŵ 1, Ẑ1, K̂ 1Þ: Thus, there
exists a supergradient ~a :¼ ða0, a1, a2, a3, a4, a5ð�ÞÞ such that for all ~y :¼ ðx, y,K,w, z, kÞ,
the following holds:

Ĥ1ð~xÞ þ~a � ð~y �~xÞ � Ĥ1ð~yÞ: (26)
Define

/1ðt, x, y,K,w, z, kÞ :¼ Ĥ1ðt, x, y,K,w, z, kÞ � Ĥ1ðt, X̂ , Ŷ 1, K̂1, Ŵ 1, Ẑ1, K̂ 1Þ
�
�
a0ðx� X̂Þ þ a1ðy � Ŷ 1Þ þ a2ðK� K1Þ þ a3ðw� Ŵ 1Þ þ a4ðz � Ẑ1Þ

þ
ð
R

a5ðfÞðk� K̂ 1Þ�ðdfÞÞ
	
:

(27)
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Then, by Equation (26),

/1ðt, x, y,K,w, z, kÞ � 0 for all x, y,K,w, z, k,
/1ðt, X̂ , Ŷ 1, K̂1, Ŵ 1, Ẑ1, K̂ 1Þ ¼ 0 ðby definitionÞ: (28)

Therefore, by differentiating Equation (27) and using Equation (28), we find that

a0 ¼ @Ĥ1

@x
ðt, X̂ , Ŷ 1, K̂1, Ŵ 1, Ẑ1, K̂ 1Þ ¼ @Ĥ1

@x
,

a1 ¼ @Ĥ1

@y1
ðt, X̂ , Ŷ 1, K̂1, Ŵ 1, Ẑ1, K̂ 1Þ ¼ @Ĥ1

@y1
,

a2 ¼ @Ĥ1

@K1
ðt, X̂ , Ŷ 1, K̂1, Ŵ 1, Ẑ1, K̂ 1Þ ¼ @Ĥ1

@K1
,

a3 ¼ @Ĥ1

@w1
ðt, X̂ , Ŷ 1, K̂1, Ŵ 1, Ẑ1, K̂ 1Þ ¼ @Ĥ1

@w1
,

a4 ¼ @Ĥ1

@z1
ðt, X̂ , Ŷ 1, K̂1, Ŵ 1, Ẑ1, K̂ 1Þ ¼ @Ĥ1

@z1
,

a5 ¼ rk1Ĥ1ðt, X̂ , Ŷ 1, K̂1, Ŵ 1, Ẑ1, K̂ 1Þ ¼ rk1Ĥ1:

Therefore, it follows from this, Equations (25) and (28) that

D ¼ /1ðt,XðtÞ,Y1ðtÞ,K1ðtÞ,W1ðtÞ,Z1ðtÞ,K1ðt, �ÞÞ � 0 8 t 2 0,T½ �
(where the final inequality follows since Ĥ1 is concave). This means that J1ðu1, û2Þ �
J1ðû1, û2Þ for all u1 2 A1: In a similar way, one can prove that J2ðû1, u2Þ � J2ðû1, û2Þ for
all u2 2 A2: This completes the proof that ðû1, û2Þ is a Nash-equilibrium. w

4. Necessary maximum principle for FBSDE games with delay and
noisy memory

In the following, we need some additional assumptions and notation:

� For all t0 2 ½0,T� and all bounded EiðtÞ-measurable random variables aiðxÞ, the
control

biðtÞ :¼ 1ðt0,TÞðtÞaiðxÞ is in Ai for i ¼ 1, 2: (29)

� For all ui, bi 2 Ai with bi bounded, there exists ji > 0 such that the control

uiðtÞ þ sbiðtÞ for t 2 0,T½ �, (30)

belongs to Ai for all s 2 ð�ji, jiÞ, i¼ 1, 2.

� Also, assume that the following derivative processes exist and belong to
L2ð½0,T� � XÞ :

x1ðtÞ ¼ d
ds

Xðu1þsb1, u2ÞðtÞ





s¼0

,

y1ðtÞ ¼ d
ds

Yðu1þsb1, u2Þ
1 ðtÞ






s¼0

,

(31)
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~K1ðtÞ ¼ d
ds

Kðu1þsb1, u2Þ
1 ðtÞ






s¼0

,

w1ðtÞ ¼ d
ds

Wðu1þsb1, u2Þ
1 ðtÞ






s¼0

,

z1ðtÞ ¼ d
ds

Zðu1þsb1, u2Þ
1 ðtÞ






s¼0

,

k1ðtÞ ¼ d
ds

Kðu1þsb1, u2Þ
1 ðtÞ






s¼0

,

and similarly for x2ðtÞ ¼ d
ds X

ðu1, u2þsb2ÞðtÞjs¼0 etc. Here, the derivative processes are direc-
tional derivatives, defined in the following way:

x1ðtÞ ¼ d
ds

Xðu1þsb1, u2ÞðtÞ

:¼ limDs!0
Xðu1þðsþDsÞb1, u2ÞðtÞ � Xðu1þsb1, u2ÞðtÞ

Ds
:

(32)

For more on this, see (4.11) in Di Nunno et al. [22] and Appendix A in Øksendal
and Sulem [7]. Note also that xið0Þ ¼ 0 for i¼ 1, 2 since Xð0Þ ¼ x:
If these assumptions hold, we can prove a necessary maximum principle for our

noisy memory FBSDE game. The proof of the following theorem is based on the same
idea as the proof of Theorem 2.2 in Øksendal and Sulem [7], however the presence of
noisy memory in our problem requires some extra care.

Theorem 4.1. Suppose that u 2 A with corresponding solutions XðtÞ,YiðtÞ, KiðtÞ,WiðtÞ,
ZiðtÞ,Kiðt, fÞ, kiðtÞ, piðtÞ, qiðtÞ, riðt, fÞ, i¼ 1, 2, of Equations (1), (10), (14) and (15).
Also, assume that conditions (29)–(31) hold. Then, the following are equivalent:

(i) @
@s J1ðu1 þ sb1, u2Þjs¼0 ¼ @

@s J2ðu1, u2 þ sb2Þjs¼0 ¼ 0 for all bounded b1 2 A1,
b2 2 A2:

(ii) E½@H1ðt,XðtÞ, YðtÞ,KðtÞ,W1ðtÞ,Z1ðtÞ,K1ðt, �Þ, v1, u2ðtÞ, k1ðtÞ, p1ðtÞ, q1ðtÞ, r1ðt, �ÞÞ
@v1

�jv1¼u1ðtÞ
¼ E½@H2ðt,XðtÞ, YðtÞ,KðtÞ,W2ðtÞ,Z2ðtÞ,K2ðt, �Þ, u1ðtÞ, v2, k2ðtÞ, p2ðtÞ, q2ðtÞ, r2ðt, �ÞÞ

@v2
�jv2¼u2ðtÞ ¼ 0:

Proof. We only prove that @
@s J1ðu1 þ sb1, u2Þjs¼0 ¼ 0 for all bounded b1 2 A1 is equiva-

lent to

E
@H1ðt,XðtÞ, YðtÞ,KðtÞ,W1ðtÞ,Z1ðtÞ,K1ðt, �Þ, v1, u2ðtÞ, k1ðtÞ, p1ðtÞ, q1ðtÞ, r1ðt, �ÞÞ

@v1

� �




v1¼u1ðtÞ

¼ 0:

The remaining part of the theorem (i.e., the same statement for J2andH2) is proved
in a similar way.
Note that, by the definition of J1 and by interchanging differentiation and

integration,
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D1 :¼ @

@s
J1ðu1 þ sb1, u2Þjs¼0

¼ E

� ðT
0

�
@f1
@x

ðtÞx1ðtÞ þ @f1
@y

ðtÞy1ðtÞ þ @f1
@K

ðtÞ~K1ðtÞ @f1
@u1

ðtÞb1ðtÞ
	
dt

þu0
1ðXðTÞÞx1ðTÞ þ /0

1ðW1ð0ÞÞw1ð0Þ
�
:

(33)

Note that the interchange of differentiation and integration is justified since every-
thing in Equation (33) is well defined and square integrable by assumption and P �
½0,T� is a finite measure space. Hence, we can apply Theorem 11.5 in Shilling [23] to
change the order of the expectation/integral and the differentiation. Also, note that D1

is a directional derivative of J1, defined similarly as in Equation (32). For more details
on directional (also called Gâteaux derivative), see Appendix A in Øksendal and Sulem
[7]. Furthermore, note that @f

@x is the partial derivative of the function f wrt. x inserted
the corresponding processes at time t: For proofs of the differentiability of the perform-
ance functional in a similar context, see Dahl et al. [4].
We study the different parts of D1 separately. First, by the Itô product rule, the

adjoint BSDE (15) and the definition of x1ðtÞ,
I1 :¼ E½u0

1ðXðTÞÞx1ðTÞ�
¼ E½p1ðTÞx1ðTÞ� � E½h01ðXðTÞÞk1ðTÞx1ðTÞ�

¼ E½p1ð0Þx1ð0Þ� þ E

� ðT
0
p1ðtÞdx1ðtÞ þ

ðT
0
x1ðtÞdp1ðtÞ

þ
ðT
0
d½p1, x1�ðtÞ� � E½h01ðXðTÞÞk1ðTÞx1ðTÞ�

¼ E

� ðT
0
p1ðtÞ

�
@b
@x

ðtÞx1ðtÞ þ @b
@y1

ðtÞy1ðtÞ þ @b
@K1

ðtÞ~K1ðtÞ þ @b
@u1

ðtÞb1ðtÞ
�
dt

�
þE

� ðT
0
x1ðtÞE½l1ðtÞjF t�dt

�
þE

� ðT
0
q1ðtÞ

�
@r
@x

ðtÞx1ðtÞ þ @r
@y1

ðtÞy1ðtÞ þ @r
@K1

~K1ðtÞ þ @r
@u1

ðtÞb1ðtÞ
�
dt

�
þE

� ðT
0

ð
R

r1ðt, fÞ
�
@c
@x

ðtÞx1ðtÞ þ @c
@y1

ðtÞy1ðtÞ þ @c
@K1

~K1ðtÞ þ @c
@u1

ðtÞb1ðtÞ
�
d�ðfÞdt

�
�E½h01ðXðTÞÞk1ðTÞx1ðTÞ�:

(34)

Also, by the FSDE (14), the BSDE (10), the definition of x1ðtÞ and the Itô product
rule,

I2 :¼ E½/0
1ðW1ð0ÞÞw1ð0Þ�

¼ E½k1ð0Þw1ð0Þ�

¼ E½k1ðTÞw1ðTÞ� � E

� ðT
0
k1ðtÞdw1ðtÞ þ

ðT
0
w1ðtÞdk1ðtÞ

(35)
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þ
ðT
0
z1ðtÞ @H1

@z1
ðtÞdt þ

ðT
0

ð
R

rk1H1ðt, fÞk1ðt, fÞ�ðdfÞdt
�

¼ E½k1ðTÞh01ðXðTÞÞx1ðTÞ� þ E

� ðT
0
k1ðtÞ

�
@g1
@x

ðtÞx1ðtÞ þ @g1
@y1

ðtÞy1ðtÞ

þ @g1
@K1

ðtÞ~KðtÞ þ @g1
@w1

ðtÞw1ðtÞ þ @g1
@z1

ðtÞz1ðtÞ þ rk1g1ðtÞk1ðtÞ

þ @g1
@u1

ðtÞb1ðtÞ
�
dt� � E

� ðT
0

@H1

@w1
ðtÞw1ðtÞdt

�
�E

� ðT
0
z1ðtÞ @H1

@z1
ðtÞdt þ

ðT
0

ð
R

rkH1ðt, fÞk1ðt, fÞ�ðdfÞdt
�
:

By the definition of D1 as well as Equations (34) and (35),

D1 ¼ Aþ E

� ðT
0
b1ðtÞð

@f1
@u1

ðtÞ þ @b
@u1

ðtÞp1ðtÞ þ @r
@u1

ðtÞq1ðtÞ þ @c
@u1

ðtÞr1ðtÞ

þ @g1
@u1

ðtÞk1ðtÞÞdt
�
þ E

� ðT
0
w1ðtÞ

�
� @H1

@w1
ðtÞ þ @g1

@w1
ðtÞk1ðtÞ

	
dt

þ
ðT
0
z1ðtÞ

�
� @H1

@z1
ðtÞ þ @g1

@x
ðtÞk1ðtÞ

	
dt

þ
ðT
0
k1ðtÞf�rk1H1ðtÞ þ rkg1ðtÞk1ðtÞgdt�,

(36)

where

A :¼ E

� ðT
0
x1ðtÞ

�
@f1
@x

ðtÞ þ @b
@x

ðtÞp1ðtÞ þ E½l1ðtÞjF t

�
þ @r

@x
ðtÞq1ðtÞ

þ @c
@x

ðtÞr1ðtÞ þ @g1
@x

ðtÞk1ðtÞ
	
dt þ

ðT
0
y1ðtÞ

�
@f1
@y1

ðtÞ þ @b
@y1

ðtÞp1ðtÞ

þ @r
@y1

ðtÞq1ðtÞ þ @c
@y1

ðtÞr1ðtÞ þ @g1
@y1

ðtÞk1ðtÞ
	
dt þ

ðT
0

~K1ðtÞ
�

@f1
@K1

ðtÞ

þ @b
@K1

ðtÞp1ðtÞ þ @r
@K1

ðtÞq1ðtÞ þ @c
@K1

ðtÞr1ðtÞ þ @g1
@K1

ðtÞk1ðtÞ
	
dt

�
¼ E

� ðT
0
x1ðtÞ

�
@H1

@x
ðtÞ þ E½l1ðtÞjF t�

	
dt

�
þ E

� ðT
0
y1ðtÞ @H1

@y1
ðtÞ
�

þE

� ðT
0

~K1ðtÞ @H1

@K1
ðtÞ
�
:

(37)

Then, by using the definition of the Hamiltonian H1, see Equation (13), we see that
everything inside the curly brackets in Equation (36) is equal to zero. Hence,

D1 ¼ Aþ E
ðT
0
b1ðtÞ

@H1

@u1
ðtÞdt

" #
:
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Recall that from the definitions of y1 and ~K1,

y1ðtÞ ¼ x1ðt � d1Þ and ~K1ðtÞ ¼
ðt
t�d1

x1ðuÞdBðuÞ:

This implies, by change of variables

E

� ðT
0
y1ðtÞ @H1

@y1
ðtÞ
�

¼ E

� ðT
0
x1ðt � d1Þ @H1

@y1
ðtÞdt

�
¼

ðT�d1

�d1

x1ðuÞ @H1

@y1
ðuþ d1Þdu

�
¼ E

� ðT
0
x1ðuÞ1½0,T�d1�ðuÞ

@H1

@y1
ðuþ d1Þdu

�
:

Also, by the duality formula for Malliavin derivatives (see Di Nunno et al. [13]) and
changing the order of integration

E

� ðT
0

~K1ðtÞ @H1

@K1
ðtÞ
�

¼ E

� ðT
0

ðt
t�d1

x1ðuÞdBðuÞ @H1

@K1
ðtÞdt

�
¼ E

� ðT
0

ðt
t�d1

E

�
Du

�
@H1

@K1
ðtÞ
�
jF u�x1ðuÞdu dt

�
¼ E

� ðT
0

ðuþd1

u
E

�
Du

�
@H1

@K1
ðtÞ
�
jF u�1½0,T�ðtÞdt x1ðuÞ du

�
:

But, from the definition of l1,

E

� ðT
0
x1ðtÞE½l1ðtÞjF t�dt

�
¼ E

� ðT
0
E½x1ðtÞl1ðtÞjF t� dt

�
¼ E

� ðT
0
E½x1ðtÞ

�
� @H1

@x
ðtÞ � @H1

@y1
ðt þ d1Þ1½0,T�d1�

�
ðtþd1

t
Dt

�
@H1

@K1
ðsÞ
�
1½0,T�ðsÞds

	
jF t�dt�:

So, by the rule of double expectation and the calculations above, A ¼ 0: This implies
that D1 ¼ E½Ð T0 b1ðtÞ @H1

@u1
ðtÞdt�, so

@

@s
J1ðu1 þ sb1, u2Þjs¼0 ¼ E

ðT
0
b1ðtÞ

@H1

@u1
ðtÞdt

" #
,

which was what we wanted to prove. w

5. Solution of the noisy memory FBSDE

In this section, we consider a slightly simplified version of the system of noisy memory
FBSDEs in Equations (14) and (15). Instead, consider the following noisy mem-
ory FBSDE:
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FSDE in k,

dkðtÞ ¼ @H
@w

ðtÞdt þ @H
@z

ðtÞdBðtÞ þ
ð
R

rkHðt, fÞ~Nðdt, dfÞ,
kð0Þ ¼ /0ðWð0ÞÞ:

(38)

BSDE in p, qandr,

dpðtÞ ¼ �E lðtÞjF t½ �dt þ qðtÞdBðtÞ þ Ð
R
rðt, fÞ~Nðdt, dfÞ,

pðTÞ ¼ u0ðXðTÞÞ þ h0ðXðTÞÞkðTÞ (39)

where

Hðt, x, y1, y2,K1,K2,w, z, k, u1, u2, k, p, q, rÞ
¼ f ðt, x, y,K, u1, u2Þ þ kgðt, x, y1, y2,K1,K2,w, z, k, u1, u2Þ
þ pbðt, x, y1, y2,K1,K2, u1, u2Þ þ qrðt, x, y1, y2,K1,K2, u1, u2Þ
þ
ð
R

rðfÞcðt, x, y1, y2,K1,K2, u1, u2, fÞ�ðdfÞ

and

lðtÞ ¼ @H
@x

ðtÞ þ @H
@y

ðt þ dÞ1 0,T�d½ �ðtÞ þ
ðtþd

t
E Dt

@H
@K

ðsÞ
� �

jF t

� �
1 0,T½ �ðsÞds:

Note that the set of Equations (14) and (15) are two such systems such as (38) and
(39) involving the same X process as well as the same controls u1, u2:
Also, consider the following system consisting of an FSDE and two BSDEs:
FSDE in k,

d~kðtÞ ¼ @H
@w

ðtÞdt þ @H
@z

ðtÞdBðtÞ þ
ð
R

rkHðt, fÞ~Nðdt, dfÞ,
~kð0Þ ¼ /0ðWð0ÞÞ:

(40)

BSDE in p1, q1andr1,

dp1ðtÞ ¼ �E l1ðtÞjF t½ �dt þ q1ðtÞdBðtÞ þ
Ð
R
r1ðt, fÞ~Nðdt, dfÞ,

p1ðTÞ ¼ u0ðXðTÞÞ þ h0ðXðTÞÞ~kðTÞ: (41)

BSDE in p2, q2 and r2,

dp2ðtÞ ¼ �E l2ðtÞjF t½ �dt þ q2ðtÞdBðtÞ þ
Ð
R
r2ðt, fÞ~Nðdt, dfÞ,

p2ðTÞ ¼ 0
(42)

where

Hðt, x, y1, y2,K1,K2,w, z, k, u1, u2, ~k, p1, p2, q1, q2, r1, r2Þ
¼ q2ðtÞx þHðt, x, y1, y2,K1,K2,w, z, k, u1, u2, ~k, p1, q1, r1Þ,

l1ðtÞ ¼ q2ðtÞ þ @H
@x

ðtÞ þ @H
@y

ðt þ dÞ1 0,T�d½ �ðtÞ
(43)

and

l2ðtÞ ¼
@H
@K

ðtÞ � @H
@K

ðt þ dÞ1 0,T�d½ �ðtÞ:
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Note that @H
@K ðtÞ ¼ @H

@K ðtÞ, @H@K ðtÞ ¼ q2ðtÞ þ @H
@K ðtÞ and @H

@y ðtÞ ¼ @H
@y ðtÞ: Hence, Equations

(38) and (40) are structurally equal.
Then, by similar techniques as in Dahl et al. [4], we can show the following theorem:

Theorem 5.1. Assume that ðpi, qi, riÞ for i ¼ 1, 2 and ~k solve the FBSDE system
(40)–(42). Define k ¼ ~k, pðtÞ ¼ p1ðtÞ, qðtÞ ¼ q1ðtÞ and rðt, �Þ ¼ r1ðt, �Þ and assume that
E½Ð T0 ð@HðtÞ

@z Þ2�dt < 1. Then, ðp, q, r, kÞ solves the noisy memory FBSDE (38) and (39) and

q2ðtÞ ¼
ðtþd

t
E Dt

@H
@K

ðsÞ
� �

jF t

� �
ds:

Proof. The jump terms do not make a difference here, so assume for simplicity that r ¼
r1 ¼ r2 ¼ 0 everywhere.
In general, we know that if dp2ðtÞ ¼ �hðt, p2, q2Þdt þ q2ðtÞdBðtÞ, p2ðTÞ ¼ F, then

q2ðtÞ ¼ Dtp2ðtÞ: (44)

Now, note that the solution p2 of the BSDE (42) can be written

p2ðtÞ ¼ �E
ðT
t
E l2ðsÞjF s½ �dsjF t

" #

¼ �
ðT
t
E l2ðsÞjF t½ �ds

¼ �
ðT
t
E

@H
@K

ðtÞ � @H
@K

ðt þ dÞ1 0,T�d½ �ðtÞjF t

� �
ds

¼ �
ðtþd

t
E

@HðsÞ
@K





F t

" #
1 0,T½ �ðsÞds,

where the equalities follow from Fubini’s theorem, the rule of double expectation, the
definition of l2 and a change of variables. Hence, by Equation (44):

q2ðtÞ ¼ Dtp2ðtÞ
¼ Dt

ðtþd

t
E

@HðsÞ
@K





F t

" #
1 0,T½ �ðsÞ

" #
ds

¼
ðtþd

t
E Dt

�
@HðsÞ
@K

�



F t

" #
1 0,T½ �ðsÞds,

which is part of what we wanted to prove.
By inserting this expression for q2 into the definition of l1, we see that

l1ðtÞ ¼
ðtþd

t
E Dt

@HðsÞ
@K

� �



F t

" #
1 0,T½ �ðsÞdsþ @HðtÞ

@x
þ @Hðt þ dÞ

@y
1 0,T½ �ðt þ dÞ:

Hence, we see that the BSDE (41) is the same as (39), so they have the same solution.
This completes the proof of the theorem. w

We can also prove the following converse result.
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Theorem 5.2. If p, q, r, k solve the FBSDE (38) and (39) and we define ~k ¼ k, p1 ¼
p, q1 ¼ q, r1 ¼ r and

p2ðtÞ ¼
ðtþd

t
E

@H
@K

ðsÞjF t

� �
1 0,T�d½ �ðsÞds,

q2ðtÞ ¼
ðtþd

t
E Dt

@H
@K

ðsÞ
� �

jF t

� �
1 0,T�d½ �ðsÞds,

r2ðt, �Þ ¼ 0:

Then, ðpi, qi, riÞ for i ¼ 1, 2 and ~k solve the system of Equations (40)–(42).

Proof. A gain, the jump parts make no crucial difference, so we consider the no-jump
situation for simplicity.
It is clear that Equation (40) holds from the assumptions above (from the definition

of H, see (43)). Also, the BSDE (41) holds: Clearly, the terminal condition holds, and
by the computations in the proof of Theorem 5.1, the remaining part of Equation (41)
also holds. Therefore, it only remains to prove that the BSDE (42) holds.
By the Itô isometry and the Clark–Ocone formula,

E
ðT
0
E Ds

�
@HðrÞ
@K

�



F s

" #2
ds

24 35 ¼ E

�ðT
0
E Ds

@HðrÞ
@K





F s

" #
dBs

�2
" #

¼ E

�
@H
@K

ðrÞ
�2

� E
@H
@K

ðrÞ
� �2" #

:

Hence,ðT
0
E
ðT
0
E Dsð@HðrÞ

@K
ÞjF s

� �2
ds

" #1
2

dr ¼
ðT
0

E
@H
@K

ðrÞ2
� �

� E
@H
@K

ðrÞ
� �2 !1

2

dt < 1:

Note that from the Clark–Ocone theorem,

@HðrÞ
@K

¼ E
@HðrÞ
@K





F t

" #
þ
ðr
t
E Ds

�
@HðrÞ
@K

�



F s

" #
dBðsÞ:

Therefore, by the definition of q2 in the theorem and the Fubini theoremðT
t
q2ðsÞdBðsÞ ¼

ðT
t

ðT
t
E Ds

�
@HðrÞ
@K

�



F s

" #
1 s, sþd½ �ðrÞdrdBðsÞ

¼
ðT
t

ðT
t
E Ds

�
@HðrÞ
@K

�



F s

" #
1 r�d, r½ �ðsÞdBðsÞdr:

By some algebra and the Clark–Ocone theorem (16),ðT
t

ðT
t
E Ds

�
@HðrÞ
@K

�



F s

" #
1 r�d, r½ �ðsÞdBðsÞdr ¼

ðT
t

ðr
r�d

E Ds

�
@HðrÞ
@K

�



F s

" #
dBðsÞdr

¼
ðT
t

�
@HðrÞ
@K

� E
@HðrÞ
@K





F r�d

" #�
dr:
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By splitting the integrals and using change of variables (twice) as well as some algebra,

¼
ðT
t

@HðsÞ
@K

ds�
ðT�d

t�d
E

@Hðsþ dÞ
@K





F s

" #
ds

¼
ðT
t

@HðsÞ
@K

ds�
ðT
t
E

@Hðsþ dÞ
@K





F s

" #
1 0,T�d½ �ðsÞds

�
ðtþd

t
E

@HðsÞ
@K

jF t

� �
1 0,T�d½ �ðsÞds

¼
ðT
t
E

@HðsÞ
@K

� @Hðsþ dÞ
@K

1 0,T�d½ �ðsÞ




F s

" #
ds� p2ðtÞ:

This proves that the BSDE (42) holds as well. w

Now, we have expressed the solution of the Malliavin FBSDE via the solution of the
“double” FBSDE system (40)–(42). What kind of system of equations is this? The sys-
tem consists of two connected BSDEs in ðp1, q1, r1Þandðp2, q2, r2Þ respectively, and these
are again connected to a FBSDE in k: However, from Equation (42) and the definition
of l2, we see that the right hand side of (42) does not depend on p2: Hence, the BSDE
(42) can be rewritten

dp2ðtÞ ¼ hðt, k, p1, q1, r1ð�ÞÞdt þ q2ðtÞdBðtÞ þ
Ð
R
r2ðt, fÞ~Nðdt, dfÞ

p2ðTÞ ¼ 0:

This can be solved to express p2usingk, p1, q1andr1ð�Þ by letting q2ðtÞ ¼ r2ðt, �Þ ¼ 0 for
all t and

p2ðtÞ ¼ E
ðT
t
hðt, k, p1, q1, r1ð�ÞÞdtjF t

" #
:

Now, we can substitute this solution for p2ðtÞ into the FBSDE system (40) and (41).
The resulting set of equations is a regular system of time advanced FBSDEs with jumps.
There are to the best of our knowledge, no general results on existence and uniqueness
of such systems of FBSDEs. However, if we simplify by removing the jumps and there
was no time-advanced part (i.e., no delay process Yi in the original FSDE (1)), there are
some results by Ma et al. [24].

6. Optimal consumption rate with respect to recursive utility

In this section, we apply the previous results to the problem of determining an optimal
consumption rate with respect to recursive utility (see also Øksendal and Sulem [25]
and Dahl and Øksendal [26]). Let XðtÞ ¼ XcðtÞ, where the consumption rate cðtÞ is our
control, and assume that

dXðtÞ ¼ XðtÞ lðtÞdt þ rðtÞdBðtÞ þ Ð
R
cðt, fÞ~Nðdt, dfÞ

h i
� c1ðtÞ þ c2ðtÞ½ �XðtÞdt,

Xð0Þ ¼ x > 0,

(45)
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and WiðtÞ is given by

dWiðtÞ ¼ � aiðtÞWiðtÞ þ giðtÞ ln ðYiðtÞÞ þ jiðtÞ ln ðKiðtÞÞ þ ln ðciðtÞXðtÞÞ½ �
þZiðtÞdBðtÞ þ

Ð
R
Kiðt, fÞ~Nðdt, dfÞ,

WiðTÞ ¼ 0:

Let the performance functional be defined by Jiðc1, c2Þ :¼ Wið0Þ, i.e., Ji is the recur-
sive utility for player i: Also, assume that both players have full information,
so ðEðiÞ

t Þt ¼ ðF tÞtf ori ¼ 1, 2:
We would like to find a Nash equilibrium for this FBSDE game with delay. To do so

we will use the maximum principle Theorem 3.1. Note that fi ¼ ui ¼ hi ¼ 0 and that
wiðwÞ ¼ w for i ¼ 1, 2: The Hamiltonians are:

Hiðt, x, y1, y2,K1,K2,wi, zi, ki, c1, c2, ki, pi, qi, riðfÞÞ
¼ kiðaiðtÞwi þ giðtÞ ln ðyiÞ þ ln ðcixÞÞ
þpiðxlðtÞ � ðc1 þ c2ÞxÞ þ qirðtÞxþ

ð
R

xriðfÞcðt, fÞ�ðdfÞ for i ¼ 1, 2:

The adjoint BSDEs are

dpiðtÞ ¼ E liðtÞjF t½ �dt þ qiðtÞdBðtÞ þ
Ð
R
riðt, fÞ~Nðdt, dfÞ,

piðTÞ ¼ 0,

where

liðtÞ ¼ � kiðtÞ
XðtÞ �

kiðt þ diÞgiðt þ diÞ
Yiðt þ diÞ 1 0,T�di½ �ðtÞ � piðtÞðlðtÞ � ðc1ðtÞ þ c2ðtÞÞÞ

þqiðtÞrðtÞ þ
ð
R

riðt, fÞcðt, fÞ�ðdfÞ

for i ¼ 1, 2: Note that by the definition of Yi,Yiðt þ diÞ ¼ Xðft þ dig � diÞ ¼ XðtÞ:
The adjoint BSDEs are linear, and the solutions are given by (see Øksendal and

Sulem [15])

CiðtÞpiðtÞ ¼ E
ðT
t
ðkiðsÞ
XðsÞ þ

kiðsþ diÞgiðsþ diÞ
Yiðsþ diÞ 1 0,T�di½ �ðsÞÞCiðsÞdsjF t

" #

¼ E
ðT
t
ðkiðsÞ
XðsÞ þ

kiðsþ diÞgiðsþ diÞ
XðsÞ 1 0,T�di½ �ðsÞÞCiðsÞdsjF t

" #
,

(46)

where

dCiðtÞ ¼ CiðtÞ ðlðtÞ � ðc1ðtÞ þ c2ðtÞÞÞdt þ rðtÞdBðtÞ þ
ð
R

cðt, fÞ~Nðdt, dfÞ
� �

,

Cið0Þ ¼ 1 for i ¼ 1, 2:

Note that by the SDE (45),

xCiðtÞ ¼ XðtÞ: (47)

Hence, by combining Equations (46) and (47), we see that

XðtÞpiðtÞ ¼ E
Ð T
t ðkiðsÞ þ kiðsþ diÞgiðsþ diÞ1 0,T�di½ �ðsÞÞdsjF t

h i
: (48)
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The adjoint FSDEs are

dkiðtÞ ¼ kiðtÞaiðtÞdt,
kið0Þ ¼ 1, for i ¼ 1, 2:

These are (non-stochastic) differential equation with solution kiðtÞ ¼ exp
ðÐ t0 aiðsÞdsÞ for i ¼ 1, 2:
We maximize Hi with respect to ci: For i ¼ 1, 2, the first order condition is:

ĉiðtÞ ¼ kiðtÞ
piðtÞXðtÞ :

By substituting Equation (48) into this, we find (by the sufficient maximum principle,
Theorem 3.1) that the consumption rates leading to a Nash equilibrium for the recur-
sive utility problem are given by:

c	i ðtÞ ¼
kiðtÞ

E
Ð T
t ðkiðsÞ þ kiðsþ diÞgiðsþ diÞ1 0,T�di½ �ðtÞÞdsjF t

h i :
where kiðtÞ ¼ exp ðÐ t0 aiðsÞdsÞfori ¼ 1, 2:

7. Conclusion

In this paper, we have analyzed a two-player stochastic game connected to a set of
FBSDEs involving delay and noisy memory of the market process. We have derived suf-
ficient and necessary maximum principles for a set of controls for the two players to be
a Nash equilibrium in this game. We have also studied the associated FBSDE involving
Malliavin derivatives, and connected this to a system of FBSDEs not involving Malliavin
derivatives. Finally, we were able to derive a closed form Nash equilibrium solution to a
game where the aim is to find the optimal consumption with respect to recur-
sive utility.

Note
1. Defined similarly as subdifferentiability for convex functions.
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