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This article shows entropic tilting to be a flexible and powerful tool for combining medium-term forecasts
from BVARs with short-term forecasts from other sources (nowcasts from either surveys or other models).
Tilting systematically improves the accuracy of both point and density forecasts, and tilting the BVAR
forecasts based on nowcast means and variances yields slightly greater gains in density accuracy than
does just tilting based on the nowcast means. Hence, entropic tilting can offer—more so for persistent
variables than not-persistent variables—some benefits for accurately estimating the uncertainty of multi-
step forecasts that incorporate nowcast information.

KEY WORDS: Bayesian analysis; Forecasting; Prediction.

1. INTRODUCTION

It is commonly known that models such as vector autore-
gressions (VARs) or dynamic stochastic general equilibrium
(DSGE) models that are effective in medium-term macroeco-
nomic forecasting are not as effective at short-horizon forecast-
ing. As a result, VARs and DSGE models are often combined
with current-quarter forecasts, or nowcasts, from another source.
One such source is a judgmental forecast from a central bank
or a survey of professional forecasters, motivated by evidence
that such forecasts often provide useful information beyond that
contained in econometric models (e.g., Ang, Bekaert, and Wei
2007; Faust and Wright 2013). Alternatively, relatively accurate
short-horizon forecasts can be obtained from bridging equations
or factor models, surveyed in Banbura, Giannone, and Reichlin
(2013b) and Banbura et al. (2013a). Compared to medium-term
forecasting models, these nowcasting approaches improve near-
term forecast accuracy by better adding up information in data
releases for the current quarter and require dealing with differ-
ences in data release dates within the quarter (what is known as
the “ragged edge” of data).

A number of methods for combining (VAR or DSGE)
medium-term forecasts with nowcasts from another source have
been used in the recent literature. Faust and Wright (2009)
used short-horizon forecasts from the Federal Reserve Board’s
Greenbook as jumping-off points (treating them as data, ap-
pended to the actual data) for forecasts obtained from autore-
gressive and factor-augmented autoregressive models of GDP
growth and inflation. Similarly, Faust and Wright (2013) used
current-quarter forecasts from the Survey of Professional Fore-
casters as jumping-off points for inflation forecasts from a
range of autoregressive, Phillips curve, and DSGE models.

Schorfheide and Song (2015) and Wolters (2015) treated now-
casts from the Greenbook as data in forming forecasts at subse-
quent horizons from, respectively, a Bayesian VAR (BVAR) and
DSGE models. Del Negro and Schorfheide (2013) combined
current quarter Blue Chip Consensus forecasts of GDP growth,
inflation, and interest rates with DSGE model forecasts by treat-
ing the Blue Chip forecasts as noisy data for the quarter, using
Kalman filter methods for signal extraction. Frey and Mokinski
(2015) used survey nowcasts in estimating the parameters of a
VAR. While we are not aware of published examples, in practice
it also seems to be common to use conditional forecast meth-
ods (see, e.g., Doan, Litterman, and Sims 1984) to incorporate
nowcast information into medium-term forecasts from BVARs.
Finally, while this discussion and our analysis focuses on com-
bining forecasts from different sources, an alternative approach
is to specify a single model in mixed frequency data (e.g., quar-
terly and monthly). For example, Schorfheide and Song (2015)
and Giannone, Monti, and Reichlin (2014) developed mixed
frequency BVAR and DSGE models, respectively.

As this review suggests, there is no single, standard approach
for combining forecasts from medium-term projection mod-
els with short-term forecasts from other sources, either surveys
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or nowcasting models. In this article, we examine the effects
of using entropic tilting to combine such forecasts. Entropic
tilting is a technique for modifying a baseline distribution such
that it matches certain moment conditions of interest. Robert-
son, Tallman, and Whiteman (2005) introduced tilting into
macroeconomic forecasting, using it to impose conditions on
policy rates in a small BVAR forecasting model. Cogley, Moro-
zov, and Sargent (2005) used tilting to produce BVAR forecasts
that conditioned on information in the Bank of England’s fore-
cast. More recently, Altavilla, Giacomini, and Ragusa (2013)
used entropic tilting to combine survey-based forecasts of short-
term interest rates with yield curve forecasts from econometric
models, and Lewis and Whiteman (2015) used tilting to improve
forecasts of tax revenues in Iowa. These studies primarily focus
on point forecasts—not only tilting based on point forecasts but
also measuring performance in terms of point forecast accuracy.

Compared to some other existing approaches for combining
forecasts from multiple sources, tilting has the advantage of be-
ing highly flexible. This flexibility is needed here. In particular,
merging a multi-step BVAR forecast density with an external
nowcast is not a traditional density combination problem in the
spirit of Stone (1961), Hall and Mitchell (2007), Geweke and
Amisano (2011), and Gneiting and Ranjan (2013). All of these
studies consider a set of densities f1, . . . , fn which refer to the
same (univariate or multivariate) random variable. Our setting is
different in two respects: first, the nowcast refers to a univariate
random variable, whereas the BVAR density is jointly for five
forecast horizons. Second, the nowcast does not come as a full
density but only as a set of moment conditions. Furthermore,
compared to simpler approaches such as treating the nowcast as
additional data, the flexibility of tilting permits the forecaster to
properly capture uncertainty around the combined forecast.

Building on the aforementioned prior research, we use tilting
to improve macroeconomic forecasts from BVARs by combin-
ing them with nowcasts from surveys and specialized models.
Extending past research, we consider tilting the BVAR forecast
distributions toward not just the means but also the variances
of the nowcasts, and we consider the effects of tilting on the
accuracy of not only point forecasts but also density forecasts.
We also compare how proper combination of forecasts via tilt-
ing affects estimates of forecast uncertainty compared to cruder
approaches that do not account for nowcast uncertainty.

In our implementation, we focus on forecasts of (U.S.) GDP
growth, the unemployment rate, inflation in GDP price index,
and the three-month Treasury bill (T-bill) rate. A range of
studies have considered similar variable sets (e.g., Clark 2011;
D’Agostino, Gambetti, and Giannone 2013). We use forecasts
from a BVAR with stochastic volatility as in Clark and Ravaz-
zolo (2015). The survey-based forecasts we consider are taken
from the Survey of Professional Forecasters (SPF). We also
consider model-based nowcasts (current-quarter forecasts); for
GDP and inflation, the model uses the Bayesian mixed frequency
formulation of Carriero, Clark, and Marcellino (2015), while
for the unemployment and T-bill rates, we use small VARs in
monthly data (to construct quarterly nowcasts), detailed below.

Broadly, our results show entropic tilting to be a flexible, pow-
erful, and effective tool for combining forecasts from BVARs
with external nowcasts. We show that tilting, like other ap-
proaches to combining BVAR forecasts with nowcasts, system-

atically improves the accuracy of point forecasts of standard
macroeconomic variables. Extending previous work, we also
find that tilting based on nowcast means systematically im-
proves the accuracy of density forecasts from our BVAR. We
go on to show that tilting the BVAR forecasts based on not
only nowcast means but also nowcast variances yields slightly
greater gains in density accuracy than does just tilting based
on the nowcast means. For less persistent variables such as
GDP growth, the accuracy gains tend to die out as the fore-
cast horizon increases, but for unemployment and interest rates,
the gains carry over to horizons as long as five quarters. Our
results also show that tilting toward the nowcast mean and vari-
ance produces sharper forecast distributions than tilting toward
the nowcast mean only. This is because the former approach
incorporates the reduced variance of the nowcast—which uses
intra-quarter information—whereas the latter approach implic-
itly conditions on the BVAR variance. Again, these effects are
much more pronounced for the more persistent variables.

As to the merits of the survey-based (SPF) nowcasts compared
to the model-based nowcasts, for GDP and inflation, survey
forecasts from the SPF are hard to beat, so the BVAR is improved
more by tilting toward the SPF nowcast than the model-based
nowcasts. But for the unemployment and T-bill rates, our model-
based nowcasts are more accurate than their SPF counterparts,
with corresponding effects on the tilted BVAR forecasts. In a
comparison of tilting on a variable-by-variable basis to tilting
jointly toward the nowcasts for all four variables of the BVAR,
we find that the overall differences in forecast performance for
the joint treatment of variables versus the individual treatment
of variables are small.

The article proceeds as follows. Sections 2 and 3 detail the
data and models, respectively. Section 4 explains the implemen-
tation of tilting and provides examples. Section 5 provides our
main results on entropic tilting. Section 6 presents comparisons
to some related combination methods proposed in the literature,
and Section 7 concludes. The online Appendix provides de-
tails of our priors and estimation algorithms and presents some
analytical derivations mentioned in the article. Furthermore, it
provides additional robustness results (for other combination
methods, a shorter sample period, alternative prior settings, and
some additional VAR specifications), as well as some additional
analysis of the effects of tilting on the forecast distributions.

2. DATA

2.1 Data for Models

We use quarterly data to estimate BVAR models (detailed
below) for growth of real GDP, inflation in the GDP price in-
dex or deflator (henceforth, GDP inflation), the unemployment
rate, and the three-month T-bill rate. We compute GDP growth
as 400 times the log difference of real GDP and inflation as
400 times the log difference of the GDP price index, to put them
in units of annualized percentage point changes. The unemploy-
ment rate and interest rate are also defined in units of percentage
points (annualized in the case of the interest rate), with quarterly
rates formed as within-quarter averages of monthly rates.

In constructing model-based nowcasts of growth, inflation,
unemployment, and the T-bill rate using models detailed in the
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next section, we rely on a small set of other indicators. For
nowcasting GDP growth, we use two monthly coincident in-
dicators taken from Carriero, Clark, and Marcellino (2015):
employment growth and the Institute of Supply Management’s
production index for manufacturing. For nowcasting GDP in-
flation, we use monthly inflation rates of the CPI ex food and
energy, the CPI for food, the CPI for energy, the PPI for cap-
ital goods, and the price deflator for new one-family houses
under construction. We form nowcasts of unemployment us-
ing monthly data on not only unemployment but also growth
in payroll employment and new claims for unemployment in-
surance. Finally, we construct nowcasts of the T-bill rate using
monthly data on the average (for the month) T-bill rate and the
three-month and six-month T-bill rates on the 15th of the month.

In forming all of our model-based forecasts and nowcasts, for
those indicators subject to significant revisions and for which
we can easily obtain the needed data, we use real-time data from
the Federal Reserve Bank of Philadelphia’s Real Time Dataset
for Macroeconomists (RTDSM). The variables for which we
use real time data are the following: GDP, GDP price index,
monthly unemployment, and monthly employment. Note that,
for simplicity, we use “GDP” and “GDP price index” to refer to
the output and price series to be forecast, even though the mea-
sures are based on GNP and a fixed weight deflator for some
of the sample. As described by Croushore and Stark (2001), the
quarterly vintages of the RTDSM are dated to reflect the infor-
mation available around the middle of each quarter. In vintage t,
the available GDP and GDP price index data run through period
t − 1. For all remaining variables, we use currently available
data obtained from either the FRED database of the Federal
Reserve Bank of St. Louis or from the FAME database of the
Federal Reserve Board of Governors: quarterly unemployment
and T-bill rates, the Institute of Supply Management’s produc-
tion index for manufacturing, new claims for unemployment
insurance, the CPI ex food and energy, the CPI for food, the
CPI for energy, the PPI for capital goods, and the price index
for new home construction.

2.2 SPF Forecast Data

We obtain quarterly SPF forecasts of GDP growth, unem-
ployment, GDP inflation, and the T-bill rate from the website of
the Federal Reserve of Philadelphia. At each forecast origin, the
available forecasts span five quarterly horizons, from the current
quarter through the next four quarters. We take the point forecast
to be the median of the SPF responses. In some entropic tilting
results, we also use a measure of forecast uncertainty. In the
presented results, we consider what Clements (2014) referred
to as an ex post measure: the variance of recent forecast errors,
which we compute over the previous 20 forecasts. Specifically,
denote by Ŷt,h the (median) SPF forecast of Yt at forecast hori-
zon h (i.e., the forecast for t based on data up to t − h). Then,
our h-period error measure is computed as

σ̂ 2
t,h = 1

20

19∑
r=0

(Yt−D−r − Ŷt−D−r,h)2,

where D reflects the delay (in quarters) with which the forecaster
learns of the relevant realizations data. In line with the consider-

ations in the next section, we set D = 2 for all variables except
T-bill (D = 1). When considering model-based nowcasts, we
instead compute the variance from the model’s simulated pre-
dictive distribution.

2.3 Forecast Evaluation Sample

We evaluate forecasts from 1988:Q3 through 2013:Q2 (and
over a precrisis sample of 1988:Q3–2007:Q4, in results pre-
sented primarily in the Appendix). The start date of 1988:Q3
marks the earliest possible for a common sample size across
variables; SPF forecasts of the T-bill rate do not begin until
1981:Q3, and we require additional observations for comput-
ing the forecast error variance at all horizons. For each forecast
origin t starting with 1988:Q3, we estimate the forecast models
and construct forecasts of quarterly values of all variables for
periods t and beyond. Consistent with the availability of SPF
forecasts, we report results for forecast horizons of 1–5 quarters
ahead. In light of the time t − 1 information actually incorpo-
rated in the quarterly BVAR models used for forecasting at t,
the one-quarter ahead forecast is a current quarter (t) forecast,
while the two-quarter ahead forecast is a next quarter (t + 1)
forecast, etc. For the BVAR used to forecast the four variables
of interest, the starting point of the model estimation sample is
1955:Q1; we use data for the 1948–1954 period to set the priors
on some parameters, as detailed in the online Appendix. For
the GDP and inflation nowcasting models, the starting point of
model estimation is always 1970:Q2 and 1965:Q1, respectively.
For the unemployment rate and T-bill nowcasting models, the
estimation samples begin with January 1955 and January 1965,
respectively, reflecting data availability.

As discussed in such sources as Romer and Romer (2000),
Sims (2002), and Croushore (2006), evaluating the accuracy
of real-time forecasts requires a difficult decision on what to
take as the actual data in calculating forecast errors. We follow
studies such as Romer and Romer (2000) and Faust and Wright
(2009) and use the second available estimates of GDP/GNP
and the GDP/GNP deflator as actuals in evaluating forecast
accuracy. In the case of h-quarter ahead forecasts made for
period t + h with vintage t data ending in period t − 1, the
second available estimate is taken from the vintage t + h + 2
dataset. In light of our abstraction from real-time revisions in
quarterly unemployment and interest rates, we use final vintage
data for evaluating forecasts of these series.

3. MODELS

This section provides the specifications of our models and an
overview of the estimation methods. The priors and estimation
algorithms are detailed in the online Appendix.

3.1 BVAR Specification

We focus on forecasts from a BVAR with random walk
stochastic volatility, the specification that Clark and Ravazzolo
(2015) found to perform relatively well in a comparison of the
forecasting performance (both point and density—stochastic
volatility is particularly important for density accuracy) of a
range of autoregressive models with and without time-varying
volatility.
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Let yt denote the k × 1 vector of model variables, B0 denote a
k × 1 vector of intercepts, and Bi, i = 1, . . . , p, denote a k × k

matrix of coefficients on lag i. For our set of k = 4 variables, we
consider a VAR(p) model with stochastic volatility, with a lag
length of p = 4:

yt = B0 +
p∑

i=1

Biyt−i + vt ,

vt = A−1�0.5
t εt , εt ∼ N (0, Ik),

�t ≡ diag(λ1,t , . . . , λk,t ),

log(λi,t ) = log(λi,t−1) + νi,t , i = 1, . . . , k,

νt ≡ (ν1,t , ν2,t , . . . , νk,t )
′ ∼ N (0,�), (1)

where A is a lower triangular matrix with ones on the diagonal
and nonzero coefficients below the diagonal, and the diago-
nal matrix �t contains the time-varying variances of under-
lying structural shocks. This model implies that the reduced
form variance–covariance matrix of innovations to the VAR is
Var(vt ) ≡ �t = A−1�tA

−1′. Note that, as in Primiceri’s (2005)
implementation, innovations to log volatility are allowed to be
correlated across variables; that is, � is not restricted to be
diagonal.

To estimate this BVAR, we use a Gibbs sampler, detailed
in the online Appendix. Stochastic volatility is estimated with
the algorithm of Kim, Shephard, and Chib (1998), as detailed
by Primiceri (2005), and correcting the ordering of sampling
steps as proposed by Del Negro and Primiceri (2015). The VAR
coefficients are drawn from a conditional posterior distribution
that is multivariate normal, with a GLS-based mean and variance
given in Clark (2011). All of our reported results are based
on samples of 5000 posterior draws of the model parameters,
obtained by retaining every eighth draw of a total sample of
40,000 post-burn draws, with a burn period of 5000 draws.

The posterior distributions of forecasts reflect the uncer-
tainty due to all parameters of the model and shocks occur-
ring over the forecast horizon. To simulate the predictive den-
sity of the BVAR, from a forecast origin of period T , for
each retained draw of the model parameters or latent states
(B, A, �t up through T , and �), we: (1) draw innovations
to log volatilities for periods T + 1 through T + H from a
multivariate normal distribution with variance–covariance ma-
trix � and compute λT +1, . . . , λT +H ; (2) draw innovations to
yT +h, h = 1, . . . , H , from a normal distribution with variance
�T +h = A−1�T +hA

−1′, and use the vector autoregressive struc-
ture of the model along with the coefficients B to obtain draws
of yT +h, h = 1, . . . , H . We repeat Steps 1 and 2 five times for
each draw of the model parameters. This yields 25,000 draws of
yT +h, which we use to compute the forecast statistics of interest.

3.2 Nowcast Model: GDP Growth

To align with the typical timing of the Survey of Professional
Forecasters, we use the Bayesian mixed frequency modeling
approach of Carriero, Clark, and Marcellino (2015) to produce
a current-quarter forecast of GDP growth with data available
around the end of the first week of the second month of the
quarter. More specifically, we forecast the quarterly growth

rate of GDP in month two of the current quarter based on the
regression:

yt = X′
tβ + vt ,

vt = λ0.5
t εt , εt ∼ iid N (0, 1), (2)

log(λt ) = log(λt−1) + νt , νt ∼ iid N (0, φ),

where t is measured in quarters and the vector Xt contains
predictors available at the time the forecast is formed.

The specification of the regressor vector Xt is a function of
the way the monthly variables are sampled. For the timing we
follow in this analysis, the vector Xt contains variables available
at about the end of the first week of month 2 of quarter t.
Specifically, in our implementation, it contains a constant, GDP
growth in quarter t − 1, employment growth in month 1 of
quarter t, and the ISM index in month 1 of quarter t. We use
employment and the ISM because, for our information timing,
these are the two major coincident indicators that are available
for forecasting GDP growth in the quarter. Our model with this
small set of indicators performs comparably to models with
the larger sets of indicators considered in Carriero, Clark, and
Marcellino (2015).

3.3 Nowcast Model: Inflation in GDP Price Index

Our nowcast model for inflation takes the same form as that
described above for GDP growth, but with a different set of in-
dicators included in Xt . While the information set of the typical
SPF response has included just week 1 of month 2 of the quarter
since the Philadelphia Fed took over the survey, prior to that
time the information set (and survey response date) changed
over time, and it was often later in the month. Accordingly, for
simplicity, we construct nowcasts of GDP inflation using (infla-
tion rates of) monthly price indexes released in the second half
of month 2 of the quarter, for the CPI ex food and energy, the
CPI for food, the CPI for energy, the PPI for capital goods, and
the price index for new home construction. This set of indicators
reflects major measures of consumption and investment prices,
as typically available in the middle of the quarter.

3.4 Nowcast Model: Unemployment Rate

To align with current SPF timing, we obtain a nowcast of the
quarterly average rate of unemployment by averaging the ob-
served rate for month 1 of the quarter with forecasts for months
2 and 3. As noted above, the typical SPF response is based on
an information set that includes labor market indicators for the
first month of the quarter. We produce the forecasts of months 2
and 3 of the quarter using a BVAR(3) with stochastic volatility
in monthly data, for the unemployment rate, growth in payroll
employment, and new claims for unemployment insurance. We
include unemployment claims in the model because they are
commonly thought to be a leading indicator with some predic-
tive content for the unemployment rate (e.g., Montgomery et al.
1998), whereas employment is a major coincident indicator of
the business cycle that might have predictive content for the un-
employment rate, which has sometimes been considered to be
a lagging indicator of the business cycle. This model takes the
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same basic form as the BVAR detailed above, except in monthly
rather than quarterly data.

3.5 Nowcast Model: T-Bill Rate

To align with SPF timing, we obtain a nowcast of the quarterly
average three-month T-bill rate by averaging the observed rate
for month 1 of the quarter with forecasts for months 2 and 3. As
SPF timing has shifted over time and respondents have access to
a wide range of financial indicators, we incorporate information
through the 15th of month 2 of the quarter (in the event the
15th is not a business day, we use the preceding business day).
Specifically, to forecast the monthly T-bill rate for months 2 and
3 of the quarter, we use a BVAR(3) with stochastic volatility in
which the variable vector yt is monthly and contains the average
three-month T-bill rate in t and the three-month and six-month
T-bill rates on the 15th of month t + 1. We include the daily
rates in the model as a way of capturing current information that
would be available to a forecaster under our timing assumption.
We include the six-month rate because, under the expectations
hypothesis, it should contain information about the expected
future path of the three-month rate. This BVAR takes the same
form as the one detailed above, except in monthly rather than
quarterly data.

4. ENTROPIC TILTING: METHODOLOGY AND
EXAMPLES

This section first details the general implementation of en-
tropic tilting and then provides examples of our use.

4.1 General Methodology

In using tilting to incorporate information from survey fore-
casts or model-based nowcasts into medium-term forecasts from
a BVAR with stochastic volatility, our starting point is a “raw”
sample of I (possibly vector-valued) MCMC forecast draws,

f := {yi}Ii=1,

where yi ∈ R
p, p ≥ 1. In the following, we interpret f as a dis-

crete distribution with I possible outcomes, each of which has
probability 1/I . For simplicity, at this stage we suppress depen-
dence on a certain variable, forecast origin date, and forecast
horizon. We consider modifying the distribution f by imposing
the moment condition

Eg(y) = ḡ,

where g : R
p → R

m and ḡ ∈ R
m,m ≥ 1. The following func-

tional optimization problem is often called “entropic tilting”:

minf̃ ∈FKLIC(f̃ , f ) subject to Ef̃ g(y) = ḡ. (3)

Here, F denotes the class of all discrete distributions that can
be constructed by reweighting the draws from f in an admis-
sible way (such that the weights are positive and sum to one).
Furthermore,

KLIC(f̃ , f )=
I∑

i=1

π̃i log(I π̃i) = log(I )+
I∑

i=1

π̃i log(π̃i) (4)

is the Kullback–Leibler divergence between the candidate dis-
tribution f̃ (which places weight π̃i on the ith MCMC draw)
and f (which uses flat weights 1/I ). Finally,

Ef̃ g(y) =
I∑

i=1

π̃ig(yi)

is the expectation of y under f̃ . As discussed by Robertson,
Tallman, and Whiteman (2005) and others, the tilting solution
is given by setting

π∗
i = exp

(
γ ∗′

g(yi)
)

∑I
i=1 exp

(
γ ∗′

g(yi)
) , (5)

γ ∗ = arg minγ

I∑
i=1

exp
(
γ

′
(g(yi) − ḡ)

)
. (6)

We should note the following broad implications. First, the so-
lution of the tilting problem comes in the form of a set of weights
for the existing sample f . The squared error and CRPS, which
we use to evaluate forecasts (see Section 5), can be computed
directly for this new set of weights, without the need for ad-
ditional simulation. Second, in practice tilting requires solving
the minimization problem in (6), whose dimension equals the
number of moment conditions (below we consider dimensions
of one, two, four, and eight). This is often easy to do, given that
the objective function is usually globally convex, and comput-
ing the gradient with respect to γ (and passing it to a numerical
optimizer) is straightforward. In our implementation, we use the
optim function of the R programming language (R Core Team
2015), together with the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm. In case the algorithm fails to converge, we
impose a very small penalty on the L2 norm of the candidate pa-
rameter γ to regularize the problem. The corresponding R code
is available from the first author. Third, Equation (5) implies that
the functional form of the tilting weights is determined by the
choice of g(·); we explore this point in our first example below.
Finally, it is possible to ensure some smoothness on the tilted
forecast distribution by targeting a higher dimensional vector ḡ

of moment conditions. We explore this below by experimenting
with different sets of moment conditions.

4.2 Tilting Variants Considered in This Article

In the results to be presented below, we will consider the fol-
lowing variants of entropic tilting. First, for a given variable—
indicated by the index (k)—we tilt the BVAR forecast distri-
bution of the vector

[
y

(k)
t+1 . . . y

(k)
t+5

]
to match a certain nowcast

mean of variable k (dubbed “small m” below). Second, we tilt the
same distribution to match a certain nowcast mean and variance
for variable k (“small m/v”). Third, we consider the joint fore-
cast distribution for the 20-dimensional vector

[
y

(1)
t+1 . . . y

(4)
t+5

]
comprising four variables and five forecast horizons. We tilt
this distribution to simultaneously match the nowcast means of
all four variables (“big m”). Finally, we again consider the full
20-dimensional distribution and tilt it to simultaneously match
the nowcast means and variances for all four variables (“big
m/v”). To avoid clutter, we henceforth suppress the superindex
(k) whenever we refer to a representative variable.
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Figure 1. Histograms for raw and tilted samples. In each panel, the black vertical line shows the ex post outcome of −6.55.

4.3 Example: Tilting the Mean vs. Mean and Variance

In this section, we illustrate how the forms of entropic tilt-
ing we will examine below are implemented and affect fore-
cast distributions. In these examples, the forecast origin date
is 2008:Q4, which is interesting because it coincides with the
recent recession becoming much more severe, which the SPF
nowcasts pick up in real time but the BVAR in quarterly data by
itself is slower to detect. The p = 5 variate vector of interest,
yt :t+4 = [ yt , yt+1, yt+2, yt+3, yt+4 ]

′
, contains the GDP growth

rates from 2008:Q4 to 2009:Q4 (i.e., forecasts for GDP growth
zero to four quarters ahead). The two panels of Figure 1 illustrate
the following implementations of tilting:

• Targeting the SPF nowcast mean for GDP growth in
2008:Q4 (small m). This corresponds to setting

g(yt :t+4) = yt , ḡ = −2.94.

As expected, the figure shows that the tilted distribution is
located left of the raw one; this is necessary to implement
the SPF nowcast mean which is much smaller than the orig-
inal one. In this case, the tilted density has a somewhat un-
conventional shape, featuring substantial probability mass
at the lower end of its support.

• Targeting the SPF nowcast mean and variance (small m/v)
corresponds to

g(yt :t+4) = [
yt , (yt + 2.94)2

]′
, ḡ = [−2.94, 2.41

]′
.

In this case, the tilted density again reaches the SPF now-
cast mean, but the distribution is now bell-shaped and
tighter than before. This is the result of targeting the now-
cast variance in addition to the mean.

In these examples, π∗
t,i—the tilting weight on the ith MCMC

draw—is a function of yt,i (the first element of the vector yt :t+4,i)
alone; this follows from the specific choices of g(·) made here.
For each example, the solutions to the tilting weights are given
by the following.

• Small m:

π∗
t,i = exp(−0.40yt,i)∑I

i=1 exp(−0.40yt,i)
.

• Small m/v:

π∗
t,i = exp(−0.58yt,i − 0.19(yt,i + 2.94)2)∑I

i=1 exp(−0.58yt,i − 0.19(yt,i + 2.94)2)
.

Figure 2 plots the relationship for the two tilting variants. As
the solutions and charts make clear, the choice of g(·) signifi-
cantly affects the reweighting of the draws in the tilted distribu-
tion. While the weight is a monotonic function of yt,i in the first
variant, the relationship is bell-shaped in the second variant.

4.4 Example: Spillover Effects on Longer Horizon
Forecasts

The results just presented demonstrate how tilting toward
an external nowcast mean and variance yields a combined
nowcast density. However, imposing moment conditions on
the nowcast yt also affects other elements of the vector of
forecasts, yt :t+4 = [ yt , yt+1, yt+2, yt+3, yt+4 ]

′
. While effects on

other forecast horizons are difficult to see in the nonparametric
solutions provided above in Equations (5) and (6), we can use a
Gaussian benchmark case (extending the example in Robertson,
Tallman, and Whiteman 2005) to provide some intuition.

Consider a five-variate vector yt :t+4, and suppose a forecaster
uses a multivariate normal distribution f = N (θ,�), where
θ = [

θ1 . . . θ5
]′

and � is a positive definite matrix with elements
�i,j (suppressing the dependence of the parameters on time and
forecast horizon for simplicity). Consider the tilted density f ∗

Figure 2. Tilting weight π∗
t,i , as a function of the first element yt

of the vector yt :t+4. The solid line corresponds to tilting toward the
nowcast mean only; the dashed line corresponds to tilting toward the
nowcast mean and variance.
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Figure 3. Vertical axis: boxplots of raw and tilted forecast distributions at origin date 2008:Q4. Horizontal axis: forecast horizon h. Boxes
range from the 25% to the 75% quantile of a forecast distribution; the end of the upper vertical line is the 75% quantile plus 1.5 times the
interquartile range. Forecast draws exceeding that value are plotted as points.

which imposes that the first system variable have mean μ1 and
variance �1,1. Then, f ∗ is multivariate normal N (μ,�), with
parameters

μ2:5 = θ2:5 + �−1
1,1�1,2:5 (μ1 − θ1) , (7)

�2:5,2:5 = �2:5,2:5 − �2:5,1�
−1
1,1�1,2:5 ×

(
1 − �1,1

�1,1

)
, (8)

�2:5,1 = �2:5,1�
−1
1,1�1,1, (9)

where Ai:j,k:l denotes the matrix consisting of rows i : j ,
columns k : l of any matrix A. We write Ai:j,k if the “matrix” is
a column vector, and Ai,k:l if it is a row vector. This Gaussian
example yields the following implications.

• In the special case that yt is fixed, such that �1,1 = 0, we
end up at the textbook formulas for conditioning in the
multivariate normal distribution. That is, entropic tilting
is exactly the same as conditional forecasting. It is also
exactly the same as treating the nowcast as data or jumping-
off points for forecasts at subsequent horizons (Faust and
Wright 2009, 2013). See Section 6.1 for further discussion
of this equivalence.

• The special case that �1,1 = �1,1 corresponds to a sce-
nario in which the tilted variance for yt+1 is the same as
the untilted variance. Interestingly, the same solution ob-
tains when targeting a mean of θ1 only, without making a
tilting assumption about �1,1—see, for example, Altavilla,
Giacomini, and Ragusa (2013, sec. 3.1). This implies that,
at least in the Gaussian case, targeting the mean only is
equivalent to targeting the mean and the original variance.

• If �1,1 < �1,1 and �2:5,1 	= 0 in (8), tilting “reduces” (in a
matrix sense) the variance of the forecasts at other horizons.

• The magnitude of the impact on θ2:5 and �2:5,2:5 mainly
depends on �2:5,1, the correlation of the nowcast with the
other horizons. This correlation matrix reflects the persis-
tence of the time series, as predicted by the BVAR.

The results we obtain for our examples using the nonparamet-
ric entropic solution are broadly consistent with the implications

of the Gaussian specification. In the interest of brevity, we sup-
press the details and provide a simple example here. As the
forecast horizon increases from the current quarter through the
following four quarters, tilting has more persistent effects on
the forecasts of the unemployment and T-bill rates (the most
persistent variables) than the forecasts of GDP growth and in-
flation. That is, tilting based on the nowcast for 2008:Q4 has
larger effects on the 2009:Q4 forecasts for the unemployment
and T-bill rates than on the 2009:Q4 forecasts for growth and
inflation. Figure 3 illustrates these points for GDP and unem-
ployment forecasts. The figure uses boxplots to visualize the
raw and tilted distributions, for the nowcast (2008:Q4) and the
one-year-ahead forecast (2009:Q4). For GDP (left panel), tilt-
ing leads to a strong downward revision of the nowcast. At
the same time, the one-year-ahead forecast distribution is not
strongly revised. For unemployment (right panel), the mean of
the one-year-ahead forecast is revised almost as strongly as that
of the nowcast itself, with the revision pointing to higher un-
employment rates in both cases. The stronger spillover effects
for unemployment (compared to GDP) are due to larger en-
tries in �2:5,1, which represents the persistence of the series (as
predicted by the BVAR). For example, the predicted first-order
autocorrelation is only 0.17 in the case of GDP, but 0.76 in the
case of unemployment.

4.5 Example: Joint Tilting Across Variables
and Forecast Horizons

In the examples above, we performed tilting on a variable-by-
variable basis. However, the methodology allows us to directly
consider the full multivariate forecast distribution comprising
all variables and forecast horizons. Forecasts tilted based on
the joint set of nowcasts should be conceptually preferable. In
practice, one is likely to have available and to be interested in
using nowcasts for all model variables. Tilting based on the set of
nowcasts together yields a single set of forecasts of all variables
that reflects the BVAR-captured historical relationships among
the variables. To see the logic of it, consider the very simple
(and parametric) approach of incorporating nowcasts through
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Table 1. KLIC divergences for big versus small tilting in the 2008:
Q4 example. See Equation (4) for the underlying formula

KLIC divergence
Method Variable from equal weights

Big m/v (all) 24993.831
Small m/v GDP 24992.512

UNE 24991.846
INF 24990.030
TBI 24991.320

Gaussian conditional forecasting. One could first condition on
the nowcast for variable 1 and produce BVAR forecasts for
all variables, then condition on the nowcast for variable 2 and
produce BVAR forecasts for all variables, etc. This would of
course produce an entire set of alternative forecasts for each
variable, reflecting conditions imposed one at a time. In practice,
it is more likely the case that the entire set of nowcast conditions
would be imposed at once, to obtain a single set of forecasts that
reflects the joint set of conditions. The reasoning is the same for
a joint approach to entropic tilting.

Interestingly, big tilting turns out to be a more stringent ver-
sion of the four small problems (one variable at a time). To see
this, denote by f the full (20-dimensional) empirical MCMC
distribution for all variables and horizons, by f (k) the distribu-
tion for variable k (five dimensions = forecast horizons), and by
C(k) the set of moment conditions imposed on variable k. Then,
big tilting solves

min
f̃

KLIC(f̃ , f ) subject to C(1) ∪ . . . ∪ C(4). (10)

Small tilting for variable k solves

min
f̃ (k)

KLIC(f̃ (k), f (k)) subject to C(k). (11)

Note that the candidate distributions f̃ from (10) and f̃ (k) from
(11) are both characterized by a weight vector of dimension
25,000 (the number of MCMC draws), and the raw distributions
f and f (k) both feature flat weights. Hence, for a given weight
vector, we have that KLIC(f̃ , f ) = KLIC(f̃ (k), f (k)), and thus
(11) is equivalent to solving

min
f̃

KLIC(f̃ , f ) subject to C(k). (12)

Hence, the minimization problem (12) for small tilting is
a variant of the problem (10) for big tilting, featuring a less
stringent set of constraints. This implies that big tilting will
typically entail a more drastic move away from the baseline
distribution compared to small tilting. To illustrate this point,
we again consider the 2008:Q4 example, and tilting based on
the SPF nowcast means and variances (big m/v, small m/v).
Table 1 illustrates the logical necessity that the four small tilt-
ing approaches are KLIC-closer to raw MCMC than the big
tilting approach (although, in this steep recession example, all
approaches are fairly far away from the equal weights of raw
MCMC, because the nowcast of growth is so different from the
BVAR forecast). Similarly, Figure 4 presents Lorenz curves for
the observation weights resulting from big versus small tilting.
The figure shows that the weights for big tilting are highly un-

Figure 4. Lorenz curve of weights in the 2008Q4 example. Reading
example: The topmost line indicates that for inflation, the 25 % smallest
weights (horizontal axis) add up to roughly 0.07 (vertical axis).

equal, with a fairly small number of influential MCMC draws
(e.g., the 50 largest weights sum up to 0.35). The weights for
the small tilting problems are much more equal, that is, the
Lorenz curves in Figure 4 are left of the one for big tilting.
Note that the small tilting method for inflation generates by far
the most uniform weights (leftmost Lorenz curve), which is in
line with the fact that in 2008:Q4 the current quarter MCMC
forecast (2.72) is already close to the SPF mean nowcast (2.6).
The Appendix contains further analysis of the tilting weights,
illustrating broader patterns of the weights over time. It also
demonstrates that, given the sample sizes common in MCMC,
numerical issues caused by unequal weights seem to have very
little practical impact on forecasting performance.

5. FORECAST RESULTS

We first consider the accuracy of point forecasts (defined as
posterior means), using root mean square errors (RMSEs). We
then consider density forecasts, using the average continuous
ranked probability score (CRPS). Studies such as Gneiting and
Raftery (2007) and Gneiting and Ranjan (2011) discuss the ad-
vantages of the CRPS over other measures. The CRPS, defined
such that a lower number is a better score, is given by

CRPSt (y
o
t+h) =

∫ ∞

−∞

(
F (z) − 1{yo

t+h ≤ z})2
dz, (13)

where yo
t+h denotes the observed outcome, F denotes the cu-

mulative distribution function associated with the (posterior)
predictive density f , and 1{yo

t+h ≤ z} denotes an indicator func-
tion taking value 1 if yo

t+h ≤ z and 0 otherwise. In our analysis,
F takes the form of an empirical distribution function, whereby
the observation weights are equal in the case of raw MCMC but
not in the case of tilted distributions. We employ the algorithm
by Hersbach (2000, Section 4)—which allows for nonequal
weights—to compute the CRPS in both cases.
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Table 2. Root mean squared error and CRPS for different nowcasts (SPF = Survey of Professional Forecasters, BMF = Bayesian mixed
frequency, BVAR = Bayesian VAR with stochastic volatility)

Pre-crisis (88:Q3 – 07:Q4) Complete (88:Q3 – 13:Q2)

GDP UNE INF TBI GDP UNE INF TBI

RMSE SPF 1.580 0.125 0.767 0.133 1.591 0.151 0.809 0.133
BMF 1.682 0.095 0.861 0.066 1.899 0.095 0.985 0.072
BVAR 1.975 0.157 0.876 0.406 2.390 0.235 0.938 0.406

CRPS BMF 0.960 0.053 0.495 0.037 1.048 0.053 0.554 0.035
BVAR 1.123 0.089 0.504 0.214 1.274 0.116 0.539 0.214

NOTE: SPF and BMF use data up to daily frequency; BVAR is based on quarterly data.

To test the statistical significance of differences in predic-
tive performance, we consider pairwise tests of equal predictive
accuracy (henceforth, EPA; Diebold and Mariano 1995; West
1996) in terms of either RMSE or CRPS. All EPA tests we con-
duct compare the raw BVAR forecasts against a given variant
of entropic tilting, using two-sided tests and standard normal
critical values. Based on simulation evidence in Clark and Mc-
Cracken (2013), in computing the variance estimator which en-
ters the test statistic, we employ a rectangular kernel truncated
at lag h − 1 and incorporate the finite sample correction due
to Harvey, Leybourne, and Newbold (1997). In the rare cases
in which the rectangular kernel yields a negative variance es-
timate, we resort to Bartlett kernel weights (Newey and West
1987) to ensure positivity. In these cases, we use the automatic
bandwidth selection procedure of Newey and West (1994) as
implemented in R’s sandwich package (Zeileis 2004).

Our use of EPA tests based on normal critical values may be
viewed as an approximation that simplifies an inference prob-
lem that, in our context, features many complexities—possible
nesting of forecasts and tilting that bears similarities to con-
ditional forecasting—not necessarily easily dealt with in the
forecast evaluation literature (see, e.g., Clark and McCracken
2013, 2014).1 Under the asymptotics of Giacomini and White
(2006), a test of a null of equal forecast accuracy in the finite
sample (at estimated model parameters) is generally normally
distributed, subject to a requirement that the model parameters
be estimated with a rolling sample of data. While we have not
estimated the BVAR with a rolling sample of data, Monte Carlo
evidence in Clark and McCracken (2013) indicates that, with
nested models estimated with an expanding data sample (the
approach we have used with our BVAR), EPA tests compared
against normal critical values can be viewed as a somewhat con-
servative (modestly under-rejecting compared to nominal size)
test for equal accuracy in the finite sample.

As noted in Section 4, we consider the following variants of
entropic tilting: small m, in which we tilt the BVAR forecast dis-
tribution of the vector

[
y

(k)
t+1 . . . y

(k)
t+5

]
to match a certain nowcast

1At the one-step horizon, the tilted forecasts are, by construction, essentially
the nowcasts, so the benchmark BVAR forecast and each tilted forecast are not
nested, in which case the application of the EPA test is valid. At longer horizons,
the picture is less clear; the tilted forecasts are functions of the nowcasts and the
underlying BVAR forecasts. Under some conditions, at horizons of 2 or more
periods, the tilted and BVAR forecasts could be seen as nested under a null of
equal accuracy. Regardless, the multi-step tilted forecasts bear similarities to
conditional forecasts; Clark and McCracken (2014) proposed a modified test of
EPA necessary for application to conditional forecasts.

mean of variable k; small m/v, in which we tilt the forecast dis-
tribution of variable k to match the nowcast mean and variance;
big m, in which we tilt the entire 20 element vector of variables
and horizons to simultaneously match the nowcast means of all
four variables; and big m/v, in which we tilt the entire 20 ele-
ment vector of variables and horizons to simultaneously match
the nowcast means and variances of all four variables. We sep-
arately apply each of the tilting variants to nowcasts from the
SPF and from the nowcasting models described in Section 3.
In the case of the SPF-based results, the variances used in tilt-
ing are computed as described in Section 2.2; for model-based
nowcasts, the variances used in tilting are defined as the vari-
ance of the model-based predictive distribution for the period in
question.

5.1 Comparison of Current-Quarter Forecasts

Before examining the effects of entropic tilting of BVAR
forecasts toward different nowcasts, it is useful to compare the
accuracy of current quarter forecasts from the BVAR, the SPF,
and the nowcasting models. Table 2 provides the RMSEs and
CRPS scores of each current quarter forecast (except that we
do not provide CRPS scores for the SPF forecasts because the
SPF does not include the forecast density information needed
to compute the CRPS over our sample). These results yield the
following findings.

• Consistent with previous studies, current-quarter forecasts
from the SPF and the models designed for nowcasting are
generally more accurate than the current quarter forecasts
from the BVAR. For example, in the case of GDP growth
over the pre-crisis sample, the SPF and mixed frequency
nowcasting models have RMSEs of 1.580 and 1.682, re-
spectively, compared to the BVAR’s RMSE of 1.975. The
differences (for GDP growth and unemployment) are even
larger in the full sample than in the pre-crisis sample.

• Compared to SPF, some of the nowcasting models yield
better accuracy, while others yield less accuracy. For GDP
growth, the mixed frequency nowcasting model is almost
as accurate as SPF in the pre-crisis sample and modestly
less accurate in the full sample, reflecting the better job
the SPF did in picking up the sharp downturn of the
Great Recession (see the discussion in Carriero, Clark, and
Marcellino 2015). For unemployment and the T-bill rate,
the model-based nowcasts are at least somewhat more ac-
curate than the SPF forecasts. These gains are likely due
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to the use of intraquarter information about the predictand
(see Montgomery et al. 1998, for similar results on un-
employment). For instance, in the pre-crisis sample, the
model-based nowcast of the T-bill rate has an RMSE of
0.066, compared to the SPF RMSE of 0.133.

• The CRPS scores move closely in line with the RM-
SEs, both qualitatively and in terms of the magnitude of
improvements of nowcasts over current-quarter forecasts
from the BVAR.

5.2 Main Results

We now consider tilting longer-horizon forecasts based on
just current-quarter forecasts. Table 3 presents the full-sample
results (see the Appendix for results from the pre-crisis period).
In light of the common central bank practice of reporting growth
and inflation rates that are averages over four quarters, the table
provides results for (annualized) quarterly forecasts four and
five quarters ahead and for four-quarter averages four and five
quarters ahead (in Columns “4∗” and “5∗,” respectively). These
results yield the following key take-aways.

• In all cases, tilting forecasts based on just the nowcast
(point or point and variance) from either the SPF or the
nowcasting models improves the accuracy of point and
density forecasts at horizons of one, two, and three quar-
ters. For example, in the results for GDP growth at the three
quarters-ahead horizon, under the small m approach, tilting
toward the nowcast from the mixed frequency model low-
ers the RMSE of the BVAR forecast from 2.656 to 2.572;
the difference is significant at the 5% level (two-sided test).
For the same sample and horizon, tilting the T-bill forecasts
toward the model-based nowcasts (small m approach) low-
ers the RMSE of the BVAR from 1.056 to 0.821 (difference
significant at 1% level). Tilting has quantitatively similar
effects on density forecast accuracy as measured by the
CRPS.

• At forecast horizons of four and five quarters, the perfor-
mance of forecasts tilted toward nowcasts is more mixed.
At these horizons, tilting has relatively little benefit for
forecasts of GDP growth and inflation. But it has some
benefit for forecasts of the more persistent variables, the
unemployment and T-bill rates. As an example, at the five
step horizon, tilting the T-bill forecasts toward the model-
based nowcasts lowers the RMSE of the BVAR from 1.591
to 1.425 (difference significant at 1% level). Again, tilting
has quantitatively similar effects on density forecast accu-
racy as measured by the CRPS. These patterns align with
the observations drawn in the illustration of Section 4.4.

• Tilting the BVAR forecasts toward both the mean and vari-
ance of nowcasts (m/v)—rather than just the mean or point
nowcast (m)—yields small additional gains in density fore-
cast accuracy. This pattern is very robust: in 23 out of 24
scenarios (variables and forecast horizons) covered by Ta-
ble 3, the CRPS score of the best m/v specification is
smaller than that of the best m specification. For exam-
ple, in the case of the unemployment rate and h = 2, the

best specification based on the mean only (BMF small m)
attains a CRPS of 0.146, whereas the best mean/variance
specification (BMF big m/v) attains a CRPS of 0.131. By
comparison, the CRPS of the raw BVAR distribution is
0.217.

• Jointly considering the nowcasts of all four variables (big
m/v) versus considering all variables separately (small
m/v) tends to perform similarly well, with each approach
outperforming the other in a number of scenarios. While
one interpretation might be that joint treatment offers little
overall advantage, an alternative interpretation might be
that it is conceptually preferable for imposing tilting at a
system level and does so at little (if any) cost, in terms of
forecast accuracy.

5.3 Entropic Tilting and Nowcast Uncertainty

Table 3 implies that tilting toward the nowcast mean and vari-
ance consistently yields better CRPS scores than tilting toward
the mean only. For h = 1, this effect is simply a consequence of
the nowcast distributions being more accurate than the BVAR
ones, which is well known in the literature. Much more inter-
estingly, the result also holds for h ≥ 2, which suggests that the
m/v approach produces more favorable spillover effects on the
horizons that are not directly affected by tilting. Table 4 inves-
tigates this result in more detail, by reporting the length and
coverage of central prediction intervals obtained from both ap-
proaches (nominal level of 70%). In particular, we define length
as the spread between the 15th and 85th percentiles of the fore-
cast distribution and report the average length over time, and
we measure coverage as the percent of actual outcomes of each
variable falling within the 70% confidence band.

For all variables and forecast horizons, we observe that the
m/v specifications produce shorter prediction intervals than the
m specifications, which implies sharper (i.e., more concentrated)
forecast distributions. This result is natural: the SPF and model
nowcasts generally have lower variance than the current quar-
ter forecasts produced by the BVAR. While m/v imposes this
information, m fails to do so. Instead, it penalizes the KLIC
divergence from the BVAR distribution, and thus implicitly tar-
gets the BVAR variance (see Section 4.4). These effects are
clearest for the T-bill and unemployment rates, where the m/v

approaches produce prediction intervals whose average lengths
(over time) are often about 20–40% shorter than those of the m
approaches. The differences are much smaller for GDP growth
and inflation, where the average lengths of the prediction inter-
vals typically differ by less than 5%.

Naturally, the reduced length of the m/v prediction intervals
comes along with reduced coverage rates compared to m. For
GDP, unemployment and inflation, the coverage rates of m/v are
mostly still above 60% (recall that the nominal level is 70%). A
similar statement holds for the T-bill rate and h ∈ {2, 3}. For the
T-bill rate and h ∈ {4, 5}, the coverage rates of the m approaches
are already well below 70%, with the rates of m/v being even
lower.

On balance, the increased sharpness of m/v appears to come
at a small cost, in that the coverage rates are similarly close to
(or far from) their nominal level as under the m variant. This
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Table 3. Empirical results for entropic tilting, complete sample (1988:Q3 – 2013:Q2)

Forecast horizon 1 2 3 4 5 4∗ 5∗

GDP
RMSE Raw 2.390 2.589 2.656 2.640 2.617 2.084 2.140

SPF small m 1.591
∗∗

2.413
∗

2.540
∗∗

2.650 2.651 1.704
∗

2.076
SPF small m/v 1.591

∗∗
2.390

∗
2.511

∗
2.637 2.631 1.688

∗
2.052

SPF big m 1.591
∗∗

2.439 2.562 2.665 2.628 1.716
∗

2.093
SPF big m/v 1.596

∗∗
2.435

∗
2.524

∗
2.632 2.631 1.700

∗
2.060

BMF small m 1.899
∗∗

2.475
∗∗

2.572
∗

2.654 2.636 1.835
∗

2.096
BMF small m/v 1.899

∗∗
2.464

∗∗
2.563

∗
2.643 2.627 1.829

∗
2.085

BMF big m 1.900
∗∗

2.649 2.736 2.753 2.655 1.964 2.215
BMF big m/v 1.917

∗∗
2.478

∗
2.611 2.699 2.670 1.873

∗
2.139

CRPS Raw 1.274 1.380 1.414 1.408 1.403 1.122 1.158
SPF small m 0.985

∗∗
1.304

∗
1.358

∗∗
1.414 1.418 0.936

∗∗
1.122

SPF small m/v 0.906
∗∗

1.280
∗∗

1.335
∗∗

1.411 1.411 0.912
∗∗

1.113
SPF big m 0.993

∗∗
1.326 1.379 1.422 1.398 0.944

∗
1.127

SPF big m/v 0.909
∗∗

1.300
∗∗

1.350
∗

1.411 1.403 0.920
∗∗

1.123
BMF small m 1.074

∗∗
1.330

∗∗
1.376

∗
1.414 1.413 0.991

∗∗
1.133

BMF small m/v 1.042
∗∗

1.317
∗∗

1.366
∗∗

1.412 1.410 0.977
∗

1.129
BMF big m 1.077

∗∗
1.363 1.440 1.456

∗
1.432 1.043 1.190

BMF big m/v 1.049
∗∗

1.320
∗∗

1.385 1.457 1.427 1.000
∗

1.159

UNE
RMSE Raw 0.235 0.464 0.706 0.940 1.147

SPF small m 0.151
∗

0.348 0.575 0.811 1.028
SPF small m/v 0.151

∗
0.350 0.573 0.808 1.024

SPF big m 0.151
∗

0.332 0.542 0.769 0.987
SPF big m/v 0.153

∗
0.335 0.551 0.778 0.995

BMF small m 0.095
∗∗

0.239 0.470 0.716 0.958
BMF small m/v 0.096

∗∗
0.251 0.470 0.708 0.945

BMF big m 0.095
∗∗

0.247 0.476 0.725 0.966
BMF big m/v 0.092

∗∗
0.256 0.483 0.727 0.964

CRPS Raw 0.116 0.217 0.333 0.453 0.569
SPF small m 0.087

∗∗
0.179 0.280 0.396 0.510

SPF small m/v 0.083
∗∗

0.175
∗

0.276
∗

0.391 0.505
SPF big m 0.088

∗∗
0.173

∗
0.267

∗
0.377

∗
0.491

SPF big m/v 0.082
∗∗

0.167
∗

0.262
∗

0.372
∗

0.487
BMF small m 0.071

∗∗
0.146

∗
0.242 0.357 0.477

BMF small m/v 0.054
∗∗

0.135
∗

0.233
∗

0.346 0.462
BMF big m 0.072

∗∗
0.147

∗
0.241

∗
0.355

∗
0.474

∗

BMF big m/v 0.053
∗∗

0.131
∗∗

0.231
∗∗

0.346
∗

0.466
∗

INF
RMSE Raw 0.938 0.996 1.012 1.051 1.170 0.717 0.795

SPF small m 0.809
∗∗

0.917
∗∗

0.974 1.030 1.144 0.636
∗

0.746
SPF small m/v 0.809

∗∗
0.915

∗∗
0.973 1.029 1.144 0.634

∗
0.746

SPF big m 0.809
∗∗

0.908
∗∗

0.972 1.018 1.135 0.622
∗∗

0.735
SPF big m/v 0.807

∗∗
0.906

∗∗
0.966 1.003 1.128 0.617

∗∗
0.731

BMF small m 0.985 1.026 1.049 1.075 1.194 0.765 0.828
BMF small m/v 0.985 1.027 1.050 1.075 1.196 0.766 0.829
BMF big m 0.985 1.010 1.050 1.075 1.204 0.753 0.823
BMF big m/v 0.986 1.002 1.051 1.054 1.197 0.751 0.817

CRPS Raw 0.539 0.578 0.575 0.610 0.687 0.413 0.463
SPF small m 0.471

∗∗
0.540

∗∗
0.563 0.602 0.676 0.378

∗
0.444

SPF small m/v 0.463
∗∗

0.534
∗∗

0.558 0.597 0.672 0.369
∗

0.438
SPF big m 0.473

∗∗
0.544

∗
0.565 0.600 0.677 0.380

∗
0.445

SPF big m/v 0.462
∗∗

0.532
∗∗

0.555 0.582 0.663 0.361
∗∗

0.431
BMF small m 0.544 0.588 0.589 0.619 0.697 0.428 0.476
BMF small m/v 0.553 0.591 0.590 0.618 0.697 0.430 0.476
BMF big m 0.542 0.589 0.598

∗
0.625 0.701 0.431 0.479

BMF big m/v 0.554 0.586 0.589 0.606 0.694 0.424 0.469
(Continued on next page)
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Table 3. Empirical results for entropic tilting, complete sample (1988:Q3 – 2013:Q2) (Continued)

Forecast horizon 1 2 3 4 5 4∗ 5∗

TBI
RMSE Raw 0.406 0.756 1.056 1.336 1.591

SPF small m 0.133
∗∗

0.529
∗∗

0.871
∗∗

1.183
∗∗

1.469
∗∗

SPF small m/v 0.132
∗∗

0.514
∗∗

0.854
∗∗

1.162
∗∗

1.450
∗∗

SPF big m 0.133
∗∗

0.522
∗∗

0.856
∗∗

1.152
∗∗

1.423
∗∗

SPF big m/v 0.134
∗∗

0.511
∗∗

0.847
∗∗

1.142
∗∗

1.418
∗∗

BMF small m 0.072
∗∗

0.473
∗∗

0.821
∗∗

1.137
∗∗

1.425
∗∗

BMF small m/v 0.073
∗∗

0.457
∗∗

0.800
∗∗

1.112
∗∗

1.402
∗∗

BMF big m 0.083
∗∗

0.465
∗∗

0.791
∗∗

1.092
∗∗

1.372
∗∗

BMF big m/v 0.070
∗∗

0.447
∗∗

0.815
∗∗

1.104
∗∗

1.387
∗∗

CRPS Raw 0.214 0.419 0.611 0.794 0.970
SPF small m 0.159

∗∗
0.343

∗∗
0.530

∗∗
0.715

∗∗
0.898

∗∗

SPF small m/v 0.070
∗∗

0.272
∗∗

0.479
∗∗

0.680
∗∗

0.872
∗∗

SPF big m 0.162
∗∗

0.340
∗∗

0.522
∗∗

0.699
∗∗

0.872
∗∗

SPF big m/v 0.072
∗∗

0.271
∗∗

0.475
∗∗

0.670
∗∗

0.853
∗∗

BMF small m 0.152
∗∗

0.328
∗∗

0.511
∗∗

0.694
∗∗

0.876
∗∗

BMF small m/v 0.041
∗∗

0.239
∗∗

0.445
∗∗

0.645
∗∗

0.838
∗∗

BMF big m 0.165
∗∗

0.331
∗∗

0.499
∗∗

0.672
∗∗

0.845
∗∗

BMF big m/v 0.047
∗∗

0.238
∗∗

0.447
∗∗

0.636
∗∗

0.822
∗∗

NOTES: “RMSE” rows contain root mean squared errors. “CRPS” rows contain mean cumulative ranked probability scores. raw—MCMC output of BVAR-SV model. Alternative tilting
targets: SPF small m—SPF mean nowcast for the same variable. SPF small m/v—SPF nowcast mean and variance for the same variable. SPF big m—SPF nowcast means for all four
variables. SPF big m/v—SPF nowcast means and variances for all four variables. BMF small m, BMF small m/v, BMF big m, and BMF big m/v are defined analogously. One and two
stars indicate rejections of equal predictive ability at the five and one percent level (two-sided tests; implementation details described in the beginning of Section 5).

assessment is consistent with the fact that the CRPS—which can
be seen as a trade-off between sharpness and correct coverage,
see, for example, Gneiting, Balabdaoui, and Raftery (2007)—
consistently favors m/v over m.

6. COMPARISONS TO OTHER COMBINATION
METHODS

We next compare entropic tilting to two related methods that
can be used for combining BVAR and external nowcasts. We
first describe these methods and then present the results of the
comparison.

6.1 Jumping-Off Approach (Faust and Wright 2009,
2013)

The “jumping-off” method of Faust and Wright (2009,
2013) appends the nowcast to the actual data, thus treat-
ing it as known. Under Gaussianity, this approach is equiv-
alent to conditional forecasting discussed in Section 4.4. To
see this, suppose that yt follows an AR(1) process, that is,
yt = φyt−1 + εt , εt ∼ N (0, σ 2). The usual h step ahead fore-
cast distribution for yt+h is Gaussian with mean φhyt and vari-
ance σ 2 ∑h−1

j=0 φ2j . Under the jumping-off approach, the now-
cast μ1 is treated as data for period t + 1, and we form the
forecast for period t + h as an (h − 1)-step ahead forecast us-
ing the pseudo-data for t + 1. Thus, the forecast distribution is
Gaussian with mean φh−1μ1 and variance σ 2 ∑h−2

j=0 φ2j . Un-
der the Gaussian conditional forecasting approach, the fore-
cast for period t + h is formed under the condition that yt+1

take the nowcast value of μ1, without any uncertainty around
it. Using the more general formulas of Section 4.4, it is eas-

ily checked (see Section 5 of the Appendix) that this con-
ditional forecast distribution coincides with the jumping-off
approach.

In our empirical implementation, we approximate the
BVAR forecast distribution for a given variable and dates
t + 1, . . . , t + 5 via a five-variate Gaussian, and then ap-
ply the method just illustrated, whereby the (SPF or
model based) nowcast for date t + 1 takes the role
of μ1.

6.2 Soft Conditioning (Waggoner and Zha 1999)

Waggoner and Zha (1999) considered VAR forecasts that
condition on a certain path for one or more of the system
variables. A key example is to forecast the evolution of in-
flation and output growth, given a certain path of the federal
funds rate. They also consider approximate (“soft”) conditions
which formulate a corridor for some of the system variables.
Their resulting algorithm (Algorithm 2 of their article) simply
prescribes to keep the simulated forecast draws which satisfy
the specified conditions, and discard the other draws. We ap-
ply this method on a variable-by-variable basis, and require
the forecast draws for the current quarter t to lie in the inter-

val [Ŷt,1 ± 1.96
√

σ̂ 2
t,1], where Ŷt,1 and σ̂ 2

t,1 denote the nowcast

mean and variance for the variable of interest. We use 5,000
posterior draws of the BVAR parameters, as well as 20 forecast
paths for each parameter draw (in the notation of Waggoner
and Zha, we thus use an oversampling rate of n2 = 20). The
resulting number of forecast paths that satisfy the nowcast con-
dition is never below 207, and exceeds 5000 in about 97% of all
cases.
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Table 4. Impact of accounting for nowcast uncertainty, complete sample (1988:Q3–2013:Q2)

Forecast horizon 1 2 3 4 5 4* 5*

GDP
Coverage SPF m 0.870 0.700 0.720 0.700 0.670 0.640 0.560

SPF m/v 0.710 0.670 0.690 0.690 0.670 0.600 0.560
BMF m 0.790 0.710 0.690 0.690 0.660 0.620 0.560
BMF m/v 0.710 0.680 0.700 0.690 0.660 0.610 0.560

Length SPF m 5.217 4.872 4.922 4.957 4.964 2.984 2.960
SPF m/v 3.326 4.638 4.730 4.795 4.830 2.628 2.851
BMF m 4.921 4.794 4.838 4.881 4.908 2.903 2.914
BMF m/v 3.973 4.656 4.731 4.787 4.819 2.715 2.852

CRPS SPF m 0.985 1.304 1.358 1.414 1.418 0.936 1.122
SPF m/v 0.906 1.280 1.335 1.411 1.411 0.912 1.113
BMF m 1.074 1.330 1.376 1.414 1.413 0.991 1.133
BMF m/v 1.042 1.317 1.366 1.412 1.410 0.977 1.129

UNE
Coverage SPF m 0.860 0.820 0.750 0.700 0.650

SPF m/v 0.760 0.730 0.730 0.650 0.590
BMF m 0.990 0.910 0.840 0.770 0.710
BMF m/v 0.830 0.770 0.730 0.680 0.620

Length SPF m 0.448 0.712 0.932 1.118 1.248
SPF m/v 0.292 0.562 0.799 0.999 1.152
BMF m 0.512 0.804 1.026 1.214 1.324
BMF m/v 0.245 0.544 0.794 1.005 1.176

CRPS SPF m 0.087 0.179 0.280 0.396 0.510
SPF m/v 0.083 0.175 0.276 0.391 0.505
BMF m 0.071 0.146 0.242 0.357 0.477
BMF m/v 0.054 0.135 0.233 0.346 0.462

INF
Coverage SPF m 0.790 0.740 0.760 0.720 0.700 0.830 0.790

SPF m/v 0.690 0.720 0.750 0.710 0.700 0.830 0.780
BMF m 0.660 0.700 0.710 0.750 0.710 0.770 0.770
BMF m/v 0.620 0.700 0.710 0.730 0.690 0.740 0.760

Length SPF m 2.036 2.238 2.418 2.595 2.777 1.822 2.052
SPF m/v 1.665 2.121 2.318 2.499 2.680 1.660 1.944
BMF m 2.008 2.222 2.411 2.581 2.767 1.810 2.045
BMF m/v 1.823 2.160 2.357 2.536 2.719 1.728 1.990

CRPS SPF m 0.471 0.540 0.563 0.602 0.676 0.378 0.444
SPF m/v 0.463 0.534 0.558 0.597 0.672 0.369 0.438
BMF m 0.544 0.588 0.589 0.619 0.697 0.428 0.476
BMF m/v 0.553 0.591 0.590 0.618 0.697 0.430 0.476

TBI
Coverage SPF m 0.970 0.810 0.680 0.600 0.470

SPF m/v 0.820 0.750 0.620 0.490 0.430
BMF m 0.990 0.820 0.700 0.620 0.530
BMF m/v 0.940 0.770 0.650 0.510 0.450

Length SPF m 0.987 1.403 1.716 1.996 2.241
SPF m/v 0.301 0.888 1.290 1.615 1.892
BMF m 1.024 1.434 1.741 2.022 2.260
BMF m/v 0.242 0.859 1.269 1.602 1.884

CRPS SPF m 0.159 0.343 0.530 0.715 0.898
SPF m/v 0.070 0.272 0.479 0.680 0.872
BMF m 0.152 0.328 0.511 0.694 0.876
BMF m/v 0.041 0.239 0.445 0.645 0.838

NOTES: Coverage and Length refer to central prediction intervals with a nominal level of 70 % (reported length is on average over time). The CRPS scores are identical to those in Table
3, and are reprinted here for ease of reference.
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Table 5. Root mean squared errors and CRPS scores (the smaller, the better) for the complete sample (1988:Q3–2013:Q2)

SPF Nowcasts BMF Nowcasts

Horizon 1 2 3 4 5 1 2 3 4 5

GDP
RMSE Tilting 1.591 2.390 2.511 2.637 2.631 1.899 2.464 2.563 2.643 2.627

Soft Conditioning 1.649 2.433 2.550 2.633 2.622 2.037 2.514 2.608 2.637 2.620
Jumping-off 2.403 2.522 2.649 2.637 2.469 2.568 2.647 2.629

CRPS Tilting 0.906 1.280 1.335 1.411 1.411 1.042 1.317 1.366 1.412 1.410
Soft Conditioning 0.972 1.302 1.359 1.408 1.407 1.125 1.343 1.390 1.407 1.406
Jumping-off 1.305 1.352 1.421 1.419 1.327 1.375 1.419 1.415

UNE
RMSE Tilting 0.151 0.350 0.573 0.808 1.024 0.096 0.251 0.470 0.708 0.945

Soft Conditioning 0.152 0.355 0.585 0.823 1.039 0.079 0.257 0.487 0.728 0.962
Jumping-off 0.351 0.574 0.810 1.027 0.251 0.467 0.704 0.940

CRPS Tilting 0.083 0.175 0.276 0.391 0.505 0.054 0.135 0.233 0.346 0.462
Soft Conditioning 0.086 0.176 0.281 0.399 0.515 0.046 0.134 0.238 0.354 0.474
Jumping-off 0.177 0.277 0.392 0.506 0.136 0.234 0.347 0.464

INF
RMSE Tilting 0.809 0.915 0.973 1.029 1.144 0.985 1.027 1.050 1.075 1.196

Soft Conditioning 0.853 0.954 0.984 1.028 1.153 0.944 1.008 1.025 1.055 1.180
Jumping-off 0.915 0.974 1.030 1.144 1.025 1.050 1.074 1.195

CRPS Tilting 0.463 0.534 0.558 0.597 0.672 0.553 0.591 0.590 0.618 0.697
Soft Conditioning 0.501 0.555 0.561 0.595 0.676 0.545 0.584 0.578 0.607 0.689
Jumping-off 0.534 0.560 0.600 0.675 0.593 0.592 0.620 0.699

TBI
RMSE Tilting 0.132 0.514 0.854 1.162 1.450 0.073 0.457 0.800 1.112 1.402

Soft Conditioning 0.147 0.532 0.871 1.179 1.465 0.089 0.470 0.810 1.120 1.409
Jumping-off 0.518 0.860 1.170 1.459 0.460 0.807 1.121 1.412

CRPS Tilting 0.070 0.272 0.479 0.680 0.872 0.041 0.239 0.445 0.645 0.838
Soft Conditioning 0.079 0.285 0.494 0.695 0.888 0.042 0.245 0.451 0.651 0.845
Jumping-off 0.283 0.491 0.689 0.878 0.256 0.463 0.661 0.850

NOTES: Tilting is based on the small m/v variant as described below Table 3. The best performing method in each comparison is printed in bold.

Figure 5. Left panel: histogram of all 100,000 BVAR draws for 2008:Q4 (current quarter forecasts). The 7879 draws within the rectangle
satisfy the soft condition imposed by SPF nowcasts. Right panel: zoomed histogram for the draws that satisfy the nowcast condition. In both
panels, the vertical line marks the realized value of −6.55.
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6.3 Empirical Results

Table 5 summarizes the performance of the methods in terms
of RMSE and CRPS.

• Tilting performs similarly to jumping-off and soft condi-
tioning, in that differences in RMSE or CRPS across these
methods are typically smaller than differences across now-
cast types (model based versus survey).

• In some cases, tilting attains markedly better RMSE and
CRPS results than soft conditioning at the current quar-
ter horizon. This may be due to unrealistic behavior of
the soft conditioning method in case the nowcast deviates
substantially from the BVAR forecast. Figure 5 provides
an example, based on the current quarter distribution for
GDP growth in 2008:Q4. The soft conditioning distribu-
tion consists of 7,879 draws between −5.49 and −0.38
(draws within the rectangle on the left panel). The draws
are clearly skewed toward the right endpoint of the inter-
val. This is because they are taken from the left tail of the
(roughly bell shaped) BVAR distribution.

Overall, these results indicate that, in terms of RMSE and
CRPS accuracy, the empirical performance of tilting is com-
petitive with, but not necessarily better than, other state of the
art methods for combining BVAR forecasts with external now-
casts. However, as described above, tilting has other advantages,
in terms of properly accounting for nowcast uncertainty, as well
as flexibility.

7. CONCLUSION

This article is concerned with the problem of combining fore-
casts from a BVAR with nowcasts from other sources. This
combination problem is nonstandard, in that the BVAR im-
plies a joint forecast distribution for several forecast horizons,
whereas the nowcast information is restricted to mean and vari-
ance predictions for the current quarter. We argue that entropic
tilting is a powerful tool to tackle these challenges; unlike other
methods proposed in the literature, it does not require restrictive
assumptions such as joint normality of the VAR system or zero
variance of the nowcast.

In our empirical analysis, tilting systematically improves the
accuracy of both point and density forecasts, and tilting the
BVAR forecasts based on nowcast means and variances yields
slightly greater gains in density accuracy than does just tilt-
ing based on the nowcast means. In a comparison of tilting on
a variable-by-variable basis to tilting jointly toward the now-
casts for all four variables of the BVAR, we find that the over-
all differences in forecast performance for the joint treatment
of variables versus the individual treatment of variables are
small.

The analysis presented in this article (in addition to results
presented in the Appendix) shows that the benefits of tilting are
not limited to a specific empirical setup, but hold across a range
of choices for both the external nowcast and the BVAR specifi-
cation to which tilting is applied. Finally, our analysis in Section
6 documents that the empirical performance of tilting is compet-
itive with, but not necessarily better than, other state-of-the-art

methods for combining information. Given their similar empir-
ical performance, a user’s choice of the combination method
may thus depend on additional factors such as theoretical ap-
peal, flexibility and ease of use. We think that tilting is attractive
along each of these dimensions.

SUPPLEMENTARY MATERIALS

Supplementary Appendix to “Using Entropic Tilting to Com-
bine BVAR Forecasts with External Nowcasts”: File providing
additional results. (PDF file)
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