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ABSTRACT
We formulate ill-posedness of inverse problems of estimation and
prediction of Coronavirus Disease 2019 (COVID-19) outbreaks from
statistical and mathematical perspectives. This is by nature a stochas-
tic problem, since e.g., random perturbation in parameters can cause
instability of estimation and prediction. This leaves us with a plenty
of possible statistical regularizations, thus generating a plethora of
sub-problems. We can mention as examples stability and sensitivity
of peak estimation, starting point of exponential growth curve, or
estimation of parameters of SIR (Susceptible-Infected-Removed)
model. Moreover, each parameter has its specific sensitivity, and nat-
urally, the most sensitive parameter deserves a special attention. E.g.,
in SIR model, parameter b is more sensitive than parameter c. In a
simple exponential epidemic growth model, parameter b is more
sensitive than the parameter a. We also discuss on statistical quality
of COVID-19 incidence prediction, where we justify an exponential
curve considering the microbial growth in ideal conditions for epi-
demic. The empirical data from Iowa State, USA, Hubei Province in
China, New York State, USA, and Chile justifies an exponential
growth curve for initiation of epidemics outbreaks.
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1. Introduction

Coronavirus Disease 2019 (COVID-19) produced by the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), is a disease first identified in late 2019 and
declared pandemic on March 11. COVID-19 is an international, national and public
health emergency [1, 2]. Nevertheless, other important contagious routes such as fecal-
oral transmission, has been reported [3]. Fever, cough, sore throat, fatigue, and short-
ness of breath are characteristics symptoms of COVID-19, nevertheless, other such as,
diarrhea, loss of smell and taste, and headache, associated with other organs and sys-
tems have been recently accepted. Symptoms may appear 2–14 days after exposure.
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According to [4], the experts extracted data regarding 1,099 patients with laboratory
confirmed COVID-19 from 552 hospitals in 30 provinces. We can see that 1.18% of the
infected people had direct contact with wild animals, 31.30% had been to Wuhan, and
71.80% had contact with people from Wuhan. The median incubation period for the
virus is 3 days (range 0–24 days). In addition, studies have found that COVID-19
spreads rapidly from person to person.
Here we formulate selected statistical, mathematical, and real-life challenges of

COVID-19 outbreak prediction. In particular we justify an exponential curve from
microbiological point of view as a reasonable model for outbreak of COVID-19 epidem-
ics. We need to point out that information criteria for estimation and prediction are
not necessarily reaching their maximums/optimums on the same sampling schemes.
Such ill posed information relationships can be formulated in the form of 1-st kind
Fredholm equations. Under reasonable regularities and simplicity of the underling
process, e.g., autoregressive statistical models, one can apply FIRCEP methodology [5]
to obtain such relationships. Such kind of ill-posed information relationships can be
formulated also from the perspective of information divergences, and ill-posedness can
be translated to normal language as a not-avoidable imprecision of any model with
respect to underlying parameter estimation/prediction.
The manuscript is organized as follows. In the following Section 2 we introduce some

important information about ill-posed problems. We illustrate ill-posedness on sensitivity of
parameter b in a simple exponential growth by using reported data from Iowa State, USA.
From economical point of view, for the “restart of country” the correct prediction and esti-
mation of exponential shape of COVID-19 curve plays an important role, this problem has
been well visible in Chile. Chile’s economic model is neoliberal doctrine with an important
role for the market. The pension system is managed by private operators, the economy is
dependent on exports of raw materials such as copper, fishing and agriculture, and medium,
small, and micro (family) enterprises. Thus facing the pandemic with strong quarantine
measures (e.g., restricted mobility and limited public and private economic activities) is gen-
erally a complex problem. According to PAHO (Pan American Health Organization), since
the pandemic came to Chile, today (July 1, 2020) there have been monitored 319.493 posi-
tive cases and 7.069 deaths. Chile has close to 18 millions of habitants. In this scenario the
exponential slope of Chilean COVID-19 growth (positive accumulates cases) can be used as
an analytic tool for the proper scaling of governmental policies. On the other hand, the
behavior of the exponential growth of COVID-19 in Chile (positive cases) and in particular
the slope or rate of contagion, can be used as one of indices of COVID-19 impact on the
country’s economy. Since entering the exponential phase, the government has emitted
actions and policies of economic aid to face the rise of unemployment to a historic 11.2%
(Chilean Institute of Statistics INE) and the fall in the monthly index of economic activity
(IMACEC) to �15,3 in May 2020 (Banco Central de Chile). IMACEC is predictive statistics
of the per capita gross internal product (PIB) in Chile.
Above mentioned societal issues naturally justify the importance to study the stability

and sensitivity of underlying dynamics of an individual outbreak models to the input
data and estimated parameters. Also, we still have to analyze some special situations; for
example, more samples can be detected daily in the later period, which will also cause
the growth of number of infected cases. Moreover, the following observations shall be
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pointed out: each country is having a different COVID-19 approach and different mod-
eling. Some of countries use discretization of SIR (Susceptible, Infectious, or Removed)
model. But not each discretization will be convergent to the same solution of continu-
ous SIR model. Moreover, several effects on equilibrium and stability of SIR has been
found, see e.g., [6]. Data from COVID-19 outbreaks are briefly discussed in Section 3.
Virological backgrounds for exponential shaped growth curves of COVID-19 outbreak
are given in Section 4. In Section 5, we provide a parameter sensitivity study, both from
theoretical and empirical perspective, for SIR model without vital dynamics. In the last
Section 6, we give concluding remarks and overview of selected important issues for the
proper modeling of COVID-19 outbreak.

2. A sensitivity of exponential model to the input/starting parameter

Ill posed problems and parameter estimation are difficult issues for COVID-19 growth
models. The random perturbation of parameters can have serious effects on the quality
of modeling. As said by Paul Kr�ee in the Preface of [7]: “Random phenomena has
increasing importance in Engineering and Physics, therefore theoretical results are strongly
needed. But there is a gap between the probability theory used by mathematicians and
practitioners. Two very different languages have been generated in this way…”
One can indeed observe several discrepancies between COVID-19 policy makers and

modelers, possibly caused by the usage of different languages. In principle simple growth
models (like the exponential one aebt or SIR model) looks to be attractive for a straightfor-
ward implementation with ad-hoc disretization schemes and various estimation techniques.
Thus sensitivity of these models to the principal parameters, e.g. b in case of exponential
growth or b in the case of SIR may deceive its user. An independent observer may wonder
why the same mistakes in the estimation of outbreaks has been repeated again and again
in various countries by using the same models, even when time shift has allowed some
possibilities to learn from the mistakes of others. On the other hand we did not want to
simplify the whole situation and overemphasize the theory of calibration, estimation and
regularization. But more caution is needed in these areas. In the next subsection, we intro-
duce a distributed dynamical system from the stability perspective.

2.1. Distributed dynamical systems

Distributed parameter systems are everywhere. Because they are difficult to deal with,
engineers generally avoid partial differential equations. They reason that lumped param-
eter models will generally suffice and in recent years, finite element analysis has pro-
vided a real verification of that idea and the tools to work with. However, there are still
some benefits from thinking things in terms of continuum mechanics. The dynamical
distributed systems can be very useful for so called inverse problems. Estimation of vari-
ous flow and mass transport parameters can be seen as the inverse problem of ground-
water modeling (see e.g., [8]).
The mathematical term well-posed problem stems from a definition given by

Hadamard (see [9]). He believed that mathematical models of physical phenomena
should have the properties that
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1) A solution exists
2) The solution is unique
3) The solution depends continuously on the data, in some reasonable topology.

Examples of archetypal well-posed problems include the Dirichlet problem for
Laplace’s equation, and the heat equation with specified initial conditions. These might
be regarded as “natural” problems in that there are physical processes that solve these
problems. By contrast the backwards heat equation, deducing a previous distribution of
temperature from final data is not well-posed in that the solution is highly sensitive to
changes in the final data. Problems that are not well-posed in the sense of Hadamard
are termed ill-posed. Inverse problems are often ill-posed. Such continuum problems
must often be discretized in order to obtain a numerical solution. While in terms of
functional analysis such problems are typically continuous, they may suffer from
numerical instability when solved with finite precision, or from errors in the data. A
measure of well-posedness of a discrete linear problem is the condition number. If a
problem is well-posed, then it stands a good chance of solution on a computer using a
stable algorithm. If it is not well-posed, it needs to be re-formulated for a numerical
treatment. Typically this involves adding some additional assumptions, such as smooth-
ness of the solution. Such a process is known as regularization.
To illustrate mathematical inverse problems, let us consider differentiation. We can

construct a simple example with sequence fn,DðxÞ ¼ f ðxÞ þ D sin nx
D

� �
, where f and fn,D

are the exact and perturbed data. For an arbitrary small data error D, the error in the
result can be arbitrary large: the derivative does not depend continuously on the data
with respect to the uniform norm. Following [10] we have demonstrated some effects
that are typical for ill-posed problems, i.e.,

1) amplification of high frequency errors;
2) restoration of stability by using a-priory information;
3) two error terms of different nature, one for the approximation; error, the other

one for the propagation of the data error, adding up to a total error;
4) loss of information even under optimal circumstances;
5) the appearance of an optimal discretization parameter, whose choice depends

on a-priori information.

2.2. Parameter stability and sensitivity

Modeling of evolution of infectious disease is important since it can helps to predict the
future course of an outbreak and to evaluate strategies to control an epidemic.
Naturally, models are only as good as the assumptions on which they are based. We
believe that parametric modeling is the most common form of modeling used (repre-
sented often by a distributed dynamical system). While it is rather straightforward to
test the appropriateness of parameters, it can be more difficult to test the validity of the
general mathematical form of a model. What is worse, even in the positive case, the
sensitivity of the solution to parameter changes (initial conditions included) must be
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taken into account. In general, it doesn’t really matter if it is deterministic or stochastic,
continuous or a discrete model. Similar considerations hold essentially to all of them.
Let X be a smooth manifold. The mapping / : X � R ! X (/ : X � Z ! X) is called

the continuous (discrete) Ck-dynamical system on X if

1. /ðx, 0Þ ¼ x for all x 2 X;
2. mapping /t : X ! X, /tðxÞ ¼ /ðx, tÞ is the Ck-diffeomorphisms for all t 2 R ðZÞ;
3. /tþs ¼ /t � /s for all t, s 2 R ðZÞ:

/ is often called the evolution function of the dynamical system and X a phase (state)
space. Most common construction of dynamical systems is given by initial value
problems of ordinary differential equations (or difference equations for discrete case).
We illustrate it in the next on typical (evolving in time t) parametrized ODE system

_x ¼fðx, h, tÞ, (1)

where x 2 R
n is the state vector, h 2 R

p is the vector of parameters and f : Rnþpþ1 ! R
n

represents the dynamics. Naturally, initial state is represented by the initial condition1

xðt0Þ ¼ x0: (2)

Here indisputable fact is that this condition may depend on the parameters, i.e., x0 ¼
x0ðhÞ: The above representation subsumes the case where the initial condition may itself
be seen as a parameter. We assume here that all dependencies are smooth enough to do
analysis. Notice that the solution of (2) is parametrized evolution function
xðx0, t0; h; tÞ ¼: /tðx0; hÞ, i.e., a parametrized dynamical system. Notice that in some lit-
erature a dynamical system is triple ðT,X,/Þ,T is a monoid (usually R or Z).

2.2.1. Stability
Here we assume that x0 does not depend on h (however it might depend on other par-
ameter b). Solution xðt; h, t0, x0Þ of given model is stable2 if for every (small) � > 0,
there exists a d > 0 such that having initial conditions within distance d i.e., jjx0 �
x1jj < d remains within distance � i.e., jjxðt; h, t0, x0Þ � xðt; h, t0, x1Þjj < � for all t � t0:
Notice that d can depend only on �: That means a resistance to change in time (the tra-
jectories do not change too much under small perturbations). The opposite situation
means instability. Typical example of instable system is an exponential growth, which is
a natural model of COVID-19 outbreak. Thus the main purpose of developing stability
theory is to examine dynamic responses of a system to disturbances as the time
approaches infinity. But in practical situations this is not the goal. The predictions we
are interested in COVID-19 outbreak models, are short-term predictions, e.g., 2-weeks.
These short-term predictions motivate the next notion, sensitivity. Here natural question
arises, how the instability relates to sensitivity.

2.2.2. Sensitivity
Sensitivity analysis [11] is used to determine how the parameters of a model influence
its outputs, i.e., to study of how the uncertainty in the output can depend on different
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sources of uncertainty in its inputs. If the observables are highly sensitive to perturba-
tions in certain parameters then these parameters are likely to be identifiable. There is
sometimes hard to answer the question how the magnitude of the sensitivities can be
interpreted. What is also important to mention is that in linear case a nonzero right
hand side (nonhomogeneous system) might influence sensitivity in contrast to stability.
Due to smoothness in sensitivity analysis methods we use so called n� p matrix of sen-
sitivity functions

S ¼ rhx, (3)

which can be understood as a local sensitivity measure. I.e., Sij is related to sensitivity of
xi to parameter hj. It can be shown by the chain rule that it satisfies the following ODE
matrix system

_S ¼ðrxfÞ Sþrhf (4)

with initial condition Sðt0Þ ¼ rhx0ðhÞ: It is very helpful especially when the explicit
form of solution is not known. I.e., we do need to solve dynamical system to study its
sensitivity. S can also be used to study the evolution of the state covariance matrix of
the joint vector of the state and the parameters under the assumption of multivariate
Normal distribution and a first-order discretization of Equation (4).
It is often better to explain arising differences as a percentage. Here the elasticity can be

used. For simplicity now assume f : R ! R: The ratio of the relative (percentage) change
in the function’s output with respect to the relative change in its input is called elasticity
and when considering a smooth function f of a variable at point a it is defined as

Ef ðaÞ ¼ a
f ðaÞ f

0ðaÞ ¼ d ln f ðaÞ
d ln a

lim
x!a

1� f ðxÞ
f ðaÞ

1� x
a

� %Df ðaÞ
%Da

:

Clearly, the elasticity3 can also be defined if the input and/or output is consistently
negative (away from zero). The elasticity of a function f is a constant a if and only if
the function has the form f ðxÞ ¼ Cxa, i.e., a power functions. There exist also general-
izations to multi-input-multi-output cases in the literature. We also use notation Ecf for
the elasticity of function f w.r.t to parameter c.

2.3 A Malthusian growth model (a simple exponential growth model)

This model is the unique solution of (1) with (2) in the form

_x ¼ b x, (5)

xðt0Þ ¼ a, (6)

i.e., n ¼ 1, p ¼ 2, and h ¼ ða, bÞT : We admit here only b> 0 and a> 0.

Remark 2.1. Of course in this case one can obtain all forthcoming information directly
from explicit form of the solution

xðtÞ ¼ a eb t�t0ð Þ (7)

since it is known.
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From the stability point of view it is clear that here we deal with instability. This fol-
lows directly from the fact that derivative is positive. But we are more interested in sen-
sitivity. This is because for COVID-19 outbreak estimation and prediction we have to
know how the evolution behaves e.g., in two weeks, not in a long-term periods like
twelve months. Sensitivity system of Equation (3) has the form

_S1 ¼ b S1,

_S2 ¼ b S2 þ x,
(8)

with S1ðt0Þ ¼ @x
@a ðt0Þ ¼ 1 and S2ðt0Þ ¼ @x

@b ðt0Þ ¼ 0 following from (6).
We do not need to solve system (8) either. Clearly one can find first integral as follows

dx
x

¼ dS1
S1

,

which is equivalent to S1 ¼ k x: Moreover, after appropriate multiplication and addition

of equations we get _S2x� S2 _x ¼ x2, which yields

d
dt

S2
x

� �
¼ 1:

Thus using initial states we have S1 ¼ x
a and S2 ¼ xðt � t0Þ: Now we want to express the

change in the output quantity as a percentage of the nominal value of parameters.
Often we can compute

Eax ¼ a
x

@x
@a

¼ a S1
x

, Ebx ¼ b
x

@x
@b

¼ b S2
x

even if we do not know explicit form of a solution. Indeed, thanks to result above we have
Eax ¼ 1 and Ebx ¼ bðt � t0Þ: From percentage sensitivity functions we can conclude

i) When parameter a is changed by 1%, the state change is also permanently 1%.
ii) When parameter b is changed by p%, the percentage change of state x increases

with time linearly. The change in status is linear function of its nominal value,
i.e., p

100 bðt � t0Þ%:

For the better illustration see also Figures 1–4. To perform sensitivity analyses on the
population sizes with respect to the uncertain parameters one can use a full factorial design.
One can read a lot from graphical representation of sensitivity indices. In the lower subplot
of Figure 5, the sensitivity indices (from package multisensi with design.a-
rgs¼ list(b¼ c(0.08,0.12,0.16),a¼ c(82,122,162))) for the main effects and the first-order
interactions at time t are given. Their lengths are normalized and differentiated by colors
along the vertical bar. One would might to deduce that at first week the population size is
sensitive to the main effect of a. However, the upper subplot illustrates how output quan-
tiles (the extreme (tirets), inter-quartile (grey) and median (bold line) output values at all
time steps) vary along the time steps. Thus, we can avoid over-interpretation of the sensi-
tivity indices since the variability between simulations is low at these times.
Here we comment on the recent number of COVID-19 infected in Iowa State, USA and

we also compare such a real data to the models predicting the number of infections in
Hubei Province in China and New York State, USA. By the visual check (see Figure 6) we
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adopt an exponential distribution model as a suitable fit for the initial prediction of the
number of infected people during the outbreak. Microbiological justification of such model
is given in Section 4. The number of people who touched the previous day is used as the
starting point and it is calculated according to the exponential model. Several important
questions related to challenges of outbreak modeling arisen, namely: What impact does
the use of different starting points have? How does the growth rate change in short
periods? Are the choices of starting point influential for the growth rate? As follows we will
illustrate numerical instability of estimation of starting value bstart, naturally, further
implementation of exponential nonlinear model xðtÞ ¼ aebt will be effected by different
bstart parameters.

Figure 1. A difference in parameter implies more than a double difference in output.

Figure 2. A graphical justification of parameter sensitivity from Figure 1 by the means of elasticity.
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In the next Figures 7–9, we plotted variability of parameters for the Iowa data. In
Figure 7 we plotted the variability of bstart in the outbreak period in which cumula-
tively 300 people were infected. Here we used the previous date as date zero (starting
date), thus astart serves as the starting point. At Figure 8a, we plot bstart prediction for
the nearest 4 weeks, at Figure 8b, we calculated bstart for the nearest half-month and at
Figure 8c, we calculated bstart for the nearest month. The graph on Figure 6 shows that
the increase of infected people in Iowa approximately follow the exponential distribu-
tion. But if we count different period of time, will the growth rate change a lot? Can we
use that to predict a future data? And why the changes happen? On Figure 9 we depict
behavior of bstart parameter for a longer period from April 25th until May 23rd.

Figure 3. Equality of proportional change of parameter and data output.

Figure 4. A graphical justification of parameter sensitivity from Figure 3 by the means of
constant elasticity.
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We can conclude from the Figures 7–9 that the growth rate fluctuated a lot even dur-
ing a relatively short period of time during COVID-19 outbreak in Iowa. But why this
happens? We may thing about some main reasons: the changes of test approach,
increase of tested cases, delays of getting test results, social distance policies, among

Figure 5. Graphical representation of the sensitivity indices generated by the package multisensi.

Figure 6. Exponential fitting.
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others. Moreover, sensitivity of the parameters of the model and its ill-posedeness
played a fundamental role.
We used the different growth rates from closed 2weeks to predict for follow-up

2weeks: Due to that, we can see the choice of growth rate causes the huge differences
between individual predictions, the error between two rates is also increasing exponen-
tially, see Figure 10. Summing up, it causes more than 10,000 difference only in 2weeks,
see Figure 11. These graphical exercises illustrate the importance of parameter sensitivity
phenomenon in the COVID-19 outbreak models.

3. On COVID-19 outbreaks

The Institute for Health Metrics and Evaluation (IHME) at the University of
Washington School of Medicine Study also made predictions of COVID-19 in Iowa.
The study conducted before the end of March 2020 said the most recent estimate pre-
dicts 349 deaths by August 4 with a peak on May 4. Nationwide the study predicts that

Figure 7. Fluctuation of bstart.

Figure 8. Fluctuation of bstart.
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74,073 people will die by August 4, which is higher than the study’s previous estimate
of 67,641, because longer epidemic peaks in some states and that deaths were not falling
as quickly as anticipated.

Figure 9. Behavior of bstart parameter based on Iowa data from April 25th until May 23rd 2020.

Figure 10. Fluctuation of bstart.
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We sampled (at the end of March) the populations and the number of confirmed
cases and deaths in some counties in Iowa. We found that Polk county was the top one
in both population and confirmed cases. But Black Hawk and Woodbury, with popula-
tions nearly four times smaller than Polk’s, are in the top three with more than 1,000
confirmed cases. We looked for the median age of several counties (Polk: 35.8; Black
Hawk: 34.9; Woodbury: 35.6; Linn: 37.4; Marshall: 38.5; Dallas: 35.1; Johnson: 29.9). So
we can conjecture that the number of confirmed cases in each county depends on age.
Mortality Rate in Iowa State have been by then 2.1%.
Then we chosen the five counties with the highest number of confirmed cases. We

found that adult and middle age groups have the highest rates of infection. In contrast,
children and elderly have lower rates of confirmed cases. However, the death rate of
elderly was significantly higher than that of other age groups. So, we can conjecture
that older people, although they may not be confirmed of large amount like adult group
due to the less activities and smaller population, they are also more likely to die from a
variety of diseases and weakened immune systems. In fact, older adults and people who
have severe underlying chronic medical conditions like heart or lung disease, or diabetes
seem to be at higher risk for developing more serious complications from COVID-19
illness. All these factors can be good candidates for covariates of the outbreak models
(Tables 1 and 2).

Figure 11. Prediction for future 2weeks.

Table 1. Age groups with confirmed cases.
Total Child Adult Middle age Older adult Elderly Unknown

Total 10404 212 4278 3938 1469 505 2
Polk 1875 26 837 578 279 155 0
Black Hawk 1396 21 662 562 122 27 2
Woodbury 1323 66 521 571 158 7 0
Linn 770 19 287 224 163 77 0
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3.1. Chile: Heterogeneity rules the country

Chile is a geographical and demographical heterogenous country, practically each region
is having a different COVID-19 incidence curve, domination is given by Santiago (the
most populated, 5.614 million habitants) and Valparaiso. There is a delay in data,
namely 3–4 days, because of medical system. Quality of administrative data should be
further analyzed. A common aspect is a possible correlation between population den-
sities and incidence values. However, it can be seen that there are gaps in the entry into
the increase phase of positive cases. According to the Chilean heath authorities the aver-
ages of positives for COVID-19 is 8.384 (with a DESVEST of 25,869 (Ministerio de
Salud web page, June 7, 2020). The variation can be explained by demographical and
geographical aspect in a first instance, nevertheless other factors such as ecology and
undiscovered contagious routes can be also considered.
Chilean COVID-19 policies include promoting social distancing and the obligation to

use personal protection elements in public areas. Quarantine-bound confinement is
implemented gradually and slowly in large cities such as Santiago, considering the inci-
dence and hospital capacity.
With the COVID-19 outbreak we can see that lots of infected cases online are grow-

ing almost exponentially. The reason why we use exponential growth to model corona-
virus outbreaks is that, based on previous epidemics, the first phase of a pandemic
follows exponential growth. Further justifications from the virological perspective are
given in the next section 4. The exponential growth function is not necessarily the per-
fect representation of the COVID-19 growth, however, at the beginning of the covid
outbreak it looks to be a reasonable surrogate.

4. Virological backgrounds for exponential shaped growth curves for
COVID-19 outbreak

Before we start with microbiological backgrounds, we will illustrate in the following
Example 4.1 the exponential growth function.

Example 4.1. Exponential growth function on NY and Hubei data
Graphs on Figure 12 plot the cumulative data of number of infected people and death

for Hubei and New York state, and we can see the exponential growth of infected peo-
ple at the initial stage of outbreak. This motivates an exponential model xðtÞ ¼ aebt ,
where x refers to the number of infected people, a> 0 is the starting point, b � 0 is a
growth rate and time (days) t � t0 (here we set t0 ¼ 0).

In this section we provide microbiological and virological reasons for the exponential
growth function. At least three levels of virus spread must be considered in predictive

Table 2. Age groups with deaths.
Total Adult Middle age Older adult Elderly

Total 219 5 24 87 103
Polk 45 3 1 12 29
Black Hawk 19 0 5 8 6
Woodbury 4 0 0 3 1
Linn 55 0 7 29 19
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models; cellular level (replicative mechanism), individuals level (organs, anatomy, age,
live cycle), and community level (demography, economy, ecosystems).

� Replication of SARS-COV-2 at the cellular level. SARS-COV-2 is an enveloped
virus containing a single-stranded positive-sense RNA genome. Once the virus
binds and enters to the target cell, a complex life cycle mechanism begins using
directly the RNAss producing genomic a sub-genomic RNAs. At the same time,
a complex mechanism to assemble and releases virions is activated. This process
finally destroys the infected cell and spread millions of mature virions.

� SARS-COV-2 spreading at the individuals level. Once the virus infects a person,
SARS-COV-2 attack an important diversity of cell types affecting different tissues
and organs present in the respiratory system, nervous system, digestive system and
renal system. This happens because SARS-COV-2 targets tissues whose cells are
expressing the widely present Human angiotensin-converting enzyme 2 (ACE2).
For this reason, the limited original symptoms were extended to a variety of symp-
toms ranging from headaches, sore throats, respiratory difficulties, loss of senses
(smell and taste), and diarrhea. In this scenario, considering only the original symp-
toms for medical care or for circulation restriction measures dismisses potential
virus disseminators and therefore does not limit the route of transmission.
Likewise, since recently has been described that SARS-COV-2 is present in human
feces and also has been detected in untreated urban wastewater samples, implies a
potential second route of dissemination. The dissemination route currently recog-
nized by the WHO is through the respiratory tract, however, food contaminated by
feces (fecal-oral route) and contact with human secretions, among others, should
not be ruled out a priori. It is important to consider and understand the rapid and
wide spread of COVID-19 pathology in the global population.

Figure 12. Number of infected and deceased people for Hubei (top) and NY (bottom).
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4.1. Considerations and assumptions for predictive models of the evolution of
COVID-19 in a population

4.1.1. The SARS-COV-2 contagion curves reflect microbial growth under con-
trolled conditions

At the population level the tendencies of dissemination of SARS-COV-2 in each country
(measured by the number of daily infected) follow the same trend of a classic microbial
growth under controlled conditions. Thus we can consider three phases: a first phase is
latency, a second phase is exponential growth, and finally a stabilization phase.

� Latency phase It would correspond to the moment when SARS-COV-2 would
cross the species barrier and reach man from its natural animal reservoir. From
our point of view this event is neither necessarily unique and happening in a sin-
gle city, nor it could be assumed that SARS-COV-2 has been in the human
population since December 2019 to date. The first contact may have been much
earlier and not necessarily associated with a single person exposed for the first
time to a contaminated animal. The initially proposed scenario can generate
inconsistency for any model that is currently used. That is, the so-called patient
0 and the trips to and from China do not necessarily help to explain the spread
of the pandemic. Hence, understanding and studying the extent of the virus
latency phase is very important, given that it was the time when the virus could
have evolved through mutations, thus making humans a new host or reservoir
suitable for the replication.

� Exponential phase. The contagion trends, of positive SARS CoV 2 to rtPCR
assay, in each country or city, reflect this phase of microbial growth in optimal
conditions. In fact, it is possible to determine a slope, a growth rate and finally
establish the maximum rate or rate of infection. For adequate predictive models,
in this phase, it is essential to consider asymptomatic infected people or with
mild symptoms as vectors of infection. Likewise, it is important to consider that
the routes of contagion must be expanded and not necessarily limited to direct
contact. For example, faecal-oral contamination should be considered as occurs
with foodborne illness. This is very important considering that the virus has
been reported to be present in human feces from symptomatic and asymptom-
atic patients. In fact, the presence of SARS-COV-2 has also been detected in
urban wastewater.

� Stationary phase. The objective of predictive models is to establish the time of
COVID-19 arrival. Beside that proper protective policies can be created based on
individuals behavior and governmental actions.

Taking into consideration that the exponential phase indicates the active presence and
spread of SARS-COV-2 circulating in a city, region, or country, it is essential to develop
models that can help to predict and/or reduce the impact on health systems and local
economies. At the same time that they allow verifying the effectiveness of the implemented
sanitary measures. A model based on the comparison of growth rates and their duration in
a city or country, should take as reference the growth of a virus in its optimal conditions.
For this, some analogies and assumptions must be taken into account. In the bacterial
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exponential growth model, each bacterium has unlimited nutritional resources, favorable
environmental conditions and an adequate metabolism that permit the maximal rate of
genome replication and cells division. In spite that viruses do not have metabolisms, like
bacteria require replicates its genomes in an adequate environment (human cells and com-
munity). In this context, the following assumptions can be made:

� Assumption 1: The current pandemic curves in each country reflect replication of
microorganisms in an ecosystem with favorable conditions. When a microorganism
such as bacteria find ideal conditions for their development, that is, they are adapted
to the environment, they begin an exponential growth based on the duplication of
each generation. The doubling time is the time it takes for a generation to double,
and this stage of growth is exponential and the slope of the curve at this stage repre-
sents the rate of growth. In turn, during the exponential phase, the microorganism
will reach what is called the maximum growth rate (lmax) and that is the one in
which the doubling occurs in the shortest time during the exponential phase.

� Assumption 2: For SARS-COV-2 to be able to spread in a population, it is
required that the individuals provide a metabolic, enzymatic and genetic machin-
ery to produce infectious SARS-COV-2 particles. For this to be effective, individ-
uals must have favorable conditions for viral replication and that involve: age,
physiological status, immune status. These conditions should not represent bar-
riers for SARS-COV-2 to replicate. For example, a healthy individual with an
active immune system should not be considered as a contagion vector or, “as an
adequate substrate for the success in the spread of SARS-COV-2.”

� Assumption 3: The spread implies the interaction between SARS-COV-2 and peo-
ple, being all the possible routes of contagion and that include, direct contact, fecal-
oral contamination by contaminated food, spread in indoor closed spaces (similar
to disease outbreaks). In practice, a person can be infected by at least three routes.

Consideration of a Monod-based model (see also [12]). In this sense, and taking
into account what Monod proposed in 1947, it is possible to establish the following
model proposal.

� Evaluate the kinetics of the exponential phase at the country and city level.
� Develop a statistical methodology to establish whether or not there is a correl-

ation with the population size/density in the country.
� Consider the concept of human vectors to the susceptible population.
� Establish a risk factor to measure, at the city level, the number of people suscep-

tible to becoming ill (symptomatic potentials: diabetics, hypertensive patients,
age, pharmacological treatment, immunocompromised, etc.) and the total popu-
lation of the city.

5. The SIR model without vital dynamics

The SIR model is one of the oldest and simplest of models of an infectious disease in a
population that breaks the population into three groups. Birth and death are often
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omitted in simple compartmental models since the dynamics of an epidemic, for
example, the flu, are often much faster. The SIR system can be expressed by the follow-
ing set of ordinary differential equations

dS
dt

¼ �bIS,

dI
dt

¼ bIS� cI,

dR
dt

¼ cI,

where S is the proportion of susceptible population, I is the proportion of infected, R is
the proportion of removed population (either by death or recovery). Notice that there is
not known an explicit form of the solution. However the fact that SðtÞ þ IðtÞ þ RðtÞ ¼
1 implies that one need only study the equation for two of the three variables.

Remark 5.1. (EXPONENTIAL OUTBREAK). Notice that at the beginning S � 1 yields
I0 ¼ ðb� cÞI ¼ bI: Thus at the beginning we are basically estimating exponential
growth. This can allow us to determine starting condition for parameters discussed in
Section 2.3.
We note that the dynamics of the infectious class depends on so-called basic repro-

duction number r0 ¼ b
c : It can be thought of as the expected number of cases directly

generated by one case in a population where all individuals are susceptible to infection.
It is not a biological constant for a pathogen as it is also affected by other factors such
as environmental conditions and the behavior of the infected population. Thus it does
not by itself give an estimate of how fast an infection spreads in the population. The
most important uses of r0 are determining if an emerging infectious disease can spread
in a population.
We have used packages deSolve and FME to solve a system of differential equations

and to perform a sensitivity analysis. Typical behavior of S and I is plotted on Figure
13(a). The choice of parameters is b ¼ 1:4 and c ¼ 0:2: On Figure 13(b) one can see a
global sensitivity analysis of parameters varied over a range b 2 ½1:2, 1:6� and c 2
½0:1, 0:3�: The effect on model output variables is measured by defining a distribution
for each sensitivity parameter and the model is run multiple times. Then envelopes are
added to the variables showing the range and mean ± standard deviation. In a local

Figure 13. Behavior of S and I and global sensitivity analysis of parameters.
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sensitivity analysis, the effect of a parameter value in a very small region near its nom-
inal value is estimated. It is good for example, to see which model parameters are more
sensitive than the others. From Figure 14 we can deduce that b have the largest values
for the sensitivity function, on average, suggesting that this model is most sensitive to
this parameter. This is not so surprising. Furthermore, this sensitivity shows peaks on
both parameters. This tells us the information about sensitivity of specific times. Finally
on Figure 15 we can see how the 1% and 10% increase of b increase the proportion of
infected individuals in specific times. Evidently it is not linear.
Now, imagine that we have reliable estimation of parameters b and c. The question is

if the forecast fitting is also qualitatively good. Thus one need a method to compare a
goodness-of-fit. We have used an accuracy measure based on percentage (or relative)
errors defined as follows:

SMAPE=2 ¼ 100%
n

Xn
t¼1

jFt � Atj
jAtj þ jFtj (9)

It is the half of symmetric mean absolute percentage error. Actually it is defined as the aver-
age of the difference of actual value At and the forecast value Ft weighted by their absolute
values. The value of (9) is within range of 0% and 100% and thus it is easy to be interpreted.
We illustrate this on SIR model fitting for 6 countries. See Figure 16, where on (a) we have
used observation of 14 days for fitting (parameters estimation). Clearly in some cases
(Iowa, Hubei, Chile) SIR fits quite well since SMAPE=2 2 ð7%, 9%Þ: Nevertheless for NY,
Slovakia it is worse and SMAPE=2 2 ð14%, 29%Þ: However much more important is
how the fitting will evolve in the near future. On Figure 16(b) we see the results. Evidently
the prediction is not good even for the one week, since there is an increase to

Figure 14. Analysis of local sensitivity of parameters.
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SMAPE=2 2 ð19%, 25%Þ and SMAPE=2 2 ð26%, 38%Þ, respectively. Thus, SIR model is
insensitive even within a short time periods.

6. Conclusions and discussion

The number of infected people is an integer valued mapping R ! N: This is typical for
modeling a phenomenon evolving in continuous time when the state variable can only
take integer values. On the other hand, although we model time as continuum, in prac-
tice the measurement of time is always discrete. In particular in the medical sciences,
economics etc. time is usually measured, for example, in minutes, days, months or years.
One can use positive integers to denote a time. Even if we have short time differences it
leads typically to discretization of the continuous model. But what is the effect of discret-
ization (considered as mathematical modeling methodology) on the dynamical behavior
of the outbreak model? Can the output change dramatically? What about stability or
sensitivity? What about convergence of discretized solution to a continuous one?
One can have a closer look on the switch between discrete and continuous time for the

model. From perspective of the fundamentals of dynamical systems see e.g., [13]. Since every
continuous dynamical system defines the discrete dynamical system (indeed / : X � R

defines ~/ ¼ /jX�Z
), a natural question arises, whether something similar holds in the

Figure 15. Increase of the proportion of infected individuals.

Figure 16. COVID-19 fitted (red) vs. observed (black) incidence.
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backward direction. According to the following theorem by Palis (see [13], page 70) we know
that there are only a few diffeomorphisms, which can be embedded into a continuous C0-
dynamical system. In a topological space ðX,SÞ a set A 	 X is everywhere-dense if it is dense
in X, i.e., �A ¼ X: Moreover we say that it is massive in X, if it contains a set that can be
expressed as a countable intersection of open everywhere-dense sets. Notice that every com-
plete metric space is a Baire space, i.e., every its massive subset is an everywhere-dense set.

Theorem 6.1. (J. Palis [13], page 70). Let X be a smooth manifold. There exist a massive
subset G of the set of diffeomorphisms from X onto X such that if f 2 G then f cannot be
embedded into a C0-dynamical system.
We can deduce from the previous theorem that the class of discrete dynamical sys-

tems is “broader” with respect to the structure of their trajectories than the class of con-
tinuous dynamical systems.
In [6] authors present four discrete epidemic models with the nonlinear incidence

rate using the forward Euler and backward Euler methods. They discuss the effect of
two discretizations on the stability of the endemic equilibrium for these models. The
sufficient conditions for the stability of the endemic equilibria is established and they
emphasize that it can lose stability and the Hopf bifurcation and chaos occur which is
not present in the continuous models.
Summarizing, we point out some selected but important aspects for modeling of

COVID-19 outbreaks as follows.

� Quality of the data. Do we have perfect data for modeling? E.g., number of
infected people usually comes from a controlled testing and not from the ran-
dom sample.

� Spatiotemporal parameter dependence. Parameters (e.g., b, c) might often depend
on time or space variables.

� Real dimension of parametric space. These parameters can even depend on other
factors, conditions or covariates (sex, age, social… .), which makes modeling
multidimensional. Clearly too few number of parameters can be insufficient, but
over-parametrization is also unacceptable.

� Delayed systems. Real processes often include aftereffect phenomena in their inner
dynamics. Here come time-delay systems on the scene. In the worst case scen-
arios (time-varying delays, for instance), a lot of caution is needed. Ad-hoc fitting
of the models may be potentially disastrous in terms of stability and oscillations.

� Parameter identifiability. There is a question whether the parameters of a model
can be identified (uniquely or with several solutions) from a specified input-out-
put experiment if perfect data are available. E.g., for linear, time-invariant mod-
els, there are several approaches available for this aspect of identifiability
analysis. In general identifiability is a property which must be satisfied in order
the model can guarantee a precise inference. Usually the model is identifiable
only under certain technical restrictions.

� Discretization of model (see also the time scale calculus).
� Non-uniqueness of the solution of the model and prediction. Bifurcations.
� Misinterpretation of the results. E.g., the difference between cumulative and active

variable of a dynamical system (active infected individuals vs. cumulative number
of infected individuals)
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� Intrinsic and latent heterogeneity. In a specific country one can define several
social groups which can contribute in a heterogeneous way to whole country epi-
demiological curves.

Notes
1. There can be other types of conditions e.g., several types of boundary conditions, etc.
2. This is stability in the sense of Lyapunov. There exist also notions of other types of stability.
3. Notice, that thanks to logarithm the rules for finding the elasticity of products and quotients

are simpler than those for derivatives but sum and subtraction rule does not hold.
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