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We propose a bootstrap-based test of the null hypothesis of equality of two firms’ conditional risk measures
(RMs) at a single point in time. The test can be applied to a wide class of conditional risk measures issued
from parametric or semiparametric models. Our iterative testing procedure produces a grouped ranking
of the RMs, which has direct application for systemic risk analysis. Firms within a group are statistically
indistinguishable from each other, but significantly more risky than the firms belonging to lower ranked
groups. A Monte Carlo simulation demonstrates that our test has good size and power properties. We
apply the procedure to a sample of 94 U.S. financial institutions using �CoVaR, MES, and %SRISK. We
find that for some periods and RMs, we cannot statistically distinguish the 40 most risky firms due to
estimation uncertainty.
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1. INTRODUCTION

Financial risk management is fundamentally based on the
comparison of risk measures across different assets, portfolios,
or financial institutions. Examples include the comparison of
total risk of two portfolios measured by their volatility, of tail
risk measured by the value-at-risk (VaR) or the expected short-
fall (ES), of systematic risk measured by the beta, or the com-
parison of systemic risk scores of two financial institutions,
and many others. Comparing unconditional risk measures can
be done using a variety of parametric or nonparametric tests.
However, most risk measures are expressed conditionally on an
information set and the corresponding forecasts are generally is-
sued from a dynamic parametric or semiparametric model. For
instance, a (M-)GARCH model can be used to produce condi-
tional VaR or ES forecasts, or a DCC can be used to estimate a
dynamic conditional beta (Engle 2012). As a consequence, the
conditional distribution of the estimated risk measure is gener-
ally unknown and depends on the estimation procedure used.

In this article, we propose a general testing methodology that
takes into account estimation uncertainty to statistically test for
equality of conditional risk measures for different assets, port-
folios, or firms at a single point in time. We propose two types
of tests. The first one is a bootstrap-based comparison test of
two risk measures. This test can be applied to a wide class
of conditional risk measures and (semi)parametric models. For
example, it can be used to compare conditional measures of
volatility, VaR, or ES for two assets or two portfolios at a partic-
ular time. It can also be used to test the relative level of systemic
risk for two banks on a given day. Additionally, it can be used to

test the equality of two conditional risk measures (for instance
two VaRs) issued from two different models (e.g., GARCH and
RiskMetrics) for the same asset or the same portfolio.

The second test is a procedure that allocates a large set of
assets, portfolios, or firms into groups of elements that are sta-
tistically indistinguishable from each other in terms of riskiness,
given a conditional risk measure. This method, inspired by the
model confidence set (MCS) of Hansen, Lunde, and Nason
(2011) can be applied to any type of risk measure. However, it
is particularly well suited to identify buckets of Global System-
ically Important Banks (G-SIBs) that have similar contribution
to systemic risk. The intuition is in line with what the Finan-
cial Stability Board (FSB) does each year when it publishes
its five-bucket list of G-SIBs to set extra capital requirement
(Basel Committee on Banking Supervision 2013). By doing so,
the FSB recognizes the inevitable estimation uncertainty in their
estimated riskiness and do not fully rely on point estimates.
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Many measures of systemic risk have been proposed in the
academic literature over the past years, the most well-known
being the marginal expected shortfall (MES) and the systemic
expected shortfall (SES) of Acharya et al. (2010), the systemic
risk measure (SRISK) of Acharya et al. (2012) and Brown-
lees and Engle (2012), and the delta conditional value-at-risk
(�CoVaR) of Adrian and Brunnermeier (2014). These mea-
sures are designed to summarize the systemic risk contribution
of each financial institution into a single figure. The appeal is
that there exists a ranking of financial institutions according to
their systemic risk measures that can be displayed in real time
with a daily or weekly frequency (see, for instance, the V-Lab
website of the Volatility Institute, NYU Stern). However, claim-
ing that firm A is more risky than firm B because its systemic
risk measure is higher, implies that risk is estimated without er-
ror. This is certainly not the case, since these measures typically
rely on dynamic parametric models that require sophisticated
estimation techniques. Even if the model is correctly specified,
replacing the true parameters of the dynamic model by their
estimates has an impact on the estimation accuracy of the risk
measure itself. Indeed, there is convincing evidence that sys-
temic risk measures are subject to substantial estimation risk
(e.g., Danielsson et al. 2011; Guntay and Kupiec 2015). If this
is taken into account, it is unlikely that one can discern such an
absolute ranking.

To the best of our knowledge, there is only one alternative
test for equality of systemic risk measures. Castro and Ferrari
(2014) proposed a method for testing whether two firms differ
in terms of their �CoVaR. However, their approach is specific
to �CoVaR and to the linear quantile regression. In contrast,
our method is more general as it works with any conditional
risk measure (SRISK, SES, VaR, ES, etc.) and is not specific to
any particular estimation method.

Our study is related to the literature on estimation risk in dy-
namic risk models, which is generally assessed through asymp-
totic confidence intervals. For instance, Chan et al. (2007) and
Francq and Zakoı̈an (2015) derived the asymptotic confidence
intervals for the conditional VaR estimator in the specific con-
text of heavy-tailed GARCH models. Gouriéroux and Zakoı̈an
(2013) considered a different approach based on an Estima-
tion adjusted VaR (EVaR). Alternatively, several articles pro-
pose resampling methods to carry out inference on risk mea-
sures. Hartz, Mittnik, and Paolella (2006) introduced a boot-
strap approach to correct the estimation bias and to improve the
VaR forecasting ability of the normal-GARCH model. Robio
(1999), Reeves (2005), Christoffersen and Gonçalves (2005),
and Pascual, Romo, and Ruiz (2006) proposed a more gen-
eral approach to assess the estimation error of volatility, VaR
and ES forecasts. Their resampling techniques allow the com-
putation of bootstrap-based confidence intervals around the risk
forecasts issued from historical simulation methods or GARCH-
type models. Finally, Escanciano and Olmo (2010, 2011) im-
plemented robust backtests for the VaR, using resampling
methods.

Unlike previous studies, we do not focus on the inference for
a single financial asset. Our testing strategy is designed to com-
pare the riskiness of two or more assets, given the estimation
risk of the corresponding risk measures. In that sense, our study
can also be related to the literature on forecast comparison tests
(Diebold and Mariano 1995; West 1996, 2006). However, our

null hypothesis, and therefore our test, differs in some important
ways. First, in most cases, we do not compare two models, but
the riskiness of two assets, portfolios, or financial institutions,
measured with the same measure and the same model. Second,
we do not compare a forecast to an ex-post observation. Finally,
and most importantly, we test for equality of two or more con-
ditional risk measures at time t, for which we have only one
estimate each. We do not test the equality of these measures
over the full sample.

There are also some similarities with the literature devoted
to the volatility forecast comparison, in case our test is used
to compare the forecasts of the same risk measure issued from
two alternative models (Hansen and Lunde 2006; Patton 2011).
However, our comparison test does not require the use of a proxy
variable since it is not designed to determine the “best” model.

The remainder of the article is structured as follows. Section
2 introduces a general definition for the conditional risk mea-
sures and gives some examples. Section 3 presents two types
of tests: a comparison test of two risk measures, and a buck-
eting procedure. The bucketing procedure is a multiple testing
problem, making it important to control the number of false
rejections. For that, we consider two alternative methods based
on the false discovery rate (FDR) and the family wise error
rate (FWE). Section 4 discusses the bootstrap implementation
and Section 5 presents some Monte Carlo simulation results for
both tests. In Section 6, we propose an empirical application for
three systemic risk measures, namely, the MES, the SRISK, and
the �CoVaR, based on a panel of 94 U.S. financial institutions.
Finally, Section 7 concludes and suggests extensions.

2. FRAMEWORK AND RISK MEASURE DEFINITIONS

Consider an asset, a portfolio, or a firm indexed by i and
an Fi,t−1-conditional risk measure (denoted RM) issued from
a dynamic parametric or semiparametric model, where Fi,t−1

denotes the information set available at time t − 1. Formally,
we define RM at time t as follows:

RMi,t = fi

(
θi, ω; Xi,t−1

)
, (1)

where fi (.) denotes a functional form that depends on (i) the risk
measure itself (for instance, the VaR) and (ii) the parametric or
semiparametric model used to produce the corresponding fore-
cast (for instance, a GARCH model). Xi,t−1 is a set of variables
belonging to Fi,t−1, θi is the vector of model parameters, and
ω is a vector of parameters specific to the risk measure itself.
The latter parameters are determined by the user. For instance,
in the case of the VaR, it corresponds to the risk level, generally
fixed to 1% or 5% by convention. The framework can easily
be extended to test the equality of risk measure forecasts for a
horizon h > 1, by considering the information set Ft−h rather
than Ft−1.

The notation for RMi,t encompasses a wide class of
(semi)parametric models and conditional risk measures. For
instance, RMi,t can be a measure of price variation (condi-
tional volatility), a systematic risk measure (conditional beta), a
tail risk measure (VaR, ES), or a systemic risk measure (MES,
SRISK, �CoVaR). The model could be a univariate or a multi-
variate GARCH model, a quantile or a linear regression model,
etc. Thus, this notation can be viewed as a generalization of that
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used by Gouriéroux and Zakoı̈an (2013) for parametric VaR
models.

As examples of the notation, we consider (i) a conditional
VaR based on a Student-GARCH model, (ii) the conditional
MES of Acharya et al. (2010) and Brownlees and Engle (2012),
(iii) the SRISK of Acharya et al. (2012) and Brownlees and
Engle (2012), and (iv) the �CoVaR of Adrian and Brunnermeier
(2014). These are also the risk measures used throughout the
article.

Example 1 (VaR-GARCH). Consider a demeaned return pro-
cess ri,t associated with an asset indexed by i. Assuming a t-
GARCH(1,1) model for ri,t , the corresponding conditional VaR
for a coverage rate τ ∈ [0, 1] can be expressed as a linear func-
tion of the conditional volatility σi,t of the returns as follows:

f VaR
i

(
θi, ω; Xi,t−1

) = −t−1
ν (τ )

√
v − 2

v
σi,t ,

with σ 2
i,t = γi + αir

2
i,t−1 + βiσ

2
i,t−1. t−1

ν (τ ) denotes the τ -
quantile of the standardized Student cdf with ν degrees of free-
dom. As such θi = (γi, αi, βi, ν)′, ω = τ , and Xi,t−1 = {

ri,t−1

}
,

where ri,t−1 is the set of return observations for firm i up to time
t − 1.

Example 2 (MES). The MES measures how firm i’s risk tak-
ing adds to the financial system risk (measured by the ES). Let
us denote the market return as rm,t = ∑n

i=1 wi,t ri,t , with wi,t

the value-weight of firm i = 1, . . . , n at time t, and ri,t the de-
meaned firm returns. The conditional MES is defined by the first
derivative −∂Et−1(rm,t | rm,t < C)/∂wi,t , where C is a thresh-
old. If the vector process

(
ri,t rm,t

)′
follows a GARCH-DCC,

Brownlees and Engle (2012) showed that

f MES
i

(
θi, ω; Xi,t−1

) = −σi,tρim,tEt−1(εm,t |εm,t < C/σm,t )

−σi,t

√
1 − ρ2

im,tEt−1(εi,t |εm,t < C/σm,t ),

where σ 2
i,t = γi + αir

2
i,t−1 + βiσ

2
i,t−1, ρim,t = Qim,t/√

Qii,tQmm,t with Qij,t the (i, j )th element of
the so-called pseudo correlation matrix Qt , and
Qt = (1 − αC − βC)Q̄ + αCεt−1ε

′
t−1 + βCQt−1, with εi,t =

ri,t /σi,t . Brownlees and Engle (2012) considered a non-
parametric estimator (Scaillet 2004, 2005) for the tail
expectations of the standardized returns εt . Then, we
have θi = (γi, γm, αi, αm, βi, βm, Q̄, αC, βC)′, ω = C, and
Xi,t−1 = {

ri,t−1, rm,t−1

}
.

Example 3 (SRISK). The SRISK is defined as the expected
capital shortfall of a given financial institution i, conditional on
a crisis affecting the whole financial system. Acharya, Engle,
and Richardson (2012) defined the SRISK as follows:

f SRISK
i

(
θi, ω; Xi,t−1

)
= max

(
0; kDi,t−1 − (1 − k) Wi,t−1

(
1 − LRMESi,t

))
,

where Di,t and Wi,t denote the book value of total liabilities and
the market value of the financial institution, respectively, and k is
a prudential capital ratio. LRMESi,t denotes the long-run MES,
that is, the expectation of the firm equity multi-period return
conditional on the systemic event. The LRMES can be approx-
imated as LRMESi,t = 1 − exp(−18MESi,t ), where MESi,t is
the estimate of the MES for firm i at time t as defined in Ex-

ample 2 (Acharya, Engle, and Richardson 2012). Then, we
have ω = (C, k)′ and Xi,t−1 = {

ri,t−1, rm,t−1,Di,t−1,Wi,t−1
}
.

The vector θi is similar to that obtained in Example 2. The in-
dividual SRISK is generally expressed as a percentage of the
aggregate SRISK:

f %SRISK
i = f SRISK

i /

n∑
j=1

f SRISK
j .

Example 4 (�CoVaR). The �CoVaR is a systemic risk mea-
sure based on the CoVaR, that is, the conditional VaR of market
returns given an event C(ri,t ) observed for firm i:

Pr
(
rm,t ≤ CoVaRm|C(ri,t )

i,t | C(ri,t )
)

= α. (2)

The �CoVaR is the difference between the VaR of the financial
system conditional on the distress firm i and the VaR of the
system conditional on the median state of that same firm. Adrian
and Brunnermeier (2014) suggested using ri,t = VaRi,t (τ ) as
conditioning event and estimating the CoVaR using a quantile
regression model, rm,t = μτ + γτ ri,t . We then get

f �CoVaR
i (θi, ω; Xi,t−1) = γτσi,t

(
F−1(τ ) − F−1(0.5)

)
, (3)

where F−1(τ ) is the τ -quantile of the standardized re-
turns. Hence, θi = {γi, αi, βi, γτ }, ω = τ , and Xi,t−1 ={
ri,t−1, rm,t−1

}
.

Notice that the functional form fi (.) in Equation (1) is indexed
by i. Indeed, even if we consider the same risk measure for two
assets i and j, one may use two different parametric models to
produce the corresponding forecasts. For instance, the notation
allows for the comparison of the conditional VaR for Bank of
America obtained from a GARCH model, and the conditional
VaR for Citigroup, obtained using an internal model based on
RiskMetrics. On the contrary, if the functional form fi (.) is
equivalent to that of fj (.) , it means that both firms use the
same type of parametric model to produce the risk forecasts.
However, in all cases, the vectors of parameters θi and θj are
generally different for i �= j .

3. HYPOTHESES OF INTEREST AND TEST

We propose a general framework to statistically test for equal-
ity of conditional risk measures obtained for, at least, two dif-
ferent assets, portfolios, or financial institutions at a particular
point in time. In this section, we present two types of tests: (i) a
comparison test of two risk measures and (ii) a bucketing pro-
cedure. The latter is a form of sequential testing that allocates
assets/firms to multiple buckets of equal risk.

3.1 Comparison Test of Risk Measures

We wish to test whether two assets or firms indexed by i and j,
respectively, present the same level of risk at time t with respect
to the conditional risk measure RMt . Such a risk comparison
test may be useful in many contexts. For instance, it allows a
fund manager to test the equality of two assets’ volatilities on a
particular date, to implement a risk parity investment strategy.
It also allows a risk manager to test if the VaR of portfolio i
is equal to the VaR of another portfolio j, on a given day. A
third example of when this would be useful is when a regulator
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wishes to compare the SRISK of bank i, say Bank of America,
and the SRISK of bank j, say Citigroup, on a single day, for
example, on September 15th, 2008, given the information set
available prior to this date.

If there is no model uncertainty, that is, if the functional
forms fi (.) and fj (.) are known, this test consists of comparing
RMi,t = fi

(
θi, ω; Xi,t−1

)
to RMj,t = fj

(
θj , ω; Xj,t−1

)
, where

θi and θj denote the true value of the parameters. Given the
common information setFt−1 = Fi,t−1 ∪ Fj,t−1 for both assets,
the two conditional risk measures are observed. Then, the null
hypothesis of equal risk at time t can be defined as

H0,t : RMi,t = RMj,t . (4)

The null hypothesis is indexed by t, to stress the fact that we are
testing the equality of two conditional risk measures on a single
date t given the information set Ft−1. Contrary to the forecast
comparison tests (Diebold and Mariano 1995; West 1996) for
instance, we do not test for RMi,t = RMj,t over the full sample
t = 1, . . . , T , or over a sequence of out-of-sample forecasts.
Thus, the alternative hypothesis H1,t : RMi,t �= RMj,t means
that the risk of asset i is different from the risk of asset j at time
t given Ft−1, according to the risk measure RMt .

The need for statistical inference comes the fact that RMi,t

and RMj,t are not observed, since the parameters θi and θj

are generally unknown and replaced by their estimators θ̂i and
θ̂j . So, the null hypothesis is based on the true risk mea-
sure implied by fi (.), RMi,t = fi(θi, ω; Xi,t−1), while the es-
timated value R̂Mi,t = fi(θ̂i , ω,Xi,t−1) is affected by estima-
tion risk. Our test boils down to the question of whether[
fi(θ̂i , ω; Xi,t−1) − fj (θ̂j , ω; Xj,t−1)

]
is large enough relative

to parameter estimation error coming from {θ̂i , θ̂j } to reject the
null.

Relating our setup to that of the forecast comparison litera-
ture, note that the tests of Diebold and Mariano (1995) ignore
parameter uncertainty, which is justified asymptotically as the
forecast error dominates parameter uncertainty for increasing
sample size. On the other hand, West (1996) explicitly consid-
ered both uncertainty arising from the forecast errors, which oc-
curs due to the approximation of the unconditional expectation
of the loss function by a sample mean, and uncertainty from pa-
rameter estimation. As noted above, as we consider conditional
risk measures at a single date, we do not take sample averages to
approximate the unconditional expectation considered in West
(1996). Therefore compared to his setup all uncertainty in our
case comes from the estimation of the parameters.

Testing the null hypothesis H0,t is challenging, as the condi-
tional distribution of the estimated risk measure R̂Mi,t is gener-
ally unknown and may be difficult to obtain depending on the
model used to estimate the risk measure. Typically, the estimates
are obtained using (M-)GARCH models, whose estimates’ dis-
tribution is widely unknown. Furthermore, even in the cases
where the distribution is known (Chan et al. 2007; Gouriéroux
and Zakoı̈an 2013), the joint distribution of R̂Mi,t and R̂Mj,t is
almost surely not, except for the trivial, but unlikely case of in-
dependence between the two risk measures. As a consequence,
traditional testing methods are not directly applicable and a new
testing procedure is needed. To achieve this, we use the assumed
data-generating process (DGP) to bootstrap the conditional risk

measures and obtain their distribution at time t. We propose the
following two-sided test statistic:

T (α) ≡ |x̂ij,t |
c∗
ij,t (α)

, (5)

where x̂ij,t = R̂Mi,t − R̂Mj,t and c∗
ij,t (α) is the bootstrap criti-

cal value obtained from the absolute null-value shifted bootstrap
distribution of x̂ij,t . The use of the critical value means that the
α% rejection point for all combinations (i, j ) is scaled to 1.
Rejection thus occurs at the α% level if T (α) > 1. Ex-post, one
may draw conclusions on which firm is the riskiest based on
the sign of xij,t . The bootstrap is assumed to be asymptotically
valid for the risk measures considered, in the sense that it cor-
rectly reproduces the asymptotic distribution of the risk measure
estimator (see Section 4.2).

3.2 Bucketing Procedure

When considering more than two assets, pairwise compar-
isons become challenging. One could test for the significance of
the difference between each pair, appropriately taking into ac-
count the multiple testing problems that arise. However, without
adding some additional structure, the set of rejections is unlikely
to lead to a cohesive ranking. Instead, we propose an iterative
bucketing procedure that can be used to obtain a grouped ranking
of assets. The objective is to get a complete ranking by means
of a procedure inspired by the model confidence set of Hansen,
Lunde, and Nason (2011). Our procedure produces buckets of
equally risky assets, in the sense that we cannot statistically dis-
tinguish the assets within one bucket in terms of their riskiness.
This testing procedure can be applied to any type of conditional
risk measure, but it has particular application in the context of
the systemic risk where the goal is to rank the financial institu-
tions according to their systemic risk contribution.

Consider the set of all financial institutions N 0. We start with
the identification of the set of most risky firms, defined at time
t as

N (1)
t ≡ {i ∈ N 0 : xij,t ≥ 0 ∀j ∈ N 0}. (6)

The goal is to find the set N (1)
t . This is achieved through a

sequence of comparison tests where objects in N 0 are removed
from the set under consideration if they are found to be less
risky. The null we are testing is therefore

H0,t,N : xij,t = 0 ∀i, j ∈ N , (7)

with N ⊆ N 0, the subset containing the not yet eliminated
firms. The null hypothesis states that all firms in the final set,
after the elimination procedure, should be equally risky. For
any set N this can be tested using an equivalence test and an
elimination rule (see Section 3.4.1). If the equivalence test is
rejected, we use the elimination rule to remove the most signif-
icantly different firm, reducing the size of N , and follow with
reapplying the equivalence test. Our set of most risky firms is
the subset of N 0 that contains N (1)

t with a certain probability
that can be controlled. This procedure identifies the most risky
set only. To obtain the full ranking, we apply the procedure on
the set N 0 \ N̂ (1)

t to obtain a second bucket, N̂ (2)
t . This process

is repeated until all firms have been allocated to a bucket.
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3.3 Procedure Implications

Of course, there are many different ways to obtain buckets
of equally risky financial institutions, and even to rank them.
However, the implications of our procedure are ideally suited to
ranking systemic firms.

First, the approach is one directional, which means we only
control the Type I error of the null of equal risk, in one direction
as well. Since we consider a top-down approach (from the bucket
of the most risky firms to the less risky ones), a false rejection
leads to a firm being assigned to a less risky cluster in the next
iteration. Underestimating the risk is, in our opinion, much more
hazardous than the reverse, and this is controlled.

Second, the Type II error of failing to eliminate a firm results
in assignment to a too risky bucket. In practice, what might hap-
pen is that a firm with a low point estimate but a high standard
error might be assigned to a riskier bucket than a firm with a
higher point estimate, but a low standard error. In some sense,
these firms are loose cannons. Their return series have char-
acteristics that make it difficult to estimate their true risk with
accuracy. Again, due to the top-down approach, the resulting
ranking will be prudent; in case of large uncertainty, a firm is
always put in the most risky bucket.

Finally, we want to emphasize that the number of buckets
is not specified ex-ante. This is the main difference with the
approach proposed by the Basel Committee on Banking Super-
vision (BCBS). Ex-post, the number of buckets ranges between
one and the total number of firms, depending on the precision of
the estimates. Therefore, our testing procedure endogenously
strikes a balance between compression and accuracy of the
ranking.

3.4 FWE and FDR

The bucketing procedure is clearly a multiple testing prob-
lem, and as such it is important to control the number of false
rejections. We consider two alternative controlling methods that
may result in different allocations (see, e.g., Bajgrowicz and
Scaillet 2012).

The family wise error rate (FWE) is defined as the probability
of rejecting at least one of the true null hypotheses. Controlling
the FWE requires that the FWE be no bigger than the signifi-
cance level α, at least asymptotically. In many applications one
might be willing to tolerate a larger number of false rejections
if there is a large number of total rejections. Instead of allowing
a fixed amount of false rejections, we tolerate a certain pro-
portion of false rejections out of total rejections. This can be
achieved by controlling the false discovery proportion (FDP).
Let F be the number of false rejections made by a multiple test-
ing method, and let R be the total number of rejections. The FDP
is defined as FDP = F/R if R > 0 and 0 otherwise. Benjamini
and Hochberg (1995) suggested controlling the false discovery
rate (FDR), the expected value of the FDP. A testing method is
said to control the FDR at level α if FDR = E(FDP) ≤ α, for
any sample size T . A testing method is said to control the FDR
asymptotically at level α if limT →∞ sup FDR ≤ α.

The next two sections outline the methods to control either the
FWE or the FDR. When the number of hypotheses to be tested
becomes very large, the FWE loses a lot of power, making it dif-

ficult to reject any hypothesis at all. Romano, Shaikh, and Wolf
(2008b) argued that the number of false hypotheses rejected may
even tend to zero if the number of hypotheses tested increases.
Common practice is to control the FWE in “small” problems,
and control the FDR in “large” settings. What is small and what
is large greatly varies by application. We will shed some light on
the performance of our newly proposed test, in the simulation
exercise.

3.4.1 FWE Controlling Method. To carry out the buck-
eting procedure we need an equivalence test and an elimina-
tion rule. In case of equivalence, we have that xij,t = 0 for all
i, j ∈ N . We propose the following test statistic:

T max(α) ≡ max
i,j∈N

|x̂ij,t |
c∗
ij,t (α)

. (8)

Here, the need for standardization of the statistic becomes ev-
ident, as we want to identify the firm that is most likely to
be different from the rest. If there is a significant difference,
an elimination rule follows naturally. We eliminate the firm
arg maxi,j∈N x̂ij,t /c

∗
ij,t (α), or put simply, the most significantly

rejected firm. Once we can no longer reject a null hypothesis,
all firms are equally risky and we identified a bucket.

The FWE can be controlled by obtaining an appropriate crit-
ical value for the T max (α) statistic. Its critical value d∗

t (α) is
chosen such that

d∗
t (α) = inf

{
x ∈ R : P (T max (α) ≥ x) ≤ α

}
. (9)

In practice, the probability distribution P is unknown, and we
replace it with a suitable bootstrap estimate P ∗, discussed in
Section 4. The asymptotic results in White (2000) and Romano
and Wolf (2005) imply that our bootstrap method controls FWE
asymptotically, provided that the bootstrap is asymptotically
valid. This FWE-controlling test bears clear similarities to the
Reality Check of White (2000), who proposed a method to
test whether one of a set of models significantly outperforms a
benchmark.

3.4.2 FDR Controlling Method. Romano, Shaikh, and
Wolf (2008a) proposed a method to control the FDR in a boot-
strap setting. The intuition is as follows. Consider the ordered se-
ries of test statistics, denoted T(k),t , such that T(1),t ≤ · · · ≤ T(s),t ,
with H(k),t the corresponding null hypothesis. Define T(k:l),t as
the kth largest of the l test statistics T(1),t , . . . , T(l),t . The idea is
to reject all H(s),t , . . . , H(s−h∗),t , where h∗ is the largest integer h
satisfying T(s),t ≥ cs,t , . . . , T(s−h),t ≥ cs−h,t . Again, controlling
the FDR is a matter of choosing the appropriate critical values
ck,t . Romano, Shaikh, and Wolf (2008a) showed that to control
the FDR at level α, the critical values are defined recursively
as follows. Having determined ĉ1,t , . . . , ĉh−1,t , compute ĉh,t ac-
cording to

ĉh,t = inf

{
x ∈ R :

∑
s−h+1≤r≤s

r − s + h

r

×P
(
T(h:h),t ≥ x, . . . , T(s−r+1:h),t ≥ ĉs−r+1, T(s−r:h),t

< ĉs−r ) ≤ α

}
, (10)
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with

ĉ1,t = inf

{
x ∈ R :

1

s
P

(
T(1),t ≥ x

) ≤ α

}
. (11)

Again, the probability distribution P will be approximated by a
bootstrap counterpart.

Having obtained the critical values, starting with T(s),t and
working downward, we check whether T(r),t ≥ ĉr,t and if the
null is rejected, we eliminate the significantly less risky firm
from the set. The firms that remain after the h∗ rejected hypothe-
ses are statistically equally risky and form a bucket. Romano,
Shaikh, and Wolf (2008a) proved that this bootstrap approach
asymptotically controls the FDR conditionally on the bootstrap
being asymptotically valid.

4. BOOTSTRAP IMPLEMENTATION

This section describes how to obtain c∗
ij,T and P ∗ at particular

date T . Consider N assets or firms, and assume a general mul-
tivariate DGP for the corresponding returns, rt = g(θ, εt |Ft−1),
with rt and εt vectors of dimension N, and θ the set of model
parameters. We assume εt = (

ε1,t , . . . , εN,t

)
to have zero mean

and covariance matrix equal to the identity matrix. In this article,
we assume iid innovations, such that an iid bootstrap suffices.
This assumption can be relaxed to allow for, for example, serial
correlation, but the bootstrap method has to be adapted to the
assumption. In the case of serial correlation, one could use a
block bootstrap instead.

Notice that this representation allows for nonlinear cross-
sectional dependence across the εi,t elements. We define the
inverse, εt = g−1(θ, rt |Ft−1), which retrieves the innovations
from the observed return process. For instance, consider a sin-
gle asset (N = 1), with demeaned returns rt = g(θ, εt |Ft−1) =
σtεt , where σt follows a GARCH process with parameters θ .
Then, εt = g−1(θ, rt |Ft−1) = rt/σt simply corresponds to the
standardized return.

To obtain the bootstrap distribution, we employ a multivari-
ate version of the methodology suggested by Pascual, Romo,
and Ruiz (2006) and Christoffersen and Gonçalves (2005) for
GARCH forecasts. The approach is as follows. First estimate θ

on the original series rt for t = 1, . . . , T − 1. Generate boot-
strap series, r∗, using θ̂ , and innovations drawn with replace-
ment from the empirical distribution of the centered residuals.
Estimate the same model on the bootstrap series, to obtain θ̂∗.
The bootstrap risk measures, RM∗

i,T = f ∗
i

(
θ̂∗, ω; Xi,T −1

)
are

computed for each asset i = 1, . . . , N , based on the original
past return series rT −1 and bootstrap parameter estimates θ̂∗.
The use of the original return series in RM∗

i,T , instead of the
bootstrapped ones, ensures that the current state of the returns
is taken into account in the bootstrap RM forecast. As such, the
bootstrap only measures the estimation uncertainty.

4.1 Bootstrap Algorithm

We propose the following algorithm:

1. Estimate the models to obtain θ̂ . Use the parameter estimates
to estimate x̂ij,T , for all pairs (i, j ) ∈ {1, . . . , N}2.

2. Compute the residuals ε̂t = g−1(θ̂ , rt |Ft−1) for all t =
1, . . . , T − 1.

3. Draw s1, . . . , sT −1 iid from the uniform U{1,T −1} distribution
and construct the bootstrap errors from the centered residuals
ε∗b
t = ε̂st

, ∀ t = 1, . . . , T − 1.
4. Construct the bootstrap return series r∗b

t = g(θ̂ , ε∗b
t |Ft−1).

5. Estimate the model on the bootstrapped series to obtain θ̂∗b.
Compute R̂M

∗b

i,T using fi(θ̂∗b
i , ω; Xi,T −1) and similarly for

R̂M
∗b

j,T to obtain x̂∗b
ij,T .

6. Repeat Steps 3 to 5 B times, obtaining bootstrap statistics
x∗b

ij,T , b = 1, . . . , B.

Two remarks have to be made concerning this bootstrap algo-
rithm. First, note that in Step 3, we resample cross-sectional vec-
tors of residuals. The time-concordant sampling ensures that the
potential cross-sectional dependence in the innovations is pre-
served. Second, the critical values c∗

ij,T and d∗
ij,T are obtained as

the α-quantiles of the “null-value shifted” series |x̂∗b
ij,T − x̂ij,T |

and T max∗b
ij,T − T max

ij,T , respectively. Romano, Shaikh, and Wolf
(2008b, p. 412) argued that using these “null-value shifted”
series is equivalent to inverting bootstrap multiple confidence
regions, and therefore a valid approach. For a detailed descrip-
tion on how to obtain the bootstrap critical values in the FDR
procedure from the bootstrap distribution, we refer to Romano,
Shaikh, and Wolf (2008a).

4.2 Bootstrap Validity

A formal proof of the asymptotic validity of the bootstrap—in
the sense that the bootstrap correctly reproduces the asymptotic
distribution of the risk measure estimator—is outside the scope
of this article, as the general setup for the risk measures cannot
be treated uniformly with regards to the bootstrap. Bootstrap
validity has to be considered for each case separately, and doing
so explicitly would complicate the article. Instead, we provide
some general guidelines for checking bootstrap validity. First,
the most important condition for the validity of the bootstrap is
that it correctly replicates the asymptotic distribution of the esti-
mators of the parameters θ . If the parametric model assumed to
estimate θ is correct, and the estimators of θ are “well-behaved,”
for instance by being

√
T -consistent and asymptotically normal,

then it can typically be shown that the bootstrap is asymptoti-
cally valid for these parameters. For instance, Hidalgo and Zaf-
faroni (2007) and Shimizu (2013) explicitly derived the boot-
strap validity for the parameters of stationary (ARMA-)GARCH
models.

Our setting contains two additional difficulties. First, the dis-
tribution of the model parameter estimators is only an interme-
diate step in obtaining the distribution of R̂Mi,t . As argued by
Francq and Zakoı̈an (2015), given the distribution of these pa-
rameter estimators, an application of the Delta method allows
the derivation of the asymptotic distribution of the risk measure
estimate. The same Delta method argument can be applied to the
bootstrap and suggests that validity of the bootstrap parameter
estimators suffices for establishing bootstrap validity of the risk
measure. However, a formal proof requires one to deal with the
subtleties involved with conditioning on the past for construct-
ing the conditional risk measure. Second, we need the joint



Hurlin et al.: Risk Measure Inference 505

distribution of R̂Mi,t and R̂Mj,t , which may be more difficult to
obtain even if the univariate distributions are known. For these
two reasons, we believe that formal proofs of bootstrap validity
for a general class of risk measures deserve separate attention
and are outside the scope of the article. In what follows, we
therefore work under the assumption that the bootstrap method
chosen for a particular risk measure is appropriate. For our spe-
cific choices of bootstrap methods and risk measures, we return
to this issue in the simulation study where we study their small
sample performance. The results we find there do not give us a
reason to doubt the validity of our bootstrap approach.

5. SIMULATION STUDY

We use Monte Carlo simulations to study the properties of
both the single test and the bucketing procedure. The Monte
Carlo simulation is performed on 1000 replications and for the
bootstrap we generate B = 999 samples. We always compare
the conditional risk measures at time T and estimate them over
the sample 1 to T − 1. We apply the comparison test to the VaR,
and both the single test and the bucketing procedure to the MES,
as defined in Examples 1 and 2, respectively. All the results are
generated using Ox version 7.00 (see Doornik 2012) and the
G@RCH package version 7.0 (Laurent 2013).

5.1 Simulation Design

For the VaR, we consider two assets, indexed by i = 1, 2, and
the following DGP:

ri,t = σi,t εi,t (12)

εi,t

iid∼ ST (0, 1, νi) , (13)

where σ 2
i,t follows a GARCH(1,1) model with parameters

(γ, α1, β1) = (0.05, 0.10, 0.85) for both return series. The in-
novations follow a Student distribution with zero mean, unit
variance, and degrees of freedom νi . Under the null, the τ -
VaRs are equal for both series, VaR1,T (τ ) = VaR2,T (τ ) ⇐⇒
t−1
ν1

(τ )
√

(ν1 − 2)/ν1σ1,T = t−1
ν2

(τ )
√

(ν2 − 2)/ν2σ2,T . To im-
pose this equality, we simulate processes and rescale the returns
ex-post such that the volatilities at time T , σ1,T and σ2,T , imply
the equality of both VaRs. We consider two cases in which the
degrees of freedom ν1 and ν2 are equal or different. In the for-
mer case, the volatility at time T is equal for both firms, in the
latter case the volatility will be higher for the firm with higher
degrees of freedom. For the case with equal degrees of freedom,
we set ν1 = ν2 = 5. We set σ1,T = 2 and define σ2,T relative
to that as �σ = σ2,T − σ1,T . We use �σ = {0.0, 0.1, 0.2} to
simulate under the null hypothesis (�σ = 0) and alternatives
(�σ > 0). In the case of different degrees of freedom, we set
ν1 = 5 and ν2 = 7, where again σ1,T = 2. We scale σ2,T such
that the VaRs at time T have the same value under the null, that

is, σ2,T = t−1
5 (τ )

t−1
7 (τ )

√
21/25(σ1,T + �σ ). In all cases, the coverage

rate for the VaR is fixed at 5%, that is, τ = 0.05.

For the MES, we consider the general DGP proposed by
Brownlees and Engle (2012), that is,

rm,t = σm,t εm,t

ri,t = σi,t

(
ρi,t εm,t +

√
1 − ρ2

i,t ξi,t

)

(εm,t , ξi,t ) ∼ F,

(14)

where σm,t and σi,t follow GARCH processes, while ρi,t fol-
lows a DCC as described in Example (3). F is a general zero
mean, unit variance distribution with unspecified nonlinear de-
pendence structures. For the Monte Carlo simulations, we re-
strict the model to a multivariate Gaussian conditional distribu-
tion and constant correlations, that is, ρi,t = ρt (CCC model).
Of course, both assumptions will be relaxed in the empirical
application. We have done simulations using DCC correlations
for a few parameter settings with a small number of replications
and found very similar results to those reported here.

Since the innovations are iid and all dependence between
firms and the market is captured by the correlation, then the
MES can be written as

MESi,t (τ ) = βi,tESm,t (τ ), (15)

where βi,t = ρiσi,t /σm,t denotes the conditional beta of the firm
i and ESm,t (τ ) is the ES of the market returns. Under the nor-
mality assumption, the ES has a closed form expression. Denote
by φ(.) and �(.) the standard normal univariate pdf and cdf, re-
spectively. The MES can be written as follows:

MESi,t (τ ) = βi,tσm,tλ(�−1(τ )) = ρi,tσi,tλ(�−1(τ )), (16)

where λ(z) = φ(z)/�(z) is the Mills ratio. Therefore, the MES
solely depends on the volatility of the firm and its correlation
with the market. Under these assumptions, two firms have equal
MES if the product of conditional volatilities and conditional
correlations with the market, at time T , is equal. We use this
result to control the relative risk of simulated firms.

The GARCH parameters (γ, α1, β1)′ are set to
(0.05, 0.10, 0, 85)′ for each series. To simulate the returns under
the null and the alternative, we rescale the simulated process to
control for the value of the MES at time T . For the single test, we
generate the returns for two firms and the market. The market
has σm,T = 1, and the first firm has σ1,T = 2 and ρ1 = 0.4.
We vary the volatility and correlation of the second firm.
We choose �σ = {0, 0.1, 0.2} and �ρ = {0, 0.0125, 0.0250},
where �ρ = ρ2 − ρ1. The distance between the MES of firms
1 and 2 is therefore a function of the parameters (�σ,�ρ).
For instance, setting (�σ,�ρ) = (0.1, 0.0125) results in
MES1,T = 1.650 and MES2,T = 1.787. The null hypothesis of
equal MES is obtained for (�σ,�ρ) = (0, 0).

For the bucketing procedure, we generate the returns for
N firms and the market. To obtain firms that satisfy the null
hypothesis of equal systemic risk, we give all firms within
the same bucket identical variance and correlation. To illus-
trate the trade-off between the FWE and FDR tests, we simulate
N = 10, 20, 40, 60, 80, 100 firms. In each simulation there are
c = N/5 buckets, each containing five firms. The market again
has σm,T = 1. All firms i in bucket 1 have σ

(1)
i,T = 2, ρ

(1)
i = 0.4.

All firms i in bucket k = 2, . . . , c have σ
(k)
i,T = 2 + (k − 1)�σ
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Table 1. Rejection frequencies of the single test of equal RM

VaR

T = 1000 T = 2000

ν2\�σ 0.0 0.1 0.2 0.0 0.1 0.2

5 0.045 0.523 0.652 0.049 0.613 0.846
7 0.052 0.544 0.721 0.050 0.671 0.844

MES

T = 1000 T = 2000

�ρ\�σ 0.0 0.1 0.2 0.0 0.1 0.2

0.0000 0.046 0.414 0.763 0.048 0.592 0.850
0.0125 0.069 0.612 0.854 0.112 0.789 0.891
0.0250 0.199 0.791 0.888 0.310 0.877 0.920

NOTE: The table contains the rejection rates of a single test of equal VaR and MES.
Nominal size is 5%.

and ρ
(k)
i = 0.4 + (k − 1)�ρ. The difference between two suc-

cessive buckets in terms of volatility and correlation is therefore
equal to that between the two firms in the single test of equal
MES. We also take the same values for {�σ,�ρ}.

5.2 Pairwise Comparison Test

Table 1 reports the rejection frequencies of the null hypothesis
of equal VaR and equal MES for T = 1000 and 2000 observa-
tions at the 5% significance level. The empirical size of the test
corresponds to the case �σ = �ρ = 0. Results suggest that
for both risk measures, and for all the DGPs we consider, the
test does not suffer from any size distortion. Indeed, the re-
jection rates are remarkably close to the nominal size even for
T = 1000.

The other entries in Table 1 correspond to power. We first
consider the VaR. When the second VaR is 5% bigger than the
first one (�σ = 0.1), power already exceeds 50%, and it is close
to 70% when the difference is twice as big. Power is increasing
with the sample size, and interestingly, power is bigger when
the two series have different distributions.

Power for the MES test is comparable to the power of the
single test for the VaR. The values are very close to those of
the VaR, when �ρ = 0. Small changes in the correlation are
more difficult to precisely estimate than changes in volatility,
and as such, power is much lower in the direction of increasing
correlation compared to increasing volatility. But the differences
do stack up: when both �ρ and �σ are large, power exceeds
90%.

5.3 Bucketing Procedure

To save space, we only report the results for T = 2000 and
choose a significance level for both the FDR and FWE of
α = 0.05%. It is difficult to evaluate the bucketing procedure
in terms of size and power. This is mainly because an error in
any of the iterations has an impact on the next steps. Indeed,
the composition of the second bucket will be affected by the
composition of the first one, and so on. Moreover, we may over-
estimate the number of buckets if, for instance, the first bucket is

split up into two separate buckets, such that the third estimated
bucket is in fact the second bucket implied by the DGP. As such,
we do not expect to always have a one-to-one correspondence
between the generated ranking and the estimated ranking.

We therefore summarize the performance of our bucketing
procedure in five numbers, three based on the first bucket
only, and two on the full ranking. The first two are the ac-
tual FWE and FDR, computed on the first bucket. Next we
consider the power of the test, defined as the fraction of less
risky firms that are successfully rejected. Finally, to assess
the accuracy of the complete ranking, we present the Spear-
man rank correlation between the true and estimated rank-
ings, as well as the total number of buckets found. The lat-
ter should be close to N/5 when the bucketing procedure has
an ideal trade-off between Type I and Type II errors.

Table 2 presents the results of the simulation. Each panel
has one of the five performance criteria, with the results for
the FWE (resp. FDR) controlling procedure in the left (resp.
right) panel. First, both the FWE and FDR approaches con-
trol their respective error, as they converge to 0.05. When the
difference between buckets is small or the number of firms is
large, the FWE procedure tends to over-reject a little, but the
FWE is relatively well controlled when the difference between
buckets is large. The FDR is too high when the number of
firms is small, and there is little difference between buckets.
There is slight under-rejection when the number of firms be-
comes very large, but the FDR is nicely around 0.05 when the
buckets are furthest apart. Of course, when the FDR is con-
trolled, the actual FWE will be above 0.05, as the number of
correct rejections is far larger than the number of true hypothe-
ses. Similarly, the FDR of the FWE controlling procedure is
generally below 0.05 for the same reason. Finally, as expected,
the FDR procedure is more powerful across all specifications
considered.

Note that the FWE controlling procedure further deviates
from the target when N becomes large, while the FDR further
deviates from the target when N is small. For the FWE, the
probability of a single false rejection is controlled. As the num-
ber of hypotheses is of order N2, for greater sets of firms a
larger fraction of hypotheses is false, and it becomes more dif-
ficult to not make a single false rejection. Similarly, the FDR
allows a fraction of the true hypotheses to be falsely rejected.
When N is small, the number of true hypotheses is small and
only a small amount of false rejections are allowed. Moreover,
if the number of true rejections is small, a single mistakenly
rejected hypothesis could swing the ratio to a very different
number. On the other hand, when N is large, more hypotheses
are true, and more false rejections are allowed, which is easier to
control.

Next, consider the statistics on the complete ranking. First,
the Spearman rank correlation gives an indication of how good
the ranking is. Importantly, even if all firms are ranked above or
at the same level as all firms that are less risky, the Spearman
correlation still penalizes the bucketing procedure if they are
not in the correct bucket. As such, when a bucket is split up
into two estimated buckets, the rank correlation will go down.
The rank correlation of the FWE buckets is generally higher
for N = 10, 20 and the FDR has higher rank correlation with
N = 40 and up. This is in line with general practice where the
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Table 2. Simulation results bucketing procedure

FWE controlling procedure FDR controlling procedure

N 10 20 40 60 80 100 10 20 40 60 80 100

�ρ �σ FWE

0.0125 0.0 0.098 0.144 0.250 0.291 0.332 0.375 0.186 0.225 0.324 0.358 0.404 0.436
0.0250 0.0 0.074 0.096 0.111 0.182 0.274 0.291 0.228 0.304 0.348 0.444 0.496 0.481
0.0000 0.1 0.055 0.062 0.064 0.083 0.100 0.084 0.133 0.185 0.334 0.437 0.532 0.553
0.0125 0.1 0.053 0.059 0.064 0.079 0.093 0.082 0.154 0.186 0.414 0.501 0.621 0.636
0.0250 0.1 0.052 0.054 0.062 0.071 0.083 0.078 0.185 0.208 0.406 0.583 0.587 0.653
0.0000 0.2 0.047 0.047 0.048 0.068 0.088 0.080 0.134 0.272 0.437 0.530 0.601 0.647
0.0125 0.2 0.048 0.047 0.048 0.065 0.078 0.077 0.164 0.336 0.503 0.565 0.657 0.679
0.0250 0.2 0.048 0.047 0.048 0.062 0.071 0.074 0.194 0.417 0.547 0.649 0.747 0.752

FDR

0.0125 0.0 0.254 0.187 0.139 0.087 0.063 0.048 0.259 0.186 0.137 0.086 0.064 0.050
0.0250 0.0 0.122 0.084 0.054 0.044 0.041 0.031 0.112 0.100 0.081 0.074 0.061 0.048
0.0000 0.1 0.123 0.053 0.013 0.009 0.008 0.005 0.160 0.076 0.067 0.040 0.036 0.029
0.0125 0.1 0.098 0.042 0.012 0.007 0.009 0.006 0.107 0.064 0.050 0.041 0.035 0.031
0.0250 0.1 0.063 0.041 0.012 0.008 0.006 0.004 0.088 0.059 0.051 0.045 0.036 0.044
0.0000 0.2 0.055 0.038 0.013 0.007 0.005 0.004 0.094 0.072 0.061 0.048 0.039 0.034
0.0125 0.2 0.053 0.044 0.010 0.005 0.003 0.003 0.081 0.061 0.055 0.050 0.041 0.042
0.0250 0.2 0.032 0.032 0.009 0.003 0.002 0.001 0.058 0.052 0.051 0.047 0.048 0.051

Power

0.0125 0.0 0.090 0.156 0.227 0.283 0.340 0.369 0.178 0.239 0.301 0.353 0.410 0.437
0.0250 0.0 0.106 0.166 0.499 0.513 0.675 0.591 0.212 0.248 0.370 0.482 0.789 0.737
0.0000 0.1 0.141 0.323 0.565 0.689 0.758 0.781 0.265 0.503 0.829 0.915 0.946 0.955
0.0125 0.1 0.166 0.375 0.571 0.761 0.786 0.818 0.348 0.610 0.886 0.944 0.982 0.986
0.0250 0.1 0.254 0.448 0.649 0.806 0.811 0.831 0.446 0.705 0.929 0.981 0.983 0.992
0.0000 0.2 0.236 0.541 0.720 0.788 0.825 0.842 0.407 0.826 0.940 0.961 0.974 0.978
0.0125 0.2 0.283 0.613 0.795 0.803 0.840 0.881 0.469 0.874 0.966 0.986 0.977 0.995
0.0250 0.2 0.377 0.645 0.828 0.867 0.883 0.926 0.480 0.904 0.972 0.991 0.993 1.000

Spearman Rank correlation

0.0125 0.0 0.643 0.431 0.371 0.318 0.278 0.267 0.613 0.409 0.352 0.312 0.289 0.279
0.0250 0.0 0.706 0.464 0.395 0.366 0.333 0.350 0.660 0.430 0.434 0.389 0.368 0.354
0.0000 0.1 0.726 0.579 0.613 0.733 0.799 0.827 0.705 0.570 0.702 0.777 0.839 0.878
0.0125 0.1 0.798 0.644 0.676 0.800 0.847 0.836 0.797 0.587 0.789 0.791 0.899 0.934
0.0250 0.1 0.816 0.690 0.687 0.832 0.870 0.846 0.808 0.615 0.794 0.839 0.932 0.938
0.0000 0.2 0.772 0.697 0.783 0.848 0.874 0.899 0.742 0.691 0.834 0.903 0.933 0.948
0.0125 0.2 0.863 0.699 0.842 0.871 0.925 0.928 0.747 0.697 0.925 0.937 0.969 0.959
0.0250 0.2 0.910 0.722 0.869 0.918 0.937 0.978 0.769 0.702 0.956 0.985 0.999 0.989

Number of buckets

0.0125 0.0 1.480 1.802 2.022 2.110 2.200 2.266 1.534 1.844 2.110 2.212 2.326 2.388
0.0250 0.0 1.502 1.914 2.248 2.435 3.063 4.140 1.560 2.214 2.564 3.524 4.623 3.899
0.0000 0.1 1.508 2.004 2.582 3.166 3.816 4.200 1.586 2.128 3.190 4.374 5.612 6.740
0.0125 0.1 1.547 2.071 2.704 4.093 4.121 6.146 1.662 2.543 4.446 4.468 9.080 10.411
0.0250 0.1 1.615 2.120 3.036 4.974 5.519 6.450 1.719 2.647 4.702 6.771 9.840 15.215
0.0000 0.2 1.622 2.202 3.240 4.166 4.996 5.678 1.748 2.790 4.916 7.094 9.304 11.362
0.0125 0.2 1.672 2.354 3.576 4.423 5.559 6.224 1.821 2.924 4.917 7.290 12.190 16.129
0.0250 0.2 1.739 2.436 3.975 5.044 5.704 6.597 1.882 3.058 5.560 9.117 12.520 19.103

NOTES: The table contains simulation results for various parameter settings {�σ, �ρ} and number of firms N. Each column gives the results for N firms, which are allocated to N/5
buckets of five firms each. The left- and right-hand side give the results for the FWE and FDR controlling procedures, respectively. The first two panels give the FWE and FDR computed
on the first bucket only. The power is the fraction of firms successfully rejected for the first bucket. The fourth panel gives the Spearman Rank correlation between the true and the
estimated ranking, and finally we provide the number of estimated buckets.

FDR is often used as the number of hypotheses becomes large
and power of FWE controlling procedure drops. This is further
evidenced by the final panel that shows the number of buckets.
The FDR procedure generally estimates a greater number of

buckets, as it rejects more null hypotheses by construction. The
FWE generally has far too few buckets. For instance, for N =
100, even in the case where the distance between buckets is large,
the average number of buckets is only 6.597. Interestingly, the
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FDR procedure comes very close, with an average of 19.103
buckets, when there are 20 true buckets.

6. EMPIRICAL APPLICATION

In this empirical application, we apply the bucketing proce-
dure to a panel of 94 large U.S. financial firms. The dataset we
use is identical to the panel studied by Acharya et al. (2010),
Brownlees and Engle (2012) and many other articles on sim-
ilar topics. It contains daily returns and market capitalizations
retrieved from CRSP and quarterly book value of equity from
Compustat. The data cover the period between January 3, 2000
and December 31, 2012, for a total of 3269 daily observations.
The market return is approximated by the CRSP market value-
weighted index return. Market value is determined by CRSP
daily closing prices and number of shares outstanding. Quar-
terly book values of total liabilities are from Compustat (LTQ).
This results in a dataset containing all U.S. financial firms with
a market capitalization greater than 5 billion USD as of the end
of June 2007. A full list of ticker symbols and firms is given in
the online Appendix A.

The objective of this empirical application is twofold. In a
first section, we apply our pairwise comparison test for the MES.
We consider a subset of financial institutions to emphasize the
time profile of systemic risk and the need for a comparison of
conditional risk measures. In the second section, we apply the
bucketing procedure to the full sample, contrasting the FWE
with the FDR approach. We estimate buckets for the MES,
%SRISK, and �CoVaR.

The estimation of the three systemic risk measures is done
according to the same methodology as that recommended by
their authors. The MES is estimated using C = VaRm,t (0.05)
and a DCC-GJR-GARCH model (estimated by QML). We
check for possible dynamics in the mean by minimizing the
Schwarz information criteria for the individual ARMA(m,n)-

GJR-GARCH(1,1) models over m, n = 0, . . . , 3. We test for
the presence of serial correlation in the standardized residuals
and their squares, and fail to reject the null for all series. As
such the bootstrap for serially uncorrelated returns described in
Section 4 will suffice. For the %SRISK, we fix the capital ratio
k at 8%, following Brownlees and Engle (2012). We only con-
sider the series with strictly positive SRISK estimates. Finally,
for the � CoVaR we consider a risk level τ equal to 5%.

Over time different estimation techniques have been proposed
for the various measures, and in this article we only consider one
technique each. We stress that different estimation techniques
will have different degrees of uncertainty, and lead to different
conclusions. One might obtain more power using simpler spec-
ifications, for instance using constant correlations, but then the
estimates suffer from a more fundamentally misspecified model.
Regardless, the global message would be the same: estimation
uncertainty needs to be taken into account when comparing and
ranking risk measures.

6.1 Time Series Properties of Risk Measures

In this section, we restrict our analysis to the subset of the
16 most risky firms that were designated as Global and Do-
mestic Systemically Important Banks (G- and D-SIBs) in 2009
by the Stress Tests of the Federal Reserve and kept that status
through 2014. On every Friday of our sample, we estimate the
conditional MES for each firm and we obtain the estimates’ dis-
tribution by means of our bootstrapping procedure. Then, for all
pairs of firms, we test for equality of MES at these dates using
the test statistic in Equation (5).

To illustrate the need for a conditional approach, we plot the
MES of J.P. Morgan (JPM) and Goldman Sachs (GS), along
with their difference and its 5% confidence bounds in Figure 1.
Significant differences are marked by shaded regions, dark in-
dicating GS is more risky than JPM and light shading indicating

Figure 1. MES of JPM and GS. The top panel shows the estimated MES of JPM and GS in the period 2006–2011. The MES is estimated every
Friday. The bottom panel shows the difference, along with bootstrap confidence bounds. The shaded regions represent a significant difference
between the two. When the shading is dark, GS has significantly higher MES than JPM, when it is light the reverse is true.
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Figure 2. Significant difference MES. The heatmap plots the rejection frequencies over the full sample of the hypothesis that H0 : xij,t = 0
versus H1 : xij,t > 0, with i on the y-axis and j on the x-axis. A value of 0.25 means that the firm on the y-axis had significantly higher MES than
the firm on the x-axis on 25% of the days.

the reverse. This figure illustrates that the MES of the two firms
are highly correlated. Until 2008 the point estimates for GS
are generally higher than those for JPM, and this order is re-
versed after 2008. However, although the point estimates may
be different, they are not frequently significantly different. GS
is more risky on 8.5% of sample days, while JPM’s risk exceeds
GS’ on just 5.9% of days, so that the parameters can only be
estimated precisely enough on about 14.4% of the days to truly
distinguish the two banks. Importantly, significant rejections are
clustered with an autocorrelation of 0.7, meaning that the single
days where one firm is more risky than the other, are rare.

The results for all other pairs are summarized in Figure 2.
This figure plots the rejection frequencies for each pair, where
the color corresponds to a value determining the frequency at
which the firm on the y-axis is found to be more risky than
the one on the x-axis. The heatmap shows that even the firms
with highest MES are only significantly more risky (at 5%) than
firms with the lowest MES in about 20%–25% of the time. On
average, across pairs, we find a significant difference between
firms on 16.4% of the days. Different significance levels do
not change the relative picture much, but at 10% the highest
rejection frequencies approach 50%.

6.2 Buckets

In this section, we apply the bucketing procedure to the 94
financial institutions for three systemic risk measures, the MES,
the %SRISK, and the �CoVaR, which were defined in Ex-
amples 2, 3, and 4, respectively. By applying the bucketing
procedure, we test whether an absolute ranking can be distin-
guished. If no absolute ranking can be distinguished, we want

to test whether we can, at least, identify buckets of firms that
are indistinguishable from each other within the bucket, but
distinguishable from firms belonging to lower ranked buckets.
The three systemic risk measures are affected differently by
the estimation risk, and are also likely to differ in the order-
ing of their point estimates (Benoit, Colletaz, and Hurlin 2014).
As a consequence, different risk measures can lead to different
rankings.

We estimate the bucket allocation for the MES, %SRISK, and
�CoVaR on eight predetermined dates coinciding with those
considered in Brownlees and Engle (2012). A firm is included
in the ranking at a certain date, if the firm still exists and if
there are at least 1000 observations up until that date. Table 3
displays the results of the bucketing procedure, with α = 0.05,
for 2 days. The results for the remaining days are deferred to,
Appendix B. The firms are first ranked in terms of their bucket,
and within buckets we order the firms in descending value of
their risk measure estimate, even though there is no statistical
evidence that their risk is statistically different. We then report
the 10 highest ranked firms, as is done in Brownlees and Engle
(2012). For each firm, we report the point estimate, as well
as the allocated bucket according to the FWE and the FDR
method.

The results suggest that it is indeed difficult to find sig-
nificant differences between the estimated risk measures. Al-
though point estimates may vary considerably, they are not
necessarily statistically different. In general, and in line with
theory, we find that the FDR rejects more frequently, and we
obtain smaller buckets compared to the FWE. In June 2008,
the precision of the MES estimates allows for a division of
the top 10 risky firms into two buckets. The size of the most
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Table 3. Bucket allocation top 10

MES %SRISK �CoVaR

Tick FWE FDR Est. Tick FWE FDR Est. Tick FWE FDR Est.

30-06-2008
LEH 1 1 10.287 C 1 1 0.152 FITB 1 1 3.480
MBI 1 1 9.781 BAC 2 2 0.091 HBAN 1 1 2.874
CIT 1 1 8.111 JPM 2 3 0.081 LEH 1 1 2.685
WM 1 1 7.459 MER 2 3 0.078 KEY 1 1 2.372
PFG 1 1 6.563 MS 3 4 0.073 RF 1 1 2.330
ABK 1 2 7.806 FRE 4 5 0.065 C 1 1 2.277
FITB 1 2 7.733 FNM 4 6 0.063 STI 1 1 2.034
C 1 2 5.816 AIG 4 7 0.057 BBT 1 1 2.017
FRE 1 2 5.713 GS 5 7 0.056 AIG 1 1 2.008
MER 2 2 6.248 LEH 6 8 0.052 MI 1 1 1.951

30-01-2009
STT 1 1 22.188 JPM 1 1 0.153 AFL 1 1 9.049
C 1 1 20.884 C 2 2 0.142 PNC 1 1 8.266
HBAN 1 1 20.775 BAC 3 3 0.129 STT 1 1 6.891
FITB 1 1 19.821 WFC 4 4 0.093 FITB 1 1 6.414
PNC 1 1 19.817 AIG 5 5 0.063 BAC 1 1 5.974
AFL 1 1 19.499 GS 5 6 0.061 ACAS 1 1 5.537
LNC 1 1 19.032 MS 6 7 0.046 ALL 1 1 5.487
BAC 1 1 18.491 MET 6 8 0.036 WFC 1 1 5.399
HIG 1 1 17.415 PRU 7 9 0.034 STI 1 1 5.258
PFG 1 1 17.097 HIG 8 10 0.022 C 1 1 5.139

NOTE: This table provides the ranking estimated by the FWE and FDR controlling methods, based on the MES, %SRISK, and �CoVaR risk measures. We show only the top 10 of firms
sorted by assigned bucket.

risky bucket using FDR is five firms, compared to nine for the
FWE.

The point estimates in our ranking are not monotonically
decreasing. For instance, in June 2008, based on the FDR
method, we find that ABK is in a lower bucket than PFG, de-
spite a higher point estimate. This is a direct consequence of
the one-directional approach, and is a feature shared with the
MCS (see Hansen, Lunde, and Nason 2011, Table V, where
a model with lower average loss is excluded from the MCS).
Although PFG has a lower point estimate, its estimation un-
certainty is far greater. As such, the procedure cannot reject
that its risk is smaller than that of for instance LEH, whereas
we can reject that same hypothesis for ABK. Hence, firms with
large estimation uncertainty are prudently allocated to high-risk
buckets.

The procedure rejects more frequently for the %SRISK, find-
ing a total of six or eight buckets for the top 10 firms. The reason
for this is that the liabilities and the market value of the firm,
introduced in the definition of the SRISK (see Example 3), add
variability between the different point estimates without adding
additional estimation risk. In fact, in January 2009 we find an
absolute ranking using the FDR method, where each firm has
statistically different risk.

Similar to the MES, in our sample it is difficult to statistically
distinguish firms based on �CoVaR. The �CoVaR is defined
as the product of a conditional VaR and a quantile regression
parameter (see Example 4). Most of the estimation risk comes
from the quantile regression. For instance, the highest point
forecast of �CoVaR is 9.05 for AFL, but its bootstrap standard
deviation is close to 4. In an unreported simulation, we find

that even if the true DGP is exactly the one assumed here, the
standard deviation of the �CoVaR is still on average over 40%
of its value. These results are in line with those obtained in
another context by Guntay and Kupiec (2015). Replacing the
quantile estimate γα of Example 4 with an ordinary least-square
(OLS) estimate significantly reduces the uncertainty, leading to
buckets of sizes in between those of MES and %SRISK.

In Table 4, we investigate the sensitivity of the bucketing
procedure to the significance level chosen. We report the total
number of estimated buckets on each of the 8 days, at five dif-
ferent significance levels. The Model Confidence Set (Hansen,
Lunde, and Nason 2011), on which our procedure is based, is
commonly estimated using confidence levels upward of 20%.
We consider 30%, 20%, 10%, 5%, and 1%, for both FWE and
FDR. As a reference, the second column of Table 4 gives the
total number of firms under consideration, providing a cap on
the number of buckets possible.

As rejection occurs more frequently with higher significance
levels, the number of buckets is increasing with the significance
level. The FDR procedure detects more buckets than the FWE
for each significance level and each risk measure. For instance,
for the MES, the FDR procedure estimates up to twice as many
buckets than the FWE. With the %SRISK, the FDR procedure
using high confidence levels comes close to absolute rankings,
with the total number of buckets only slightly lower than the
number of firms. Even at very stringent levels, we get interesting
rankings with buckets that do not contain more than three or four
firms. Finally, significance levels of 30% still do not help with
disentangling the �CoVaR of different firms on these dates. This
reaffirms the uncertainty in the quantile regression estimates.
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Table 4. Number of estimated buckets

Significance level

FWE controlling procedure FDR controlling procedure

Date #Firms 30% 20% 10% 5% 1% 30% 20% 10% 5% 1%

MES
30-03-2007 83 5 5 4 4 3 7 7 6 4 3
29-06-2007 83 5 5 3 3 3 7 5 4 4 3
31-12-2007 81 5 5 4 4 3 13 10 8 5 5
29-02-2008 82 6 5 5 4 4 15 12 8 5 4
30-06-2008 82 6 5 5 5 5 11 11 7 6 5
29-08-2008 81 8 8 7 6 5 21 16 10 8 7
30-01-2009 73 6 6 5 4 4 20 15 9 7 5
30-06-2010 75 5 4 3 3 3 9 7 5 5 4

%SRISK
30-03-2007 14 6 6 6 5 4 7 7 6 6 5
29-06-2007 13 6 6 5 4 4 11 10 7 6 4
31-12-2007 36 17 17 13 11 11 22 21 17 15 12
29-02-2008 37 17 16 15 13 12 26 25 19 17 14
30-06-2008 39 20 18 17 15 12 37 37 26 21 17
29-08-2008 36 16 15 14 13 10 34 33 25 18 15
30-01-2009 53 33 31 29 29 29 49 49 45 39 31
30-06-2010 37 19 18 16 15 11 31 31 22 20 15

�CoVaR
30-03-2007 83 2 2 2 2 1 1 1 1 1 1
29-06-2007 83 1 1 1 1 1 1 1 1 1 1
31-12-2007 81 2 2 1 1 1 2 2 2 2 2
29-02-2008 82 2 2 2 2 1 2 2 2 2 2
30-06-2008 82 3 3 1 2 2 3 3 2 2 2
29-08-2008 81 2 1 2 2 2 2 2 2 2 2
30-01-2009 73 2 2 2 2 2 4 4 4 3 3
30-06-2010 75 1 1 1 1 1 2 2 2 2 2

NOTE: This table reports the sensitivity of the procedures to the level of FWE and FDR that is controlled. We show the total number of firm and the number of buckets they are assigned
to.

7. CONCLUSION

This article introduces a bootstrap-based comparison test of
two risk measures, as well as an iterative procedure to pro-
duce a grouped ranking of N > 2 assets or firms, given their
conditional risk measures. These tests can be applied to a
wide variety of conditional risk measures, while taking into
account their estimation risk. Simulation results on VaR and
MES forecasts suggest that the pairwise comparison test has
good properties in finite samples, both in terms of size and
power. Since the bucketing procedure is clearly a multiple test-
ing problem, we propose two versions, one controlling the FWE
rate, and one controlling the FDR rate. Simulations show that
both set-ups do control their respective rates, and illustrate the
trade-off of using either method depending on the size of the
problem.

In the empirical application, we apply the pairwise compar-
ison test to the MES estimates of 16 U.S. G- and D-SIBs.
This application points out the advantages of the comparison
of conditional risk measures. We highlight the importance of
conditional testing, as we observe great time-variation in condi-
tional MES estimates, and from 1 week to the next, firms’ rela-
tive ranking often changes. We find that, on most days, due to

estimation uncertainty in MES, we cannot distinguish firms in
terms of their riskiness. On average across all pairs, we can
statistically distinguish firms on 16.4% of days.

We applied the bucketing procedure for three popular sys-
temic risk measures, namely, the MES, the �CoVaR, and the
SRISK. In our sample, we find that for both versions of the
procedure, the MES and �CoVaR are estimated with too much
uncertainty to reject equality often. For most of the eight dates
considered in the application, the first 30 firms belong to the
same bucket of riskiest firms. Consequently, ranking firms on
the basis of point forecasts of MES and �CoVaR may be
problematic. However, when applied on %SRISK, our buck-
eting procedure is able to identify a meaningful ranking of
buckets containing equally risky firms in each bucket. This
result is mainly due to the differences observed in the liabil-
ities and the market value of the financial institutions over the
period 2000–2012. Since the liabilities and market values are
not estimated, these differences add cross-sectional variability
in the systemic risk measures, without adding additional es-
timation risk. Our results clearly illustrate the importance of
taking into account the estimation risk when establishing a
ranking of the financial institutions according to their systemic
risk.
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SUPPLEMENTARY MATERIALS

The online supplementary materials contains Appendix A
(Company tickers) and Appendix B (Bucket allocation top 10).
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Paper. [509]

Brownlees, C., and Engle, R. (2012), “Volatility, Correlation and Tails
for Systemic Risk Measurement,” New York University Working Paper.
[500,501,505,508,509]

Castro, C., and Ferrari, S. (2014), “Measuring and Testing for the Systemically
Important Financial Institutions,” Journal of Empirical Finance, 25, 1–14.
[500]

Chan, N., Deng, S., Peng, L., and Xia, Z. (2007), “Interval Estimation of Value-
at-Risk Based on GARCH Models With Heavy-Tailed Innovations,” Journal
of Econometrics, 137, 556–576. [500,502]
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