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We introduce a combined density nowcasting (CDN) approach to dynamic factor models (DFM) that
in a coherent way accounts for time-varying uncertainty of several model and data features to provide
more accurate and complete density nowcasts. The combination weights are latent random variables that
depend on past nowcasting performance and other learning mechanisms. The combined density scheme is
incorporated in a Bayesian sequential Monte Carlo method which rebalances the set of nowcasted densities
in each period using updated information on the time-varying weights. Experiments with simulated data
show that CDN works particularly well in a situation of early data releases with relatively large data
uncertainty and model incompleteness. Empirical results, based on U.S. real-time data of 120 monthly
variables, indicate that CDN gives more accurate density nowcasts of U.S. GDP growth than a model
selection strategy and other combination strategies throughout the quarter with relatively large gains for
the two first months of the quarter. CDN also provides informative signals on model incompleteness during
recent recessions. Focusing on the tails, CDN delivers probabilities of negative growth, that provide good
signals for calling recessions and ending economic slumps in real time.

KEY WORDS: Density forecast combination; Survey forecast; Bayesian filtering; Sequential Monte
Carlo Nowcasting; Real-time data.

1. INTRODUCTION

Economic forecast and decision making in real time have, in
recent years, been made under a high degree of uncertainty. One
prominent feature of this uncertainty is that many key statis-
tics are released with a long delay, are subsequently revised
and are available at different frequencies. Therefore, profes-
sional economists in business and government, whose job is to
track swings in the economy and to make forecasts that inform
decision-makers in real time, prefer to examine a large number
of potential relevant time series.

In this context, factor models provide a convenient and effi-
cient tool to exploit information in a large panel of time series
in a systematic way by allowing for information reduction in a
parsimonious manner while retaining forecasting power, see, for
example, Stock and Watson (2002a,b, 2006), Forni et al. (2005),
and Boivin and Ng (2005). A recent study by Giannone, Reich-
lin, and Small (2008) shows that these models are particularly
suitable for nowcasting. The basic principle of nowcasting is
the exploitation of information that is published early and pos-
sibly at higher frequencies than the target variable of interest to
obtain an “early estimate” before the official number becomes
available, see Evans (2005) and Banbura, Giannone, and Re-
ichlin (2011). A key challenge is dealing with the differences
in data release dates that cause the available information set to
differ over points in time within the quarter. This is what Wallis
(1986) coined the “ragged edge” of data. Giannone, Reichlin,

and Small (2008) evaluated point nowcasts from a dynamic fac-
tor model and highlight the importance of using nonsynchronous
data release, showing that the root mean square forecasting error
decreases monotonically with each release.

Recent academic literature on factor models and nowcast-
ing focused on developing single models that increase forecast
accuracy in terms of point nowcasts, see, among others, Ban-
bura and Modugno (2014) and Banbura and Rünstler (2011).
As there is considerable uncertainty regarding several features
of the model specification, for example, choice of variables to
include in the large dataset, choice of number of factors, choice
of lag length, and so on, Koop and Potter (2004) and Clark and
McCracken (2009, 2010) suggested to follow the idea of Bates
and Granger (1969) and combining forecasts from a wide range

© 2018 Knut Are Aastveit, Francesco Ravazzolo, and Herman K.
van Dijk.

This is an Open Access article distributed under the terms of the
Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited. The moral rights of

the named author(s) have been asserted.
January 2018, Vol. 36, No. 1

DOI: 10.1080/07350015.2015.1137760
Color versions of one or more of the figures in the article can be

found online at www.tandfonline.com/r/jbes.

131

http://www.tandfonline.com/r/JBES
mailto:Knut-Are.Aastveit@norges-bank.no
mailto:Francesco.Ravazzolo@norges-bank.no
mailto:hkvandijk@ese.eur.nl
http://creativecommons.org/licenses/by/3.0
http://dx.doi.org/10.1080/07350015.2015.1137760
http://www.tandfonline.com/r/jbes


132 Journal of Business & Economic Statistics, January 2018

of models with different features to reduce these problems.1

Surprisingly however, few studies in the nowcasting literature
focus on combining nowcasts from different models, Kuzin,
Marcellino, and Schumacher (2013) and Aastveit et al. (2014)
being notable exceptions. Furthermore, building on earlier work
in statistics by, for example, West and Crosse (1992) and West
(1992), the research interest in forecast combination has more
recently focused on the construction of combinations of predic-
tive densities, see, for example, Hall and Mitchell (2007) and
Jore, Mitchell, and Vahey (2010). An extension to density fore-
casting is to allow for time-varying model weights with learning
and model set incompleteness, see Billio et al. (2013). Using a
combination scheme that allows for model set incompleteness
seems particularly suitable for nowcasting, as economic deci-
sion makers produce their nowcasts based on both incomplete
data information (ragged edge problem) and uncertainty about
the true data-generating process.

In this article, we introduce a combined density nowcasting
(CDN) approach to dynamic factor models (DFMs) that ac-
counts for time-varying uncertainty of several model and data
features to provide more accurate and complete density now-
casts. The latent weights of the combination scheme depend on
past nowcasting performance and other learning mechanisms.
Our weights can therefore be interpreted as the density equiv-
alent to the dynamic model averaging proposed by Koop and
Korobilis (2012). The combined density scheme is incorporated
in a Bayesian sequential Monte Carlo method, which rebalances
the set of nowcasted densities in each period using updated in-
formation on the time-varying weights.2 In this way, we are
able to weight data uncertainty, parameter uncertainty, model
uncertainty, including model incompleteness, and uncertainty
in the combination of weights in a coherent way. We address
the aforementioned sources of uncertainty using a large unbal-
anced real-time macroeconomic dataset for the United States
that consists of 120 monthly indicators and combine predictive
density nowcasts from four different DFMs that vary in terms
of the number of factors included.

In statistical terms, CDN results in a convolution of several
probability density functions consisting of the density of the
nowcasts of individual models, the density of the latent weights
of the combination scheme, and the density of the combination
scheme. The integral of this product of densities with respect
to the nowcasts of the individual models and the latent weights
is what we are interested in. It does not have a closed form
solution and, therefore, has to be evaluated numerically. The
algorithm that we use is an extension of the nonlinear filtering
methods of Billio et al. (2013) for the case of dynamic factor
models with model incompleteness and data uncertainty. The
application of the proposed sequential Monte Carlo filtering
method leads to a good approximation, but the procedure is
computationally intensive when the number of models to com-
bine increases substantially. By making use of recent advances

1The idea of combining forecasts from different models has been widely used
for economic forecasting. Timmermann (2006) provided an extensive survey of
different combination methods.
2Note the analogy with dynamic portfolio management of a set of assets, where
a periodic rebalancing of the assets occurs depending on the dynamic pattern of
the weights that incorporate past performance of the assets.

in computing power and parallel programming technique, it is
feasible to apply nonlinear time-varying weights to four factor
models at different points in time during the quarter. In doing so,
we apply the MATLAB package DeCo (density combination),
developed by Casarin et al. (2015), which provides an efficient
implementation of the algorithm in Billio et al. (2013) based on
CPU and GPU parallel computing.

We first implement simulation experiments to understand the
role of incompleteness for nowcasting. We distinguish between
data incompleteness (ragged edge problem) and model set in-
completeness (the true model is not a part of the forecasters’
model space) and compare point and density nowcasting per-
formance from CDN with the performance of a Bayesian model
averaging (BMA) approach, the optimal combination of density
forecasts approach (OptComb) suggested by Hall and Mitchell
(2007) and Geweke and Amisano (2011), equal weights and
the ex post best individual model. The results illustrate that all
approaches provide accurate point and density nowcasts when
there is no incompleteness. However, when data incompleteness
and/or model set incompleteness is present, the point and den-
sity nowcasting performance from CDN is superior to BMA,
OptComb, equal weights and the ex post best individual model,
providing considerably more accurate nowcasts, in particular
at early data releases with relatively large data uncertainty and
model incompleteness.

Next, we show the usefulness of CDN when it is applied to
four different DFMs for nowcasting GDP growth using U.S.
real-time data that consist of 120 monthly indicators. We di-
vide data into different blocks, according to their release date
within the quarter, and update the density nowcasts at three
different points in time during each month of the quarter for
the evaluation period 1990Q2–2010Q3. Our experiment refers
to a professional economist who is interested in dealing with
both data and model uncertainty. We find that CDN outper-
forms BMA, OptComb, equal weights, a selection strategy, and
even the ex-post best individual model in terms of density now-
casting performance for all blocks. Also, empirically, we find
relatively large gains in terms of improved density nowcasts for
the first blocks of the quarter compared to the final blocks of the
quarter.

By studying the standard deviation of the combination residu-
als, we show that this is higher for the earlier blocks in the quarter
than for the later blocks in the quarter, indicating that incom-
pleteness plays a larger role in the early part of the quarter. Thus,
there are clear gains in terms of improved nowcasting perfor-
mance from using CDN when incompleteness is present. We em-
phasize that the standard deviations of the combination residuals
fluctuate over time and seem to increase during economic down-
turns, providing informative signals on model incompleteness.

Finally, we document that CDN also performs well with re-
spect to focusing on the tails and delivers probabilities of neg-
ative growth that provide timely warning signals for calling a
recession and ending economic slumps. These are in line with
forecasts from the Survey of Professional Forecasters.

The structure of the article is as follows. Section 2 introduces
CDN. Section 3 describes the data. Section 4 contains results
using simulated data and Section 5 provides results of the ap-
plication of the proposed method to nowcasting U.S. growth.
Section 6 concludes.
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2. THE COMBINED DENSITY NOWCASTING FOR
DYNAMIC FACTOR MODELS

There is considerable empirical evidence that dynamic factor
models (DFMs) provide accurate short-term forecasts, see, for
example, Giannone, Reichlin, and Small (2008), Banbura and
Modugno (2014) and Foroni and Marcellino (2014) for point
forecasts and Aastveit et al. (2014) and Marcellino, Porqueddu,
and Venditti (2015) for density forecasts. These models are
particularly useful in a data-rich environment, where common
latent factors and shocks are assumed to drive the co-movements
between aggregate and disaggregate variables and the real-time
data flow is inherently high dimensional with data released at
different frequencies. Still, there is considerable uncertainty re-
garding several features of the model specification, for exam-
ple, choice of variables to include in the large dataset, choice
of number of factors and choice of lag length. Selection criteria
and various testing procedure have been proposed to address
such problems, see, for example, Bai and Ng (2006). However,
as pointed out by Koop and Potter (2004), a potential problem
with model selection based on sequential testing procedures of
information criteria is that statistical evidence from other plau-
sible models will be ignored. Koop and Potter (2004) therefore
provided, in the context of factor models, a theoretical justifi-
cations for averaging across models, as opposed to selecting a
single model. We build on this literature and propose a general
model structure which can deal with both uncertainty related to
data due to different sample frequencies and data releases, and
uncertainty regarding model specification, such as selecting the
number of factors k with k = 1, . . . , K and other components
of the information set IK .

We start by specifying the convolution of the three probability
density functions that involve a novel combination scheme that
deals with model uncertainty including model incompleteness.
Next, we describe the individual factor models and how they
cope with data uncertainty. We end with a brief description
of the algorithms used to evaluate the convolution of densities
and a description of alternative combination schemes used for
comparison.

2.1 A Convolution of Combination, Weights, and
Individual Model Predictive Densities for
Multi-Period Ahead Nowcasting

In this section, we present our novel combination approach.
Koop and Potter (2004) and Strachan and Dijk (2013) sug-
gested to rely on Bayesian combination of several model fea-
tures. We suggest to follow this line and extend their approach
of using fixed model weights to the situation where we com-
bine a set of predictive densities of model and data features
using time-varying latent weights while allowing for model
incompleteness, meaning that the true model is not necessar-
ily included in the model set. To the extent that we use time-
varying latent weights, our method can be viewed as the den-
sity equivalent of the dynamic model averaging approach in
Koop and Korobilis (2012). Note, however, that the combination
scheme in Koop and Korobilis (2012) does not allow for model
incompleteness.

The combined density is a convolution of the density of
the combination scheme, the density of the latent weights,

and the predictive densities of the different individual models.
Since there are K specifications of different models, we pro-
pose to compute the combined nowcast density of GDP growth
p(yt+h|IK ) as

p(yt+h|IK ) =
∫

Ỹt+h

∫
Wt+h

p(yt+h |̃yt+h, wt+h, IK )

×p(wt+h|wt )p(̃yt+h|IK )dwt+hdỹt+h, (1)

where ỹt+h is an element of Ỹt+h ∈ Y ⊂ R
K , wt+h is an

element of Wt+h, the K-dimensional simplex. The density
p(yt+h |̃yt+h, wt+h, IK ) specifies the combination scheme and
p(wt+h|wt ) is the density of the (K × 1) latent weights wt+h.
The density p(̃yt+h|IK ) is the joint predictive density for the
variable ỹt+h with K different initial conditions. In Section
2.2, we will describe how to estimate the set of predictive
densities p(̃yt+h|F̃t+h, k) and p(F̃t+h|k) to obtain p(̃yt+h|k) =
p(̃yt+h|F̃t+h, k) × p(F̃t+h|k) for each individual model k, with
k = 1, . . . , K , that lead to p(̃yt+h|IK ). We note that the com-
bined density p(yt+h|IK ) is computed in a recursive way de-
pending on past data. The combination weights wt+h and the
combination scheme are computed using a direct approach, see
Marcellino, Stock, and Watson (2006). Most combination meth-
ods rely on the direct approach, see, for example, BMA, and
although an iterated updating approach to evaluate the weights
is computationally feasible and theoretically attractive under
correct model specification, we aim to compare our strategy to
standard combination schemes.

Given that we make use of a direct approach to nowcasting
the weights, p(wt+h|wt ) is not h-order Markovian, but it can
be interpreted as a degenerate h-order Markov process. Take
the case of two periods nowcasting, that we use in practice, and
define the transition function p(wt+2, wt+1|wt+1, wt ) as equal to
p(wt+2|wt )δwt+1 (wt+1). That is, we have a “partially degenerate”
random variable, and the Dirac delta, δwt+1 (wt+1), takes account
of the fact that wt+1 is given in this step. For convenience, we
write explicitly the joint h = 1, 2-step ahead nowcast density:

p(yt+2, yt+1|IK ) =
∫

(Ỹt+2,Ỹt+1)

∫
(Wt+2,Wt+1)

p(yt+2 |̃yt+2, wt+2, IK )

×p(wt+2|wt )p(̃yt+2|IK )

×p(yt+1 |̃yt+1, wt+1, IK )p(wt+1|wt )

×p(̃yt+1|IK )dwt+2dỹt+2dwt+1dỹt+1, (2)

where p(yt+2 |̃yt+2, wt+2, IK ) and p(wt+2|wt ) are computed us-
ing direct forecasting and p(̃yt+2|IK ) is computed using iterative
forecasting.

We make use of a Gaussian density for the combination
scheme, which allows for model incompleteness via the fol-
lowing specification:

p(yt+h |̃yt+h, wt+h, IK ) ∝ exp

{
− 1

2σ 2

(
yt+h − ỹ

′
t+hwt+h

)2
}

,

(3)

where we repeat that wt+h is a vector containing the K values
for the combination weights and ỹt+h contains the K predicted
values from a distribution with density p(̃yt+h|IK ). For the use
of alternative density functions for the combination scheme, see
appendix B.1 in Billio et al. (2013).
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In our modeling strategy, combination disturbances are es-
timated and their distribution follows a Gaussian process with
mean zero and standard deviation σ, providing a probabilistic
measure of the incompleteness of the model set. In other words,
the model that is specified in Equation (3) can be written as

yt+h = ỹ
′
t+hwt+h + ζt+h (4)

with ζt+h ∼ N (0, σ 2).
Second, the combination weights wt+h have a probabilistic

distribution in the standard simplex. We model them as logistic
transforms, given as

wk,t+h = exp{zk,t+h}∑K
k=1 exp{zk,t+h}

, k = 1, . . . , K, (5)

where the (K × 1) vector of latent weights zt+h =
(z1,t+h, . . . , zK,t+h)′ has a distribution with density given as

p(zt+h|zt+h−1, ỹt−τ :t ) ∝ exp

{
− 1

2
(�zt+h − �et+h)′

×�−1 (�zt+h − �et+h)

}
(6)

with �zt+h = zt+h − zt+h−1 and �et+h = et+h − et+h−1. The
vector et+h = (e1,t+h, . . . , eK,t+h)′ is specified as a learning
function based on past predictive performance given as

ek,t+h = (1 − λ)
t∑

i=τ

λi−1ek,i , k = 1, . . . , K (7)

with λ ∈ (0, 1) as discount factor and (t − τ + 1) as the length
of the interval for the learning parameter. In the simulation ex-
ercises and in the empirical application, we set λ = 0.95 and
τ = 1. Results in Stock and Watson (2004) suggest that low
discounting, setting the discount factor to 0.95 or 0.99, provides
better point forecasts than higher discounting, setting the dis-
count factor to 0.9 or lower. Similar results were also obtained
for density forecasts by Billio et al. (2013) in a macroeconomic
application, and Pettenuzzo and Ravazzolo (2015) in a financial
application. We note that in principle the parameter λ could be
estimated from the data, and one possibility would be to rely on a
grid search to estimate it (see Billio et al. (2013) for a discussion
of this option). Setting τ = 1 implies that the learning function
is based on an expanding window. Thus, zt+h is a latent process
evolving over time with dynamics following an h-order Markov
specification depending on past performances which describes
the contribution of each model in the combination. The logistic
transformation restricts weights to be in the unit interval.

Following the discussion in Gneiting (2011), we note that
different scoring rules may be applied depending on the user
preference. That is, a user interested in point forecasting may
focus on mean square prediction errors; a user with a more
general loss function may focus on scores that are based on
density forecasting, such as the log score, see Section 2.5. A user
just interested to standard Bayesian updating and no learning
based on past performance scores can set λ = 1 and weights
will be driven by a process equal to the previous values plus
a news component normally distributed with zero mean and
� covariance matrix. We define this as the combined density
nowcasting approach without learning (CDNNL).

2.2 Individual Factor Models

We employ dynamic factor model specifications as suggested
by Giannone, Reichlin, and Small (2008). Assume we have a
monthly (m) unbalanced dataset, where the unbalancedness is
due to data being released at different points in time (ragged
edge). Let Xtxm

= (x1,txm
, . . . , xN,txm

)′ be a vector of observable
and stationary monthly variables which have been standard-
ized to have a mean equal to zero and variance equal to one.
The monthly variables are transformed so as to correspond to
a quarterly quantity when observed at the end of the quarter
(i.e., when tm = 3, 6, 9, . . . , Tm) in the same way as in Gian-
none, Reichlin, and Small (2008) and Aastveit et al. (2014).
Quarterly differences are therefore calculated as xt = x

(3)
tm =

(1 − L3
m)(1 + Lm + L2

m)Ztxm
, where Lm is the monthly lag oper-

ator and Ztm is the raw data. Likewise quarterly growth rates are
calculated as xt = x

(3)
tm = (1 − L3

m)(1 + Lm + L2
m)logZtxm

. For
alternative approaches of dealing with the ragged edge in the
monthly dataset and the bridge between monthly and quarterly
variables, see Marcellino and Schumacher (2010). A dynamic
factor model is then given by the following observation equa-
tion:

Xtxm
= χtxm

+ ξtxm
= �Ftxm

+ ξtxm
, ξtxm

∼ N (0, �ξ ), (8)

where � is a (n × k) matrix of factor loadings, Ftxm
=

( f1txm
, . . . , fktxm

)′ is the static common factors and εtxm
=

( ε1txm
, . . . , εntxm

)′is an idiosyncratic component with zero ex-
pectation and 
txm

= E[εtxm
ε′
txm

] as covariance matrix.
The dynamics of the common factors follows a VAR process:

Ftxm
= AFtxm−1 + Butxm

(9)

where utxm
∼ WN (0, Is), B is a (k × s) matrix of full rank s, A

is a (k × k) matrix where all roots of det(Ik − Az) lie outside
the unit circle. The idiosyncratic and VAR residuals are assumed
to be independent:[

ξtxm

utxm

]
∼ iidN

([
0
0

]
,

[
R 0
0 Q

] )
(10)

with R set to be diagonal. Note that the estimates are robust to
violations of this assumption, see, for example, Banbura et al.
(2012).

The factor model, Equations (8) and (9), is estimated in a
two-step procedure using principal components and the Kalman
filter. The unbalanced part of the dataset can be incorporated
through the use of the Kalman filter, where missing monthly
observations are interpreted as having an infinitely large noise
to signal ratio. For more details about this estimation procedure,
see Giannone, Reichlin, and Small (2008).

Finally, predictions of quarterly GDP growth, yt , are obtained
by using a bridge equation where nowcasts of quarterly GDP
growth (yt ) are expressed as a linear function of the expected
common factors: to obtain quarterly aggregates of the monthly
factors, (F (3)

t
y
m+hm|txm ), the monthly factors are forecasted over the

remainder of the quarter using Equation (9). Then, the quarterly
growth rate of GDP, yt is regressed on the resulting factor values
using a bridge equation like:

yt+h = ytm+hm
= α + β ′F (3)

tm+hm|tm+ω + etm+hm
,

etm+hm
∼ N (0, �e), (11)
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where β is an k × 1 vector of parameters. Accordingly, forecasts
of GDP growth (ytm+hm|txm ) are constructed from Equation (11),
conditional on the estimated parameters and the factor forecasts.
The conditional information, txm, varies over the months in each
quarter depending on which data are available and therefore
the joint density forecast from all K models, p(̃ytm+hm

|IK ), also
changes. For the sake of notation in the rest of the section and
in Equation (1) we generally refer to it as p(̃yt+h|Ik). For the
use of an alternative bridge equation that relies on a more gen-
eral estimated weighting scheme; see Foroni, Marcellino, and
Schumacher (2015) and Carriero, Clark, and Marcellino (2015).
Note, that Equation (11) implies that h-step ahead nowcasts are
computed as iterative forecasts. An alternative approach, not
considered in this article, is the direct multi-step ahead forecast-
ing suggested by Marcellino, Stock, and Watson (2006).

To estimate Equations (8), (9), and (11), one can make use of
Bayesian approaches based on Monte Carlo or frequentist esti-
mation principles. In our case, we take a pragmatic approach and
make use of standard frequentist approaches based on bootstrap-
ping to estimate Equations (8), (9), and (11), and then compute
p(F̃t+h|k) and p(̃yt+h|F̃t+h, k) for a given model k = 1, . . . , K

and generate predicted values ỹt+h, conditional upon gener-
ated predicted values F̃t+h. Here, we apply the residual-based
bootstrapping approach developed by Aastveit et al. (2014).
The bootstrapping algorithm is explained in the online Ap-
pendix. Thus, motivated by Fernandez, Ley, and Steel (2001)
and Sala-I-Martin, Doppelhofer, and Miller (2004), our ap-
proach is one of Bayesian averaging of frequentist estimates,
extending their Bayesian averaging approach to account for
time-varying weights and model set incompleteness.

2.3 Algorithm, Estimation, and Parallelization

If the three densities in Equation (1) all belonged to the nor-
mal family with no dynamics, the integral in Equation (1) could
be solved analytically or by simple numerical methods like di-
rect Monte Carlo simulation. In the case of a dynamic model
structure with a normal distribution and also normal dynamics
for the weights, one can make use of standard normal filtering
methods. In our case, however, there exists a perfect analogy
between the setup of the equations in our CDN approach and
the model specification in the nonlinear state-space literature.
We interpret CDN in terms of a nonlinear state-space formula-
tion and apply a sequential Monte Carlo filtering method. That
is, Equation (3) is analogous to the measurement or observ-
able equation; Equations (5) and (6) are nonlinear transition
equations and Equations (8), (9), and (11) can be interpreted
as being equivalent to the parameter equations in the nonlinear
state space. These latter equations can, alternatively, be speci-
fied as being part of a more general state-space model, where
the nonlinear filtering methods are also used to approximate the
densities. Thus, Equation (1) accounts for several sources of un-
certainty, including different sample frequencies, different data
releases, different information sets, and model specifications.

The convolution has such useful properties like commutative,
associative, and distributive laws that enable us to be flexible in
the order of integration and other properties under usual regu-
larity conditions. As mentioned, we use sequential Monte Carlo
integration to solve part of the integral in (1) by using the reg-

ularized version of the Liu and West (2001) filtering procedure
for the weights and combination scheme and we make, further,
use of draws from the K individual predictive densities.

Our methodology is very general and allows the evaluation
of predictive densities provided by various methods (paramet-
ric Bayesian and frequentist models as well as nonparametric
methods), given the condition that all three densities are proper.
We repeat that in the empirical applications in Section 5, we
construct predictive densities using frequentist bootstrapping
methods and combine these predictive densities using Bayesian
inference. The algorithm is explained in detail in the online
Appendix.

2.4 Alternative Combination Approaches

In the simulation exercise and the empirical exercise, we com-
pare our CDN approach with three other alternative combination
approaches.

2.4.1 Bayesian Model Averaging. For Bayesian model av-
eraging (BMA, henceforth), the individual predictive densities
are combined into a composite-weighted predictive distribution
p(yt+h|IK ), given by

p(yt+h|IK ) =
K∑

k=1

P (Mk) p(̃yt+h|k), (12)

where P (Mk) is the posterior probability of model k, based on
the predictive likelihood for model k. Mitchell and Hall (2005)
discussed the analogy of the log score in a frequentistic frame-
work to the log predictive likelihood in a Bayesian framework,
and how it relates to the Kullback–Leibler divergence. See also
Hall and Mitchell (2007), Jore, Mitchell, and Vahey (2010), and
Geweke and Amisano (2010) for a discussion on the use of the
log score as a ranking device for the forecast ability of different
models and Hoeting et al. (1999) for a review on BMA.

We note that BMA assumes that the true model is included
in the model set. It can be shown that the BMA combination
weights converge (in the limit) to select the true model. However,
as noted by Diebold (1991), all models could be false, and as a
result the model set could be misspecified.

2.4.2 Optimal Combination. As an alternative to BMA,
Hall and Mitchell (2007) and Geweke and Amisano (2011)
proposed to use a linear prediction pool:

p(yt+h|IK ) =
K∑

k=1

wkp(̃yt+h|k), (13)

where the individual model weights wk are computed by max-
imizing the log predictive likelihood, or log score (LS), of the
linear prediction pool:

t−1∑
τ=1

log

[
K∑

k=1

wk × exp
(
LSk,τ+1

)]
(14)

with LSk,τ+1 denoting the recursively computed log score for
model k at time τ + 1, see Equation (17). Hall and Mitchell
(2007) and Geweke and Amisano (2011) labeled the approach
optimal combination (OptComb) and optimal prediction pools,
respectively. Geweke and Amisano (2011) showed that the
model weights, computed in this way, no longer converge to
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a unique solution, except in the case where there is a domi-
nant model in terms of Kullback–Leibler divergence. Note that
common to both BMA and the approach by Hall and Mitchell
(2007) and Geweke and Amisano (2011), is the assumption that
the model combination weights are constant over time.

2.4.3 Equal Weights. Several studies combine forecasts
using simple averages based on equal weights (EW), see, for
example, Timmermann (2006), Stock and Watson (2006), Clark
and McCracken (2010), and Angelini et al. (2011). In fact, such
a simple combination of forecasts is often found to outperform
more sophisticated adaptive forecast combination methods. This
result is often referred to as the forecast combination puzzle. We
compute equally weighted forecasts using the linear prediction
pool, Equation (13), where the weights attached to each model
are set to wk = 1/K .

2.5 Nowcast Evaluation

The aim of this article is to provide an efficient methodology
which deals with various sources of uncertainty to improve
nowcast accuracy. As most other papers focusing on nowcasting
do, we first provide some results on point nowcasts. However, as
these nowcasts are only optimal for a small and restricted group
of loss functions, our main focus is on density nowcasting.

To shed light on the predictive ability of our methodology,
we consider several evaluation statistics for point and density
nowcasts previously proposed in the literature. For a generic
density nowcast of GDP growth, p(yt+h|IK ), we compare point
forecasts in terms of mean square prediction errors (MSPE)

MSPE = 1

t∗

t∑
t=t

e2
t+h,

where t∗ = t − t + h, t and t denote the beginning and end of the
evaluation period, and et+h is the h-step ahead square prediction
error associated to the density p(yt+h|IK ). In the simulation
exercise and the empirical applications, we use the mean of the
density as point forecast.

The complete predictive densities are evaluated using the
Kullback–Leibler information criterion (KLIC) based measure,
using the expected difference in the logarithmic scores of the
candidate nowcast densities; see, for example, Mitchell and
Hall (2005), Hall and Mitchell (2007), Amisano and Giacomini
(2007), and Kascha and Ravazzolo (2010). The KLIC chooses
the model that on average gives the higher probability to events
that actually occurred. Specifically, the KLIC distance between
the true density f (yt+h|IK ) of a random variable yt+h and the
candidate density p(yt+h|IK ) is defined as

KLICt+h =
∫

f (yt+h|IK ) ln
f (yt+h|IK )

p(yt+h|IK )
dyt+h,

= Et [ln f (yt+h|IK ) − ln p(yt+h|IK ))], (15)

where Et (·) = E(·|IK ) is the conditional expectation given in-
formation set IK at time t. An estimate can be obtained from the
average of the sample information, yt+1, . . . , yt+1, that is part
of the information set IK , on f (yt+h|IK ) and p(yt+h|IK ):

KLIC = 1

t∗

t∑
t=t

[ln f (yt+h|IK ) − ln p(y+h|IK )]. (16)

Although we do not pursue the approach of finding the true
density, we can still rank different densities. For the comparison
of two competing models, it is sufficient to consider the loga-
rithmic score (LS), which corresponds to the latter term in the
above sum,

LS = − 1

t∗

t∑
t=t

ln p(yt+h|IK ), (17)

for different densities and to choose the model for which it is
minimal, or, as we report in our tables, its opposite is maximal.

Finally, following Diebold, Gunther, and Tay (1998), we also
evaluate density forecasting accuracy by testing goodness of fit
relative to the “true,” but unobserved density using the probabil-
ity integral transforms (pits). The pits summarize the properties
of the densities and may help us judge whether the densities
are biased in a particular direction and whether the width of the
densities have been roughly correct on average. More precisely,
the pits represent the ex-ante inverse predictive cumulative dis-
tributions, evaluated at the ex-post actual observations. The pits
at time t are:

pitst+h =
∫ yt+h

−∞
p(zt+h|IK )dzt+h (18)

and should be uniformly, independently and identically dis-
tributed if the forecast densities f (zt+h|IK ) conditional on some
information set, IK , are correctly calibrated.

We gauge calibration by examining whether the pits are uni-
form and identically and (for one-step ahead forecasts) inde-
pendently distributed over the interval [0, 1]. We test for correct
calibration by applying the raw-moments test, recently devel-
oped by Knüppel (2015). The raw-moments test is based on the
standardized pits instead of the inverse normal transforms and
accounts for possible serial correlation in the pits. The test is
therefore also suitable for multi-step ahead forecasts and per-
forms better in terms of size and power than other commonly
used tests, such as the test provided by Berkowitz (2001).

3. DATA

We consider in total 120 monthly variables to nowcast quar-
terly GDP growth in the United States. Our real-time dataset
is similar to the one used in Aastveit et al. (2014).3 As in that
article, we use the last available data vintage as real-time obser-
vations for consumer prices and survey data if the real-time data
vintage is not available. For other series, such as disaggregated
measures of industrial production, real-time vintage data exist
only for parts of the evaluation period. For these variables, we
use the first available real-time vintage and truncate these series
backward recursively. Finally, for financial data, we construct
monthly averages of daily observations.

Following Banbura and Rünstler (2011), we divide the data
into “soft data” and “hard data.” The first set includes 38 sur-
veys and financial indicators and reflects market expectations,

3The main source is the ALFRED (Archival Federal Reserve Economic Data)
database maintained by the Federal Reserve Bank of St. Louis. In addition some
series are also collected from the Federal Reserve Bank of Philadelphia’s Real-
Time Data Set for Macroeconomists, see Croushore and Stark (2001) and the
online appendix.
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Table 1. Block information

Block Time Horizon

Nowcasting
1 Start of first month of quarter 2 steps ahead
2 10th of first month of quarter (after

inflation release)
2 steps ahead

3 Around 20–25th of first month of quarter
(after GDP release)

1 step ahead

4 Start of second month of quarter 1 step ahead
5 10th of second month of quarter (after

inflation release)
1 step ahead

6 Around 20–25th of second month of
quarter

1 step ahead

7 Start of third month of quarter 1 step ahead
8 10th of third month of quarter (after

inflation release)
1 step ahead

9 Around 20–25th of third month of quarter 1 step ahead

Backcasting
10 Start of fourth month of quarter 1 step ahead
11 10th of fourth month of quarter (after

inflation release)
1 step ahead

NOTE: The table shows time in the quarter and nowcast horizon for the 11 blocks.

as opposed to the latter set that includes 82 measures of GDP
components (e.g., industrial production), the labor market and
prices. Although soft data are often more timely (i.e., released
early in the quarter), while real activity data are published with
a significant delay, the latter category is considered to contain a
more precise signal for GDP forecasting.

The full nowcast evaluation period runs from 1990Q2 to
2010Q3. We use monthly real-time data with quarterly vin-
tages from 1990Q3 to 2010Q4, that is, we do not take account
of data revisions in the monthly variables within a quarter. The
quarterly vintages reflect information available just before the
first release of the GDP estimate. The starting point of the esti-
mation period is 1982M1. We study nowcasts at nine different
points in time during a quarter. They correspond to the begin-
ning, middle and end of each month in the quarter. Since GDP
measures are released approximately 20–25 days after the end
of the quarter, our exercise also includes two backcasts, calcu-
lated at the beginning and the middle of the first month after
the quarter of interest. See Table 1 for information on the fi-
nal 11 blocks. When nowcasting GDP growth, the choice of
a benchmark for the “actual” measure of GDP is not obvious
(see Stark and Croushore (2002) for a discussion of alternative
benchmarks). We follow Romer and Romer (2000) in using the
second available estimate of GDP as the actual measure.

4. SIMULATION EXPERIMENTS WITH DATA AND
MODEL INCOMPLETENESS

In this section, we implement several simulation exercises to
understand the roles of data incompleteness and model incom-
pleteness in nowcasting. In practice, economic decision makers
produce their nowcasts based on incomplete data information
(ragged edge problem) and uncertainty about the true data-
generating process (DGP). In the simulation exercises below,
we therefore distinguish between different degrees of incom-

pleteness. Weak incompleteness is the case where the nowcaster
produces nowcasts based on missing observations of data (i.e.,
the ragged edge problem). The DGP is in this case assumed to
be a part of the nowcasters’ model space. Strong incompleteness
refers to the case where the DGP is not a part of the nowcasters’
model space.

We run five simulation exercises, where in each exercise we
produce recursive density nowcasts for 60 quarters. For the
first three simulation exercises, we simulate nowcasted values
assuming that the DGP (DGP1) follows a dynamic factor model,
described in Section 2.2, with two factors extracted at the end
of the sample (corresponding to the information set at Block
11). In the two final simulation exercises, we assume that the
DGP follows a VAR(4) in GDP growth, the unemployment rate,
core PCE inflation, and the federal funds rate. We distinguish
between two cases, DGP2 where the DGP follows a VAR(4)
with a constant variance and DGP3 where the DGP follows a
VAR(4) with stochastic volatility. Note that DGP2 and DGP3
are estimated from a balanced panel at the end of the sample. In
each simulation exercise, we compare the performance of our
CDN approach, both in terms of point nowcasts (MSPE), density
nowcasts (LS) and calibration (PITS), with the BMA, OptComb
and EW approaches (discussed in Section 2.4), as well as the
best ex-post individual model (Best Model). We report results
for both the CDN approach with learning (CDN) and the CDN
approach without learning (CDNNL). In addition, to get a sense
of the absolute performance of the different approaches, we also
report results from the true model (true). For the true model, the
only source of forecast errors are the future shocks, that is, there
is no estimation and model uncertainty.

In the first simulation exercise, (Sim1), we estimate (and com-
bine) four individual DFMs with 1–4 factors extracted from a
panel corresponding to the information at Block 11. Thus, in this
exercise the DGP is a part of the model space and there is there-
fore no model set incompleteness and no data incompleteness.
We introduce weak incompleteness in the second simulation ex-
ercise (Sim2). We estimate (and combine) the same individual
DFMs with 1–4 factors. The only difference from Sim1 is that
the models are now estimated with incomplete data information.
More precisely, the models are estimated using data that cor-
responds to the information that is available when nowcasting
at the middle of the quarter (i.e., Block 5). Hence, there is data
incompleteness, but no model incompleteness.

The last three simulation exercises focus on cases of strong in-
completeness (cases where both data incompleteness and model
incompleteness is present). In the third simulation exercise,
(Sim3), we estimate (and combine) 4 individual DFMs. How-
ever, we assume that for some reason, the factors are only esti-
mated based on the “hard data” variables in our dataset (i.e., we
assume that no survey data are available to the forecaster). Thus,
there is model incompleteness, since the “true” model (which
is a DFM with two factors extracted from the full dataset) is
within the model space, but all the models are misspecified in
terms of using the wrong dataset (i.e., using just a subset of all
the “true” data series to extract the factors). In addition, we also
assume that there is data incompleteness as in Sim2.

In the final two simulation exercises (Sim4 and Sim5), we
assume a different DGP. In these cases, we assume that the
DGP follows a VAR(4) in GDP growth, the unemployment
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Table 2. Simulation results

BMA EW OptComb
Best

model CDNNL CDN True

Sim1: No incompleteness
LS −0.251 0.030 −0.048 0.224 0.061 0.074 0.297
PITS 0.360 0.192 0.260 0.159 0.200 0.264
MSPE 0.028 0.025 0.027 0.025 0.027 0.024 0.013

Sim2: Weak incompleteness
LS −3.882 −3.825 −3.048 −3.105 −0.531** −0.459** 0.297
PITS 0.103 0.034 0.088 0.126 0.464 0.442
MSPE 0.198 0.169* 0.180* 0.198 0.148* 0.147** 0.013

Sim3: Strong incompleteness
LS −2.959 −3.056 −3.082 −2.928 −0.499** −0.457** 0.297
PITS 0.117 0.119 0.118 0.109 0.684 0.721
MSPE 0.241 0.251 0.226 0.230 0.172* 0.169** 0.013

Sim4: Strong incompleteness
LS −0.567 −0.501 −0.493 −0.555 −0.353** −0.325** −0.271
PITS 0.524 0.404 0.318 0.100 0.162 0.214
MSPE 0.205 0.186* 0.179 0.186 0.111** 0.112** 0.091

Sim5: Strong incompleteness
LS −0.993 −1.049 −0.947 −1.187 −0.732** −0.623** −0.622
PITS 0.490 0.183 0.044 0.079 0.622 0.539
MSPE 0.347 0.343 0.335 0.364 0.213** 0.209** 0.208

NOTES: The table reports results from the five simulation exercises, showing the average log score (LS), p-values for the pits test by Knüppel (2015) (PITS) and mean square prediction
error (MSPE) for six different prediction methods applied to dynamic factor models: Bayesian model averaging based on the predictive likelihood (BMA), forecast combination with
equal weights (EW), optimal combination (OptComb), the ex-post best performing model (Best Model), our combined density nowcasting approach without learning (CDNNL) and our
combined density nowcasting approach with learning (CDN). In addition, we report results from the true model (True) with just future shocks (i.e., no estimation or model uncertainty)
as a comparison. Bold numbers in the rows for LS and RMSE indicate the most accurate model for the different statistics. Statistically significant differences between the BMA approach
and the alternative combination approaches are denoted by one and two asterisks corresponding to significance levels of 10% and 5%, respectively. Bold numbers in the rows for PITS
indicate a rejection of the hypothesis of correctly calibrated densities at a 10% significance level.

rate, inflation, and the interest rate, while we again estimate and
combine individual DFMs with 1–4 factors extracted from all the
available data series (i.e., our estimated models are similar to the
ones in the Sim2 exercise). However, we distinguish between
a DGP following a constant variance VAR(4) (DGP2) and a
VAR(4) with stochastic volatility (DGP3). The latter case is
included since several studies have recently highlighted that it
is important to account for stochastic volatility to obtain well-
calibrated densities, see, for example, Clark (2011), Carriero,
Clark, and Marcellino (2015), and Marcellino, Porqueddu, and
Venditti (2015). It is therefore interesting to assess whether
allowing for time-varying weights when combining forecasts
from models with constant parameters, can capture some of the
changes in the variance.

We study absolute accuracy by testing if the density forecasts
are correctly calibrated, using the test in Knüppel (2015). The
relative forecasting performance of the different models is as-
sessed in terms of LS for density nowcasts and MSPE for point
nowcasts. To provide a rough gauge of whether the differences
in forecast accuracy between the BMA approach and the alter-
native combination approaches are significant, we follow Clark
and Ravazzolo (2015) and apply a Diebold and Mariano (1995)
t-tests for equality of the average loss (with loss defined as LS
and MSPE). Statistically significant differences are denoted by
asterisks corresponding to significance levels of 10% and 5%,
respectively.

Table 2 reports results from the simulation exercises. When
there is no model incompleteness, the best individual model,

CDN and the other combination approaches perform very simi-
larly in terms of point nowcasts. As expected, the best individual
model outperforms CDN and the other combination approaches
in terms of density nowcasting. Still, the results indicate that the
CDN approach works well in the case where there is no data
and model incompleteness. Note that although not statistically
significant, the CDN approach provides better point and density
nowcasts than the other combination approaches.

When introducing data and model incompleteness, there are
clear gains from using our CDN approach relative to the other
strategies. Starting with the case of weak incompleteness (i.e.,
Sim 2 where only data incompleteness is present), our CDN
approach significantly improves upon the BMA approach, both
in terms of point and density nowcast performance. Interest-
ingly, the CDN approach also outperforms all other combina-
tion strategies and the ex-post best individual model. The latter
result is rather striking, as the only source of incompleteness
is missing data observations (ragged edge problem). Thus, this
indicates that using a combination scheme that allows for model
incompleteness is important in the case where data observations
are missing. Compared with the results from the true model,
the forecast errors measured in either LS or MSPE are large for
some of the combination approaches. This highlights that miss-
ing data observations are an important source of forecasts errors.

The relative improvements, compared to the other strategies,
are even more evident in the cases of strong incompleteness
(Sim3–Sim5). Comparing the nowcasting performance from our
CDN approach with the other strategies, indicates that there is
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scope for substantial improvements in performance by using
a combination scheme that allows for model incompleteness
when both data and model set incompleteness are present. In
all cases, our CDN approach significantly improves upon the
BMA approach and is superior to the other alternative combi-
nation approaches both in terms of density and point forecast
performance.4 Interestingly, when comparing the LS and MSPE
from the CDN with the true model in Sim5, the values are very
similar. In contrast, when comparing the LS and MSPE from the
CDN without learning with the true model, differences occur.
This suggests that applying time-varying weights are helpful
for capturing changes in the variance, even in the case where
forecasts are combined from models with constant parameters.

On a final note, in most of the simulation exercises, the
density nowcasts seem to be well calibrated for all combination
approaches. The exceptions are EW and OptComb in Sim2 and
OptComb and Best Model in Sim5, where the null hypothesis of
correctly calibrated densities are rejected at a 10% significance
level.

5. EMPIRICAL APPLICATION

In this section, we analyze the performance of our CDN ap-
proach for nowcasting U.S. real GDP growth. The main goal of
the exercise is to examine the nowcasting performance of our
CDN approach and to study the role of model incompleteness
for nowcasting.

5.1 Point and Density Nowcasts of GDP Growth

We produce density nowcasts/backcasts for GDP growth at
11 different points in time, described in Section 3, using four
different DFMs. The models differ in terms of the numbers of
factors included.5 Our exercise refers to a researcher who con-
structs nowcasts in real time accounting for various forms of
uncertainty, including uncertainty related to model specifica-
tion. We consider six different model specification strategies:
(1) Bayesian model averaging based on predictive likelihood
(BMA); (2) a selection strategy where we recursively pick the
model with the highest realized cumulative log score at each
point in time throughout the evaluation period (SEL); (3) fore-
cast combination with equal weights attached to the models
(EW); (4) the optimal combination approach suggested by Hall
and Mitchell (2007) and Geweke and Amisano (2011); (5) com-
bined density nowcasting without learning (CDNNL); and (6)
combined density nowcasting with learning (CDN).

Table 3 reports results for the six different model specification
strategies at the 11 different points in time (blocks) during the

4Note that since DGP1 is rather different from DGP2 and DGP3, it may be mis-
leading to compare the absolute performance for each model from the different
simulation exercises (Sim3, Sim4, and Sim5).
5We obtained very similar results when using 12 different DFMs: four models
extracting factors from the hard data; four models using the soft data; and four
models using all the data. For each group, we then considered one to four factors,
resulting in four different DFM specifications for each data group. In general,
the models using factors extracted from all the data series were superior to
the models extracting factors from either hard or soft data. For brevity, and to
save computational time, we therefore only report results when combining four
different DFMs.

quarter. In addition, we also report results for the best performing
ex-post individual model (labeled Ex-Post). Note that this model
is the DFM with two factors, similar to the specification in
Giannone, Reichlin, and Small (2008). The first column shows
the LS and MSPE for BMA, while all other columns report
measures relative to the BMA performance. The table reveals
four interesting results.

First, with the exception of the results for Block 1 and Block
2, the point nowcasting accuracy from the different models is
very similar.

Second, CDN provides more accurate density nowcasts than
BMA, EW, OptComb, and SEL for all of the blocks. For Block 1
to Block 4, the differences in terms of LS performance between
the BMA approach and the CDN approach are statistically sig-
nificant at a 10% significance level. The CDN approach also
provides more accurate density nowcasts for all blocks than the
ex-post best individual model, with the only exceptions being
the results for Block 8 and Block 10, where Ex Post performs
slightly better than the CDN. Overall, this indicates that there
are gains in terms of improved nowcasting performance from
CDN when we take into account the whole density shape of
the nowcasts. Note that for all blocks the CDN approach which
includes learning is superior to the CDN approach without learn-
ing (CDNNL). This shows that there are gains from applying
time-varying weights.

Third, the relative gains in terms of improved density now-
casts are larger for the first blocks of the quarter than for the last
blocks of the quarter. This supports the findings from the simu-
lation exercises in Section 4, which showed that the gains from
CDN are larger when uncertainty is high, and thus the incom-
pleteness is strong. The data incompleteness (denoted as weak
incompleteness) is larger in the early part of the quarter than in
the latter part of the quarter. In addition, when data uncertainty
is high, it is also more likely that it becomes harder to detect
the “true” DGP than when the data uncertainty is low. That is, it
is also more likely that model incompleteness is present when
data uncertainty is high.

Fourth, the nowcasts from the CDN approach seems to be
well-calibrated for all blocks, as the null hypothesis of correctly
calibrated densities, based on the test in Knüppel (2015), cannot
be rejected at the 10% significance levels.

5.2 Signals of Model Incompleteness

To illustrate the role of more substantial incompleteness,
Figure 1 shows the standard deviations of the combination resid-
uals for the incomplete model sets, see equation (4), over time
for Block 1, Block 5, and Block 11. The figure reveals two
interesting observations.

First, for most of the time observations, the standard deviation
of the combination residuals is higher for Block 1 than Block
5 and Block 11, and higher for Block 5 than Block 11. This
observation therefore confirms that incompleteness is higher in
the early part of the quarter than in the later part of the quarter.

Second, the standard deviations of the combination residuals
fluctuate over time. Interestingly, the standard deviation of the
combination residual is high in 2001 and in the latter part of
2008 and the early part of 2009. This coincides with the U.S.
economy being in a recession. The high standard deviation is
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Table 3. Point and density nowcasting

BMA SEL EW OptComb Ex Post CDNNL CDN

Block 1
LS −1.441 1.124 0.749 0.814 0.926 0.641** 0.590**
PITS 0.119 0.198 0.059 0.167 0.147 0.389 0.708
MSPE 0.583 0.988 0.809 0.686 0.524 0.567 0.542

Block 2
LS −1.101 1.117 0.920 0.892 0.954 0.782** 0.715**
PITS 0.094 0.236 0.111 0.223 0.068 0.941 0.705
MSPE 0.317 1.032 1.052 0.988 0.959 1.014 0.924

Block 3
LS −0.980 0.987 1.005 0.944 0.977 0.862 0.814**
PITS 0.049 0.197 0.040 0.149 0.041 0.313 0.450
MSPE 0.289 0.989 1.141 1.036 0.983 1.086 1.025

Block 4
LS −0.892 0.997 1.027 0.971 0.978 0.922 0.862*
PITS 0.102 0.155 0.087 0.155 0.075 0.326 0.465
MSPE 0.275 0.991 1.162 1.046 0.977 1.108 1.007

Block 5
LS −0.768 0.991 0.962 0.985 0.961 0.953 0.897
PITS 0.254 0.292 0.272 0.340 0.309 0.456 0.594
MSPE 0.241 0.990 1.269 1.098 0.969 1.181 1.002

Block 6
LS −0.788 0.993 0.992 0.949 0.964 0.987 0.882
PITS 0.246 0.354 0.238 0.387 0.256 0.435 0.610
MSPE 0.247 0.989 1.234 1.073 0.969 1.157 0.984

Block 7
LS −0.743 0.990 1.022 0.983 0.953 1.039 0.911
PITS 0.216 0.307 0.243 0.296 0.246 0.405 0.725
MSPE 0.242 0.991 1.261 1.089 0.958 1.158 0.969

Block 8
LS −0.619 1.000 1.219 1.146 0.968 1.040 0.995
PITS 0.610 0.547 0.638 0.609 0.718 0.602 0.625
MSPE 0.203 0.995 1.362 1.125 0.972 1.243 1.024

Block 9
LS −0.655 0.998 1.132 0.987 0.965 1.079 0.949
PITS 0.649 0.518 0.635 0.545 0.741 0.612 0.693
MSPE 0.218 1.002 1.294 1.091 0.979 1.164 0.973

Block 10
LS −0.594 1.023 1.190 1.006 0.951 1.123 0.998
PITS 0.565 0.825 0.501 0.854 0.532 0.722 0.512
MSPE 0.189 1.011 1.460 1.123 0.980 1.278 1.031

Block 11
LS −0.610 0.995 1.284 0.992 0.952 1.048 0.931
PITS 0.813 0.716 0.813 0.858 0.883 0.778 0.449
MSPE 0.187 0.991 1.364 1.118 0.974 1.224 0.989

NOTES: The table shows the average log score (LS), p-values for the pits test by Knüppel (2015) (PITS) and mean square prediction error (MSPE) for seven different prediction methods
applied to dynamic factor models: Bayesian model averaging based on predictive likelihood (BMA), selecting the model with highest recursive score at each point in time (SEL), forecast
combination with equal weights (EW), optimal combination (OptComb), the ex-post best performing model our combined density nowcasting approach without learning (CDNNL) and
our combined density nowcasting approach with learning (CDN). The results in Columns 2–7 show LS and MSPE relative to the BMA measure. Bold numbers in the rows for LS and
MSPE indicate the most accurate model for different statistics. Statistically significant differences between the BMA approach and the alternative combination approaches are denoted by
one and two asterisks corresponding to significance levels of 10% and 5%, respectively. Bold numbers in the rows for PITS indicate a rejection of the hypothesis of correctly calibrated
densities at a 10% significance level. See Table 1 for information on different blocks.

evident for Block 1 and Block 5 for the 2001 recession, and
even more pronounced for the Great Recession, increasing the
standard deviation for the combination residual for all blocks.
In Section 5.3, we will study the performance of CDN during
economic downturns in more detail.

Figure 2 shows the weights associated with the four dynamic
factor models for Block 1, Block 5, and Block 11. We notice
the large uncertainty on the weights, with substantial varia-

tion over time. There is a clear indication that DFMs with ei-
ther one or two factors obtain higher weights than DFMs with
three and four factors. Moreover, the weights also change be-
tween the blocks. Finally, the red dotted line in each subfigure
shows the corresponding weights obtained by the BMA ap-
proach. Comparing the CDN weights with the BMA weights,
we see two interesting differences. First, the medians of the CDN
weights and BMA weights differ substantially, with much larger
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Figure 1. Standard deviation of the combination residuals. Standard
deviation of the combination residuals for incomplete model sets from
Equation (4), for Block 1, Block 5, and Block 11.

movements over time from the BMA weights. Second, BMA
selects much more extreme weights, attaching almost all the
weights to one single model, consistent with findings in
Amisano and Geweke (2013). The main difference between

CDN and BMA is that our weighting scheme allows for model
incompleteness (the BMA weights based on predictive likeli-
hood will also take into account past predictive performance
scores).

Finally, Figure 3 shows a full set of recursive real-time out-
of-sample density nowcasts for U.S. GDP growth for the period
1990Q2–2010Q3 at three different blocks (Blocks 1, 5, and 11).
The three panels illustrate how the precision of the predictive
densities improves, that is, being more narrow and centered
around the actual GDP values as more information becomes
available.

5.3 CDN Nowcasting of Negative Growth in the
Business Cycle

In a previous subsection, we have shown that CDN provides
accurate nowcasts when focusing on the entire distribution of
GDP growth. The distribution of CDN can also be used to com-
pute probabilities to be in specific phases of the business cycle.
There is a large literature on estimation and timely detection
of turning points and economic downturns, see, for example,
Harding and Pagan (2002), Chauvet and Piger (2008), Hamil-
ton (2011), Guèrin and Marcellino (2013), Stock and Watson
(2014), and Foroni, Guérin, and Marcellino (2015). The individ-
ual economists in the Survey of Professional Forecasters (SPF)

Figure 2. Time-varying weights. The figures plot the 90% credibility intervals of the model posterior weights and their medians (blue dotted
lines) for Blocks 1, 5, and 11. The first row of each subfigure shows weights for DFM models with one and two factors. The second row of each
subfigure shows weights for DFM models with three and four factors. The red dotted line shows the weights attached to each model using BMA.
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Figure 3. Recursive nowcasts. The figures plot recursive nowcasts for Block 1, 5, and 11. The shaded areas show the 90% credibility intervals
of the predictive densities and their medians (blue dotted lines). The red dotted line shows actual GDP, measured as the second release.

also report forecasts of the probability of a decline in the level of
real GDP in the current quarter and the following four quarters.
Motivated by this, we use CDN to study the probability of neg-
ative growth in the current quarter (i.e., GDP growth nowcasts
below 0).

Figure 4 compares the recursive probabilities of negative
growth in the current quarter from CDN with the mean re-
sponses for the probability of negative growth in the current
quarter provided by the SPF. To ensure that the information set
used to construct the CDN nowcasts are as similar as possible
to the information available when the SPF forecasts were made,
we report CDN nowcasts for Block 5. Block 5 corresponds to
the information set a few days prior to the release of the SPF
forecasts. By comparing CDN and SPF forecasts with actual
GDP growth (shown by the bars), we find that both CDN and
SPF forecasts deliver timely and accurate forecasts of negative
growth.

To provide insights about which method is more accurate,
we compute concordance statistics (CS), which count the pro-
portion of time during which the predicted and the actual GDP
series are in the same state. For convenience, we assume here
two states, a state of negative growth and a state of positive
growth. We say that a model predicts negative growth for the
current quarter if the probability of negative growth is 50% or
larger. Comparing the CS for CDN with SPF, we find that both
perform equally well with CS = 0.963.

Finally, Figure 5 shows the recursive probabilities of negative
growth in the current quarter during the period 2007Q1–2009Q4
from the CDN approach for Block 1, Block 5, and Block 11.
The figure reveals three interesting observations.

Figure 4. Probabilities of negative growth. Probabilities over time
of negative quarterly growth given by the CDN approach and SPF.
The red and black lines plot the probabilities scaled by two (therefore
covering the interval [0,2]); the bars plot the realization.
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Figure 5. Probabilities of negative growth during the Great Reces-
sion period. Probabilities of negative quarterly growth during the Great
Recession period provided by the CDN approach at different blocks
during the quarter. The black dotted line, and the red and black solid
lines plot the probabilities scaled by two (therefore covering the in-
terval [0,2]) from the CDN approach at Block 1, Block 5, and Block
11, respectively. The blue and red bars plot the realizations measured
as the second available estimate of GDP and the last available esti-
mate of GDP (November 2014 vintage), respectively, as the actual
measure.

First, the probability of obtaining negative growth in the cur-
rent quarter is very low for all of the blocks during the first
quarters of 2007, but starts to increase from 2007Q4. The prob-
ability of negative growth for the current quarter continues to
increase for each of the quarters throughout 2008. Interestingly,
within each quarter the probability of negative growth increases
as more information becomes available (i.e., the probability of
negative growth is higher for Block 11 than Block 5 and Block
1, and higher for Block 5 than Block 1).

Second, the probability of negative growth in the current quar-
ter starts to fall from May 2009 (Block 5 in 2009Q2). In mid-
August 2009 (Block 5 in 2009Q3), the probability of negative
growth in the current quarter is for the first time below 0.5 and
this probability continues to fall when more information is avail-
able throughout the quarter (see Block 11 for 2009Q3). This is
consistent with 2009Q3 being the first quarter, where the actual
measure of GDP growth is positive. This shows that the CDN
not only delivers timely and accurate forecasts for economic
downturns, but also provides timely and accurate forecasts of
when the economic slump ended.

Third, by comparing the blue and the red bars, which show
the realizations of GDP growth measured as the second avail-
able estimate of GDP and the last available estimate of GDP
(November 2014 vintage), respectively, the figure illustrates
that the GDP growth numbers have been revised downwards
for all of the quarters in 2008 and 2009, with 2009Q2 as a
notable exception. For several of these quarters the downward
revisions have been large, exceeding changes of 0.5 percentage
point in the quarterly growth rate. This reminds us of how dif-
ficult it is to call recessions (or negative growth rates) in real
time.

6. CONCLUSION

In this article, we introduced a combined density nowcast-
ing (CDN) approach to dynamic factor models that accounts
for the time-varying uncertainty of several model and data fea-
tures to provide more accurate and complete density nowcasts.
The combination weights depend on past nowcasting perfor-
mance and other learning mechanisms that are incorporated in
a Bayesian sequential Monte Carlo method which rebalances
the set of nowcasted densities in every period using the updated
information on the time varying weights. In this way, we are
able to weight data uncertainty, parameter uncertainty, model
uncertainty, including model incompleteness, and uncertainty
in the combination of weights in a coherent way.

We first implemented simulation experiments to understand
the role of incompleteness for nowcasting, distinguishing be-
tween data incompleteness (ragged edge problem) and model
set incompleteness (the true model is not a part of the forecast-
ers’ model space). By comparing point and density nowcasting
performance from CDN with the performance of a Bayesian
model averaging (BMA) approach, the optimal combination of
density forecasts approach (OptComb), equal weights and the
ex post best individual model, we find that CDN provides supe-
rior nowcasts, particularly at early data releases where there is
relatively large data uncertainty and model incompleteness.

We then show the usefulness of CDN when it is applied to four
different DFMs for nowcasting GDP growth using U.S. real-
time data. The experiment refers to a professional economist
who is interested in dealing with various forms of uncertainty
in real time. We therefore divide data into different blocks ac-
cording to their release date within the quarter, and update the
density nowcasts at three different points in time during each
month of the quarter for the evaluation period 1990Q2–2010Q3.

We find that the CDN outperforms BMA, OptComb, equal
weights, a selection strategy, and even the ex-post best individual
model in terms of density nowcasting performance for all blocks.
The relative gains in terms of improved density nowcasts are also
in the empirical analysis larger for the first blocks than for the
last blocks of a quarter.

By studying the standard deviation of the combination resid-
uals, we show that this is higher for the earlier blocks in the
quarter than for the later blocks in the quarter, confirming that
incompleteness plays a larger role in the early part of the quar-
ter. Thus, there are clear gains in terms of improved nowcasting
performance from using CDN when incompleteness is present.

Finally, the standard deviations of the combination residuals
fluctuate over time and increase during economic downturns. We
document that CDN also performs well with respect to focusing
on the tails and delivers probabilities of stagnation, measured
as the probability of negative growth, that are timely and in line
with forecasts from the Survey of Professional Forecasters.

SUPPLEMENTARY MATERIALS

The supplementary materials contain an online appendix
where we document the estimation algorithm for our combined
density nowcasting (CDN) approach, as well as providing addi-
tional details on the data set that we use.
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