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A HETEROSKEDASTICITY-ROBUST F-TEST STATISTIC FOR
INDIVIDUAL EFFECTS

Chris D. Orme' and Takashi Yamagata?®

1 Economics, University of Manchester, Manchester, UK
2Department of Economics and Related Studies, University of York, York, UK

O  We derive the asymplotic distribution of the standard F-test statistic for fixed effects, in static
linear panel data models, under both non-normality and heteroskedasticity of the error terms,
when the cross-section dimension is large but the time series dimension is fixed. It is shown
that a simple linear transformation of the F-test statistic yields asymptotically valid inferences
and under local fixed (or correlated) individual effects, this heteroskedasticity-robust F-lest enjoys
higher asymptotic power than a suitably robustified Random Effects test. Wild bootstrap versions
of these tests are considered which, in a Monte Carlo study, provide more reliable inference in
finite samples.
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1. INTRODUCTION

In an earlier article, Orme and Yamagata (2006) added to the already
large literature on the analysis of variance testing, by establishing that, in
a static linear panel data model, the standard F-test for individual effects
remains asymptotically valid (large N, fixed 7°) under non-normality of
the error term. Moreover, their (local) asymptotic analysis, supported by
Monte Carlo evidence, showed that under (pure) local random effects
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both the F-test and Random Effects test (RE-test) will have similar power whilst
under local fixed effects, or random effects which are correlated with the
regressors, the RE-test procedure will have lower asymptotic power than the
F-test procedure.

The key result in the above article (Proposition 1, p. 409) is,
essentially, the asymptotic equivalence of the appropriately centred F-test
statistic and the numerator (test indicator) in the RFE-test statistic, under
homoskedastic, but not necessarily normally distributed, errors. However,
it is straightforward to verify (Proposition 1 in Section 3.2 below) that this
asymptotic equivalence continues to hold under general heteroskedasticity
of the errors.! The analysis which produces this result also predicts
that, under certain forms of neglected heteroskedasticity, the standard
(homoskedastic-based) FFand RE tests will be, either, asymptotically under
or oversized. For example: (i) under cross-sectional heteroskedasticity
only, both tests will be asymptotically oversized; (ii) under time series
heteroskedasticity and serial independence of the errors, both tests will
be asymptotically undersized, but under symmetric time series conditional
heteroskedasticity such as GARCH, where the squared error terms exhibit
positive correlation, both tests will be asymptotically oversized; and
(iii) furthermore, in the singular case of independently and identically
distributed (i.i.d.) data, over both the cross-section and time dimensions,
then even if the errors are conditionally heteroskedastic, the standard F
and RE tests remain asymptotically valid. The assumptions in this article
explicitly allow for independently but not identically distributed data and,
therefore, unconditional heteroskedasticity in the errors.

Given the result of Proposition 1, below, Wooldridge’s (2010,
p.- 299) heteroskedastic-robust RE-test suggests a number of possible
transformations of the standard F-fest statistic which will recover its
asymptotic validity under general heteroskedasticity of unknown form.
Moreover, this transformation, or correction, involves simple functions of
the pooled model’s residuals (i.e., the restricted residuals). Following the
literature on heteroskedasticity robust inference, restricted residuals are
employed as advocated, for example, by Davidson and MacKinnon (1985)
and Godfrey and Orme (2004), who report reliable sampling performance
of tests of linear restrictions in the linear model when employing restricted
residuals in the construction of heteroskedasticity robust standard errors.?

Importantly, though, the F and RE heteroskedastic-robust tests, so
constructed, retain the qualitative properties that were reported by Orme
and Yamagata (2006). Specifically: (i) under (pure) local random effects,

'Orme and Yamagata (2006) did not cover the case of heteroskedastic errors in the linear
model, although their analysis did allow for heteroskedastic individual effects.

2As Wooldridge (2010, p. 300) points out, standard tests for individual effects essentially test
for non zero correlation in the errors; thus, constructing autocorrelation robust procedures would
appear to be counter productive.
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both tests have the same asymptotic power; and, (ii) under local fixed
effects, or random effects which are correlated with the regressors,
the RE-test procedure will have lower asymptotic power than the F-test
procedure.

The plan of this article is as follows. In order to make the current
article self-contained, Section 2 reproduces Orme and Yamagata (2006,
Section 2) and introduces the notation and standard test statistics
as discussed widely in econometric texts; for example Baltagi (2008).
Section 3 details the assumptions and asymptotic analysis. The latter
provides a description of the asymptotic behaviour of the F-test statistic,
its heteroskedasticity robust transformation, its relationship with the RE-test
statistic (under both the null and local alternatives), and predictions
concerning the asymptotic significance levels of the unadjusted F-test
test under certain forms of neglected heterokedasticity. All proofs of
the main results are relegated to the Appendix. Section 4 illustrates the
main findings by reporting the results of a small Monte Carlo study.
This also includes an evaluation of a wild bootstrap procedure scheme,
based on Mammen (1993) and Davidson and Flachaire (2008), which
might be employed in order to provide closer agreement between the
desired nominal and the empirical significance level of the proposed test
procedures. Section 5 concludes.

2. THE NOTATION, MODEL, AND TEST STATISTICS

We consider the static linear panel data model

y,‘=ailT+Xiﬁl+ui’ i=1’-"’N’ (1)
where y, = (yir, ..., %), w; = (Ui, ..., up)’, 17 is a (T x 1) vector of ones,
and X; = (x;1,...,X;7) a (T x K) matrix. The innovations, u;, have zero

mean and uniformly bounded variances and the «; are the individual effects.
By stacking the N equations of (1), the model for all individuals becomes

y = Da + X +u, (2)

where y = (y},...,yy) and u=(uj,...,u})" are both (NT x 1) vectors,
o= (o,...,0v) is a (N x 1) vector, D = [Iy ® 17] is a (NT x N) matrix,
X=(X|,...,X}) is a (NT x K) matrix, and [D,X] has full column rank.
Thus, for the purposes of the current exposition, x; = (X;1,..., Xx)’,
(K x 1), contains no time invariant regressors, in particular a constant
term corresponding to an overall intercept. In the context of fixed effects
this allows estimation of f;, as follows.

In general, define the projection matrices, Pg = B(B'B)™'B’ and M =
Iy — Pg, for any (NT x S) matrix B of full column rank, with B= MpB
being the residual matrix from a multivariate least squares regression of B
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on D which is, of course, the within transformation. Then the fixed effects
(least squares dummy variable) estimator of B, in (2) is given by

B = X'MpX) 'X'Mpy = (XX) 'X7. (3)

The null model of no individual effects is the pooled regression
model of

y = Potnr + XB1 +u,
=Zp +u, (4)

where Z = [y, X] = (Z),...,Z}), and Z; has rows z,, = (1, x;1, ..., Xix) =
{zj}, j=1,...,K+1. The (pooled) regression of y on Z delivers the
Ordinary Least Squares (OLS) estimator if = (Z?o, ﬁﬁ) = (Z’Z)_l Zy.

The standard F-test for fixed effects requires estimation of both (2),
treating the «; as unknown parameters, and (4) whilst the standard RE-test
only requires estimation of (4). In order to provide a framework in which
to investigate the limiting behaviour of the F-test and RE-test statistics,
under both fixed and random effects, the individual effects are assumed
to have the form a = By + 8, 6 = (J1,...,dy)". Fixed effects correspond
to the o;, i =1,..., N, being fixed unknown parameters (or, equivalently,
0y = 0 with f, and J;, i = 2,..., N, being the fixed unknown parameters).
The case of random effects is accommodated when the 6;,, ¢ =1,..., N are
random variables. Equations (1) and (2) will be employed to characterise
the data generation process, with the restrictions of H, : = 0,1y providing
the null model of no individual effects (notice that 6 = 0 belongs to this
set of restrictions). Specifically, when considering the alternative of fixed
effects, the (N — 1) restrictions placed on (2) are H, : Ha = 0, where H =
[tn_1, —Iy_1], whilst for random effects the null is Hy : var (J;) = 0.

The standard Fand RE test statistics are defined as follows.

F-Test Statistic

This is constructed as

o (RSSy — RSSy)/(N — 1)
N URSS,/(N(T —1) —K)

(5)

where RSSz =1 is the restricted sum of squares (from the pooled
regression (4)) with @ = Mgy, and RSS; = @'t is the unrestricted sum
of squares (from the fixed effects regression (2)) with u= Mgy, the
residual vector from regressing ¥ on X. If normality, homoskedasticity,
and strong exogeneity were imposed such that, conditional on X,
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u, ~ N(0,6%1;), i=1,...,N, then a standard F-fest would be exact. In the
case of non-normal, but homoskedastic, errors Orme and Yamagata (2006)
demonstrated that a standard F-fest would be asymptotically valid.

RE-Test Statistic

The usual RE-test statistic is®

R NT [ﬁ’(IN®A)ﬁ}_ 1 [ﬁ’(IN@A)ﬁ] (©)
YTV 2(r-1) aa “\VeNnT(T-1)| de/NT |

where A = A" = 171, — I, so that

N

u(Iy @A) u= Zu;Aul Z Z Z Ui Wis-

i=1 i t s#EL

Ry has a limit standard normal distribution, as N — oo, under H, and
homoskedasticity but not necessarily normality of the errors.

3. ASYMPTOTIC PROPERTIES OF F,

In this section we describe the properties of Fy, under both local
fixed and random effects, by (i) deriving its asymptotic distribution, and
(ii) establishing its asymptotic relationship with Ry. In the subsequent
analysis asymptotic theory is employed in which N — oo and 7 is fixed. To
facilitate this, the following sections detail the assumptions that are made,
which are of the sort found in, for example, (White, 2001, p. 120).

3.1. Assumptions

(i) {X;,w}Y, is an independent sequence;
ii)

(i) E (ult | X, U1, Uig—9, - - ) = 0, almost surely, for all ¢ and ¢.
A2: (i) E(zisjuit 2+'7)§A<oo for some >0, all s,t=1,...,7T, j=
1,...,K+1,andall:=1,...,N;
(ii)E(zm—H" <A<oo for some n>0, all t=1,...,7, j=

1,...,K+1,andalli=1,...,N;

(iii) £ (Z'Z/ N) is uniformly positive definite;

(iv) E(XX/N) is uniformly positive definite;

(v) Vy=N-1! le lezl E (ugzi[zgt) is uniformly positive definite;
(vi) Vy=N-! Zf\il Zthl E (uif(nf(/ﬁ) is uniformly positive definite.

3See, for example, Breusch and Pagan (1980) or Honda (1985).
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Assumption Al imposes independent sampling of cross-section units
and also, A1(ii), a strong exogeneity assumption on X;, so that E(i;ul-) =
0; thus ruling out (for example) lagged dependent variables. Assumption
Al(ii) also constrains the w; to be conditionally serially uncorrelated,
and thus serially uncorrelated, but not necessarily serially independent.
In particular, this resembles a martingale difference assumption, but is
more direct (see, for example, White (2001, p. 54)) and accommodates
most models of heteroskedasticity (including time series conditional
heteroskedasticity such as GARCH and its relatives). If it were strengthened
to that of w; being serially independent, conditionally on X;, GARCH
processes, for example, would be ruled out. Together with Assumption
A2, which explicitly allows for rather general heteroskedasticity in the
disturbances, we obtain consistency and asymptotic normality of both the
pooled and fixed effects least squares regression estimators (B and B,
respectively), and also consistency of the corresponding heteroskedasticity-
robust covariance matrix estimators.* These results follow for the fixed
effects estimator because Assumption A2(i) and (ii) also imply that

E [ &ilﬁui[fw] and E [\&W&isligﬂ] are both uniformly bounded. Thus,
in particular, \/LNZ’u, \/Lﬁi/u, %Z/Z and %X/)’Z are all 0O,(1), with
VL Zu 5 N0, 1) and V" LX'u 5 N(0,1x), as N — oo, T fixed.
If Assumption Al(ii) is weakened to E (X;ul-) =0, or even E (x;u;) =0
(zero contemporaneous correlation), f; is not guaranteed to be consistent

and, when it is inconsistent, the F-test is asymptotically invalid anyway,
even under normality; for example, in the presence of lagged dependent
variables—see the discussion in (Wooldridge, 2010, Sections 10.5 and
11 6) Furthermore, note that Assumptlons Al(ii) and A2(v) imply that

Zl S E@E) = LY BT wg)? is uniformly positive.
For the purposes of thls article, in addition, we assume as follows:

A3: (1) E|ui[ i <A <oo for some n>0, all t=1,...,7T, and all i =
1,...,N; )
(i) var (N2 (Iy @ A)u) = N' YV E (wAw,)®  is  uniformly
positive.

A4 (i) oy =P+ G i=1,...,N;
(ii) the 0, are independent, satisfying E [u;0;] =
oo, foralli=1,...,N;
(iii) N7! Zf\il E [5?] is uniformly positive, where & = (Jy,...,0x).

4+n

<A<

1See, for example, (White, 2001, Exercises 3.14, 5.12 and Chapter 6). Assumption A2(ii) is
also required to obtain a heteroskedasticity robust F-test.
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Assumption A3 justifies the limit distribution obtained in Proposition 1
below, and as a consequence also that of Ry. (In fact, Assumption
A3(i) and Assumption A2(ii) actually imply Assumption A2(i), using the
Cauchy-Schwartz inequality.) Assumption A4 characterizes the alternative
data generation process and permits the investigation of asymptotic
power, under local individual effects, by restricting the test criteria
under consideration to be O, (1) with well defined limit distributions.
Together with Assumptions A3(i) and A2(ii), Assumption A4(ii) implies
E \ui,5i|2+" <A <oo and E |z,;t]»5i|2+" <A < o0, for some >0, and all
i=1,...,N,t=1,...,T, j=1,...,K+ 1. As well as fixed effects (with
the 0, being nonstochastic) it also accommodates local heteroskedastic
random effects, but which are uncorrelated with wu;. If the J; are also
distributed independently of X, then we have “pure” random effects whilst
if the 0; are correlated with X; then we have “correlated” random effects.
(As pointed out by Wooldridge (2010, p. 287), in microeconometric
applications of panel data models with individual effects, the term fixed
effect is generally used to mean correlated random effects, rather than «;
being strictly nonstochastic.)

3.2. The Asymptotic Distribution of F,

The results concerning the limiting behavior of both the F-fest and
RE-test are driven by the following lemma, which also substantiates the
asymptotic validity of Wooldridge’s (2010, p. 299) heteroskedasticity-robust
test for unobserved effects; see Section 3.4.

Lemma 1. Define

‘(Iy®A 1 al
HV:“(N@ )u: Zu;Aul
UNT(T-1) JNI(T-1D) -
and
1 N
1 2
Ky = var (I_IN) = m ZZI:E {ulAu,} .

Then under Assumptions Al and A3,
xyHy 5 N(0,1),
Jor fixed T, as N — o0.

The expression for ky, whilst correct, is quite general as it simply
exploits the fact that the w; are serially uncorrelated. Assumption Al (ii),
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however, implies something a little stronger and this affords a more refined
expression for xy which is discussed in Section 3.3. Before that discussion,
however, the asymptotic distribution of Fy, under non-normality and
heteroskedasticity, is given by the following proposition.

Proposition 1. Define 5% = =30 YL E(ul).

(i) Under model (2) and Assumptions Al to A4, /N (Fy — 1) = O,(1), with

G4/ N (Fy — 1) =

—Hy + A+ 0, (1),
where Hy is given in Lemma 1 and Ay = O(1) is defined by

Jn = E[{1i/N] = uy — P;;E]_\zle >0,
Cl =Déd — ZZ;]le’

Zy = E[ZZ/N], py = E[ZDS/N], py = E[§D'DS/N].
(i1) Furthermore, if oy = %, where Ky is defined in Lemma 1, then

- N i>N(0 QT)
JEN]2 T-1)°

Given our assumptions, note that both wy and Ay are O(1) satisfying

oV N (Fy — 1

L le u/.u.
NT =1 — WN _l’) 0
\/ZN[(I D Z ] Aul
and
D'M,Déd
SOMDS Lo,

respectively, with wy uniformly positive by Assumption, although neither
wy or Zy need necessarily converge. The special case of no individual
effects, with é = 0,1y, yields Ay = 0, as it should (this includes the case of
0=0).

As exploited by Orme and Yamagata (2006), it is easy to show that if

¢y has an I distribution with ng = N — 1 and ny = N(T — 1) — K degrees
’V(T 1)

of freedom, then &3, = (v —1) ~ N(0,1), or approximately for
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large N, &y AN <1 2T ) Therefore, by Proposition 1, we can employ

» N(T—1)
the following approximation, under the null,

Fy=dy{Fy—1}+1~F (n,m), (7)

for any choice of &y satisfying &y — oy LN 0, implying that F, can be used
in an asymptotically valid “standard” F-fest procedure.

Before proceeding to derive a suitable @y, note that under
pure local random effects, with E[§;/X;] =0 and E [5?|Xi] =12, py=
% Z?;]E[ézii] =0 with z;, = T! Ztlzl z; so that Ay = TE % =T77% In
this case, we immediately obtain the following Corollary to Proposition 1
(the proof is omitted).

Corollary 1. Under the alternative of (pure) local random effects, and under the
assumptions of Proposition 1,

T 4 2T
NV N (Fy —1) — 0, ——
(N (Fy ) mﬁN< T—l)

. A o ~ p
Jfor any choice of Wy satisfying oy — wy — 0.

Therefore, a robust F-test, based on F,, will have nontrivial asymptotic
local power against pure random effects. In fact, and analogous to Orme
and Yamagata (2006), a stronger result will be established in Section 3.4.
There it is shown that, under (pure) local random effects, a robust F-test
procedure based on F, will possess the same asymptotic power as a suitably
“robustified” RE-test, of the sort proposed by Wooldridge (2010, p. 299) or
Haggstrom and Laitila (2002). However, under “correlated” local random
effects a robust F-fest will possess higher asymptotic power than a robust
RE-test.

3.3. Asymptotically Valid F-Test Statistics

As noted above, an asymptotically valid F-fest can be constructed if

there is a @y available satisfying GOy — oy —p> 0. Using restricted OLS
(i.e., pooled) residuals a natural choice for @y might be

~9

o
b AV
WN = >

kn/2
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where 6% =0'a/(NT — K — 1) and

{ZZ@,@S}Q.

. 1 e 1
=N LA = e 22 oy

=1 =1

Indeed, this choice is justified in Proposition 2 below; c.f.,, Wooldridge
(2010, p. 299).

However, another (perhaps more efficient) Choice for Ky, and thus
Oy, emerges if we exp101t Assumption Al(ii).” To see this, first note
that ), Zs;&t Uiy Ui = 22; o Wy, where w; = w; Z:—l u;, so that xy can
equivalently be expressed as

4
Ky = m Z (Z wzt) . (8)

Now, from Assumption Al(ii), E[w;w;_,] =0, for all t>3 and m =
1,...,¢t—1, so that (8) becomes

T
o= NT(T— 1 2D E(w

=1 t=2

where
T T t—1 T -1 s—1
E E E ult is + 2 § § § ult Uis Wy - (9)
t=2 t=2 s=1 t=3 s=2 r=1

A further simplification arises if, in addition to Al(ii), we can assume as
follows:

Al(iii): E (u?,u,su") =0,fort>s>r.

In this case (8) is

.
o= NT(T—I)ZZZE )

=1 =2 s=1

NT(T—I)ZZZE i)

t s#Et

5We shall not, here, consider alternative estimators of &:2\,, although this is possible.
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This assumption, however, restricts the admissibility of certain forms of
time series conditional heteroskedasticity, as it rules out an asymmetric
GARCH process for u;.°

The same expression for ky emerges if Al(iii) is strengthened to the
following assumption:

Al(iii): E (uplXi, w1, Wi, - .. ) = E (u3]X;), almost surely, for all i and ¢.
This implies Al(iii) because by iterative expectations, and for ¢t > s > 7,

E (ui%uisuir|xi) =k [E (ui2t|Xi7 Wi —15 Ui1—25 - - ) uisui7|xi]

and, for the subsequent analysis in Section 3.5, it will be useful to note that
in this case the u} are conditionally serially uncorrelated and xy can also
be expressed as

2 N
KN = T =T 2o 2 2 B (B (1X) E (] 1X5))
i=1

t o s#EL

Whilst still allowing general forms of heteroskedasticity, Al (iii)" does rule
out time series conditional heteroskedasticity processes.
Finally, consider a strengthening of Al (iii) to the following assumption:

Al(iil)” {u;},_, is a sequence of serially independent random variables, for
alli=1,...,N.

Then (8) becomes

2 x N s

t s#EL

The preceding discussion suggests differing possible consistent
estimators for ky, and thus for wy, according to: (i) whether, or not,
Assumption Al (ii) is fully exploited; or, (ii) whether one of the additional
Al (iii), A1 (iii)’, or Al(iii)” is adopted. These are described in the following
proposition.

6See, for example, Goncalves and Kilian (2004).
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Proposition 2. Define 63 = a'a/(NT — K — 1), @ = i, Y} b, and
1 N 2 4 ] T 2
A() A A _ N
N _NT(T—l),Z 2 2 it _NT(T—l)_Z 2 i
i=1 t  s#t i=1 t=2
4 N T
~(2) A2
K = .
N TNT(T = 1) ;;wt
2 N 4 N T t—1
~(8) _ ~OND A AO
Ky = m Z Z Z Uy Wiy = m i Z Uy Wi-
=1 t t#s =1 (=2 s=1

Under model (2) and Assumptions Al to A4, we have the following situation:

AS -9 P A (j P .
1. 6% —6% 5 0and &Y —ky > 0,j=1,2.

Under model (2), Assumptions AI-A4 and either Al(iii), Al(iii), or Al(iii)’, we
have the following situation:

2. 6% -4 5 0and iy —xy 5 0,j=1,23.

From this analysis, it follows that asymptotically valid choices for @y

A

include 601(\]}) =% /+/ K%)/Q,j = 1,2, 3, where, specifically,

~2
A g
ay' = s _, (10)
2 N T A 2
NT(T-1) Zi:l 21:2 Wi
A2
A~ (9 o
oy’ = =, (11)
2 ~ 92
\/ NTOD 2aiml Qa2 Wi
A2
A~ O"
V= - (12)

= b
2 N T t—1 A9 A9
St L YL Y e

depending on assumptions made about the w;, t =1,..., T. Robust F-test
statistics can then be constructed as F"™ = &" {(Fy —1}+1, m=1,2,3,
and approximate inferences obtained based on (7). Note that o\ is very
general, whereas & is tailored to the main assumptions of the article.
Thus we might expect better sampling behavior from using the latter,
rather than the former, under the maintained assumptions Al1-A4. Finally,
&Y is only valid under rather more restrictive assumptions.
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3.4. The Relationship between F, and R,

Under the null of no individual effects, it is straightforward to show
that

1 [ﬁ/(IN@)A)ﬁ]_ I v(Iy®Au

/A - - + o 1.
VN | aa/NT VN a2 p (1)

From (6), Lemma 1, and Proposition 1, therefore, we can write

1 Hy
2t o,(1)

ﬂa
- J_(FN —1) + 0,(1),

Ry =

2

under the null, so that
R, = dyRy > N(0,1) (13)

for any choice of &y satisfying Oy — oy £ 0; for example, @} under

assumptions Al-A4 of this article. Moreover, this also substantiates
Wooldridge’s (2010, p. 299) suggestlon for a heteroskedasticity-robust RE
test statistic constructed as @Y’ Ry; or, under under the more restrictive
assumptions Al (iii), Al (iii)’, or Al(iii)”, ' Ry as proposed by Higgstrom
and Laitila (2002).

The following proposition extends this result to the case of local
individual effects (fixed or random).

Proposition 3. Under model (2) and Assumptions Al to A4,

A _ (r-1 T YN
CUNRN—{ oT }(DN‘/_ 2(T—l)m+0p(l)’

Jor any choice of &y satisfying Oy — Oy 4 0, whereyy = O(1) defined by

v = E(8e/N) = 1EN2N pn =0,
€2 = ZZN pN’
Yy = E(ZZ/N),

and the limit distribution of wy~/N [Fy — 1] is given by Proposition 1.
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Again, yy need not converge, but it is O(l) and 7yy-—

-1 /5 -1
ID'Z(Z'Z 77)(722 7ZDs P . .. .
(zz) « ~ (22) — 0. As with Proposition 1, yy = 0 obtains under

H, : 8 = 11y, as it should, since (Z/Z)71 ZDo = (4,,0)) and the top-left,
(1,1), element of Z'7Z is 0. As discussed above, under the alternative of
(pure) local random effects py = 0, and we obtain the following Corollary,
which is immediate from Corollary 1 given Proposition 3.

Corollary 2. Under the alternative of (pure) local random effects, and under the
assumptions of Proposition 1,

xRy — | LT =D v 4 N(©,1)
NAW 2 KNv/Q 5 >

. ~ P A j4
for any choice of Wy satisfying oy — wy — 0.

Thus, since wunder (pure) local random effects, @yRy —
\/ N(QTT_U&)N (Fy —1) = 0,(1), both the robust RE and robust F-lest
procedures, based on (13) and (7), respectively, will have identical
asymptotic power functions. However, under local fixed effects or random
effects which are correlated with X;, the robust F-test can have greater
asymptotic power. In particular, when individual effects are correlated with
the mean values of the regressors, py # 0 and is O (1), implying yx > 0
so that a test based on Ry (but suitably robust to heteroskedasticity)
should have lower asymptotic local power than one based on Fy. This
makes intuitive sense, since Fy is designed to test for individual effects
which are correlated with z;, whereas Ry is constructed on the assumption
that the individual effects are uncorrelated with all regressor values.
The importance of distinguishing between individual effects which are
correlated or uncorrelated with regressors, rather than simply labelling
them fixed or random, is discussed by Wooldridge (2010, Section 10.2).

3.5. Analysis of the Standard F-Test and RE-test

Given the analysis above certain predictions can be made concerning
the asymptotic behaviour, under the null hypothesis, of both the standard
F-test, based on Fy, and RI-test, based on Ry, under specific assumptions
about the data and/or forms of heteroskedasticity.

Serial Independence

Suppose {uit,x;t}; are serially independent, or assumption Al (iii)’
holds, with E(u3|X;) = h; > 0. Consider, first, the case of E[h;] = 0> <
00, so that the errors are unconditionally homoskedastic. Then, xky = 20t
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and wy = 1. In this very restricted case, then, both the F-fest and RE-fest,
based on Fy and Ry, respectively, remain asymptotically valid without any
adjustment. In particular, this result is true if the (uit,x;t) are i.i.d., but the
u; are conditionally heteroskedastic.

Cross-Section Heteroskedasticity
In this case, we rule out time series heteroskedasticity and adopt
assumption Al (iii)" with

hi = E[u,

it

X1, for all 7 and ¢, (14)
so that ¢? = E(h;) > 0 is the unconditional variance and E(uftui) =
E(hf) < 0. Here, both the F-lest based on Fy and RE-fest based on Ry,
without adjustment, will be asymptotically oversized (in that, asymptotically,
both will reject a correct null of no individual effects too often for any
given nominal significance level)” To demonstrate the result, one need
only show that wy < 1 which is evidently true because

N N 2

1 . 9 1 al * 1 . 1 ,
N;E(hi)_ N;E(k;) ZNZO’l—— N;GZ > 0. (15)

i=1

The same prediction is true in the case of unconditional heteroskedasticity,
by which we mean h; = a7, since the first (weak) inequality in (15) can be
replaced with equality.

Time Series Heteroskedasticity

Here we consider two scenarios which afford tractable results. Under
the first scenario, assumption Al(iii)’ is, again, adopted. The second
scenario allows for a GARCH process, but under the symmetry assumption
of Al(iii).

(i) Consider unconditional time series heteroskedasticity, so that Al (iii)’
holds and

o} =E[u;|X;],  foralliand ¢ (16)

¢
are constants. Here
2
1 T 2
(? Zz:l 6t>

L= >1
N 1 2 9
T > £ 070%

"Indeed, this particular conclusion explains some of the finite sample Monte Carlo results
obtained by Haggstrom and Laitila (2002).
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because

(%XT:J?Y T(T—l) 2.2 0l

=1 t o s#t

1 [1¢ 1 4L\
= =1
This implies that both the F and RE-fest procedures, without
adjustment, will be asymptotically undersized.

To obtain a similar result for conditional time series heteroskedasticity,
with &, = E [uz |X,-], for all 7 and ¢, and o? = E(h,) > 0, A(iii)’ needs
to be strengthened to A(iii)” (serial 1ndependence) so that E ( ul i) =
o?0? < 0.

In order to provide a succinct analysis for the conditional time series
heteroskedastic case, we restrict u; to be a stationary time series, for
all 4, such that Al(iii) holds either by implication of Al(iii)’ or by
direct supposition. Thus, (symmetric) ARCH/GARCH specifications
are allowed for but certain asymmetric ARCH/GARCH models with
leverage are not. Exploiting stationarity, and heteroskedasticity in the
time series dimension only, we express the unconditional variance and

covariances as E[u;] = ¢ > 0, E[u} ft ;1 =17; >0, say, so that
o2
N = s
\/T(T ) > 22; 17
where
T -1 T -1

T(T—l)

4

= =2 _j:l

Thus, if the u are (serially) positively correlated, 7;—0* >0 and
wy < 1 so that both the Fand RE-test procedures, without adjustment,
will be asymptotically oversized. The converse is true if the u} are
(serially) negatively correlated. In the particular case of symmetric
ARCH/GARCH processes, and with the usual positivity constraints
on the parameters, the u will be (serially) positively correlated,® so
that the unadjusted F and RE-test procedures will be asymptotically
oversized.

8He and Terasvirta (1999) establish that the autocorrelation function of the squared process

is positive.
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In order to shed light on the relevance of the preceding asymptotic
analysis, the next section reports the results of a small Monte Carlo
experiment which illustrates the asymptotic robustness of the F-test to
non-normality/heteroskedasticity and its power properties relative to the
RE-test.

4. MONTE CARLO STUDY

The Monte Carlo study investigates the sampling behavior of the test
statistics considered above, (7) and (13), for differing choices of @y,
including &y = 1. As our analytical results suggest, the tests are justified
when N — oo with T fixed, we consider (N, T') = (20,5), (50,5), (100,5),
(50,10), (50, 20).

4.1. Monte Carlo Design

The model employed is

3
Vi = o + Z it ;B + Wi, Uiy = 0 €4, (17)

J=1

where z;; =1, z;9 is drawn from a uniform distribution on (1,31)
independently for ¢ and ¢, and z; 3 is generated following Nerlove (1971),
such that

zys = 0.1t 4+ 0.5z;_15 + vy,

where the value zs3 is chosen as 5+ 10v,, and v; (and v,) is drawn
from the uniform distribution on (—0.5,0.5) independently for i and ¢,
in order to avoid any normality in regressors. These regressor values are
held fixed over replications. Also, observe that the regression design is
not quadratically balanced.? Without loss of generality, the coefficients are
set as f; =1 for j =1,2,3. The i.i.d. standardised errors for &; are drawn
from: the standard normal distribution (SN); the ¢ distribution with five
degrees of freedom (%); and, the chi-square distribution with six degrees
of freedom (Xg).
We consider the following five specifications for ¢;,:'°

9See the discussion in Orme and Yamagata (2006).

We also considered an ARCH(1) specification. However, the associated results are not
reported since they are qualitatively similar to the results for the GARCH(1,1) specification, which
are presented below.
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1. Homoskedasticity (HETO)
op=0=1;
2. Cross-sectional one-break-in-volatility heteroskedasticity (HETT)

oy = 01, i=1,...,N, t=1,...,T
= 09, i=N+1,...,N, t=1,...,T
with N, = [N/2], where [A] is the largest integer not less than A,
g = 05, and 09 = 1.5.
3. Time series one-break-in-volatility heteroskedasticity (HET2)
O; =01, izl,...,N, t:1,...,Tl
=09, i=1,...,N, t=Tl+1,...,T

with 7y = [T/2], 01 = 0.5, and 0y = 1.5.
4. Conditional heteroskedasticity depending on a regressor (HET3)

i =N [(ze — 1)/30]/c, i=1,...,.N, t=1,...,T

1.[-]1is the inverse of the cumulative distribution function of chi-squared
distribution with degrees of freedom c¢. Since z;, is drawn from a
uniform distribution on (1, 31), o, has mean 1 and variance 2/¢, so it is
easy to control the degree of heteroskedasticity through the choice of
¢. We employ ¢ = 1.

5. Time Series conditional heteroskedasticity, GARCH(1,1) (HET4)

Uiy = 0;E4, t:—49,...,T, izl,...,N,
where
oy = o+ P}, + hoa?, .
The value of parameters are chosen to be ¢, = 0.5, ¢; = 0.25, and
¢o = 0.25, and u; _5) = 0 with the first 50 observations being discarded,
so that the unconditional variance is £ (uft) = ¢o/ (1 — 1 — o).
6. Time series conditional heteroskedasticity, GJR-GARCH(1,1) (HET5)
Uy = 0;4E, t:_49,...,T, izl,...,N,
where

2
o = o+ (1510'?,,5_1 + ¢ ( uz',t—l| - ¢3uz‘t—1) .
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The value of parameters are chosen to be ¢y = 0.3, ¢ =0.5, ¢o =

0.2, and ¢3 = 0.23, and w;_59 = 0 with the first 50 observations being
discarded.!!

For power comparisons, the individual effects are generated according to
2 =7 [VRgG@) + VT - R, (18)

where the ¢; are iid. N(0,1), g(z) = 13(z; — z)/s with 13=(1,1,1), z
being overall average of z;, s being the standard deviation of 1;z;, and
the R? is from the regression of (18). With this set up, the variance of
inside of the square brackets is always unity across designs. We consider
two combinations of (t;, R?): (i) (t;, R?) = (0,0), which is a simple null
model specification, with o; = 0, and (ii) (t;, R?) = (v,, 1), which is simple
fixed effects specification (given that the z;, are fixed over replications)."”
To control the power, we consider vf =0.1.

4.2. Asymptotic Tests

Four versions of the FE and RE test statistics are considered,
constructed using @\ =1 and &Y’, m =1,2,3, as defined at (10)—(12),
and all are based on the restricted estimator, f.!3

1. F-test statistics (denoted F, in the Tables)
W =oy"(Fy =D +1,  m=0,1,23, (19)

where

(RSSg — RSSy)/(N = 1) _
RSSy/(N(T—1)—K)

N —

is the standard F-test statistic. The corresponding test procedure, for
each separate statistic (19), employs critical vales from an I* distribution
with n; and n, degrees of freedom, respectively, where n; = N — 1 and
ng = N(T — 1) — K. That is, for each m =0,1,2,3, reject H, if F{™ >
N, Where Pr (é > cN,“) = o, for chosen o, and & ~ F (n, no)

Note that the parameters chosen for specifications 5 and 6 ensure that E |u7,}4+” exists for
all error distributions; see Ling and McAleer (2002).

2We also considered a pure random effects specification, 1; = v,, R? =0, and the results show
that the power properties of the modified fixed effects test and the modified random effects test
are very similar.

13The estimator @y, based on the unrestricted estimator (i.e., fixed effects estimator), is also
considered, but the finite sample performance of the tests considered is monotonically inferior to
that based on the estimator of @y.
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2. One sided (positive) RE-test statistics (denoted R, in the tables)

R(E)M) = C’(\)l(\;ﬂ)Rl" m = O’ 1’ 2’ 3’ (20)

Ry = NT [ﬁ (INA? A)ﬁi| _ R(f)o)
2(T—-1) uu

is the one-sided (positive) standard RE-test statistic. The corresponding
test procedure, for each separate statistic (20), employs critical values
from a N (0, 1) distribution. That is, for each m =0, 1,2, 3, reject H, if
R"™ > 2, where Pr(Z > z,) = «, for chosen o, and Z ~ N (0, 1).

w

where

4.3. Bootstrap Tests

As is well known, asymptotic theory can provide a poor approximation

to actual finite sample behaviour and that bootstrap procedures often lead
to more reliable inferences.'* Therefore, we also consider a simple wild
bootstrap procedure scheme, based on Mammen (1993) and Davidson and
Flachaire (2008), which might be employed in order to provide closer
agreement between the desired nominal and the empirical significance
level of the proposed test procedures and which has proved effective in
previous studies; see, for example, Godfrey and Orme (2004). The wild
bootstrap is implemented using the following steps:

1.

Estimate the models (2) and (4) to get %, i =1,..., N, and construct
test statistics ™ and R, m = 0,1,2,3;
Repeat the following B times:

(a) Generate u} = v;u;, where the v, are i.i.d., over ¢ and ¢, taking the
discrete values &1 with an equal probability of 0.5;
(b) Construct

y; = Z;tﬁ + vty = Z/z'tﬁ + u;, (21)

obtain restricted and unrestricted OLS residuals « = y; — z,,f* and
w: =73, — X, B;, respectively, and the restricted and unrestricted

residual sums of squares (RSS; and RSS;,, respectively);

1See Godfrey (2009) for an excellent guide to bootstrap test procedures for regression models.
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(c) Construct the bootstrap test statistics

(RSS; — RSS)/(N = 1) _ )

F*(m) "*(m)(F* . 1) +1, Fr = =
¢ NTURSSH/(N(T—1)—K) —°

and
R*(m) — é‘)*(?")R* R = NT ﬁ*/ (IN 2 A) ﬁ* = R*(O)
w N N N 2 (T _ 1) ﬁ*/ﬁ* w
where &3, m =1,2,3 is constructed as in (10)—(12) but using @,
and @ A*(O) =1;

3. Calculate the proportion of bootstrap test statistics, F*"™ (respectively,
R¥™), from the B repetitions of Step 2c that are at least as large
as the actual value of F{™ (respectively, R(™). Let this proportion be
denoted by p™ and the desired significance level be denoted by . The
asymptotically valid rejection rule, for each m, is that H, is rejected if

P <o

The sampling behavior of all the above tests are investigated using 5000
replications of sample data and B = 200 bootstrap samples, employing a
nominal 5% significance level."

Observe that the wild bootstrap scheme imposes symmetry on the u}.
Because of this, it is readily shown that o — c?)(:) = 0y+(1), in probability,
m = 1,2,3, signifying that, for any § > 0, P* (|&y" A§§>| > 0) = 0,(1), as
N — oo, T fixed, where P* is the probability measure induced by the wild
bootstrap conditional on the sample data. It can also be established that,

for example, a)(%) N (F v — 1) —- N (O E), in probability, implying that

> T—1

sup, ‘P*(w(%) N (F* — l) <x)— 925'[(96)‘ = 0,(1), where Y (x) denotes the

distribution function of a N (O, Ile) random variable. Combining these
results, we obtain

P @R"VN (F; = 1) < x) = P(OJ'VN (Fy — 1) < x)| = 0,(1),

sup

m=1,2,3,

which justifies the asymptotic validity of the wild bootstrap scheme
for F*™  m=1,2,3, notwithstanding the fact the wu; may not be
asymmetrically distributed. This will not be the case, however, for the

It is often advocated that (B+1)/100 should be an integer. However, running the
experiments with B =199 does not change the results.
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unadjusted F-lest statistic /N (Fj — 1). Thus, it will useful to investigate
how the wild bootstrap performs in finite samples when the true errors are
asymmetric.'®

4.4. Results

Before looking at the results from the Monte Carlo study, and drawing
on the discussion in Godfrey et al. (2006), it is important to define criteria
to evaluate the performance of the different tests considered. Given the
large number of replications performed, the standard asymptotic test
for proportions can be used to test the null hypotheses that the true
significance level is equal to its nominal value. In practice, however, what
is important is not that the significance level of the test is identical to
the chosen nominal level, but rather that the true and nominal rejection
frequencies stay reasonably close, even when the test is only approximately
valid. Following Cochran’s (1952) suggestion, we shall regard a test as
being robust, relative to a nominal value of 5%, if its actual significance
level is between 4.5% and 5.5%. Considering the number of replications
used in these experiments, estimated rejection frequencies within the
range 3.9% to 6.1% are viewed as providing evidence consistent with the
robustness of the test, according to our definition.”

Under the null, with homoskedastic standard normal errors (reported
in Table 1, H, : o; = 0), the rejection frequencies of both the asymptotic
F" = Fy and E tests are close to the nominal significance level of 5%.
The asymptotic F-test based on E®, however, tends to under reject the null
when T is relatively large, whilst " suffers from large size distortion with
empirical significance levels being considerably smaller than the nominal
5%. The size properties of the R, tests, for different &y, are qualitatively
similar to those of the F, tests, but tend to have empirical significance
levels that are smaller than those of the corresponding F, tests. Turning
our attention to the bootstrap tests, all the modified fixed and random
effects tests control the empirical significance levels very well. The results
are qualitatively similar for # and y; errors and, confirming the analysis
of Orme and Yamagata (2006), F'” = Fy appears quite robust to non-
normality, whilst in these cases as well the bootstrap tests provide very
close agreement between nominal and empirical significance levels, even
for F*© = F}; when the errors are asymmetric. Given these results, we now
just compare the power of the bootstrap tests. All bootstrap F, tests have

8Similarly to Goncalves and Kilian (2004), this derives from the asymptotic invalidity of
the wild bootstrap scheme when employed to estimate asymptotic standard errors associated with
nonpivotal statistics.

"Employing a standard asymptotic test these bounds are calculated as 4.5 — 1.96,/ +2%5 — 3 g

5000 h
5.5%x94.5
and 5.5+ 1.96,/ 23445 — 6.,
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TABLE 1 Rejection frequencies of the asymptotic and wild-bootstrap modified F-tests and
modified random effects tests under homoskedastic errors (HETO)

Hy:0;,=0 Hy : var(o;) = 0.1, o; correlated with regressors
Asymptotic tests Bootstrap tests Asymptotic tests Bootstrap tests
o 1 oy of o 1 o o o 1 ey o oY 1 P o o
SN SN
N, T F, F* E, 1

20,5 58 28 47 59 62 59 59 6.1 290 180 254 294 304 299 298 304
50, 5 52 28 45 52 57 58 58 57 468 38.6 444 471 479 488 483 478
100, 5 4.7 3.1 41 4.8 53 52 53 53 721 66.6 70.8 723 73.0 743 73.6 73.0
50, 10 43 19 3.1 43 45 47 44 45 942 879 926 942 944 940 944 944
50,20 47 16 34 48 51 52 50 5.1 100.0100.0 100.0 100.0 100.0 100.0 100.0 100.0

R, Ra*) R R:’

20,5 51 15 37 52 61 59 61 6.1 239 108 188 244 270 254 26.1 269
50, 5 46 23 39 45 56 56 5.6 55 325 204 293 327 359 351 353 358
100, 5 44 2.8 38 46 53 52 51 53 558 447 52.6 559 576 571 575 577
50, 10 41 1.7 29 40 45 48 45 45 89.7 77.7 872 898 905 89.6 903 90.5
50,20 46 16 34 46 52 53 5.0 52 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0

ts 13

N,T 1 1 K, 1

[} ®

20,5 48 24 39 53 55 54 55 54 301 207 27.6 31.5 319 31.7 314 31.7
50, 5 46 2.7 4.0 49 53 50 53 52 479 403 464 49.0 492 505 50.0 49.1
100, 5 5.3 35 45 53 59 59 59 58 726 682 71.4 727 733 747 740 733
50, 10 52 21 4.0 53 57 54 56 57 936 871 920 936 940 933 935 939
50,20 48 15 34 48 51 52 5.1 51 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0

R, Ra*) R R:’

20,5 44 15 32 46 57 56 54 54 242 127 212 258 286 267 277 28.6
50,5 41 23 36 45 55 51 53 54 329 21.8 302 339 364 351 36.1 365
100, 5 5.0 3.3 43 50 58 6.1 58 59 56.6 47.1 55.1 57.7 588 587 59.2 58.8
50, 10 5.0 2.0 3.8 50 59 54 56 58 893 776 871 897 90.1 883 899 90.1
50,20 46 15 34 45 52 52 51 52 100.0 99.8 100.0 100.0 100.0 100.0 100.0 100.0

% oS

N,T K, 1 E, 1

@ ®

20,5 45 23 3.6 44 47 51 47 45 30.1 19.7 274 310 315 316 322 314
50,5 51 23 3.6 48 49 50 50 49 463 384 442 466 472 491 476 473
100, 5 49 3.0 4.0 4.8 50 53 52 50 728 67.8 723 73.6 744 755 749 743
50, 10 45 19 33 44 51 54 5.0 51 93.0 8.9 915 933 933 927 934 934
50,20 52 1.8 3.6 49 51 55 54 51 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0

Continued
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TABLE 1 Continued

Hy:0;,=0 H; : var(o;) = 0.1, o; correlated with regressors
Asymptotic tests Bootstrap tests Asymptotic tests Bootstrap tests
o 1 o oF o 1 o o o 1 af o P 1 oY o o
I %
R, R* R, R

20,5 43 14 29 39 47 54 46 44 243 114 203 252 278 268 275 276
50,5 46 1.8 3.1 41 49 49 49 48 315 205 278 31.6 342 333 341 34.2
100, 5 4.8 2.8 39 46 51 54 54 49 57.0 459 539 575 59.2 582 58.6 59.3
50, 10 44 1.7 3.2 43 51 53 5.0 51 89.1 76,5 86.7 89.3 89.8 881 895 899
50,20 5.1 1.7 3.6 48 52 55 54 52 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0

Notes: The model employed is y; = o; + 2]3»21 2 jBj + Wi, uy = 0y&iy, where zz1 =1, ;9 is drawn
from a uniform distribution on (1,31) independently for ¢ and ¢, and z;3 is generated following
Nerlove (1971), such that z;3 = 0.1¢ + 0.5z;_15 + vy, where the value zg3 is chosen as 54 10v;,
and v; (and v;) is drawn from the uniform distribution on (—0.5,0.5) independently for i and
t, in order to avoid any normality in regressors. These regressor values are held fixed over
replications. B/ =1 for j =1,2,3. The ii.d. standardized errors for &; are drawn from: the standard
normal distribution (SN); the ¢ distribution with five degrees of freedom (#); and, the chi-square
distribution with six degrees of freedom (Xé). For estimating size of the tests, o; = 0 and power
is investigated using o; = Mg(zi) where g;(z;) is the standardised value of Z?:l Zf:l 27, so that
the regressors and o; are correlated. F, is the modified F-test and R, is the modified random

effects test, and I, and R} are their wild bootstrap tests, with different choice of d)fwf”), m=

0,1,2,3 with &)({)) = 1; see section 4.2 and 4.3 Here o; = 1. The sampling behaviour of the tests
are investigated using 5000 replications of sample data and 200 bootstrap samples, employing a
nominal 5% significance level.

very similar power, as do the bootstrap R, tests. However, the power of the
bootstrap F, tests are uniformly higher than power of the corresponding
bootstrap R, tests which is as expected given the analysis in Section 3.4
because of the correlation between regressors and individual effects.

The above results indicate that, even when the errors are
homoskedastic, a wild bootstrap procedure still offers reliable finite sample
inference for all variants of the FE and RE tests considered. Now let us
look at the results under various heteroskedastic schemes. Table 2 reports
the results under cross-sectional one-break-in-volatility scheme (HET1).
First, and as predicted by the analysis in Section 3.5, both the F" = Fy
and R"” = Ry tests reject the correct null too often. On the other hand,
the empirical significance levels of the other F, and R, tests are very
similar to those presented in homoskedastic case. As before, however, the
bootstrap £ and R’ tests provide close agreement between nominal and
empirical significance levels, across all error distributions, so again it is
sensible to focus only on the power properties of these tests. In contrast
to the power properties under homoskedastic errors, under the HETI1
scheme the power of bootstrap F* tests appear different across different
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TABLE 2 Rejection frequencies of the asymptotic and wild-bootstrap modified F-tests and
modified random effects tests under cross-sectional one-break-in-volatility heteroskedastic scheme
(HET1)

Hy:0;, =0 Hy :var(o;) = 0.1, o; correlated with regressors

Asymptotic tests Bootstrap tests Asymptotic tests Bootstrap tests

w 1oy af of 1 oy o oy 1 oy of of 1 o’ ay? oy
SN SN
N, T F, F; E, F;
20,5 94 27 49 66 6.1 58 59 59 269 142 184 21.0 20.5 228 20.5 20.0
50,5 9.2 28 47 56 58 55 58 57 37.6 21.2 26.3 28.8 28.0 31.6 29.1 276
100, 5 9.1 32 47 54 55 54 55 55 552 404 43.3 44.7 442 495 46.2 44.1
50, 10 9.1 1.8 38 52 52 49 5.1 5.2 827 68.1 733 745 74.1 81.5 78.0 74.1
50,20 87 12 29 45 48 48 49 48 99.8 985 995 99.4 99.5 99.7 99.7 99.5
R, R} R, R
20,5 86 16 37 56 61 56 58 59 225 83 138 16.6 18.0 19.8 182 17.7
50,5 88 20 41 52 58 56 57 57 279 103 16.3 19.0 20.9 214 21.0 20.7
100, 5 87 28 43 5.1 55 53 54 54 427 249 29.7 319 329 36.3 34.0 326
50, 10 8.7 16 35 50 52 49 52 52 755 539 63.3 65.7 66.1 734 69.3 66.0
50,20 86 1.2 3.0 46 48 47 49 48 99.7 976 99.0 99.1 99.0 995 99.5 99.0
i3 3
N, T E, IO F, r
20,5 85 27 46 60 58 56 54 56 26.6 160 20.0 21.9 21.7 235 224 21.1
50, 5 86 29 43 55 52 53 54 51 393 244 286 309 30.7 33.1 315 30.3
100, 5 104 33 48 6.2 58 6.0 6.1 58 569 432 46.4 47.4 473 52.3 495 471
50, 10 9.2 18 39 52 56 52 b5 55 821 68.0 73.7 746 73.6 80.4 771 735
50,20 88 1.2 3.0 47 51 53 47 51 99.7 982 99.0 99.3 99.2 994 994 99.2
R, R} R, R
20,5 76 18 36 51 59 55 56 56 224 93 146 17.6 19.2 21.0 194 184
50,5 81 21 38 49 53 52 52 52 286 11.7 17.3 20.5 21.9 227 220 21.6
100, 5 99 28 44 57 6.0 6.0 60 59 445 272 324 35.1 356 38.8 37.1 355
50, 10 88 1.7 3.7 51 55 51 56 56 753 56.3 646 66.5 67.1 727 70.2 67.0
50,20 87 13 3.0 47 51 53 48 5.0 99.5 969 985 99.0 98.9 99.0 99.1 98.9
% %
N, T E, IO F, 0
20,5 84 26 45 55 51 54 50 49 264 151 188 20.8 199 230 21.1 193
50,5 84 22 37 45 45 49 47 44 36.6 21.2 257 27.6 275 302 284 27.1
100, 5 9.5 30 44 52 55 55 53 54 573 41.0 44.5 459 457 50.6 47.6 456
50, 10 9.1 1.7 34 47 48 5.1 5.0 4.8 814 67.6 72.7 740 739 80.0 76.7 739
50,20 85 1.6 34 51 47 51 47 4.7 99.7 984 994 99.5 99.4 995 99.6 99.4

Continued
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TABLE 2 Continued

Hy:0; =0 H; : var(o;) = 0.1, o; correlated with regressors
Asymptotic tests Bootstrap tests Asymptotic tests Bootstrap tests
o 1 &y o of 1 o o o 1 &) of of 1 oy o oY
1 G
R, R} Ro R,

20,5 76 14 32 47 53 52 52 50 222 85 141 162 178 19.7 185 17.3
50,5 79 1.7 31 40 45 49 47 44 267 106 155 183 19.8 20.2 20.1 19.5
100, 5 91 25 41 49 54 54 54 54 439 259 30.2 329 332 37.1 348 33.0
50, 10 89 1.6 3.1 44 49 50 50 48 746 53.7 632 65.7 66.1 71.5 69.5 66.0
50,20 84 1.6 34 51 48 52 47 48 99.6 973 99.0 99.1 99.1 99.3 99.4 99.0

Notes: See notes to Table 1. The DGP is identical to that for Table 1 except 6y =01, i =1,..., Ny,
t=1,...,T,and 6y =09, i=N +1,...,N, t=1,..., T with N; = [N/2], where [A] is the largest
integer not less than A, 61 = 0.5 and o9 = 1.5.

variants. For example, F*? = F} and F*® have similar powers but are
slightly lower than that of F*®, which is again slightly exceeded by that
of F*M. This feature is qualitatively similar for the R tests, but is less
striking. Finally, the results confirm again that £ has higher power than
that of R.

Table 3 reports the test results under time-series one-break-in-volatility
scheme (HETZ2). In contrast to the results with HET1 scheme, but still
consistent with prediction of Section 3.5, both the F”’ = Fy and R =
Ry tests reject the null too infrequently, especially for N = 20, 50, 100 and
T =5. As before the bootstrap versions control the size very well, and,
interestingly, the power ranking of the bootstrap tests is different than that
obtained under HET1. In fact, the F*? = F} and F'® tests (respectively,
R*® = Ry and R*® tests) still have similar powers but they are now slightly
higher than those of the F*® and F*" tests (respectively, R*® and R*"
tests), which are in this case comparable.

Based on the analysis in Section 3.5 it is possible to derive
approximate null rejection frequencies of the F” = Fy test analytically,
under the simple heteroskedastic schemes of HET1 and HET2. Given the
“population” value of wy, and a nominal significance level of a x 100%,
the rejection frequency of the Fy test is, approximately, Pr[Fy > ¢, 1 2],
where Pr[F, .2 > ¢an2] = o and F, 9 ~ F (n, ng). But this is identical
to PrF, 0 > ¢], where ¢ = wn (¢ 1.2 —1) + 1. More precisely, consider
first the case of HET1 where a little calculation shows that, since N is
always even in our experiments, wy = 0.781. Using a = 0.05, it is then
straightforward to obtain ¢ and Pr[F,; ,» > ¢]. Similar calculations can be
undertaken for the case HETZ2 but, here, wy varies according to whether T’
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TABLE 3 Rejection frequencies of the asymptotic and wild-bootstrap modified F-tests and
modified random effects tests under time-series one-break-in-volatility heteroskedastic scheme
(HET?2)

Hy:0; =0 Hy : var(o;) = 0.1, o; correlated with regressors
Asymptotic tests Bootstrap tests Asymptotic tests Bootstrap tests
o 1 a0 a2 P 1 &V a® 1 o0 o o 1 o &P a®
SN SN
N,T F, F; F, F;

20,5 3.1 31 43 52 55 56 57 56 272 204 258 32.7 333 295 29.7 335
50,5 32 36 45 51 55 59 56 bbb 449 415 46.0 51.5 522 49.8 49.2 522
100, 5 29 3.7 45 48 55 55 55 55 70.7 686 71.0 75.7 762 743 732 76.3
50, 10 3.8 1.8 3.1 45 47 47 48 47 85.8 75.2 80.5 87.0 86.8 85.7 839 86.9
50,20 42 16 33 45 51 52 54 51 999 99.5 99.7 99.9 99.9 99.8 99.9 99.9

R, R(: R, R:)

20,5 26 2.0 36 45 57 54 57 57 21.3 121 191 26.5 30.5 25.2 26.1 30.6
50,5 27 27 38 45 56 57 57 57 298 233 29.7 36.0 39.6 352 356 39.5
100, 5 2.7 33 41 44 56 55 54 56 533 486 534 59.8 623 57.5 B7.7 623
50, 10 3.5 1.6 3.0 41 47 47 48 47 789 621 71.7 80.2 81.5 780 769 815
50,20 41 16 32 44 51 52 53 51 99.8 99.0 995 99.8 99.9 99.7 99.7 99.9

N, T F, F F, F

20,5 3.0 34 40 49 54 54 54 55 291 233 296 358 36.2 322 332 36.3
50,5 29 34 40 46 52 52 53 51 465 444 484 53.8 54.6 515 51.1 545
100, 5 33 44 50 55 60 60 61 6.0 719 707 729 769 777 75.1 75.0 77.6
50, 10 44 2.2 42 50 57 53 57 57 853 759 80.7 86.8 86.9 84.8 839 86.9
50,20 40 1.7 32 45 51 52 49 51 999 99.1 995 99.9 99.9 99.7 99.6 99.9

R, R: R, R}

20,5 23 19 28 39 54 54 53 53 229 139 21.8 293 329 278 294 331
50,5 23 27 34 40 53 53 54 53 31.0 25.7 324 384 41.8 37.1 382 41.7
100, 5 3.0 39 45 50 58 61 61 58 555 526 56.7 63.2 648 60.5 61.0 64.9
50, 10 41 2.0 39 47 57 54 58 58 792 63.6 729 80.7 819 780 775 818
50,20 39 1.6 32 43 50 52 50 50 999 98.7 99.3 99.9 99.9 99.5 99.5 99.8

N, T F, F F, F;

[0}

20,5 32 28 38 43 46 52 47 46 288 227 279 35.1 359 31.1 320 359
50,5 34 3.0 38 42 48 46 47 47 442 414 452 51.0 52.2 49.4 49.0 52.1
100, 5 33 37 45 46 51 50 52 50 71.8 70.7 729 774 776 75.6 746 77.6
50, 10 44 23 3.7 49 53 55 54 53 841 747 79.8 85.5 85.8 83.8 828 858
50, 20 48 2.0 35 48 48 52 48 48 999 99.2 99.7 99.9 99.9 999 999 99.9

Continued
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TABLE 3 Continued

Hy:0;,=0 Hi : var(a;) = 0.1, o; correlated with regressors
Asymptotic tests Bootstrap tests Asymptotic tests Bootstrap tests
o 1 oy a2 o 1 o o o 1 &l o2 o 1 " a® o
1 1
R, R R, R

20,5 25 19 27 34 45 51 46 44 221 143 21.1 281 321 268 278 322
50,5 29 25 32 37 47 49 46 46 279 222 281 35.0 383 339 344 385
100, 5 3.1 34 41 44 52 52 52 51 547 502 548 62.0 641 59.0 59.1 64.2
50, 10 42 19 34 46 51 55 54 51 77.8 614 715 79.7 81.0 769 77.0 81.0
50, 20 4.7 2.0 35 47 47 50 48 47 999 987 994 999 99.9 99.7 99.8 99.9

Notes: See notes to Table 1. The DGP is identical to that for Table 1 except 6; =01, i=1,...,N,
t=1,...,Th, o0y =09, i=1,...,N, t=T1+1,...,T with Ty =[T/2], 01 = 0.5, and g9 = 1.5.

is even (wy = 1.02) or odd (wy = 1.13). From these calculations we obtain
the following (approximate) significance levels for our choices of (N, T'):

Approximate significance levels of Fy

T=5 N =50
N =20 N =50 N =100 T =10 T =20
HETTI: 8.8% 9.2% 9.4% 9.2% 9.2%
HET2: 3.5% 3.4% 3.3% 4.8% 4.8%

As can be seen, the obtained empirical significance levels, for Fy, are
qualitatively very similar to these predicted values.

Table 4 summarises the results under conditional heteroskedasticity
depending on a regressor z;o (HET3), where g, = ni[(z0 —1)/30], i =
1,...,N,t=1,..., T, and 5[] is the inverse of the cumulative distribution
function of the Xf distribution. Since the z;s are initially i.i.d. draws from
a uniform distribution on (1,31), the values of ¢;(z;9) are realisations
from a y; distribution. This means that even though for a given N (and
T) o, will be held fixed for each replication of data, possibly yielding a
realisation of wy # 1, as N increases a Law of Large Numbers implies that
the given realisation of wy will converge to unity. For example, when N =
20 and T =5, wy = 1.36, yielding a predicted (approximate) significance
level for Fy of 1.9%, which explains the underrejection of this test in our
experiments. For larger sample sizes, the value of wy does, indeed, tend to
unity, and the empirical significance level of Fy converges to the nominal
level, as expected. Due to the larger average error variance encountered
here, than that under other heteroskedastic schemes, the power of the tests
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TABLE 4 Rejection frequencies of the asymptotic and wild-bootstrap modified F-tests and

modified random effects tests under conditional heteroskedasticity depending on a regressor

(HET3)
Hy:0; =0 Hy : var(o;) = 0.1, o; correlated with regressors
Asymptotic tests Bootstrap tests Asymptotic tests Bootstrap tests
© 1oy of of 1 o’ of® o 1 oy of of 1 " o o
SN SN
N, T £y £ E, £
20,5 21 39 46 53 57 55 58 54 98 131 185 20.1 20.8 17.5 20.6 205
50,5 57 31 41 48 54 51 51 51 185 139 169 189 19.8 19.0 19.6 194
100, 5 56 39 49 53 60 63 59 58 300 259 29.7 31.1 327 327 325 324
50, 10 55 26 40 51 55 55 56 55 475 31.4 405 452 463 435 453 46.1
50,20 54 2.2 39 51 55 54 55 55 80.6 642 756 79.6 80.0 77.7 79.7 80.0
R, R(: R, R:)
20,5 1.7 25 34 44 59 60 59 60 72 78 134 16.0 189 158 186 186
50,5 51 25 33 41 56 53 52 53 131 76 108 126 154 13.8 151 148
100, 5 53 35 44 49 60 63 6.0 58 21.7 161 20.7 227 252 239 249 249
50, 10 5.3 25 3.7 48 55 54 55 54 41.0 22.6 33.0 385 40.5 365 388 402
50,20 53 2.2 37 50 54 54 54 54 769 575 716 759 77.0 73.8 76.8 769
l5 l5
N, T Fo £ E, £
20,5 16 41 47 52 54 54 53 54 104 155 208 225 235 19.8 228 231
50,5 5.6 3.7 46 53 57 57 54 56 187 166 200 21.5 23.1 22.2 233 229
100, 5 44 34 42 45 54 54 54 53 309 288 33.0 351 36.7 355 36.4 36.3
50, 10 6.1 29 42 55 59 58 59 58 49.7 35.6 448 485 494 468 487 494
50,20 46 1.8 32 46 51 55 50 51 794 651 762 79.6 79.8 77.5 79.5 79.7
R, R: R, R}
20,5 13 24 31 38 56 57 53 53 7.7 92 152 179 21.2 174 204 208
50,5 51 27 37 43 57 56 54 55 133 9.1 124 149 176 154 170 17.3
100, 5 42 31 38 43 53 52 53 52 219 18.0 233 256 28.0 264 278 27.6
50,10 5.7 24 38 52 59 58 59 58 433 26.7 38.0 428 444 40.0 43.0 442
50,20 46 1.7 32 44 51 55 50 51 763 598 728 76.5 77.4 73.7 768 713
1 1
N,T E, o8 k, £
20,5 18 44 49 53 57 60 55 55 10.6 132 179 193 20.7 17.6 20.3 202
50,5 54 34 43 48 54 50 50 50 169 133 158 17.2 185 181 186 18.0
100, 5 54 3.7 42 47 56 55 55 54 278 251 281 299 31.4 31.1 31.0 31.0
50, 10 6.0 25 3.7 46 50 55 55 49 479 33.7 415 46.1 473 46.6 46.7 472
50,20 45 15 31 39 42 45 47 42 80.0 66.7 77.0 80.5 80.9 79.4 80.9 808

Continued
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TABLE 4 Continued

Hy:0;,=0 Hi : var(a;) = 0.1, o; correlated with regressors
Asymptotic tests Bootstrap tests Asymptotic tests Bootstrap tests
o 1 oy a2 o 1 o o o 1 &l o2 o 1 " a® o
1 76
R, E; R, R;

20,5 14 27 32 40 57 59 56 56 80 82 131 148 184 153 179 18.0
50,5 48 28 36 42 53 51 51 49 123 69 9.7 114 144 126 138 14.1
100, 5 52 34 39 44 56 54 54 53 205 147 19.0 21.2 235 21.8 228 231
50, 10 5.7 23 35 44 51 55 54 5.0 409 23.7 332 386 40.6 38.6 39.7 403
50,20 44 14 30 38 42 44 47 42 765 605 729 77.0 780 758 779 779

Notes: See notes to Table 1. The DGP is identical to that for Table 1 except 6; = n.[(zi2 —
1)/30]/¢, i=1,...,N, t=1,..., T, where 5[] is the inverse of the cumulative distribution function
of chisquared distribution with degrees of freedom ¢. Since z9 is drawn from a uniform
distribution on (1,31), o; has mean 1 and variance 2/¢, so it is easy to control the degree of
heteroskedasticity through the choice of ¢. We employ ¢ = 1.

are lower although, qualitatively, the results are very similar to those under
HETO but with EX” = F and F*® (respectively, R*” = Ry and R*®)
enjoying a slight power advantage and the F tests being more powerful
than their R} counterparts.

The results under symmetric conditional heteroskedasticity,
GARCH(1,1) (HET4), are reported in Table 5. Similar to the results
obtained under HETI, and as predicted by the analysis of Section 3.5,
the F" = Fy test rejects a correct null too frequently but the empirical
significance levels of other variants of the F, tests are very similar to
those presented in homoskedastic case. Again, all the bootstrap £’ tests
control the empirical significance levels very well, and the power rankings
are, from the lowest, £? = F} and E'¥, followed by F*®, then EX®.
The same comments apply to the bootstrap R tests, which again exhibit
lower power than their F counterparts. The results under asymmetric
conditional heteroskedasticity, GJR-GARCH(1,1) (HET5), are summarised
in Table 6. In contrast to GARCH model, GJR-GARCH is an asymmetric
model of heteroskedasticity with leverage, and E (uju;u;) # 0 in general,
rendering &% inconsistent, meanwhile @’ and ®’ remain consistent.
Despite this, the experimental results are qualitatively very similar to those
under GARCH model. All the bootstrap F* tests, including F**, control
the empirical significance levels very well, and the power rankings of the
Fy and R} tests are very similar to those obtained under the symmetric

GARCH models.
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TABLE 5 Rejection frequencies of the asymptotic and wild-bootstrap modified F-tests and
modified random effects tests under conditional heteroskedasticity, GARCH(1,1) (HET4)

Hy:o; =0 Hy : var(o;) = 0.1, o; correlated with regressors
Asymptotic tests Bootstrap tests Asymptotic tests Bootstrap tests
w 1oy of of 1 ay” oy oy 1 oy of ey 1 ey’ ay? oy
SN SN
N, T F, I £, £

20,5 72 23 45 6.0 6.0 58 58 58 305176 243 275 275 288 281 271
50,5 79 23 44 55 58 56 54 57 472 349 391 412 409 46.2 428 40.7
100, 5 88 29 5.1 63 60 58 6.0 60 71.1 60.8 629 644 634 704 662 63.3
50, 10 6.8 1.8 39 52 57 59 55 57 927 853 899 909 90.8 92.6 91.9 90.8
50,20 56 16 3.6 49 53 56 53 53 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0

R, R R, R

20,5 65 1.3 35 53 6.0 57 58 58 257 10.1 179 225 242 246 245 238
50,5 74 19 37 51 58 54 55 57 337 184 249 286 29.2 323 304 29.0
100, 5 86 2.6 45 59 6.0 58 59 6.0 556 40.3 459 481 49.0 53.2 50.5 49.0
50, 10 65 1.6 3.7 51 5.6 58 55 54 886 74.0 832 86.0 857 874 87.0 857
50,20 55 1.6 3.6 48 53 56 53 5.3 100.0 99.8 100.0 99.9 100.0 100.0 100.0 100.0

13 b5

N,T F, E; F, F¥

[}

20,5 79 19 42 57 53 51 51 51 327208 270 29.7 29.0 314 29.8 285
50,5 92 26 44 58 54 53 51 53 49.7 365 41.1 427 414 471 43.6 41.1
100, 5 11.5 35 5.6 6.5 63 62 64 63 708 59.0 599 60.3 59.3 67.3 622 59.2
50, 10 82 19 40 55 56 55 53 55 919 828 869 878 868 90.6 888 86.8
50,20 69 15 38 53 54 55 55 53 999 99.3 99.6 994 99.3 99.7 99.7 99.3

R, R R, R

20,5 74 13 32 51 54 51 52 52 277 120 198 240 257 263 262 252
50,5 87 20 37 53 54 51 52 53 364 20.0 263 29.2 305 333 314 302
100, 5 11.1 3.0 5.0 6.2 63 6.3 64 63 569 395 44.6 46.3 46.6 524 48.8 46.4
50, 10 80 1.8 36 53 56 54 53 56 877 721 802 823 819 854 844 819
50,20 6.8 1.5 3.7 52 54 55 55 53 999 99.0 994 994 99.2 99.7 99.6 99.1

N,T E, E; E, 1M

[}

20,5 69 19 33 44 3.7 42 37 34 298 172 232 262 251 28.0 259 246
50,5 81 2.0 33 47 43 42 41 42 462 331 369 389 376 446 403 373
100, 5 9.3 1.8 3.0 46 38 44 35 3.7 683 56.2 57.3 587 573 66.5 603 57.0
50,10 74 12 29 45 43 47 41 43 924 844 876 892 884 923 899 883
50, 20 64 1.1 2.7 45 4.8 48 44 48 100.0 99.8 999 99.9 99.8 100.0 99.9 99.8

Continued



462

TABLE 5 Continued
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Hy:0; =0

Hy :var(o;) = 0.1, o; correlated with regressors

Asymptotic tests

Bootstrap tests

Asymptotic tests Bootstrap tests

o 1oV o o 1 a0 B2 5O 1 o) a2 of 1 o o® oo
7 1
R, R;j R, R:;
20,5 6.1 1.2 22 39 37 41 39 35 245 97 165 205 223 236 227 21.7
50,5 7.6 15 25 40 42 44 40 4.1 33.6 17.1 22.8 26.1 27.0 30.2 27.7 26.5
100, 5 9.0 15 27 42 38 44 36 38 531 354 40.1 42.6 43.0 48.8 44.6 429
50, 10 7.2 1.0 2.6 44 43 48 42 43 878 724 81.1 84.0 833 863 851 832
50, 20 6.3 1.1 2.7 44 48 48 44 48 100.0 99.6 99.8 99.9 99.8 100.0 99.9 99.8

Notes: See notes to Table 1. The DGP is identical to that for Table 1 except uy; = g;&;, t =
—49,...,T,i=1,...,N, where o’%, =¢o+ ¢1uE,_1 + (]520'?’t_1. The value of parameters are chosen to
be ¢0 = 0.5, ¢1 =0.25 and d)g =0.25.

5. CONCLUSIONS

This article has provided an asymptotic analysis of the sampling

behaviour of the standard F-test statistic for fixed effects, in a static linear

TABLE 6 Rejection frequencies of the asymptotic and wild-bootstrap modified F-tests and
modified random effects tests under conditional heteroskedasticity, GJR-GARCH(1,1) (HET5)

Hy:0;, =0

Hy :var(o;) = 0.1, o; correlated with regressors

Asymptotic tests

Bootstrap tests

Asymptotic tests Bootstrap tests

) 1 oy o2 of 1 o o & 1 oy o o 1 o o o

1 N N N v N v N P N A N
SN SN

N, T £y S £y S

20,5 7.7 24 48 64 6.2 56 59 61 293 167 230 262 261 27.9 266 257

50,5 84 25 43 56 56 55 54 55 451 321 36.8 385 37.6 437 39.6 372

100, 5 99 3.0 49 64 62 61 58 6.0 683568 59.2 604 59.1 664 61.4 59.1

50, 10 7.6 1.4 38 58 57 59 58 57 909 8.9 86.0 877 868 90.3 88.6 86.8

50,20 6.5 1.3 35 52 54 52 52 54 100.0 99.8 99.9 100.0 99.9 100.0 99.9 99.9
Ru }{:) R“ RT)

20,5 7.0 14 37 55 63 56 61 61 247 95 170 21.2 230 238 231 225

50,5 7.8 19 37 52 56 53 53 54 325163 223 262 268 30.0 27.6 26.6

100, 5 9.6 24 45 6.1 61 60 57 61 533 359 41.7 448 455 498 46.7 453

50,10 7.3 1.3 3.6 56 57 58 59 57 855 69.6 785 81.6 81.3 845 828 81.1

50,20 6.4 1.3 35 52 55 52 52 55 100.0 99.6 99.9 99.9 99.9 99.9 99.9 99.9

Continued
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TABLE 6 Continued

Hy:0;=0 Hi : var(a;) = 0.1, o; correlated with regressors
Asymptotic tests Bootstrap tests Asymptotic tests Bootstrap tests
® 1 &f o of 1 o & o 1 &y o o 1 o’ o® P
3 I
N, T F, F F, F

20,5 82 19 43 62 56 50 54 54 315201 261 28.0 274 302 287 26.9
50, 5 10.0 2.6 4.6 63 57 55 53 55 480 35.1 382 40.0 389 449 408 385
100, 5 12.6 3.6 54 6.8 65 6.1 63 64 678 549 56.2 56.8 553 635 583 55.0
50,10 9.3 16 3.6 56 55 55 51 55 902 792 824 83.8 822 884 849 821
50,20 80 15 33 55 54 51 53 54 998 989 99.0 99.1 98.7 99.5 99.2 98.7

R, R; R, R}

20,5 7.6 12 33 54 57 51 53 54 265 11.6 193 231 245 258 252 24.0
50,5 9.6 19 37 58 57 52 52 55 358 180 25.1 27.7 289 323 299 286
100, 5 12.0 29 48 64 65 6.1 62 64 549 360 41.1 43.8 428 49.1 453 426
50, 10 9.0 1.5 33 54 55 55 50 55 850679 754 773 765 823 794 764
50,20 79 14 33 55 54 51 5.2 54 99.7 983 989 989 985 994 99.0 98.4

N, T E, E E, E

[}

20,5 6.5 22 34 47 42 48 44 41 321 196 263 29.0 285 31.5 29.7 282
50, 5 7.2 26 38 48 47 50 4.7 46 495 38.0 429 443 439 49.6 46.2 435
100, 5 7.6 23 34 44 41 51 42 41 740 643 67.0 68.0 674 731 699 673
50, 10 6.6 1.6 33 45 47 54 4.7 47 946 88.0 91.7 928 924 94.1 934 923
50,20 5.7 1.3 31 45 47 50 4.6 47 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0

R, R; R, R}

20,5 59 13 25 41 43 50 46 41 263 109 19.6 234 252 26.1 257 2438
50, 5 6.7 2.0 32 43 47 49 45 46 351 20.1 266 302 31.1 339 319 30.8
100, 5 75 2.0 3.1 41 41 51 42 4.0 57.6 428 486 50.3 51.5 56.0 53.0 51.3
50, 10 6.3 1.4 3.1 43 48 55 47 47 907 77.6 86.1 884 88.0 89.6 89.4 879
50,20 5.6 1.2 31 44 47 50 4.7 47 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0

Notes: See notes to Table 1. The DGP is identical to that for Table 1 except wy = oy&;, t =
—49,...,T,i=1,...,N, where 0?, = ¢o + ¢103t71 + ¢o(|ti—1| — p3uiy—1)%. The value of parameters
are chosen to be ¢g = 0.3, ¢ = 0.5, ¢po = 0.2 and ¢35 = 0.23.

panel data model, under both non-normality and heteroskedasticity of
the error terms, when the number of crosssections, N, is large and T,
the number of time periods, is fixed. First, it has been shown that a
linear transformation of the commonly cited F and RE tests (using a
simple function of restricted residuals) provides asymptotically valid test
procedures, when employed in conjunction with the usual Fand standard
normal critical values (respectively). Second, it has been shown that the
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asymptotic relationship between the heteroskedastic robust F-fest and the
RE-test statistics, carries over from the homoskedastic case. That is, under
(pure) local random effects, they share the same asymptotic power, whilst
under local fixed (or correlated) individual effects the heteroskedastic
robust F-test enjoys higher asymptotic power. Third, we have provided
qualitative predictions about the approximate true significance levels
of the standard F and RE Tests in the presence of certain forms of
heteroskedasticity. These theoretical findings are supported by Monte
Carlo evidence. Finally, although asymptotic theory does not always provide
a good approximation to finite sample behaviour, our experiments show
that all the wild bootstrap versions of these tests, employing the resampling
scheme advocated by Davidson and Flachaire (2008), yield reliable
inferences in the sense of close agreement between nominal and actual
significance levels. There are slight differences in the power properties
of these tests, although none dominates across the different models
of heteroskedasticity considered. Thus, for example, the wild boostrap
version of the unadjusted F-test appears to behave quite favourably under
homoskedasticity and general heteroskedasticity both in terms of finite
sample significance levels and power, and even under asymmetric errors
for which it is not asymptotically justified.

APPENDIX

In what follows ||C| = \/tr (C/C) = \/Zl Z/ 05 denotes the Euclidean
norm of a matrix C = {c,;,«}.

/
u.Au;
3

Proof of Lemma 1. Write W, = T which are independent, so
that Hy= > W and E[W]=0, by Assumption Al(ii). Since
IAll = VT(T = D), |W| = Ll < WAL iy 1%, Thus, by Minkowski’s

(T-1) — T(T-1)
inequality and Assumption A3(i), for some # > 0,

241 T BE 24+n
< [Z el W}M} = o),

t=1

E ’VVi|2+n < E

T

2
§ : Uy
=1

so that ky = QL\ le E (WZ?) = O(1). With Assumption A3(ii), a standard
(Liapounov) Central Limit Theorem yields Kj_vl/ *Hy AN (0,1). O

Proof of Proposition 1. The method of proof is nearly identical to that
of (Orme and Yamagata, 2006, Proposition 1) but where, now, our
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assumptions allow for heteroskedasticity.

(i) Let Sy = (RSSg — RSSy)/(N — 1) and % = RSSy;/(N(T — 1) —K),
so that

=2
g ~
2N N(Fy —1) = &—‘Z\/N (Sv —37%). (22)
We first show that 6% — 63 = 0, (1), so that (since % is uniformly positive

by Assumption A2(v)) /6% L. Following (Orme and Yamagata, 2006,
Proof of Proposition 1), we can write

"9 N u (Mg —Pp)u
T TN(T-1)—K N
B N uu uPgu uPpu
_N(T—l)—K{W_T_ N }
_ WM v
N(T-1) 7
because ‘%, “/1;}’“, and u'Pgu are all 0,(1) and m == +ON™).
Therefore,
o 9 u'Mpu Ta3, oy .
0" — 0y = — + + O,(N7)

N(T-1) T-1 T-1

because, by Assumption A2(i) and Al(ii) both terms inside the {-} above
are 0,(1). Thus, provided «/_(SV -0 ) 0,(1), (22) yields

3NV N(Fy — 1) = VN (Sy — 5%) + 0, (1),

but from exactly the same argument employed by Orme and Yamagata

(2006, pp. 418-419) /N (Sy — 6%) = 0,(1) with

1

NS -)= 7575

[w Iy ® A)u] + iy + 0,(1).
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Thus, (22) can be expressed as

1 I A
GyVN(Ey = 1) = f“ ( ”fgl 184+ ),

T
— lHN + Ay + 0,(1).

(ii) By Lemma 1,

}"N d 2T
NVIN(Fy —1) — N0, ——],
N (Fy ) ,—KN/2_> ( T—l)

and the result follows. This completes the proof. -

Proof of Proposition 2. 1. First, for 6%, by the Triangle Inequality,

|6% — x| < ‘AQ - % + ‘{,; A ‘ = 0,(1), since, as previously noted, 3= =
crN + 0,(1) and aN = 0,(1) by the arguments of Orme and Yamagata

(2006, p. 422).
Second, for KV), from the proof of Lemma 1, we have that

1 N 0 1 N 2
— > (WAw) — — ) E(uAu;) — 0.
v

Therefore, by the Triangle Inequality, it remains to show that
NIV N 2 . A - -

% Zi\il (u;Aui) e % Z,N:l (u;Aui) £ 0. Since, u; =u;+v,;,, where v, =

170;/N'* —Z,(p — B), we can write

Al A A ’ JAA A A A
WAu; = wAu; + 2u;Av; + v.Av,
/
=uAu; + §;, say,

so that

1N 1N o N /
_Z uAul :N’Z] uAu N;S?"‘N;uiAuiSi-

Now, + v (w ’Aul)g = Op(l) and we shall show that + Zl 1 S;=o0,(1) so

that, by Cauchy—Schwartz, ~ Zf;l wAw;S; = 0,(1); then we are done.
Again by Cauchy—Schwartz, = S, 87 = 0,(1) if it can be shown that (i)

Ly (u Av) = 0,(1); and (ii) L Zﬁil (‘AI;A‘AIZ-)2 = 0,(1), and we take each

N N
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of these in turn:

(i) First, by repeated application of Cauchy-Schwartz, noting that
IAII* = T (T = 1),

1 & L2 T(T—
> wa < T Eﬂmmmw
i=1

A

1 & 1 &
4 ~
T(T—1) N;Nmuﬁgwwﬁ

Now, E |lu;||* is uniformly bounded, by Assumption A3(i), so by
Markov’s Inequality, %Zil lw;||* = 0,(1), and it suffices to show that
¥ 2 9l = 0,(D).

Now,

<o 1O d;
Ikl =N N1/4'Z(ﬂ B+ (B—BZZ(B— P

= Sit + Sig + Sis, say,

so that, by Cauchy—Schwartz, N Zl Vi I* = 0,(1) if £ N Zl 1 Sim = 0,(1), for
m=1,2,3. Clearly, + SN S = I ¥, 6% = 0,(1), by Assumption A4 (ii)
and, by repeated use of Cauchy-Schwartz,

=i =a——|[B-p] < D10z
Ni:lz N Ni:l
= 0,(1)

A ] 2
because [[B— Bl = 0,(1), + 2, I6Z:1° =+ 30, 3, 2, [0iz]” = 0,(1),
by an application of Markov’s Inequality, Cauchy-Schwartz, and
Assumptions A2(ii) and A4(ii). Finally,

17\7
TPILE

where ||Z/Z,||* = Z Do {th”]zl,k} and an application of Markov’s
Inequality, Mmkowskl s Inequality, Cauchy—Schwartz and Assumption
A2(ii) yields LYY 1ZZ)?=0,1) and LYY 8% =o0,(1). Thus,
¥ L 9l = 0,(1).

(i) It immediately follows that 3N (VA®)" < T(T -
D+ PO AR 0,(1), and we are done.
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Third, for &, by Assumption A3(i), and Minkowski’s Inequality
EIY ,wi|'" is uniformly bounded so that + 37 Y wl-—
% Zi\il Zszl E (wft) £ 0. Thus, by the Triangle Inequality, it remains
to show that % Zﬁil Zfzg ws — % Zf:] Z[I:I w; £ 0. Since Wy = uy + vy,
vy = 0;/NV* — 2 (B — B), we can write

-1 -1 -1
Wy = Wy + Uy E Ui + Uy E Uis + Uy E Vs
s=1 s=1 s=1

= wy + g, say.

Thus, by Cauchy-Schwartz, it suffices to show that S Y, 8 = o0(1).
It will be useful to note that
>2

T T
A? A
Z 8it <| v”| Z
=2 =1
so that, now, it is sufficient to demonstrate that , l\/ ZL tT:l ng = 0y(1),
m=1,2,3.

By Cauchy-Schwartz, we have

A

Uit Uit

+

T T
Wiy § |Uz'z| + }uit g
=1 t=1

M~ 1M

(Sin + Sug + Sius)?, say,

t=1

and

Mﬂ

1 ‘ 1N T 21 N 4
NZZS%S NZ(Z%%) NZ<t=1 fm)

i=1

Both % Zi\il (ZL1 |uit| )4 and % le (Zthl u?t)2 are 0,(1), by Markov’s
Inequality, Minkowski’s Inequality, and Assumption A3(i). Thus, it suffices
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to show that %Zi\; (Zle Ai) and Ly 1(211:1 }f}i[|)4 are both o,(1).

The former is identical to i, lel [V:I* = 0,(1), by the proof of 2(i), above,
and the latter is 0,(1) by Assumptions A2(ii) and A4(ii) and the consistency
of B. This completes the proof of part 3.

2. As in previous proofs, by Assumption A3(i) and the Triangle
Inequality it suffices to show that

—ZZZAZ i——ZZwao

=1 t s#t =1 t s#t

. . ~ ~ ~ 1 4 A .
Again, since w; = uy + Uy, vy = 0;/NY* —2,(B — B), we can write

—ZZZAZ i——ZZZuzt u;

=1 t s#t =1 t s#t
1 N 1 N
DDA ED DY INAL
=1 t s#t =1t s#t

= Sn1 + Sne,  say,

where V, = 2u;,v; + @3, and it suffices to show that Sy, = 0,(1), m =1, 2.
Now,

N T T
sul =203 Y w Y |
=1 t=1

t=1

VB4 w5 ().

t=1

Thus, since %Zfl (Z -2)2 = Op(l) it suffices to show that
l Zz 1 (Z ‘/it )2 S

Vi )2 = 0,(1), or that Z >, Vi = 0,(1) since (3,
T >, V2. But this is true because

1 s 1 K \
NZZVJ NZZ#‘#‘*-ZZ% +4—ZZ%

=1 t=1 =1 t=1 =1 t=1 =1 t=1

The first term on the right-hand side is 0,(1) as are the latter two terms by
an application of Cauchy-Schwartz.
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Second,
1N T 2
Sne| < N Z |Vz't| = 0,(1)
=1 t=1
by the preceding result, and this completes the proof. g
Proof of Proposition 3. We can write Ry = Jlg;—z where 62 = 4'a/NT
and
Ay=——t  [da oA
VNT(T —1)
1

= o= Mz (s © A) May].

By Proposition 1, it is sufficient to show that
~ T—-1, T
Hy = Hy + T AN — ﬁhr‘f‘op(l)

& — a5 =o0,(1)

and

and the result follows.

Establishing the former follows exactly the argument as in Orme
and Yamagata (2006, Proof of Proposition 2), and o 6"}2\, = 0,(1), was
established above. This completes the proof. O
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