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A HETEROSKEDASTICITY-ROBUST F-TEST STATISTIC FOR
INDIVIDUAL EFFECTS

Chris D. Orme1 and Takashi Yamagata2
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2Department of Economics and Related Studies, University of York, York, UK

� We derive the asymptotic distribution of the standard F-test statistic for fixed effects, in static
linear panel data models, under both non-normality and heteroskedasticity of the error terms,
when the cross-section dimension is large but the time series dimension is fixed. It is shown
that a simple linear transformation of the F-test statistic yields asymptotically valid inferences
and under local fixed (or correlated) individual effects, this heteroskedasticity-robust F-test enjoys
higher asymptotic power than a suitably robustified Random Effects test. Wild bootstrap versions
of these tests are considered which, in a Monte Carlo study, provide more reliable inference in
finite samples.
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1. INTRODUCTION

In an earlier article, Orme and Yamagata (2006) added to the already
large literature on the analysis of variance testing, by establishing that, in
a static linear panel data model, the standard F -test for individual effects
remains asymptotically valid (large N , fixed T ) under non-normality of
the error term. Moreover, their (local) asymptotic analysis, supported by
Monte Carlo evidence, showed that under (pure) local random effects
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both the F -test and Random Effects test (RE-test) will have similar power whilst
under local fixed effects, or random effects which are correlated with the
regressors, the RE-test procedure will have lower asymptotic power than the
F -test procedure.

The key result in the above article (Proposition 1, p. 409) is,
essentially, the asymptotic equivalence of the appropriately centred F -test
statistic and the numerator (test indicator) in the RE-test statistic, under
homoskedastic, but not necessarily normally distributed, errors. However,
it is straightforward to verify (Proposition 1 in Section 3.2 below) that this
asymptotic equivalence continues to hold under general heteroskedasticity
of the errors.1 The analysis which produces this result also predicts
that, under certain forms of neglected heteroskedasticity, the standard
(homoskedastic-based) F and RE tests will be, either, asymptotically under
or over-sized. For example: (i) under cross-sectional heteroskedasticity
only, both tests will be asymptotically oversized; (ii) under time series
heteroskedasticity and serial independence of the errors, both tests will
be asymptotically undersized, but under symmetric time series conditional
heteroskedasticity such as GARCH, where the squared error terms exhibit
positive correlation, both tests will be asymptotically oversized; and
(iii) furthermore, in the singular case of independently and identically
distributed (i.i.d.) data, over both the cross-section and time dimensions,
then even if the errors are conditionally heteroskedastic, the standard F
and RE tests remain asymptotically valid. The assumptions in this article
explicitly allow for independently but not identically distributed data and,
therefore, unconditional heteroskedasticity in the errors.

Given the result of Proposition 1, below, Wooldridge’s (2010,
p. 299) heteroskedastic-robust RE-test suggests a number of possible
transformations of the standard F -test statistic which will recover its
asymptotic validity under general heteroskedasticity of unknown form.
Moreover, this transformation, or correction, involves simple functions of
the pooled model’s residuals (i.e., the restricted residuals). Following the
literature on heteroskedasticity robust inference, restricted residuals are
employed as advocated, for example, by Davidson and MacKinnon (1985)
and Godfrey and Orme (2004), who report reliable sampling performance
of tests of linear restrictions in the linear model when employing restricted
residuals in the construction of heteroskedasticity robust standard errors.2

Importantly, though, the F and RE heteroskedastic-robust tests, so
constructed, retain the qualitative properties that were reported by Orme
and Yamagata (2006). Specifically: (i) under (pure) local random effects,

1Orme and Yamagata (2006) did not cover the case of heteroskedastic errors in the linear
model, although their analysis did allow for heteroskedastic individual effects.

2As Wooldridge (2010, p. 300) points out, standard tests for individual effects essentially test
for non zero correlation in the errors; thus, constructing autocorrelation robust procedures would
appear to be counter productive.
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both tests have the same asymptotic power; and, (ii) under local fixed
effects, or random effects which are correlated with the regressors,
the RE-test procedure will have lower asymptotic power than the F -test
procedure.

The plan of this article is as follows. In order to make the current
article self-contained, Section 2 reproduces Orme and Yamagata (2006,
Section 2) and introduces the notation and standard test statistics
as discussed widely in econometric texts; for example Baltagi (2008).
Section 3 details the assumptions and asymptotic analysis. The latter
provides a description of the asymptotic behaviour of the F -test statistic,
its heteroskedasticity robust transformation, its relationship with the RE-test
statistic (under both the null and local alternatives), and predictions
concerning the asymptotic significance levels of the unadjusted F -test
test under certain forms of neglected heterokedasticity. All proofs of
the main results are relegated to the Appendix. Section 4 illustrates the
main findings by reporting the results of a small Monte Carlo study.
This also includes an evaluation of a wild bootstrap procedure scheme,
based on Mammen (1993) and Davidson and Flachaire (2008), which
might be employed in order to provide closer agreement between the
desired nominal and the empirical significance level of the proposed test
procedures. Section 5 concludes.

2. THE NOTATION, MODEL, AND TEST STATISTICS

We consider the static linear panel data model

yi = �i�T + Xi�1 + ui , i = 1, � � � ,N , (1)

where yi = (yi1, � � � , yiT )′, ui = (ui1, � � � ,uiT )
′, �T is a (T × 1) vector of ones,

and Xi = (xi1, � � � , xiT )
′ a (T × K ) matrix. The innovations, uit , have zero

mean and uniformly bounded variances and the �i are the individual effects.
By stacking the N equations of (1), the model for all individuals becomes

y = D� + X�1 + u, (2)

where y = (y′
1, � � � , y

′
N )

′ and u = (u′
1, � � � ,u

′
N )

′ are both (NT × 1) vectors,
� = (�1, � � � , �N )′ is a (N × 1) vector, D = �IN ⊗ �T � is a (NT × N ) matrix,
X = (X′

1, � � � ,X
′
N )

′ is a (NT × K ) matrix, and �D,X� has full column rank.
Thus, for the purposes of the current exposition, xit = (xit1, � � � , xitK )′,
(K × 1), contains no time invariant regressors, in particular a constant
term corresponding to an overall intercept. In the context of fixed effects
this allows estimation of �1, as follows.

In general, define the projection matrices, PB = B(B′B)−1B′ and MB =
INT − PB, for any (NT × S) matrix B of full column rank, with B̃ = MDB
being the residual matrix from a multivariate least squares regression of B
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on D which is, of course, the within transformation. Then the fixed effects
(least squares dummy variable) estimator of �1 in (2) is given by

�̃1 = (X′MDX)−1X′MDy = (X̃
′
X̃)−1X̃

′
ỹ� (3)

The null model of no individual effects is the pooled regression
model of

y = �0�NT + X�1 + u,

= Z� + u, (4)

where Z = ��NT ,X� = (Z′
1, � � � ,Z

′
N )

′, and Zi has rows z′
it = (1, xit1, � � � , xitK ) ={

zitj
}
, j = 1, � � � ,K + 1. The (pooled) regression of y on Z delivers the

Ordinary Least Squares (OLS) estimator �̂ =
(
�̂0, �̂′

1

)′ = (Z′Z
)−1

Z′y.
The standard F -test for fixed effects requires estimation of both (2),

treating the �i as unknown parameters, and (4) whilst the standard RE-test
only requires estimation of (4). In order to provide a framework in which
to investigate the limiting behaviour of the F -test and RE-test statistics,
under both fixed and random effects, the individual effects are assumed
to have the form � = �0�N + �, � = (�1, � � � , �N )

′. Fixed effects correspond
to the �i , i = 1, � � � ,N , being fixed unknown parameters (or, equivalently,
�1 ≡ 0 with �0 and �i , i = 2, � � � ,N , being the fixed unknown parameters).
The case of random effects is accommodated when the �i , i = 1, � � � ,N are
random variables. Equations (1) and (2) will be employed to characterise
the data generation process, with the restrictions of H0 : � = �1�N providing
the null model of no individual effects (notice that � = 0 belongs to this
set of restrictions). Specifically, when considering the alternative of fixed
effects, the (N − 1) restrictions placed on (2) are H0 : H� = 0, where H =
��N−1,−IN−1�, whilst for random effects the null is H0 : var (�i) = 0.

The standard F and RE test statistics are defined as follows.

F-Test Statistic

This is constructed as

FN = (RSSR − RSSU )/(N − 1)
RSSU /(N (T − 1) − K )

, (5)

where RSSR = û′û is the restricted sum of squares (from the pooled
regression (4)) with û = MZy, and RSSU = ũ′ũ is the unrestricted sum
of squares (from the fixed effects regression (2)) with ũ = MX̃ỹ, the
residual vector from regressing ỹ on X̃. If normality, homoskedasticity,
and strong exogeneity were imposed such that, conditional on X,
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ui ∼ N (0, �2IT ), i = 1, � � � ,N , then a standard F -test would be exact. In the
case of non-normal, but homoskedastic, errors Orme and Yamagata (2006)
demonstrated that a standard F -test would be asymptotically valid.

RE-Test Statistic

The usual RE-test statistic is3

RN =
√

NT
2 (T − 1)

[
û′
(IN ⊗ A) û

û′û

]
=
√

1
2NT (T − 1)

[
û′
(IN ⊗ A) û
û′û/NT

]
, (6)

where A = A′ = �T �
′
T − IT , so that

u′ (IN ⊗ A)u =
N∑
i=1

u′
iAui =

∑
i

∑
t

∑
s �=t

uituis �

RN has a limit standard normal distribution, as N → ∞, under H0 and
homoskedasticity but not necessarily normality of the errors.

3. ASYMPTOTIC PROPERTIES OF FN

In this section we describe the properties of FN , under both local
fixed and random effects, by (i) deriving its asymptotic distribution, and
(ii) establishing its asymptotic relationship with RN . In the subsequent
analysis asymptotic theory is employed in which N → ∞ and T is fixed. To
facilitate this, the following sections detail the assumptions that are made,
which are of the sort found in, for example, (White, 2001, p. 120).

3.1. Assumptions

A1: (i) �Xi ,ui	
N
i=1 is an independent sequence;

(ii) E
(
uit |Xi ,ui ,t−1,ui ,t−2, � � �

) = 0, almost surely, for all i and t .

A2: (i) E
(∣∣zisjuit

∣∣2+

)

≤ � < ∞ for some 
 > 0, all s, t = 1, � � � ,T , j =
1, � � � ,K + 1, and all i = 1, � � � ,N ;

(ii) E
(∣∣zitj ∣∣4+


)
≤ � < ∞ for some 
 > 0, all t = 1, � � � ,T , j =

1, � � � ,K + 1, and all i = 1, � � � ,N ;
(iii) E

(
Z′Z/N

)
is uniformly positive definite;

(iv) E(X̃
′
X̃/N ) is uniformly positive definite;

(v) VN = N −1
∑N

i=1

∑T
t=1 E

(
u2
itzitz

′
it

)
is uniformly positive definite;

(vi) ṼN = N −1
∑N

i=1

∑T
t=1 E

(
u2
it x̃it x̃

′
it

)
is uniformly positive definite.

3See, for example, Breusch and Pagan (1980) or Honda (1985).
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Assumption A1 imposes independent sampling of cross-section units
and also, A1(ii), a strong exogeneity assumption on Xi , so that E(X̃

′
iui) =

0; thus ruling out (for example) lagged dependent variables. Assumption
A1(ii) also constrains the uit to be conditionally serially uncorrelated,
and thus serially uncorrelated, but not necessarily serially independent.
In particular, this resembles a martingale difference assumption, but is
more direct (see, for example, White (2001, p. 54)) and accommodates
most models of heteroskedasticity (including time series conditional
heteroskedasticity such as GARCH and its relatives). If it were strengthened
to that of uit being serially independent, conditionally on Xi , GARCH
processes, for example, would be ruled out. Together with Assumption
A2, which explicitly allows for rather general heteroskedasticity in the
disturbances, we obtain consistency and asymptotic normality of both the
pooled and fixed effects least squares regression estimators (�̂ and �̃1,
respectively), and also consistency of the corresponding heteroskedasticity-
robust covariance matrix estimators.4 These results follow for the fixed
effects estimator because Assumption A2(i) and (ii) also imply that
E
[∣∣x̃isj uit

∣∣2+

]

and E
[∣∣x̃itj x̃isl ∣∣2+


]
are both uniformly bounded. Thus,

in particular, 1√
N
Z′u, 1√

N
X̃

′
u, 1

N Z
′Z and 1

N X̃
′
X̃ are all Op(1), with

V−1/2
N

1√
N
Z′u

d→ N (0, IK+1) and Ṽ
−1/2
N

1√
N
X̃

′
u

d→ N (0, IK ), as N → ∞, T fixed.
If Assumption A1(ii) is weakened to E

(
X′

iui

) = 0, or even E (xituit) = 0
(zero contemporaneous correlation), �̃1 is not guaranteed to be consistent
and, when it is inconsistent, the F -test is asymptotically invalid anyway,
even under normality; for example, in the presence of lagged dependent
variables—see the discussion in (Wooldridge, 2010, Sections 10.5 and
11.6). Furthermore, note that Assumptions A1(ii) and A2(v) imply that
1
N

∑N
i=1

∑T
t=1 E(u

2
it) = 1

N

∑N
i=1 E(

∑T
t=1 uit)

2 is uniformly positive.
For the purposes of this article, in addition, we assume as follows:

A3: (i) E
∣∣uit

∣∣4+
 ≤ � < ∞ for some 
 > 0, all t = 1, � � � ,T , and all i =
1, � � � ,N ;

(ii) var
(
N −1/2u′ (IN ⊗ A)u

) = N −1
∑N

i=1 E
(
u′
iAui

)2
is uniformly

positive.
A4: (i) �i = �0 + �i

N 1/4 , i = 1, � � � ,N ;
(ii) the �i are independent, satisfying E �uit�i� = 0 and E

∣∣�i∣∣4+
 ≤ � <

∞, for all i = 1, � � � ,N ;
(iii) N −1

∑N
i=1 E

[
�2i
]
is uniformly positive, where �′ = (�1, � � � , �N ).

4See, for example, (White, 2001, Exercises 3.14, 5.12 and Chapter 6). Assumption A2(ii) is
also required to obtain a heteroskedasticity robust F -test.
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Assumption A3 justifies the limit distribution obtained in Proposition 1
below, and as a consequence also that of RN . (In fact, Assumption
A3(i) and Assumption A2(ii) actually imply Assumption A2(i), using the
Cauchy–Schwartz inequality.) Assumption A4 characterizes the alternative
data generation process and permits the investigation of asymptotic
power, under local individual effects, by restricting the test criteria
under consideration to be Op (1) with well defined limit distributions.
Together with Assumptions A3(i) and A2(ii), Assumption A4(ii) implies
E
∣∣uit�i

∣∣2+
 ≤ � < ∞ and E
∣∣zitj�i∣∣2+
 ≤ � < ∞, for some 
 > 0, and all

i = 1, � � � ,N , t = 1, � � � ,T , j = 1, � � � ,K + 1. As well as fixed effects (with
the �i being nonstochastic) it also accommodates local heteroskedastic
random effects, but which are uncorrelated with ui . If the �i are also
distributed independently of Xi , then we have “pure” random effects whilst
if the �i are correlated with Xi then we have “correlated” random effects.
(As pointed out by Wooldridge (2010, p. 287), in microeconometric
applications of panel data models with individual effects, the term fixed
effect is generally used to mean correlated random effects, rather than �i
being strictly nonstochastic.)

3.2. The Asymptotic Distribution of FN

The results concerning the limiting behavior of both the F -test and
RE-test are driven by the following lemma, which also substantiates the
asymptotic validity of Wooldridge’s (2010, p. 299) heteroskedasticity-robust
test for unobserved effects; see Section 3.4.

Lemma 1. Define

HN = u′ (IN ⊗ A)u√
NT (T − 1)

= 1√
NT (T − 1)

N∑
i=1

u′
iAui

and

�N = var (HN ) = 1
NT (T − 1)

N∑
i=1

E �u′
iAui	

2
�

Then under Assumptions A1 and A3,

�
−1/2
N HN

d→ N (0, 1),

for fixed T , as N → ∞.

The expression for �N , whilst correct, is quite general as it simply
exploits the fact that the uit are serially uncorrelated. Assumption A1(ii),
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however, implies something a little stronger and this affords a more refined
expression for �N which is discussed in Section 3.3. Before that discussion,
however, the asymptotic distribution of FN , under non-normality and
heteroskedasticity, is given by the following proposition.

Proposition 1. Define �̄2
N = 1

NT

∑N
i=1

∑T
t=1 E(u

2
it).

(i) Under model (2) and Assumptions A1 to A4,
√
N (FN − 1) = Op(1), with

�̄2
N

√
N (FN − 1) =

√
T

T − 1
HN + 
N + op(1),

where HN is given in Lemma 1 and 
N = O(1) is defined by


N = E [�′
1�1/N ] = �N − �′

N�
−1
N �N ≥ 0,

�1 = D� − Z�−1
N �N ,

�N = E �Z′Z/N �, �N = E �Z′D�/N �, �N = E ��′D′D�/N �.
(ii) Furthermore, if �N = �̄2N√

�N /2 , where �N is defined in Lemma 1, then

�N

√
N (FN − 1) − 
N√

�N /2
d→ N

(
0,

2T
T − 1

)
�

Given our assumptions, note that both �N and 
N are O(1) satisfying

1
NT

∑N
i=1 u

′
iui√

1
2NT (T−1)

∑N
i=1 �u

′
iAui	

2
− �N

p→ 0

and

�′D′MZD�
N

− 
N
p→ 0,

respectively, with �N uniformly positive by Assumption, although neither
�N or 
N need necessarily converge. The special case of no individual
effects, with � = �1�N , yields 
N ≡ 0, as it should (this includes the case of
� = 0).

As exploited by Orme and Yamagata (2006), it is easy to show that if
�N has an F distribution with n1 = N − 1 and n2 = N (T − 1) − K degrees

of freedom, then �∗
N =

√
N (T−1)

2T (�N − 1) ∼ N (0, 1), or approximately for
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large N , �N
A
∼ N

(
1, 2T

N (T−1)

)
. Therefore, by Proposition 1, we can employ

the following approximation, under the null,

F� ≡ �̂N �FN − 1	 + 1
A
∼ F (n1,n2) , (7)

for any choice of �̂N satisfying �̂N − �N
p→ 0, implying that F� can be used

in an asymptotically valid “standard” F -test procedure.
Before proceeding to derive a suitable �̂N , note that under

pure local random effects, with E ��i |Xi� = 0 and E
[
�2i |Xi

] = �2, �N =
T
N

∑N
i=1 E ��i z̄i� = 0 with z̄i = T −1

∑T
t=1 zit so that 
N = TE

[
�′�
N

]
= T �2. In

this case, we immediately obtain the following Corollary to Proposition 1
(the proof is omitted).

Corollary 1. Under the alternative of (pure) local random effects, and under the
assumptions of Proposition 1,

�̂N

√
N (FN − 1) − T �2√

�N /2
d→ N

(
0,

2T
T − 1

)

for any choice of �̂N satisfying �̂N − �N
p→ 0.

Therefore, a robust F -test, based on F�, will have nontrivial asymptotic
local power against pure random effects. In fact, and analogous to Orme
and Yamagata (2006), a stronger result will be established in Section 3.4.
There it is shown that, under (pure) local random effects, a robust F -test
procedure based on F� will possess the same asymptotic power as a suitably
“robustified” RE-test, of the sort proposed by Wooldridge (2010, p. 299) or
Häggström and Laitila (2002). However, under “correlated” local random
effects a robust F -test will possess higher asymptotic power than a robust
RE-test.

3.3. Asymptotically Valid F-Test Statistics

As noted above, an asymptotically valid F -test can be constructed if
there is a �̂N available satisfying �̂N − �N

p→ 0� Using restricted OLS
(i.e., pooled) residuals a natural choice for �̂N might be

�̂N = �̂2
N√

�̂N /2
,
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where �̂2
N = û′û/(NT − K − 1) and

�̂N = 1
NT (T − 1)

N∑
i=1

{
û′
iAûi

}2 = 1
NT (T − 1)

N∑
i=1

{∑
t

∑
s �=t

ûit ûis

}2

�

Indeed, this choice is justified in Proposition 2 below; c.f., Wooldridge
(2010, p. 299).

However, another (perhaps more efficient) choice for �̂N , and thus
�̂N , emerges if we exploit Assumption A1(ii).5 To see this, first note
that

∑
t

∑
s �=t uituis = 2

∑T
t=2 wit , where wit = uit

∑t−1
s=1 uis , so that �N can

equivalently be expressed as

�N = 4
NT (T − 1)

N∑
i=1

E

( T∑
t=2

wit

)2
 � (8)

Now, from Assumption A1(ii), E �witwit−m� = 0, for all t ≥ 3 and m =
1, � � � , t − 1, so that (8) becomes

�N = 4
NT (T − 1)

N∑
i=1

T∑
t=2

E
(
w2

it

)
,

where

T∑
t=2

w2
it =

T∑
t=2

t−1∑
s=1

u2
itu

2
is + 2

T∑
t=3

t−1∑
s=2

s−1∑
r=1

u2
ituisuir � (9)

A further simplification arises if, in addition to A1(ii), we can assume as
follows:

A1(iii): E
(
u2
ituisuir

) = 0, for t > s > r �

In this case (8) is

�N = 4
NT (T − 1)

N∑
i=1

T∑
t=2

t−1∑
s=1

E
(
u2
itu

2
is

)
= 2

NT (T − 1)

N∑
i=1

∑
t

∑
s �=t

E
(
u2
itu

2
is

)
�

5We shall not, here, consider alternative estimators of �̄2
N , although this is possible.
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This assumption, however, restricts the admissibility of certain forms of
time series conditional heteroskedasticity, as it rules out an asymmetric
GARCH process for u2

it .
6

The same expression for �N emerges if A1(iii) is strengthened to the
following assumption:

A1(iii)′: E
(
u2
it |Xi ,ui ,t−1,ui ,t−2, � � �

) = E
(
u2
it |Xi

)
, almost surely, for all i and t .

This implies A1(iii) because by iterative expectations, and for t > s > r ,

E
(
u2
ituisuir |Xi

) = E
[
E
(
u2
it |Xi ,ui ,t−1,ui ,t−2, � � �

)
uisuir |Xi

]
= E

(
u2
it |Xi

)
E(uisuir |Xi) = 0,

and, for the subsequent analysis in Section 3.5, it will be useful to note that
in this case the u2

it are conditionally serially uncorrelated and �N can also
be expressed as

�N = 2
NT (T − 1)

N∑
i=1

∑
t

∑
s �=t

E
(
E
(
u2
it |Xi

)
E
(
u2
is |Xi

))
�

Whilst still allowing general forms of heteroskedasticity, A1(iii)′ does rule
out time series conditional heteroskedasticity processes.

Finally, consider a strengthening of A1(iii) to the following assumption:

A1(iii)′′ �uit	
T
t=1 is a sequence of serially independent random variables, for

all i = 1, � � � ,N .

Then (8) becomes

�N = 2
NT (T − 1)

N∑
i=1

∑
t

∑
s �=t

E
(
u2
it

)
E
(
u2
is

)
�

The preceding discussion suggests differing possible consistent
estimators for �N , and thus for �N , according to: (i) whether, or not,
Assumption A1(ii) is fully exploited; or, (ii) whether one of the additional
A1(iii), A1(iii)′, or A1(iii)′′ is adopted. These are described in the following
proposition.

6See, for example, Goncalves and Kilian (2004).
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Proposition 2. Define �̂2
N = û′û/(NT − K − 1), ŵit = ûit

∑t−1
s=1 ûis , and

�̂(1)
N = 1

NT (T − 1)

N∑
i=1

(∑
t

∑
s �=t

ûit ûis

)2

= 4
NT (T − 1)

N∑
i=1

(
T∑
t=2

ŵit

)2

�̂(2)
N = 4

NT (T − 1)

N∑
i=1

T∑
t=2

ŵ2
it

�̂(3)
N = 2

NT (T − 1)

N∑
i=1

∑
t

∑
t �=s

û2
it û

2
is = 4

NT (T − 1)

N∑
i=1

T∑
t=2

t−1∑
s=1

û2
it û

2
is �

Under model (2) and Assumptions A1 to A4, we have the following situation:

1. �̂2
N − �̄2

N
p→ 0 and �̂

(j)
N − �N

p→ 0, j = 1, 2�

Under model (2), Assumptions A1–A4 and either A1(iii), A1(iii)′, or A1(iii)′′, we
have the following situation:

2. �̂2
N − �̄2

N
p→ 0 and �̂

(j)
N − �N

p→ 0, j = 1, 2, 3.

From this analysis, it follows that asymptotically valid choices for �̂N

include �̂
(j)
N = �̂2

N /

√
�̂
(j)
N /2, j = 1, 2, 3, where, specifically,

�̂(1)
N = �̂2

N√
2

NT (T−1)

∑N
i=1

(∑T
t=2 ŵit

)2 , (10)

�̂(2)
N = �̂2

N√
2

NT (T−1)

∑N
i=1

∑T
t=2 ŵ

2
it

, (11)

�̂(3)
N = �̂2

N√
2

NT (T−1)

∑N
i=1

∑T
t=2

∑t−1
s=1 û

2
it û

2
is

, (12)

depending on assumptions made about the uit , t = 1, � � � ,T � Robust F -test
statistics can then be constructed as F (m)

� = �̂(m)
N �FN − 1	 + 1, m = 1, 2, 3,

and approximate inferences obtained based on (7). Note that �̂(1)
N is very

general, whereas �̂(2)
N is tailored to the main assumptions of the article.

Thus we might expect better sampling behavior from using the latter,
rather than the former, under the maintained assumptions A1–A4. Finally,
�̂(3)

N is only valid under rather more restrictive assumptions.
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3.4. The Relationship between FN and RN

Under the null of no individual effects, it is straightforward to show
that

1√
N

[
û′
(IN ⊗ A) û
û′û/NT

]
= 1√

N

u′ (IN ⊗ A)u
�̄2
N

+ op (1) �

From (6), Lemma 1, and Proposition 1, therefore, we can write

RN = 1√
2

HN

�̄2
N

+ op(1)

=
√
T − 1
2T

√
N (FN − 1) + op(1),

under the null, so that

R� ≡ �̂N RN
d→ N (0, 1) (13)

for any choice of �̂N satisfying �̂N − �N
p→ 0; for example, �̂(2)

N under
assumptions A1–A4 of this article. Moreover, this also substantiates
Wooldridge’s (2010, p. 299) suggestion for a heteroskedasticity-robust RE
test statistic constructed as �̂(1)

N RN ; or, under under the more restrictive
assumptions A1(iii), A1(iii)′, or A1(iii)′′, �̂(3)

N RN as proposed by Häggström
and Laitila (2002).

The following proposition extends this result to the case of local
individual effects (fixed or random).

Proposition 3. Under model (2) and Assumptions A1 to A4,

�̂N RN =
{√

(T − 1)
2T

}
�̂N

√
N �FN − 1� −

√
T

2 (T − 1)
�N√
�N /2

+ op (1) ,

for any choice of �̂N satisfying �̂N − �N
p→ 0, where �N = O(1) defined by

�N = E(�′
2�2/N ) = �′

N�
−1
N �̃N�

−1
N �N ≥ 0,

�2 = Z̃�
−1

N �N ,

�̃N = E(Z̃
′
Z̃/N ),

and the limit distribution of �N

√
N �FN − 1� is given by Proposition 1.
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Again, �N need not converge, but it is O(1) and �N −
�′D′Z(Z′Z)−1

(Z̃
′
Z̃)(Z′Z)−1

Z′D�
N

p→ 0. As with Proposition 1, �N ≡ 0 obtains under
H0 : � = �1�N , as it should, since

(
Z′Z
)−1

Z′D� = (�1, 0′)′ and the top-left,
(1, 1), element of Z̃

′
Z̃ is 0. As discussed above, under the alternative of

(pure) local random effects �N = 0, and we obtain the following Corollary,
which is immediate from Corollary 1 given Proposition 3.

Corollary 2. Under the alternative of (pure) local random effects, and under the
assumptions of Proposition 1,

�̂N RN −
{√

T (T − 1)
2

}
�2√
�N /2

d→ N (0, 1) ,

for any choice of �̂N satisfying �̂N − �N
p→ 0.

Thus, since under (pure) local random effects, �̂N RN −√
N (T−1)

2T �̂N (FN − 1) = op(1), both the robust RE and robust F -test
procedures, based on (13) and (7), respectively, will have identical
asymptotic power functions. However, under local fixed effects or random
effects which are correlated with Xi , the robust F -test can have greater
asymptotic power. In particular, when individual effects are correlated with
the mean values of the regressors, �N �= 0 and is O (1), implying �N > 0
so that a test based on RN (but suitably robust to heteroskedasticity)
should have lower asymptotic local power than one based on FN � This
makes intuitive sense, since FN is designed to test for individual effects
which are correlated with z̄i , whereas RN is constructed on the assumption
that the individual effects are uncorrelated with all regressor values.
The importance of distinguishing between individual effects which are
correlated or uncorrelated with regressors, rather than simply labelling
them fixed or random, is discussed by Wooldridge (2010, Section 10.2).

3.5. Analysis of the Standard F-Test and RE-test

Given the analysis above certain predictions can be made concerning
the asymptotic behaviour, under the null hypothesis, of both the standard
F -test, based on FN , and RE-test, based on RN , under specific assumptions
about the data and/or forms of heteroskedasticity.

Serial Independence
Suppose �uit , x′

it	
T
t=1 are serially independent, or assumption A1(iii)′

holds, with E(u2
it |Xi) = hit > 0� Consider, first, the case of E �hit � = �2 <

∞, so that the errors are unconditionally homoskedastic. Then, �N = 2�4
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and �N = 1� In this very restricted case, then, both the F -test and RE-test,
based on FN and RN , respectively, remain asymptotically valid without any
adjustment. In particular, this result is true if the

(
uit , x′

it

)
are i.i.d., but the

uit are conditionally heteroskedastic.

Cross-Section Heteroskedasticity
In this case, we rule out time series heteroskedasticity and adopt

assumption A1(iii)′ with

hi ≡ E
[
u2
it |Xi

]
, for all i and t , (14)

so that �2
i = E(hi) > 0 is the unconditional variance and E

(
u2
itu

2
is

) =
E(h2

i ) < ∞. Here, both the F -test based on FN and RE-test based on RN ,
without adjustment, will be asymptotically oversized (in that, asymptotically,
both will reject a correct null of no individual effects too often for any
given nominal significance level)7 To demonstrate the result, one need
only show that �N < 1 which is evidently true because

1
N

N∑
i=1

E(h2
i ) −

{
1
N

N∑
i=1

E(hi)

}2

≥ 1
N

N∑
i=1

�4
i −

{
1
N

N∑
i=1

�2
i

}2

> 0� (15)

The same prediction is true in the case of unconditional heteroskedasticity,
by which we mean hi ≡ �2

i , since the first (weak) inequality in (15) can be
replaced with equality.

Time Series Heteroskedasticity
Here we consider two scenarios which afford tractable results. Under

the first scenario, assumption A1(iii)′ is, again, adopted. The second
scenario allows for a GARCH process, but under the symmetry assumption
of A1(iii).

(i) Consider unconditional time series heteroskedasticity, so that A1(iii)′

holds and

�2
t ≡ E

[
u2
it |Xi

]
, for all i and t , (16)

are constants. Here

�2
N =

(
1
T

∑T
t=1 �

2
t

)2
1

T (T−1)

∑
t

∑
s �=t �

2
t �2

s

> 1,

7Indeed, this particular conclusion explains some of the finite sample Monte Carlo results
obtained by Häggström and Laitila (2002).



446 C. D. Orme and T. Yamagata

because (
1
T

T∑
t=1

�2
t

)2

− 1
T (T − 1)

∑
t

∑
s �=t

�2
t �

2
s

= 1
T − 1

 1
T

T∑
t=1

�4
t −

(
1
T

T∑
t=1

�2
t

)2
 > 0�

This implies that both the F and RE-test procedures, without
adjustment, will be asymptotically undersized.
To obtain a similar result for conditional time series heteroskedasticity,
with ht ≡ E

[
u2
it |Xi

]
, for all i and t , and �2

t = E(ht) > 0, A(iii)′ needs
to be strengthened to A(iii)′′ (serial independence) so that E

(
u2
itu

2
is

) =
�2
t �

2
s < ∞.

(ii) In order to provide a succinct analysis for the conditional time series
heteroskedastic case, we restrict uit to be a stationary time series, for
all i , such that A1(iii) holds either by implication of A1(iii)′ or by
direct supposition. Thus, (symmetric) ARCH/GARCH specifications
are allowed for but certain asymmetric ARCH/GARCH models with
leverage are not. Exploiting stationarity, and heteroskedasticity in the
time series dimension only, we express the unconditional variance and
covariances as E [u2

it ] = �2 > 0, E [u2
itu

2
i ,t−j ] = �j > 0, say, so that

�N = �2√
2

T (T−1)

∑T
t=2

∑t−1
j=1 �j

,

where

2
T (T − 1)

T∑
t=2

t−1∑
j=1

�j = 2
T (T − 1)

T∑
t=2

t−1∑
j=1

(
�j − �4

)+ �4�

Thus, if the u2
it are (serially) positively correlated, �j − �4 > 0 and

�N < 1 so that both the F and RE-test procedures, without adjustment,
will be asymptotically oversized. The converse is true if the u2

it are
(serially) negatively correlated. In the particular case of symmetric
ARCH/GARCH processes, and with the usual positivity constraints
on the parameters, the u2

it will be (serially) positively correlated,8 so
that the unadjusted F and RE-test procedures will be asymptotically
oversized.

8He and Terasvirta (1999) establish that the autocorrelation function of the squared process
is positive.
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In order to shed light on the relevance of the preceding asymptotic
analysis, the next section reports the results of a small Monte Carlo
experiment which illustrates the asymptotic robustness of the F -test to
non-normality/heteroskedasticity and its power properties relative to the
RE-test.

4. MONTE CARLO STUDY

The Monte Carlo study investigates the sampling behavior of the test
statistics considered above, (7) and (13), for differing choices of �̂N ,
including �̂N ≡ 1. As our analytical results suggest, the tests are justified
when N → ∞ with T fixed, we consider (N ,T ) = (20, 5), (50, 5), (100, 5),
(50, 10), (50, 20).

4.1. Monte Carlo Design

The model employed is

yit = �i +
3∑

j=1

zit ,j�j + uit ,uit = �it�it , (17)

where zit ,1 = 1, zit ,2 is drawn from a uniform distribution on (1, 31)
independently for i and t , and zit ,3 is generated following Nerlove (1971),
such that

zit ,3 = 0�1t + 0�5zit−1,3 + �it ,

where the value zi0,3 is chosen as 5 + 10�i0, and �it (and �i0) is drawn
from the uniform distribution on (−0�5, 0�5) independently for i and t ,
in order to avoid any normality in regressors. These regressor values are
held fixed over replications. Also, observe that the regression design is
not quadratically balanced.9 Without loss of generality, the coefficients are
set as �j = 1 for j = 1, 2, 3. The i.i.d. standardised errors for �it are drawn
from: the standard normal distribution (SN ); the t distribution with five
degrees of freedom (t5); and, the chi-square distribution with six degrees
of freedom (�26).

We consider the following five specifications for �it :10

9See the discussion in Orme and Yamagata (2006).
10We also considered an ARCH(1) specification. However, the associated results are not

reported since they are qualitatively similar to the results for the GARCH(1,1) specification, which
are presented below.
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1. Homoskedasticity (HET0)

�it = � = 1;

2. Cross-sectional one-break-in-volatility heteroskedasticity (HET1)

�it = �1, i = 1, � � � ,N1, t = 1, � � � ,T

= �2, i = N1 + 1, � � � ,N , t = 1, � � � ,T

with N1 = �N /2
, where �A
 is the largest integer not less than A,
�1 = 0�5, and �2 = 1�5.

3. Time series one-break-in-volatility heteroskedasticity (HET2)

�it = �1, i = 1, � � � ,N , t = 1, � � � ,T1

= �2, i = 1, � � � ,N , t = T1 + 1, � � � ,T

with T1 = �T /2
, �1 = 0�5, and �2 = 1�5.
4. Conditional heteroskedasticity depending on a regressor (HET3)

�it = 
c [(zit ,2 − 1)/30]/c , i = 1, � � � ,N , t = 1, � � � ,T


c [·] is the inverse of the cumulative distribution function of chi-squared
distribution with degrees of freedom c . Since zit ,2 is drawn from a
uniform distribution on (1, 31), �it has mean 1 and variance 2/c , so it is
easy to control the degree of heteroskedasticity through the choice of
c . We employ c = 1.

5. Time Series conditional heteroskedasticity, GARCH(1,1) (HET4)

uit = �it�it , t = −49, � � � ,T , i = 1, � � � ,N ,

where

�2
it = �0 + �1u2

i ,t−1 + �2�
2
i ,t−1�

The value of parameters are chosen to be �0 = 0�5, �1 = 0�25, and
�2 = 0�25, and ui ,−50 = 0 with the first 50 observations being discarded,
so that the unconditional variance is E

(
u2
it

) = �0/ (1 − �1 − �2).
6. Time series conditional heteroskedasticity, GJR-GARCH(1,1) (HET5)

uit = �it�it , t = −49, � � � ,T , i = 1, � � � ,N ,

where

�2
it = �0 + �1�

2
i ,t−1 + �2

(∣∣ui ,t−1

∣∣− �3uit−1

)2
�
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The value of parameters are chosen to be �0 = 0�3, �1 = 0�5, �2 =
0�2, and �3 = 0�23, and ui ,−50 = 0 with the first 50 observations being
discarded.11

For power comparisons, the individual effects are generated according to

�i = �i

[√
R 2gi(z̄i) +

√
1 − R 2�i

]
, (18)

where the �i are i.i.d. N (0, 1), gi(z̄i) = �′3(z̄i − z̄)/s with �3 = (1, 1, 1)′, z̄
being overall average of zit , s being the standard deviation of �′3z̄i , and
the R 2 is from the regression of (18). With this set up, the variance of
inside of the square brackets is always unity across designs. We consider
two combinations of (�i ,R 2): (i) (�i ,R 2) = (0, 0), which is a simple null
model specification, with �i ≡ 0, and (ii) (�i ,R 2) = (v�, 1), which is simple
fixed effects specification (given that the zit are fixed over replications).12

To control the power, we consider v2
� = 0�1.

4.2. Asymptotic Tests

Four versions of the FE and RE test statistics are considered,
constructed using �̂(0)

N ≡ 1 and �̂(m)
N , m = 1, 2, 3, as defined at (10)–(12),

and all are based on the restricted estimator, �̂.13

1. F -test statistics (denoted F� in the Tables)

F (m)
� = �̂(m)

N (FN − 1) + 1, m = 0, 1, 2, 3, (19)

where

FN = (RSSR − RSSU )/(N − 1)
RSSU /(N (T − 1) − K )

≡ F (0)
� ,

is the standard F -test statistic. The corresponding test procedure, for
each separate statistic (19), employs critical vales from an F distribution
with n1 and n2 degrees of freedom, respectively, where n1 = N − 1 and
n2 = N (T − 1) − K . That is, for each m = 0, 1, 2, 3, reject H0 if F (m)

� >
cN ,�, where Pr

(
� > cN ,�

) = �, for chosen �, and � ∼ F (n1,n2)

11Note that the parameters chosen for specifications 5 and 6 ensure that E
∣∣uit
∣∣4+
 exists for

all error distributions; see Ling and McAleer (2002).
12We also considered a pure random effects specification, �i = v�, R 2 = 0, and the results show

that the power properties of the modified fixed effects test and the modified random effects test
are very similar.

13The estimator �̃N , based on the unrestricted estimator (i.e., fixed effects estimator), is also
considered, but the finite sample performance of the tests considered is monotonically inferior to
that based on the estimator of �̂N �
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2. One sided (positive) RE-test statistics (denoted R� in the tables)

R (m)
� = �̂(m)

N RN , m = 0, 1, 2, 3, (20)

where

RN =
√

NT
2 (T − 1)

[
û′
(IN ⊗ A) û

û′û

]
≡ R (0)

�

is the one-sided (positive) standard RE-test statistic. The corresponding
test procedure, for each separate statistic (20), employs critical values
from a N (0, 1) distribution. That is, for each m = 0, 1, 2, 3, reject H0 if
R (m)

� > z�, where Pr (Z > z�) = �, for chosen �, and Z ∼ N (0, 1).

4.3. Bootstrap Tests

As is well known, asymptotic theory can provide a poor approximation
to actual finite sample behaviour and that bootstrap procedures often lead
to more reliable inferences.14 Therefore, we also consider a simple wild
bootstrap procedure scheme, based on Mammen (1993) and Davidson and
Flachaire (2008), which might be employed in order to provide closer
agreement between the desired nominal and the empirical significance
level of the proposed test procedures and which has proved effective in
previous studies; see, for example, Godfrey and Orme (2004). The wild
bootstrap is implemented using the following steps:

1. Estimate the models (2) and (4) to get ûit , i = 1, � � � ,N , and construct
test statistics F (m)

� and R (m)
� , m = 0, 1, 2, 3;

2. Repeat the following B times:

(a) Generate u∗
it = vit ûit , where the vit are i.i.d., over i and t , taking the

discrete values ±1 with an equal probability of 0�5;
(b) Construct

y∗
it = z′

it �̂ + vit ûit = z′
it �̂ + u∗

it , (21)

obtain restricted and unrestricted OLS residuals û∗
it = y∗

it − z′
it �̂

∗ and
ũ∗
it = ỹ∗

it − x̃′
it �̃

∗
1, respectively, and the restricted and unrestricted

residual sums of squares (RSS ∗
R and RSS ∗

U , respectively);

14See Godfrey (2009) for an excellent guide to bootstrap test procedures for regression models.
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(c) Construct the bootstrap test statistics

F ∗(m)
� = �̂∗(m)

N (F ∗
N − 1) + 1, F ∗

N = (RSS ∗
R − RSS ∗

U )/(N − 1)
RSS ∗

U /(N (T − 1) − K )
≡ F ∗(0)

�

and

R ∗(m)
� = �̂∗(m)

N R ∗
N , R ∗

N =
√

NT
2 (T − 1)

[
û∗′

(IN ⊗ A) û∗

û∗′û∗

]
≡ R ∗(0)

� ,

where �̂∗(m)
N , m = 1, 2, 3 is constructed as in (10)–(12) but using û∗

it ,
and �̂∗(0)

N ≡ 1;

3. Calculate the proportion of bootstrap test statistics, F ∗(m)
� (respectively,

R ∗(m)
� ), from the B repetitions of Step 2c that are at least as large

as the actual value of F (m)
� (respectively, R (m)

� ). Let this proportion be
denoted by p̂(m) and the desired significance level be denoted by �. The
asymptotically valid rejection rule, for each m, is that H0 is rejected if
p̂(m) ≤ �.

The sampling behavior of all the above tests are investigated using 5000
replications of sample data and B = 200 bootstrap samples, employing a
nominal 5% significance level.15

Observe that the wild bootstrap scheme imposes symmetry on the u∗
it .

Because of this, it is readily shown that �̂∗(m)
N − �̂(3)

N = op∗(1), in probability,
m = 1, 2, 3, signifying that, for any � > 0, P ∗ (∣∣�̂∗(m)

N − �̂(3)
N

∣∣ > �
) = op(1), as

N → ∞, T fixed, where P ∗ is the probability measure induced by the wild
bootstrap conditional on the sample data. It can also be established that,

for example, �̂(3)
N

√
N
(
F ∗
N − 1

) d∗→ N
(
0, 2T

T−1

)
, in probability, implying that

supx

∣∣∣P ∗(�̂(3)
N

√
N
(
F ∗
N − 1

) ≤ x) − �T (x)
∣∣∣ = op(1), where �T (x) denotes the

distribution function of a N
(
0, 2T

T−1

)
random variable. Combining these

results, we obtain

sup
x

∣∣∣P ∗(�̂∗(m)
N

√
N
(
F ∗
N − 1

) ≤ x) − P (�̂(m)
N

√
N (FN − 1) ≤ x)

∣∣∣ = op(1),

m = 1, 2, 3,

which justifies the asymptotic validity of the wild bootstrap scheme
for F ∗(m)

� , m = 1, 2, 3, notwithstanding the fact the uit may not be
asymmetrically distributed. This will not be the case, however, for the

15It is often advocated that (B + 1) /100 should be an integer. However, running the
experiments with B = 199 does not change the results.
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unadjusted F -test statistic
√
N
(
F ∗
N − 1

)
. Thus, it will useful to investigate

how the wild bootstrap performs in finite samples when the true errors are
asymmetric.16

4.4. Results

Before looking at the results from the Monte Carlo study, and drawing
on the discussion in Godfrey et al. (2006), it is important to define criteria
to evaluate the performance of the different tests considered. Given the
large number of replications performed, the standard asymptotic test
for proportions can be used to test the null hypotheses that the true
significance level is equal to its nominal value. In practice, however, what
is important is not that the significance level of the test is identical to
the chosen nominal level, but rather that the true and nominal rejection
frequencies stay reasonably close, even when the test is only approximately
valid. Following Cochran’s (1952) suggestion, we shall regard a test as
being robust, relative to a nominal value of 5%, if its actual significance
level is between 4�5% and 5�5%. Considering the number of replications
used in these experiments, estimated rejection frequencies within the
range 3�9% to 6�1% are viewed as providing evidence consistent with the
robustness of the test, according to our definition.17

Under the null, with homoskedastic standard normal errors (reported
in Table 1, H0 : �i = 0), the rejection frequencies of both the asymptotic
F (0)
� ≡ FN and F (3)

� tests are close to the nominal significance level of 5%.
The asymptotic F -test based on F (2)

� , however, tends to under reject the null
when T is relatively large, whilst F (1)

� suffers from large size distortion with
empirical significance levels being considerably smaller than the nominal
5%� The size properties of the R� tests, for different �̂N , are qualitatively
similar to those of the F� tests, but tend to have empirical significance
levels that are smaller than those of the corresponding F� tests. Turning
our attention to the bootstrap tests, all the modified fixed and random
effects tests control the empirical significance levels very well. The results
are qualitatively similar for t5 and �26 errors and, confirming the analysis
of Orme and Yamagata (2006), F (0)

� ≡ FN appears quite robust to non-
normality, whilst in these cases as well the bootstrap tests provide very
close agreement between nominal and empirical significance levels, even
for F ∗(0)

� ≡ F ∗
N when the errors are asymmetric. Given these results, we now

just compare the power of the bootstrap tests. All bootstrap F� tests have

16Similarly to Goncalves and Kilian (2004), this derives from the asymptotic invalidity of
the wild bootstrap scheme when employed to estimate asymptotic standard errors associated with
nonpivotal statistics.

17Employing a standard asymptotic test these bounds are calculated as 4�5 − 1�96
√

4�5×95�5
5000 = 3�9

and 5�5 + 1�96
√

5�5×94�5
5000 = 6�1�
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TABLE 1 Rejection frequencies of the asymptotic and wild-bootstrap modified F-tests and
modified random effects tests under homoskedastic errors (HET0)

H0 : �i = 0 H1 : var (�i) = 0�1, �i correlated with regressors

Asymptotic tests Bootstrap tests Asymptotic tests Bootstrap tests

� 1 �̂(1)
N �̂(2)

N �̂(3)
N 1 �̂∗(1)

N �̂∗(2)
N �̂∗(3)

N 1 �̂(1)
N �̂(2)

N �̂(3)
N 1 �̂∗(1)

N �̂∗(2)
N �̂∗(3)

N

SN SN

N ,T F� F ∗
� F� F ∗

�

20, 5 5.8 2.8 4.7 5.9 6.2 5.9 5.9 6.1 29�0 18�0 25�4 29�4 30�4 29�9 29�8 30�4
50, 5 5.2 2.8 4.5 5.2 5.7 5.8 5.8 5.7 46�8 38�6 44�4 47�1 47�9 48�8 48�3 47�8
100, 5 4.7 3.1 4.1 4.8 5.3 5.2 5.3 5.3 72�1 66�6 70�8 72�3 73�0 74�3 73�6 73�0
50, 10 4.3 1.9 3.1 4.3 4.5 4.7 4.4 4.5 94�2 87�9 92�6 94�2 94�4 94�0 94�4 94�4
50, 20 4.7 1.6 3.4 4.8 5.1 5.2 5.0 5.1 100�0100�0 100�0 100�0 100�0 100�0 100�0 100�0

R� R ∗
� R� R ∗

�

20, 5 5.1 1.5 3.7 5.2 6.1 5.9 6.1 6.1 23�9 10�8 18�8 24�4 27�0 25�4 26�1 26�9
50, 5 4.6 2.3 3.9 4.5 5.6 5.6 5.6 5.5 32�5 20�4 29�3 32�7 35�9 35�1 35�3 35�8
100, 5 4.4 2.8 3.8 4.6 5.3 5.2 5.1 5.3 55�8 44�7 52�6 55�9 57�6 57�1 57�5 57�7
50, 10 4.1 1.7 2.9 4.0 4.5 4.8 4.5 4.5 89�7 77�7 87�2 89�8 90�5 89�6 90�3 90�5
50, 20 4.6 1.6 3.4 4.6 5.2 5.3 5.0 5.2 100�0 99�9 100�0 100�0 100�0 100�0 100�0 100�0

t5 t5

N ,T F� F ∗
� F� F ∗

�

20, 5 4.8 2.4 3.9 5.3 5.5 5.4 5.5 5.4 30�1 20�7 27�6 31�5 31�9 31�7 31�4 31�7
50, 5 4.6 2.7 4.0 4.9 5.3 5.0 5.3 5.2 47�9 40�3 46�4 49�0 49�2 50�5 50�0 49�1
100, 5 5.3 3.5 4.5 5.3 5.9 5.9 5.9 5.8 72�6 68�2 71�4 72�7 73�3 74�7 74�0 73�3
50, 10 5.2 2.1 4.0 5.3 5.7 5.4 5.6 5.7 93�6 87�1 92�0 93�6 94�0 93�3 93�5 93�9
50, 20 4.8 1.5 3.4 4.8 5.1 5.2 5.1 5.1 100�0 99�9 100�0 100�0 100�0 100�0 100�0 100�0

R� R ∗
� R� R ∗

�

20, 5 4.4 1.5 3.2 4.6 5.7 5.6 5.4 5.4 24�2 12�7 21�2 25�8 28�6 26�7 27�7 28�6
50, 5 4.1 2.3 3.6 4.5 5.5 5.1 5.3 5.4 32�9 21�8 30�2 33�9 36�4 35�1 36�1 36�5
100, 5 5.0 3.3 4.3 5.0 5.8 6.1 5.8 5.9 56�6 47�1 55�1 57�7 58�8 58�7 59�2 58�8
50, 10 5.0 2.0 3.8 5.0 5.9 5.4 5.6 5.8 89�3 77�6 87�1 89�7 90�1 88�3 89�9 90�1
50, 20 4.6 1.5 3.4 4.5 5.2 5.2 5.1 5.2 100�0 99�8 100�0 100�0 100�0 100�0 100�0 100�0

�26 �26

N ,T F� F ∗
� F� F ∗

�

20, 5 4.5 2.3 3.6 4.4 4.7 5.1 4.7 4.5 30�1 19�7 27�4 31�0 31�5 31�6 32�2 31�4
50, 5 5.1 2.3 3.6 4.8 4.9 5.0 5.0 4.9 46�3 38�4 44�2 46�6 47�2 49�1 47�6 47�3
100, 5 4.9 3.0 4.0 4.8 5.0 5.3 5.2 5.0 72�8 67�8 72�3 73�6 74�4 75�5 74�9 74�3
50, 10 4.5 1.9 3.3 4.4 5.1 5.4 5.0 5.1 93�0 86�9 91�5 93�3 93�3 92�7 93�4 93�4
50, 20 5.2 1.8 3.6 4.9 5.1 5.5 5.4 5.1 100�0 99�9 100�0 100�0 100�0 100�0 100�0 100�0

Continued
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TABLE 1 Continued

H0 : �i = 0 H1 : var (�i) = 0�1, �i correlated with regressors

Asymptotic tests Bootstrap tests Asymptotic tests Bootstrap tests

� 1 �̂(1)
N �̂(2)

N �̂(3)
N 1 �̂∗(1)

N �̂∗(2)
N �̂∗(3)

N 1 �̂(1)
N �̂(2)

N �̂(3)
N 1 �̂∗(1)

N �̂∗(2)
N �̂∗(3)

N

�26 �26

R� R ∗
� R� R ∗

�

20, 5 4.3 1.4 2.9 3.9 4.7 5.4 4.6 4.4 24�3 11�4 20�3 25�2 27�8 26�8 27�5 27�6
50, 5 4.6 1.8 3.1 4.1 4.9 4.9 4.9 4.8 31�5 20�5 27�8 31�6 34�2 33�3 34�1 34�2
100, 5 4.8 2.8 3.9 4.6 5.1 5.4 5.4 4.9 57�0 45�9 53�9 57�5 59�2 58�2 58�6 59�3
50, 10 4.4 1.7 3.2 4.3 5.1 5.3 5.0 5.1 89�1 76�5 86�7 89�3 89�8 88�1 89�5 89�9
50, 20 5.1 1.7 3.6 4.8 5.2 5.5 5.4 5.2 100�0 99�9 100�0 100�0 100�0 100�0 100�0 100�0

Notes: The model employed is yit = �i +∑3
j=1 zit ,j�j + uit , uit = �it�it , where zit ,1 = 1, zit ,2 is drawn

from a uniform distribution on (1, 31) independently for i and t , and zit ,3 is generated following
Nerlove (1971), such that zit ,3 = 0�1t + 0�5zit−1,3 + �it , where the value zi0,3 is chosen as 5 + 10�i0,
and �it (and �i0) is drawn from the uniform distribution on (−0�5, 0�5) independently for i and
t , in order to avoid any normality in regressors. These regressor values are held fixed over
replications. �j = 1 for j = 1, 2, 3. The i.i.d. standardized errors for �it are drawn from: the standard
normal distribution (SN ); the t distribution with five degrees of freedom (t5); and, the chi-square
distribution with six degrees of freedom (�26). For estimating size of the tests, �i = 0 and power
is investigated using �i = √

0�1g (zi) where gi(zi) is the standardised value of
∑3

j=1

∑T
t=1 zit ,j , so that

the regressors and �i are correlated. F� is the modified F -test and R� is the modified random
effects test, and F ∗

� and R ∗
� are their wild bootstrap tests, with different choice of �̂(m)

N , m =
0, 1, 2, 3 with �̂(0)

N ≡ 1; see section 4.2 and 4.3 Here �it = 1� The sampling behaviour of the tests
are investigated using 5000 replications of sample data and 200 bootstrap samples, employing a
nominal 5% significance level.

very similar power, as do the bootstrap R� tests. However, the power of the
bootstrap F� tests are uniformly higher than power of the corresponding
bootstrap R� tests which is as expected given the analysis in Section 3.4
because of the correlation between regressors and individual effects.

The above results indicate that, even when the errors are
homoskedastic, a wild bootstrap procedure still offers reliable finite sample
inference for all variants of the FE and RE tests considered. Now let us
look at the results under various heteroskedastic schemes. Table 2 reports
the results under cross-sectional one-break-in-volatility scheme (HET1).
First, and as predicted by the analysis in Section 3.5, both the F (0)

� ≡ FN
and R (0)

� ≡ RN tests reject the correct null too often. On the other hand,
the empirical significance levels of the other F� and R� tests are very
similar to those presented in homoskedastic case. As before, however, the
bootstrap F ∗

� and R ∗
� tests provide close agreement between nominal and

empirical significance levels, across all error distributions, so again it is
sensible to focus only on the power properties of these tests. In contrast
to the power properties under homoskedastic errors, under the HET1
scheme the power of bootstrap F ∗

� tests appear different across different
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TABLE 2 Rejection frequencies of the asymptotic and wild-bootstrap modified F-tests and
modified random effects tests under cross-sectional one-break-in-volatility heteroskedastic scheme
(HET1)

H0 : �i = 0 H1 : var (�i) = 0�1, �i correlated with regressors

Asymptotic tests Bootstrap tests Asymptotic tests Bootstrap tests

� 1 �̂(1)
N �̂(2)

N �̂(3)
N 1 �̂∗(1)

N �̂∗(2)
N �̂∗(3)

N 1 �̂(1)
N �̂(2)

N �̂(3)
N 1 �̂∗(1)

N �̂∗(2)
N �̂∗(3)

N

SN SN

N ,T F� F ∗
� F� F ∗

�

20, 5 9.4 2.7 4.9 6.6 6.1 5.8 5.9 5.9 26.9 14.2 18.4 21.0 20.5 22.8 20.5 20.0
50, 5 9.2 2.8 4.7 5.6 5.8 5.5 5.8 5.7 37.6 21.2 26.3 28.8 28.0 31.6 29.1 27.6
100, 5 9.1 3.2 4.7 5.4 5.5 5.4 5.5 5.5 55.2 40.4 43.3 44.7 44.2 49.5 46.2 44.1
50, 10 9.1 1.8 3.8 5.2 5.2 4.9 5.1 5.2 82.7 68.1 73.3 74.5 74.1 81.5 78.0 74.1
50, 20 8.7 1.2 2.9 4.5 4.8 4.8 4.9 4.8 99.8 98.5 99.5 99.4 99.5 99.7 99.7 99.5

R� R ∗
� R� R ∗

�

20, 5 8.6 1.6 3.7 5.6 6.1 5.6 5.8 5.9 22.5 8.3 13.8 16.6 18.0 19.8 18.2 17.7
50, 5 8.8 2.0 4.1 5.2 5.8 5.6 5.7 5.7 27.9 10.3 16.3 19.0 20.9 21.4 21.0 20.7
100, 5 8.7 2.8 4.3 5.1 5.5 5.3 5.4 5.4 42.7 24.9 29.7 31.9 32.9 36.3 34.0 32.6
50, 10 8.7 1.6 3.5 5.0 5.2 4.9 5.2 5.2 75.5 53.9 63.3 65.7 66.1 73.4 69.3 66.0
50, 20 8.6 1.2 3.0 4.6 4.8 4.7 4.9 4.8 99.7 97.6 99.0 99.1 99.0 99.5 99.5 99.0

t5 t5

N ,T F� F ∗
� F� F ∗

�

20, 5 8.5 2.7 4.6 6.0 5.8 5.6 5.4 5.6 26.6 16.0 20.0 21.9 21.7 23.5 22.4 21.1
50, 5 8.6 2.9 4.3 5.5 5.2 5.3 5.4 5.1 39.3 24.4 28.6 30.9 30.7 33.1 31.5 30.3
100, 5 10.4 3.3 4.8 6.2 5.8 6.0 6.1 5.8 56.9 43.2 46.4 47.4 47.3 52.3 49.5 47.1
50, 10 9.2 1.8 3.9 5.2 5.6 5.2 5.5 5.5 82.1 68.0 73.7 74.6 73.6 80.4 77.1 73.5
50, 20 8.8 1.2 3.0 4.7 5.1 5.3 4.7 5.1 99.7 98.2 99.0 99.3 99.2 99.4 99.4 99.2

R� R ∗
� R� R ∗

�

20, 5 7.6 1.8 3.6 5.1 5.9 5.5 5.6 5.6 22.4 9.3 14.6 17.6 19.2 21.0 19.4 18.4
50, 5 8.1 2.1 3.8 4.9 5.3 5.2 5.2 5.2 28.6 11.7 17.3 20.5 21.9 22.7 22.0 21.6
100, 5 9.9 2.8 4.4 5.7 6.0 6.0 6.0 5.9 44.5 27.2 32.4 35.1 35.6 38.8 37.1 35.5
50, 10 8.8 1.7 3.7 5.1 5.5 5.1 5.6 5.6 75.3 56.3 64.6 66.5 67.1 72.7 70.2 67.0
50, 20 8.7 1.3 3.0 4.7 5.1 5.3 4.8 5.0 99.5 96.9 98.5 99.0 98.9 99.0 99.1 98.9

�26 �26

N ,T F� F ∗
� F� F ∗

�

20, 5 8.4 2.6 4.5 5.5 5.1 5.4 5.0 4.9 26.4 15.1 18.8 20.8 19.9 23.0 21.1 19.3
50, 5 8.4 2.2 3.7 4.5 4.5 4.9 4.7 4.4 36.6 21.2 25.7 27.6 27.5 30.2 28.4 27.1
100, 5 9.5 3.0 4.4 5.2 5.5 5.5 5.3 5.4 57.3 41.0 44.5 45.9 45.7 50.6 47.6 45.6
50, 10 9.1 1.7 3.4 4.7 4.8 5.1 5.0 4.8 81.4 67.6 72.7 74.0 73.9 80.0 76.7 73.9
50, 20 8.5 1.6 3.4 5.1 4.7 5.1 4.7 4.7 99.7 98.4 99.4 99.5 99.4 99.5 99.6 99.4

Continued
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TABLE 2 Continued

H0 : �i = 0 H1 : var (�i) = 0�1, �i correlated with regressors

Asymptotic tests Bootstrap tests Asymptotic tests Bootstrap tests

� 1 �̂(1)
N �̂(2)

N �̂(3)
N 1 �̂∗(1)

N �̂∗(2)
N �̂∗(3)

N 1 �̂(1)
N �̂(2)

N �̂(3)
N 1 �̂∗(1)

N �̂∗(2)
N �̂∗(3)

N

�26 �26

R� R ∗
� R� R ∗

�

20, 5 7.6 1.4 3.2 4.7 5.3 5.2 5.2 5.0 22.2 8.5 14.1 16.2 17.8 19.7 18.5 17.3
50, 5 7.9 1.7 3.1 4.0 4.5 4.9 4.7 4.4 26.7 10.6 15.5 18.3 19.8 20.2 20.1 19.5
100, 5 9.1 2.5 4.1 4.9 5.4 5.4 5.4 5.4 43.9 25.9 30.2 32.9 33.2 37.1 34.8 33.0
50, 10 8.9 1.6 3.1 4.4 4.9 5.0 5.0 4.8 74.6 53.7 63.2 65.7 66.1 71.5 69.5 66.0
50, 20 8.4 1.6 3.4 5.1 4.8 5.2 4.7 4.8 99.6 97.3 99.0 99.1 99.1 99.3 99.4 99.0

Notes: See notes to Table 1. The DGP is identical to that for Table 1 except �it = �1, i = 1, � � � ,N1,
t = 1, � � � ,T , and �it = �2, i = N1 + 1, � � � ,N , t = 1, � � � ,T with N1 = �N /2
, where �A
 is the largest
integer not less than A, �1 = 0�5 and �2 = 1�5.

variants. For example, F ∗(0)
� ≡ F ∗

N and F ∗(3)
� have similar powers but are

slightly lower than that of F ∗(2)
� , which is again slightly exceeded by that

of F ∗(1)
� . This feature is qualitatively similar for the R ∗

� tests, but is less
striking. Finally, the results confirm again that F ∗

� has higher power than
that of R ∗

�.
Table 3 reports the test results under time-series one-break-in-volatility

scheme (HET2). In contrast to the results with HET1 scheme, but still
consistent with prediction of Section 3.5, both the F (0)

� ≡ FN and R (0)
� ≡

RN tests reject the null too infrequently, especially for N = 20, 50, 100 and
T = 5. As before the bootstrap versions control the size very well, and,
interestingly, the power ranking of the bootstrap tests is different than that
obtained under HET1. In fact, the F ∗(0)

� ≡ F ∗
N and F ∗(3)

� tests (respectively,
R ∗(0)

� = RN and R ∗(3)
� tests) still have similar powers but they are now slightly

higher than those of the F ∗(2)
� and F ∗(1)

� tests (respectively, R ∗(2)
� and R ∗(1)

�

tests), which are in this case comparable.
Based on the analysis in Section 3.5 it is possible to derive

approximate null rejection frequencies of the F (0)
� ≡ FN test analytically,

under the simple heteroskedastic schemes of HET1 and HET2. Given the
“population” value of �N , and a nominal significance level of � × 100%,
the rejection frequency of the FN test is, approximately, Pr �FN > c�,n1,n2�,
where Pr �Fn1,n2 > c�,n1,n2� = � and Fn1,n2 ∼ F (n1,n2). But this is identical
to Pr �Fn1,n2 > q�, where q = �N (c�,n1,n2 − 1) + 1. More precisely, consider
first the case of HET1 where a little calculation shows that, since N is
always even in our experiments, �N = 0�781. Using � = 0�05, it is then
straightforward to obtain q and Pr �Fn1,n2 > q�. Similar calculations can be
undertaken for the case HET2 but, here, �N varies according to whether T
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TABLE 3 Rejection frequencies of the asymptotic and wild-bootstrap modified F-tests and
modified random effects tests under time-series one-break-in-volatility heteroskedastic scheme
(HET2)

H0 : �i = 0 H1 : var (�i) = 0�1, �i correlated with regressors

Asymptotic tests Bootstrap tests Asymptotic tests Bootstrap tests

� 1 �̂(1)
N �̂(2)

N �̂(3)
N 1 �̂∗(1)

N �̂∗(2)
N �̂∗(3)

N 1 �̂(1)
N �̂(2)

N �̂(3)
N 1 �̂∗(1)

N �̂∗(2)
N �̂∗(3)

N

SN SN

N ,T F� F ∗
� F� F ∗

�

20, 5 3.1 3.1 4.3 5.2 5.5 5.6 5.7 5.6 27.2 20.4 25.8 32.7 33.3 29.5 29.7 33.5
50, 5 3.2 3.6 4.5 5.1 5.5 5.9 5.6 5.5 44.9 41.5 46.0 51.5 52.2 49.8 49.2 52.2
100, 5 2.9 3.7 4.5 4.8 5.5 5.5 5.5 5.5 70.7 68.6 71.0 75.7 76.2 74.3 73.2 76.3
50, 10 3.8 1.8 3.1 4.5 4.7 4.7 4.8 4.7 85.8 75.2 80.5 87.0 86.8 85.7 83.9 86.9
50, 20 4.2 1.6 3.3 4.5 5.1 5.2 5.4 5.1 99.9 99.5 99.7 99.9 99.9 99.8 99.9 99.9

R� R ∗
� R� R ∗

�

20, 5 2.6 2.0 3.6 4.5 5.7 5.4 5.7 5.7 21.3 12.1 19.1 26.5 30.5 25.2 26.1 30.6
50, 5 2.7 2.7 3.8 4.5 5.6 5.7 5.7 5.7 29.8 23.3 29.7 36.0 39.6 35.2 35.6 39.5
100, 5 2.7 3.3 4.1 4.4 5.6 5.5 5.4 5.6 53.3 48.6 53.4 59.8 62.3 57.5 57.7 62.3
50, 10 3.5 1.6 3.0 4.1 4.7 4.7 4.8 4.7 78.9 62.1 71.7 80.2 81.5 78.0 76.9 81.5
50, 20 4.1 1.6 3.2 4.4 5.1 5.2 5.3 5.1 99.8 99.0 99.5 99.8 99.9 99.7 99.7 99.9

t5 t5

N ,T F� F ∗
� F� F ∗

�

20, 5 3.0 3.4 4.0 4.9 5.4 5.4 5.4 5.5 29.1 23.3 29.6 35.8 36.2 32.2 33.2 36.3
50, 5 2.9 3.4 4.0 4.6 5.2 5.2 5.3 5.1 46.5 44.4 48.4 53.8 54.6 51.5 51.1 54.5
100, 5 3.3 4.4 5.0 5.5 6.0 6.0 6.1 6.0 71.9 70.7 72.9 76.9 77.7 75.1 75.0 77.6
50, 10 4.4 2.2 4.2 5.0 5.7 5.3 5.7 5.7 85.3 75.9 80.7 86.8 86.9 84.8 83.9 86.9
50, 20 4.0 1.7 3.2 4.5 5.1 5.2 4.9 5.1 99.9 99.1 99.5 99.9 99.9 99.7 99.6 99.9

R� R ∗
� R� R ∗

�

20, 5 2.3 1.9 2.8 3.9 5.4 5.4 5.3 5.3 22.9 13.9 21.8 29.3 32.9 27.8 29.4 33.1
50, 5 2.3 2.7 3.4 4.0 5.3 5.3 5.4 5.3 31.0 25.7 32.4 38.4 41.8 37.1 38.2 41.7
100, 5 3.0 3.9 4.5 5.0 5.8 6.1 6.1 5.8 55.5 52.6 56.7 63.2 64.8 60.5 61.0 64.9
50, 10 4.1 2.0 3.9 4.7 5.7 5.4 5.8 5.8 79.2 63.6 72.9 80.7 81.9 78.0 77.5 81.8
50, 20 3.9 1.6 3.2 4.3 5.0 5.2 5.0 5.0 99.9 98.7 99.3 99.9 99.9 99.5 99.5 99.8

�26 �26

N ,T F� F ∗
� F� F ∗

�

20, 5 3.2 2.8 3.8 4.3 4.6 5.2 4.7 4.6 28.8 22.7 27.9 35.1 35.9 31.1 32.0 35.9
50, 5 3.4 3.0 3.8 4.2 4.8 4.6 4.7 4.7 44.2 41.4 45.2 51.0 52.2 49.4 49.0 52.1
100, 5 3.3 3.7 4.5 4.6 5.1 5.0 5.2 5.0 71.8 70.7 72.9 77.4 77.6 75.6 74.6 77.6
50, 10 4.4 2.3 3.7 4.9 5.3 5.5 5.4 5.3 84.1 74.7 79.8 85.5 85.8 83.8 82.8 85.8
50, 20 4.8 2.0 3.5 4.8 4.8 5.2 4.8 4.8 99.9 99.2 99.7 99.9 99.9 99.9 99.9 99.9

Continued
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TABLE 3 Continued

H0 : �i = 0 H1 : var (�i) = 0�1, �i correlated with regressors

Asymptotic tests Bootstrap tests Asymptotic tests Bootstrap tests

� 1 �̂(1)
N �̂(2)

N �̂(3)
N 1 �̂∗(1)

N �̂∗(2)
N �̂∗(3)

N 1 �̂(1)
N �̂(2)

N �̂(3)
N 1 �̂∗(1)

N �̂∗(2)
N �̂∗(3)

N

�26 �26

R� R ∗
� R� R ∗

�

20, 5 2.5 1.9 2.7 3.4 4.5 5.1 4.6 4.4 22.1 14.3 21.1 28.1 32.1 26.8 27.8 32.2
50, 5 2.9 2.5 3.2 3.7 4.7 4.9 4.6 4.6 27.9 22.2 28.1 35.0 38.3 33.9 34.4 38.5
100, 5 3.1 3.4 4.1 4.4 5.2 5.2 5.2 5.1 54.7 50.2 54.8 62.0 64.1 59.0 59.1 64.2
50, 10 4.2 1.9 3.4 4.6 5.1 5.5 5.4 5.1 77.8 61.4 71.5 79.7 81.0 76.9 77.0 81.0
50, 20 4.7 2.0 3.5 4.7 4.7 5.0 4.8 4.7 99.9 98.7 99.4 99.9 99.9 99.7 99.8 99.9

Notes: See notes to Table 1. The DGP is identical to that for Table 1 except �it = �1, i = 1, � � � ,N ,
t = 1, � � � ,T1, �it = �2, i = 1, � � � ,N , t = T1 + 1, � � � ,T with T1 = �T /2
, �1 = 0�5, and �2 = 1�5.

is even (�N = 1�02) or odd (�N = 1�13). From these calculations we obtain
the following (approximate) significance levels for our choices of (N ,T ):

Approximate significance levels of FN

T = 5 N = 50

N = 20 N = 50 N = 100 T = 10 T = 20

HET1: 8�8% 9�2% 9�4% 9�2% 9�2%
HET2: 3�5% 3�4% 3�3% 4�8% 4�8%

As can be seen, the obtained empirical significance levels, for FN , are
qualitatively very similar to these predicted values.

Table 4 summarises the results under conditional heteroskedasticity
depending on a regressor zit ,2 (HET3), where �it = 
1[(zit ,2 − 1)/30], i =
1, � � � ,N , t = 1, � � � ,T , and 
1[·] is the inverse of the cumulative distribution
function of the �21 distribution. Since the zit ,2 are initially i.i.d. draws from
a uniform distribution on (1, 31), the values of �it(zit ,2) are realisations
from a �21 distribution. This means that even though for a given N (and
T ) �it will be held fixed for each replication of data, possibly yielding a
realisation of �N �= 1, as N increases a Law of Large Numbers implies that
the given realisation of �N will converge to unity. For example, when N =
20 and T = 5, �N = 1�36, yielding a predicted (approximate) significance
level for FN of 1�9%, which explains the under-rejection of this test in our
experiments. For larger sample sizes, the value of �N does, indeed, tend to
unity, and the empirical significance level of FN converges to the nominal
level, as expected. Due to the larger average error variance encountered
here, than that under other heteroskedastic schemes, the power of the tests
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TABLE 4 Rejection frequencies of the asymptotic and wild-bootstrap modified F-tests and
modified random effects tests under conditional heteroskedasticity depending on a regressor
(HET3)

H0 : �i = 0 H1 : var (�i) = 0�1, �i correlated with regressors

Asymptotic tests Bootstrap tests Asymptotic tests Bootstrap tests

� 1 �̂(1)
N �̂(2)

N �̂(3)
N 1 �̂∗(1)

N �̂∗(2)
N �̂∗(3)

N 1 �̂(1)
N �̂(2)

N �̂(3)
N 1 �̂∗(1)

N �̂∗(2)
N �̂∗(3)

N

SN SN

N ,T F� F ∗
� F� F ∗

�

20, 5 2.1 3.9 4.6 5.3 5.7 5.5 5.8 5.4 9.8 13.1 18.5 20.1 20.8 17.5 20.6 20.5
50, 5 5.7 3.1 4.1 4.8 5.4 5.1 5.1 5.1 18.5 13.9 16.9 18.9 19.8 19.0 19.6 19.4
100, 5 5.6 3.9 4.9 5.3 6.0 6.3 5.9 5.8 30.0 25.9 29.7 31.1 32.7 32.7 32.5 32.4
50, 10 5.5 2.6 4.0 5.1 5.5 5.5 5.6 5.5 47.5 31.4 40.5 45.2 46.3 43.5 45.3 46.1
50, 20 5.4 2.2 3.9 5.1 5.5 5.4 5.5 5.5 80.6 64.2 75.6 79.6 80.0 77.7 79.7 80.0

R� R ∗
� R� R ∗

�

20, 5 1.7 2.5 3.4 4.4 5.9 6.0 5.9 6.0 7.2 7.8 13.4 16.0 18.9 15.8 18.6 18.6
50, 5 5.1 2.5 3.3 4.1 5.6 5.3 5.2 5.3 13.1 7.6 10.8 12.6 15.4 13.8 15.1 14.8
100, 5 5.3 3.5 4.4 4.9 6.0 6.3 6.0 5.8 21.7 16.1 20.7 22.7 25.2 23.9 24.9 24.9
50, 10 5.3 2.5 3.7 4.8 5.5 5.4 5.5 5.4 41.0 22.6 33.0 38.5 40.5 36.5 38.8 40.2
50, 20 5.3 2.2 3.7 5.0 5.4 5.4 5.4 5.4 76.9 57.5 71.6 75.9 77.0 73.8 76.8 76.9

t5 t5

N ,T F� F ∗
� F� F ∗

�

20, 5 1.6 4.1 4.7 5.2 5.4 5.4 5.3 5.4 10.4 15.5 20.8 22.5 23.5 19.8 22.8 23.1
50, 5 5.6 3.7 4.6 5.3 5.7 5.7 5.4 5.6 18.7 16.6 20.0 21.5 23.1 22.2 23.3 22.9
100, 5 4.4 3.4 4.2 4.5 5.4 5.4 5.4 5.3 30.9 28.8 33.0 35.1 36.7 35.5 36.4 36.3
50, 10 6.1 2.9 4.2 5.5 5.9 5.8 5.9 5.8 49.7 35.6 44.8 48.5 49.4 46.8 48.7 49.4
50, 20 4.6 1.8 3.2 4.6 5.1 5.5 5.0 5.1 79.4 65.1 76.2 79.6 79.8 77.5 79.5 79.7

R� R ∗
� R� R ∗

�

20, 5 1.3 2.4 3.1 3.8 5.6 5.7 5.3 5.3 7.7 9.2 15.2 17.9 21.2 17.4 20.4 20.8
50, 5 5.1 2.7 3.7 4.3 5.7 5.6 5.4 5.5 13.3 9.1 12.4 14.9 17.6 15.4 17.0 17.3
100, 5 4.2 3.1 3.8 4.3 5.3 5.2 5.3 5.2 21.9 18.0 23.3 25.6 28.0 26.4 27.8 27.6
50, 10 5.7 2.4 3.8 5.2 5.9 5.8 5.9 5.8 43.3 26.7 38.0 42.8 44.4 40.0 43.0 44.2
50, 20 4.6 1.7 3.2 4.4 5.1 5.5 5.0 5.1 76.3 59.8 72.8 76.5 77.4 73.7 76.8 77.3

�26 �26

N ,T F� F ∗
� F� F ∗

�

20, 5 1.8 4.4 4.9 5.3 5.7 6.0 5.5 5.5 10.6 13.2 17.9 19.3 20.7 17.6 20.3 20.2
50, 5 5.4 3.4 4.3 4.8 5.4 5.0 5.0 5.0 16.9 13.3 15.8 17.2 18.5 18.1 18.6 18.0
100, 5 5.4 3.7 4.2 4.7 5.6 5.5 5.5 5.4 27.8 25.1 28.1 29.9 31.4 31.1 31.0 31.0
50, 10 6.0 2.5 3.7 4.6 5.0 5.5 5.5 4.9 47.9 33.7 41.5 46.1 47.3 46.6 46.7 47.2
50, 20 4.5 1.5 3.1 3.9 4.2 4.5 4.7 4.2 80.0 66.7 77.0 80.5 80.9 79.4 80.9 80.8

Continued
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TABLE 4 Continued

H0 : �i = 0 H1 : var (�i) = 0�1, �i correlated with regressors

Asymptotic tests Bootstrap tests Asymptotic tests Bootstrap tests

� 1 �̂(1)
N �̂(2)

N �̂(3)
N 1 �̂∗(1)

N �̂∗(2)
N �̂∗(3)

N 1 �̂(1)
N �̂(2)

N �̂(3)
N 1 �̂∗(1)

N �̂∗(2)
N �̂∗(3)

N

�26 �26

R� R ∗
� R� R ∗

�

20, 5 1.4 2.7 3.2 4.0 5.7 5.9 5.6 5.6 8.0 8.2 13.1 14.8 18.4 15.3 17.9 18.0
50, 5 4.8 2.8 3.6 4.2 5.3 5.1 5.1 4.9 12.3 6.9 9.7 11.4 14.4 12.6 13.8 14.1
100, 5 5.2 3.4 3.9 4.4 5.6 5.4 5.4 5.3 20.5 14.7 19.0 21.2 23.5 21.8 22.8 23.1
50, 10 5.7 2.3 3.5 4.4 5.1 5.5 5.4 5.0 40.9 23.7 33.2 38.6 40.6 38.6 39.7 40.3
50, 20 4.4 1.4 3.0 3.8 4.2 4.4 4.7 4.2 76.5 60.5 72.9 77.0 78.0 75.8 77.9 77.9

Notes: See notes to Table 1. The DGP is identical to that for Table 1 except �it = 
c [(zit ,2 −
1)/30]/c , i = 1, � � � ,N , t = 1, � � � ,T , where 
c [·] is the inverse of the cumulative distribution function
of chi-squared distribution with degrees of freedom c . Since zit ,2 is drawn from a uniform
distribution on (1, 31), �it has mean 1 and variance 2/c , so it is easy to control the degree of
heteroskedasticity through the choice of c . We employ c = 1.

are lower although, qualitatively, the results are very similar to those under
HET0 but with F ∗(0)

� = F ∗
N and F ∗(3)

� (respectively, R ∗(0)
� = R ∗

N and R ∗(3)
� )

enjoying a slight power advantage and the F ∗
� tests being more powerful

than their R ∗
� counterparts.

The results under symmetric conditional heteroskedasticity,
GARCH(1,1) (HET4), are reported in Table 5. Similar to the results
obtained under HET1, and as predicted by the analysis of Section 3.5,
the F (0)

� = FN test rejects a correct null too frequently but the empirical
significance levels of other variants of the F� tests are very similar to
those presented in homoskedastic case. Again, all the bootstrap F ∗

� tests
control the empirical significance levels very well, and the power rankings
are, from the lowest, F ∗(0)

� = F ∗
N and F ∗(3)

� , followed by F ∗(2)
� , then F ∗(1)

� .
The same comments apply to the bootstrap R ∗

� tests, which again exhibit
lower power than their F ∗

� counterparts. The results under asymmetric
conditional heteroskedasticity, GJR-GARCH(1,1) (HET5), are summarised
in Table 6. In contrast to GARCH model, GJR-GARCH is an asymmetric
model of heteroskedasticity with leverage, and E

(
u2
ituisuir

) �= 0 in general,
rendering �̂(3)

N inconsistent, meanwhile �̂(1)
N and �̂(2)

N remain consistent.
Despite this, the experimental results are qualitatively very similar to those
under GARCH model. All the bootstrap F ∗

� tests, including F ∗(3)
� , control

the empirical significance levels very well, and the power rankings of the
F ∗
� and R ∗

� tests are very similar to those obtained under the symmetric
GARCH models.
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TABLE 5 Rejection frequencies of the asymptotic and wild-bootstrap modified F-tests and
modified random effects tests under conditional heteroskedasticity, GARCH(1,1) (HET4)

H0 : �i = 0 H1 : var (�i) = 0�1, �i correlated with regressors

Asymptotic tests Bootstrap tests Asymptotic tests Bootstrap tests

� 1 �̂(1)
N �̂(2)

N �̂(3)
N 1 �̂∗(1)

N �̂∗(2)
N �̂∗(3)

N 1 �̂(1)
N �̂(2)

N �̂(3)
N 1 �̂∗(1)

N �̂∗(2)
N �̂∗(3)

N

SN SN

N ,T F� F ∗
� F� F ∗

�

20, 5 7.2 2.3 4.5 6.0 6.0 5.8 5.8 5.8 30�5 17�6 24�3 27�5 27�5 28�8 28�1 27�1
50, 5 7.9 2.3 4.4 5.5 5.8 5.6 5.4 5.7 47�2 34�9 39�1 41�2 40�9 46�2 42�8 40�7
100, 5 8.8 2.9 5.1 6.3 6.0 5.8 6.0 6.0 71�1 60�8 62�9 64�4 63�4 70�4 66�2 63�3
50, 10 6.8 1.8 3.9 5.2 5.7 5.9 5.5 5.7 92�7 85�3 89�9 90�9 90�8 92�6 91�9 90�8
50, 20 5.6 1.6 3.6 4.9 5.3 5.6 5.3 5.3 100�0 99�9 100�0 100�0 100�0 100�0 100�0 100�0

R� R ∗
� R� R ∗

�

20, 5 6.5 1.3 3.5 5.3 6.0 5.7 5.8 5.8 25�7 10�1 17�9 22�5 24�2 24�6 24�5 23�8
50, 5 7.4 1.9 3.7 5.1 5.8 5.4 5.5 5.7 33�7 18�4 24�9 28�6 29�2 32�3 30�4 29�0
100, 5 8.6 2.6 4.5 5.9 6.0 5.8 5.9 6.0 55�6 40�3 45�9 48�1 49�0 53�2 50�5 49�0
50, 10 6.5 1.6 3.7 5.1 5.6 5.8 5.5 5.4 88�6 74�0 83�2 86�0 85�7 87�4 87�0 85�7
50, 20 5.5 1.6 3.6 4.8 5.3 5.6 5.3 5.3 100�0 99�8 100�0 99�9 100�0 100�0 100�0 100�0

t5 t5

N ,T F� F ∗
� F� F ∗

�

20, 5 7.9 1.9 4.2 5.7 5.3 5.1 5.1 5.1 32�7 20�8 27�0 29�7 29�0 31�4 29�8 28�5
50, 5 9.2 2.6 4.4 5.8 5.4 5.3 5.1 5.3 49�7 36�5 41�1 42�7 41�4 47�1 43�6 41�1
100, 5 11.5 3.5 5.6 6.5 6.3 6.2 6.4 6.3 70�8 59�0 59�9 60�3 59�3 67�3 62�2 59�2
50, 10 8.2 1.9 4.0 5.5 5.6 5.5 5.3 5.5 91�9 82�8 86�9 87�8 86�8 90�6 88�8 86�8
50, 20 6.9 1.5 3.8 5.3 5.4 5.5 5.5 5.3 99�9 99�3 99�6 99�4 99�3 99�7 99�7 99�3

R� R ∗
� R� R ∗

�

20, 5 7.4 1.3 3.2 5.1 5.4 5.1 5.2 5.2 27�7 12�0 19�8 24�0 25�7 26�3 26�2 25�2
50, 5 8.7 2.0 3.7 5.3 5.4 5.1 5.2 5.3 36�4 20�0 26�3 29�2 30�5 33�3 31�4 30�2
100, 5 11.1 3.0 5.0 6.2 6.3 6.3 6.4 6.3 56�9 39�5 44�6 46�3 46�6 52�4 48�8 46�4
50, 10 8.0 1.8 3.6 5.3 5.6 5.4 5.3 5.6 87�7 72�1 80�2 82�3 81�9 85�4 84�4 81�9
50, 20 6.8 1.5 3.7 5.2 5.4 5.5 5.5 5.3 99�9 99�0 99�4 99�4 99�2 99�7 99�6 99�1

�26 �26

N ,T F� F ∗
� F� F ∗

�

20, 5 6.9 1.9 3.3 4.4 3.7 4.2 3.7 3.4 29�8 17�2 23�2 26�2 25�1 28�0 25�9 24�6
50, 5 8.1 2.0 3.3 4.7 4.3 4.2 4.1 4.2 46�2 33�1 36�9 38�9 37�6 44�6 40�3 37�3
100, 5 9.3 1.8 3.0 4.6 3.8 4.4 3.5 3.7 68�3 56�2 57�3 58�7 57�3 66�5 60�3 57�0
50, 10 7.4 1.2 2.9 4.5 4.3 4.7 4.1 4.3 92�4 84�4 87�6 89�2 88�4 92�3 89�9 88�3
50, 20 6.4 1.1 2.7 4.5 4.8 4.8 4.4 4.8 100�0 99�8 99�9 99�9 99�8 100�0 99�9 99�8

Continued
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TABLE 5 Continued

H0 : �i = 0 H1 : var (�i) = 0�1, �i correlated with regressors

Asymptotic tests Bootstrap tests Asymptotic tests Bootstrap tests

� 1 �̂(1)
N �̂(2)

N �̂(3)
N 1 �̂∗(1)

N �̂∗(2)
N �̂∗(3)

N 1 �̂(1)
N �̂(2)

N �̂(3)
N 1 �̂∗(1)

N �̂∗(2)
N �̂∗(3)

N

�26 �26

R� R ∗
� R� R ∗

�

20, 5 6.1 1.2 2.2 3.9 3.7 4.1 3.9 3.5 24�5 9�7 16�5 20�5 22�3 23�6 22�7 21�7
50, 5 7.6 1.5 2.5 4.0 4.2 4.4 4.0 4.1 33�6 17�1 22�8 26�1 27�0 30�2 27�7 26�5
100, 5 9.0 1.5 2.7 4.2 3.8 4.4 3.6 3.8 53�1 35�4 40�1 42�6 43�0 48�8 44�6 42�9
50, 10 7.2 1.0 2.6 4.4 4.3 4.8 4.2 4.3 87�8 72�4 81�1 84�0 83�3 86�3 85�1 83�2
50, 20 6.3 1.1 2.7 4.4 4.8 4.8 4.4 4.8 100�0 99�6 99�8 99�9 99�8 100�0 99�9 99�8

Notes: See notes to Table 1. The DGP is identical to that for Table 1 except uit = �it�it , t =
−49, � � � ,T , i = 1, � � � ,N , where �2

it = �0 + �1u2
i ,t−1 + �2�

2
i ,t−1. The value of parameters are chosen to

be �0 = 0�5, �1 = 0�25 and �2 = 0�25.

5. CONCLUSIONS

This article has provided an asymptotic analysis of the sampling
behaviour of the standard F -test statistic for fixed effects, in a static linear

TABLE 6 Rejection frequencies of the asymptotic and wild-bootstrap modified F-tests and
modified random effects tests under conditional heteroskedasticity, GJR-GARCH(1,1) (HET5)

H0 : �i = 0 H1 : var (�i) = 0�1, �i correlated with regressors

Asymptotic tests Bootstrap tests Asymptotic tests Bootstrap tests

� 1 �̂(1)
N �̂(2)

N �̂(3)
N 1 �̂∗(1)

N �̂∗(2)
N �̂∗(3)

N 1 �̂(1)
N �̂(2)

N �̂(3)
N 1 �̂∗(1)

N �̂∗(2)
N �̂∗(3)

N

SN SN

N ,T F� F ∗
� F� F ∗

�

20, 5 7�7 2.4 4.8 6.4 6.2 5.6 5.9 6.1 29�3 16�7 23�0 26�2 26�1 27�9 26�6 25�7
50, 5 8�4 2.5 4.3 5.6 5.6 5.5 5.4 5.5 45�1 32�1 36�8 38�5 37�6 43�7 39�6 37�2
100, 5 9�9 3.0 4.9 6.4 6.2 6.1 5.8 6.0 68�3 56�8 59�2 60�4 59�1 66�4 61�4 59�1
50, 10 7�6 1.4 3.8 5.8 5.7 5.9 5.8 5.7 90�9 80�9 86�0 87�7 86�8 90�3 88�6 86�8
50, 20 6�5 1.3 3.5 5.2 5.4 5.2 5.2 5.4 100�0 99�8 99�9 100�0 99�9 100�0 99�9 99�9

R� R ∗
� R� R ∗

�

20, 5 7�0 1.4 3.7 5.5 6.3 5.6 6.1 6.1 24�7 9�5 17�0 21�2 23�0 23�8 23�1 22�5
50, 5 7�8 1.9 3.7 5.2 5.6 5.3 5.3 5.4 32�5 16�3 22�3 26�2 26�8 30�0 27�6 26�6
100, 5 9�6 2.4 4.5 6.1 6.1 6.0 5.7 6.1 53�3 35�9 41�7 44�8 45�5 49�8 46�7 45�3
50, 10 7�3 1.3 3.6 5.6 5.7 5.8 5.9 5.7 85�5 69�6 78�5 81�6 81�3 84�5 82�8 81�1
50, 20 6�4 1.3 3.5 5.2 5.5 5.2 5.2 5.5 100�0 99�6 99�9 99�9 99�9 99�9 99�9 99�9

Continued
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TABLE 6 Continued

H0 : �i = 0 H1 : var (�i) = 0�1, �i correlated with regressors

Asymptotic tests Bootstrap tests Asymptotic tests Bootstrap tests

� 1 �̂(1)
N �̂(2)

N �̂(3)
N 1 �̂∗(1)

N �̂∗(2)
N �̂∗(3)

N 1 �̂(1)
N �̂(2)

N �̂(3)
N 1 �̂∗(1)

N �̂∗(2)
N �̂∗(3)

N

t5 t5

N ,T F� F ∗
� F� F ∗

�

20, 5 8�2 1.9 4.3 6.2 5.6 5.0 5.4 5.4 31�5 20�1 26�1 28�0 27�4 30�2 28�7 26�9
50, 5 10�0 2.6 4.6 6.3 5.7 5.5 5.3 5.5 48�0 35�1 38�2 40�0 38�9 44�9 40�8 38�5
100, 5 12�6 3.6 5.4 6.8 6.5 6.1 6.3 6.4 67�8 54�9 56�2 56�8 55�3 63�5 58�3 55�0
50, 10 9�3 1.6 3.6 5.6 5.5 5.5 5.1 5.5 90�2 79�2 82�4 83�8 82�2 88�4 84�9 82�1
50, 20 8�0 1.5 3.3 5.5 5.4 5.1 5.3 5.4 99�8 98�9 99�0 99�1 98�7 99�5 99�2 98�7

R� R ∗
� R� R ∗

�

20, 5 7�6 1.2 3.3 5.4 5.7 5.1 5.3 5.4 26�5 11�6 19�3 23�1 24�5 25�8 25�2 24�0
50, 5 9�6 1.9 3.7 5.8 5.7 5.2 5.2 5.5 35�8 18�0 25�1 27�7 28�9 32�3 29�9 28�6
100, 5 12�0 2.9 4.8 6.4 6.5 6.1 6.2 6.4 54�9 36�0 41�1 43�8 42�8 49�1 45�3 42�6
50, 10 9�0 1.5 3.3 5.4 5.5 5.5 5.0 5.5 85�0 67�9 75�4 77�3 76�5 82�3 79�4 76�4
50, 20 7�9 1.4 3.3 5.5 5.4 5.1 5.2 5.4 99�7 98�3 98�9 98�9 98�5 99�4 99�0 98�4

�26 �26

N ,T F� F ∗
� F� F ∗

�

20, 5 6�5 2.2 3.4 4.7 4.2 4.8 4.4 4.1 32�1 19�6 26�3 29�0 28�5 31�5 29�7 28�2
50, 5 7�2 2.6 3.8 4.8 4.7 5.0 4.7 4.6 49�5 38�0 42�9 44�3 43�9 49�6 46�2 43�5
100, 5 7�6 2.3 3.4 4.4 4.1 5.1 4.2 4.1 74�0 64�3 67�0 68�0 67�4 73�1 69�9 67�3
50, 10 6�6 1.6 3.3 4.5 4.7 5.4 4.7 4.7 94�6 88�0 91�7 92�8 92�4 94�1 93�4 92�3
50, 20 5�7 1.3 3.1 4.5 4.7 5.0 4.6 4.7 100�0 99�9 100�0 100�0 100�0 100�0 100�0 100�0

R� R ∗
� R� R ∗

�

20, 5 5�9 1.3 2.5 4.1 4.3 5.0 4.6 4.1 26�3 10�9 19�6 23�4 25�2 26�1 25�7 24�8
50, 5 6�7 2.0 3.2 4.3 4.7 4.9 4.5 4.6 35�1 20�1 26�6 30�2 31�1 33�9 31�9 30�8
100, 5 7�5 2.0 3.1 4.1 4.1 5.1 4.2 4.0 57�6 42�8 48�6 50�3 51�5 56�0 53�0 51�3
50, 10 6�3 1.4 3.1 4.3 4.8 5.5 4.7 4.7 90�7 77�6 86�1 88�4 88�0 89�6 89�4 87�9
50, 20 5�6 1.2 3.1 4.4 4.7 5.0 4.7 4.7 100�0 99�9 100�0 100�0 100�0 100�0 100�0 100�0

Notes: See notes to Table 1. The DGP is identical to that for Table 1 except uit = �it�it , t =
−49, � � � ,T , i = 1, � � � ,N , where �2

it = �0 + �1�
2
i ,t−1 + �2(|ui ,t−1| − �3uit−1)

2. The value of parameters
are chosen to be �0 = 0�3, �1 = 0�5, �2 = 0�2 and �3 = 0�23.

panel data model, under both non-normality and heteroskedasticity of
the error terms, when the number of cross-sections, N , is large and T ,
the number of time periods, is fixed. First, it has been shown that a
linear transformation of the commonly cited F and RE tests (using a
simple function of restricted residuals) provides asymptotically valid test
procedures, when employed in conjunction with the usual F and standard
normal critical values (respectively). Second, it has been shown that the
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asymptotic relationship between the heteroskedastic robust F -test and the
RE-test statistics, carries over from the homoskedastic case. That is, under
(pure) local random effects, they share the same asymptotic power, whilst
under local fixed (or correlated) individual effects the heteroskedastic
robust F -test enjoys higher asymptotic power. Third, we have provided
qualitative predictions about the approximate true significance levels
of the standard F and RE Tests in the presence of certain forms of
heteroskedasticity. These theoretical findings are supported by Monte
Carlo evidence. Finally, although asymptotic theory does not always provide
a good approximation to finite sample behaviour, our experiments show
that all the wild bootstrap versions of these tests, employing the resampling
scheme advocated by Davidson and Flachaire (2008), yield reliable
inferences in the sense of close agreement between nominal and actual
significance levels. There are slight differences in the power properties
of these tests, although none dominates across the different models
of heteroskedasticity considered. Thus, for example, the wild boostrap
version of the unadjusted F -test appears to behave quite favourably under
homoskedasticity and general heteroskedasticity both in terms of finite
sample significance levels and power, and even under asymmetric errors
for which it is not asymptotically justified.

APPENDIX

In what follows ‖C‖ =
√
tr
(
C′C

) =
√∑

i

∑
j c

2
ij denotes the Euclidean

norm of a matrix C = {cij}.
Proof of Lemma 1. Write Wi = u′

iAui√
T (T−1) , which are independent, so

that HN = 1√
N

∑N
i=1 Wi and E �Wi� = 0, by Assumption A1(ii). Since

‖A‖ = √
T (T − 1),

∣∣Wi

∣∣ = ∣∣u′
iAui

∣∣
√
T (T−1) ≤ ‖ui‖2

∣∣∣∣A∣∣∣∣√
T (T−1) = ‖ui‖2. Thus, by Minkowski’s

inequality and Assumption A3(i), for some 
 > 0,

E
∣∣Wi

∣∣2+
 ≤ E

∣∣∣∣∣
T∑
t=1

u2
it

∣∣∣∣∣
2+


≤
[

T∑
t=1

{
E
∣∣u2

it

∣∣2+

} 1

2+


]2+


= O(1),

so that �N = 1
2N

∑N
i=1 E

(
W 2

i

) = O(1). With Assumption A3(ii), a standard

(Liapounov) Central Limit Theorem yields �−1/2
N HN

d→ N (0, 1). �

Proof of Proposition 1. The method of proof is nearly identical to that
of (Orme and Yamagata, 2006, Proposition 1) but where, now, our
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assumptions allow for heteroskedasticity.

(i) Let SN = (RSSR − RSSU )/(N − 1) and �̃2 = RSSU /(N (T − 1) −K ),
so that

�̄2
N

√
N (FN − 1) = �̄2

N

�̃2

√
N
(
SN − �̃2

)
� (22)

We first show that �̃2 − �̄2
N = op (1), so that (since �̄2

N is uniformly positive

by Assumption A2(v)) �̃2/�̄2
N

p→ 1. Following (Orme and Yamagata, 2006,
Proof of Proposition 1), we can write

�̃2 = N
N (T − 1) − K

u′ (MX̃ − PD)u
N

= N
N (T − 1) − K

{
u′u
N

− u′PX̃u
N

− u′PDu
N

}
= u′MDu

N (T − 1)
+ Op(N −1)

because u′u
N , u′PDu

N , and u′PX̃u are all Op(1) and N
N (T−1)−K = 1

T−1 + O(N −1).
Therefore,

�̃2 − �̄2
N = u′MDu

N (T − 1)
− T �̄2

N

T − 1
+ �̄2

N

T − 1
+ Op(N −1)

= 1
T − 1

T
(

1
NT

N∑
i=1

T∑
t=1

u2
it − �̄2

N

)
−
 1
NT

N∑
i=1

(
T∑
t=1

uit

)2

− �̄2
N


+ Op(N −1)

= op(1),

because, by Assumption A2(i) and A1(ii), both terms inside the �·	 above
are op(1)� Thus, provided

√
N
(
SN − �̃2

) = Op(1), (22) yields

�̄2
N

√
N (FN − 1) = √

N
(
SN − �̃2

)+ op (1) ,

but from exactly the same argument employed by Orme and Yamagata
(2006, pp. 418–419)

√
N
(
SN − �̃2

) = Op(1) with

√
N
(
SN − �̃2

) = 1
(T − 1)

1√
N

�u′ (IN ⊗ A)u� + 
N + op(1)�
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Thus, (22) can be expressed as

�̄2
N

√
N (FN − 1) = 1√

N

u′ (IN ⊗ A)u
T − 1

+ 
N + op(1),

=
√

T
T − 1

HN + 
N + op(1)�

(ii) By Lemma 1,

�N

√
N (FN − 1) − 
N√

�N /2
d→ N

(
0,

2T
T − 1

)
,

and the result follows. This completes the proof.
�

Proof of Proposition 2. 1. First, for �̂2
N , by the Triangle Inequality,∣∣�̂2

N − �̄2
N

∣∣ ≤ ∣∣∣�̂2 − u′u
NT

∣∣∣+ ∣∣∣ u′u
NT − �̄2

N

∣∣∣ = op(1), since, as previously noted, u′u
NT =

�̄2
N + op(1) and �̂2

N − u′u
NT = op(1) by the arguments of Orme and Yamagata

(2006, p. 422).
Second, for �̂(1)

N , from the proof of Lemma 1, we have that

1
N

N∑
i=1

(
u′
iAui

)2 − 1
N

N∑
i=1

E
(
u′
iAui

)2 p→ 0�

Therefore, by the Triangle Inequality, it remains to show that
1
N

∑N
i=1

(
û′
iAûi

)2 − 1
N

∑N
i=1

(
u′
iAui

)2 p→ 0. Since, ûi = ui + v̂i , where v̂i =
�T�i/N 1/4 − Zi(�̂ − �), we can write

û′
iAûi = u′

iAui + 2u′
iAv̂i + v̂′

iAv̂i

= u′
iAui + Si , say,

so that

1
N

N∑
i=1

(
û′
iAûi

)2 = 1
N

N∑
i=1

(
u′
iAui

)2 + 1
N

N∑
i=1

S 2
i + 2

N

N∑
i=1

u′
iAuiSi �

Now, 1
N

∑N
i=1

(
u′
iAui

)2 = Op(1), and we shall show that 1
N

∑N
i=1 S

2
i = op(1) so

that, by Cauchy–Schwartz, 1
N

∑N
i=1 u

′
iAuiSi = op(1); then we are done.

Again by Cauchy–Schwartz, 1
N

∑N
i=1 S

2
i = op(1) if it can be shown that (i)

1
N

∑N
i=1

(
u′
iAv̂i

)2 = op(1); and (ii) 1
N

∑N
i=1

(
v̂′
iAv̂i

)2 = op(1), and we take each
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of these in turn:

(i) First, by repeated application of Cauchy–Schwartz, noting that
‖A‖2 = T (T − 1),

1
N

N∑
i=1

∣∣u′
iAv̂i

∣∣2 ≤ T (T − 1)
N

N∑
i=1

‖ui‖2 ‖v̂i‖2

≤ T (T − 1)

√√√√ 1
N

N∑
i=1

‖ui‖4 1
N

N∑
i=1

‖v̂i‖4�

Now, E ‖ui‖4 is uniformly bounded, by Assumption A3(i), so by
Markov’s Inequality, 1

N

∑N
i=1 ‖ui‖4 = Op(1), and it suffices to show that

1
N

∑N
i=1 ‖v̂i‖4 = op(1).
Now,

‖v̂i‖2 = T �2i√
N

− 2
�i

N 1/4
�′TZi(�̂ − �) + (�̂ − �)′Z′

iZi(�̂ − �)

= Si1 + Si2 + Si3, say,

so that, by Cauchy–Schwartz, 1
N

∑N
i=1 ‖v̂i‖4 = op(1) if 1

N

∑N
i=1 S

2
im = op(1), for

m = 1, 2, 3� Clearly, 1
N

∑N
i=1 S

2
i1 = T

N
1
N

∑N
i=1 �

2
i = op(1), by Assumption A4(ii)

and, by repeated use of Cauchy–Schwartz,

1
N

N∑
i=1

S 2
i2 ≤ 4

T√
N

∥∥∥�̂ − �
∥∥∥2 1

N

N∑
i=1

‖�iZi‖2

= op(1)

because ‖�̂ − �‖ = op(1), 1
N

∑N
i=1 ‖�iZi‖2 = 1

N

∑N
i=1

∑
t

∑
j

∣∣�i zitj ∣∣2 = Op(1),
by an application of Markov’s Inequality, Cauchy–Schwartz, and
Assumptions A2(ii) and A4(ii). Finally,

1
N

N∑
i=1

S 2
i3 ≤

∥∥∥�̂ − �
∥∥∥4 1

N

N∑
i=1

∥∥Z′
iZi

∥∥2
where ‖Z′

iZi‖2 =∑j

∑
k

{∑
t zitj zitk

}2
and an application of Markov’s

Inequality, Minkowski’s Inequality, Cauchy–Schwartz, and Assumption
A2(ii) yields 1

N

∑N
i=1 ‖Z′

iZi‖2 = Op(1) and 1
N

∑N
i=1 S

2
i3 = op(1). Thus,

1
N

∑N
i=1 ‖v̂i‖4 = op(1).

(ii) It immediately follows that 1
N

∑N
i=1

(
v̂′
iAv̂i

)2 ≤ T (T −
1) 1

N

∑N
i=1 ‖v̂i‖4 = op(1), and we are done.
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Third, for �̂(2)
N , by Assumption A3(i), and Minkowski’s Inequality

E |∑T
t=2 w

2
it |1+
 is uniformly bounded so that 1

N

∑N
i=1

∑T
t=2 w

2
it −

1
N

∑N
i=1

∑T
t=1 E

(
w2

it

) p→ 0� Thus, by the Triangle Inequality, it remains

to show that 1
N

∑N
i=1

∑T
t=2 ŵ

2
it − 1

N

∑N
i=1

∑T
t=1 w

2
it

p→ 0� Since ûit = uit + v̂it ,
v̂it = �i/N 1/4 − z′

it(�̂ − �), we can write

ŵit = wit + v̂it
t−1∑
s=1

uis + v̂it
t−1∑
s=1

v̂is + uit

t−1∑
s=1

v̂is

= wit + ĝit , say.

Thus, by Cauchy–Schwartz, it suffices to show that 1
N

∑N
i=1

∑T
t=2 ĝ

2
it = op(1)�

It will be useful to note that

T∑
t=2

ĝ 2
it ≤

T∑
t=1

(∣∣v̂it ∣∣ T∑
t=1

∣∣uit

∣∣+ ∣∣v̂it ∣∣ T∑
t=1

∣∣v̂it ∣∣+ ∣∣uit

∣∣ T∑
t=1

∣∣v̂it ∣∣)2

=
T∑
t=1

(Sit1 + Sit2 + Sit3)2 , say,

so that, now, it is sufficient to demonstrate that , 1
N

∑N
i=1

∑T
t=1 S

2
itm = op(1),

m = 1, 2, 3.
By Cauchy–Schwartz, we have

1
N

N∑
i=1

T∑
t=1

S 2
it1 = 1

N

N∑
i=1

T∑
t=1

v̂2
it

(
T∑
t=1

∣∣uit

∣∣)2

≤
√√√√ 1

N

N∑
i=1

(
T∑
t=1

v̂2
it

)2
1
N

N∑
i=1

(
T∑
t=1

∣∣uit

∣∣)4

,

1
N

N∑
i=1

T∑
t=1

S 2
it2 ≤

√√√√ 1
N

N∑
i=1

(
T∑
t=1

v̂2
it

)2
1
N

N∑
i=1

(
T∑
t=1

∣∣v̂it ∣∣)4

,

and

1
N

N∑
i=1

T∑
t=1

S 2
it3 ≤

√√√√ 1
N

N∑
i=1

(
T∑
t=1

u2
it

)2
1
N

N∑
i=1

(
T∑
t=1

∣∣v̂it ∣∣)4

�

Both 1
N

∑N
i=1

(∑T
t=1

∣∣uit

∣∣ )4 and 1
N

∑N
i=1

(∑T
t=1 u

2
it

)2
are Op(1), by Markov’s

Inequality, Minkowski’s Inequality, and Assumption A3(i). Thus, it suffices
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to show that 1
N

∑N
i=1

(∑T
t=1 v̂

2
it

)2
and 1

N

∑N
i=1

(∑T
t=1

∣∣v̂it ∣∣ )4 are both op(1)�
The former is identical to 1

N

∑N
i=1 ‖v̂i‖4 = op(1), by the proof of 2(i), above,

and the latter is op(1) by Assumptions A2(ii) and A4(ii) and the consistency
of �̂. This completes the proof of part 3.

2. As in previous proofs, by Assumption A3(i) and the Triangle
Inequality it suffices to show that

1
N

N∑
i=1

∑
t

∑
s �=t

û2
it û

2
is − 1

N

N∑
i=1

∑
t

∑
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u2
itu

2
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p→ 0�

Again, since ûit = uit + v̂it , v̂it = �i/N 1/4 − z′
it(�̂ − �), we can write

1
N

N∑
i=1

∑
t

∑
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û2
it û

2
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N
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∑
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∑
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itu

2
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∑
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∑
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N

N∑
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∑
t

∑
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VitVis

= SN 1 + SN 2, say,

where Vit = 2uit v̂it + v̂2
it , and it suffices to show that SNm = op(1), m = 1, 2.

Now,
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1
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u2
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1
N
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Thus, since 1
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∑N
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(∑
t u

2
it

)2 = Op(1), it suffices to show that
1
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(∑
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∣∣Vit

∣∣)2 = op(1), or that 1
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∑N
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∑
t V

2
it = op(1) since

(∑
t

∣∣Vit

∣∣)2 ≤
T
∑

t V
2
it � But this is true because

1
N
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V 2
it ≤ 1

N

N∑
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t=1

v̂4
it + 4

1
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uit v̂3
it + 4

1
N

N∑
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u2
it v̂

2
it �

The first term on the right-hand side is op(1) as are the latter two terms by
an application of Cauchy–Schwartz.
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Second,

∣∣SN 2

∣∣ ≤ 1
N

N∑
i=1

(
T∑
t=1

∣∣Vit

∣∣)2

= op(1)

by the preceding result, and this completes the proof. �

Proof of Proposition 3. We can write RN = 1√
2
ĤN
�̂2
, where �̂2 = û′û/NT

and

ĤN = 1√
NT (T − 1)

[
û′
(IN ⊗ A) û

]
= 1√

NT (T − 1)
�y′MZ (IN ⊗ A)MZy� �

By Proposition 1, it is sufficient to show that

ĤN = HN +
√
T − 1
T


N −
√

T
T − 1

�N + op (1)

and

�̂2 − �̄2
N = op (1)

and the result follows.
Establishing the former follows exactly the argument as in Orme

and Yamagata (2006, Proof of Proposition 2), and �̂2 − �̄2
N = op(1), was

established above. This completes the proof. �
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