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When analyzing data on subjective expectations of continuous outcomes, researchers have access to a
limited number of reported probabilities for each respondent from which to construct complete distribution
functions. Moreover, reported probabilities may be rounded and thus not equal to true beliefs. Using
survival expectations elicited from a representative sample from the Netherlands, we investigate what
can be learned if we take these two sources of missing information into account and expectations are
therefore only partially identified. We find novel evidence for rounding by checking whether reported
expectations are consistent with a hazard of death that increases weakly with age. Only 39% of reported
beliefs are consistent with this under the assumption that all probabilities are reported precisely, while
92% are if we allow for rounding. Using the available information to construct bounds on subjective life
expectancy, we show that the data alone are not sufficiently informative to allow for useful inference
in partially identified linear models, even in the absence of rounding. We propose to improve precision
by interpolation between rounded probabilities. Interpolation in combination with a limited amount of
rounding does yield informative intervals.

KEY WORDS: Life expectancy; Partial identification; Subjective expectations.

1. INTRODUCTION

Expectations, especially regarding individual survival, play
an important role in inter-temporal models explaining saving
and retirement. Early research in the 1990s indicated that ex-
pectations can be elicited through probabilistic questions, a sin-
gle question for a binary event or multiple questions tracing
the CDF for a continuous outcome (see Manski (2004) for a
general review and Hurd (2009) for a review focused on sur-
vival expectations). The two decades that followed have yielded
rich descriptions of heterogeneity in and the predictive validity
of subjective longevity at the individual level (e.g., Hurd and
McGarry 1995, 2002; Smith, Taylor, and Sloan 2001; Bisson-
nette, Hurd, and Michaud 2014, for the U.S.; and Kutlu and
Kalwij 2012, for the Netherlands). Moreover, the common short-
cut made in empirical lifecycle models of approximating expec-
tations by means of actuarial tables has been called into question
by the finding that especially women expect to die earlier than
those figures predict (Perozek 2008; Peracchi and Perotti 2011).

Much of the research on subjective expectations regarding
continuous outcomes proceeds by fitting a unique distribution
function for each observation, either by means of nonlinear least
squares estimation of a parametric distribution (Dominitz and
Manski 1997; Dominitz 1998; Dominitz and Manski 2006), or
by means of nonparametric splines (Bellemare, Bissonnette, and
Kröger 2012). In this article, we propose ways to analyze sub-
jective expectations which take into account that we only have
information for some points on the CDF and that the reported
probabilities may be subject to rounding, both of which im-
ply that the distributional function of interest is only partially
identified. Rounding is the practice of reporting one specific

value whenever a real number lies in an interval (Manski and
Molinari 2010), for example, probabilities in [5, 15) are reported
as 10%. We either allow for the maximum amount of rounding
for each reported probability or infer the extent of rounding from
all survival probabilities reported by an individual. Rounding
helps to reconcile reported beliefs with the assumption that the
true hazard of death should be weakly increasing with age for
each respondent: only 39% of responses allow for an increasing
hazard if probabilities were reported precisely, while 92% do
once we allow for maximal rounding. Given this novel evidence,
we construct sets of all functions that are consistent with the data
under different assumptions regarding rounding. We use that set
to derive bounds on life expectancy (LE). We then illustrate a
way to tighten those bounds by applying the spline interpolation
technique of Bellemare, Bissonnette, and Kröger (2012) while
allowing for rounding. Though our data contain information on
CDFs, the methods can also be applied to expectations elicited
in terms of the PDF.

This approach of bounding distributions rather than fit-
ting them is inspired by numerous papers by Charles Manski
(see, e.g., Manski 2003). In particular, Engelberg, Manski, and
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Williams (2009) bound measures of the central tendency using
data that is similar to ours. Manski and Molinari (2010) stud-
ied rounding systematically, but in the context of expectations
regarding binary outcomes (a single subjective probability). We
depart from these studies in two ways. First, we are interested
in bounding an entire survival curve, since the probability to
survive to any given age can be a value of interest. Second, we
study the implications of rounding in the context of expecta-
tions of a continuous variable more thoroughly than is done in
Engelberg, Manski, and Williams (2009).

The sample average width of the intervals for LE computed
without any assumptions beyond the data and without round-
ing is 12 years. In partially identified models like Imbens and
Manski (2004) and Beresteanu and Molinari (2008), this is too
wide to reveal the relationships between LE and the covari-
ates age and health that are apparent in point-identified models.
The combination of interpolation between reported probabil-
ities and limited rounding allows for more precise inference,
even to the extent that partially identified models corroborate
the findings from point-identified models. Finally, while point-
identified models indicate that women expect to die younger
than predicted by life tables, we cannot reject that average ex-
pectations are in line with life tables once we allow for rounding.

The structure of the article is as follows. Section 2 introduces
the type of data that we use and explains the methods that we
apply to approximate expectations. The data are described in
Section 3 and Section 4 presents our results. Section 5 concludes.

2. METHODS

2.1 Survival Questions

The subjective longevity questions that we analyze are sim-
ilar to those found in the Health and Retirement Study (HRS).
However, in contrast to the two thresholds of the HRS, we con-
sider questions that refer to survival past a maximum of five
target ages. The items are phrased as follows:

Indicate on a scale from 0 to 100 how likely you think it is
that you live to:

1. [if age < 69] age 70
...

5. [if age < 89] age 90

Age-eligibility requires a respondent to be at least 2 years
younger than a particular target age in order for that question to
be presented.

2.2 Point Identification of Survival Functions

We use two methods to fit individual survival curves to the
probabilities reported by each survey respondent. The first fits
parametric distributions by nonlinear least squares (Dominitz
and Manski 1997; Perozek 2008). The resulting survival func-
tions generally do not pass through the reported probabilities, but
they are as close as possible according to the least-squares cri-
terion. Following Perozek (2008), we fit Gompertz and Weibull
distributions.

The second method, proposed by Bellemare, Bissonnette, and
Kröger (2012), uses spline interpolation to construct survival

functions that are not restricted to a certain parametric fam-
ily. This method uses smooth piecewise polynomial functions
to approximate the subjective survival curves. It also enforces
monotonicity of the function, an important property of survival
curves. The resulting spline function passes through all reported
probabilities for a given respondent. Hence, it does not require
the researcher to choose a bandwidth or other smoothing param-
eter as would be the case for spline smoothing. Spline interpola-
tion does not impose any restrictions on the shape of the hazard.
We apply linear and cubic splines, because the former preserve
shape while the latter have been shown to be able to approxi-
mate parametric distributions closely (Bellemare, Bissonnette,
and Kröger 2012).

In this article, we assume a maximum age of 110 when cal-
culating remaining life expectancy. Sensitivity checks indicate
robustness of all our results to alternative maximum ages of 100
and 120 (results available on request).

2.3 Partial Identification of Survival Functions Without
Rounding

The methods discussed in the previous subsection use re-
ported probabilities to construct a survival function for each
individual in the sample. We next consider admissible regions
for survival functions without such smoothing between data
points. For now we do maintain the assumption that reported
probabilities are not rounded and do not contain measurement
error. The gray area in Figure 1 is the admissible set for survival
expectations under the assumption that hypothetical reported
probabilities lie exactly on the subjective survival curve. Under
this assumption, our data identify rectangles within which the
subjective survival curve lies, but contain no information on
the location of the curve within those rectangles. Note that any
function is allowed, even a step function, as long as it passes
through the points given in the data.

Calculating bounds on life expectancy is straightforward: we
trace the bottom edges of the rectangles in Figure 1 to ob-
tain the most pessimistic survival curve and thus the lower
bound on life expectancy that is consistent with the data. Like-
wise, the upper edges yield the most optimistic curve cor-
responding to the upper bound on life expectancy. Figure 1

Figure 1. Admissible set for the survival curve (no smoothing be-
tween data points and no rounding).
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illustrates the method for survival functions, since the survey
items we analyze are phrased in terms of survival. However,
one could follow the same approach to construct bounds on
the CDF.

2.4 Rounding

2.4.1 General and Common Rounding Schemes. The sec-
ond motivation for our analysis is the possibility of rounding of
reported probabilities. Rounded probabilities are not necessarily
on the subjective survival curve. Instead, they are informative
of intervals within which the true subjective probabilities fall.
For instance, a probability equal to 20% that is rounded to a
multiple of 5 indicates that the true probability is in the interval
[17.5, 22.5), and the same probability rounded to a multiple of
ten means that the true probability is in [15, 25). Since a reported
probability may result from different degrees of rounding, one
has to make an assumption on the extent of rounding that is
present in the data.

As a conservative choice, we allow that reported probabilities
are rounded one-by-one to the maximum extent. We allow for
rounding to multiples of 100, 50, 25, 10, and 5. That is, a
reported probability of 100 is interpreted as evidence that the true
probability lies in the interval [50, 100] and a reported 35 implies
the interval [32.5, 37.5), regardless of the other probabilities
reported by that respondent. Probabilities that can only result
from rounding to a multiple of 1 are interpreted as indicative of
an interval with width 5, so a reported probability of 37% yields
the interval [35, 40). Because this scheme allows probabilities
reported by an individual to be rounded differently, we call it
the general rounding scheme.

The general rounding scheme leads to broad intervals for
some probabilities, especially for those equal to 0, 50%, and
100%. However, imposing monotonicity on the true probabili-
ties helps to narrow down the bounds. For instance, if we observe
a probability equal to 50% for the first age threshold of 70, the
general rounding scheme interprets that probability as indica-
tive of an interval equal to [25, 75) for the corresponding true
probability. However, if the reported probability for age 75 is
40%, we know that the true probability for age 70 cannot be
smaller than the lower bound of 35% (since that is the lower
bound on the probability for age 75).

A second assumption is that all probabilities reported by an
individual are rounded to the same extent. Under that assumption
we can apply the strategy proposed in Manski and Molinari
(2010) to infer the degree of rounding from a set of probability
questions. That is, we assume that the answers to all survival
questions from a given respondent are rounded similarly and
select the most conservative rounding rule that is consistent
with all those probabilities. We allow for rounding to multiples
of 100, 50, 10, 5, and 1 as well as more precise reporting of
probabilities close to 0 and 100% (see Manski and Molinari
(2010) for a formal definition of this rounding scheme). We call
this the common rounding rule.

2.4.2 Consistency of Reported Probabilities with Increas-
ing Hazard of Death. As explained in the previous section,
most reported probabilities may result from different degrees of
rounding. One way to quantify the extent of rounding is to inves-
tigate how much rounding is needed to reconcile expectations
with plausible assumptions. For instance, we may assume that
respondents believe that their survival function has an increas-
ing hazard. This would imply that the probability of dying in a
given time interval increases with age. Note that the assumption
of increasing hazards does not come from the data and that some
respondents may have expectations that are not consistent with
it. For instance, a violation would occur if someone believes
that if he lives to be 80, he will certainly make it to 100. We
can nevertheless check the fraction of respondents that reported
probabilities that are consistent with this assumption depending
on the extent of rounding that we allow for.

Remember that a continuous survival curve for an individual
aged a can be expressed in terms of a hazard function λ(t)

S(t) = exp

(
−

∫ t

a

λ (u) du

)

or in terms of the integrated hazard function �(t)

S(t) = exp (−�(t)) .

While a survival function must be decreasing in t, the hazard
function can take many forms. The assumption that a respondent
has an increasing hazard function, so that the probability to pass
away in a given interval increases with age, would lead to a
convex integrated hazard function.

A given rounding scheme yields bounds for the true survival
probability at each age threshold, which translate into bounds for

Figure 2. Checking the increasing hazard assumption by constructing a convex integrated hazard function.
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Figure 3. Admissible sets for the survival function under different rounding rules.

the integrated hazard. Figure 2(a) shows these bounds as vertical
bars. Since a weakly increasing hazard of death is equivalent
to a convex integrated hazard, we check whether there exists a
convex piecewise linear function that passes between the bounds
for the integrated hazard at all target ages.

We verify whether reported probabilities are consistent with
an increasing hazard by constructing the highest integrated haz-
ard, corresponding to the lowest expected lifetime, that is al-
lowed by the data. Finding that the most pessimistic function
has an increasing hazard is a necessary and sufficient condition
to show that the set of functions compatible with the assumption
is not empty. Moreover, our procedure based on the highest in-
tegrated hazard is relatively straightforward, as it only requires
comparing the slopes of a series of linear functions as discussed
below. We present the intuition here and the detailed algorithm
in the Appendix. Our method works piecewise, starting from the
first interval and concentrating on the largest admissible hazard
for each set of bounds. In our example, Figure 2(b) illustrates
that the highest integrated hazard follows a steady increase from
the origin to the upper bound at age 70. Starting from this point,
we can repeat this procedure starting from the maximum hazard
at age 70.

Consider now the interval from age 75, as illustrated in
Figure 2(c). Over this interval, an increase to the upper bound at
age 80 is not admissible. Such an increase in the integrated haz-
ard would lead to a case where the integrated hazard would not
increase between age 80 and 85, which violates the convexity
assumption. It follows that the highest admissible curve is the
linear increase in integrated hazard to the upper bound at age
85. The resulting piecewise linear integrated hazard is presented
in Figure 2(d).

In what case would there be no admissible curves? Suppose
that the lower bound at age 80 was the same as the one at age
85, as represented by the diamond on Figure 2(c). In this case,
there would be no way to find a convex function that would fall
within the admissible interval at age 80. Reported probabilities
are not consistent with a weakly increasing hazard whenever
that is the case. Note how increasing the width of the admissible
intervals, for instance by allowing more rounding or reporting
error, can reconcile reported probabilities with the increasing
hazard assumption.

The alternative approach of studying the most optimistic ad-
missible hazard is more complex, as each interval must now be
characterized by two slopes: the slowest admissible increase at
the beginning of the interval and the fastest increase admissible
at the end. This envelope of admissible optimistic hazards is
usually a kinked convex function within each interval, but it is
not a convex function taken as a whole. It is therefore simpler
and more elegant to focus on the most pessimistic integrated
hazard.

2.4.3 Admissible Sets for Survival Functions in the Pres-
ence of Rounding. According to the models of rounding ex-
plained above, probabilities reported by a respondent are either
all generated by a common rounding rule, or they are rounded
one-by-one to the maximum extent. We construct admissible
sets for the corresponding survival function by tracing the up-
per and lower bounds of the intervals for the unobserved true
probabilities.

Figure 3 illustrates how we construct admissible sets for the
survival function under both rounding rules for hypothetical
data. Figure 3(a) shows the intervals for the true probabilities
under common rounding (thick bars) and general rounding (thin
bars). Figure 3(b) explains how the admissible set changes when
we introduce rounding in the reported probabilities: the rect-
angles stretch vertically so they overlap around the reported
probabilities. The lightest gray band traces the upper and lower
bounds on probabilities constructed using the general and con-
servative rule that probabilities are rounded individually, while
the darker area assumes common rounding. The width of the
identified region differs between rounding rules only at those
thresholds for which the reported probability is not only a mul-
tiple of 5, which is the extent of rounding according to the
common rounding scheme, but also a multiple of 10 or even 50
(all ages except age 90). The survival function that yields the
highest life expectancy that is consistent with the data is that
which traces the upper edge of the identified region, while the
lowest life expectancy is obtained by tracing the lower edge.

While we focus on remaining life expectancy, a quantity of
interest in the context of subjective survival, bounding the en-
tire distributional function allows us to derive bounds on other
aspects of expectations as well. For instance, one can derive
bounds on the probability to survive past any age, or equiva-
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Table 1. Descriptive statistics of the reported survival probabilities and life table (LT) probabilities

Men Women

Reported probs. Reported probs.

N Mean LT Mean S.D. N Mean LT Mean S.D.

Age 70 631 87.0 76.3 21.0 526 90.9 75.3 21.5
Age 75 713 78.2 67.5 23.7 575 85.2 67.7 23.8
Age 80 769 63.4 54.7 25.8 608 75.3 56.2 26.4
Age 85 814 44.0 40.8 26.2 620 58.5 42.7 26.8
Age 90 823 21.8 26.8 25.0 624 35.5 27.5 25.6

NOTE: Probabilities expressed as percentages.

lently on any percentile of the distribution. Having bounded the
25th and 75th percentiles, one can also compute bounds on the
interquartile range as a measure of dispersion.

2.4.4 Refinement of the Admissible Sets. The identified re-
gions in Figure 3(b) reflect a worst-case scenario in which we do
not assume anything about expectations beyond what is given
in the data. As a result, those regions include survival func-
tions that are unlikely to reflect individuals’ beliefs, such as step
functions. Therefore, we propose to refine admissible sets by
interpolation between rounded probabilities. Rather than con-
structing rectangles identified by the data, we now trace the
upper and lower bounds of the intervals for true probabili-
ties by means of spline functions. This method is shown in
Figure 3(c), which illustrates that such smoothed regions are
much smaller than the corresponding regions constructed with-
out interpolation shown in panel (b). Moreover, interpolation
allows us to focus on the ambiguity caused by rounding of the
reported probabilities, as opposed to the inherent coarseness of
observing only a few points on the survival function.

3. DATA QUALITY AND DESCRIPTIVES

We use the 2011 wave of the yearly Pensioenbarometer, a
survey administered to the respondents of the CentERpanel.
Data collection was financed by Netspar, Network for Studies
on Pensions, Aging and Retirement. The CentERpanel is ad-
ministrated by CentERdata and is representative of the Dutch
adult population. The sample consists of approximately 2500
respondents age 16 and older, but due to the focus on pensions
the Pensioenbarometer surveys are only elicited from respon-
dents who are older than 24. All CentERpanel questionnaires are
administered via the Internet and members of the panel without
Internet access are provided with a set-top box to maintain rep-
resentativeness. Data access can be obtained from CentERdata,
via CentERdata@uvt.nl.

The 2011 Pensioenbarometer was distributed to 2396 poten-
tial respondents and was returned by 1577 of them (66% survey
response). Item nonresponse to the subjective survival questions
is not an issue: 95% of the panel members who filled out the
questionnaire provided an answer to all survival questions. Fur-
thermore, violations of the arithmetic of probabilities are rare
despite the fact that no safeguards were applied to ensure logical
consistency: reported probabilities decrease weakly with target
ages for 97% of the complete responses (note that this does not
imply that the hazard of death increases weakly with age). Be-
cause of these observations, we do not model item nonresponse
or logical inconsistencies. After removing incomplete or logi-

cally inconsistent responses, we are left with 1447 observations
(two 89 year old respondents were dropped due to ineligibility
for all survival questions).

As for demographic characteristics, about half of the sample
is male and the average age is 56. Three quarters of the sample
lives with a partner. Respondents are mostly healthy: 75% rate
their own health as either “excellent” or “very good,” while
only 8% are in “bad” health. 41% have finished some form of
higher education (university or an applied college). A further
breakdown by sex shows that the sample is better educated
than the Dutch average: 44% of men and 38% of women have
completed higher education compared to nationwide averages of
31% and 26% respectively in 2009. The average gross personal
income in our sample is close to that of the population at large:
the economically active within the sample earn 2978 euros per
month compared with a national average of 2900 euros in 2010.

Table 1 presents descriptive statistics of reported probabili-
ties and corresponding probabilities from the 2010 life tables
assembled by Statistics Netherlands. We match life tables to
respondents based on gender and age, so differences between
the age distribution in the sample and in the Dutch population
do not affect the comparison. Due to the age-eligibility criteria
described in Section 2.1, the sample sizes are larger for ques-
tions referring to older ages. The average reported probability
of survival decreases with the age thresholds from around 75%
for age 70 to 27% for age 90. Moreover, the average reported
probabilities of men and women are similar for all age thresh-
olds, whereas the average life table probabilities strongly favor
women. Table 1 shows that men on average underestimate their
probability of living past ages 70, 75, and 80 by roughly 10%-
points, while they overestimate their probability of living past
age 90 by 5% points. Women, on the other hand, report proba-
bilities that are 8–20% points below the life tables for all target
ages. This suggests that the average life expectancy of men is
more in line with that reported in life tables than that of women.

3.1 Rounding

The distribution of rounding according to the common round-
ing scheme is given in Table 2(a). The leftmost column shows
that rounding is important: multiples of 5 and 10 account for
51% and 33% of responses, respectively. Cruder forms of round-
ing do occur but are rare: 6% of respondents round to multiples
of 50 or 100. Focal 50/50s are not likely to be an important
concern for our data, since no more than 3% of the respondents
answer fifty percent to all questions. Confirming the analysis
in Manski and Molinari (2010), we find some evidence that re-
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Table 2a. Common rounding with different sets of probabilities

other 2011;
2012 surv.; 2012 surv.;

2011 surv. 2011 surv. 2011 surv.
(5 probs.) (10 probs.) (26 probs.)

All 0 or 100 2 1 1
All 0, 50 or 100 4 3 1
All multiples of 10 33 24 18
All multiples of 5 51 57 55
Some in [1, 4] or [96, 100] 7 11 19
Other 3 5 7
Total 100% 100% 100%

NOTE: N = 1447 individuals.

Table 2b. General rounding

Multiples of... Frequency

...100 11

...50 14

...25 9

...10 50

...5 12

...1 3
Total 100%

NOTE: N = 6703 probabilities.

spondents may round probabilities near the extremes of zero and
one hundred differently: 7% of the sample reports multiples of
one near the extremities of the scale. Only 3% of the responses
are incompatible with all other forms of rounding and are thus
interpreted as exact answers.

In the remaining columns of Table 2(a), we use additional
probabilities to determine the extent of (common) rounding.
Given that the most precisely reported probability sets the level
of rounding for a respondent, these additional probabilities nec-
essarily reduce rounding. We introduce extra probabilities in
two steps. First, we add all five survival probabilities that were
elicited in 2012, the only other year in which they were asked.
Second, we also take into account all other probabilities reported
in the 2011 survey, which pertain to future purchasing power
and income replacement rates at retirement. Doing so reduces
the fraction that rounds to multiples of 10 from 33% to 18%
and increases the fraction in the two most precise categories
from 10% to 26%. However, 55% of respondents still round to
multiples of five.

Table 2(b) describes rounding according to the general round-
ing scheme. This scheme also indicates substantial rounding:
50% of reported survival probabilities in 2011 are multiples of
10 (but not of 50 or 100). Another 14% of probabilities are
equal to 50 and 3% can only result from rounding to multiples
of 1. Though not shown in Table 2(b), the variation in frequen-
cies of the different categories across the age thresholds accords
with intuition. Respondents express greater certainty near the
extreme ends of the age range, while 50/50s are more prevalent
at the ages 80 and 85.

Figure 4. Fraction of the sample that is consistent with a weakly
increasing hazard of death when allowing for different amounts of noise
in reported probabilities.

3.2 Consistency With Increasing Hazard

To quantify the extent to which probabilities are rounded, we
use the algorithm discussed in Section 2.4.2 to check whether
the data are consistent with an increasing hazard of death un-
der different degrees of rounding. Without rounding, only 39%
of respondents report probabilities that are consistent with that
assumption. However, that fraction increases to 76% under com-
mon rounding, 70% if we use all 26 reported probabilities, and
92% under general rounding. If we maintain that true, unob-
served beliefs exhibit a weakly increasing hazard, this is strong
evidence that reported probabilities are rounded or that there is
another form of measurement error or ambiguity.

To illustrate the implications of such measurement error, we
replaced the rounding intervals by intervals created by adding
and subtracting an error of given size from all reported answers.
Figure 4 shows how the fraction with a weakly increasing hazard
increases when we allow for noise in the reported probabilities.
Small errors are sufficient to render most of the data compatible:
80% of the sample is compatible with an increasing hazard if
we allow for an error of 3.5%-points in both directions around
each reported probability. The common and general rounding
schemes yield similar rates of increasing hazard-consistent re-
sponses as do errors of 3 and 6% points, respectively, suggesting
that this is a reasonable range for the magnitude of errors. If we
increase all reported probabilities by 5%-points, this would yield
a decrease in life expectancy of 1 year over the 20-year interval
between the ages 70 and 90. Given the difficulty of predicting
one’s own survival, this seems like a reasonable error.

4. RESULTS

4.1 Point- and Interval Identification of Life Expectancy

Table 3 contains descriptive statistics of the point-identified
expected ages of death calculated from the individual-specific
parametric survival curves and the spline survival functions.
Depending on the approximation method, men expect to live
to age 82–82.5 on average, which is slightly below the average
prediction of 83 years found in the life tables. For women,
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Table 3. Point estimates of the expected age of death

Parametric Splines

N Life tables Gompertz Weibull Linear Cubic

Men 823 83.0 82.0 82.5 82.4 82.2
(2.3) (7.6) (7.4) (8.1) (8.2)

Women 624 85.8 81.8 82.4 81.9 81.7
(1.5) (7.8) (7.6) (8.3) (8.6)

NOTES: Reported numbers are averages; standard deviations in parentheses.

we find a larger discrepancy between the average subjective life
expectancy and the average actuarial forecast: women expect
to live to age 81.7–82.4, while the average actuarial prediction
is 85.8. This larger discrepancy for women was also observed
by Perozek (2008) for the U.S. and Kutlu and Kalwij (2012)
for the Netherlands. If we divide the sample in age groups, we
find that men and women of all ages expect to live shorter than
predicted in the actuarial tables. A formal comparison of average
subjective life expectancy and the forecasts in life tables can be
found in Section 4.3.

Unsurprisingly, expectations exhibit much more variation
than the life tables (conditional on gender the latter only vary
with age). The standard deviations of the expected age of death
are around 8, while that of the actuarial forecasts is 2.3 for
men and 1.5 for women. In the next subsection, we analyze
whether this variation in expectations is related to covariates
such as health and socio-economic status. The life expectan-
cies calculated using the two methods to point identify survival
functions are very similar: all correlations between the expected
ages of death are above 0.97. Hence, given sufficiently rich data,
computed mortality expectations are robust with respect to the
choice for a (non-)parametric model for subjective survival.

Now, we turn to the bounds computed using the methodol-
ogy described in Sections 2.3 and 2.4. Table 4 presents sample
averages of the bounds on life expectancy. Panel (a) reports
descriptives for the baseline case, while panel (b) applies the
refinement from Section 2.4.4. Table 4 contains averages for
bounds under the assumption of no rounding and under the
common and general rounding rules described in Section 2.4.1.
For the common rounding scheme we either infer rounding from

the five survival questions from the 2011 survey (5 probs.) or
from all subjective probabilities from the 2011 wave plus the
survival questions from the 2012 wave (26 probs.).

According to the baseline bounds, which do not impose any
restrictions on expectations beyond being consistent with the
data, both men and women expect to live to age 76–88 on av-
erage. Hence, the average interval for life expectancy is about
12 years wide. By definition rounding makes the estimated in-
tervals wider and thus less informative. Assuming a common
rounding rule based on the five 2011 survival probabilities, we
compute bounds with an average width of 15 years. This width
is reduced by 1 year if we assume that all 2011 probabilities
and the 2012 survival questions are rounded to the same extent.
The general rounding scheme yields slightly wider intervals
with an average width of 18 years. The number of probabilities
observed per respondent is a key determinant of the width of
the bounds. For instance, if we restrict the set of probabilities
to target ages 75 and 85, as would be the case in the HRS for
younger respondents, the average width of the intervals with-
out any rounding increases to 19–20 years. Hence, the intervals
computed from two probabilities without rounding are wider on
average than the intervals derived from a set of five probabilities
under conservative rounding.

We obtain much tighter bounds on life expectancy if we inter-
polate expectations between the elicited survival probabilities,
as can be seen in panel (b). Under the common rounding as-
sumption based on five probabilities, interpolation reduces the
average width of the interval from 15 years to 3 years. Including
all probabilities in the rounding scheme yields a further reduc-
tion in width of 1 year on average. General rounding leads to
wider intervals: the average width is 7–8 years. Hence, regard-
less of whether we smooth expectations, the specific type of
rounding that we assume strongly affects the informativeness of
the data.

4.2 Life Expectancy and Demographic Variables

Next, we investigate the relationship between life expectancy
and demographic variables. We estimate linear regressions with
the point-identified life expectancies as dependent variables. For
the bounds we apply partially identified models according to the

Table 4. Sample averages of bounds on expected age of death derived in the absence of rounding and under common and general rounding

Men Women

Common Common Common Common
No rounding 5 probs. 26 probs. General No rounding 5 probs. 26 probs. General

a. Baseline
LB 76.7 75.4 75.8 73.8 75.9 74.2 74.7 72.4
UB 88.0 89.6 89.1 91.4 88.0 89.7 89.2 91.7
UB−LB 11.3 14.2 13.3 17.6 12.1 15.4 14.4 19.2
N 823 823 823 823 624 624 624 624

b. Refinement: smoothing using cubic splines
LB – 80.6 81.2 78.5 – 80.0 80.4 77.6
UB – 83.6 83.1 85.5 – 83.3 82.8 85.5
UB−LB – 3.0 1.9 7.0 – 3.3 2.3 7.9
N 820 814 643 623 619 479
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Table 5. Point and partially identified models of remaining life expectancy

Partially identified models

No smoothing Cubic splines

Common rounding
Point-identified models No rounding 5 probs. General rounding

Weibull Cubic spline LB UB LB UB LB UB

Age −1.573*** −1.562*** −4.277 1.204 −2.271 −0.831 −3.129 0.229
(0.0927) (0.110) (−4.524; 1.451) (−2.491; −0.611)** (−3.378; 0.479)

Age squared/100 0.656*** 0.692*** −1.704 3.068 0.0641 1.303 −0.830 2.056
(0.0791) (0.0934) (−1.912; 3.275) (−0.121; 1.487) (−1.036; 2.262)

Male −0.724* −0.605 −12.434 11.070 −3.731 2.607 −8.301 6.752
(0.385) (0.425) (−13.235; 11.871) (−4.560; 3.436) (−9.256; 7.707)

Educ. primary school −0.733 −0.649 −12.766 11.610 −3.603 1.986 −9.276 5.159
(0.937) (0.988) (−14.473; 13.317) (−5.430; 3.813) (−11.287; 7.169)

Educ. higher secondary −0.123 0.0476 −12.709 12.703 −3.441 3.138 −8.541 7.680
(0.664) (0.742) (−13.950; 13.943) (−4.823; 4.520) (−10.066; 9.204)

Educ. lower vocational 0.0957 0.0358 −13.907 14.038 −4.135 3.922 −9.723 9.077
(0.610) (0.687) (−15.274; 15.405) (−5.454; 5.242) (−11.220; 10.574)

Educ. higher vocational −0.295 −0.304 −13.517 12.773 −3.852 2.972 −9.059 7.679
(0.524) (0.571) (−14.697; 13.954) (−4.941; 4.061) (−10.335; 8.956)

Educ. University 0.520 0.364 −14.087 14.925 −3.736 3.941 −8.994 9.240
(0.599) (0.648) (−15.508; 16.346) (−5.021; 5.226) (−10.413; 10.659)

Income < 1150 euro/month −0.371 −0.377 −14.816 13.990 −4.401 3.578 −9.674 9.080
(0.935) (1.027) (−16.753; 15.927) (−6.402; 5.579) (−11.788; 11.195)

Income 1801−2600 euro/month 0.0523 −0.0288 −12.528 12.682 −3.576 3.275 −7.739 8.237
(0.615) (0.687) (−13.634; 13.787) (−4.861; 4.560) (−9.004; 9.502)

Income > 2600 euro/month −0.0280 −0.00580 −13.064 13.064 −3.567 3.346 −8.187 8.462
(0.576) (0.648) (−14.330; 14.330) (−4.758; 4.537) (−9.708; 9.982)

Bad health −6.629*** −7.537*** −23.524 8.809 −11.382 −2.516 −16.070 4.036
(0.915) (1.025) (−25.368; 10.653) (−13.126; −0.771)** (−18.050; 6.016)

Fair health −5.493*** −6.268*** −21.161 8.769 −10.057 −2.238 −14.627 3.449
(0.697) (0.775) (−22.738; 10.346) (−11.397; −0.899)** (−16.186; 5.008)

Good health −1.719*** −2.179*** −15.342 11.308 −5.743 1.580 −10.106 6.537
(0.588) (0.682) (−16.709; 12.676) (−7.002; 2.839) (−11.592; 8.024)

Constant 95.63*** 93.80*** 15.615 169.885 73.179 113.633 41.179 138.078
(2.729) (3.297) (7.981; 177.519)** (66.469; 120.343)** (33.807; 145.450)**

Observations 1446 1446 1446 1443 1122
R-squared 0.752 0.692 – – –

NOTES: Standard errors in parentheses for point-identified models.
95% confidence sets in parentheses for the partially identified models.
***significant at 1%; **significant at 5%; *significant at 10%.

methods presented in Imbens and Manski (2004). We estimate
the interval regressions using the Stata program CI1D, presented
in Beresteanu, Molinari, and Steeg Morris (2010). Estimation
results are presented in Table 5. The model specifications in that
table pool men and women, because we could not reject the null
hypothesis of equal coefficients for the sexes.

Point-identified models show that age and self-reported health
are the most important covariates of subjective life expectancy.
As expected, remaining life expectancy decreases nonlinearly
with age. Health too is strongly related to subjective life ex-
pectancy: compared to the baseline of people in excellent health,
those in bad health expect to live 7 years shorter on average. Re-
spondents in fair or good health also expect to live shorter than
their healthier peers. Like Kutlu and Kalwij (2012), we do not
find significant associations between life expectancy and edu-
cation or income if we condition on subjective health. This lack

of an association between socio-economic status and subjective
mortality is plausible in the context of the Dutch healthcare
system, because the quality of medical services is roughly the
same for everybody. However, poorly educated and income-poor
individuals are especially likely to be in worse health, partly be-
cause they are more likely to engage in behaviors that affect
their health negatively (like smoking and drinking). Therefore,
we find that respondents from the lowest income group and
those with the poorest education expect to die younger if we re-
move subjective health from the estimated equation (estimates
available on request). Note that the estimates are not sensitive to
the way in which expectations are approximated: similar con-
clusions emerge whether we fit Weibull distributions or cubic
splines.

The rightmost columns of Table 5 present estimates from
models with interval-censored life expectancy as the dependent



Bissonnette and de Bresser: Eliciting Subjective Survival Curves: Lessons from Partial Identification 513

variable. The estimates from partially identified models esti-
mated on the bounds without smoothing show that little can be
learned about variation in life expectancy across the sample
if one is unwilling to interpolate expectations between data
points. There are clear differences between the identified sets
that are in line with the coefficient estimates from point identi-
fied models. For instance, the set-estimate of the coefficient of
being in bad health, which is associated with a 7-year lower life
expectancy relative to the baseline in point identified models, is
(−23.5; 8.8). Though that interval suggests a negative correla-
tion, zero is included in all identified sets (and by implication
in all 95% confidence sets) except for the constant. Hence, we
are not able to draw conclusions about the sign of any of the
coefficients: a clear indication that the bounds are too wide
for useful inference. Since rounding only makes the bounds on
life expectancy wider, this also holds if we allow for rounding.
Without additional assumptions there is not enough information
in the data to do meaningful inference on differences in life
expectancy across socio-demographic groups.

Table 5 shows that if we do smooth expectations by means
of cubic splines and allow for rounding according to the com-
mon rounding rule, we corroborate the patterns found in point-
identified models. In particular, zero is not included in the 95%
confidence sets for the coefficients on the indicators for bad and
fair health. These results show that the limited number of elicited
points on the survival functions is a more important limitation
on the informativeness of the data than (common) rounding. In-
ference can be made slightly more precise if we infer rounding
from the full set of 26 probabilities (estimates available on re-
quest). However, if we simultaneously interpolate and allow for
general, worst-case, rounding, the identified sets again become
too wide to draw any conclusions. The informativeness of the
data hinges not only on our willingness to smooth beliefs, but
also on the particular type of rounding that we assume.

The results for the mean shown in Table 5 also apply to other
aspects of the distribution of individual survival, such as the
probability of surviving past age 90 and the subjective median.
For those features, we confirmed that common, but not general,
rounding in combination with interpolation between elicited
probabilities allows one to retrieve the sign of associations in
partially identified models. For the probability of living past age
90, for instance, we find that respondents in bad health report
a 21%-points lower probability on average, with correspond-
ing identified sets of (−31,−8) under common rounding and
(−41, 6) under general rounding. The estimated coefficients of
models explaining the median are similar to those for the mean.
Estimates are available on request.

Finally, note that the sample sizes for the partially identified
models of smoothed expectations are smaller than those for the
other models. This is because the cubic spline functions that
trace the upper and lower bounds for the true, nonrounded prob-
abilities sometimes cross each other, in which case we drop
that observation. Such crossing is rare for the case of common
rounding, only 3 observations are lost this way, but quite com-
mon for general rounding for which we lose 324 observations.
Linear splines do not suffer from this complication: if for two
consecutive upper bounds we have that UB1 ≥ UB2 and for the
corresponding lower bounds we have LB1 ≥ LB2, this implies
that any convex combination of the two upper bounds is also at or

above any convex combination of the lower bounds. Therefore,
we verified the patterns from Table 5 using linear splines. All
estimates are similar to those reported here, results are available
on request.

4.3 Expectations and Life Tables

As mentioned in the introduction, comparison of subjective
expectations with published life tables allows us to evaluate the
use of actuarial figures as proxies for expectations in dynamic
economic models. The underlying assumption is that published
life tables are adequate proxies for subjective expectations held
by the economic agents. One way to assess this assumption is to
compare our estimated subject life expectancies with the official
tables published by Statistics Netherlands as of December 2010.

We must mention two important limitations before proceed-
ing to this analysis. First, the aim of this exercise is not to deter-
mine whether agents are rational. Expecting an earlier demise
than what is predicted in the life tables may be justified if an
agent has private information regarding his own health and fam-
ily health history. Second, published life tables are themselves
estimates based on observed demographic tendencies. As such,
they should be treated as variables with their own prediction
uncertainty. However, to our knowledge, Statistics Netherlands
does not provide information on the uncertainty regarding these
forecasts. For this reason, we will treat them as fixed in the
following analysis. It is to be noted that empirical economists
rarely include this uncertainty in their models.

Let us first we look at the point-identified life expectancies.
Figure 5(a) presents kernel regressions of subjective remaining
life expectancy, computed from cubic splines under the assump-
tion of no rounding (dashed line), and the actuarial forecast
based on past mortality (solid line). The top graph shows that
for men average expectations are close to actuarial forecasts.
For women, on the other hand, we find that official forecasts are
higher than the 95% confidence band for all ages between 30 and
70. Hence, women indeed expect to die significantly younger
than the actuarial estimates predict. The size of this difference
is large: close to 5 years around the age of 60. Note, however,
that these estimates do not take account of missing information
due to the small number of elicited probabilities. Moreover, they
assume that reported probabilities are not rounded.

Figure 5(b) plots 95% confidence bands for subjective re-
maining life expectancy for men (top) and women (bottom).
These bands are based on bounds derived without smoothing
expectations and span the width from the lower end of the 95%
confidence interval for the lower bound on life expectancy to the
higher end of the 95% confidence interval for the upper bound.
As before, the solid lines are the corresponding predictions from
life-tables. Even without rounding, the subjective data are con-
sistent with the actuarial forecasts across all ages for both men
and women. Moreover, allowing for rounding does not affect
the average bounds much, though the effect is slightly larger
at younger ages. Hence, we conclude that without additional
assumptions we cannot reject the hypothesis that expectations
are on average consistent with the life tables for both men and
women in our sample. Robustness checks indicate that these
conclusions remain largely unchanged when we lower the max-
imum lifespan to 100 years: for men the actuarial forecasts
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Figure 5. Subjective versus actuarial remaining life expectancy.

remain well within the subjective bounds for all ages, while
for women the actuarial forecasts remain within the 95% con-
fidence bands if we allow for rounding. Estimates are available
upon request.

Finally, we check whether rounding alone can close the gap
between average expectations of women and the actuarial fore-
casts that is evident in panel (a). Panel (c) shows that common
rounding closes the gap for all ages except for 50 to 70 year
olds and around the age of 30, for which small differences re-
main. The more conservative general rounding scheme, on the
other hand, removes those discrepancies. Under general round-
ing, we cannot reject the null hypothesis that the average upper
bound of the intervals is equal to the corresponding life table
forecast for any age. The same conclusions emerge if we approx-
imate expectations by means of linear splines. Including predic-
tion uncertainty for the official forecasts would reinforce these
patterns.

5. CONCLUSION

When investigating subjective expectations regarding a con-
tinuous variable, researchers usually point identify expectations
parametrically or by means of interpolation (e.g., Dominitz and
Manski 1997; Dominitz 1998; Perozek 2008; Kutlu and Kalwij
2012; Bellemare, Bissonnette, and Kröger 2012). Building on
the work of Manski (2003); Engelberg, Manski, and Williams
(2009); and Manski and Molinari (2010), we analyze what can
be learned about mortality expectations under weaker assump-
tions. In particular, the limited number of elicited probabilities
and the possibility that reported probabilities may be rounded

imply that we can only partially identify distributional curves.
We find that rounding is prevalent in the data, since only 39%
of reported beliefs are consistent with an increasing hazard of
death if probabilities are not rounded, while up to 92% are if we
do allow for rounding. We construct identified sets for survival
functions that neither assume a functional form for expectations
nor interpolate between the elicited probabilities. We show that
this procedure can easily be generalized to allow for rounding
of the subjective probabilities reported in surveys and propose
a refinement that narrows down the size of the identified sets by
combining spline interpolation with rounding.

In our baseline scenario without refinements, the bounds on
life expectancy are 12 years wide on average. This is too wide
to be informative: models for interval-censored dependent vari-
ables fail to corroborate the associations between life expectancy
and the covariates age and health that are highly statistically sig-
nificant in noncensored models. If we smooth survival functions
between observed points, the intervals can be narrowed to an
average width of 3 years, which does allow for meaningful infer-
ence. Under the assumption that all probabilities reported by a
given respondent are rounded to the same extent, as proposed by
Manski and Molinari (2010), partially identified models show
the same patterns that emerge from point identified models.

To evaluate the use of actuarial tables as proxies for average
expectations we match subjective life expectancies to official
life tables constructed by Statistics Netherlands. If we point
identify expectations we confirm for the Netherlands the finding
from Perozek (2008) that women, but not men, in the U.S.
expect to live shorter on average than the life tables predict.
However, using the baseline partially identified approach we
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can no longer reject that expectations of women are consistent
with the forecasts. This emerges even starker if we allow
for rounding in the reported probabilities. If we interpolate
expectations and simultaneously allow for common rounding,
expectations of women are inconsistent with the life tables
around the ages of 30 and 60 (the size of the remaining differ-
ence is much smaller). If we allow for the more conservative
rounding scheme that allows probabilities from a given respon-
dent to be rounded differently, we cannot reject consistency of
women’s expectations with actuarial forecasts for any age.

The general idea that emerges is that it is possible to learn
about subjective expectations without imposing parametric re-
strictions on beliefs or even point identifying them. The meth-
ods we propose are sufficiently flexible to take into account
rounding issues that are relevant for survey data of many types.
Moreover, the extent of rounding can be quantified by check-
ing whether reported beliefs are consistent with plausible as-
sumptions. Our partial identification framework yields new
insights into the influence of parametric assumptions on the
analysis of this important and increasingly popular type of
data.

APPENDIX: ALGORITHM FOR CONVEX
INTEGRATED HAZARD

A given rounding scheme yields bounds for the true survival prob-
ability at each age threshold, which translate into bounds for the inte-
grated hazard (see panel (a) of Figure 2). Denote by �min

i and �max
i the

bounds on the integrated hazard at target age ti , where i = 0, 1, . . . , n
(i = 0 for the current age of the respondent and i = n for the final
target age 90). Since a weakly increasing hazard of death is equiva-
lent to a convex integrated hazard, we check whether there exists a
convex piecewise linear function that passes between the bounds for
the integrated hazard at all target ages. The algorithm, which is il-
lustrated in panels (b) and (c) of Figure 2, consists of the following
steps:

1. Start from i = 0, the current age of the respondent. Note that �min
0 =

�max
0 = 0.

2. Define the maximum slope over the interval [ti , ti+1) as:

mi = min

(
�max

i+1 − �max
i

ti+1 − ti
, . . . ,

�max
n − �max

i

tn − ti

)

3. If needed, redefine the maximum integrated hazard at some target
age tj , j > i, as:

�̃max
j = min

(
mi

(
tj − ti

) + �max
i , �max

j

)
If �̃max

j < �min
j , true beliefs are not consistent with a convex inte-

grated hazard (and hence with an increasing hazard of death).
4. Increase i by 1 and start from Step 2 until reaching i = n − 1.

The resulting integrated hazard is shown in panel (d) of Figure 2.
Using this algorithm, we check for each respondent whether underlying
expectations may satisfy the increasing hazard assumption without
rounding and under the general and common rounding schemes.
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