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We develop a new score-driven model for the joint dynamics of fat-tailed realized covariance matrix obser-
vations and daily returns. The score dynamics for the unobserved true covariance matrix are robust to out-
liers and incidental large observations in both types of data by assuming a matrix-F distribution for the
realized covariance measures and a multivariate Student’s t distribution for the daily returns. The filter for
the unknown covariancematrix has a computationally efficient matrix formulation, which proves beneficial
for estimation and simulation purposes. We formulate parameter restrictions for stationarity and positive
definiteness. Our simulation study shows that the new model is able to deal with high-dimensional settings
(50 or more) and captures unobserved volatility dynamics even if the model is misspecified. We provide
an empirical application to daily equity returns and realized covariance matrices up to 30 dimensions. The
model statistically and economically outperforms competing multivariate volatility models out-of-sample.
Supplementary materials for this article are available online.

KEY WORDS: Generalized autoregressive score (GAS) dynamics; Heavy tails; Matrix-F distribution;
Multivariate volatility.

1. INTRODUCTION

A substantial body of literature focuses on modeling volatil-
ities and correlations of financial asset returns; see Bauwens,
Laurent, and Rombouts (2006) and Asai, McAleer, and Yu
(2006) for surveys. More recently, the increasing availability of
intraday data has led to the introduction of new types of volatil-
ity models that include so-called “realized measures” of vari-
ances and covariances. These new models lead to more accu-
rate measurements and forecasts of the conditional variance of
daily financial returns. Examples of such models in the uni-
variate case are the multiplicative error model (MEM) (Engle
and Gallo 2006), the HEAVY (high-frequency-based volatil-
ity) model (Shephard and Sheppard 2010), and the Realized
GARCH model (Hansen, Huang, and Shek 2012). These mod-
els consist of dynamic specifications for both returns and real-
ized (variance)measures. In themultivariate context, Noureldin,
Shephard, and Sheppard (2012) extended the univariate version
of the HEAVY model and Jin and Maheu (2013) developed
dynamic component models of returns and realized covari-
ance matrices based on time-varying Wishart distributions. A
related model is the Wishart autoregressive (WAR) model for
the covariance matrix of Gourieroux, Jasiak, and Sufana (2009),

although the authors apply it to realized covariance matri-
ces, discarding the daily return observations. Likewise, the
multivariate volatility models of Chiriac and Voev (2011) and
Bauer and Vorkink (2011) also focus on (multivariate) realized
measures only, as does the conditional autoregressive Wishart
(CAW) model of Golosnoy, Gribisch, and Liesenfeld (2012).

The asset prices used to estimate the above models are typi-
cally subject to the presence of fat-tails and jumps. These may
not only affect the daily return observations, but also the real-
ized measures. In particular, depending on the chosen estima-
tor, the realized measure estimates either integrated variance, or
both integrated variance and variation due to jumps. The latter
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may obviously substantially inflate realized measures occasion-
ally whenever jumps occur; see, for example, Lee and Mykland
(2008) on the estimation of spot variances in the presence of
jumps. Huang and Tauchen (2005) showed the importance of
jumps and argued that they account for up to 7% of S&P 500
index variation.
None of themethods described earlier shows how to deal with

fat tails in the realized covariance measures and returns simul-
taneously. In fact, most of the earlier methods center around
the use of a Wishart distribution for the realized covariance
matrix. The Wishart distribution is rather ill-suited to handle
outliers and incidental large observations. In this article, we
therefore develop a newmodel for the covariancematrix dynam-
ics based on joint measurements of possibly fat-tailed intraday-
based realized covariance matrices and daily returns. Our set-up
is particularly suitable for cases where no explicit robustifica-
tion methods are applied while estimating realized measures.
The new model is observation driven, thus allowing for easy
likelihood evaluation, estimation, and inference. We describe
the dynamics of the unobserved true daily return covariance
matrix by adopting the generalized autoregressive score frame-
work (GAS) of Creal, Koopman, and Lucas (2011, 2013); see
also Harvey (2013). The GAS framework uses the score of the
conditional density function to drive the dynamics of the time-
varying parameters, which in our case is the unknown covari-
ance matrix. Score-driven dynamics possess information theo-
retical optimality properties even if the model is mis-specified;
see Blasques, Koopman, and Lucas (2015). The framework has
been successfully applied in the recent literature to a variety of
different areas. For example, Creal, Koopman, and Lucas (2011)
used the GAS framework to model volatilities and correlations
in stock returns; Lucas, Schwaab, and Zhang (2014) developed
new dynamic copula models under skewness and fat tails and
applied this to systemic risk measurement; Harvey and Luati
(2014) described a new framework for dynamic local level mod-
els and state filtering based on scores; Creal et al. (2014) intro-
duced observation-driven mixed measurement dynamic factor
models to describe default and loss-given-default dynamics;
Andres (2014) studied score-driven models for positive random
variables; and Oh and Patton (2016) studied high-dimensional
factor copula models based on GAS dynamics for systemic risk
measurement.
The key ingredient in our dynamic modeling framework for

realized covariance matrices is the matrix-F distribution. For
an introduction to the matrix-F distribution, see, for exam-
ple, Konno (1991). Though the matrix-F distribution has been
around for some time, we have not found any applications to
economic or financial data. This is the more surprising given
the typical fat-tailed nature of such data. Incidental large obser-
vations may easily corrupt the estimated dynamic pattern of
the underlying covariance matrix if distributions with relatively
thin tails are used; see Creal, Koopman, and Lucas (2011),
Janus, Koopman, and Lucas (2014), Harvey (2013), and Lucas,
Schwaab, and Zhang (2014). Thematrix-F distribution provides
a coherent approach to address such sensitivities.
The use of the matrix-F distribution together with the GAS

dynamics of Creal, Koopman, and Lucas (2013) automatically
yields a robust recursive method for filtering the covariance
matrix dynamics. The form of this recursion is new, and a direct
generalization of both Wishart (thin-tailed) dynamics, and

multivariate Student’s t (vector rather than matrix) dynamics.
By a suitable choice of scaling, our recursion retains a conve-
nient matrix format, rendering our approach numerically highly
efficient, also in higher dimensional settings. The matrix format
of our recursion contrasts sharply with the approaches of Lucas,
Schwaab, and Zhang (2014) or Hansen, Janus, and Koopman
(2016), which become infeasible in higher dimensions due to
the use of vectorization and subsequent scaling operations.
We establish intuitive parameter restrictions for the station-

arity and ergodicity properties of our new model. In particular,
we show that our stochastic recurrence relation can be seen as
a special case of the semipolynomial Markov chains studied by
Boussama (2006). The stationary of the model then hinges on
the simple and intuitive condition that the autoregressive roots
in the GAS recursion lie outside the unit circle. In addition,
we show that the positive definiteness of the filtered covariance
matrices can easily be ensured.
Most closely related to our current study is Jin and Maheu

(2016). They developed a model based on an infinite mixture
of inverse-Wishart distributions to improve the fit compared to
the standard Wishart distribution to empirical realized covari-
ancematrices. Our approach differs from theirs in two important
ways. First, the covariance matrix dynamics in our approach are
score driven and therefore reflect the fat-tailedness of the data
better. In particular, the filtered covariance matrix estimates are
less susceptible to outliers and incidental influential observa-
tions, either in daily returns, or in realized measures, or both.
Second, unlike Jin and Maheu (2016), our approach is fully
observation driven and estimated via classical maximum like-
lihood. Computationally, therefore, the estimation of our model
is much less intensive than the Bayesian estimation procedure
of the model of Jin and Maheu.
We illustrate the performance of the newmodel both in a con-

trolled simulation environment and in an empirical application.
The simulation results indicate that the model can filter unob-
served volatility patterns even if the model is not correctly spec-
ified. Moreover, we show that our framework can easily handle
cross-sectional dimensions up to 50. Further, we show that when
the (co)variance dynamics are generated by a stochastic volatil-
ity (SV) type process, our model outperforms existingmultivari-
ate models such as the CAW model of Golosnoy, Gribisch, and
Liesenfeld (2012) and the normal-Wishart model of Hansen,
Janus, and Koopman (2016).
In our empirical application, we use the new model to

describe daily returns and daily realized measures of 30 equi-
ties from the S&P 500 index over the period January 2001 to
July 2014. We show that the volatilities and correlations esti-
mated by our model produce fewer spikes despite incidental
large tail observations. The differences follow directly from the
fat-tailed nature of the observation densities we assume and the
GAS transition dynamics used to drive the time variation in the
daily covariance matrices. We compare density forecasts of the
covariance matrix based on our matrix-F distribution and the
familiar Wishart distribution used in competing model specifi-
cations. The results reveal that the matrix-F provides a much
better fit to the data. In addition, the matrix-F distribution also
outperforms density forecasts produced by the inverse-Wishart
distribution. Density forecasts of returns associated with the
newmodel show that the GASmodel strongly beats the BEKK-t
and the normal- and inverse-Wishart models. Finally, we assess
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the economic significance by considering mean-variance effi-
cient portfolios. The results indicate that our proposed model
produces significantly lower ex post conditional portfolio stan-
dard deviations than competing models.
The rest of this article is set up as follows. In Section 2,

we introduce the new GAS model for multivariate returns and
realized covariance matrices under fat-tails. In Section 3, we
study the performance of the model in a simulation setting.
In Section 4, we apply the model to a high-dimensional panel
of 30 daily equity returns and daily realized measures from
the S&P 500 index. We conclude in Section 5. The appendix
gathers the proofs.

2. MODELING FRAMEWORK

2.1. The HEAVY GAS tF Model

Let yt ∈ R
k denote the vector of (demeaned) asset returns over

day t, t = 1, . . . ,T , and let RCt ∈ R
k×k denote the correspond-

ing realized covariance matrix, where RCt is computed using
high-frequency data, for example, a standard realized covari-
ance matrix estimator based on 5 min returns. We assume that yt
is fat-tailed and follows a standardized Student’s t distribution
with ν0 degrees of freedom and positive definite time varying
covariance matrix Vt ∈ R

k×k. The conditional observation den-
sity for yt is

py(yt |Vt,Ft−1; ν0) = �((ν0 + k)/2)

�(ν0/2) [(ν0 − 2)π ]k/2 |Vt |1/2

×
(
1 + ytV−1

t yt
ν0 − 2

)−(ν0+k)/2
, (1)

where Ft denotes the information set containing all returns and
realized covariances up to and including time t. We assume that
ν0 > 2, such that the covariance matrix exists.

Whereas a Student’s t distribution for yt is fairly standard in
the literature, the distribution of the realized covariance matrix
RCt has received much less attention. Typically, one assumes
a Wishart distribution for RCt ; see, for example, Noureldin,
Shephard, and Sheppard (2012); Gourieroux, Jasiak, and Sufana
(2009); and Golosnoy, Gribisch, and Liesenfeld (2012). As the
empirical data used in Section 4 show, however, the Wishart
distribution is strongly rejected by the data. In particular, for
the diagonal elements of RCt we strongly reject the scaled χ2

(i.e., univariateWishart) distribution, whereas we cannot reject a
scaledF-distribution. As realizedmeasures are (weighted) sums
of high-frequency returns that potentially contain outliers, this
may require the more flexible F-distribution. Using this empiri-
cally relevant finding, we assume in this article that the realized
covariance matrix follows a conditional matrix-F distribution
with ν1 and ν2 degrees of freedom. The corresponding condi-
tional observation density is

pRC(RCt |Vt,Ft−1; ν1, ν2)

= K(ν1, ν2) ×

∣∣∣ ν1
ν2−k−1V

−1
t

∣∣∣ν1/2 |RCt |(ν1−k−1)/2

∣∣∣Ik + ν1
ν2−k−1V

−1
t RCt

∣∣∣(ν1+ν2 )/2
, (2)

with positive definite expectation Et[RCt |Ft−1] = Vt , degrees of
freedom parameters ν1, ν2 > k − 1, and

K(ν1, ν2) = �k((ν1 + ν2)/2)

�k(ν1/2)�k(ν2/2)
,

�k(x) = π k(k−1)/4 ·
k∏
i=1

�(x+ (1 − i)/2), (3)

where �k(x) denotes the multivariate Gamma function; see
Konno (1991), Tan (1969), and Gupta and Nagar (2000). The
matrix-F distribution is the multivariate analog of the univari-
ate F distribution, which in turn is a ratio of two independent χ2

distributions. Similarly, the matrix-F distribution is obtained by
considering a Wishart times an inverse-Wishart distributed ran-
dom matrix. When ν2 → ∞, the matrix-F distribution degen-
erates to the Wishart distribution (the multivariate analog of a
χ2 distribution) with ν1 degrees of freedom. We thus nest the
Wishart as a special case. The model of Jin and Maheu (2016)
uses an infinite mixture of inverse-Wishart distributions to cre-
ate fatter tails for RCt . The inverse-Wishart, however, does not
nest the regular Wishart distribution.
Figure 1 illustrates the difference between the Wishart dis-

tribution and the matrix-F distribution for various values of k,
ν1, and ν2. We make use of the statistical result that if a k × k
matrix RCt is F (ν1, ν2) distributed, then a single entry on the
diagonal of RCt , denoted by RCii,t , is F (ν1, ν2 − (k + 2)) dis-
tributed; see Gupta and Nagar (2000). The panels (A)–(C) plot
the pdf of RCii,t for k = 15, while panels (D)–(F) show the cor-
responding pdfs for k = 30. All pdfs have a mean that equals
one. The solid line is the pdf of the F distribution with a spe-
cific combination of k, ν1, and ν2. In particular, the parameter
combinations in panels (A) and (D) correspond to empirically
estimated values.
The figure shows that the matrix-F distribution results in a

much wider dispersion for the same mean than the Wishart dis-
tribution. This holds particularly for panels (A) and (D), but is
also visible in panels (B) and (E). Hence, a matrix-F distribu-
tion for a 15 (resp. 30) dimensional covariance matrix is distinct
from aWishart distribution even for degrees of freedom parame-
ters as high as ν1 = 140 (resp. 205) and ν2 = 65 (resp. 90). This
result comes back in the empirical application, where we show
that the matrix-F distribution clearly outperforms the Wishart
distribution with respect to density forecasting of the realized
covariance matrix.
The conditional observation densities for yt and RCt both

depend on the common time-varying covariance matrix Vt . To
describe the dynamics of the unobserved matrix Vt , we use the
generalized autoregressive score (GAS) framework of Creal,
Koopman, and Lucas (2011, 2013); see also Harvey (2013),
Creal et al. (2014), Lucas, Schwaab, and Zhang (2014), and
Hansen, Janus, and Koopman (2016). The approach is obser-
vation driven in the classification of Cox (1981). An important
advantage of this framework over parameter-driven approaches
is that the likelihood function is available in closed form, and
therefore estimation and inference by means of maximum like-
lihood methods are straightforward.
The GAS recursion for Vt is given by

Vt+1 = � + α St + β Vt, (4)
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Figure 1. The rescaled matrix-F and the Wishart distribution. This figure shows pdfs associated with a matrix-F distribution with ν1 and ν2
degrees of freedom and a Wishart distribution with ν1 degrees of freedom for a k × k matrix RCt . We plot the pdf of one of the main-diagonal
entries RCii,t (i = 1, . . . k), for k = 15 (upper panels) and k = 30 (lower panels) for various degrees of freedom. The solid line corresponds with
the F distribution, while the dashed line represents the Wishart (χ 2) distribution.

where St ∈ R
k×k is the scaled score as derived below, α and β

are scalars, and� ∈ R
k×k is amatrix of intercepts. A straightfor-

ward extension is to let α and β be diagonal matrices, or to fol-
low the set-up of Golosnoy, Gribisch, and Liesenfeld (2012) and
consider Vt+1 = CC′ + ASt A′ + BVt B′ for triangular parame-
ter matrices A, B, and C.
The recursion in (4) is reminiscent of the dynamic condi-

tional correlation (DCC) recursion of Engle (2002). The main
difference is that we use the scaled score St rather than the outer
product yty′t of past returns. Unlike Creal, Koopman, and Lucas
(2011), Lucas, Schwaab, and Zhang (2014), and Hansen, Janus,
and Koopman (2016), our score is a matrix-valued rather than a
vector-valued variable. This substantially increases the numeri-
cal efficiency of our procedure in high dimensions. Whereas we
only need to keep track of matrices of size k × k, these other
approaches need to track 1

2k(k + 1) × 1
2k(k + 1) sized matrices

due to vectorization and scaling manipulations. Note that fur-
ther lags of Vt and St can be added on the right-hand side of
(4), as well as “asymmetry” effects as in Cappiello, Engle, and
Sheppard (2006). In particular, inspired by Corsi (2009) and Jin
and Maheu (2016), a richer specification for Vt+1 would be the
“GAS-HAR” recursion to accommodate the long-memory-type
persistence in Vt+1:

Vt+1 = � + α St + β1V	1,t + β2V	2,t + β3V	3,t, (5)

with V	,t = 	−1 ∑	
i=1Vt−i. With 	1 = 1, 	2 = 5, and 	3 = 22,

we obtain the standard HAR setting; see Corsi (2009). Note
that there is a slight difference between (5) and the models of

Jin and Maheu (2013) and Corsi (2009) as we put the “HAR-
dynamics” on Vt rather than on RCt . We label the model in (5)
as the HEAVY GAS HAR model.
We assume that conditional on Vt and Ft−1, returns yt and

realized covariances RCt are independent. Extensions to include
conditional dependence between a vector-valued random vari-
able yt and a matrix-valued random variable RCt currently
appear nontrivial, and we leave such extensions for future
research. Assuming independence, the total log-likelihood at
time t, denoted by Lt , equals the sum of the log-likelihood con-
tributions corresponding to the Student’s t and matrix-F densi-
ties. Likewise, the score ∇t of the conditional observation den-
sity of (yt,RCt ) with respect to Vt is equal to the sum of the
scores of (1) and (2), that is,

Lt = log py(yt |Vt,Ft−1; ν0)

+ log pRC(RCt |Vt,Ft−1; ν1, ν2), (6)

∇t = ∂Lt/∂Vt = ∇y,t + ∇RC,t,

∇y,t = ∂ log py(yt |Vt,Ft−1; ν0)/∂Vt,

∇RC,t = ∂ log pRC(RCt |Vt,Ft−1; ν1, ν2)/∂Vt . (7)

This leads to the following result.

Proposition 1. For the Student’s t density (1) and the matrix-
F distribution (2), the corresponding k × k score matrices ∇y,t

and ∇RC,t are

∇y,t = 1

2
V−1
t

[
wt yty

′
t −Vt

]
V−1
t (8)
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∇RC,t = ν1

2
V−1
t

[
ν1 + ν2

ν2 − k − 1

×RCt

(
Ik + ν1

ν2 − k − 1
V−1
t RCt

)−1

−Vt

]
V−1
t , (9)

where wt = (ν0 + k)/(ν0 − 2 + y′tV
−1
t yt ), and where deriva-

tives have been taken with respect to a general nonsymmetric
matrix Vt rather than a positive definite symmetric matrix Vt .

Proofs of all propositions are provided in the supplementary
appendix.
Creal, Koopman, and Lucas (2013) proposed to scale the

score ∇t to account for the curvature in the log conditional
observation density with respect toVt . They did so using powers
of the inverse conditional Fisher information matrix. In the con-
text of our current model with vector-valued and matrix-valued
random variables, this would lead to a cumbersome and numer-
ically inefficient procedure. We therefore propose a much more
straightforward and numerically efficient way to scale the score
expressions in Equations (8) and (9) while still accounting for
curvature of the raw score ∇t as a function of Vt . In particular,
we scale vec(∇t ) by a scalar multiple of (Vt ⊗Vt ) and obtain

vec(St ) ≡ 2

ν1 + 1
(Vt ⊗Vt ) vec(∇t ) = 2

ν1 + 1
vec(Vt ∇t Vt ) ⇒

(10)

St = wt yty′t −Vt
ν1 + 1

+ ν1

ν1 + 1

[
ν1 + ν2

ν2 − k − 1
RCt

×
(
Ik + ν1 V−1

t RCt
ν2 − k − 1

)−1

−Vt

]
, (11)

where wt is defined in Proposition 1, vec( · ) stacks the columns
of a matrix into a vector, and ⊗ denotes the Kronecker prod-
uct. Alternative forms of scaling may also be considered, but the
computational advantages of (11) are substantial and typically
outweigh the numerical complications incurred with more com-
plex forms of scaling. This proves absolutely critical (as demon-
strated in Sections 3 and 4) when comparing the newly devel-
oped approach with the competing setup of Hansen, Janus, and
Koopman (2016). We label the model given by Equations (1),
(2), (4), and (11) the HEAVYGAS tFmodel. Let us now discuss
the basic intuition underlying the score Equation (11). The first
term in (11) relates to the multivariate Student’s t distribution
and has two important features. First, this score considers the
deviations of the weighted outer product wt yty′t from the local
covariancematrixVt .When ν0 → ∞, that is, when the Student’s
t distribution collapses to the normal distribution, the weights
collapse to wt ≡ 1 for all t and the dynamics of Vt resemble
the covariance dynamics of a multivariate GARCH model, that
is, yty′t −Vt . In that case also the scaling matrix (Vt ⊗Vt ) is
directly proportional to the inverse conditional Fisher informa-
tion matrix. Second, as discussed in Creal, Koopman, and Lucas
(2011), the impact of “large values” yty′t on Vt is tempered by
wt if the density for y is heavy-tailed, that is, if 1/ν0 > 0. Put
differently, wt decreases when y′tV

−1
t yt explodes. This gives the

covariance matrix dynamics as driven by the multivariate Stu-
dent’s t distribution an attractive and embedded robustness fea-
ture. The interpretation is that if yt is drawn from a heavy-tailed
distribution, large values of yty′t could arise as a result of the
heavy-tailed nature of the distribution rather than as a result of
a substantial change in the underlying covariance matrix. The
score-based approach automatically accounts for this.
The second term in (11) is new and results from the matrix-F

distribution. The expression has a highly similar form and inter-
pretation as the Student’s t score discussed before. The main
difference is that RCt is a matrix-valued rather than a vector-
valued random variable. Due to the fat-tailedness of the matrix-
F distribution, “large” values of RCt as measured byV−1

t RCt do
not automatically lead to substantial changes in the covariance
matrix Vt . Instead, the matrix “weight” (Ik + ν1V−1

t RCt/(ν2 −
k − 1))−1 takes the same role as wt in (8) and downweights
the impact of a large V−1

t RCt’s on future values of Vt . When
ν2 → ∞, the matrix-F distribution collapses to the Wishart dis-
tribution with ν1 degrees of freedom and the second term of
the scaled score St in (11) collapses to ν1 (ν1 + 1)−1 (RCt −Vt ),
which is directly in line with the expressions in Hansen, Janus,
and Koopman (2016). The parameter ν2 thus takes the same
robustification role for the realized covariance measures RCt as
the parameter ν0 takes for the returns yt .
Looking at the two terms in (11) simultaneously, the value of

ν1 clearly trades off the relative contributions of the Student’s
t score and the matrix-F score when updating Vt . If ν1 is large,
the information in RCt is deemed relatively precise compared to
a weaker signal contained in the outer product of daily returns
yty′t . In that case, the score is dominated by the second term in
the scaled score. The converse holds if ν1 is low. In the limit
ν1 → ∞, RCt measures Vt exactly, and the weight of the score
part due to yt drops out entirely from the model formulation.
Each of the three degrees of freedom, ν0, ν1, and ν2 has indeed
its own clear role in the model formulation, as well as its precise
economic intuition.
We complete the model presentation by providing parame-

ter restrictions to ensure positive definiteness of the covariance
matrices Vt . We also prove a result on the suitability of the
derivative concept used in Proposition 1.

Proposition 2. Consider the sequence of covariance matrices
{Vt} generated by Equation (4). Assume that the realized mea-
sures RCt are positive semidefinite for each time t. Given the
scaled score steps as in Equation (11) and given an initial posi-
tive definite matrix V1 and positive semidefinite matrix �, then
Vt is positive definite for each t ≥ 1 if β > α > 0.

The parameter restrictions β > α > 0 can easily be imposed
during the estimation stage.
To formulate our final result in this section, we define

the operator devec(·) as the inverse of vec(·), that is,
devec(vec(V )) = V . Similarly, we define the operators vech(·)
and devech(·), with vech(V ) stacking the lower triangu-
lar elements of a symmetric matrix V into a vector, and
devech(vech(V )) = V . Finally, we define the selection matrix S
with 1’s and 0’s such that vec(V ) = S vech(V ) for a symmetric
matrix V . We now obtain the following result.
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Proposition 3. For symmetric k × k matrices V and ∇,

devec
((
V−1 ⊗V−1

)−1
vec(∇ )

)
= devech

((S ′ (V−1 ⊗V−1)S)−1 S ′ vec(∇ )
)

. (12)

The result in Proposition 3 is important given that in Propo-
sition 1 we ignored the fact that Vt is symmetric when tak-
ing derivatives. We subsequently scaled the resulting vectorized
derivative vec(∇t ) by a scalar multiple of the inverse of (V−1

t ⊗
V−1
t ) to obtain our score step St in (11). Analogously, we scale
the score with respect to vech(Vt ), that is, ∂Lt/∂ vech(Vt ) =
S ′ vec(∇t ), by the inverse of S ′(V−1

t ⊗V−1
t )S . Proposition 3

now states that these two approaches yield precisely the same
score steps St as both ∇t and Vt are symmetric. It thus appears
immaterial whether or not we account for the fact thatVt is sym-
metric when taking derivatives, as long aswe use the appropriate
form of scaling. Clearly, this does not necessarily hold for other
forms of scaling, and therefore provides a further advantage to
our current definition of St .

2.2. Stationarity and Ergodicity

A useful feature of our HEAVY GAS tF model is that under
the assumption of correct specification the scores ∇y,t and ∇RC,t

are martingale differences by design and therefore have condi-
tional expectation 0. This follows directly from the fact that they
are scores of a correctly specified density. To obtain stationarity
of Vt , however, we need to study the probabilistic properties of
the new model as generated by the nonlinear recursion (4). We
obtain the following result.

Proposition 4. If 0 < α < β < 1, the process generated by
the HEAVY GAS tF model is stationary, geometrically ergodic,
and β-mixing.

A key step in the proof of Proposition 4 is to rewrite the scaled
score as

V−1/2
t St (V

′
t )

−1/2

= (ν0 + k)

(ν1 + 1)(ν0 − 2)
εy,tε

′
y,t

(
1 + 1

ν0 − 2
ε′
y,tεy,t

)−1

+ ν1 (ν1 + ν2)

(ν1 + 1)(ν2 − k − 1)
εRK,t

×
(
Ik + ν1

ν2 − k − 1
εRK,t

)−1

− Ik, (13)

where εy,t has Student’s t distribution with mean zero, covari-
ance matrix Ik, and degrees of freedom ν0, and εRK,t has a
matrix-F distribution with expectation Ik, and degrees of free-
dom parameters ν1 and ν2. The right-hand side of (13) does
not depend on Vt . Moreover, the terms on the right-hand side
are transformations of (matrix) Beta distributed random vari-
ables and have finite expectations and variances if 2 < ν0 < ∞,
k − 1 < ν1 < ∞, and k − 1 < ν2 < ∞; see Tan (1969).
A further inspection of the proof of Proposition 4 and Theo-

rem 2 in Boussama (2006) shows that we can easily generalize

the result to models with dynamics of the type

Vt+1 = � + ASt A
′ + BVt B

′, (14)

for k × k matrices A and B. Such models allow for possible
rich volatility spillover effects, that is, through loadings but also
though scaled score. In the same vein, the proofs show that the
GAS HAR tF model of Equation (5) is stationary and ergodic
if β j > 0 for j = 1, 2, 3, 	−1

1 β1 + 	−1
2 β2 + 	−1

3 β3 > α > 0, and
β1 + β2 + β3 < 1.
It is also clear from (13) that we can establish the existence of

moments for Vt using the feature that the (matrix) Beta random
variables are “bounded” in the appropriatematrix sense. For 0 <

β < 1, we then directly obtain the unconditional first moment
of Vt as E[Vt] = (1 − β )−1�. A number of these features are
discussed for the univariate case in Harvey (2013). Proposition 4
generalizes these results to the fully multivariate matrix context.

2.3. Estimation

We collect matrix-valued � and scalar-valued α, β, ν0, ν1, ν2
into a static parameter vector θ for the GAS specification of
(4) and estimate θ by maximum likelihood. Note that β should
be replaced by (β1, β2, β3) when estimating the GAS HAR
specification of (5). We maximize the log-likelihood LT (θ ) =∑T

t=1 Lt , where Lt is defined in Equation (6). The starting value
V1 can be either estimated or set equal to RC1. We further reduce
the number of parameters following Hansen, Janus, and Koop-
man (2016) by using a covariance targeting approach to estimate
�. As � = (1 − β ) E[Vt] for 0 < β < 1, we replace � during
estimation by (1 − β ) times the sample mean of RCt . For the
GAS HAR tF model, we multiply the sample mean of RCt by
(1 − β1 − β2 − β3). This should be a consistent estimator for
the expectation under a standard ergodicity assumption. Hence,
we are left only with five scalar-valued parameters for the basic
GAS tF specification: α, β, ν0, ν1, and ν2. The GAS HAR tF
requires two extra parameters (β = {β1, β2, β3}). The resulting
maximum likelihood estimation procedure is fast and numeri-
cally efficient. In our empirical section, we use it to estimate
the parameters of dynamic systems up to 30 dimensions. Pro-
ceeding to even higher dimensional systems is feasible as well
as we show in the simulation exercise in Section 3 for the case
k = 50. For empirical data, however, such high dimensions are
probably better addressed by studying covariance models with
factor structures.

3. SIMULATION EXPERIMENT

3.1. Monte Carlo Analysis Based on the Correctly
Specified Model

We now perform a Monte Carlo study to investigate the sta-
tistical properties of the maximum likelihood estimator for θ .
We simulate time series of T daily returns and daily realized
covariances of dimension k. We use T = 500, 1000, and k =
5, 15, 30, 50.We generate data using theHEAVYGAS tFmodel
as the true data-generating process (DGP) and set α = 0.8, β =
0.97, ν0 = 12, ν1 ∈ {140, 205, 300}, and ν2 ∈ {65, 90, 150}. In
addition, � = (1 − β )V0 with V0 a matrix with Vj j = 4 ( j =
1, . . . , k) and Vi j = 4ρ (i �= j) with ρ = 0.7. The parameters
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Table 1. Parameter estimations of HEAVY GAS DGP. This table shows Monte Carlo averages and standard deviations (in parentheses) of
parameter estimates from simulated HEAVY GAS processes. The table reports the mean and the standard deviation in parentheses based on

1000 replications

k = 5 k = 15

Coef. True T = 500 T = 1000 True T = 500 T = 1000

α 0.80 0.797 (0.036) 0.798 (0.025) 0.80 0.801 (0.022) 0.800 (0.016)
β 0.97 0.966 (0.005) 0.968 (0.004) 0.97 0.966 (0.002) 0.968 (0.001)
ν0 12.00 12.419 (2.233) 12.179 (1.460) 12.00 12.097 (1.195) 12.054 (0.803)
ν1 22.00 22.063 (0.794) 22.037 (0.559) 140.00 140.57 (4.025) 140.28 (2.829)
ν2 35.00 35.127 (2.049) 35.054 (1.435) 65.00 65.030 (0.813) 64.998 (0.588)

k = 30 k = 50

α 0.80 0.799 (0.010) 0.799 (0.007) 0.80 0.799 (0.005) 0.799 (0.004)
β 0.97 0.966 (0.001) 0.968 (0.001) 0.97 0.967 (0.001) 0.969 (0.000)
ν0 12.00 12.083 (0.857) 12.046 (0.610) 12.00 12.096 (0.757) 12.059 (0.545)
ν1 205.00 205.72 (2.605) 205.29 (1.825) 300.00 300.82 (2.152) 300.35 (1.464)
ν2 90.00 90.025 (0.473) 90.020 (0.346) 150.00 150.01 (0.497) 150.00 (0.343)

resemble values found in the empirical application of Section
4. For each simulated series, we estimate θ by maximum likeli-
hood.
Table 1 presents the results. All parameters are estimated

near their true values. Standard deviations shrink as either the
sample size T or the cross-sectional dimension k grows. Inter-
estingly, there appears to be a small downward bias in b for
larger dimensions k ≥ 15. Nevertheless, the table demonstrates
that our model is able to deal with dimensions as large as
k = 30, 50.

3.2. Monte Carlo Analysis Based on Mis-Specified
Models

One of the main aims of the new HEAVY GAS tF model is to
obtain estimates of the unobserved Vt and to do so robustly in
the presence of heavy-tailed distributions for the observations yt
and RCt . Given θ̂ , such estimates follow directly from the recur-
sion (4) of the GAS model. To see how well the model does in
tracking unknown dynamics of the covariance matrixVt , we per-
form the following experiment. First, we consider a determinis-
tic process for the daily volatilities and correlation of a bivariate
return vector yt . Over the tth day, we simulate n intraday returns
yi,t , i = 1, . . . , n. The returns are iid with covariance matrix
Vt/n:

yi,t
iid∼ N(0,Vt/n),

σt = 4 + sin(2πt ), ρt = 0.5 sin(2πt ),

where σ 2
t and ρtσ

2
t are the variance and covariance at day

t = 1, . . . ,T . Using the intraday returns, we construct the daily
return yt and the realized covariance matrix RCt , computed as∑n

i=1 yi,t y
′
i,t . We set T = 1000 and n = 50.

In a second experiment, we let the (co)variances vary in a
stochastic rather than a deterministic way. This DGP combines
the fat-tailedness of returns and realized covariance matrices
with stochastic volatility dynamics for the covariance matrixVt .

It does so in the following way:

yt |Ft−1 ∼ t(ν0,Vt ), RCt |Ft−1 ∼ F (ν1, ν2,Vt ),

Vt = V̄ + γVt−1 + ηt, ηt ∼ F (νη,1, νη,2,V0,η ),

V0 = 4

(
1 0.7
0.7 1

)
, (15)

with ηt a 2 × 2 matrix drawn from a matrix-F distribution with
mean V0,η = κ (1 − γ )V0, and νη,1 and νη,2 degrees of freedom.
We set ν0 = 5, ν1 = 20, ν2 = 18, γ = 0.98, T = 1000, νη,1 =
8, νη,2 = 7, κ = 5, and V̄ = (1/2)(1 − γ )V0. All these values
are chosen such that we obtain reasonable volatility and corre-
lation patterns.
We compare our model with two alternatives. First, we

demonstrate the difference between the fat-tailed matrix-F dis-
tribution and the Wishart distribution in the context of the GAS
framework by considering the model of Hansen, Janus, and
Koopman (2016), which we label HJK. Second, we consider
the CAW model of Golosnoy, Gribisch, and Liesenfeld (2012).
This model assumes a conditional Wishart distribution for RCt
and specifies its dynamics as

Vt = � + α RCt + β Vt−1, (16)

which is in fact similar to the observation equation of the Mul-
tivariate HEAVY model of Noureldin, Shephard, and Sheppard
(2012). As in the HEAVY GAS tF model, α and β are scalars
and we estimate the matrix � by means of covariance targeting.
After simulating 1500 paths from the DGP of (15), we report
the mean and the standard deviation of the root mean squared
error (RMSE) corresponding to each path, which is defined as

RMSE =
[
1

T

T∑
t=1

‖Vt − V̂t‖2
]1/2

=
⎡
⎣ 1

T

∑
i, j,t

(Vi j,t − V̂i j,t )
2

⎤
⎦

1/2

, (17)
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Figure 2. Model fit for a deterministic DGP. This figure shows a realization of the simulated (co)variance process of (15) (black line) with
T = 1000 and the fit from the HEAVY GAS tF model (gray line). Panels A and D represent the volatilities, while panels B and C present the
correlation and covariance, respectively.

with V̂t the estimated covariance matrix from a particular model,
and ‖ · ‖ denoting the (matrix) Frobenius norm.
Figure 2 presents results for one particular realization of the

deterministic DGP. The black lines represent the true values of
the volatility, correlation, or covariance. The figure shows that
the newmodel easily recovers the patterns for the volatility, cor-
relation, and covariance.
Turning to the stochastic (co)variance case, Table 2 reports

the means of the RMSE as defined in (17) over all 1500 simu-
lation paths of the three models with respect to the true DGP.
The standard deviations of the means are reported in paren-
theses. Note that all models are misspecified in this case. The
HEAVY GAS tF model produces the lowest average RMSE.
Compared to the HJK model, it does so by using the matrix-F
distribution rather than the Wishart distribution when estimat-
ing the parameters. This also affects the score dynamics of the
transition equation for Vt . Compared to the CAW model, both
the HJK and the HEAVY GAS tF model do better. Apparently,
using the information in the daily returns both for estimating the
static model parameters and for filtering the covariance matrix

Table 2. Statistical fit on stochastic DGP. This table shows Monte
Carlo averages and standard deviations (in parentheses) of the RMSE
defined in (17) over all simulation paths of three misspecified models

with respect to the true bivariate covariance matrix, which is
simulated from the SV process of (15). We compare the HEAVY
GAS tF model with the HJK model and the CAW model. The table

reports the mean and the standard deviation of the mean in
parentheses based on 1500 simulation paths

HGAS tF HJK CAW

mean 11.42 12.66 13.49
st. dev. (0.14) (0.17) (0.18)

is helpful for estimating the true covariance matrix dynamics.
Overall, the results highlight the advantage of modeling the real-
ized covariance matrix by a fat-tailed matrix-F distribution in
combination with the GAS framework for the matrix dynam-
ics. The impact of large incidental jumps is downweighted by
the HEAVY GAS tF model, producing a lower RMSE than the
Wishart-based models, which lack a similar property.

4. EMPIRICAL APPLICATION: U.S. EQUITY RETURNS

4.1. Data

We apply the HEAVY GAS tF model to daily realized
(co)variances and daily (open-to-close) returns of 30 randomly
chosen U.S. equities from the S&P 500 index over the period
January 2, 2001, until July 31, 2014, a total of 3415 trading
days. Table 3 lists the ticker symbols. For each stock, we observe

Table 3. Kolmogorov–Smirnov test on the distribution of realized
variances. This table shows p-values associated with the

Kolmogorov–Smirnov test on realized variances of 30 equities. The
columns represent the Ticker symbol as well as p-values

corresponding with the null hypothesis that RCt is χ 2 or F distributed

Ticker H0: χ 2 H0: F Ticker χ 2 F Ticker χ 2 F

AA 0.00 0.05 MCD 0.00 0.01 BHI 0.00 0.82
AXP 0.00 0.00 PFE 0.00 0.86 BAC 0.00 0.00
BA 0.00 0.20 PG 0.00 0.22 C 0.00 0.00
CAT 0.00 0.44 WMT 0.00 0.25 DD 0.00 0.11
GE 0.00 0.05 XOM 0.00 0.84 DOV 0.00 0.93
HD 0.00 0.23 AIG 0.00 0.01 DUK 0.00 0.17
HON 0.00 0.19 AEP 0.00 0.48 F 0.00 0.06
IBM 0.00 0.06 ABT 0.00 0.86 JNJ 0.00 0.11
JPM 0.00 0.05 AEE 0.00 0.05 KEY 0.00 0.46
KO 0.00 0.15 BAX 0.00 0.87 LLY 0.00 0.97
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Figure 3. The fit of the probability distribution of the realized variance of BA. This figure shows a histogram of the realized variances (RV)
of Boeing over the period 2001–2014. Panel A shows the histogram for RV < 10, while panel B shows the remaining part of the histogram for
values of RV larger than 10. The solid and dashed curves present the best-fitting F and χ 2 distribution, respectively.

consolidated trades (transaction prices) extracted from the Trade
and Quote (TAQ) database with a time-stamp precision of 1 sec.
We first clean the high-frequency data following the guidelines
of Brownlees and Gallo (2006) and Barndorff-Nielsen et al.
(2009). Second, we follow Noureldin, Shephard, and Sheppard
(2012) and construct realized covariance matrices using 5 min
returns with subsampling.
To empirically motivate the use of the matrix-F distribution,

Table 3 lists p-values for Kolmogorov–Smirnov (KS) tests. The
tests take the sequence of realized variances for each stock and
test whether their distribution equals a rescaled χ2, that is, the
univariate version of the Wishart distribution. We also compute
the tests for the null of a rescaled F distribution. Table 3 indi-
cates that in all cases the χ2 or Wishart distribution is strongly
rejected by the realized variance data. By contrast, the null
hypothesis that the realized variances come from an F distri-
bution is rejected at the 5% significance level for only 5 out of
the 30 stocks. Part of this is of course because the unconditional
distribution ofRCii,t is fatter tailed than a χ2 due to the time vari-
ation in Vii,t . However, our subsequent empirical results show
that the F distribution also significantly improves upon the χ2

distribution in a conditional distribution sense.
More insight in the rejection of the Wishart or χ2 distribution

is given in Figure 3. The left-hand panel shows the histogram of
theRCii,t series of Boeing (BA), as well as the best-fitting χ2 and
F distributions. The left-hand panel is truncated at RCii,t = 10.
The right panel shows the same three items, but for tail obser-
vations of RCii,t > 10. Combining the information in the two
panels, the overall histogram is peaked at the left and suggests a
fat right tail as values larger than 10 occur quite often. In addi-
tion, it is clear that the χ2 distribution neither captures the peak
at small values of RCii,t , nor the fat tail for large values of RCii,t .
The F distribution on the other hand captures both of these fea-
tures quite well. This example therefore strongly suggests that
the matrix-F distribution may lead to an empirically more con-
gruent model than the familiar Wishart distribution when mod-
eling the entire matrix RCt .

4.2. In-Sample Performance

Using the full sample of 3415 trading days, we estimate the
static parameters of the HEAVYGAS tFmodel.We compare the

outcomes to several related volatility models. First, we estimate
the parametric IW-A model of Jin and Maheu (2016), which is
given by the following specification:

p(RCt |Ft−1; νIW ) = IWk(RCt |νIW , (νIW − k − 1)Vt ).

Vt = � +
M∑
j=1

β j�t−1,	 j (18)

�t−1,	 j = 	−1
j

	 j∑
i=1

RCt−i, (19)

with � a k × k matrix and β j ( j = 1, . . . ,M) a scalar. Based
on the results of Jin and Maheu (2016), we set M equal to 3
with 	1 = 1, 	2 = 12, and 	3 = 60. Second, we consider the
HEAVY GAS HAR tF model of (5) with similar values for
	1, 	2, and 	3 as in the IW-Amodel. Third, we estimate the same
two contemporary benchmarks as in the simulation section: the
Wishart-based CAW model of Golosnoy, Gribisch, and Liesen-
feld (2012), see Equation (16), and the HJK model of Hansen,
Janus, and Koopman (2016). The HJKmodel uses GAS dynam-
ics for the vech-torized form of the Cholesky decomposition of
Vt and assumes a conditional normal distribution for the daily
returns yt and a Wishart distribution for the daily realized mea-
sures RCt . The form of scaling adopted by Hansen, Janus, and
Koopman (2016) forces them to keep track of scaling matrices
of order 1

2k(k + 1) × 1
2k(k + 1), which makes the model hard to

operationalize in higher dimensions. For k = 15, for example,
this amounts to matrices of size 120 × 120, while for k = 30,
the sizes even become 480 × 480. Because of the computational
burden, we implement the HJK model only up to dimension
k = 15.

Table 4 presents the parameter estimates and standard errors.
Standard errors are based on the inverse negative Hessian of
the likelihood evaluated at the optimum. We show the results
for two selections of k = 5 stocks, a selection of k = 15 stocks,
and the full set of k = 30 equities. In addition, we present the
log-likelihood valuesL∗, and the Bayesian information criterion
(BIC) values (in 1000’s) corresponding to the RCt observations.
This is done to make the models comparable, as the CAWmodel
and the IW-A model do not have a model equation for the daily
return observations.
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Table 4. Parameter estimates, likelihoods, and information criteria. This table reports maximum likelihood parameter estimates of the HEAVY
GAS (HAR) tF model, the IW-A model of Jin and Maheu (2016), the HJK model of Hansen, Janus, and Koopman (2016), and the CAW model
of Golosnoy, Gribisch, and Liesenfeld (2012), applied to daily equity returns and/or daily realized covariances. Panels A.1 and A.2 list results
for two randomly chosen sets containing five different assets. Panel B considers 15 assets and panel C shows the results for the full set of 30
assets. Standard errors are provided in parentheses. We report the total likelihood L∗ and the BIC (in thousands) of the IW-A and the CAW

model and the likelihood associated with the realized covariance matrix (i.e., the matrix-F and the Wishart distributions) for the GAS models.
Data are observed over the period January 2, 2001 until July 31, 2014 (T = 3415 trading days)

α β(β1) β2 β3 ν0 ν1(νIW ) ν2 L∗ BIC

Panel A.1: BA/HD/JPM/PFE/PG

GAS tF 0.859 0.989 10.09 69.86 35.26 −11,906 23.85
(0.017) (0.000) (0.615) (1.429) (0.414)

GAS-H tF 0.963 0.869 0.083 0.042 10.37 70.87 35.90 −11,387 22.82
(0.018) (0.006) (0.007) (0.003) (0.652) (1.339) (0.398)

HJK 0.054 0.965 17.83 −21,529 43.10
(0.001) (0.001) (0.099)

CAW 0.336 0.647 19.74 −18,030 36.08
(0.005) (0.005) (0.111)

IW-A 0.379 0.400 0.194 22.89 −13,104 26.24
(0.005) (0.007) (0.006) (0.105)

Panel A.2: CAT/HON/IBM/MCD/WMT

GAS tF 0.826 0.990 10.33 72.54 34.53 −4828 9.70
(0.020) (0.000) (0.643) (1.999) (0.438)

GAS-H tF 0.931 0.878 0.075 0.041 10.58 72.85 35.17 −4387 8.81
(0.019) (0.006) (0.007) (0.003) (0.673) (1.579) (0.417)

HJK 0.044 0.975 18.97 −12,324 24.69
(0.001) (0.001) (0.106)

CAW 0.313 0.670 20.26 −10,046 20.12
(0.005) (0.005) (0.115)

IW-A 0.338 0.442 0.190 23.05 −5552 11.14
(0.005) (0.007) (0.006) (0.107)

Panel B: AA/AXP/BA/CAT/GE/HD/HON/IBM/JPM/KO/MCD/PFE/PG/WMT/XOM

GAS tF 0.666 0.993 12.69 140.3 64.26 149,088 − 298.1
(0.005) (0.000) (0.506) (0.802) (0.218)

GAS-H tF 0.784 0.883 0.070 0.043 12.97 141.9 65.06 152,279 − 304.4
(0.006) (0.002) (0.003) (0.001) (0.519) (0.790) (0.221)

HJK 0.026 0.979 37.47 88,987 − 177.9
(0.000) (0.000) (0.070)

CAW 0.235 0.753 39.32 104,666 − 209.3
(0.001) (0.001) (0.074)

IW-A 0.246 0.467 0.257 44.40 139,138 − 278.2
(0.002) (0.003) (0.003) (0.062)

Panel C: All equities (k = 30)

GAS tF 0.520 0.997 12.65 203.8 91.71 937,986 −1876
(0.002) (0.000) (0.407) (0.430) (0.161)

GAS-H tF 0.648 0.891 0.065 0.042 13.03 204.8 92.78 948,944 −1898
(0.002) (0.001) (0.002) (0.001) (0.383) (0.417) (0.131)

CAW 0.173 0.821 57.04 725,787 −1452
(0.001) (0.001) (0.050)

IW-A 0.180 0.468 0.332 66.07 883,287 −1767
(0.001) (0.002) (0.001) (0.038)

The results in Table 4 suggest that allowing for fat tails
in the distribution of the realized covariances improves the
fit. The differences between the log-likelihood of the matrix-
F-based model and the Wishart-based models are substan-
tial and increase rapidly when the dimension becomes larger.

Also the differences in BIC values are large and favor the
HEAVY GAS(HAR) tF model for all values of k consid-
ered. The log-likelihoods and BIC values also indicate that the
Inverse-Wishart distribution improves upon the Wishart dis-
tribution, confirming the findings of Jin and Maheu (2016).
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Still, the matrix-F clearly gives the best fit for realized
covariance matrices. In addition, allowing for a richer structure
forVt improves the fit, although the improvement is less substan-
tial than the improvement due to the matrix-F distribution. The
log-likelihood of the HAR specification of the GAS tF model
increases compared to the regular GAS tF specification by about
500 (panel A.1), 3000 (panel B), and 11,000 (panel C) points at
the cost of estimating only two extra parameters. The increases
compared to the inverse-Wishart distribution are around 1300,
10,000, and 55,000 points, whereas the increases compared
to the models with a Wishart distribution are considerably
larger.
Looking at the individual parameter estimates, we first note

that the estimates of β are comparably high for the HEAVY
GAS tF and the HJK models, and also similar to the persistence
parameter β + α for the CAW model and β1 + β2 + β3 for the
IW-A and GAS-H(AR) tF model. This holds for all dimensions
k = 5, 15, 30 considered. The α parameters cannot be compared
directly between the different models. For example, the HJK
model takes the vech of the Choleski decomposition of Vt as its
time-varying parameter, whereas the HEAVYGAS tF and CAW
models take Vt itself as the time-varying parameter. It is inter-
esting to see that the parameter estimates in panels A.1 and A.2
are highly similar, despite the fact that they use nonoverlapping
sets of stocks. The degree of persistence as well as the strength
of the dependence of Vt on past values of yt and RCt thus seems
a shared feature between stocks.
The three degrees of freedom parameters reveal that both the

realized measures (ν2) and the returns (ν0) are fat-tailed. Recall
that the matrix-F distribution converges to the Wishart distribu-
tion if ν2 → ∞. The degrees of freedom ν2 may seem high at
first sight, but as was shown in Figure 1, the empirically esti-
mated values of ν1 and ν2 still produce a noticeable differences
between the Wishart and the matrix-F distribution. The values
of ν0 and ν2 also moderate the impact of outliers and incidental
large observations yt and RCt on future values of Vt+1 via the
score dynamics. This is clearly seen by the estimated values of
ν1 between the HEAVYGAS tF model and the HJKmodel. The
large values of ν1 for the HEAVY GAS tF model signal that the
model puts almost all attention on the realized kernels RCt when
determining the dynamics ofVt . The information in yty′t is hardly
used, particularly in high dimensions (k = 30). By contrast, the
HJK model still puts about 5% (k = 5) to 3% (k = 15) of the
weight on the score of the distribution for yt . We can attribute
the difference to the fact that the robust filtering approach of
the HEAVY GAS tF filter based on the matrix-F distribution
provides a much better estimate of the time-varying covariance
matrixVt . Failing to account for the fat-tailedness of RCt results
in a more blurred signal from the realized measures and a rela-
tively smaller weight on RCt compared to a model with robust
dynamics.
Figure 4 plots a small selection of the fitted volatilities and

correlations. We show the results for PG and PFE, according to
the HEAVY GAS tF model and the HJK model. The upper-left
and lower-right graphs show the estimated volatilities, while the
upper-right and lower-left graphs present the estimated covari-
ances and (implied) correlations, respectively.
The figure shows that the robust transition scheme based

on the matrix-F GAS dynamics is successful in mitigating the

impact of incidental large RCt observations on the estimates of
Vt . The HJKmodel, being based on thin-tailed densities, is much
more sensitive to such observations. Important episodes where
we see large differences are at the start of 2005 for Pfizer (PFE),
or around the May 2010 flash crash for Procter & Gamble (PG).
Note that in case of real stress periods (such as the financial cri-
sis) the HEAVY GAS tF model produces larger volatilities than
the HJK model. Interestingly, apart from the main striking dif-
ferences for Pfizer and Procter &Gamble, we also see a range of
other days where the HJK model produces a short-lived spike in
the estimated Vt , whereas the fat-tailed HEAVY GAS tF model
is much more stable around those times.
The patterns for the correlations and covariances reveal sim-

ilar features. The correlation between PFE and PG clearly dis-
plays sudden incidental drops, for example, around 2005, dur-
ing the flash crash of May 2010, but also at the start of 2003 and
the end of 2006. Incidental spikes in the covariances are visible
for the HJK model in 2006, 2010, and 2013. Again, the robust
HEAVY GAS tF model results in much more stable correlation
and covariance patterns that are filtered from the data.

4.3. Out-of-Sample Performance

We assess the short-term forecasting performance of the mod-
els by considering one-step ahead forecasts. Similar to the in-
sample analysis of the previous subsection, we compare the
HEAVY GAS (HAR) tF model with the HJK model, the CAW
model, and the IW-A model. We perform both a statistical
and an economic evaluation. The former is based on one-step
ahead density forecasts of the realized covariance matrix and the
returns. Recall that the HJK, CAW, and IW-A models assume
an (inverse-) Wishart distribution for the realized covariance
matrix, while the Heavy GAS (HAR) tF model assumes a
matrix-F distribution. In addition, we estimate Vt by a simple
EWMA scheme

Vt+1 = βVt + (1 − β )RCt,

with β = 0.96, and plug the resulting estimates into the matrix-
F density as estimated by the HEAVY GAS tF model.
We use a moving-window approach in the forecasting exer-

cise with an in-sample period of 1500 observations. This corre-
sponds roughly to 6 calendar years. The out-of-sample period
contains P = 1914 observations including the Great Finan-
cial Crisis, which therefore constitutes an important test for
the robustness of the model. We reestimate our model repeat-
edly after each 25 observations, which roughly corresponds to
monthly updating of the parameters. Also note that it is concep-
tually straightforward to go to multi-step ahead predictions with
the GAS tF specification, as the score has a conditional expec-
tation equal to zero. So given VT+1, as the one-step ahead fore-
cast, VT+h = � + βVT+h−1 for h > 1. Our results remain quali-
tatively the same for longer forecast horizons.
We use the log scoring rule (see Mitchell and Hall 2005;

Amisano and Giacomini 2007) to differentiate between the den-
sity forecasts of the models. Define the difference in log score
between the two density forecasts M1 and M2 corresponding to
the variable of interest Xt (either the return yt or the realized
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Figure 4. Estimated volatilities and correlations. This figure depicts estimated volatilities of PFE and PG at the main diagonal and their
pairwise correlations and covariances at the off-diagonal, estimated by the HEAVY GAS tF and HJK model. The black line corresponds with
the HEAVY GAS tF model, while the gray line denotes the fit from the HJK model. The estimation is based on the full sample, which runs from
January 2, 2001, until July 31, 2014 (3415 observations).

covariance matrix RCt) as

dls,t = Sls,t (Xt,M1) − Sls,t (Xt,M2), (20)

for t = R,R+ 1, . . . T − 1 with R the length of the estimation
window and Sls,t (Xt,Mj ) ( j = 1, 2) the log score of the density
forecast corresponding to model Mj at time t,

Sls,t (Xt,Mj ) = log pt (Xt |Vt,Ft−1,Mj ), (21)

where pt (·) is the probability distribution function of the matrix-
F or (inverse-) Wishart distribution in case of the realized
covariance matrix and the Normal or Student’s-t distribution in
case of the returns, respectively. The null hypothesis of equal
predictive ability is given by H0 : E[dls] = 0 for all P out-of-
sample forecasts. This null can be tested by means of a Diebold
and Mariano (1995) (DM) statistic given by

DMls = d̄√
σ̂ 2/N

, (22)

with d̄ the out-of-sample average of the log score differences
and σ̂ 2 a HAC-consistent variance estimator of the true variance
σ 2 of dls,t . Under the assumptions of the framework of Giaco-
mini and White (2006) DMls asymptotically follows a standard
normal distribution. A significantly positive value means that
model M1 has a superior forecast performance over model M2.

In addition to a statistical out-of-sample comparison of the
different models, we also provide an economic comparison.
Following Chiriac and Voev (2011), we consider global min-
imum variance portfolios (GMVP), motivated by the mean-
variance optimization setting of Markowitz (1952). The model
that provides the most accurate forecasts of the covariance
matrix should give a lower portfolio variance than the portfo-
lio variance of the competing models. Let us assume that the
investor aims to minimize the one-step ahead portfolio volatil-
ity over period t + 1 subject to a fully invested portfolio, given
his best estimate of the covariance matrix at time t. The resulting

GMVP weights wt+1|t are given by the solution of the quadratic
problem

minw′
t+1|t Vt+1|t wt+1|t s.t. w′

t+1|t ι = 1, (23)

with ι a k × 1 vector of ones. Similar as Chiriac and Voev
(2011), we assess the predictive ability of the different models
by comparing the ex post realizations of the conditional stan-

dard deviation, which are given by σp,t =
√

w′
t+1|t RCt+1 wt+1|t .

We again test whether the differences in portfolio standard devi-
ation between the different models are significant using the DM
test statistic as defined in (22).
Table 5 shows the average values of the log score and the ex

post portfolio standard deviations over the out-of-sample period
for two sets of 5 assets, a set of 15 assets, and the complete set of
30 assets. In addition, we provide corresponding t-statistics for
the difference in the log predictive density scores of the realized
covariance matrix and returns between the HEAVY HAR GAS
tFmodel and the competing models. Likewise, DMσp represents
the t-statistic based on the portfolio standard deviations of the
HEAVY HAR GAS tF model and the HEAVY GAS tF, HJK,
CAW, IW-A, EWMA, or BEKK-t model. Note that some of the
models considered lack a distributional assumption for either the
returns (CAW, IW-A), for the realized measures (BEKK-t), or
for both (EWMA). To allow a density forecast comparison for
these models, we have to choose the missing distribution. For
the IW-A model, we follow Jin and Maheu (2016) and a Stu-
dent’s t distribution for the returns with νIW − k + 1 degrees of
freedom, with νIW the degrees estimated for the inverseWishart.
For the CAW and EWMA model, we use a Student’s t dis-
tribution with ν0 degrees of freedom for the returns estimated
for the HEAVY GAS tF. Finally, for the BEKK-t and EWMA
we assume a matrix-F distribution for the realized covariance
matrices with ν1 and ν2 equal to their estimated values in the
HEAVY GAS tF model, such that the underlying distributions
equal those of the HEAVY GAS tF model.
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Table 5. Out-of-sample log-scores and ex post conditional standard deviations. This table shows the mean of log scores, defined in (21) and ex
post portfolio standard deviation, based on one-step ahead predictions of the covariance matrix, according to the HEAVY (HAR) GAS tF, HJK,
CAW, IW-A, and the EWMA model for two pairs of five assets (panel A), one pair of 15 assets (panel B) and for all equities (panel C, k = 30).
The highest (lowest) value of the predictive log-score (portfolio standard deviation) across the models are marked bold. In addition, we report
HAC-based test-statistics on the difference in predictive ability (DMDF) and portfolio standard deviation (DMσp ) between the HEAVY GAS

HAR tF model and the other considered models. The superscripts ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% level, respectively.
The out-of-sample period goes from 2007 until July 2014 and contains 1914 observations

GAS HAR tF GAS tF HJK CAW IW-A EWMA BEKK-t

Panel A: BA/HD/JPM/PFE/PG

Sls(RCt ) –2.11 –2.23 –6.22 –4.44 –2.72 –4.47 –9.08
DMDF (3.13)∗∗∗ (6.72)∗∗∗ (3.61)∗∗∗ (4.50)∗∗∗ (11.90)∗∗∗ (21.18)∗∗∗

Sls(yt ) –7.30 –7.31 –7.49 –7.31 –7.32 –7.37 –7.40
DMDF (2.59)∗∗∗ (8.77)∗∗∗ (1.37) (2.86)∗∗∗ (6.96)∗∗∗ (5.70)∗∗∗

σp 0.790 0.791 0.810 0.794 0.794 0.797 0.824
DMσp (–6.00)∗∗∗ (–5.81)∗∗∗ (–3.73)∗∗∗ (–3.08)∗∗∗ (–4.82)∗∗∗ (–16.41)∗∗∗

Panel B: k = 15
Sls(RCt ) 58.28 57.52 34.62 42.03 53.86 49.08 5.96
DMDF (3.68)∗∗∗ (11.51)∗∗∗ (8.28)∗∗∗ (4.45)∗∗∗ (11.85)∗∗∗ (20.92)∗∗∗

Sls(yt ) –19.95 –19.98 –20.54 –19.99 –20.09 –20.07 –20.30
DMDF (5.33)∗∗∗ (14.50)∗∗∗ (3.42)∗∗∗ (7.35)∗∗∗ (7.17)∗∗∗ (9.45)∗∗∗

σp 0.629 0.630 0.648 0.632 0.632 0.637 0.695
DMσp (–6.00)∗∗∗ (–5.81)∗∗∗ (–3.73)∗∗∗ (–3.08)∗∗∗ (–4.82)∗∗∗ (–16.41)∗∗∗

Panel C: All equities (k = 30)
Sls(RCt ) 316.48 313.39 238.97 294.60 292.20 109.08
DMDF (5.08)∗∗∗ (16.73)∗∗∗ (7.45)∗∗∗ (12.93)∗∗∗ (26.59)∗∗∗

Sls(yt ) –40.74 –40.82 –40.74 –40.94 –40.78 –41.87
DMDF (8.17)∗∗∗ (0.08) (4.75)∗∗∗ (1.20) (16.75)∗∗∗

σp 0.571 0.572 0.574 0.574 0.579 0.654
DMσp (–3.83)∗∗∗ (–3.58)∗∗∗ (–3.34)∗∗∗ (–8.72)∗∗∗ (–18.45)∗∗∗

The results reinforce our earlier analysis, but now in an out-
of-sample setting. The test statistics show that the HEAVY
GAS tF model significantly outperforms the HJK, CAW, IW-A,
EWMA, and the BEKK-t models with respect to one-step ahead
density forecasts of the realized covariance matrix. This result
has two implications. First, considering a matrix-F distribution
for the realized covariance matrix is more accurate in terms of
density fit than an (inverse-)Wishart distribution. This is in line
with our in-sample results. The differences in the mean predic-
tive log score are large and statistically significant with respect
to the Wishart distribution. We see again that the matrix-F
distribution also significantly outperforms the inverse-Wishart
distribution, although the differences are not as large as with
respect to the Wishart distribution. Second, the GAS HAR
dynamics based on the matrix-F distribution provide improved
density forecasts densities. This is, for example, seen when
comparing the EWMA, BEKK-t, GAS tF, and GAS HAR tF
approaches. The HJK model appears the most problematic in
terms of out-of-sample density forecasts. Note that this model
not only uses the Wishart rather than the matrix-F distribu-
tion for RCt , but also parameterizes the Choleski matrix of Vt
rather than Vt itself. Both features result in a worse density
forecast.
The HEAVY GAS HAR tF model performs clearly the

best for density forecasts of the realized covariance matrices.
Table 5 also shows that for density forecasts of the returns the

HEAVY GAS HAR tF shares its position with the CAWmodel.
Differences between these models are minor and typically not
statistically significant, except for k = 15 where the GAS HAR
tF model produces better predictive return densities than the
CAW model. Furthermore, also the GAS tF, IW-A, and the
BEKK-t models are beaten by the GAS HAR dynamics, irre-
spective of the dimension of the returns.
Finally, the table shows that the HEAVYGASHAR tF model

also uniformly outperforms its competitors in the economic
evaluation. For all dimensions, the DMσp statistics are negative
and statistically significant at the 1% (5% in case of GAS tF in
panel C) level, indicating that the HEAVY HAR GAS tF model
produces the lowest ex post portfolio standard deviation com-
pared to the competing models.We conclude that the newmodel
with HAR dynamics also does well in an out-of-sample context,
both statistically and economically.

5. CONCLUSIONS

We introduced a new dynamic multivariate HEAVY model
that combines return observations and (ex post) observed real-
ized covariance matrices to estimate the unobserved common
underlying covariance matrix dynamics. The proposed model
explicitly acknowledges that both realized covariance matri-
ces and returns are typically fat-tailed. The proposed setup is
particularly suitable for cases where no explicit robustification
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methods are applied while estimating realized measures. Using
the GAS dynamics of Creal, Koopman, and Lucas (2011, 2013)
based on a matrix-F distribution for the realized covariance
matrices and a Student’s t distribution for the returns, we derived
an observation-driven model for the unobserved covariances
with robust propagation dynamics. We proved that stationar-
ity and ergodicity of the model. Positive definiteness of the fil-
tered covariance matrices is ensured under simple and intuitive
parameter restrictions.
An important feature of our model is that it retains the matrix

format for the transition dynamics of the covariance matrices,
unlike score-driven models proposed earlier. This makes the
model computationally highly efficient. We showed that the
model adequately captures both deterministic and stochastic
volatility (SV) dynamics, even though the GAS model itself is
misspecified in such settings. Using U.S. equity data over 2001–
2014, the model also improves both the in-sample and out-
of-sample fit of the covariance matrices for high-dimensional
datasets of up to 30 dimensions. These improvements are both
statistically and economically significant and persist over the
episodes including the recent financial crisis. We conclude that
themodel provides a valuable tool whenmodeling combinations
of fat-tailed matrix-valued and vector-valued random variables.
Moreover, the matrix-F distribution used here can also prove
useful beyond the scope of the current article, such as in for
instance a Bayesian context.

SUPPLEMENTARY MATERIALS

The supplementary material contains the proofs of the theo-
retical results in the article.
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