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Testing for Structural Instability in Moment
Restriction Models: An Info-Metric Approach

Alastair R. Hall, Yuyi Li, Chris D. Orme, and Arthur Sinko
University of Manchester, Manchester, UK

In this paper, we develop an info-metric framework for testing hypotheses about structural
instability in nonlinear, dynamic models estimated from the information in population moment
conditions. Our methods are designed to distinguish between three states of the world: (i) the
model is structurally stable in the sense that the population moment condition holds at the
same parameter value throughout the sample; (ii) the model parameters change at some point
in the sample but otherwise the model is correctly specified; and (iii) the model exhibits more
general forms of instability than a single shift in the parameters. An advantage of the info-metric
approach is that the null hypotheses concerned are formulated in terms of distances between
various choices of probability measures constrained to satisfy (i) and (ii), and the empirical
measure of the sample. Under the alternative hypotheses considered, the model is assumed to
exhibit structural instability at a single point in the sample, referred to as the break point; our
analysis allows for the break point to be either fixed a priori or treated as occuring at some
unknown point within a certain fraction of the sample. We propose various test statistics that
can be thought of as sample analogs of the distances described above, and derive their limiting
distributions under the appropriate null hypothesis. The limiting distributions of our statistics
are nonstandard but coincide with various distributions that arise in the literature on structural
instability testing within the Generalized Method of Moments framework. A small simulation
study illustrates the finite sample performance of our test statistics.

Keywords Generalized empirical likelihood; Moment condition models; Parameter variation;
Structural instability.

JEL Classification C12; C32; C52.

1. INTRODUCTION

There has been considerable interest in the development of tests for structural instability
in moment condition models. In the majority of this literature, the null hypothesis is
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structural stability in the sense that the population moment condition holds at the
same parameter value throughout the sample, and the alternative involves instability at
single point in the sample, known as the break point. Depending on the setting this
break point can be treated as known, in which case the potential point of instability
is specified a priori, or unknown, in which case the point of potential instability is left
unspecified. The earliest contributions to this literature considered inference procedures
within the Generalized Method of Moments (GMM) framework (Hansen, 1982). For
the known break point case, Andrews and Fair (1988) introduced tests for parameter
variation, and Ghysels and Hall (1990) introduced so-called predictive tests that Ghysels
et al. (1997) show test jointly parameter constancy and the overidentifying restrictions
in one sub-sample. For the unknown break point case, Andrews (1993) proposes so-
called sup-tests for parameter variation, Sowell (1996) considers a general framework
for the construction of tests for parameter variation, and Ghysels et al. (1997) propose
extensions of the predictive test to this setting. Building from these earlier results, Hall
and Sen (1999) show that the hypothesis of structural stability can be decomposed into
one of parameter constancy and another concerning the validity of the overidentifying
restrictions in each sub-sample, and propose tests for each component. They further
show that this approach has the potential to discriminate between states of the world in
which violation of the null is caused by neglected parameter variation and those in which
violation of the null is caused by more general forms of misspecification of the moment
condition.

While all these tests are valid in their own terms, they are developed within the
GMM framework and the latter has received some criticism in recent years because
it can yield unreliable inferences in certain settings of interest.1 This criticism has led
to the development of alternative methods for estimation in moment condition models,
leading examples of which are Empirical Likelihood (EL) (Qin and Lawless, 1994) and
Exponential Tilting (ET) (Kitamura and Stutzer, 1997). Both EL and ET have a common
structure, and this insight has led to the development of two generic frameworks for the
estimation of moment condition models that include EL and ET (and other estimators
of interest) as special cases. The first such framework is the Generalized Empirical
Likelihood (GEL) introduced by Smith (1997). The second framework is the information-
theoretic framework of Kitamura and Stutzer (1997) and its extensions in Golan (2002,
2006). It is, therefore, of interest to develop tests for structural instability within these
more general frameworks.

In a recent paper, Guay and Lamarche (2010) propose analogous tests to those of Hall
and Sen (1999) for the GEL framework, and present a limiting distribution theory for
these statistics under both null and local alternatives. They observe that the GEL statistics
have the same first order asymptotic properties as their GMM counterparts under null
and local alternatives. They report simulation evidence on their tests based on ET, and

1For a review of this literature see inter alia (Hall, 2005, Ch. 6).
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find the tests to perform comparably to their GMM counterparts for the most part but
one particular GEL test based on the LM principle is superior.

In this paper, we consider the derivation of the same tests as Guay and Lamarche
(2010) but from an information-theoretic – or equivalently – info-metric perspective.
While the same tests result, we argue that the info-metric approach has considerable
advantage in terms of the specification of the hypotheses and thus interpretation of the
outcome of the tests.2 This advantage stems from the info-metric approach being based
on the concept of minimizing the distance between the class of probability distributions
restricted to satisfy the moment condition and the true probability distribution. This
allows us to relate the various hypotheses of interest in structural instability testing to the
distance between certain classes of probability distributions and the true distribution. We
believe this is a more fundamental – and also more instructive – representation of these
hypotheses than their expression in terms of identifying restrictions (parameter variation)
and overidentifying restrictions as is done in both the GMM and GEL frameworks. In
principle, there are a number of possible measures for the distance between probability
distributions that can be used in developing our info-metric tests for structural instability.
Here, we focus on the Cressie–Read (CR) distance measure (Cressie and Read, 1984).
Like Guay and Lamarche (2010), we assume the data to be weakly dependent and account
for this dependence in estimation using the kernel-smoothing methods advocated by
Smith (2011).

An outline of the paper is as follows. Section 2 presents the info-metric approach
to the specification of the null and alternative hypotheses of our structural instability.
Section 3 derives the required the first order asymptotic properties of the partial info-
metric – estimators under null of structural stability – and are employed in Section 4,
which presents the test statistics and discusses the connection between our info-metric
methods and various structural instability tests derived within the GMM framework.
Section 5 summarizes results from a small simulation study that indicates the finite sample
performance of our methods. Section 6 concludes the paper. All proofs are relegated to a
mathematical appendix.

2. AN INFO-METRIC APPROACH TO STRUCTURAL STABILITY TESTING

In this section we propose an Information-Theoretic (IT) approach to testing for evidence
of structural instability in population moment condition models. However, to motivate
our approach, it is useful to begin by briefly reviewing IT estimation of moment condition
models absent of any concerns regarding structural stability.

Suppose a researcher is interested in estimating the k × 1 vector of parameters �0 based
on the information in the �× 1 moment condition E[g(Z, �0)] = 0 where Z is a d × 1

2Our results are based on Li’s (2011) Ph.D. thesis, which considered only the EL framework. This work
was performed independently of and contemporaneously to Guay and Lamarche (2010).
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random vector. It is assumed that � > k. This model is said to be structurally stable
because the moment condition holds at the same parameter value throughout the sample.
Following Kitamura (2006), we can characterize IT estimation of this model at the
population level using the following framework. Let M denote the set of all probability
measures on �d, with

P(�) =
{

P ∈ M :
∫

g(z, �)dP = 0
}

,

and

P =
⋃
�∈�

P(�),

where � is the parameter space. Note that P is the set of all probability measures that
are compatible with the moment condition, and is referred to as a statistical model in this
context. This model is correctly specified if and only if P contains the true measure �; that
is, the data satisfies the population moment condition at � = �0. A class of IT estimators
of � can be defined as

arg inf
�∈�

�(�, �), where �(�, �) = inf
P∈P(�)

D(P ‖ �)

in which D(· ‖ ·) is a distance, or divergence, measure between two probability measures3

and �(·) is referred to as the contrast function. Kitamura (2006) shows that if the model
is correctly specified then the minimum of the contrast function is attained at � = �0, the
true parameter value.

Now consider the problem of testing structural stability. Define Z(r) to be a stochastic
process on r ∈ [0, 1]. We focus exclusively on the case where the alternative hypothesis
involves instability at a single point and so we define

Z(r) = Z(1), for r ≤ �

= Z(2), for r > �,

where � ∈ (0, 1) is referred to as the break-fraction. In structural stability testing, � may
be fixed a priori, the so-called “known break point case,” or it may be left unrestricted
beyond � ∈ � ⊂ (0, 1), the so-called “unknown break point case.” Our methods can
handle both cases, but for purposes of exposition here, it is most convenient to first treat
� as fixed and then to discuss the extension to the unknown break point case at the end
of the section.

3This distance measure must be non-negative and satisfy D(P ‖ Q) = 0 if and only if P = Q.
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To formalize the null and alternative hypotheses, we need to introduce two sets of
probability measures. First, we define

P0 =
⋃
�∈�

P0(�),

where

P0(�) = �(P1, P2) ∈ M × M :
∫

g(zi, �)dPi = 0, for i = 1, 2	,

so that P0 is the set of all pairings of probability measures that are compatible with
moment condition holding at the same parameter value in both subsamples. Notice that
this model specification differs from P by allowing for the measures for Z(1) and Z(2) to
be potentially different. Second, we define the set

P1 =
⋃

(�1,�2)∈�×�

P1(�1, �2),

where

P1(�1, �2) = �(P1, P2) ∈ M × M :
∫

g(zi, �i)dPi = 0, for i = 1, 2	,

so that P1(�1, �2) is the set of all pairings of probability measures that are compatible
with moment condition holding in both subsamples but at potentially different parameter
values.

Using these definitions, the hypotheses of interest can be expressed in terms of (�1, �2),
the true measures for (Z(1), Z(2)), with the null being

H0(�) : (�1, �2) ∈ P0
 (1)

Thus under H0 the model is structurally stable in the sense that the population moment
condition holds at the same value in both sub-samples. One potential alternative of
interest is

HA(�) : (�1, �2) ∈ Pc
0, (2)

which equates to “not H0(�).” While this alternative is of interest in its own right, we
show below that the states of the world under this alternative can be split into two groups,
and such a decomposition can provide useful model building information. The first such
group is captured by the hypothesis

HPV (�) : (�1, �2) ∈ P1 \ P0
 (3)



TESTING FOR STRUCTURAL INSTABILITY 291

Under HPV (�), the moment condition is satisfied in both subsamples but at different
parameter values. This situation is commonly referred to as “parameter variation” which
is reflected in the “PV” subscript. The second group is the hypothesis

HMS(�) : (�1, �2) ∈ Pc
1
 (4)

Under HMS(�), the population moment condition is not satisfied in one or both
subsamples – even allowing for the possibility of a parameter shift – indicating the model
is misspecified in that the moment condition fails to hold over the entire sample, which is
reflected in the “MS” subscript.

While both HPV (�) and HMS(�) imply H0(�) is false, they have very different model
building implications. HPV (�) implies that the model is correctly specified once allowance
is made for the change in parameters, whilst HMS(�) implies the moment condition
does not hold and hence the model is more fundamentally misspecified. As argued
by Hall and Sen (1999), it therefore seems valuable to develop inference procedures
that can distinguish these two cases. Hall and Sen (1999) achieve this goal within a
GMM framework by developing separate tests based on the stability of the identifying
restrictions and the stability of the overidentifying restrictions. Here we develop IT
methods that provide similar model-building information. We believe that the IT
approach is more attractive than the GMM framework of Hall and Sen (1999) and
also the GEL framework of Guay and Lamarche (2010) because it is fundamentally
anchored in distances between the underlying probability measures satisfying the various
hypotheses considered.

To motivate the form of our inferential procedures, it is useful to consider population
measures for discriminating between H0(�), HPV (�), and HMS(�). To this end, let
��([�1, �2], [�1, �2]) denote the contrast function for estimation that allows for a break
at the point indexed by �, and let D�([p1, p2] ‖ [q1, q2]) denote the measure of divergence
between two pairs of measures, [p1, p2] and [q1, q2], with the first of each pair pertaining to
Z(1) and the second to Z(2). It then follows from the properties of the divergence measure
that we have the following situations:

(i) ��([�∗(�), �∗(�)], [�1, �2])
{

= 0, if H0(�) true

> 0, if H0(�) false,
where

�∗(�) = arg inf
�∈�

��([�, �], [�1, �2])

for

��([�, �], [�1, �2]) = inf
[P1,P2]∈P1(�,�)

D�([P1, P2] ‖ [�1, �2]);
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(ii) ��([�1,∗(�), �2,∗(�)], [�1, �2])
{

= 0, if HPV (�) true

> 0, if HPV (�) false,
where

[�1,∗(�), �2,∗(�)] = arg inf
[�1,�2]∈�×�

��([�1, �2], [�1, �2]),

for

��([�1, �2], [�1, �2]) = inf
[P1,P2]∈P1(�1,�2)

D�([P1, P2] ‖ [�1, �2])


Given these properties, we can decompose �(�) = ��([�∗(�), �∗(�)], [�1, �2]) into two
parts

�(�) = �1(�)+ �2(�),

where

�1(�) = ��([�∗(�), �∗(�)], [�1, �2])− ��([�1,∗(�), �2,∗(�)], [�1, �2]),
�2(�) = ��([�1,∗(�), �2,∗(�)], [�1, �2])


It can be recognized that: if H0(�) is true, then �1(�) = �2(�) = 0; if HPV (�) is true, then
�1(�) �= 0 but �2(�) = 0; if HMS(�) is true, then �1(�) �= 0 and �2(�) �= 0. Therefore,
an examination of �(�) reveals whether the model is structurally stable, H0(�), or not,
HA(�). On the other hand, an examination of �1(�) and �2(�) reveals whether the model
is structurally stable, H0(�), or exhibits parameter variation, HPV (�), or is structurally
unstable due to more general forms of misspecification, HMS(�). Therefore, we propose
performing inference using sample analogs of �(�), �1(�), and �2(�).

To present these sample analogs, we need some additional notation. Replace Z(r) by
the time series �Zt; t = 1, 2, 
 
 
 , T	. It is assumed that the potential instability occurs at
t = [T�] = T1 say, where [·] denotes the integer part in this context. We refer to T1 as
the break point. We divide the sample into two subsamples of T1 and T2 observations,
respectively, where �1(�) = �1, 2, 
 
 
 , T1	, denotes the set of T1 observations up to and
including the break point and �2(�) = �T1 + 1, T1 + 2, 
 
 
T	, the set of T2 observations
after the break with T2 = T − T1.

It is well known that IT methods based on the assumption of independently
and identically distributed data are asymptotically inefficient if the data are weakly
dependent.4 Various approaches have been proposed for handling this dependence: we
employ quite general kernel smoothing methods as developed by Smith (2011).5 Within

4See Kitamura (1997) and Kitamura and Stutzer (1997).
5Kitamura and Stutzer (1997) handle dependency via smoothing using a rectangular kernel, as well as

blocking methods (see also Kitamura, 1997); Kitamura (2006) uses parametric models.



TESTING FOR STRUCTURAL INSTABILITY 293

this approach, the original moment function in period t, g(Zt, �) = gt(�) say, is replaced
by the kernel smoothed version,

gs
t (�) = 1

hT

t−1∑
j=t−T

k
(

j
hT

)
gt−j(�), (5)

where the superscript s indicates the operation of kernel smoothing with hT and k(·)
denoting the bandwidth and a kernel function, respectively, details of which are given
in Section 3. To implement IT estimation using kernel smoothing, we replace the true
measures, [�1, �2] by the empirical measures [�̂1, �̂2]. Notice that these measures relate
to the stationary distributions of Z(1) and Z(2).6 Since we allow for the measures to be
different, �̂1,t = T −1

1 for t ∈ �1(�) and �̂2,s = T −1
2 for T2 = T − T1 and s ∈ �2(�). Following

Kitamura and Stutzer (1997), we also replace the measures Pi by the probability mass
functions P̂1 = [p1,1, p1,2 
 
 
 , p1,T1 ], P̂2 = [p2,1, p2,2 
 
 
 , p2,T2 ].

In our inference procedures, �i,∗(�) and �∗(�) are replaced, respectively, by the partial-
sample IT estimators, �̂i(�), and the restricted partial-sample IT estimator, �̂R(�), defined
as follows. The (unrestricted) partial-sample IT estimators are,

[�̂1(�), �̂2(�)] = arg inf
[�1,�2]∈�×�

��,T ([�1, �2], [�̂1, �̂2]) (6)

where

��,T ([�1, �2], [�̂1, �̂2]) = inf
[P̂1 ,̂P2]∈P̂1(�1,�2)

D�([P̂1, P̂2] ‖ [�̂1, �̂2]) (7)

and

P̂1(�1, �2) =
{
(P̂1, P̂2) : pi,t > 0,

∑
t∈�i(�)

pi,t = 1,
∑

t∈�i(�)

pi,tgs
t (�i), i = 1, 2

}

 (8)

On the other hand, the restricted partial-sample IT estimator is,

�̂R(�) = arg inf
[�,�]∈�×�

��,T ([�, �], [�̂1, �̂2])
 (9)

We propose performing inference based on scaled versions of the following analogs to
�(�), �1(�) and �2(�),

�̂T (�) = �̂1,T (�)+ �̂2,T (�) (10)

�̂1,T (�) = ��,T ([�̂R(�), �̂R(�)], [�̂1, �̂2])− ��,T ([�̂1(�), �̂2(�)], [�̂1, �̂2]) (11)

�̂2,T (�) = ��,T ([�̂1(�), �̂2(�)], [�̂1, �̂2])
 (12)

6See Smith (2011, p. 1195).
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To implement our procedures, it is necessary to choose a measure of divergence.
Kitamura and Stutzer (1997) use the Kullback–Leibler information criterion (KLIC)
distance. Golan (2002, 2006) considers the extension of Kitamura and Stutzer’s (1997)
methods to more general measures such as the generalized cross entropy and CR
divergence measure (Cressie and Read, 1984). The framework above can be applied to
any of these settings, but for concreteness we focus on the CR divergence measure which
is given as follows in our context:

D(�)
� ([P̂1, P̂2] ‖ [�̂1, �̂2]) = �

1 + �

{
2∑

i=1

∑
t∈�i(�)

pi,t

{(
pi,t

�̂i,t

)�
− 1
}}

(13)

and which is defined for −∞< � < ∞. Appropriate choices of � lead to certain familiar
estimation methods: for example, lim�→0 D(�)

� (· ‖ ·) yields the optimand for the ET
estimator of Kitamura and Stutzer (1997) in each subsample, and lim�→−1 D(�)

� (· ‖ ·) yields
the EL estimator of Owen (2001) in each subsample.

So far, we have focused on the fixed break point case. The extension to the unknown
break point case is as follows. The null hypothesis of structural stability becomes H0(�) :
H0(�) ∀ � ∈ � ⊂ (0, 1). The difference between H0(�) and H0(�) is that the former specifies
precisely the point at which the structural break is suspected. This difference is reflected in
the associated test statistics, with tests for H0(�) being designed to have power against a
break at � and the tests for H0(�) being designed to maximize power against a weighted
sequence of alternatives that allows for breaks at all points in �. These test statistics, and
their asymptotic properties under the null hypothesis, are developed in Section 4.

In the following section, we first derive the first order asymptotic behavior of the
unrestricted and restricted partial-sample IT estimators under the null hypothesis.

3. LARGE SAMPLE BEHAVIOR OF PARTIAL-SAMPLE IT ESTIMATORS

For the purposes of developing the asymptotic theory underpinning the partial-sample IT
estimators, it is convenient to exploit the equivalence between GEL estimation and that of
an IT approach based on the CR divergence measure. That is, any such IT estimator has
a GEL equivalent; see Newey and Smith (2004). As discussed in Newey and Smith (2004),
and also Smith (2011), let �(v) be a continuous, twice differentiable and concave function
on its domain � , an open interval containing 0. Let �j(v) ≡ �j�(v)/�vj , �j = �j(0) for
j = 0, 1, 2, 
 
 
 , and impose the normalisation that �1 = �2 = −1. Then, based on the full
sample, the GEL (IT) criterion function would be7

QT (�, ) = 1
T

T∑
t=1

[�(k′gs
t (�))− �0],

7We adopt the notation QT (�, ) rather than P̂(�, ), employed by Smith (2011), to avoid confusion with
P as discussed in Section 2.
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where gs
t (�) is defined at (5) and k = k1/k2 with kj = ∫∞

−∞ k(�)jd�, j = 1, 2. Whilst
� ∈ � ⊂ �k, the auxiliary GEL parameters  ∈ �T are restricted so that w.p.a. 1 (with
probability approaching 1) k′gs

t (�) ∈ � , for all (�′, ′)′ ∈ � ×�T and t = 1, 
 
 
 , T .
Specifically, �T imposes bounds on  that “shrink” with T , but at a slower rate than
hT/

√
T (see Assumption 4) which is the convergence rate of both the GEL and partial-

sample GEL estimator for .
The (full-sample) GEL estimator is then defined as

�̃ ≡ arg min
�∈�

sup
∈�T

QT (�, )


Estimation proceeds in the following two steps:

1. QT (�, ) is maximised over , for given �, yielding

̃(�) = arg sup
∈�T

QT (�, )


2. The GEL estimator, �̃, is the minimiser of the profile GEL objective function,
QT (�, ̃(�)):

�̃ = arg min
�∈�

QT (�, ̃(�)),

and ̃ ≡ ̃(�̃).

Whilst still employing gs
t (�), consider, now, splitting the sample according to �i(�), i =

1, 2, for all � ∈ �, to obtain the (unrestricted) partial-sample GEL (PSGEL) estimators
�̂i(�), i = 1, 2, based on the two subsamples t ∈ �i(�), i = 1, 2, respectively.8 Specifically,

�̂i(�) = arg min
�∈�

sup
∈�T

1
T

∑
t∈�i(�)

[�(k′gs
t (�))− �0], i = 1, 2,

and, correspondingly,

̂i(�) = arg sup
∈�T

1
T

∑
t∈�i(�)

[�(k′gs
t (�̂i(�)))− �0], i = 1, 2


8To present the main results, the moment functions are smoothed before splitting the sample according
to �. Another possible avenue is to smooth the moment functions after splitting the sample. Indeed, the latter
might be viewed as more natural and this is pursued in the Monte Carlo study, Section 5. However, whilst
there is no difference asymptotically between the two approaches, the proofs are more straightforward in the
former case.



296 A. R. HALL ET AL.

To analyze these estimators for all � ∈ � ⊂ (0, 1) define �′ = (�′
1, �′

2)
′ ∈ � = � × �, �′ =

(′
1, ′

2)
′ ∈ �T = �T ×�T and the following (2�× 1) unsmoothed and smoothed moment

functions

gt(�, �) = �t,T (�)

(
gt(�1)

0

)
+ (1 − �t,T (�))

(
0

gt(�2)

)
,

gs
t (�, �) = �t,T (�)

(
gs

t (�1)
0

)
+ (1 − �t,T (�))

(
0

gs
t (�2)

)
, (14)

where �t,T (�) is an indicator variable that takes the value 1 if t ≤ [T�] and the value 0
otherwise. Let

QT (�, �, �) = 1
T

T∑
t=1

[�(k�′gs
t (�, �))− �0]


Then we have �̂(�) = (�̂1(�)
′, �̂2(�)

′)′, where

�̂(�) = arg min
�∈�

sup
�∈�T

QT (�, �, �) (15)

with

�̂(�) = arg sup
�∈�T

QT (�̂(�), �, �)
 (16)

Throughout this paper, the asymptotic analysis addresses behavior under the null
hypothesis, only, and requires certain assumptions that follow the spirit of Smith (2011).
The data satisfy the following condition.

Assumption 1. Data are generated by a sequence of strictly stationary and strong
mixing Z-valued random vectors �Zt	

∞
t=1, with mixing coefficients, �(j), satisfying∑∞

j=1 j2�(j)(�−1)/� < ∞, for some � > 1, where Z is a Borel subset of �d.

As noted in the previous section, we handle the dependence in the data implied by
Assumption 1 through kernel smoothing. The next assumption addresses the bandwidth,
hT , and choice of kernel, k(·), such that they obey conditions similar to those laid out in
Theorem 1(a) of Andrews (1991). Let

k̄(�) =
{

supb≥� |k(b)|, � ≥ 0

supb≤� |k(b)|, � < 0

and K() = (2�)−1
∫

k(x) exp(−�x)dx, the spectral window generator of the kernel k(·),
with kj = ∫∞

−∞ k(�)jd�, j = 1, 2.
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Assumption 2. (i) hT = O(T
1

2� ) for some � > 1; (ii) k(·) : � → [−kmax, kmax],
kmax < ∞, k(0) �= 0, k1 �= 0, and k(·) is continuous at 0 and almost everywhere;
(iii)

∫∞
−∞ k̄(�)d� < ∞; (iv) |K(x)| ≥ 0 for all x ∈ �.

Assumption 2(i) is a slight adaptation of Smith (2011), as used by Guay and Lamarche
(2010), which simplifies certain aspects of the proofs at no extra cost.

We must also place restrictions on the (unsmoothed) moment function gt(�) =
g(Zt, �), and these are specified in the following assumptions. Define the following
quantities: ḡT (�) = 1

T

∑T
t=1 gt(�), �(�) = limT→∞ var(

√
TḡT (�)), and ḡ[T�](�) =

1
T

∑[T�]
t=1 gt(�) . The smoothed counterparts of ḡT (�) and ḡ[T�](�) are ḡs

T (�) = 1
T

∑T
t=1 gs

t (�)

and ḡs
[T�](�) = 1

T

∑[T�]
t=1 gs

t (�), respectively.

Assumption 3. (i) E[sup�∈� ||gt(�)||�] < ∞ for some � > max[4�, 2�
�−1 ]. (ii) �(�) is

finite and p.d. for all � ∈ � ⊂ �k, where � is a compact parameter set. (iii) The moment
function g(z, �) ⊂ �� is continuous in z for all � ∈ �, and is continuous at each � ∈ �
w.p.a.1. (iv) g(�0) = 0 and inf�∈� ‖g(�, �)‖ > 0 for all � �= �0 = (�′

0, �′
0)

′.

The existence of g(�) ≡ E[gt(�)] and g(�, �) ≡ (�g(�1)
′, (1 − �)g(�2)

′)′ is guaranteed
by Assumption 3(i), whilst Assumption 3(iv) ensures the population moment condition
is satisfied at �0 and also provides a global identification condition. Assumptions 1–3
ensure that an appropriate Functional Central Limit Theorem (FCLT) applies to
both

√
Tḡ[T�](�0), with limT→∞ var(

√
Tḡ[T�](�0)) = ��0, and

√
Tḡs

[T�](�0), with limT→∞
var(

√
Tḡs

[T�](�0)) = k1��0, for all � ∈ [0, 1], where �0 = �(�0). These assumptions also
ensure that a (weak) Uniform Law of Large Numbers (ULLN) not only applies to ḡT (�),
but also to both ḡT (�, �) ≡ 1

T

∑T
t=1 gt(�, �) and ḡs

T (�, �) ≡ 1
T

∑T
t=1 gs

t (�, �), with the latter
two being uniform over � ∈ [0, 1].9

The following assumption formally imposes the restrictions on �(·) and also restricts
the bounds on , ensuring that they shrink to zero more slowly than the stochastic rate
of convergence of both ̃ and �̂(�).

Assumption 4. (a) �(v) is a continuous, twice differentiable and concave function on
its domain � , an open interval containing 0, such that �1 = �2 = −1. (b)  ∈ �T = � :
‖‖ ≤ B(T/h2

T )
−�	, where �

�(�−1) < � < 1
2 , for some finite B > 0.

Under the above assumptions, we can establish the consistency of the PSGEL
estimator as follows.

Theorem 1. Under Assumptions 1–4: (i) sup�∈� ‖�̂(�)− �0‖ = op(1), and (ii) sup�∈�
‖�̂(�)‖ = op(1).

9Indeed, Andrews (1993, Proof of Theorem A1) shows that sup� sup� ‖ḡT (�, �)− ḡ(�, �)‖ = op(1).
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To establish asymptotic normality, the following assumptions are made regarding the
(unsmoothed) derivative of the moment function Gt(�) = �gt(�)/��

′, and it will be useful
to define G(�) = E[Gt(�)], which exists by Assumption 5(i), below.

Assumption 5. (i) E[sup�∈� ‖Gt(�)‖�/(�−1)] < ∞ for some � > max[4v, 2�
�−1 ]. (ii) The

moment function g(z, �) ⊂ �� is continuously partially differentiable in � in a
neighbourhood �0 of �0 ∈ int(�), w.p.a.1. (iii) G0 ≡ G(�0) has full rank k.

It will also be useful to define the matrices

A(�) =
[
� 0
0 1 − �

]
�0(�) = lim

T→∞
var
(√

TḡT (�0, �)
)

=
[
��0 0

0 (1 − �)�0

]
= A(�) ⊗ �0,

G0(�) =
[
�G0 0

0 (1 − �)G0

]
= A(�) ⊗ G0,

and M0 = �
−1/2
0 G0, P0 = M0(M ′

0M0)
−1M ′

0. Under Assumptions 1 and 3, Andrews (1993,
Proof of Theorem 1), shows that �T (�) �⇒ J�(�), as a process indexed by � ∈ �, where

�T (�) = (I2 ⊗ �
−1/2
0 )

√
TḡT (�0, �) =

[
�

−1/2
0

√
Tḡ[T�](�0)

�
−1/2
0

{√
TḡT (�0)− √

Tḡ[T�](�0)
}]

and

J�(�) =
[

B�(�)
B�(1)− B�(�)

]
with B�(�), � ∈ [0, 1], being a vector of � mutually independent standard Brownian
motions on [0, 1]. Furthermore, Assumptions 1, 2, and 3, and arguments similar to Smith
(2011, Lemma A3) establish that hT V̄ s

T (�0, �)
p→ k2�0(�), uniformly in �, where

V̄ s
T (�, �) = 1

T

T∑
t=1

gs
t (�, �)gs

t (�, �)′


Theorem 2. Under Assumptions 1–5, every sequence of PSGEL estimators defined by
(15) and (16), T ≥ 1, satisfies

√
T(�̂(�)− �0) = −(A(�)−1 ⊗ (M ′

0M0)
−1M ′

0)�T (�)+ op�(1)

�⇒ −(A(�)−1 ⊗ (M ′
0M0)

−1M ′
0)J�(�),(√

T/hT

)
�̂(�) = −(A(�)−1 ⊗ �

−1/2
0 (I� − P0))�T (�)+ op�(1)

�⇒ −(A(�)−1 ⊗ �
−1/2
0 (I� − P0))J�(�),
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where �⇒ denotes weak convergence to a process indexed by � ∈ �, provided � has
closure in (0, 1), and op�(1) denotes terms that are op(1) uniformly in � ∈ �. Further,
�̂(·) and �̂(·) are asymptotically uncorrelated.

Alternatively, the weak convergence results could be stated as

(A(�) ⊗ Ik)
√

T(�̂(�)− �0) �⇒ −(I2 ⊗ (M ′
0M0)

−1M ′
0)J�(�),

(A(�) ⊗ I�)
(√

T/hT

)
�̂(�) �⇒ −(I2 ⊗ �

−1/2
0 (I� − P0))J�(�)


These results ensure that, from Smith (2005, Theorem 2.1),

sup
�∈�

‖hT V̄ s
T (�̂(�), �)− k2�0(�)‖ = op(1)


and

sup
�∈�

∥∥∥∥∥ 1
T

T∑
t=1

�gs
t (�̂(�), �)
��′ − k1G0(�)

∥∥∥∥∥ = op(1)


The next Theorem details the asymptotic distribution of the restricted PSGEL
estimators, which are constructed as follows. Define the restricted (2�× 1) smoothed
moment function as

ġs
t (�, �) = �t,T (�)

(
gs

t (�)
0

)
+ (1 − �t,T (�))

(
0

gs
t (�)

)
,

so that, from (14), gs
t ((�

′, �′)′, �) ≡ ġs
t (�, �), and let Q̇T (�, �, �) = 1

T

∑T
t=1[�(k�ġs

t (�, �))−
�0], then the restricted PSGEL estimators are defined by

�̃(�) = arg min
�∈�

sup
�∈�T

Q̇T (�, �, �)

= arg min
�∈�

{
sup
∈�T

1
T

[T�]∑
t=1

[�(k′gs
t (�))− �0]

+ sup
∈�T

1
T

T∑
t=[T�]+1

[�(k′gs
t (�))− �0]

}

and

�̃(�) = arg sup
�∈�T

1
T

T∑
t=1

[�(k�ġs
t (�̃(�), �))− �0],
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so that

̃1(�) = arg sup
∈�T

1
T

[T�]∑
t=1

[�(k′gs
t (�̃(�)))− �0],

̃2(�) = arg sup
∈�T

1
T

T∑
t=[T�]+1

[�(k′gs
t (�̃(�)))− �0]


Theorem 3. Under Assumptions 1–5, every sequence of restricted PSGEL estimators,
T ≥ 1, satisfies

√
T(�̃(�)− �0) = −(M ′

0M0)
−1M ′

0

{
�

−1/2
0

√
TḡT (�0)

}
+ op�(1)

�⇒ −(M ′
0M0)

−1M ′
0B�(1),

and (√
T/hT

)
�̃(�) = −(A(�)−1 − �2�

′
2 ⊗ �

−1/2
0 (I� − P0))�T (�)+ op�(1)

= − 1
�(1 − �)

(a(�) ⊗ �
−1/2
0 )(I� − P0)(a(�)′ ⊗ I�)�T (�)+ op�(1)

�⇒ −(A(�)−1 − �2�
′
2 ⊗ �

−1/2
0 (I� − P0))J�(�)

= (�2 ⊗ �
−1/2
0 P0)B�(1)+ (A(�)−1 ⊗ �

−1/2
0 )J�(�),

where a(�)′ = (1 − �, −�), and �2 = (1, 1)′.

4. TESTING STRUCTURAL STABILITY

In this section, we propose tests based on GEL for testing the hypotheses described in
Section 2. It turns out to be most convenient to present the tests in the following order:
Section 4.1 presents tests for �1(�) = 0, Section 4.2 presents tests for that �2(�) = 0, and
Section 4.3 presents tests for �(�) = 0. Section 4.4 discusses the various tests and includes
details of where percentiles of the limiting distributions are tabulated in the literature. In the
presentation of the tests, we focus on the unknown break point case; the fixed break point
case is covered as part of the discussion in Section 4.4.

4.1. Testing �1(�) = 0

To test �1(�) = 0 for a fixed �, the obvious statistic is the GEL-likelihood ratio statistic
(c.f. Smith, 2011, p. 1208)

��T (�) = 2(k2/k2
1)(T/hT )�Q̇T (�̃(�), �̃(�), �)− QT (�̂(�), �̂(�), �)	
 (17)
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In view of extant results in the GEL literature on testing parametric restrictions,10 we also
consider inference based on the GEL-Wald statistic for testing �1 = �2,

	T (�) = (k2/k2
1)(T/hT )(�̂1(�)− �̂2(�))

′�V W
T (�̂(�))	

−1(�̂1(�)− �̂2(�)), (18)

where

V W
T (�) =

2∑
i=1

�Ḡs
Ti
(�i)

′�V̄ s
Ti
(�i)	

−1Ḡs
Ti
(�i)	

−1,

Ḡs
Ti
(�) = 1

T

∑
t∈�i(�)

�gs
t (�)

��′ , V̄ s
Ti
(�) = 1

T

∑
t∈�i(�)

gs
t (�)g

s
t (�)

′,

and the Lagrange Multiplier statistic, based on �̃(�) the Lagrange Multiplier associated
with the restriction �1 = �2,

�
T (�) = (k2/k2
1)(T/hT )�̃(�)

′�V �
T (�̃(�))	

−1�̃(�)/(�(1 − �)), (19)

where

V �
T (�) = Ḡs

T (�)
′�V̄ s

T (�)	
−1Ḡs

T (�),

Ḡs
T (�) = 1

T

T∑
t=1

�gs
t (�)

��′ , V̄ s
T (�) = 1

T

T∑
t=1

gs
t (�)g

s
t (�)

′


Henceforth, let �̂1,T (�) denote any one of the statistics in (17), (18), or (19).11

To test D1(�) = 0 for all � ∈ � ∈ (0, 1), we utilize results from the structural stability
testing literature and consider inference based on the following functionals of �̂1,T (�),

�[�̂1,T (�)] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

sup
�∈�

�̂1,T (�) ≡ sup �̂1,T (�)∫
�

�̂1,T (�)dN (�) ≡ ave �̂1,T (�)

log
{∫

�

exp
{

1
2
�̂1,T (�)

}
dN (�)

}
≡ exp �̂1,T (�),

(20)

where N (�) defines the prior distribution for the break point � ∈ �, which we will assume
to be uniform.12 The following theorem shows each of these test statistics are (first
order) asymptotically equivalent, for different choices of �̂1,T (�) and common choice of
functional �[·].

10See Qin and Lawless (1994) and Smith (2011).
11This involves a slight abuse of notation compared to Section 2 because the distances here are scaled.
12See Andrews (1993), Andrews and Ploberger (1994), and Sowell (1996).
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Theorem 4. Under the null of �1(�) = 0 and Assumptions 1–5, we have

sup
�∈�

|�̂1,T (�)− �T (�)| = op(1),

where

�T (�) = �T (�)
′(a(�) ⊗ I�)P0(a(�)′ ⊗ I�)�T (�)

�(1 − �)

�⇒ (Bk(�)− �Bk(1))′(Bk(�)− �Bk(1))
�(1 − �)

≡ Wk(�),

Bk(�)− �Bk(1) is a vector of Brownian bridges and Bk(�) is a vector of k independent
standard Brownian motions

An immediate consequence of the Continuous Mapping Theorem (CMT) is that

�[�̂1,T (�)] �⇒ �[Wk(�)]

for each functional (20).

4.2. Testing �2(�)

To test D2(�) = 0, we consider inference based on the appropriate GEL-likelihood ratio
statistic

��∗
T (�) = 2(k2/k2

1)(T/hT )QT (�̂(�), �̂(�), �)
 (21)

Again, motivated by results in the EL testing literature, we also consider inference based
on the following alternative statistics,

�T (�) = (k2/k2
1)(T/hT )ḡs

T (�̂(�), �)
′�V̄ s

T (�̂(�), �)	
−1 ḡs

T (�̂(�), �) (22)

�
∗
T (�) = (T/hT )�̂(�)

′�V̄ s
T (�̂(�), �)	�̂(�)/k2
 (23)

For a fixed �, �T (�) is the GEL counterpart of the GMM overidentifying test statistic;
�
∗

T (�) is a Lagrange Multiplier statistic, based on �̂(�); and, ��∗
T (�) is a Likelihood

Ratio type statistic.
Letting �̂2,T (�) denote any one of (21), (22) or (23),13 we use similar ideas to the

previous sub-section to test �2(�) for all � ∈ � based on �[�̂2,T (�)]. The limiting
distribution of the latter statistic is given in the following theorem.

13Again, this involves a slight abuse of notation compared to Section 2 because the distances here are
scaled.
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Theorem 5. Under the null of �2(�) = 0 and Assumptions 1–5, we have

sup
�∈�

|�̂2,T (�)− � ∗
T (�)| = op(1),

where

� ∗
T (�) = �T (�)

′(A(�)−1 ⊗ (I� − P0))�T (�)

�⇒ J�−k(�)
′(A(�) ⊗ I�−k)

−1J�−k(�) ≡ W ∗
�−k(�),

and J�−k(�) =
[

B�−k(�)
B�−k(1)−B�−k(�)

]
, where B�−k(�) is a vector of �− k independent standard

Brownian motions.

Again, the CMT implies that �[�̂2,T (�)] �⇒ �[W ∗
�−k(�)].

4.3. Testing �(�) = 0

Given the discussion in Section 2, testing �(�) = 0 can be achieved by employing
statistics which are functionals of the processes, �̂1,T (�) and �̂2,T (�). Specifically, we
consider the combined process �̂T (�) = �̂1,T (�)+ �̂2,T (�) for the choices of �̂1,T (�) and
�̂2,T (�) defined in Sections 4.1 and 4.2, respectively, and the functionals �[�̂T (�)], defined
by (20). Then, we have the following Corollary to Theorems 4 and 5, which implies that
�[�̂T (�)] �⇒ �[Wk(�)+ W ∗

�−k(�)].

Corollary 1. Under the null of �(�) = 0 and Assumptions 1–5, we have

sup
�∈�

|�̂T (�)− �T (�)− � ∗
T (�)| = op(1)


4.4. Discussion

Sections 4.1–4.3 present tests of the hypotheses of interest in the unknown break point
case. The corresponding results for the fixed break point case follows directly from the
proofs of Theorems 4 and 5 and so are presented in the following corollary.

Corollary 2. Under Assumptions 1–5, and if H0(�) holds for some � ∈ (0, 1), then
�̂1,T (�)

d→ �2
k, �̂2,T (�)

d→ �2
2(�−k), and �̂T (�)

d→ �2
2�−k, where �̂1,T (�), �̂2,T (�) and �̂T (�)

are defined in Sections 4.1, 4.2 and 4.3, respectively, and �2
� denotes a chi-squared

distribution with � degrees of freedom.

We now consider the relationship between our statistics and others in the literature.
As noted in the introduction, Guay and Lamarche (2010) derive some of our test
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statistics from the perspective of testing the stability of the identifying and overidentifying
restrictions, a terminology that derives from Hall and Sen’s (1999) framework for testing
structural instability in models estimated via GMM. Comparing Guay and Lamarche’s
(2010) framework specialized to EL with our info-metric framework, it can be seen
that their tests of the stability of the identifying restrictions are the same as our tests
of �1(�) = 0, and their tests of the stability of the overidentifying restrictions are the
same as our tests of �2(�) = 0.14 While the same tests result, the info-metric approach
has the advantage that it is based on the concept of minimizing the distance between
the class of probability distributions restricted to satisfy the moment condition and the
true probability distribution. This allows us to relate the various hypotheses of interest
in structural instability testing to the distance between certain classes of probability
distributions and the true distribution. We believe this is a more fundamental—and also
more instructive—representation of these hypotheses than their expression in terms of
identifying restrictions (parameter variation) and overidentifying restrictions as is done in
both the GMM and GEL frameworks. Furthermore, this advantage extends to the partial
sum estimators which also have an informational interpretation within our IT framework
for structural change.

Guay and Lamarche (2010) observe that their GEL-based tests are first order
asymptotically equivalent to their GMM counterparts under both the null of stability
and local alternatives.15 Given our previous remarks, this equivalence obviously extends
to our statistics as well. One advantage of this equivalence is that the percentiles for
the limiting distributions of our statistics have already been tabulated in the literature.
Specifically, percentiles of �[Wk(�)] are presented in (Andrews, 2003, Table 1) (for �[·] =
sup(·)) and (Andrews and Ploberger, 1994, Tables 1 and 2) (for �[·] = ave(·), exp(·)); the
percentiles for �[W ∗

�−k(�)] are presented in (Hall and Sen, 1999, Table 1) and Sen (1997).
Percentiles for �[Wk(�)+ W ∗

�−k(�)]] are reported in Sen (1997). A second advantage of
the equivalence under local alternatives is that Theorem 4 continues to hold under
local alternatives to the moment condition that do not involve parameter variation, and
Theorem 5 continues to hold for local alternatives to the moment condition that involve
parameter variation alone. These properties suggest that the individual applications of
tests based on �̂1,T (�) and �̂2,T (�) have the potential to reveal when the instability is
confined to parameter variation alone.

Finally we note that the assumption of strict stationarity (Assumption 1) is sufficient
but not necessary for the limiting distributions stated in Theorems 4 and 5. These results
would still apply provided the Jacobian and the long run variance are homogenous across
the sub-samples and we can apply an FCLT to the sample moment and ULLN to certain
functions of data. However, if the Jacobian, say, changes at some point in the sample
then the limiting distributions are not anticipated to hold for the same reasons as those

14Guay and Lamarche (2010) do not consider the analog to D(�) = 0 in their framework. However, Sen
(1997) does propose and analyze such a test within the GMM framework.

15Li (2011) establishes the same result for EL-based test statistics.
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diagnosed in Hansen’s (2000) analysis of the sup-test in the linear regression model when
there is a shift in the marginal distribution of the regressors.

5. MONTE CARLO EVIDENCE

In this section, we report simulation results that give insight into the finite sample
performance of the IT-based tests for the special cases of EL16 and ET.

Following Ghysels et al. (1997) and Hall and Sen (1999), we consider the slightly
modified data generation process

xt = �1xt−1 + ut + �ut−1, ut ∼ IN (0, 1), for t = 1, 2, 
 
 
 , T/2
xt = �2xt−1 + ut + �ut−1, ut ∼ IN (0, 1), for t = T/2 + 1, T/2 + 2, 
 
 
 , T ,

and corresponding 2 × 1 vector of “instruments,” zt = (zt,1, zt,2)
′. We suppose that the

researcher estimates an AR(1) model for xt based on the moment condition E[gt(�0)] = 0,
where

gt(�) =
[

zt,1

zt,2

]
(xt − �xt−1)


Eight Data Generation Processes (DGPs) are employed defined by the choice of
parameter values (�1, �2, �) and instruments zt. They are as follows: DGP1, DGP2, and
DGP3 model a situation with no breaks (�1 = �2 = 0
4) and valid instruments (xt−2, xt−3);
DGP4, DGP5, DGP6 model a structural break in the data through parameter variation
(�1 = 0
4, �2 = 0
8), but the instruments (xt−2, xt−3) remain valid; whilst DGP7 and DGP8

model situations when there is misspecification through both parameter variation (�1 =
0
4, �2 = 0
8) and invalid instruments (xt−1, xt−2). The remaining difference is through
the value of �: for DGPi, � = �i where �i = 0 for i = 1, 4, �i = 0
4 for i = 2, 5, 7, and
�i = 0
8 for i = 3, 6, 8. Although we discuss results from all eights DGP’s below, we only
explictly report results for the DGP’s with � = 0
4; the remaining results are available in
the working paper version of this paper, see Hall et al. (2013).

The sampling experiments consider four different sample sizes of T = 200, 400, 800,
1,600, where in each case the various test statistics are constructed employing the
following estimation procedures: (i) EL; (ii) kernel-smoothed empirical likelihood (ELk);
(iii) kernel-smoothed exponential tilting (ETk); and, (iv) asymptotically efficient (kernel-
smoothed) GMM, exploiting kernel-smoothed HAC estimation (GMMk). For each of the
IT estimators (models (i)–(iii)), we calculate the following statistics: �[�̂1,T (�)], �[�̂2,T (�)]
and �[�̂T (�)] for the three functionals �[·] defined in (20) and �̂1,T (�) given by (17)–(19),
�̂2,T (�) given by (21)–(23) and �̂T (�) = �̂1,T (�)+ �̂2,T (�), being ��T (�)+ ��∗

T (�),
	T (�)+ �T (�), or �
T (�)+ �
∗

T (�), respectively. For the GMMk estimator only the

16To speed up the simulation process, we adopt a modified version of EL estimator proposed by Owen.
To avoid −∞, log(x) for x < 1/T is replaced by a second degree polynomial.
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Wald statistic is considered. All these statistics are calculated using � = [�, 1 − �], for a
trimming parameter � = 0
20, and, for each DGP and sample size, sampling results are
obtained from 1,000 replications employing a 5% nominal significance level for each test
procedure.17

We report unsmoothed (EL) and smoothed (ELk, ETk, and GMMk) versions of the
test statistics. In the latter case and exploiting Lemma 3 in the Appendix, the moment
condition is smoothed separately in each sub-sample defined by �, but with common
bandwidth hT .18 That is

gs
t (�) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

hT

t−1∑
j=t−[T�]

k
(

j
hT

)
gt−j(�), t = 1, 
 
 
 , [T�]

1
hT

t−[T�]−1∑
j=t−T

k
(

j
hT

)
gt−j(�), t = [T�] + 1, 
 
 
 , T




For ELk and ETk a moment-smoothing counterpart of quadratic spectral kernels is
employed (Smith, 2011),

k(x) =
(

5�
8

)1/2 1
x

J1

(
6�x

5

)
,

J�(z) = z�

2�

∞∑
k=0

(−1)k z2k

22k�(k + 1)�(�+ k + 1)
,

yielding k1 = (5�/2)1/2 and k2 = 2�. For GMMk, the following quadratic-spectral kernel
is employed 19

k(x) = 25
12�2x2

(
sin(6�x/5)

6�x/5
− cos(6�x/5)

)



The bandwidth employed, when smoothing, is “estimated” by ĥT = 1
3221[�̂(2)T ]1/5,
where

�̂(2) =
p∑

a=1

wa
4�̂2

a�̂
4
a

(1 − �̂a)8

{
p∑

a=1

wa
�̂4

a

(1 − �̂a)4

}−1

(24)

17Results for 1% and 10% nominal significance levels and trimmimg parameter values of � =
0
15, 0
25, 0
30, 0
35, 0
40, 0
45 are available upon request.

18Results for the case with two different bandwidth windows for the two subsamples perform consistently
worse, see discussion later in this section.

19Simulation results for Bartlett and Parzen implied kernels (Smith, 2011) are available upon request.
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and �̂a and �̂2
a are estimated AR(1) coefficients and error variances, respectively, based

on moment functions gt(�̂) (�× 1; a = 1, 2, 
 
 
 , �).20 In particular, for ELk and ETk the
unsmoothed version of the objective function is initially optimized to yield �̂. Then, �̂ is
used to compute �̂a and �̂2

a and then to estimate ĥT (Eq. 24). The process repeats up to
5 times or until ĥ(i)T = ĥ(i−1)

T , i = 2, 
 
 
 , 5.
Tables 1–3 summarize the sampling results for DGP2, DGP5, and DGP7 and are

structured in the following way. Each table consists of four vertical panels, for EL, ELk,
ETk, and GMMk, respectively, with each panel reporting results for sample sizes T =
200, 400, 800, 1,600. Horizontally, the results are divided into three big blocks for each of
the �̂1,T (�), �̂2,T (�), and �̂T (�) test procedures, within which sampling results for each of
the sup(·), exp(·), and ave(·) functionals are reported. Each of these “functional” blocks
consists of ��T (�), 	T (�) (�T (�) for �̂2,T (�)), and �
T (�) test statistics.

We first consider the empirical significance levels of the tests when there is no structural
break: DGP1, DGP2 (see Table 1), and DGP3. Thus the null hypothesis for each test
procedure is correct. For DGP1, which is the case where kernel-smoothing is redundant,
tests based on EL exhibit empirical significance levels which converge quite quickly to the
nominal 5% level, but slightly over-reject at T = 200. For larger T and each functional,
the �� and 	 variants have better finite sample properties than that of �
. The Wald
test based on GMMk is slightly undersized, in all its forms. For tests based on (smoothed)
ELk and ETk criteria, convergence of empirical significance levels appears much slower,
however, with the sup functional of all tests exhibiting empirical significance levels of 6.2%
to 10.8%, at T = 1,600. The ave functional seems to be preferable for all test statistics with
empirical rejection frequencies in the range 4.7% to 6.5% for T = 800 and 4.4% to 5.6%
for T = 1,600. However, for ELk and ETk criteria, all tests for T = 200 and most of the
tests for T = 400 exhibit much larger empirical significance levels than the nominal 5%.

For DGP2 (Table 1) and DGP3, and as might be expected, the EL-based tests reject the
null too often since moment conditions are serially correlated (� = 0
4 and 0.8, respectively).
However, for ELk and ETk, although all the sup-tests now perform slightly better the
previous qualitative features remain the same, with tests based on the ave functional yielding
rejection rates in the range 3.5% to 8.7% for T = 800 and 3.8% to 6.8% for T = 1,600, under
DGP2. The finite sample performance deteriorates a little under DGP3, � = 0
8.

For DGP4, DGP5 (Table 2), and DGP6 (parameter variation, with � = 0, 0.4 and 0.8,
respectively) �̂1,T (�) and, consequently, �̂T (�) are designed to exhibit some power whilst
�̂2,T (�) tests should remain relatively insensitive since its null distribution continues to
hold under local parameter variation, and it is useful to see if this is reflected in the
finite sample behaviour. As expected, empirical rejection rates for all �̂1,T (�) and �̂T (�)

tests increases rapidly towards 100% as the sample size increases, across all the DGPs
considered. However, those for the �̂T ,2(�) do not so and, indeed, remain fairly stable as

20This choice corresponds to optimal bandwidth based on an AR(1) approximation to the moment
function with wa = 1; see Andrews (1991)[pp. 834–835] with wa = 1 in his Eq. (6.4).
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TABLE 1
DGP2 Results

EL ELk ETk GMMk

200 400 800 1600 200 400 800 1600 200 400 800 1600 200 400 800 1600

�̂1,T (�), Sup
LR 0.124 0.121 0.111 0.123 0.237 0.115 0.080 0.070 0.135 0.094 0.079 0.072 0.114 0.099 0.086 0.077
W 0.112 0.106 0.110 0.119 0.192 0.127 0.103 0.077 0.193 0.130 0.103 0.079 0.114 0.099 0.086 0.077
LM 0.151 0.132 0.107 0.127 0.255 0.137 0.090 0.080 0.102 0.079 0.082 0.076 0.114 0.099 0.086 0.077

�̂1,T (�), Ave
LR 0.098 0.103 0.086 0.097 0.185 0.094 0.060 0.064 0.090 0.079 0.058 0.065 0.084 0.090 0.065 0.061
W 0.095 0.101 0.087 0.095 0.125 0.098 0.064 0.068 0.140 0.103 0.060 0.068 0.084 0.090 0.065 0.061
LM 0.097 0.103 0.080 0.091 0.150 0.089 0.064 0.064 0.057 0.070 0.054 0.061 0.084 0.090 0.065 0.061

�̂1,T (�), Exp
LR 0.122 0.110 0.101 0.104 0.225 0.110 0.075 0.067 0.130 0.088 0.069 0.067 0.103 0.101 0.081 0.068
W 0.108 0.111 0.105 0.102 0.170 0.118 0.087 0.068 0.182 0.119 0.087 0.069 0.103 0.101 0.081 0.068
LM 0.131 0.122 0.094 0.108 0.228 0.120 0.081 0.074 0.085 0.078 0.069 0.069 0.103 0.101 0.081 0.068

�̂2,T (�), Sup
LR 0.157 0.135 0.108 0.105 0.163 0.089 0.065 0.051 0.142 0.089 0.063 0.054 0.024 0.028 0.040 0.037
W 0.094 0.095 0.092 0.093 0.104 0.048 0.039 0.035 0.063 0.043 0.036 0.035 0.024 0.028 0.040 0.037
LM 0.240 0.164 0.118 0.105 0.361 0.214 0.116 0.073 0.375 0.265 0.161 0.107 0.024 0.028 0.040 0.037

�̂2,T (�), Ave
LR 0.123 0.109 0.080 0.094 0.107 0.079 0.052 0.045 0.105 0.079 0.048 0.044 0.034 0.050 0.040 0.042
W 0.096 0.091 0.075 0.089 0.058 0.059 0.040 0.038 0.058 0.060 0.035 0.038 0.034 0.050 0.040 0.042
LM 0.159 0.124 0.083 0.093 0.229 0.115 0.068 0.054 0.222 0.139 0.085 0.068 0.034 0.050 0.040 0.042

�̂2,T (�), Exp
LR 0.156 0.125 0.095 0.101 0.144 0.084 0.058 0.048 0.126 0.088 0.057 0.052 0.032 0.045 0.042 0.039
W 0.105 0.095 0.085 0.093 0.088 0.054 0.044 0.038 0.061 0.047 0.039 0.036 0.032 0.045 0.042 0.039
LM 0.227 0.160 0.101 0.097 0.325 0.174 0.094 0.062 0.326 0.216 0.123 0.087 0.032 0.045 0.042 0.039

�̂T (�), Sup
LR 0.189 0.164 0.139 0.127 0.207 0.117 0.077 0.049 0.165 0.106 0.080 0.059 0.071 0.075 0.069 0.053
W 0.132 0.140 0.128 0.123 0.186 0.105 0.079 0.046 0.163 0.109 0.077 0.050 0.071 0.075 0.069 0.053
LM 0.272 0.203 0.144 0.124 0.411 0.236 0.135 0.081 0.362 0.238 0.157 0.107 0.071 0.075 0.069 0.053

�̂T (�), Ave
LR 0.146 0.131 0.107 0.104 0.129 0.092 0.058 0.048 0.108 0.089 0.059 0.047 0.066 0.064 0.053 0.047
W 0.120 0.118 0.105 0.104 0.097 0.077 0.055 0.045 0.102 0.077 0.053 0.045 0.066 0.064 0.053 0.047
LM 0.173 0.138 0.105 0.106 0.275 0.131 0.071 0.052 0.218 0.129 0.087 0.061 0.066 0.064 0.053 0.047

�̂T (�), Exp
LR 0.191 0.169 0.126 0.118 0.196 0.114 0.074 0.055 0.145 0.095 0.075 0.059 0.075 0.075 0.058 0.047
W 0.135 0.144 0.119 0.118 0.167 0.102 0.065 0.050 0.147 0.101 0.068 0.052 0.075 0.075 0.058 0.047
LM 0.258 0.185 0.134 0.123 0.377 0.208 0.116 0.073 0.329 0.213 0.138 0.085 0.075 0.075 0.058 0.047

The table consists of four vertical panels: unsmoothed Empirical Likelihood (EL), kernel-smoothed
Empirical Likelihood (ELk), kernel-smoothed Exponential Tilting (ETk), and kernel-smoothed GMM
(GMMk). Each vertical panel report results for sample sizes T = 200, 400, 800, 1600. Horizontally, the results
are divided into three big blocks for �̂1,T (�), �̂2,T (�), and �̂T (�) tests. For each test we report sup(·), exp(·),
and ave(·) statistics. Each statistics block consists of ��T (�), 	T (�) (�T (�) for �̂2,T (�)), and �
T (�).
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TABLE 2
DGP5 Results

EL ELk ETk GMMk

200 400 800 1600 200 400 800 1600 200 400 800 1600 200 400 800 1600

�̂1,T (�), Sup
LR 0.739 0.958 0.999 1.00 0.688 0.900 0.990 1.00 0.690 0.921 0.997 1.00 0.650 0.922 0.998 1.00
W 0.723 0.959 0.999 1.00 0.657 0.921 0.998 1.00 0.736 0.928 0.998 1.00 0.650 0.922 0.998 1.00
LM 0.590 0.885 0.995 1.00 0.810 0.941 0.997 1.00 0.468 0.858 0.994 1.00 0.650 0.922 0.998 1.00

�̂1,T (�), Ave
LR 0.779 0.959 0.998 1.00 0.707 0.900 0.990 1.00 0.728 0.926 0.997 1.00 0.719 0.929 0.998 1.00
W 0.778 0.956 0.998 1.00 0.677 0.915 0.997 1.00 0.772 0.935 0.998 1.00 0.719 0.929 0.998 1.00
LM 0.611 0.910 0.995 1.00 0.795 0.942 0.997 1.00 0.397 0.869 0.997 1.00 0.719 0.929 0.998 1.00

�̂1,T (�), Exp
LR 0.801 0.966 0.999 1.00 0.707 0.907 0.991 1.00 0.741 0.929 0.997 1.00 0.723 0.942 0.998 1.00
W 0.795 0.964 0.999 1.00 0.697 0.935 0.998 1.00 0.783 0.944 0.998 1.00 0.723 0.942 0.998 1.00
LM 0.634 0.922 0.995 1.00 0.816 0.954 0.997 1.00 0.466 0.886 0.997 1.00 0.723 0.942 0.998 1.00

�̂2,T (�), Sup
LR 0.194 0.224 0.316 0.496 0.196 0.177 0.211 0.315 0.178 0.129 0.176 0.316 0.036 0.072 0.170 0.323
W 0.119 0.170 0.300 0.493 0.227 0.149 0.135 0.255 0.049 0.046 0.095 0.234 0.036 0.072 0.170 0.323
LM 0.291 0.267 0.316 0.482 0.567 0.372 0.332 0.386 0.507 0.394 0.371 0.453 0.036 0.072 0.170 0.323

�̂2,T (�), Ave
LR 0.127 0.135 0.189 0.294 0.123 0.107 0.122 0.186 0.114 0.087 0.110 0.179 0.046 0.072 0.114 0.195
W 0.100 0.123 0.182 0.293 0.123 0.090 0.102 0.158 0.053 0.057 0.081 0.147 0.046 0.072 0.114 0.195
LM 0.163 0.145 0.188 0.291 0.434 0.233 0.179 0.207 0.305 0.189 0.194 0.244 0.046 0.072 0.114 0.195

�̂2,T (�), Exp
LR 0.179 0.194 0.277 0.441 0.175 0.164 0.186 0.286 0.156 0.123 0.157 0.288 0.055 0.089 0.162 0.293
W 0.133 0.161 0.266 0.435 0.218 0.148 0.141 0.239 0.056 0.051 0.100 0.225 0.055 0.089 0.162 0.293
LM 0.258 0.221 0.278 0.435 0.526 0.330 0.285 0.337 0.456 0.330 0.314 0.395 0.055 0.089 0.162 0.293

�̂T (�), Sup
LR 0.676 0.917 0.998 1.00 0.426 0.789 0.980 1.00 0.580 0.834 0.993 1.00 0.504 0.821 0.994 1.00
W 0.617 0.906 0.998 1.00 0.590 0.842 0.993 1.00 0.626 0.846 0.993 1.00 0.504 0.821 0.994 1.00
LM 0.596 0.820 0.991 1.00 0.843 0.908 0.994 1.00 0.643 0.824 0.993 1.00 0.504 0.821 0.994 1.00

�̂T (�), Ave
LR 0.637 0.896 0.994 1.00 0.400 0.777 0.983 1.00 0.539 0.825 0.994 1.00 0.501 0.796 0.990 1.00
W 0.602 0.886 0.994 1.00 0.522 0.819 0.991 1.00 0.555 0.817 0.992 1.00 0.501 0.796 0.990 1.00
LM 0.494 0.771 0.988 1.00 0.766 0.882 0.987 1.00 0.427 0.767 0.993 1.00 0.501 0.796 0.990 1.00

�̂T (�), Exp
LR 0.700 0.923 0.997 1.00 0.452 0.813 0.985 1.00 0.598 0.862 0.994 1.00 0.534 0.843 0.995 1.00
W 0.649 0.913 0.997 1.00 0.607 0.862 0.995 1.00 0.634 0.865 0.995 1.00 0.534 0.843 0.995 1.00
LM 0.595 0.828 0.991 1.00 0.836 0.914 0.992 1.00 0.592 0.826 0.994 1.00 0.534 0.843 0.995 1.00

The table consists of four vertical panels: unsmoothed Empirical Likelihood (EL), kernel-smoothed
Empirical Likelihood (ELk), kernel-smoothed Exponential Tilting (ETk) and kernel-smoothed GMM
(GMMk). Each vertical panel report results for sample sizes T = 200, 400, 800, 1600. Horizontally, the results
are divided into three big blocks for �̂1,T (�), �̂2,T (�), and �̂T (�) tests. For each test we report sup(·), exp(·),
and ave(·) statistics. Each statistics block consists of ��T (�), 	T (�) (�T (�) for �̂2,T (�)), and �
T (�).
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TABLE 3
DGP7 Results

EL ELk ETk GMMk

200 400 800 1600 200 400 800 1600 200 400 800 1600 200 400 800 1600

�̂1,T (�), Sup
LR 0.686 0.930 0.995 1.00 0.768 0.875 0.966 0.999 0.758 0.949 0.996 1.00 0.631 0.917 0.998 1.00
W 0.717 0.956 0.998 1.00 0.646 0.872 0.975 0.998 0.777 0.944 0.998 1.00 0.631 0.917 0.998 1.00
LM 0.589 0.863 0.993 1.00 0.834 0.922 0.988 1.00 0.349 0.692 0.962 1.00 0.631 0.917 0.998 1.00

�̂1,T (�), Ave
LR 0.773 0.955 0.998 1.00 0.764 0.882 0.954 0.994 0.653 0.892 0.986 0.999 0.722 0.938 0.999 1.00
W 0.770 0.957 0.998 1.00 0.619 0.844 0.951 0.992 0.785 0.956 0.997 1.00 0.722 0.938 0.999 1.00
LM 0.659 0.918 0.996 1.00 0.821 0.924 0.985 1.00 0.277 0.678 0.970 1.00 0.722 0.938 0.999 1.00

�̂1,T (�), Exp
LR 0.758 0.954 0.998 1.00 0.769 0.890 0.969 0.999 0.724 0.946 0.997 1.00 0.713 0.944 0.998 1.00
W 0.779 0.968 0.998 1.00 0.663 0.882 0.977 0.997 0.809 0.962 0.998 1.00 0.713 0.944 0.998 1.00
LM 0.651 0.914 0.996 1.00 0.841 0.933 0.989 1.00 0.343 0.737 0.976 1.00 0.713 0.944 0.998 1.00

�̂2,T (�), Sup
LR 0.888 0.989 0.995 1.00 0.754 0.932 0.987 0.998 0.947 0.999 1.00 1.00 0.773 0.997 1.00 1.00
W 0.876 0.999 1.00 1.00 0.901 0.997 1.00 1.00 0.813 0.997 1.00 1.00 0.773 0.997 1.00 1.00
LM 0.951 0.999 1.00 1.00 0.990 0.999 1.00 1.00 0.992 0.999 1.00 1.00 0.773 0.997 1.00 1.00

�̂2,T (�), Ave
LR 0.925 0.989 0.995 1.00 0.773 0.932 0.987 0.998 0.976 0.999 1.00 1.00 0.943 0.999 1.00 1.00
W 0.950 0.999 1.00 1.00 0.964 0.999 1.00 1.00 0.941 0.999 1.00 1.00 0.943 0.999 1.00 1.00
LM 0.971 0.999 1.00 1.00 0.988 0.999 1.00 1.00 0.991 0.999 1.00 1.00 0.943 0.999 1.00 1.00

�̂2,T (�), Exp
LR 0.912 0.989 0.995 1.00 0.773 0.932 0.987 0.998 0.970 0.999 1.00 1.00 0.919 0.998 1.00 1.00
W 0.937 0.999 1.00 1.00 0.956 0.999 1.00 1.00 0.919 0.999 1.00 1.00 0.919 0.998 1.00 1.00
LM 0.967 0.999 1.00 1.00 0.990 0.999 1.00 1.00 0.992 0.999 1.00 1.00 0.919 0.998 1.00 1.00

�̂T (�), Sup
LR 0.935 0.991 0.997 1.00 0.508 0.697 0.905 0.995 0.985 1.00 1.00 1.00 0.961 1.00 1.00 1.00
W 0.974 1.00 1.00 1.00 0.941 1.00 1.00 1.00 0.974 1.00 1.00 1.00 0.961 1.00 1.00 1.00
LM 0.984 1.00 1.00 1.00 0.996 1.00 1.00 1.00 0.999 1.00 1.00 1.00 0.961 1.00 1.00 1.00

�̂T (�), Ave
LR 0.942 0.991 0.997 1.00 0.524 0.698 0.905 0.995 0.993 1.00 1.00 1.00 0.989 1.00 1.00 1.00
W 0.990 1.00 1.00 1.00 0.993 1.00 1.00 1.00 0.990 1.00 1.00 1.00 0.989 1.00 1.00 1.00
LM 0.985 1.00 1.00 1.00 0.997 1.00 1.00 1.00 0.997 1.00 1.00 1.00 0.989 1.00 1.00 1.00

�̂T (�), Exp
LR 0.942 0.991 0.997 1.00 0.525 0.698 0.905 0.995 0.997 1.00 1.00 1.00 0.979 1.00 1.00 1.00
W 0.986 1.00 1.00 1.00 0.987 1.00 1.00 1.00 0.987 1.00 1.00 1.00 0.979 1.00 1.00 1.00
LM 0.990 1.00 1.00 1.00 0.999 1.00 1.00 1.00 0.999 1.00 1.00 1.00 0.979 1.00 1.00 1.00

The table consists of four vertical panels: unsmoothed Empirical Likelihood (EL), kernel-smoothed
Empirical Likelihood (ELk), kernel-smoothed Exponential Tilting (ETk) and kernel-smoothed GMM
(GMMk). Each vertical panel report results for sample sizes T = 200, 400, 800, 1600. Horizontally, the results
are divided into three big blocks for �̂1,T (�), �̂2,T (�), and �̂T (�) tests. For each test we report sup(·), exp(·),
and ave(·) statistics. Each statistics block consists of ��T (�), 	T (�) (�T (�) for �̂2,T (�)), and �
T (�).
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the sample increases. For example among the ELk and ETk based tests the ave(��∗
T (�))

seems least sensitive with rejections rates the range 6.6% to 22.5% across all sample sizes
and DGPs. Tests derived from the GMMk criteria exhibit similar behavior.21

For DGP7 (Table 3) and DGP8 all tests should have power with rejection frequencies
approaching 100% as the sample size grows. However, there are some caveats associated
with kernel-based tests �̂1,T (�) and as a result with �̂T (�). Since �̂1,T (�) is based on
restricted models and ĥT is evaluated for each value for �, occasional departures from
the quasi-optimum lead to non-convergence issues and associated numerical problems
when constructing ĥT , covariance matrices and test statistics. A manifestation of this is
observing falling rejection frequencies to somewhat less than 100% as T increases; this
indicates problems with convergence rather than “falling power” per se. For DGP8, � =
0
8, this problem is most pronounced. The observed power of the �̂2,T (�) test is very close
to 100% from T = 200, for all tests save ��∗

T (�) which implicitly involves estimation of
the restricted model. The observed power of the �̂1,T (�) tests are lower due to the non-
convergence problems mentioned above.

Finally, we consider the calculation the bandwidth parameter employed with kernel-
smoothing methods. The sampling results described above are based on reevaluating ĥT

for each value of �, however we restrict it to be the same for each of the subsamples
that are then used to smooth the moment function. Two alternative strategies would
be (i) reestimate ĥ�T and ĥ(1−�)T for each of the two subsamples; or, (ii) estimate ĥT

only once using restricted model for parameter estimation. In additional simulations,
we compared these two alternative strategies in the context of the statistics based on
the sup functional, under DGP1.22 Such statistics had relatively inferior finite sample
behavior, as reported in Table 1. We find the first strategy demonstrates very poor Sup-
test performance: even for T = 1,600 the empirical significance level of the test is from
two to four times larger than the nominal one. However, we find the second strategy
performs much better: for T = 800 to 1,600 the empirical significance level is close to the
nominal one and comparable with Ave- and Exp-tests. This, admittedly, limited evidence
suggests that choice of bandwidth is critically important for finite sample behaviour when
considering Information-Theoretic approaches to structural stability testing.

6. CONCLUDING REMARKS

In this paper, we develop an info-metric framework for testing hypotheses about
structural instability in nonlinear, dynamic models estimated from the information in

21Hall and Sen (1999) propose a strategy in which the break point is estimated by the argument that yields
the supremum of the parameter variation test, and then the fixed break point version of the overidentifying
restrictions test is applied for that estimated break point. They find this approach reduces the sensitivity of
the overidentifying restrictions test to parameter variation. We conjecture a similar approach could be taken
using the IT tests.

22Reported in Hall et al. (2013).
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population moment conditions. Our methods are designed to distinguish between three
states of the world: (i) the model is structurally stable in the sense that the population
moment condition holds at the same parameter value throughout the sample; (ii) the
model parameters change at some point in the sample but otherwise the model is correctly
specified; and (iii) the model exhibits more general forms of instability than a single shift
in the parameters. An advantage of the info-metric approach is that the null hypotheses
concerned are formulated in terms of distances between various choices of probability
measures constrained to satisfy (i) and (ii) and the empirical measure of the sample.
Under the alternative hypotheses considered, the model is assumed to exhibit structural
instability at a single point in the sample, referred to as the break point; our analysis
allows for the break point to be either fixed a priori or treated as occurring at some
unknown point within a certain fraction of the sample. We propose various test statistics
that can be thought of as sample analogs of the distances described above, and derive
their limiting distributions under the appropriate null hypothesis. In principle, there are
a number of possible measures of distance that can be used in this context. The limiting
distributions of our statistics are non-standard but coincide with various distributions
that arise in the literature on structural instability testing within the Generalized Method
of Moments framework. A small simulation study employed EL and ET methods and
illustrates the finite sample performance of our test statistics under both the null of
stability and alternatives of structural instability. This study revealed that the finite sample
size properties of the IT tests are sensitive to the bandwidth used in filtering the sample
moment. In particular, estimation of subsample specific bandwidths—arguably the most
intuitively natural approach—leads to the worst performance. The issue of how best to
calculate the bandwidths in this context remains to be resolved and is an interesting topic
for future research.

7. APPENDIX

Here we collect together some intermediate lemmas and prove the main theorems.
Following Andrews (1993), we use the following notation: XT (�) = op�(1) if
sup�∈� ‖XT (�)‖ = op(1) and XT (�) = Op�(1) if sup�∈� ‖XT (�)‖ = Op(1).
The first result is a FCLT and second a generic (weak) ULLN.

Lemma 1. Under Assumptions 1–3(i),(ii),

k−1
1 �

−1/2
0

√
Tḡs

[T�](�0) = �
−1/2
0

√
Tḡ[T�](�0)+ op�(1) (25)

�⇒ B�(�),
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where B�(�) is a vector of k mutually independent standard Brownian motions on [0, 1],
and

k−1
1 (I2 ⊗ �

−1/2
0 )

√
Tḡs

T (�0, �) = (I2 ⊗ �
−1/2
0 )

√
TḡT (�0, �)+ op�(1) (26)

�⇒ J�(�) =
[

B�(�)
(B�(1)− B�(�))

]



Proof of Lemma 1. Following Smith (2011, Lemma A2), we can write

√
Tḡs

[T�](�0) = 1
hT

[T�]−1∑
j=1−T

k
(

j
hT

)⎧⎨⎩ 1√
T

min[T ,[T�]−j]∑
t=max[1,1−j]

gt(�0)

⎫⎬⎭ 

Now, when j ≥ 0, max[1, 1 − j] = 1 and min[T , [T�] − j] = [T�] − j. On the other hand,
when j < 0, max[1, 1 − j] = 1 + |j| when j > [T�] − T , whilst max[1, 1 − j] = 1 + |j| = T
when j ≤ [T�] − T . Exploiting this, some straightforward (but tedious) algebra reveals
that

√
Tḡs

[T�](�) =
T−1∑

j=1−T

1
hT

k
(

j
hT

)√
Tḡ[T�](�)− √

T
3∑

j=0

AjT (�, �),

where

A0T (�, �) = 1
hT

T−1∑
j=[T�]

k
(

j
hT

)
ḡ[T�](�),

A1T (�, �) = 1
hT

[T�]−1∑
j=0

k
(

j
hT

)
1
T

[T�]∑
t=[T�]+1−j

gt(�),

A2T (�, �) = 1
hT

−1∑
j=1−T+[T�]

k
(

j
hT

){
1
T

|j|∑
t=1

gt(�)− 1
T

[T�]+|j|∑
t=[T�]+1

gt(�)

}
,

A3T (�, �) = 1
hT

−T+[T�]∑
j=1−T

k
(

j
hT

){
1
T

|j|∑
t=1

gt(�)− 1
T

T∑
t=[T�]+1

gt(�)

}



Smith (2011, Lemma A1), shows that
∑T−1

j=1−T
1

hT
k( j

hT
) = k1 + o(1) and �

−1/2
0

√
T

ḡ[T�](�0) �⇒ B�(�), by Andrews (1993); thus,
√

Tḡs
[T�](�0) = k1

√
Tḡ[T�](�0)−√

T
∑3

j=0 AjT (�, �)+ op�(1) and (25) follows if ‖√TAjT (�0, �)‖ = op�(1), for j = 0, 1, 2, 3.
First, limT→∞ 1

hT

∑T−1
j=1−T |k( j

hT
)| = O(1), implies limT→∞ sup�

1
hT

∑T−1
j=[T�] |k( j

hT
)| = 0,



314 A. R. HALL ET AL.

and thus, since ‖√Tḡ[T�](�0)‖ = Op�(1), ‖√TA0T (�0, �)‖ = op�(1). Second, ‖ 1√|j|∑[T�]
t=[T�]+1−j gt(�0)‖ = Op(1), uniformly in j and � and Smith (2011, Lemma C1) is easily

extended to show that limT→∞ 1
hT

∑T−1
j=1−T

√
|j|
T |k( j

hT
)| = 0, so that

sup
�

∥∥∥√TA1T (�0, �)
∥∥∥ ≤

⎧⎨⎩ 1
hT

T−1∑
j=0

√ |j|
T

∣∣∣∣k( j
hT

)∣∣∣∣
⎫⎬⎭Op(1) = op(1)


The results for
√

TA2T (�0, �) and
√

TA3T (�0, �) follow in a similar fashion so that (25)
holds.

Similarly,

k−1
1 �

−1/2
0

1√
T

T∑
t=[T�]+1

gs
t (�0) = �

−1/2
0

(√
TḡT (�0)− √

Tḡ[T�](�0)
)

+ op�(1),

so that

k−1
1 (I2 ⊗ �

−1/2
0 )

√
Tḡs

T (�0, �) = (I2 ⊗ �
−1/2
0 )

√
TḡT (�0, �)+ op�(1),

since ḡT (�0, �) = (ḡ[T�](�0)
′, ḡT (�0)

′ − ḡ[T�](�0)
′)′, and (26) follows. �

Lemma 2. Define mt(�) = m(Zt, �) and m(�) = E[m(Zt, �)], with Zt satisfying
Assumption 1, and assume sufficient regularity (Assumptions 3 (i) and (iii)) so
that sup�∈� ‖m̄T (�)− m(�)‖ = op(1), where m̄T (�) = 1

T

∑T
t=1 mt(�). Let ms

t(�) be the
smoothed version of mt(�), defined in an analogous manner to gs

t (�) at (5), and
(following (14)), define

ms
t(�, �) = �t,T (�)

(
ms

t(�1)
0

)
+ (1 − �t,T (�))

(
0

ms
t(�2)

)
,

m̄s
T (�, �) = 1

T

T∑
t=1

ms
t(�, �),

with m(�, �) = (�m(�1)
′, (1 − �)m(�2)

′)′. Then, sup�∈� sup�∈� ‖m̄s
T (�, �)− k1m(�, �)‖ =

op(1).

Proof of Lemma 2. We can write

m̄s
T (�, �)− k1m(�, �) =

⎛⎜⎜⎜⎜⎝
{

1
T

[T�]∑
t=1

ms
t(�1)

}
− k1�m(�1){

1
T

T∑
t=[T�]+1

ms
t(�2)

}
− k1(1 − �)m(�2)

⎞⎟⎟⎟⎟⎠ 
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In particular, and by the triangle inequality with m̄s
[T�](�) = 1

T

∑[T�]
t=1 ms

t(�),

‖m̄s
[T�](�)− k1�m(�)‖ ≤ ‖m̄s

[T�](�)− k1m̄[T�](�)‖ + k1‖m̄[T�](�)− �m(�)‖

≤
∥∥∥∥∥∥m̄s

[T�](�)−
T−1∑

j=1−T

1
hT

k
(

j
hT

)
m̄[T�](�)

∥∥∥∥∥∥
+
∣∣∣∣∣∣

T−1∑
j=1−T

1
hT

k
(

j
hT

)
− k1

∣∣∣∣∣∣ ‖m̄[T�](�)‖ + k1‖m̄[T�](�)− �m(�)‖


By Andrews (1993, Proof of Lemma A1), sup� ‖m̄[T�](�)− �m(�)‖ = op�(1), and since∑T−1
j=1−T

1
hT

k( j
hT
) = k1 + o(1), the second term is also op�(1). Then, by the triangle

inequality, it remains to show that

sup
�∈�

∥∥∥∥∥∥m̄s
[T�](�)−

T−1∑
j=1−T

1
hT

k
(

j
hT

)
m̄[T�](�)

∥∥∥∥∥∥ = op�(1),

since 1
T

∑T
t=[T�]+1 ms

t(�) = m̄s
T (�)− m̄s

[T�](�). From the proof of Lemma 1, above, it is clear
that

m̄s
[T�](�) =

T−1∑
j=1−T

1
hT

k
(

j
hT

)
m̄[T�](�)−

3∑
j=0

AjT (�, �),

where the AjT (�, �) are as before but defined in terms of mt(�), rather than gt(�). It is then
straightforward to show that sup� ‖AjT (�, �)‖ = op�(1), for j = 0, 1, 2, 3, and the result
follows. �

The technical analysis undertaken in this paper employs (5), which assumes that
smoothing is undertaken before the sample separation. Alternatively, the moment
function could be smoothed after sample separation yielding

m̄s∗
[T�](�) = 1

T

[T�]∑
t=1

1
hT

t−1∑
j=t−[T�]

k
(

j
hT

)
mt−j(�)

for some mt(�) as defined in Lemma 2. This makes no difference asymptotically, as
described in the following Lemma. (The proof is omitted as it follows similar arguments
to those used in the proofs of Lemmas 1 and 2.)

Lemma 3. Define ēs
[T�] = m̄s

[T�](�)− m̄s∗
[T�](�), as above.

(i) Under the assumptions of Lemma 1, with mt(�) ≡ gt(�),
√

Tēs
[T�](�0) = op�(1).

(ii) Under the assumptions of Lemma 1, sup�∈� ‖ēs
[T�](�)‖ = op�(1).
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The following three lemmas are used to establish consistency of �̂(�) and �̂(�).

Lemma 4. Under Assumptions 1, 2(i), 3(i), and 4

sup
�∈�,�∈�T ,1≤t≤T

|�′gs
t (�, �)| = op�(1),

so that w
p
a
1, k�′gs
t (�, �) ∈ � , for all � ∈ �, � ∈ �T and � ∈ �.

Proof of Lemma 4. By Cauchy–Schwartz,

|�′gs
t (�, �)| ≤ ‖�‖‖gs

t (�, �)‖

≤  (T/h2
T )

−� max
1≤t≤T

{
sup
�∈�

‖gs
t (�, �)‖

}



Now,

max
1≤t≤T

sup
�∈�

‖gs
t (�, �)‖ ≤ max

1≤t≤[T�]
sup
�∈�

∥∥∥∥∥ 1
hT

t−1∑
j=t−[T�]

k
(

j
hT

)
gt−j(�)

∥∥∥∥∥
+ max

1≤t≤[T�]+1
sup
�∈�

∥∥∥∥∥ 1
hT

t−[T�]−1∑
j=t−T

k
(

j
hT

)
gt−j(�)

∥∥∥∥∥
≤ max

1≤t≤T
sup
�∈�

‖gt(�)‖
⎧⎨⎩ 2

hT

T−1∑
j=1−T

∣∣∣∣k( j
hT

)∣∣∣∣
⎫⎬⎭ ,

where the last inequality is independent of �. By Assumption 3(i), E[sup�∈� ‖gt(�)‖�] ≤
 < ∞, implying that max1≤t≤T �sup�∈� ‖gt(�)‖	 = op(T 1/�). Furthermore, by previous
results, 1

hT

∑T−1
j=1−T |k( j

hT
)| = O(1). Thus, uniformly in �,

sup
�∈�,�∈�T ,1≤t≤T

|�′gs
t (�, �)| ≤ O(1)(T/h2

T )
−�op(T 1/�)

= op(T �) = op(1),

where � = �− ��(�− 1) < 0, because � > �
�(�−1) , and thus w
p
a
1, k�′gsa

t (�, �) ∈ � , for
all � ∈ �, � ∈ �T , and � ∈ �. �

The above result has the following implications, which will be of use later, as
summarized in the following lemma.

Lemma 5. Under Assumptions 1–4, there exists a finite constant 0 <  < ∞, such that
w
p
a
1 and for all � ∈ � and � ∈ �T , and for each � ∈ �,

h−1
T QT (�0, �, �) ≤ −�′T ḡs

T (�0, �)−  �′T�T , (27)
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where �T = k�/hT , k = k1/k2 and

QT (�, �, �) ≥ −k�′ḡs
T (�, �)− k2 �′�
 (28)

Proof of Lemma 5. By a second order Taylor expansion about � = 0, and exploiting
Lemma 4, we have that for all � ∈ � and � ∈ �T , and each � ∈ �

QT (�, �, �) = �′
1
T

T∑
t=1

��(k�̄′gs
T (�, �))
��

+ 1
2
�′

1
T

T∑
t=1

�2�(k�̄′gs
t (�, �))

����′
�

≡ k�′
1
T

T∑
t=1

�1(k�̄′gs
t (�, �))gs

t (�, �)

+ k2

2
�′

1
T

T∑
t=1

�2(k�̄′gs
t (�, �))gs

t (�, �)gs
t (�, �)′�,

where �̄ is the usual “mean value” vector. Then by Lemma 4 and the normalization �1 =
�2 = −1, we can write

QT (�, �, �) = −k�′ḡs
T (�, �)− 1

2
k2�′V̄ s

T (�, �)�+ op(1), (29)

where the op(1) error is of smaller order than -k�′ḡs
T (�, �)− 1

2 k2�′V̄ s
T (�, �)�.

To establish (27), substitute �0 for � in (29) to obtain, w
p
a
1,

h−1
T QT (�0, �, �) = −�′T ḡs

T (�0, �)− 1
2
�′T hT V̄ s

T (�0, �)�T

where, here, �T = k�/hT ∈ �T . By arguments similar to Smith (2011, Lemma A3) it can be
shown that hT V̄ s

T (�0, �) ≡ k2�0(�)+ op�(1), and we can now write

h−1
T QT (�0, �, �) = −�′T ḡs

T (�0, �)− k2

2
�′T�0(�)�T + op(‖�T ‖2),

where, again, the error term op(‖�T ‖2) is negligible relative to �′T ḡs
T (�0, �)− k2

2 �
′
T�0(�)�T .

Thus, from standard eigenvalue theory, we can write that w
p
a
1

h−1
T QT (�0, �, �) ≤ −�′T ḡs

T (�0, �)−  �′T�T

for all � ∈ �T , and for each � ∈ �.
More generally, however, V̄T (�, �) = Op�(1), uniformly in �, so that by similar

reasoning, we can write

QT (�, �, �) ≥ −k�′ḡs
T (�, �)− k2 �′�+ op(‖�‖2),

and (28) follows from this. �
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Lemma 6. Under Assumptions 1–4, there exists a finite constant,  > 0, such that
w
p
a
1

h−1
T sup

�∈�T

QT (�0, �, �) ≤  ‖ḡs
T (�0, �)‖2 = Op�(T −1)


Proof of Lemma 6. As in Smith (2011, Lemma A5), by Eq. (27) we have w
p
a
1 and
each � ∈ �

sup
�∈�T

h−1
T QT (�0, �, �) ≤  ‖ḡs

T (�0, �)‖2

Since this holds for each � ∈ �,

sup
�∈�

sup
�∈�T

h−1
T QT (�0, �, �) ≤  sup

�∈�
‖ḡs

T (�0, �)‖2,

since sup�∈� ‖ḡs
T (�0, �‖2 = Op(T −1), from Lemma 1, the result then follows. �

Proof of Theorem 1. By Lemma 5, Eq. (28) and Lemma 6, we have w
p
a
1, and for
all � ∈ �T and each � ∈ �,

h−1
T (−k�′ḡs

T (�̂(�), �)− k2 �′�) ≤ h−1
T QT (�̂(�), �, �)

≤ sup
�∈�T

h−1
T QT (�0, �, �)

≤  ‖ḡs
T (�0, �)‖2,

for some finite  > 0. Now define �T = B(T/h2
T )

−� > 0, with B and � as in Assumption 4
so that �T = O(T �), � = − �(�−1)

�
< − 1

�
, and let � = − 1

k�T ḡs
T (�̂(�), �)/‖ḡs

T (�̂(�), �)‖ ∈ �T .
Making this substitution in the above yields

(�T/hT ) sup
�∈�

‖ḡs
T (�̂(�), �)‖ −  �2

T/hT ≤  sup
�∈�

‖ḡs
T (�0, �)‖2,

w
p
a
1 or

sup
�∈�

‖ḡsa
T (�̂(�), �)‖ ≤  �T

{
1 + hT

�2
T

sup
�∈�

‖ḡs
T (�0, �)‖2

}
,

which implies that sup�∈� ‖ḡs
T (�̂(�), �)‖ = Op(�T ). This follows because sup�∈� ‖ḡs

T

(�0, �)‖2 = Op(T −1), so that

hT

�2
T

sup
�∈�

‖ḡs
T (�0, �‖2 = h−1

T

h2
T

�2
T

sup
�∈�

‖ḡs
T (�0, �)‖2

= h−1
T Op

((
h2

T

T

)1−2�
)

= op(h−1
T ) = op(1),
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because 1 − 2� > 0 and h2
T/T → 0. Therefore, since �T → 0, sup�∈� ‖ḡs

T (�̂(�), �)‖ p−→
0. But by Lemma 2, we know that sup�∈� ‖ḡs

T (�̂(�), �)− k1g(�̂(�), �)‖ p−→ 0. Thus,
sup�∈� g(�̂(�), �) = op(1). Continuity of g(�) and the identification Assumption 3(iv) then
yields sup�∈� ‖�̂(�)− �0‖ = op(1).

In fact, a further refinement of the above argument (similar in spirit to that of
Smith, 2011, Lemma A7) shows that sup�∈� ‖ḡs

T (�̂(�), �)‖ = Op(T −1/2), implying that
sup�∈� ‖�̂(�)− �0‖ = Op(T −1/2). It then follows that that hT V̄ s

T (�̂(�), �) = k2�0(�)+
op�(1); c.f. (Smith, 2005, Theorem 2.1). Using this (and arguments similar to the above),
it can then be shown that sup�∈� ‖�̂(�)‖ = Op(hT/

√
T) as follows.

By definition, QT (�̂(�), �̂(�), �) ≥ QT (�̂(�), �, �), for all � ∈ �T . Then, setting � = 0 ∈
�T , and noting that QT (�, 0, �) ≡ 0, for all � ∈ �, and exploiting Lemma 4, a second-order
mean value expansion yields, w
p
a
1,

0 ≤ T
hT

QT (�̂(�), �̂(�), �)

= T
hT

{
−k�̂(�)′ḡs

T (�̂(�), �)− 1
2

k2�̂(�)′V̄ s
T (�̂(�), �)�̂(�)

}



Then, since T
hT

QT (�̂ (�), �̂ (�), �)≤ sup�∈�T

T
hT

QT (�0, �, �) ≤  ‖√Tḡs
T (�0, �)‖2 = Op�(1),

w
p
a
1, by Lemma 6, and the fact that sup�∈� ‖ḡs
T (�̂(�), �)‖ = Op(T −1/2) and sup�∈�

‖hT V̄T (�̂(�), �)‖ = Op(1), it follows that sup�∈� ‖�̂(�)‖ = Op(hT/
√

T). This implies
sup�∈� ‖�̂(�)‖ = op(1).

Proof of Theorem 2. Differentiating QT (�, �, �) = 1
T

∑T
t=1[�(k′gs

t (�, �))− �0] with
respect to � and � yields the partial-sample first order conditions

�QT (�̂(�), �̂(�), �)
��

= k
1
T

T∑
t=1

�1(k�̂(�)′gs
t (�, �))Gs

t(�̂(�), �)
′�̂(�) = 0, (30)

�QT (�̂(�), �̂(�), �)
��

= k
1
T

T∑
t=1

�1(k�̂(�)′gs
t (�, �))gs

t (�, �) = 0, (31)

where

Gs
t(�, �) = �gs

t (�, �)
��′ = �t,T (�)

⎛⎝�gs
t (�1)

��′
1

0

0 0

⎞⎠+ (1 − �t,T (�))

⎛⎝0 0

0
�gs

t (�2)

��′
2

⎞⎠ 

Writing !̂(�) = (�̂(�)′, �̂(�)hT

′
)′ and !0 = (�′

0, �′
0, 0′)′, and exploiting Lemma 1, a mean value

expansion of (31) yields

0 = −kk1

√
TḡT (�0, �)+ D̄!

T (!̄(�), �)
√

T(!̂(�)− !0)+ op�(1),
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since �1 = −1, where

D̄!
T (!, �) = 1

T

T∑
t=1

[
�2QT (�, �, �)

����′ , hT
�2QT (�, �, �)

����′

]

and !̄(�) is the usual mean value which may differ from row to row. Now

�2QT (�, �, �)
����′ = k

1
T

T∑
t=1

�2(k�̂(�)′gs
t (�, �))Gs

t(�, �)

+ k2 1
T

T∑
t=1

�2(k�̂(�)′gs
t (�, �))gs

t (�, �)(�̂(�)′Gs
t(�, �)),

hT
�2QT (�, �, �)

����′
= k2 hT

T

T∑
t=1

�2(k�̂(�)′gs
t (�, �))gs

t (�, �)gs
t (�, �)′


Noting that �2 = −1, it follows from Theorem 1, Lemma 4, Lemma 2, as applied
to 1

T

∑T
t=1 vec(Gs

t(�, �)), and sup�∈� ‖hT V̄T (�̄(�), �)− k2�0(�)‖ = op(1), with k2k2 = kk1,
that

0 = −kk1

√
TḡT (�0, �)− D!

0 (�)
√

T(!̂(�)− !0)+ op�(1),

where

D!
0 (�) = kk1[G0(�),�0(�), ]


Similarly,
√

T
hT

�QT (�̂(�),�̂(�),�)
��

= −kk1G0(�)
′√T( �̂(�)hT

)+ op�(1). Combining these results, we
obtain

0 =
(

0
−√

TḡT (�0, �)

)
−
[

0 G0(�)
′

G0(�) �0(�)

]√
T(!̂(�)− !0)+ op�(1)


Solving for
√

T(!̂(�)− !0) yields

√
T(!̂(�)− !0) = −

(
(A(�)−1 ⊗ (M ′

0M0)
−1M ′

0)

(A(�)−1 ⊗ �
−1/2
0 (I� − P0))

)
�T (�)+ op�(1), (32)

and the result follows. �

Proof of Theorem 3. Consistency of the estimators follows from the general
arguments employed in the proof of Theorems 1, and 2. Differentiating Q̇T (�, �, �) =
1
T

∑T
t=1[�(k′ġs

t (�, �))− �0] with respect to � and � = (′
1, ′

2)
′, yields the partial-sample
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first order conditions

�Q̇T (�̃(�), �̃(�), �)
��

= k
1
T

[T�]∑
t=1

�1(k̃1(�)
′gs

t (�̃(�)))G
s
t(�̃(�))

′̃1(�)

+ k
1
T

T∑
t=[T�]+1

�1(k̃2(�)
′gs

t (�̃(�)))G
s
t(�̃(�))

′̃2(�)

= 0,

�Q̇T (�̃(�), �̃(�), �)
�1

= k
1
T

[T�]∑
t=1

�1(k̃1(�)
′gs

t (�̃(�)))g
s
t (�̃(�)) = 0,

�Q̇T (�̃(�), �̃(�), �)
�2

= k
1
T

T∑
t=[T�]+1

�1(k̃2(�)
′gs

t (�̃(�)))g
s
t (�̃(�)) = 0


Using similar arguments to those employed in the proof of Theorem 2, a Taylor

expansion of
√

T �Q̇T (�̃(�),�̃(�),�)
�i

= 0 about (�′
0, 0′)′, i = 1, 2, yields, exploiting Lemma 1,

0 = −kk1

√
Tḡ[T�](�0)− kk1�G0

√
T(�̃(�)− �0)

− kk1��0(
√

T/hT )̃1(�)+ op�(1),

0 = −kk1(
√

TḡT (�0)− √
Tḡ[T�](�0))− kk1(1 − �)G0

√
T(�̃(�)− �0)

− kk1(1 − �)�0

(√
T/hT

)
̃2(�)+ op�(1),

respectively, or

�
(√

T/hT

)
̃1(�) = −�−1

0

√
Tḡ[T�](�0)− ��−1

0 G0

√
T(�̃(�)− �0),

+ op�(1)

(1 − �)
(√

T/hT

)
̃2(�) = −�−1

0

(√
TḡT (�0)− √

Tḡ[T�](�0)
)

− (1 − �)�−1
0 G0

√
T(�̃(�)− �0)+ op�(1),

from which we note

�(
√

T/hT )̃1(�)+ (1 − �)
(√

T/hT

)
̃2(�)

= −�−1
0

√
TḡT (�0)−�−1

0 G0

√
T(�̃(�)− �0)+ op�(1)
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Similarly, we have
√

T
hT

�Q̇T (�̃(�), �̃(�), �)
��

= k
1
T

[T�]∑
t=1

�1(k̃1(�)
′gs

t (�̃(�)))G
s
t(�̃(�))

′√T

(
̃1(�)

hT

)

+ k
1
T

T∑
t=[T�]+1

�1(k̃2(�)
′gs

t (�̃(�)))G
s
t(�̃(�))

′√T

(
̃2(�)

hT

)

= −kk1�G0
′√T

(
̃1(�)

hT

)
− kk1(1 − �)G0

′√T

(
̃2(�)

hT

)
+ op�(1)

= 0


Combining these results, we obtain

0 = −�G0
′√T

(
̃1(�)

hT

)
− (1 − �)G0

′√T

(
̃2(�)

hT

)
+ op�(1)

= G0
′�−1

0

√
TḡT (�0)+ G0

′�−1
0 G0

√
T(�̃(�)− �0)+ op�(1),

so that
√

T(�̃(�)− �0) = −(M ′
0M0)

−1M0��
−1/2
0

√
TḡT (�0)	+ op�(1),

and

�
(√

T/hT

)
̃1(�) = −�−1/2

0

{
�

−1/2
0

√
Tḡ[T�](�0)

}
+ ��

−1/2
0 P0

{
�

−1/2
0

√
TḡT (�0)

}
+ op�(1),

(1 − �)
(√

T/hT

)
̃2(�) = −�−1/2

0

{
�

−1/2
0

(√
TḡT (�0)− √

Tḡ[T�](�0)
)}

+ (1 − �)�
−1/2
0 P0

{
�

−1/2
0

√
TḡT (�0)

}
+ op�(1),

or (√
T/hT

)
�̃(�) = −(A(�)−1 ⊗ �

−1/2
0 )�T (�)

+ (�2 ⊗ �
−1/2
0 P0)�

−1/2
0

√
TḡT (�0)+ op�(1)

= −(A(�)−1 ⊗ �
−1/2
0 )�T (�)+ (�2�

′
2 ⊗ �

−1/2
0 P0)�T (�)+ op�(1)

= −(A(�)−1 − �2�
′
2 ⊗ �

−1/2
0 (I� − P0))�T (�)+ op�(1)

= − 1
�(1 − �)

(a(�)a(�)′ ⊗ �
−1/2
0 (I� − P0))�T (�)+ op�(1)

= − 1
�(1 − �)

(a(�) ⊗ �
−1/2
0 )(I� − P0)(a(�)′ ⊗ I�)�T (�)+ op�(1),

and the result follows by Lemma 1. �
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Proof of Theorem 4. Consider, first, 	T (�). Previous results, exploiting
√

T -
consistency of �̂i(�), show that

(k2
1/k2)hT V W

T (�̂(�)) = 1
�(1 − �)

(M ′
0M0)

−1 + op�(1),

and, combining this with (32), we obtain

−�(k2
1/k2)hT V W

T (�̂(�))	
−1/2

√
T(�̂1(�)− �̂2(�))

= 1√
�(1 − �)

(M ′
0M0)

−1/2M ′
0(a(�)

′ ⊗ I�)�T (�)+ op�(1),

so that

	T (�) = �T (�)
′(a(�) ⊗ I�)P0(a(�)′ ⊗ I�)�T (�)

�(1 − �)
+ op�(1)

= �T (�)+ op�(1)


For �
T (�), it can be shown that(√
T/hT

)
�̃(�) = −Ḡs

T (�̃(�))
′�hT V̄ s

T (�̃(�))	
−1

√
Tḡs

[T�](�̃(�))+ op�(1)

= C̄s
T (�̃(�))

′√Tḡs
[T�](�̃(�))+ op�(1),

say, where ḡs
[T�](�) = 1

T

∑[T�]
t=1 gs

t (�), so that an asymptotically equivalent variant of
�
T (�) is

�
T (�) = (k2/k2
1)Tḡs

[T�](�̃(�))C̄
s
T (�̃(�))

{
h−1

T V �
T (�̃(�))

}−1

× C̄s
T (�̃(�))

′ḡs
[T�](�̃(�))/(�(1 − �))


An expansion of
√

Tḡs
[T�](�̃(�)) yields

√
Tḡs

[T�](�̃(�)) = k1

√
Tḡ[T�](�0)+ k1�G0

√
T(�̃(�)− �0)+ op�(1)

= k1

√
Tḡ[T�](�0)− k1�G0(M ′

0M0)
−1M0�

−1/2
0

√
TḡT (�0)+ op�(1)


Furthermore, Ḡs
T (�̃(�)) = k1G0 + op�(1) and hT V̄ s

T (�̃(�)) = k2�0 + op�(1), so that

C̄s
T (�̃(�))

′√Tḡs
[T�](�̃(�)) = −k2

1

k2
M ′

0

{
�

−1/2
0

√
Tḡ[T�](�0)− ��

−1/2
0

√
TḡT (�0)

}
+ op�(1)

= −k2
1

k2
M ′

0

(
a(�)′ ⊗ I�

)
�T (�)+ op�(1),
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and, since h−1
T V �

T (�̃(�)) = k2
1

k2
M ′

0M0 + op�(1),

�(k2
1/k2)h−1

T V �
T (�̃(�))	

−1/2C̄s
T (�̃(�))

′√Tḡs
[T�](�̃(�))

= −(M ′
0M0)

−1/2M ′
0(a(�)

′ ⊗ I�)�T (�)+ op�(1),

and it immediately follows that sup�∈� |�
T (�)− �T (�)| = op(1).
For ��T (�), a key expansion is that of

√
Tḡs

T (�̂(�), �) = 1√
T

∑T
t=1 gs

t (�̂(�), �) about �0,
yielding

√
Tḡs

T (�̂(�), �) = √
Tḡs

T (�0, �)+ k1G0(�)
√

T(�̂(�)− �0)+ op�(1)

= k1

√
TḡT (�0, �)− k1(I2 ⊗ �

1/2
0 P0)�T (�)+ op�(1), (33)

where (32) is exploited. Therefore, and again exploiting (32), we have

k−1
1 (I2 ⊗ �

−1/2
0 )

√
Tḡs

T (�̂(�), �) = (I2 ⊗ (I� − P0))�T (�)+ op�(1) (34)

= −(A(�) ⊗ �
1/2
0 )
(√

T/hT

)
�̂(�)+ op�(1)
 (35)

Now, noting that QT (�, 0, �) ≡ 0 and �QT (�, 0, �)/�� = −kḡs
T (�, �), for all � ∈ �, a two-

term expansion of QT (�̂(�), �̂(�), �) about �̂(�) = 0 yields

2(k2/k2
1)(T/hT )QT (�̂(�), �̂(�), �)

= −2(k2/k2
1)k(

√
T/hT )�̂(�)

′√Tḡs
T (�̂(�), �)

+ (k2/k2
1)
(√

T/hT

)
�̂(�)′

(
hT
�2QT (�̂(�), �̄(�), �)

����′

)(√
T/hT

)
�̂(�)

= Tḡs
T (�̂(�), �)

′(A(�) ⊗ �0)
−1ḡs

T (�̂(�), �)/k
2
1 + op�(1), (36)

where �̄(�) is the usual mean value and the third equality uses (35) and Lemma 4,
which ensures that hT

�2QT (�̂(�),�̂(�),�)
����′

p→ −k2k2�0(�) = −k2k2(A(�) ⊗ �0), uniformly in �.
Similarly,

2(k2/k2
1)(T/hT )Q̇T (�̃(�), �̃(�), �)

= Tḡs
T (�̃(�), �)

′(A(�) ⊗ �0)
−1ḡs

T (�̃(�), �)/k
2
1 + op�(1),

where �̃(�) = (�̃(�)′, �̃(�)′)′. Furthermore, an expansion of
√

Tḡs
T (�̃(�), �) yields

√
Tḡs

T (�̃(�), �) = √
Tḡs

T (�0, �)− k1(A(�)�2�′2 ⊗ �
1/2
0 P0)�T (�)+ op�(1)

= √
Tḡs

T (�̂(�), �)+ k1(I2 − A(�)�2�′2 ⊗ �
1/2
0 P0)�T (�)+ op�(1),
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where the second equality follows from (33). Notice that, by (34),

k1

√
Tḡs

T (�̂(�), �)
′(A(�) ⊗ �0)

−1(I2 − A(�)�2�′2 ⊗ �
1/2
0 P0)�T (�)

= k1�T (�)(A(�)−1 − �2�
′
2 ⊗ (I� − P0)P0)�T (�)+ op�(1)

= op�(1),

so that

��T (�) = �T (�)
′(I2 − �2�

′
2A(�) ⊗ �

1/2
0 P0)(A(�) ⊗ �0)

−1

× (I2 − A(�)�2�′2 ⊗ �
1/2
0 P0)�T (�)+ op�(1)

= �T (�)
′(I2 − �2�

′
2A(�) ⊗ P0)(A(�) ⊗ I�)−1(I2 − A(�)�2�′2 ⊗ P0)�T (�)+ op�(1)

= �T (�)
′(A(�)−1 − �2�

′
2 ⊗ P0)�T (�)+ op�(1)

= �T (�)
′(a(�)a(�)′ ⊗ P0)�T (�)

�(1 − �)
+ op�(1)

= �T (�)
′(a(�) ⊗ I�)P0(a(�)′ ⊗ I�)�T (�)

�(1 − �)
+ op�(1)

= �T (�)+ op�(1),

using (A(�)−1 − �2�
′
2)(I2 − A(�)�2�′2) = A(�)−1 − �2�

′
2 = a(�)a(�)′/�(1 − �).

As in Sowell (1996) and Hall and Sen (1999), we can always write P0 = H ′"H , where
" is the diagonal matrix of eigenvalues of P0 and H = [H ′

1, H ′
2]′ is a (�× �) orthonormal

matrix, so that H ′H = I� = H ′
1H1 + H ′

2H2, with H1H ′
1 = Ik and H2H ′

2 = I�−k. From the
properties of ", P0 = H ′

1H1, and

H1(a(�)′ ⊗ I�)�T (�) �⇒ H1(B�(�)− �B�(1)) = Bk(�)− �Bk(1),

from which we conclude that �T (�) �⇒ (Bk(�)−�Bk(1))′(Bk(�)−�Bk(1))
�(1−�) . �

Proof of Theorem 5. Since sup�∈� ‖hT V̄ s
T (�̂(�), �)− k2�0(�)‖ = op(1) and√

Tḡs
T (�̂(�), �) = Op�(1), we immediately have that

�T (�) = (k2/k2
1)(T/hT )ḡs

T (�̂(�), �)
′�V̄ s

T (�̂(�), �)	
−1ḡs

T (�̂(�), �)

= Tḡs
T (�̂(�), �)

′(A(�) ⊗ �0)
−1ḡs

T (�̂(�), �)/k
2
1 + op�(1)

and, by (35),

�
∗
T (�) = (T/h2

T )�̂(�)
′�hT V̄ s

T (�̂(�), �)	�̂(�)/k2

= Tḡs
T (�̂(�), �)

′(A(�) ⊗ �0)
−1ḡs

T (�̂(�), �)/k
2
1 + op�(1)

= �T (�)+ op�(1)
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By (36), it is immediate that

��∗
T (�) = T ḡs

T (�̂(�), �)
′(A(�) ⊗ �0)

−1ḡs
T (�̂(�), �)/k

2
1 + op�(1)

= �T (�)+ op�(1)


This demonstrates the asymptotic equivalence of all three statistics. From (34), we also
obtain

�T (�) = �T (�)
′(A(�)−1 ⊗ (I� − P0))�T (�)+ op�(1)

= � ∗
T (�)+ op�(1)


Following the arguments in the proof of Theorem 4, I − P0 = H ′
2H2, so that

� ∗
T (�) = �T (�)

′(A(�)−1 ⊗ (I� − P0))�T (�)

= �T (�)
′(A(�)−1 ⊗ H ′

2H2)�T (�)

= �T (�)
′(I2 ⊗ H2)

′(A(�)−1 ⊗ I�−k)(I2 ⊗ H2)�T (�)


Since H2H ′
2 = I�−k, it follows that H2B�(�) = B�−k(�), a (�− k)-dimensional vector of

independent standard Brownian motions and

(I2 ⊗ H2)�T (�) �⇒ (I2 ⊗ H2)J�(�) =
[

B�−k(�)
B�−k(1)− B�−k(�)

]
implying

� ∗
T (�) �⇒ J�−k(�)

′(A(�) ⊗ I�−k)
−1J�−k(�)
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