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We use extreme value theory methods to infer conventionally unobservable connections between financial
institutions from joint extreme movements in credit default swap spreads and equity returns. Estimated
pairwise co-crash probabilities identify significant connections among up to 186 financial institutions prior
to the crisis of 2007/2008. Financial institutions that were very central prior to the crisis were more likely
to be bailed out during the crisis or receive the status of systemically important institutions. This result
remains intact also after controlling for indicators of too-big-to-fail concerns, systemic, systematic, and
idiosyncratic risks. Both credit default swap (CDS)-based and equity-based connections are significant
predictors of bailouts. Supplementary materials for this article are available online.
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1. INTRODUCTION

Since the Global Financial Crisis of 2007/2008, regulators
and academics agree that systemically important financial insti-
tutions (SIFIs) deserve additional supervisory scrutiny given
their pivotal role in the functioning of the financial system.
Freixas and Rochet (2013) called for a centralized prudential
regulator, instead of national authorities, with a far-reaching
mandate to tax banks for contributing to systemic risks and dis-
cipline SIFI management. Contemporary regulation does not
follow these suggestions literally. But the introduction of the
Single Supervisory Mechanism in Europe and systemic capi-
tal charges under Basel III (2013) underscore the objective to
account for systemic risk in future regulation.
Which financial institutions qualify as systemically relevant

and why? Besides the sheer size of financial institutions, Eisen-
berg and Noe (2001) emphasized the importance of network
connections to assess the systemic risk of financial institutions
and systems. The Bank for International Settlements (2013)
listed accordingly the interconnectedness of financial institu-
tions as an important (co-)determinant of an SIFI. But in prac-
tice, connections between financial institutions are often unob-
servable (see Upper 2011; Cerutti, Claessens, and McGuire
2014).
We suggest to infer interconnectedness from the joint likeli-

hood of extreme credit risk and equity pricemovements between
global financial institutions from various sectors prior to the cri-
sis. To validate our inferred measures of interconnectedness, we

argue that observed bailouts in response to the financial crisis of
2007/2008 reveal which financial institutions were considered
SIFIs by policy makers and pursue a three-step procedure.
First, we use extreme value theory (EVT) to present a method

to estimate the so-called co-crash probability (CCP, Hartmann
et al. 2004). CCPs measure the probability of an extreme joint
increase in credit default swap (CDS) spreads or a substantial
deterioration of equity prices for pairs of financial institutions.
CDS spreads gauge credit risk links in the network of global
financial institutions to the extent that they reflectmarket partici-
pants’ expectations of credit defaults (see Duffie 2010). Extreme
co-movements of equity prices capture the argument in Acharya
(2009) and Wagner (2011) that shocks to a common exposure
lead to a joint deterioration of market value of equity for all
financial institutions (see, e.g., Ibragimov, Jaffee, and Walden
2011, for empirical evidence).
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Second, we identify significant connections between financial
institutions from CCPs based on data from before the Global
Financial Crisis with two alternative methods. Based on these
significant CCPs, we then measure network centrality and iden-
tify very connected institutions, that is, SIFIs. We curb thereby
the notorious unobservability of network ties among financial
firms by both regulators and market participants alike.
Third, we test if these inferred interconnectedness indica-

tors correlate with observable policy choices. We use connec-
tivity indicators to predict observed bailouts during the cri-
sis of 2007/2008 and thereafter. Bailouts are defined as capital
injections and/or asset support measures issued by governments
to rescue distressed banks that have been collected in Stolz
and Wedow (2010). Additionally, we explain the classifica-
tion of Global Systemically Important Banks constructed by
the Financial Stability Board (FSB 2013) with past measures
of connectivity. We argue that these observed policy actions
reveal the systemic importance assigned by regulators to these
banks.
We are neither the first to use EVT to measure extreme joint

movement of equity returns (see Longines and Solnik 2001;
Hartmann et al. 2004) nor are we the first to use CDS spreads
to measure contagion as one dimension of systemic importance
(see Jorion and Zhang 2007, 2009; Duffie 2010). But we are
the first to suggest a practical indicator of financial institutions’
interconnectedness that we relate to observed policy choices,
which reveal the assessment of an institutions’ systemic (per-
ceived) importance by regulators.
Connectivity rankings based on network centrality measures

feature a number of arguably important banks as central accord-
ing to both equity- and CDS-implied network interconnected-
ness (e.g., Lehman Brothers, Bear Stearns, or Commerzbank).
However, rank-order correlations across different types of net-
work centrality and CDS- versus equity-based rankings are rel-
atively low at around 28%. Network importance of potential
SIFIs should therefore be assessed according to both implied
credit and equity connections. Logit regressions confirm that
higher precrisis network centrality of financial firms based on
CDS spreads increase the likelihood of a government bailout
after controlling for size, systemic, idiosyncratic, and market
risk of the firm. Importantly, the sheer number of connections
in both CDS and equity markets bears little explanatory power
for bailouts during the crisis. Especially financial firms that are
important gatekeepers in connecting not many, but other central
players in financial markets with another were more likely to
receive bailouts.

2. DATA ON CDS SPREADS AND STOCK PRICE
RETURNS

We gauge the role of connectivity for systemic risk by esti-
mating the probability of a simultaneous and drastic deteriora-
tion of the financial condition for a pair of financial firms. A rel-
atively high CCP can be the result of direct counter-party risk
when an obligor fails to meet its obligations to the creditor, or
through joint asset exposures to common risk factors that wipe
out equity. Therefore, we use both data on the joint occurrence
of extremely negative equity returns as in Hartmann et al. (2004)

and de Jonghe (2010) and extremely positive changes in CDS
spreads (Jorion and Zhang 2007, 2009).
Our motivation to base connectivity onmarket prices for CDS

and stocks rather than, for example, interbank asset and liabil-
ity exposures is driven by the ability of institutions to hedge
financial risks associated with these positions through a third-
party insurer. In this light, Arora et al. (2012) found that coun-
terparty credit risk associated with dealer firms in CDS con-
tracts is priced in the spreads of the contracts. Besides notorious
unobservability, exposures to credit-risk via the interbank mar-
ket therefore only provide a partial view on connectivity, since
the de facto tiemay actually be between the bank and the insurer.
Note that we remain deliberately agnostic as to the reasons

for drastic joint deterioration of financial firm value. We argue
that neither market participants nor regulators usually observe
all potential contagion channels. Instead, we propose a method
how to estimate CCPs from either equity return or CDS spread
series.
We obtain CDS spread data from the Markit Group and use

only the precrisis period data (January 1, 2004–August 8, 2007).
The latter date marks the day when the first concerted liquid-
ity provision by central banks around the globe took place. We
focus on this time period since our objective is to test whether
precrisis indicators of interconnectedness pertain significantly
to revealed future policy actions during the crisis. Evidence of
a positive relationship aids the validation of our inferred indica-
tors, which would then coincide with regulators assessment of
financial firms’ importance for the entire system.
The sample comprises quotes of more than 30 dealers for

all trading days during the period. Markit screens these quotes
and removes outliers and stale observations. Markit calculates a
daily composite spread only if at least two quotes remain. CDS
spread quotes are the most widely used source of CDS data in
the literature (Mayordomo et al. 2013). We use CDS spreads
of contracts with a maturity of 5 years, which are most liquid.
Where needed, we choose the most liquid currency, usually
U.S. dollars or Euros. We select the CDS spreads based on the
ex-restructuring clause for institutions from North America,
modified-modified restructuring for Western Europe, and old
restructuring for Asia. After culling the data, we end up with
CDS spreads for 186 financial firms. We obtain stock price data
for 164 institutions from Bloomberg, which are adjusted for
stock splits.
Table 1 shows descriptive statistics on CDS spreads and stock

price returns by financial sector and region. Most financial insti-
tutions are banks, followed by insurance companies, trusts, and
intermediaries from other sectors of the financial industry.
Banks exhibit the lowest mean (and median) CDS spreads

during this precrisis period. Insurance companies and finan-
cial firms from other sectors are significantly more risky as
reflected by higher mean (and median) CDS spreads. The stan-
dard deviation of stock price returns is not statistically differ-
ent across financial sectors. The credit risk measured by CDS
spreads therefore gauges a different aspect compared to the risk
reflected by equity returns. CDS spreads and stock price returns
of financial firms from Europe and the US account for about
80% of firms. The remainder is from other developed (O.D.)
and emerging market (E.M.) economies.
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Table 1. Descriptive statistics: CDS spreads and stock price returns

Sector/Region Mean Std. Dev. Obs. N. of inst. Min 25th pct. Median 75th pct. Max

CDS spreads (bp)
Sector

Banks 18.4 16.1 106,479 118 3.3 10.1 14.0 21.2 417.3
Insurance 46.4 88.3 30,441 33 4.8 15.1 24.3 38.2 981.5
Investment Trusts 41.6 22.9 19,041 21 5.7 29.0 38.2 49.2 353.2
Other institutions 46.0 73.0 12,707 14 6.4 18.7 28.2 40.3 540.0

Region
U.S. 35.7 31.1 52,547 57 4.8 19.8 28.5 41.1 512.2
Europe 19.4 32.0 83,173 92 3.3 10.0 13.6 19.8 540.0
O.D. 38.3 91.0 26,280 29 3.9 10.2 15.8 32.5 981.5
E.M. 38.1 24.6 6,668 8 10.9 22.5 30.0 44.6 207.0

Total 28.1 46.9 168,668 186 3.3 11.3 17.7 30.3 981.5
Stock price returns (%)
Sector

Banks − 0.1 1.5 95,772 109 − 28.2 − 0.8 0.0 0.7 27.0
Insurance − 0.0 1.4 23,632 27 − 16.3 − 0.7 0.0 0.7 18.2
Investment Trusts − 0.1 1.4 17,595 20 − 8.8 − 0.9 − 0.1 0.7 18.4
Other institutions − 0.1 1.5 6,908 8 − 20.0 − 0.9 − 0.1 0.7 16.9

Region
U.S. − 0.0 1.3 41,710 48 − 20.0 − 0.7 − 0.0 0.6 18.2
Europe − 0.1 1.3 61,741 69 − 23.9 − 0.7 0.0 0.6 27.0
O.D. − 0.0 1.5 19,852 23 − 16.3 − 0.7 0.0 0.7 17.7
E.M. − 0.1 2.2 20,604 24 − 18.2 − 1.2 0.0 1.0 22.2

Total − 0.1 1.5 143,907 164 − 28.2 − 0.8 0.0 0.7 27.0
Market index returns (%)

MSCI World index 0.01 1.1 910 1 − 7.3 − 0.5 0.1 0.5 9.1

NOTES: Descriptive statistics of daily CDS spreads in basis points and stock price percentage returns are reported for the period January 1, 2004, through August 8, 2007. CDS spreads
are obtained from the Markit Group databases. Stock prices are obtained from the Bloomberg databases. “Investment Trusts” consists of real estate investment trusts and private equity
investment trusts. “Other institutions” consist of financial services institutions, investment and lease firms, and subsidiary firms. “U.S,” stands for United States. “Europe” for the developed
countries in Europe. “O.D” stands for developed countries other than the U.S. and the countries in Europe. “E.M.” stands for emerging markets. The specific countries within these four
groups are listed in Table 2.

Table 2. Countries within regions

U.S. Europe O.D. E.M.

United Austria (AT) Australia (AU) Argentina (AR)
States Belgium (BE) Canada (CA) Brazil (BR)
(US) Denmark (DK) Hong Kong (HK) China (CN)

France (FR) Japan (JP) India (IN)
Germany (DE) Singapore (SG) Indonesia (ID)
Greece (GR) Kazakhstan (KZ)
Iceland (IS) Korea (KR)
Ireland (IE) Malaysia (MY)
Italy (IT) Russia (RU)
Luxembourg (LU) South Africa (ZA)
Netherlands (NL) Taiwan (TW)
Norway (NO) Thailand (TH)
Portugal (PT) Turkey (TR)
Spain (ES) Ukraine (UA)
Sweden (SE)
Switzerland (CH)
United Kingdom
(GB)

NOTES: ISO 3166 country codes reported in parentheses. In the classification of “Other
Developed” and “Emerging Markets,” we follow the MSCI country classification.

3. CO-CRASH PROBABILITIES

3.1 Extreme Value Theory and Tail Dependence

We choose the EVT method to infer credit-risk connectivity
because of the nature of risk buildup at financial institutions,
which reflects the ability to service financial obligations. The
sensitivity of credit risk to changes in the underlying asset value
is very low if the firm is solvent, but increases nonlinearly
as asset values approach the notional value of debt outstand-
ing (Merton 1977). This convex relationship explains increased
volatility or sudden spikes in CDS spreads even for small asset
value changes (Duffie and Singleton 2003), which therefore
gauge detrimental credit risk events. The EVT-based method is
particularly suited to investigate such risk events since it allows
for a flexible and general distribution of movements in the CDS
spreads of two financial institutions beyond extremal thresholds.
Related, also asset value deteriorations for solvent firms, and
hence stable CDS spreads, can reflect detrimental events for
the market value financial firms. Therefore, we also consider
extreme movements in the price of equity (as in Hartmann et al.
2004; de Jonghe 2010). For brevity, we refer to CDS in describ-
ing the method.
We measure the joint probability of extreme positive CDS

spread percentage changes or substantial joint negative stock
price returns between possible pairs of financial institutionswith
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data. Denoting negative stock price returns or percentage CDS
spread increases interchangeably by Xit and Xjt for institution
i, j ∈ {1, . . . ,N} at day t ∈ {1, . . . ,T }, we write the co-crash
probability (CCP) as a probability of the type:

Prob[Xit > xi ∩ Xjt > x j], i �= j, ∀t. (1)

CCPs denote the probability that the underlying processes Xit
and Xjt of institutions i and j exceed jointly the critical thresh-
olds xi and x j and are as such extreme. Joint exceedance of mar-
ket participants’ expectations about credit events in the case of
CDS or extreme equity value deterioration are rare by definition.
Therefore, we employ multivariate extreme value theory to esti-
mate the probability of the joint event. We follow Draisma et al.
(2004) and defineF as the common distribution of (Xit,Xjt ) with
marginal distributions Fi and Fj. We assume that there exist nor-
malizing constants aT , cT > 0 and bT , dT ∈ R such that we can
define the CCP between firm i and j formally as

CCPi j : = 1 − lim
T→∞

FT (aT xi − bT , cT xi − dT ;T )

= lim
T→∞

Prob

[{
max{Xi1, . . . ,XiT } − bT

aT
> xi

}

∩
{
max{Xj1, . . . ,XjT } − dT

cT
> x j

}]
. (2)

The semiparametric approach of Ledford and Tawn (1996) to
estimate (2) allows to infer whether the CCP is likely to be pos-
itive or zero (see also Poon et al. 2004; Hartmann et al. 2007;
Straetmans et al. 2008). Ledford and Tawn (1996) used the
tail index coefficient η ∈ (0, 1] to evaluate whether (2) exhibits
asymptotic (in)dependence. In case of asymptotic dependence,
η = 1, the CCP is positive, and for asymptotic indepen-
dence, η < 1, this CCP measure equals zero. Formally, asymp-
totic dependence is achieved if the term limu→1 Prob[Fi(X ) >

u|Fj(X ) > u] > 0 where u ∈ [0, 1], and asymptotic indepen-
dence is achieved if this term equals zero (Ledford and Tawn
1996).
Draisma et al. (2004) provided both an estimator for (2) and

established the asymptotic properties of the estimator for η.
Both the tail index estimator and its asymptotic properties assist
in drawing inferences from extremal movements in CDS spread
percentage changes and stock price returns. In Section 3.2, we
present the methodology to estimate the tail index η, which we
require in Section 3.3 to estimate the CCP in (2). The CCP esti-
mate provides an intensity measure as a probability estimate of
the event that both series exhibit extremal movements jointly.
The two-step procedure may not be the most efficient way to
estimate the CCP (Murphy and Topel 2002), but it is consis-
tent (Draisma et al. 2004). In Section 3.4, we describe the steps
for a bootstrap approach to test whether asymptotic indepen-
dence can be rejected for any two of these series. If two insti-
tutions’ CDS spread returns series are likely to exhibit asymp-
totic dependence in their maxima of the observations, the CCP
is likely to take on a positive value. The test for asymptotic
dependence along with the CCP estimate provides the tools to
gauge connections in terms of shared risks between institutions
without having to observe structural debt or equity ties between
two institutions.

3.2 A Gauge of Dependence Between Extremes: The
Tail Index

To extract information on the dependence between the maxi-
mum values of the two series, one needs to address the bias-
ing impact of the marginal densities on the joint probability
estimate. We follow the two-step semiparametric approach of
Draisma et al. (2004) and Drees et al. (2004) and estimate the
tail index η of a univariate Pareto marginal distribution to infer
dependence of the extreme values of two series.
First, we transform the underlying processes Xit and Xjt

to unit Pareto marginals. This ensures that the marginal
distributions of the series have no impact on the estimated
dependence between the two series’ maxima (Draisma et al.
2004). Differences in the estimated tail index are only attributed
to differences in the dependency of extreme percentage changes
in the underlying processes. We denote the unit Pareto
marginal transformation of the series by X̃it := (ni + 1)/(ni +
1 − R(Xit )), where ni is the number of observations of institution
i and R() returns the rank of the argument in ascending order.
Between any two institutions, the transformed series X̃it and X̃ jt

have the same density. Therefore, the critical threshold values q
are the same across institutions and the probability type (1) can
be rewritten as

Prob[Xit > xi ∩ Xjt > x j] = Prob
[
X̃it > q ∩ X̃ jt > q

]
= Prob[min{X̃it, X̃ jt} > q]. (3)

The unit Pareto marginal transformation therefore changes
our multivariate problem into a univariate problem for the min-
imized series:

Zt := min
{
X̃it, X̃ jt

}
. (4)

For notational convenience, the subscripts i and j are dropped
for Zt . Suppose that two institutions exhibit a perfect risk con-
nection and as a result their transformed underlying processes
X̃it and X̃ jt rank daily observed changes identically. Then Zt
equals the transformed variable X̃it and its density exhibits a
unit tail index by construction. If such co-movement does not
exist, the minimized series Zt exhibits a minimal fat tail and the
tail index of its density is smaller than one. We use this feature
below to test for whether there exists a risk connection between
two institutions. A risk connection would be reflected by a tail
index estimate close to one and indicates that two institutions
experience the largest movements in the underlying processes
on similar days. A tail index estimate smaller than one shows
that the two institutions do not share such a risk connection.
The extent to which institutions are credit- or equity-risk con-

nected is represented by the estimated value of the tail index of
the generalized Pareto density of the minimized series Zt . We
use the Hill (1975) estimator for the tail index η:

η̂(k) := 1

k

k∑
m=1

ln

[
Z(n− m+ 1)

Z(n− k)

]
. (5)

A typical problem in calculating the Hill estimator in
Equation (5) is the nontrivial choice of k: the sample of “large”
values in the joint underlying series that proxy for the arrival
of credit or equity risk events, that is, large positive movements
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in the underlying processes. If k is too small, too few observa-
tions enter the estimation of the tail index to ensure consistent
estimation of the index. In contrast, too high levels of k result
in a biased tail index estimate because more observations enter
the estimation that do not represent tail events. Choosing the
optimal number of observations, k∗, thus involves a trade-off
between a too high variance of the estimator for low values of k
versus a lower variance for large values of k but at the expense
of introducing bias.
We follow Huisman et al. (2001) to determine k∗ and approx-

imate the bias in estimating the tail index to be linear in k. The
bias is a linear relationship between the estimated tail index and
the number of observations included for estimation:

η̂(k) = γ0 + γ1k + εk, ∀k ∈ {1, . . . , n− 1}, (6)

where εk denotes a random noise term and the coefficient param-
eters γ0 and γ1 represent the bias relationship between the tail
index estimate in Equation (5) and the number of observations
included for its computation. We estimate Equation (6) with
weighted least squares using weights proportional to

√
k to

obtain unbiased and consistent estimates of γ̂0 and γ̂1. This pro-
cedure weighs tail index estimates in the region where they are
least consistent, which is likely for low values of k, less. The
unbiased estimate of the tail index is obtained from γ̂0, and the
value of γ̂0 is substituted in Equation (5) to determine k∗.

Subsequently, we find k∗ by minimizing (η̂(k) − γ̂0)2. The k
that minimizes this sequence in a stable area is denoted as k∗.We
perform a grid search to choose k∗ in an area where neighboring
k values also yield squared prediction errors sufficiently close
to zero to avoid obtaining an accidental k∗ in an area where η̂

is inconsistent. Alternatively, Danielsson et al. (2001) proposed
a double-bootstrap procedure to determine k∗, which we also
pursue in the online appendix. Substitution of k∗ in Equation (5)
yields the tail dependence index of the two series of percentage
changes in CDS spreads.
Table 3 summarizes the percentage changes of CDS spreads

for 186 financial institutions in the top panel and stock price
returns in the bottom panel for 164 financial institutions. The
data cover the period before August 9, 2007, which is when
the first major public interventions by central banks due to

the Global Financial Crisis were launched. To alleviate mar-
ket concerns about widespread exposures of financial institu-
tions to U.S. subprime mortgage lending markets, the ECB pro-
vided low-interest credit lines of USD 130 billions. The Fed-
eral Reserve followed suit with USD 12 billions in temporary
reserves. Hence, we use precrisis data to infer interconnected-
ness from significant CCPs. The according summary statistics of
the percentage changes in CDS spreads and negative stock price
returns that are used to estimate the CCPs are reported, too.
To estimate the tail index for the joint CDS change series and

for negative stock price returns, we use on average only observa-
tions that are above the 87th and 86th percentile, respectively. It
is important not to confuse these percentiles with those in Value-
a-Risk approaches to calculate “extreme” events. Critical cutoff
values to denote extrema are not imposed, but follow from the
optimal sample size to calculate CCPs given the variance-bias
tradeoff faced when estimating the tail index (Huisman et al.
2001).

3.3 Co-Crash Probability Estimation

Draisma et al. (2004) extended Ledford and Tawn (1996) and
developed an estimator for the probability of an extreme event as
denoted by (2) that allows for both asymptotic dependence and
independence between two series. This semiparametric estima-
tor requires no distributional assumptions about the joint den-
sity of the underlying processes Xit . Nonetheless, a conditional
marginal density must be defined for the exceedances over a par-
ticular threshold level. Let the values of Xit that exceed a thresh-
old level ui follow the generalized Pareto distribution with shape
ξi, scaling ai, and location parameter bi, such that the cumulative
density of Xit is denoted by

Fi(x) : = Prob[Xit > x+ ui|Xit > ui]

= 1 −
(
1 + ξi

x− bi
ai

)− 1
ξi

. (7)

The parameters are estimated with ML techniques and cal-
culated for each institution separately. Thus, heterogeneity
with respect to idiosyncratic failure probabilities is preserved.
Parameter estimates are denoted by ξ̂i, âi, and b̂i. Let F̂i be
specified as in (7) with parameters replaced by estimates. Let

Table 3. Descriptive statistics: Extreme percentage changes in CDS spreads and stock prices

CDS changes in
percentages/percentiles Mean Std. Dev. Obs. Min 25th pct. Median 75th pct. Max

CDS spread percentage changes (%)
Overall sample 0.15 4.58 158,695 − 69.93 − 0.59 0.00 0.51 211.95
Critical changes only 2.29 4.68 71,361 0.00 0.26 0.93 2.45 209.58
Percentiles of critical changes 87.91 7.74 17,561 39.88 81.86 88.46 94.72 100.00

Stock price returns (%)
Overall sample − 0.12 1.51 143,907 − 28.20 − 0.83 0.02 0.70 27.02
Critical changes only − 0.93 1.07 72,188 − 28.20 − 2.12 − 0.65 − 0.12 − 0.05
Percentiles of critical changes 86.73 8.85 13,809 63.74 80.35 88.41 94.15 100.00

NOTES: Top two rows of the two categories report descriptive statistics on percentage changes in CDS spreads, both for the overall sample and for the critical changes that are included in
the calculation of the Hill estimator (5). The total number of observations differ from Table 1 due to an unbalanced panel. The last row of each category reports statistics of the percentiles
of the minimum percentage change in CDS spreads included in the computation of the tail index estimate, outlined in Section 3. The considered sample period runs from January 1, 2004,
through August 8, 2007.
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F̂i j := (F̂i, F̂j ), a two-dimensional vector with elements reflect-
ing the idiosyncratic probabilities of nonextreme events for both
institutions, such as percentage changes in CDS spreads that are
smaller than the critical levels of institutions i and j. Similarly,

F̂
−1
i j := (F̂−1

i , F̂−1
j ). This term identifies the cutoff values of the

underlying process for which larger values are extreme accord-
ing to the Huisman et al. (2001) method. Last, let Di j := (1 −
F̂i, 1 − F̂j ) a row vector with probabilities of the event in which
both institutions’ CDS spread percentage changes exceed their
critical thresholds. The estimator of CCP as in (2) is denoted
by

ĈCPi j := c
1/η̂i j
i j

1

ni j

ni j∑
t=1

1
{
(Xit,Xjt ) ∈ F̂

−1
i j (ι − Di j/ci j )

}
. (8)

The operator 1{.} returns a 1 if the condition in braces is fulfilled
and a zero if not. A 1 indicates the occurrencewhere both institu-
tions face an extreme event, and 0 that they do not. The operand

{(Xit,Xjt ) ∈ F̂
−1
i j (.)} identifies the joint set of CDS spread per-

centage changes that are larger than the critical values returned

by F̂
−1
i j (.). Hence, the summation over the sampled days, ni j,

yields the number of observations for which both institutions
experience contemporaneously a detrimental credit or equity
event.
The constant ci j ∈ (0, 1] inflates the set of critical exceedance

values. Note that for smaller values of ci j, the critical levels

in F̂
−1
i j (.) are larger, that is, more extreme. Smaller values of

ci j essentially imply a reduction in the number of observations
for which both institutions experience simultaneously a detri-

mental credit event. Because the domain of F̂
−1
i j (.) is [0, 1] ×

[0, 1], the choice of ci j is limited to (max{Di j}, 1]. We deter-
mine ci j by evaluating ĈCPi j as a function of ci j, and choose
the minimal value of ci j for which ĈCPi j is sufficiently stable
(Draisma et al. 2004). We adopt the same grid search to deter-
mine the optimal number of observations k∗ as for the tail index
estimation.

3.4 Inferring Extreme Risk Connections from
the Tail Index

Draisma et al. (2004) investigated the asymptotic properties of
the tail index estimate η̂i j as defined by the Hill estimator (5).
The estimate exhibits asymptotic normality as the number of
observations becomes large. Therefore, we use a bootstrap pro-
cedure to obtain a standard error of η̂i j to develop a statistical
test to infer dependence between extreme CDS spread or equity
return changes. We employ the stationary bootstrap procedure
of Politis and Romano (1994) to allow for weakly dependent
observations in the underlying to calculate the standard error of
the tail index estimate in Equation (5). The bootstrap procedure
consists of the following steps:

1. Estimate a tail index η̂i j using Equation (5) for the original
sample.

2. Resample for each of the B bootstrap replications the
underlying processes Xit and Xjt in blocks of consecutive
observations of random block length. Bootstrap samples

Xb
it and Xb

jt are as large as the original sample, where b
indexes the bth replication. Starting value and length of
each block are chosen uniformly at random across the num-
ber of observations. Generate tail index estimates η̂bi j from
bootstrap samples B as in step 1.

3. The bootstrap standard error of η̂i j is denoted by s(η̂i j ) =√∑B
b=1(η̂

b
i j − η̄i j )2/(B− 1), where η̄i j = ∑B

b=1 η̂bi j/B.
4. Let η0 be the hypothesized true value of ηi j under the null.

Compute the test statistic (η̂i j − η0)/s(η̂i j ), which follows
a student-t distribution with T − 1 degrees of freedom.

Dependence of extreme CDS spread percentage changes or
equity returns between two institutions is then determined by
testing the null of dependence against the alternative of inde-
pendence using a one-sided t-test. Following the intuition of
asymptotic dependence in Section 3.1, the maxima of observed
CDS spread percentage changes are asymptotically dependent
if η0 = 1. If the alternative η0 < 1 is not rejected, no asymp-
totic dependence between themaxima of the observed series can
be established. If the test procedure fails to provide evidence to
reject the null of asymptotic dependence, we assume the two
institutions share a risk connection. In this case, the two insti-
tutions share a sufficient number of rare spikes in either CDS
spread percentage changes or negative stock price returns to
suggest such a connection. Throughout, the number of bootstrap
replications is 10,000 and the significance level is 1%.
Table 4 reports descriptive statistics of the estimated CCPs.

Note that we distinguish between all CCPs and those for which
dependence in credit events could not be rejected. Since 186
institutions are sampled for which we have sufficient observa-
tions on CDS spreads, a maximum of 17,205 potential credit
risk links can exist (186× 185/2= 17,205). For the stock-price-
based CCPs, we sampled 164 institutions and thus have 13,366
connections.
CCPs are right-skewed for both stock price-based and CDS

spread-based CCPs. Those for whichwe fail to reject asymptotic
dependence, the estimated size of the CCP is larger across per-
centiles relative to the full sample of estimated CCP. Institutions
for which we find evidence of a credit risk connection, the prob-
ability of experiencing both a spike in the underlying process is
higher. CDS spread-based CCPs are generally larger than stock
price-based CCPs. This trait might reflect that CDS contracts are
typically short term (5 years for our data) and relate solely to the
likelihood of a credit risk event. Stock prices, in turn, relate both
to short as well as long-term profitability prospects and move-
ment in prices do not necessarily only concern credit events.
The standard error proposed by Draisma et al. (2004) and our

proposed bootstrap standard error both rely on asymptotic the-
ory and are only exact in infinitely large samples. Therefore, we
also describe and compute the standard error estimate proposed
by Draisma et al. as a robustness test in Section A.4 of the online
appendix.

4. CONNECTIVITY

Next, we define and identify central financial firms based on
significant CCP links.
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Table 4. Descriptive statistics: Co-crash probabilities

Co-crash prob. Mean Std. Dev. Obs. Min 25th pct. Median 75th pct. Max

CDS spread-based CCPs (bp)
Overall sample 5.47 5.58 17,205 0.00 2.20 4.21 7.43 71.75
Only significant co-crash probabilities∗ 7.19 5.88 11,785 0.00 3.69 5.90 9.15 71.75

Stock price-based CCPs (bp)
Overall sample 2.21 2.18 13,366 0.00 0.93 1.73 2.94 27.67
Only significant co-crash probabilities∗ 5.32 2.61 2,595 0.00 3.54 4.77 6.59 27.67

NOTES: Co-crash probabilities are reported in basis points. “∗” indicates that only statistics are reported for co-crash probabilities between two institutions that share a common “credit-
risk link.” For these co-crash probabilities, the tail index is not significantly different from one at the 1% significance level. The number of observations reflect the number of co-crash
probabilities estimates for any possible combination of two institutions in the sample. Since 186 institutions are investigated with respect to the CDS spread-based CCPs, the total number
of co-crash probabilities per period amounts to 186(186 − 1)/2 = 17,205. Likewise, the total number of possible ties for the Stock price-based CCPs amounts to 13,366, based on 164
institutions.

4.1 SIFI Identification Based on Network Centrality

Jorion and Zhang (2007) defined credit risk contagion as a direc-
tional phenomenon. A credit event at one institution directly
impacts the credit position of highly correlated institutions in
terms of CDS spread percentage changes. Here, direct credit
contagion between two institutions is reflected by those CCPs
for which we fail to reject the null that both of the under-
lying processes are asymptotically dependent. However, we
remain agnostic regarding the direction of effects. This feature
of the CCPmeasure is important because ultimately neithermar-
ket participants nor regulators observe existing credit ties and
shocks. We thus rely on the observable yet very rare occurrence
of joint extreme movements.
Credit risk shocks can be propagated when one institution’s

credit event negatively affects the credit position of another
institution via a third institution. Arora et al. (2012) found that
counter-party credit risk of dealer firms is priced in CDS spreads
of other institutions, which supports the notion of indirect credit
risk effects. The failure and rescue of AIG, a major seller of
CDS protection, further illustrates the importance of indirect
connections via a protection seller to policy makers. AIG was
not central in terms of many credit links with other institutions
in the financial system. But it connected large clusters of other
agents that were not directly linked. Figure 1 illustrates the two
considered types of centrality: direct degree and “gatekeeper”
betweenness centrality.
The direct degree centrality of institution A in Figure 1 is

low relative to the centrality of B and C, because A has sig-
nificant credit links only with three institutions out of 14 pos-
sibilities. Institutions B and C appear most connected based on
degree centrality. But from a “betweenness” centrality perspec-
tive, institution A connects the large hubs with institutions B
and C at their respective centers, while B and C are not con-
nected themselves. This feature renders institution A central in
the gatekeeper sense.
We measure the connectivity of financial institutions in the

network represented by significant credit and equity risk links.
First, we assess how the institutions are connected in the overall
financial system. CCPs for which we do not reject the null of a
tail index equal to one indicate the strength with which two insti-
tutions are linked. A simple measure for the network centrality
of an institution is the ratio of the number of CCPs for which
tail dependence could not be rejected and the number of insti-
tutions in the sample except for the institution in question. Let

li j denote a credit link variable that takes a value of 1 if depen-
dence is found between the institutions’ percentage changes in
CDS spreads or negative stock price returns. Let I denote the
total number of institutions present in the sample. Following
Jackson (2010), degree centrality is denoted by

degreei = 100% × 1

I − 1

∑
j∈{1,...,I| j �=i}

li j, (9)

and ranges from zero (no links) to 100% (connected to all).
In contrast, the notion of the betweenness centrality measure

is to assign high centrality to an institution that may have only
significant CCPs with a few, yet important peers. This measure
denotes the number of times an institution acts as a key link
that connects two institutions along the shortest path of credit
(or equity) links. Bonacich (1972) proposed to take the central-
ity of an institution to be proportional to that of its neighbors.
LetCi denote such a measure for institution i and λ an arbitrary

Figure 1. Differences in centrality. Figure displays 14 hypothetical
financial institutions as nodes, which share significant credit links. Sig-
nificant credit links are displayed as edges. Degree centrality denotes
the proportion of institutions with which the subject institution shares a
significant credit link. Betweenness centrality represents the number of
times an institution acts as key link that connects two institutions along
the shortest path (Bonacich 1972). The betweenness centrality measure
is rescaled to a percentage of the total number of times an institution
connects two other institutions along the shortest path.
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scaling value, then λCi =
∑

j∈{1,...,I| j �=i} ĈCPi j ×Cj. Note that
the centrality measures of the neighbors are weighted with the
corresponding CCP. We solve a system of linear equations to
calculate the Ci values, namely, one equation for each of the
sampled institution. This approach amounts to retrieving the
eigenvectors of the square symmetric matrix that has diagonal
elements equal to zero and the CCP as off-diagonal elements.
Financial firms index the rows and columns. We denote this
matrix by P and gather all centrality measuresCi in the column
vector C. The system can then be stated as

λC = PC. (10)

The solution toC denotes the eigenvector of P that corresponds
to the eigenvalue λ. This type of centrality is often denoted as
eigenvector centrality. We take the largest eigenvalue of P to
ensure that the eigenvector centrality scores can be positive. The
centrality measure Ci for each institution is then retrieved from
the ith element of the considered eigenvector. Bonacich central-
ity represents the number of times an institution acts as key link
that connects two institutions along the shortest path (Bonacich
1972). This betweenness centrality measure is rescaled to a per-
centage of the total number of times an institution connects two
other institutions along the shortest path.
Tables A1 and A2 in the online appendix show the ranking of

the top 40 connected financial firms according to degree central-
ity and Bonacich centrality based on CCPs for both CDS spread-
based and stock price-based CCPs, where we also describe these
rankings in somewhat more detail.

4.2 Implied Network Centrality and Revealed
SIFI Assessment

Do implied measures of network centrality properly identify
SIFIs? Whereas we cannot validate CCP-based connectivity
measures, for example, with observed interbank credit data, we
suggest here some alternatives.
4.2.1 Bailouts, Centrality, and Other SIFI Determinants

During the Crisis. Any bailout reveals the regulators per-
ception of that financial institution’s systemic relevance. Dur-
ing the 2007/2008 crisis, central banks and governments around
the world bailed out many banks, many of which being SIFIs
according to our network centrality measures. Timing and
terms of actual bailouts under the auspices of the various
national schemes have been collected systematically by Stolz
and Wedow (2010) and we show these data in Table A3 in
Section A.2 of the online appendix. Globally, more than 50
financial institutions, mostly banks, were affected in the post-
crisis period and Figure 2 shows the frequency distribution of
both asset guarantees and equity injections.
We estimate a logit model where the dependent variable

equals one if a financial firm was bailed out and zero other-
wise. The first announcement of a rescuemeasure constitutes the
event. Successive rescue measures during the sample period are
considered one event. To avoid endogeneity by construction, we
predict bailouts during the crisis with indicators of connectiv-
ity based on CCPs pertaining to the precrisis period. If inferred
connectivity is informative, bailouts should be more likely for
financial institutions considered connected already prior to the

Figure 2. Capital injections and asset guarantee schemes. Figure
represents a graphical depiction of the first time capital injections and
asset guarantee have been implemented for the support of sampled
financial institutions. The figure is based on the data presented in Table
A3 in the online appendix. Contributions to the bar are derived from the
first date in the period 2007–2011 that a financial institutions received
one of the two respective support measures.

crisis, that is, those identified as SIFI. Connectivity measures are
direct degree centrality and Bonacich centrality based on equity
return and CDS spread change series. The descriptive statistics
for these variables, either with bootstrapped (see Section 3.4,
baseline) or parametric (see Appendix A.4, robustness) standard
errors or the CCP estimate (see Section 3.3) itself, are shown in
Table 5.
The network in terms of direct credit risk connections is more

complete compared to equity ties. For the average financial insti-
tution, we could not reject the dependence assumption in terms
of extreme co-movements of CDS spread change series for 69%
of all possible connections. For equity return co-movements,
this share is only 20% on average.
Mean values for the gatekeeper type of centrality, the

Bonacich indicator, are scaled such that larger percentages indi-
cate a more central role in the network in terms of connect-
ing more clusters of other financial institutions in the network.
This indicator yields virtually identical averaged “gatekeeper”
importance for both CDS and equity-based connectivity.
As noted by the Bank for International Settlements (2013),

the SIFI status of financial institutions should also reflect addi-
tional factors other than connectivity. Among the most impor-
tant ones are too-big-to-fail concerns. To this end, we augment
our analysis with a set of control variables that pertain to the
period before the Global Financial Crisis period. Specifically,
control variables cover the period from January 2004, through
August 2007 unless stated otherwise.
We specify the log of total assets using total assets from the

fiscal year of 2006. Additionally, bailout choices may have been
driven by concerns of systemic importance that a specific fail-
ure would lead the entire system to collapse. We use the contri-
bution to system-wide expected capital shortfall, SRISK, pro-
posed by Acharya et al. (2016) to control for an institution’s
systemic importance. The estimation procedure of this capital
shortfall measure is reserved for the appendix and presented in
Section A.3. We specify here also an EVT-based measure,
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Table 5. Descriptive statistics of bailout determinants: Centrality indicators and firm-specific factors

Variables Values in Mean Std. Dev. Obs. Min 25th pct. Median 75th pct. Max

CDS-based centrality
Degree, bootstrap (%) 68.94 23.51 186 9.19 62.16 75.14 86.49 99.46
Degree, parametric (%) 51.37 20.39 186 4.32 37.03 56.49 65.95 83.24
Bonacich, CCP (%) 42.62 24.76 186 0.00 23.08 38.94 58.79 99.43
Bonacich, bootstrap (%) 65.47 25.14 186 0.00 60.12 73.58 84.57 90.03
Bonacich, parametric (%) 57.89 25.00 186 0.00 42.10 65.06 76.91 93.44

Equity-based centrality
Degree, bootstrap (%) 20.03 13.60 164 0.61 8.59 16.56 30.06 53.37
Degree, parametric (%) 23.82 9.43 164 5.52 17.79 23.93 30.06 48.47
Bonacich, CCP (%) 41.78 20.36 164 0.00 27.46 38.89 57.12 98.46
Bonacich, bootstrap (%) 35.73 28.78 164 0.00 10.07 26.70 60.71 100.00
Bonacich, parametric (%) 38.71 20.08 164 0.00 24.80 37.52 51.39 90.16

Rescue measures
Total capital injections (B USD) 12.43 17.69 50 0.53 2.84 5.02 18.2 88.62
Total asset guarantees (B USD) 50.91 78.44 21 0.26 6.33 15.12 41.15 283

Control variables
Total Assets, book value (B USD) 328.62 499.35 138 0.02 20.91 104.77 337.49 2,070.02
SRISK (%) 0.39 2.23 164 0.00 0.00 0.03 0.15 12.40
CCP market (bp) 21.39 3.85 164 7.89 19.50 21.49 23.91 31.42
CAPM Beta 0.26 0.16 164 − 0.09 0.14 0.25 0.33 1.01
Solvency ratio (%) 15.54 19.07 138 1.25 4.75 6.88 18.12 99.14
RoA (%) 2.04 4.79 138 − 27.59 0.86 1.43 2.48 22.10

NOTES: Centrality measures are reported in percentages. Degree centrality reflects the proportion of members with which the institution shares a significant co-crash probability, that
is, a co-crash probability for which the null of unit tail index could not be rejected at the 1% significance level. The Bonacich centrality measures are rescaled to percentages where
0% indicates that the institution is not connected to institutions that are highly connected with other members but not to other highly connected institutions. Higher values indicate that
the institution acts as a gatekeeper in the sense of sharing a significant co-crash probability with multiple independent institutions that are themselves highly connected with others.
“bootstrap” indicates that the links for the centrality measure were established with the test for asymptotic dependence with the bootstrap standard error for the tail index estimate.
“parametric” indicates the same but instead the use of the parametric standard error estimate of Draisma et al. (2004). “CCP” after Bonacich indicates that the CCP estimate is used as
the intensity measure of the link between two institutions. All variables cover the period January 2004, through August 2007, except for total assets, solvency ratio, and RoA, which are
obtained for the fiscal year of 2006.

namely, the co-crash probability of each institution with the
market as in de Jonghe (2010). The variable CCP market thus
estimates for each financial firm the probability that its stock
price crashes jointly with the entire financial market index. We
employ the method outlined above in Section 3 to estimate this
variable. We only specify an equity market CCP because for
CDS no reliable index is available
Finally, we control for the idiosyncratic risk-return traits of

each financial firm, which co-determine bailout choices of reg-
ulators as well. For example, Duchin and Sosyura (2014) dis-
cussed that equity capital support to U.S. banks was granted on
the basis of an assessment of the future viability of the bank, for
example, based on profitability and liquidity forecasts. Specif-
ically, we specify CAPM Betas, solvency ratios, and return on
assets (RoA), which we obtain from Datastream. The solvency
ratios and RoA are obtained from the fiscal year of 2006 only.
4.2.2 Too-Connected-to-Fail: Equity or Credit Risk Con-

nections?. Table 6 shows the marginal effects from logit
estimations to test the too-connected-to-fail notion based on
degree centrality for equity (columns 2–5) and CDS ties
(columns 6–9), respectively. Results in columns (2) through (5)
show that connections inferred from extreme joint equity return
spikes are not informative to predict bailouts during the crisis
whereas connections inferred from CDS-spread changes are.
An increase of 1% in the proportion of significant CDS-

implied connections over all possible ties that a financial firm

has with its sampled peers leads to an increase in the proba-
bility of receiving bailout support during the crisis by approx-
imately 5.4%. More central financial institutions in terms of
sharing significant extreme CDS spread return co-movements
with peers are thus more likely to be considered worthy
of a bailout. The information value-added of implied con-
nectivity gauged by CDS-based degree centrality is corrobo-
rated by the ROC curve, or the coefficient of concordance. In
column (6), it is significantly larger than the benchmark value
obtained for the baseline logit regression without connectiv-
ity variables, reported in column (1). Hence, the discriminatory
power of the model increases significantly when CDS-spread-
based connectivity measures have been included.
In columns (3)–(5) and (7)–(9), we show results for degree

centrality calculated for three different sub-samples. Contrary
to the baseline, intraindustry degree centrality relates the sig-
nificant co-crash probabilities per financial institution not to all
possible ties. Only those possible connections within the firm’s
own financial sector are considered. For example, we relate bank
connections only to all possible connections with other banks,
but exclude insurances, investment funds, and so forth. Like-
wise, intracountry connectivity confines the set of possible con-
nections only to financial firms within a country. The last and
smallest possible connectivity set is the one confined by both
industry and country. For example, we consider only banks in
the U.S. as possible connections.
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Received government support during the Global Financial Crisis

Equity-based degree centrality in nat. logs CDS-based degree centrality in nat. logs

Country/ Country/
Precrisis Overall Industry Country industry Overall Industry Country industry
regressors (1) (2) (3) (4) (5) (6) (7) (8) (9)

Centrality 0.072 0.049 − 0.015 0.011 0.054∗∗∗ 0.051∗∗∗ 0.046∗∗∗ 0.039∗∗

[0.049] [0.044] [0.018] [0.017] [0.018] [0.019] [0.017] [0.017]
Controls

ln(Total Assets) 0.100∗∗∗ 0.093∗∗∗ 0.100∗∗∗ 0.105∗∗∗ 0.095∗∗∗ 0.106∗∗∗ 0.108∗∗∗ 0.108∗∗∗ 0.108∗∗∗

[0.022] [0.023] [0.022] [0.021] [0.022] [0.027] [0.027] [0.026] [0.027]
SRISK 0.014 0.011 0.017 − 0.045 0.048 − 0.036 − 0.034 − 0.013 0.022

[0.147] [0.121] [0.124] [0.133] [0.117] [0.115] [0.151] [0.110] [0.145]
CCP market − 0.007 − 0.010 − 0.009 − 0.007 − 0.007 − 0.000 − 0.000 − 0.001 − 0.001

[0.009] [0.009] [0.009] [0.008] [0.009] [0.009] [0.011] [0.009] [0.011]
CAPM Beta − 0.108 − 0.193 − 0.166 − 0.133 − 0.079 − 0.090 − 0.097 − 0.095 − 0.095

[0.207] [0.214] [0.222] [0.196] [0.215] [0.166] [0.179] [0.174] [0.190]
Solvency ratio − 0.033∗ − 0.032∗∗ − 0.034∗∗ − 0.033∗∗ − 0.031∗∗ − 0.028 − 0.028 − 0.032 − 0.034

[0.018] [0.013] [0.014] [0.014] [0.015] [0.022] [0.024] [0.022] [0.024]
RoA 0.046∗ 0.042∗∗ 0.046∗∗ 0.047∗∗ 0.045∗∗ 0.036 0.037 0.043 0.048

[0.027] [0.020] [0.021] [0.021] [0.021] [0.031] [0.035] [0.031] [0.035]

Observations 124 124 124 124 124 112 112 112 112
log-likelihood − 52.066 − 50.636 − 51.416 − 51.750 − 51.851 − 38.363 − 38.638 − 39.735 − 40.632
Pseudo R2 0.241 0.262 0.251 0.246 0.244 0.411 0.406 0.389 0.376
Area under ROC curve 0.822 0.840 0.831 0.826 0.825 0.904∗ 0.902∗ 0.892 0.888

NOTES: Table reports the marginal effect of variables derived from logit regressions on whether an institution received financial support or guarantees from central regulators during the
Global Financial Crisis, see Table A3. Columns (2) through (9) differ in whether stock returns or CDS spreads are at the basis of the centrality measure, and between regional and industry
link restrictions between institutions. A link between two institutions is found if we fail to reject the null of asymptotic dependence between two institutions’ stock or CDS spread return
series and the test uses of the bootstrap standard error estimate of the tail index, see Section 3.4. The regressors are obtained in the precrisis period from January 2004 through August
2007. Bootstrap standard errors are reported in brackets, 1000 replications. “∗∗∗,” “∗∗,” and “∗” denote, respectively, significantly different from zero at the 1%, 5%, and 10% level. “Area
under ROC curve” reports the coefficient of concordance and whether it differs significantly relative to the value obtained where Bonacich centrality measures are excluded, column (1).

These alternatives gauge whether the role of connectivity to
predict policy makers’ choices to bailout banks is affected by
narrowing down the definition of potential peers. That approach
is reasonable because rescue schemes were mostly orchestrated
and targeted at a specific sector of the financial industry in a
single country, such as the equity support of banks under the
Capital Purchase Program in the U.S.
Table 6 suggests that direct equity- and CDS-based con-

nectivity measures for increasingly narrow definitions of peer
groups yield qualitatively similar results compared to columns
(2) and (6). Higher CDS-based centrality prior to the crisis
increased the likelihood of a bailout during the crisis whereas
equity ties remain insignificant. The magnitude of the effect
declines in increasingly narrowly defined networks and only the
discriminatory power in column (7) is significantly better rela-
tive to the benchmark model with no centrality measures spec-
ified though. We conclude that in particular direct credit-risk
connectivity as measured across national borders and different
sectors of the financial industry add information, which finan-
cial firms were considered important enough to rescue.
To put the importance of too-connected-to-fail into perspec-

tive, consider the effects of controls. These indicate that too-big-
to-fail considerations were major bailout drivers. An increase in
financial firm size, as measured by the log-level of total assets,
by 1% increased the bailout probability by 9%–10%. This result
corroborates the approach to identify SIFIs in particular in terms

of size. This result may also explain the absence of a signifi-
cant effect associated with the SRISK measure of Acharya et al.
(2016). The SRISKmeasure relies on the expected capital short-
fall of an institution (see Appendix A.3), which comprises the
value at risk and the marginal expected shortfall. Since we con-
trol for size and the institution’s CCP with the market index,
which are similar to the capital shortfall’s value at risk and the
marginal expected shortfall, the effect of SRISK on the likeli-
hood of receiving bailout support diminishes.
Our findings are not sensitive to the methodological choice

how to obtain standard error estimate in the test for asymptotic
dependence. Table A4 in the appendix replicates Table 6 with a
centrality measure derived from the test of asymptotic depen-
dence that relies on the parametric standard error of the tail
index estimate described in Section A.4 in the appendix. The
effects are qualitatively very similar.
4.2.3 Gatekeepers: Bonacich Centrality. In Table 7, we

specify equity-based Bonacich centrality measures in columns
(2)–(5) and CDS-based measures in columns (6)–(9). Con-
trary to direct degree centrality both precrisis Bonacich central-
ity measures are statistically significant and positive. Financial
firms that were gatekeepers prior to the crisis were more likely
to receive bailouts during the crisis.
Column (6) indicates that if the number of times an institution

acts as a key link that connects two institutions along the short-
est path increases by 1%, a bailout is around 10% more likely
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Table 6. Rescue measures explained by precrisis degree centrality



Table 7. Rescue measures explained by precrisis Bonacich centrality

Received government support during the Global Financial Crisis

Equity-based Bonacich centrality in nat. logs CDS-based Bonacich centrality in nat. logs

Country/ Country/
Precrisis Overall Industry Country industry Overall Industry Country industry
regressors (1) (2) (3) (4) (5) (6) (7) (8) (9)

Centrality 0.201∗∗ 0.134∗∗∗ 0.073∗∗∗ 0.132∗∗∗ 0.101∗∗∗ 0.151∗∗∗ 0.042 0.086∗

[0.090] [0.039] [0.024] [0.048] [0.035] [0.052] [0.029] [0.048]
Controls

ln(Total Assets) 0.100∗∗∗ 0.086∗∗∗ 0.046 0.098∗∗∗ 0.077∗∗∗ 0.104∗∗∗ 0.088∗∗∗ 0.112∗∗∗ 0.103∗∗∗

[0.022] [0.022] [0.030] [0.021] [0.020] [0.026] [0.026] [0.027] [0.027]
SRISK 0.014 0.024 0.039 0.014 − 0.020 − 0.025 − 0.071 − 0.014 − 0.034

[0.147] [0.130] [0.099] [0.137] [0.147] [0.121] [0.179] [0.133] [0.170]
CCP market − 0.007 − 0.016∗ − 0.011∗ − 0.002 0.003 0.000 0.005 − 0.000 0.003

[0.009] [0.010] [0.006] [0.010] [0.012] [0.009] [0.012] [0.010] [0.012]
CAPM Beta − 0.108 − 0.213 − 0.150 0.046 0.126 − 0.093 0.025 − 0.124 − 0.042

[0.207] [0.197] [0.135] [0.212] [0.231] [0.174] [0.206] [0.191] [0.216]
Solvency ratio − 0.033∗ − 0.034∗∗ − 0.020∗ − 0.029∗ − 0.020 − 0.031 − 0.022 − 0.042∗∗ − 0.038

[0.018] [0.014] [0.010] [0.015] [0.015] [0.021] [0.024] [0.021] [0.024]
RoA 0.046∗ 0.044∗∗ 0.038∗∗ 0.035 0.023 0.040 0.033 0.056∗ 0.049

[0.027] [0.020] [0.016] [0.022] [0.021] [0.030] [0.035] [0.030] [0.037]

Observations 124 124 124 124 124 112 112 112 112
log-likelihood − 52.066 − 49.171 − 44.875 − 48.834 − 45.469 − 39.310 − 34.257 − 42.956 − 41.207
Pseudo R2 0.241 0.283 0.346 0.288 0.337 0.396 0.474 0.340 0.367
Area under ROC 0.822 0.854 0.879∗ 0.842 0.864∗∗ 0.895 0.927∗∗ 0.872 0.886

NOTES: Table reports the marginal effect of variables derived from logit regressions on whether an institution received financial support or guarantees from central regulators during
the Global Financial Crisis, see Table A3. Columns (2) through (9) differ in whether stock returns or CDS spreads are at the basis of the centrality measure, and between regional and
industry link restrictions between institutions. The intensity of a link between two institutions is measured by CCP estimate’s value. The regressors are obtained in the precrisis period
from January 2004 through August 2007. Bootstrap standard errors are reported in brackets, 1000 replications. “∗∗∗,” “∗∗,” and “∗” denote, respectively, significantly different from zero
at the 1%, 5%, and 10% level. “Area under ROC curve” reports the coefficient of concordance and whether it differs significantly relative to the value obtained where Bonacich centrality
measures are excluded, column (1).

to occur. Columns (3)–(5) and (7)–(9) consider network ties
within industries, within countries, and within both industries
and countries as in Table 6. For instance, for the intraindustry
equity-based Bonacich centrality measure, we restrict ties that
are interindustry to zero, such that the possible shortest paths
along which firms are connected can only be of an intraindus-
try nature. Throughout we find positive and statistically signifi-
cant results except for columns (8). The significance of the area
under the ROC curve indicates that Bonacich centrality marks
an economically relevant addition to the baseline specification
especially if the peer group is confined to financial firms from
the same sector, see columns (3) and (7).
A potential shortcoming of the CCP estimate is that the

researcher is required to specify the threshold beyond which
rates of change in stock prices or CDS spreads are considered
extreme. As a robustness test, we therefore also constructed a
Bonacich centrality measure in which links between institutions
reflect whether we fail to reject asymptotic dependence in the
underlying series. We follow here the same definition of a link
as in the case for degree centrality. The results are reported in
Table 8 using bootstrapped standard error estimates.
The result in Table 8 is almost identical to the findings pre-

sented in Table 7. As a robustness test we also replicate results
based on parametric standard error estimates as in Draisma et al.
(2004) in Table A5 in the appendix, which are likewise very
similar.

In sum, the relationship between bailout choice and between-
ness centrality asmeasured byBonacich centrality is both robust
to the choice of threshold values used in the computation of the
CCP estimate and the choice of standard errors for the tail-index
estimate in a finite sample context.
A final caveat pertains to a general critique to use EVT

estimation techniques for financial data. EVT methods require
observations to be independent and identically distributed, but
financial time series often exhibit serial correlation and/or
volatility clustering. And indeed, both returns on CDS spreads
and stock prices feature for some series in our sample weak
forms of serial dependence. However, main findings of stud-
ies conducted by Hsing (1991), Drees (2000), Einmahl et al.
(2014), and de Haan et al. (2016) suggest the validity of EVT
methods under weakly serial dependence, although the asymp-
totic variance of estimators may differ from the iid case. The
standard error estimates we use in the test on asymptotic depen-
dence may therefore be subject to some bias. Fortunately, we
have some indications that this bias is not a major concern in our
sample because the potential bias should manifest itself differ-
ently in the values obtained for the three betweenness central-
ity measures in our finite sample. Any substantial differences
would then also lead to substantial differences in the centrality
measures due to over- or under-rejection of the null of asymp-
totic dependence. Such differenceswould therefore reflect likely
different relationships between centrality and future bailout
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Received government support during the Global Financial Crisis

Equity-based Bonacich centrality in nat. logs CDS-based Bonacich centrality in nat. logs

Country/ Country/
Precrisis Overall Industry Country industry Overall Industry Country industry
regressors (1) (2) (3) (4) (5) (6) (7) (8) (9)

Centrality 0.070 0.105∗∗∗ 0.064∗∗ 0.117∗∗ 0.110∗∗∗ 0.146∗∗∗ 0.042 0.086∗

[0.049] [0.037] [0.026] [0.046] [0.037] [0.050] [0.028] [0.046]
Controls
ln(Total Assets) 0.100∗∗∗ 0.091∗∗∗ 0.067∗∗∗ 0.100∗∗∗ 0.083∗∗∗ 0.103∗∗∗ 0.087∗∗∗ 0.112∗∗∗ 0.102∗∗∗

[0.022] [0.023] [0.026] [0.021] [0.021] [0.026] [0.026] [0.027] [0.027]
SRISK 0.014 0.009 0.029 0.018 − 0.012 − 0.034 − 0.074 − 0.012 − 0.033

[0.147] [0.119] [0.120] [0.133] [0.140] [0.115] [0.172] [0.133] [0.170]
CCP market − 0.007 − 0.010 − 0.010 − 0.002 0.003 0.000 0.004 − 0.000 0.004

[0.009] [0.008] [0.007] [0.010] [0.011] [0.009] [0.012] [0.010] [0.012]
CAPM Beta − 0.108 − 0.189 − 0.223 − 0.021 0.028 − 0.091 0.012 − 0.122 − 0.029

[0.207] [0.210] [0.195] [0.213] [0.227] [0.166] [0.196] [0.191] [0.216]
Solvency ratio − 0.033∗ − 0.033∗∗ − 0.026∗∗ − 0.028∗ − 0.021 − 0.027 − 0.019 − 0.041∗∗ − 0.036

[0.018] [0.014] [0.011] [0.015] [0.014] [0.022] [0.023] [0.021] [0.024]
RoA 0.046∗ 0.044∗∗ 0.042∗∗ 0.035∗ 0.024 0.034 0.030 0.055∗ 0.047

[0.027] [0.020] [0.017] [0.021] [0.021] [0.031] [0.034] [0.029] [0.037]

Observations 124 124 124 124 124 112 112 112 112
log-likelihood − 52.066 − 50.756 − 46.787 − 49.682 − 46.726 − 37.964 − 32.655 − 42.951 − 41.036
Pseudo R2 0.241 0.260 0.318 0.276 0.319 0.417 0.498 0.340 0.369
Area under ROC 0.822 0.837 0.869∗ 0.837 0.857∗ 0.907∗ 0.934∗∗ 0.874 0.886

NOTES: Table reports the marginal effect of variables derived from logit regressions on whether an institution received financial support or guarantees from central regulators during the
Global Financial Crisis, see Table A3. Columns (2) through (9) differ in whether stock returns or CDS spreads are at the basis of the centrality measure, and between regional and industry
link restrictions between institutions. A link between two institutions is found if we fail to reject the null of asymptotic dependence between two institutions’ stock or CDS spread return
series and the test uses of the bootstrap standard error estimate of the tail index, see Section 3.4. The regressors are obtained in the precrisis period from January 2004 through August
2007. Bootstrap standard errors are reported in brackets, 1000 replications. “∗∗∗,” “∗∗,” and “∗” denote, respectively, significantly different from zero at the 1%, 5%, and 10% level. “Area
under ROC curve” reports the coefficient of concordance and whether it differs significantly relative to the value obtained where Bonacich centrality measures are excluded, column (1).

support across the two standard error estimation methods.
Since we find nearly identical estimated relations, we expect
the bias to be of limited influence on the standard error
estimates.
4.2.4 Joint Specification: Equity- and CDS-Based

Connectivity. So far, especially credit-risk connections
are both individually significant and improve the discrimina-
tory power to predict bailouts during the crisis. Marginal effects
of gatekeeper centrality are around twice as large compared to
direct degree centrality. Next, we specify all main measures of
centrality jointly: equity- and CDS- based as well as degree and
Bonacich centrality. In addition to the logit regression results
in column (1) on whether an institution received bailout or
guarantee, Table 9 presents three additional findings. Results
presented in column (2) are based on a logit regression of an
indicator as dependent variable that presents a 1 if the institu-
tion is denoted as SIFI by FSB and 0 otherwise. In columns
(3) and (4) of Table 9, we replace the dependent dichotomous
dependent variable of a bailout with the monetary volume
of bailouts. Specifically, we specify two Tobit regressions
of whether and to what extend centrality contributed to the
intensity of the bailout support extended by central regulators
during the Global Financial Crisis.
Equity-based Bonacich centrality significantly explains res-

cue measures during the crisis. Based on column (1), we find
that a 1% increase in CDS-based Bonacich centrality increases

the probability of receiving financial support from central regu-
lators by approximately 50%. The coefficient of concordance
for column (1) illustrates that the specification of Bonacich
centrality measures improves the discriminatory power of the
model.
The second column in Table 9 contains a dummy indicator as

dependent variable that presents a 1 if the institution is denoted
as SIFI by FSB and 0 otherwise. We follow the classification as
displayed in Table A3 following the G-SIB and denote an insti-
tution as SIFI if the institution was required to retain a common
equity loss absorbency by FSB (2013). Results corroborate the
finding in the preceding column, which indicates that the cen-
trality measure pertain as well to regulatory SIFI classification
schemes.
Policies to support ailing financial firms during the crisis

were mostly national and differed widely, ranging from asset
guarantees to outright share purchases (see Stolz and Wedow
2010). Besides different instruments to support financial firms,
the sheer volume of each bailout differs also considerably across
institutions. Therefore, we replace in columns (3) and (4) the
dependent dichotomous dependent variable of a bailout with the
monetary volume of bailouts. Specifically, we present the results
of the two Tobit regressions here. For those firms that received
support, we observe the amount they received, or the asset value
guaranteed.We left censor the values for institutions that did not
receive bailout support at zero.
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Table 9. Centrality and the nature of ties

Capital Asset
injections guarantees

Bailout G-SIB ($B) ($B)
(1) (2) (3) (4)

Degree centrality in logs
Equity based − 0.172∗ 0.063 − 18.376∗ 59.780

[0.103] [0.150] [9.732] [42.645]
CDS based 0.035 0.013 − 6.533 − 4.276

[0.049] [0.023] [5.870] [18.244]
Bonacich centrality in logs

Equity based 0.513∗∗ 0.324∗∗ 34.782∗− 43.955
[0.223] [0.154] [19.823] [68.964]

CDS based 0.005 − 0.002 21.687∗ 25.475
[0.097] [0.003] [12.413] [36.399]

Controls YES YES YES YES
Observations 105 105 105 105
log-likelihood − 30.031 − 12.13 − 135.738 − 78.214
Pseudo R2 0.522 0.706 0.200 0.161
Area under ROC 0.944∗∗∗ 0.818∗∗

NOTES: Table reports the marginal effect of variables derived from logit regressions for
whether an institution received financial support or guarantees from central regulators dur-
ing the Global Financial Crisis, see Table A3. The variables are obtained in the precrisis
period. Bootstrap standard errors are reported in brackets, 1000 replications. “∗∗∗,” “∗∗,”
and “∗” denote, respectively, significantly different from zero at the 1%, 5%, and 10% level.
“Area under ROC curve” reports the coefficient of concordance and whether it differs sig-
nificantly relative to the value obtained where degree and Bonacich centrality measures
are excluded.

Overall findings suggest that centrality measures demonstrate
a limited capacity in the considered joint specification to explain
the intensity of the bailout measures taken during the crisis
period. With respect to the capital injections the effect of the
equity based Bonacich centrality is the dominant factor in terms
of size, but lacks sufficient statistical significance to be classi-
fied as a determinate factor. We do not find this result for the
case in which the regulator extended asset guarantees. We find
that both capital injections and guarantees are primarily driven
by the institution’s size in the form of total assets.
Clearly, we cannot infer that capital injections were indeed

effective in preventing institutions from collapsing, because
we lack the counterfactual. However, since these results are
obtained while controlling for size, it indicates that central reg-
ulators were not solely concerned with the institutions’ “sizes”
but also incorporated connectivity in their decision to extend
bailout support. We interpret these results as indication that
implied connectivity measures in general contain useful infor-
mation about the too-connected-to-fail component of financial
firms’ SIFI status. Regulators seem to have paid in particu-
lar attention to those institutions that are central in the gate-
keeper sense of connecting highly connected hubs of financial
institutions.

5. CONCLUSION

Besides size, the Basel committee argues that the position
of financial firms in the international financial network is a
key determinant of so-called systematically important financial

institutions (SIFIs). Alas, structural connections, such as inter-
bank credit links or payment system ties, are notoriously hard
to observe.
This article suggests how to infer connectivity among finan-

cial firms based on extreme value theory. We suggest to gauge
connections from extreme joint movements in equity returns and
CDS spreads. Based on a comprehensive sample of daily CDS
spreads for 186 financial firms and daily stock prices for 164
institutions, we calculate a so-called co-crash probability (CCP)
for all possible pairs of these financial firms. We use return rates
on credit default swap quotes and stock prices between January
2004 and August 2007 to derive an indicator of connectivity
prior to the crisis. We bootstrap standard errors of potential CCP
ties and calculate direct and indirect network centrality mea-
sures based on significant connections.
We test the validity of implied connectivity measures by pre-

dicting observed bailouts during the Global Financial Crisis
with financial firm centrality prior to the crisis. We conjec-
ture that these rescuemeasures reveal too-connected-to-fail con-
cerns of regulators. Controlling for the size, idiosyncratic, and
market risk of financial firms, we find that in particular con-
nectivity based on CDS-spread implied co-crash probabilities
before the crisis is an important determinant of bailout decisions
during the crisis.
Especially so-called indirect Bonacich centrality is econom-

ically important to explain both the likelihood of bailouts as
well as the magnitude of capital injections. Bonacich central-
ity measures the total number of times an institution connects
two other institutions along the shortest path. As such, it cap-
tures the extent to which financial firms act as gatekeepers in
CDS and equity markets. These results indicate that especially
those firms identified as potential propagators of credit risk were
considered as SIFIs by the regulator during the crisis.

SUPPLEMENTARY MATERIALS

The online appendix consists of four sections. First, the
appendix contains the ranking of sampled financial institutions
in terms of the centrality measures presented in the main text.
Second, a more detailed exposition of the bailout data is pro-
vided in terms of specific execution dates of support measures
for the sampled institutions. Three, the methodology employed
for the expected capital shortfall estimation is described in
detail. Four, themethodology for estimating the parametric stan-
dard error of the tail index estimate presented in the main text. In
addition, the online appendix contains the results of the robust-
ness checks. In these checks we benchmark our main findings
against the centrality estimates obtained with the parametric
standard error of the tail index estimate.
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