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In order for predictive regression tests to deliver asymptotically valid inference, account has to be taken
of the degree of persistence of the predictors under test. There is also a maintained assumption that any
predictability in the variable of interest is purely attributable to the predictors under test. Violation of this
assumption by the omission of relevant persistent predictors renders the predictive regression invalid, and
potentially also spurious, as both the finite sample and asymptotic size of the predictability tests can be
significantly inflated. In response, we propose a predictive regression invalidity test based on a stationarity
testing approach. To allow for an unknown degree of persistence in the putative predictors, and for
heteroscedasticity in the data, we implement our proposed test using a fixed regressor wild bootstrap
procedure. We demonstrate the asymptotic validity of the proposed bootstrap test by proving that the limit
distribution of the bootstrap statistic, conditional on the data, is the same as the limit null distribution
of the statistic computed on the original data, conditional on the predictor. This corrects a long-standing
error in the bootstrap literature whereby it is incorrectly argued that for strongly persistent regressors and
test statistics akin to ours the validity of the fixed regressor bootstrap obtains through equivalence to an
unconditional limit distribution. Our bootstrap results are therefore of interest in their own right and are
likely to have applications beyond the present context. An illustration is given by reexamining the results
relating to U.S. stock returns data in Campbell and Yogo (2006). Supplementary materials for this article
are available online.

KEY WORDS: Conditional distribution; Fixed regressor wild bootstrap; Granger causality; Persistence;
Predictive regression; Stationarity test.

1. INTRODUCTION

Predictive regression (hereafter PR) is a widely used tool in
applied finance and economics, and forms the basis for Granger
causality testing. A very common application is in the context
of testing the linear rational expectations hypothesis. A core
example of this is testing whether future (excess) stock returns
are predictable (Granger caused) by current information, such
as the dividend yield or the term structure of interest rates.
Often it is found that the posited predictor variable (e.g., div-
idend yield) exhibits persistence behavior akin to a (near) unit
root autoregressive process, while the variable being predicted
(e.g., the stock return) resembles a (near) martingale difference
sequence (m.d.s.).
In basic form, a test of predictability involves running an

OLS regression of the variable being predicted, yt say, on the
lagged value of a posited predictor variable, xt say, and testing
the significance of the estimated coefficient on xt−1 using a
standard regression t-ratio. Here, the null hypothesis is that yt
is unpredictable (in mean) from ex ante information; the alter-
native is that it is predictable from xt−1. Cavanagh, Elliott, and
Stock (CES; 1995) showed that when the innovation driving xt
is correlated with yt (as is often thought to be case in practice,

for example, the stock price is a component of both the return
and the dividend yield), then these tests can be badly over-sized
if xt is a local to unit root process but critical values appropriate
for the case where xt is a pure unit root process are used. This
over-size can be interpreted as a tendency toward finding spu-
rious predictability in yt , in that it is incorrectly concluded that
xt−1 can be used to predict yt when in fact yt is unpredictable; see
also Rossi (2005) for a discussion of related issues. Attempting
to address this issue, CES discuss Bonferroni bound-based
procedures that yield conservative tests, while Campbell
and Yogo (CY; 2006) considered a point optimal variant of the
t-test and employed confidence belts. Phillips (2014) proposed a
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modification to the test proposed in CY, which is asymptotically
valid in the case where xt can be either local-to-unity or station-
ary. Recently, Breitung and Demetrescu (BD; 2015) considered
variable addition and instrumental variable (IV) methods to cor-
rect test size. Near-optimal PR tests can also be found in Elliott,
Müller, and Watson (2015) and Jansson and Moreira (2006).

A misspecified PR of yt on xt−1 (with nonzero slope) can also
arise from these tests in cases where yt is in fact predictable
and is Granger-caused (possibly by the process {xt} and) by
some other persistent process, {zt} say. The variable zt might
be a manifest variable or an unobserved latent variable. (We
distinguish between Granger causality, defined by conditioning
on counterfactual information sets that can be chosen to contain
the past of the variable z, observable or not, and predictability
as a pragmatic concept based on available observations. Where
zt is latent it cannot therefore be termed a predictor.) Here, and
in the special case where xt−1 is an invalid predictor variable
(because yt is Granger-caused solely by {zt} and xt is uncorre-
lated with zt), it is known that the regression of yt on xt−1 can
lead to serious upward size distortions in the standard PR tests,
with the same conclusion of spurious predictability of yt by xt−1

as discussed earlier; see Ferson, Sarkissian, and Simin (2003a,
b) and Deng (2014). More generally, where both {xt} and {zt}
Granger-cause yt , or xt and zt are correlated, a linear predictor
of yt by xt−1 would still be misspecified because it would be
suboptimal with respect to quadratic loss, even if the optimal
linear predictor based on observables might involve xt−1. (Even
where yt is not Granger-caused by {xt} but zt is a latent variable
correlated with xt , xt−1 would pick up some of the informa-
tion from the past of zt and so xt−1 would not be a spurious
predictor variable.) Specifically, in this case the optimal linear
predictor for yt would involve the past of zt (if zt is a manifest
variable), or further variables among the lags of both yt and
xt−1 (if zt is latent). This fundamental misspecification problem
in the estimated PR will affect all of the predictability tests
discussed above.
We demonstrate theoretically and by means of simulations

the potential for a misspecified PR of yt on xt−1 to arise in
the context of a model where xt and zt follow persistent pro-
cesses, which we model as local-to-unity autoregressions, while
modeling the coefficient on zt−1 as being local-to-zero. As a
consequence, it is important to be able to identify, a priori, if yt
is Granger caused by some ignored {zt}. Our approach involves
testing for persistence in the residuals from a regression of
yt on xt−1. Consequently, any effect that xt−1 may have on
yt , through the value of its slope coefficient in the putative
PR, is eliminated from the residuals, and any persistence they
display thereafter is attributable to the unincluded variable zt−1,
and would signal that the PR is misspecified. The test for PR
misspecification we suggest is based on the co-integration tests
of Shin (1994) and Leybourne and McCabe (1994), themselves
variants of the stationarity test of Kwiatkowski et al. (KPSS;
1992). Although originally designed to detect pure unit root
behavior in regression residuals, Müller (2005) showed that
these tests also reject when near unit root behavior is present,
making them well-suited to the testing scenario of this article.
An issue arising with our proposed test is that under its null

hypothesis that zt−1 plays no role in the data-generating
process [DGP] for yt , its limit distribution depends on
the local-to-unity parameter in the process for xt , even though

the residuals used are invariant to the coefficient on xt−1 in
the DGP. In principle, this makes it difficult to control the size
of the test. However, we show a bootstrap procedure which
treats xt−1 as a fixed regressor (i.e., the observed xt−1 is used
in calculating bootstrap analogs of our test statistic) can be
implemented to yield an asymptotically size-controlled test.
This fixed regressor bootstrap approach is not itself new to the
literature and has been employed by, among others, Gonçalves
and Kilian (2004) and Hansen (2000). Because many financial
and economic time series are thought to display nonstationary
volatility and/or conditional heteroscedasticity in their innova-
tions, it is also important for our proposed testing procedure
to be (asymptotically) robust to these effects. We therefore
use a heteroscedasticity-robust variant of the fixed regressor
bootstrap along the lines proposed by Hansen (2000). This uses
a wild bootstrap scheme to generate bootstrap analogs of yt . We
show that our proposed fixed regressor wild bootstrap test has
local asymptotic power against the same local alternatives that
give rise to a misspecified PR of yt on xt−1.
We establish large-sample validity of our bootstrap method

by showing that the limit distribution of the bootstrap statistic,
conditional on the data, is the same as the limit null distribution
of the statistic computed on the original data, conditional on the
posited predictor variable. Our method of proof has wider appli-
cability to other scenarios where a fixed regressor bootstrap is
used with (near-) integrated regressors. For instance, our proof
corrects an error in the bootstrap literature arising from Hansen
(2000) who incorrectly suggested, in the context of a closely
related test statistic, that for strongly persistent regressors the
validity of the fixed regressor bootstrap is due to the coincidence
of the unconditional null limit distribution of the original statis-
tic with that of the limit distribution of the bootstrap statistic
conditional of the data; actually, by following our proof, this
coincidence can be seen not to occur for Hansen’s statistic.
The article is organized as follows. Section 2 presents the

maintained DGP and sets out the various null and alternative
hypotheses regarding predictability of yt by xt−1 and zt−1. To
aid lucidity, we consider a single putative predictor variable, xt ,
and single unincluded variable, zt , both with m.d.s. errors. Gen-
eralizations to richer model specifications are straightforward
and discussed at various points. Section 3 details the asymptotic
distributions of standard PR statistics under the various hypothe-
ses, demonstrating the inference problems caused by unincluded
persistent variables. Section 4 introduces our proposed test for
PR invalidity, detailing its limit distribution and showing the
validity of the fixed regressor wild bootstrap scheme in provid-
ing asymptotic size control. The asymptotic power of this pro-
cedure is also examined here and compared with the degree of
size distortions associated with PR tests. Section 5 presents the
results of a set of finite sample simulations investigating the size
and power of our proposed bootstrap tests. An empirical illus-
tration reconsidering the results pertaining to U.S stock returns
data in CY is given in Section 6. Proofs and additional simula-
tion results appear in a supplementary appendix.
We use the following notation: �·� is the floor function; I(·)

is the indicator function; x := y (x =: y ) means that x is defined
by y (y is defined by x);

w→ and
p→ for weak convergence

and convergence in probability, respectively. For a vector, x,
‖x‖ := (x′x)1/2, the Euclidean norm. Finally, Dk := Dk[0, 1] is
the space of right continuous with left limit (càdlàg) functions
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from [0, 1] to R
k, equipped with the Skorokhod topology, and

D := D1.

2. THE MODEL AND PREDICTABILITY HYPOTHESES

The basic DGP we consider for observed yt is

yt = αy + βxxt−1 + βzzt−1 + εyt, t = 1, . . . ,T, (1)

where xt and zt satisfy

xt = αx + sx,t , zt = αz + sz,t , t = 0, . . . ,T (2)

sx,t = ρxsx,t−1 + εxt , sz,t = ρzsz,t−1 + εzt , t = 1, . . . ,T, (3)

where ρx := 1 − cxT−1 and ρz := 1 − czT−1, with cx ≥ 0 and
cz ≥ 0, so that xt and zt are unit root or local-to-unit root autore-
gressive processes. We let sx,0 and sz,0 be Op(1) variates. Fol-
lowing CES and to examine the asymptotic local power of the
test procedures we discuss, we parameterize βx and βz as βx =
gxT−1 and βz = gzT−1, respectively, which entails that when gx
and/or gz are nonzero, yt is a persistent, but local-to-noise pro-
cess. (Notice that an observationally equivalent formulation of
the model can be obtained by treating βx and βz as fixed con-
stants but parameterizing the variances of εxt and εzt to be local-
to-zero; see, in particular, the discussion following Equation
(10) later. We choose the local-to-zero coefficient formulation
for consistency with CES.)
Our interest lies in examining the behavior of predictability

tests derived from the PR of yt on xt−1 when yt is generated by
the DGP in (1)–(3) with βz �= 0, and subsequently developing
tests for the null hypothesis that βz = 0. In doing so, it is impor-
tant to note that themotivating issue of spurious predictability of
yt by xt−1, in the case where there is no correlation between xt−1

and zt−1, arises whenever xt−1 and the unincluded zt−1 are both
persistent processes. In the general case where no dependence
restrictions are placed between xt−1 and zt−1, the presence of
zt−1 in (1) does not entail that xt−1 is a spurious predictor for yt .
Rather it implies that the PR of yt on xt−1 alone is misspecified.
In the context of (1), zt−1 could be either an omitted manifest

variable or an unobserved latent variable. An example of the
latter is given by the case where yt are (currency, commodity,
or bond) returns and xt−1 is either the lagged forward premium
(spot minus forward price/rate) or a lagged futures basis (spot
minus futures price/rate). Here, there is an unobserved latent
risk premium which is believed to be strongly persistent, and
which in combination with the strongly persistent predictor has
been suggested as a possible driver for empirically unorthodox
findings, such as the well-known forward premium (or Fama)
puzzle; see Gospodinov (2009). A second example is provided
by the long-run risk model of Bansal and Yaron (2004). Certain
versions of their model can be rewritten as PRs for returns with
an unobserved long-run persistent component in consumption.
In the latent case, it would also be quite reasonable to view zt not
through a literal interpretation of theDGP in (1)–(3) but rather as
a general proxy for underlying misspecification in the PR, under
which interpretation it would clearly not make sense for zt to be
stationary rather than persistent. Possible examples are provided
by the case where the coefficient on xt−1 displays time-varying
behavior, such as has been considered in, for example, Paye and
Timmermann (2006) andCai,Wang, andWang (2015), or where

the data on xt are observed with a strongly persistent measure-
ment error driven by relatively low variance innovations.
The innovation vector εt := [εxt, εzt, εyt]′ is taken to satisfy

the following conditions:

Assumption 1. The innovation process εt can be written as
εt = HDtet where:

(a) H and Dt are the 3 × 3 nonstochastic matrices

H :=
⎡
⎣ h11 0 0
h21 h22 0
h31 h32 h33

⎤
⎦ , Dt :=

⎡
⎣d1t 0 0

0 d2t 0
0 0 d3t

⎤
⎦

with hi j ∈ R, hii > 0 (i, j = 1, 2, 3), and HH ′ strictly pos-
itive definite. The volatility terms dit satisfy dit = di(t/T ),
where di ∈ D are nonstochastic, strictly positive functions.

(b) et is a 3 × 1 vector martingale difference sequence (m.d.s.)
with respect to a filtration Ft , to which it is adapted, with
conditional covariance matrix σt := E(ete′t |Ft−1) satisfy-

ing: (i) T−1∑T
t=1 σt

p→ E(ete′t ) = I3; (ii) supt E‖et‖4+δ <

∞ for some δ > 0.

Remark 1. Assumption 1 implies that εt is a vector
m.d.s. relative to Ft , with conditional variance matrix
�t|t−1 := E(εtε′

t |Ft−1) = (HDt )σt (HDt )′, and time-varying
unconditional variance matrix �t := E(εtε′

t ) = (HDt )(HDt )′.
Stationary conditional heteroscedasticity and nonstationary
unconditional volatility are obtained as special cases with
Dt = I3 (constant unconditional variance, hence only con-
ditional heteroscedasticity) and σt = I3 (so �t|t−1 = �t =
�(t/T ), only unconditional nonstationary volatility), respec-
tively. (The assumption that E(ete′t ) = I3 made in part (b) (i)
and the parameterization of the unconditionally homoscedastic
case by Dt = I3 are without loss of generality, by nonidentifi-
cation considerations.) As discussed in Cavaliere, Rahbek, and
Taylor (2010), Assumption 1(a) implies that the elements of
�t are only required to be bounded and to display a countable
number of jumps, therefore allowing for an extremely wide
class of potential models for the behavior of the variance matrix
of εt , including single or multiple variance or covariance shifts,
variances which follow a broken trend, and smooth transition
variance shifts.

Remark 2. Under Assumption 1, an identification issue
regarding the parameters βx, βz, and h21 arises in the case
where cx = cz. In this case, whenever the observables (yt, xt )
satisfy (1) for certain βx, βz �= 0, and zt, they also satisfy (1) for
βλ
x = βx + λ, βλ

z = βz, and zλt = zt − λβ−1
z xt , for any λ, where

zλt is a (local-to-) unit root autoregressive process and its inno-
vations ελ

zt = εzt − λβ−1
z εxt are such that [εxt, ελ

zt, εyt]
′ satisfies

Assumption 1, upon a redefinition of the matrix H. In particu-
lar, if βz �= 0, then it is possible to choose λ = h21h

−1
11 βz such

that εxt and ελ
zt , the innovations driving xt and zλt , respectively,

are uncorrelated. In accordance with OLS identification condi-
tions, we will discuss the predictive implications of (1) under
the identifying condition E(εxtεzt ) = 0 (equivalently, h21 = 0)
if βz �= 0, and under the condition βz = 0 otherwise. In the case
where zt is a named latent variable (such as an unobserved risk
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premium) or a manifest variable, the value of E(εxtεzt ) is implic-
itly fixed by the choice of zt and an alternative is to discuss (1)
by using this value for identification.

Remark 3. We notice that a PR based on xt−1 alone is mis-
specified whenever βz �= 0, regardless of the value of either βx
or the correlation between εxt and εzt . If h21 = 0, xt−1, and zt−1

would be uncorrelated with one another and any conclusion of
predictability from the PR of yt on xt−1 in the case where βx = 0
and βz �= 0 in (1) would be purely spurious because the best lin-
ear predictor (BLP; with respect to symmetric quadratic loss) of
yt given the past of {yt, xt} would not involve xt−1, although the
BLP with respect to a larger information set might involve xt−1.
When h21 �= 0, xt−1, and zt−1 are correlated, and thus, for fore-
casting purposes, xt−1 could act as a proxy for the information
in zt−1. Nonetheless, if βz �= 0, the BLP of yt would not be a
function of xt−1 alone: for a manifest variable zt , the BLP given
the past of {yt, xt, zt} would involve zt−1, whereas for a latent
variable zt , the BLP given the past of {yt, xt} would involve lags
of yt and xt (even if βx = 0, as some of the predictive power of
zt−1 would be picked up by xt−1).

Remark 4. For transparency, the structure in (1)–(3) is
exposited for a scalar variable, zt . This is without loss of gener-
ality, as one may consider that zt = γ ′z∗t where z

∗
t is a vector of

variables, which might therefore contain both omitted manifest
and latent variables.

We are now ready to discuss, in the context of (1), the possi-
bilities for the predictability and causation of yt by the variables
xt−1 and zt−1, focusing on linear predictors. One potential case
that has received much attention in the literature is that where
yt is Granger-caused only by the process {xt}, so that it is pre-
dictable only by xt−1, implying that βx �= 0 while βz = 0 in (1).
This forms the alternative hypothesis in the PR tests discussed
in Section 3, where the corresponding null is that βx = 0, and, in
the context of our model, the maintained hypothesis that βz = 0,
so that yt is unpredictable under the null. However, it is also a
possibility that yt is Granger-caused only by the process {zt},
unincluded in the PR. In this case, βx = 0 and βz �= 0, thereby
violating the aforementioned maintained hypothesis, and a PR
of yt on xt−1 alone would be misspecified, regardless of whether
zt is a manifest or latent variable (see Remark 3). In the special
case where h21 = 0 and xt−1 does not enter the BLP of yt , a con-
clusion to the contrary is an instance of spurious predictability.
A final possibility is that βx �= 0 and βz �= 0 so that yt is Granger-
caused by both processes {xt} and {zt}. In this last case if zt was
an omitted manifest variable then a correctly specified PR could
be obtained by including zt−1 in the PR. If, on the other hand,
zt was a latent variable, a correctly specified BLP of yt would
include more observables (e.g., yt−1) than xt−1. We summarize
these four cases using the following taxonomy of hypotheses
within the context of DGP (1):

Hu : βx = 0, βz = 0 yt is unpredictable (in mean)

Hx : βx �= 0, βz = 0 yt is Granger-caused by {xt} alone
Hz : βx = 0, βz �= 0 yt is Granger-caused by {zt} alone
Hxz : βx �= 0, βz �= 0 yt is Granger-caused by {xt} and {zt}.

In hypothesis testing terms, standard PR tests attempt to dis-
tinguish between the null Hu and the alternative Hx. Here, we
consider the impact of the presence of zt−1 in the DGP on such
tests, that is, we investigate the behavior of PR tests ofHu against
Hx when in fact Hz or Hxz is true. In addition, we propose a test
for possible PR invalidity, where the appropriate composite null
is Hu or Hx (Hu,Hx), and the alternative Hz or Hzx (Hz,Hzx).
We end this section by stating some implications of

Assumption 1 for our asymptotic analysis. Associated
with a standard Brownian motion B = [B1,B2,B3]′ in R3,
let Bη = [Bη1,Bη2,Bη3]′ be the heteroscedastic Gaussian
motion defined by Bηi(r) := f−1/2

i

∫ r
0 di(s)dBi(s), r ∈ [0, 1],

where fi :=
∫ 1
0 di(s)

2ds, i = 1, 2, 3. We can also write

Bηi
d= Bi(ηi), i = 1, 2, 3, where ηi denotes the variance profile

ηi(r) := f−1
i

∫ r
0 di(s)

2ds, r ∈ [0, 1], such that Bηi is a time-
changed Brownian motion; see, for example, Davidson (1994,
p. 486). In particular, ηi(r) = r, r ∈ [0, 1], under unconditional
homoscedasticity. Then the following functional weak conver-
gence result holds in D3 × R

3×3, by Lemma 1 of Boswijk et al.
(2016):(

T−1/2
�Tr�∑
t=1

εt,T
−1

T∑
t=1

t−1∑
s=1

εsε
′
t

)

w→
(
Mη(r),

∫ 1

0
Mη(s)dMη(s)

′
)

, r ∈ [0, 1], (4)

where Mη := [Mηx,Mηz,Mηy]′ := HF1/2Bη for the diago-
nal matrix F := diag{ f1, f2, f3}. Let �η := {ωab}a,b∈{x,y,z} :=
var{Mη(1)} = HFH ′, which in the unconditionally homo-
scedastic case Dt = I3 reduces to

HH ′ =

⎡
⎢⎣

h211 h11h21 h11h31
h11h21 h221 + h222 h21h31 + h22h32
h11h31 h21h31 + h22h32 h231 + h232 + h233

⎤
⎥⎦

= :

⎡
⎢⎣

σxx σxz σxy

σxz σzz σzy

σxy σzy σyy

⎤
⎥⎦ =: �.

It will prove convenient to define the two Ornstein–
Uhlenbeck-type processes Mηc,u(r) :=

∫ r
0 e

(s−r)cudMηu(s)
for u = x, z and r ∈ [0, 1], along with the standardized analogs
Bηc,u(r) := ω

−1/2
uu Mηc,u(r) and their demeaned counterparts

B̄ηc,u(r) := Bηc,u(r) − ∫ 1
0 Bηc,u(s).

3. ASYMPTOTIC BEHAVIOR OF PREDICTIVE
REGRESSION TESTS

To fix ideas, as in CES, we first consider the basic PR test of
Hu againstHx, based on the t-ratio for testing βx = 0 in the fitted
linear regression

yt = α̂y + β̂xxt−1 + ε̂yt, t = 1, . . . ,T. (5)

The test statistic is given by

tu := β̂x√
s2y/

∑T
t=1(xt−1 − x̄−1)2

, β̂x :=
∑T

t=1(xt−1 − x̄−1)yt∑T
t=1(xt−1 − x̄−1)2
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and s2y := (T − 2)−1∑T
t=1 ε̂2yt , with x̄−1 := T−1∑T

t=1 xt−1.
In addition to the t-test, we also analyze a point optimal vari-

ant introduced by CY. For a known value of ρx, the (infeasible)
test statistic takes the following form:

Q := β̂x − (sxy/s2x )(ρ̂x − ρx)√
s2y{1 − (s2xy/s2ys2x )}/

∑T
t=1(xt−1 − x̄−1)2

,

where β̂x and s2y are as defined above, sxy := (T −
2)−1∑T

t=1 ε̂xt ε̂yt and s2x := (T − 2)−1∑T
t=1 ε̂2xt with ε̂xt denoting

the OLS residuals from regressing xt on a constant and xt−1,
and where ρ̂x :=

∑T
t=1(xt−1 − x̄−1)xt/

∑T
t=1(xt−1 − x̄−1)2. In

the case where sxy = 0, Q and tu coincide.
The limit distributions of tu and Q under Assumption 1 are

shown in the next theorem.

Theorem 1. For theDGP (1), (2), (3) and under Assumption 1,
the weak limits of tu and Q as T → ∞ are of the form∫ 1
0 M̄ηc,x(r)dNηy(r)√∫ 1

0 M̄ηc,x(r)2
+ gx

∫ 1
0 M̄ηc,x(r)2 + gz

∫ 1
0 M̄ηc,x(r)Mηc,z(r)√

ny
∫ 1
0 M̄ηc,x(r)2

,

(6)
where M̄ηc,x(r) := Mηc,x(r) − ∫ 1

0 Mηc,x(s)ds, r ∈ [0, 1], and
Nηy, ny are statistic-specific. Thus, for the tu statistic, Nηy :=
ω

−1/2
yy Mηy and ny := ωyy, whereas for the Q statistic, Nηy :=

ω
−1/2
y|x {Mηy − ωxyω

−1
xx Mηx} and ny := ωyy − ω2

xy/ωxx =:ωy|x.

Remark 5. Notice that the limit expressions for tu andQ in (6)
are identical when h31 = 0 (i.e., ωxy = 0). The limit expression
in (6) shows the dependence of tu and Q on gz under Hz (where
gx = 0 but gz �= 0). Consequently, even for infeasible versions
of these tests where all other nuisance parameters were known,
the use of asymptotic critical values appropriate for these tests
under Hu will not result in size-controlled procedures under
Hz and raises the possibility that spurious rejections in favor
of predictability of yt by xt−1 will be encountered when yt is
actually predictable by zt−1 (see Ferson Sarkissian, and Simin
2003a, Ferson Sarkissian, and Simin 2003a,b, and Deng 2014,
for related results under nonlocalized βz). UnderHxz, where both
gx �= 0 and gz �= 0, any rejection by tu or Q could not uniquely
be ascribed to the role of xt−1, potentially suggesting the exis-
tence of a well-specified PR that is in fact under-specified due to
the omission of zt−1. The same issues also hold for the feasible
versions of the tu and Q tests developed in CES and in CY and
Phillips (2014), respectively.

Remark 6. In the special case where cx = cz, the limit of tu in
(6) can be written as∫ 1

0 B̄ηc,x(r)dMηy(r)√
ωyy

∫ 1
0 B̄ηc,x(r)2

+ g⊥
x

(
ωxx

ωyy

)1/2
√∫ 1

0
B̄ηc,x(r)2

+ gz

(
ωz|x
ωyy

)1/2 ∫ 1
0 B̄ηc,x(r)Bηc,2(r)√∫ 1

0 B̄ηc,x(r)2
(7)

with Bηc,2(r) :=
∫ r
0 e

(s−r)czdBη2(s) for r ∈ [0, 1], ωz|x := ωzz −
ω2
xz/ωxx, and g⊥

x T
−1 := (gx + ωxzω

−1
xx gz)T

−1 representing the
coefficient of xt−1 in a redefinition of (1) where xt−1 is orthog-
onal to the unincluded persistent variable (see Remark 2 with

λ = h21h
−1
11 βz = ωxzω

−1
xx gzT

−1). Not surprisingly, therefore, tu
can be anticipated to have relatively low power to reject Hu in
favor of Hxz when the contribution of xt−1 to the variability of
yt (as measured by |g⊥

x |ω1/2
xx ω

−1/2
yy ) is low, and also the contri-

bution of zt−1 corrected for xt−1 (as measured by |gz|ω1/2
z|x ω

−1/2
yy )

is low. Additionally, the correlation between B̄ηc,x and Mηy (for
h31 �= 0) renders the leading term in (7) non-Gaussian, affecting
both the size and the power of the test. These comments also
apply to the limit of the Q statistic, except that the first term in
(7) is then standard Gaussian.

We will now proceed to investigate the extent of the size dis-
tortions that occur in the tu and Q tests when gz �= 0. Before
doing so, it should be noted that other PR tests have been pro-
posed in the literature, including the near-optimal tests of Elliott,
Müller, andWatson (2015) and Jansson andMoreira (2006); see
the useful recent summaries provided in BD and Cai, Wang, and
Wang (2015). The issues we discuss in this article are pertinent
irrespective of which particular PR test one uses, in cases where
the putative and unincluded predictors are persistent. They are
also relevant for the case where a putative PR contains multiple
predictors.

3.1 Asymptotic Size of Predictive Regression Tests
Under Hz

To obtain as transparent as possible a picture of the large-
sample size properties of tu and Q under Hz, we abstract from
any role that nonstationary volatility plays by setting di = 1,
i = 1, 2, 3.We then simulate the limit distributions using 10,000
Monte Carlo replications, approximating the Brownian motion
processes in the limiting functionals for (6) using independent
N(0, 1) random variates, with the integrals approximated by
normalized sums of 2000 steps. Critical values are obtained
by setting gx = gz = 0; for tu these depend on cx and also (it
can be shown) h231/(h

2
31 + h232 + h233) = σ 2

xy/σxxσyy, while for
Q, these depend on cx alone. These quantities are assumed
known, so we are essentially analyzing the large-sample behav-
ior of infeasible variants of tu and Q. We graph nominal 0.10-
level sizes of two-sided tests as functions of the parameter
gz = {0, 2.5, 5.0, . . . , 50.0} with gx = 0. For cx = cz = c =
{0, 10}, we set σxx = σzz = σyy = 1, and consider σxy = σzy = 0
plus σxy = −0.70 with σzy = {0,−0.70, 0.70} where σxz = 0
throughout. Setting cx = cz is not a requirement here, but simply
facilitates keeping xt and zt balanced in terms of their persistence
properties.
The results of this size simulation exercise are shown in

Figure 1. For c = 0 we observe the sizes of tu and Q growing
monotonically from the baseline 0.10 level with increasing gz,
thereby giving rise to an ever-increasing likelihood of ascribing
spurious predictive ability to xt−1. Both tests’ sizes are seen to
exceed 0.85 for gz = 50, while even a value of gz as small as
gz = 12.5 produces sizes in excess of 0.50. The size patterns
for tu and Q are also quite similar, which is as we would expect
given that gz impacts upon their limit distributions in a very sim-
ilar way. Of course, when σxy = 0, the tests have identical limits,
while for σxy = −0.7 , there is a general tendency forQ to show
slightly more pronounced over-sizing than tu (possibly reflect-
ing the relatively higher power that this test can achieve under
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Figure 1. Asymptotic rejection frequencies of S, SB (power) and tu, Q (size): gx = 0, cx = cz = c; S: – . – , SB: — , tu: − − −, Q: – –.

Hx). Size distortions appear little influenced by the value taken
by σzy. With c = 10 qualitatively, the same comments apply
here as for the case c = 0. That said, we do observe that the
over-sizing nowmanifests itself more slowly with increasing gz.
Indeed, when σzy = −0.70 some modest under-size is observed
for small values of gz. However, both sizes are still above 0.50
once gz = 50 so spurious predictability does remain a serious
issue. That the problem is less severe here simply reflects the
fact that xt−1 and zt−1 are lower (but still high) persistence
processes.
It would be difficult to argue that spurious predictive ability

is not a potentially important consideration to take into account
when employing either of the tu and Q tests to infer predictabil-
ity with high persistence processes. Although we have focused
this analysis on OLS-based PR tests, similar qualitative results
will pertain for other PR tests including the recently proposed
IV-based tests of BD whenever a high persistence IV is used. A
low persistence IV test should be less prone to over-size in the
presence of a high persistence unincluded variable zt−1, but the
price paid for employing such an IV is that when a true predictor
xt−1 is highly persistent, the IV test will have very poor power.
Basically, whenever there is scope for high persistence proper-
ties of regressors to yield good power for PR tests, we should
always remain alert to the possibility of spurious predictability.

4. A TEST FOR PREDICTIVE REGRESSION
INVALIDITY

Given the potential for standard PR tests to spuriously signal
predictability of yt by xt−1 (alone) when βz �= 0, we now con-
sider a test devised to distinguish between βz = 0 and βz �= 0.
Nonrejection by such a test would indicate that zt−1 plays no
role in predicting yt , and hence that standard PR tests based on
xt−1 are valid. Rejection, however, would indicate the presence
of an unincluded variable zt−1 in the DGP for yt , signaling the
invalidity of PR tests based on xt−1. Formally, then, we wish to
test the null hypothesis that βz = 0, that is, Hu,Hx, against the
alternative that βz �= 0, that is, Hz,Hxz, in (1).

4.1 The Test Statistic and Conventional Asymptotics

The test we develop is based on testing a null hypothesis of sta-
tionarity; specifically, we adapt the co-integration tests of Shin
(1994) and Leybourne and McCabe (1994), which are them-
selves variants of the KPSS test. We employ the statistic

S := s−2T−2
T∑
t=1

(
t∑
i=1

êi

)2

, (8)

where s2 := (T − 3)−1∑T
t=1 ê

2
t and êt are the OLS residuals

from the fitted regression

yt = α̂y + β̂xxt−1 + β̂xxt + êt, t = 1, . . . ,T, (9)

where, as in Shin (1994), the regressor xt is included in (9)
to account for the possibility of correlation between εxt and εyt
(h31 �= 0). Abstracting from the role of the regressor xt , when
βz �= 0, the residuals êt incorporate a contribution of the unin-
cluded zt−1 term in (1), hence the persistence in zt−1 is passed
to êt , and the statistic S is a test of βz = 0 against βz �= 0, reject-
ing for large values of S. Specifically, assuming cz = 0, we can
rewrite (1) as

yt = αy + βxxt−1 + rt−1 + εyt, (10)

where rt = rt−1 + ut , initialized at r0 = βzαz (on setting sz,0 = 0
with no loss of generality) with innovations ut = βzεzt . Testing
the null of βz = 0 against βz = gzT−1 in (1) is then seen to be
precisely the same problem as testing the null of V (ut ) =: σuu
= 0 against σ uu = g2zT

−2σzz in the context of (10), with gz = 0
under both nulls. If we temporarily assume that xt is strictly
exogenous and εyt and εzt are independent IID normal random
variates, then S is the locally best invariant (to αy, αx, αz, βx, and
σyy) test of the null σuu = 0 against the local alternative σuu =
g2zT

−2σzz in (10). As such, the statistic S is relevant for our test-
ing problem where we seek to distinguish between βz = 0 and
βz �= 0. In our model we do not impose cz = 0 (nor the other
temporary assumptions above), so in thesemore general circum-
stances we consider S to deliver a near locally best invariant test.
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Notwithstanding the foregoing motivation, it is important to
stress that a test based on S should properly be viewed as a mis-
specification test for the linear regression in (9). As such, a rejec-
tion by this test indicates that the fitted regression in (9) is not
a valid PR. As with the failure of any misspecification test, this
does not tell us why the regression has failed. We do know that
S delivers a test which is (approximately) locally optimal in the
direction of zt−1 being an unincluded variable (be it manifest
or latent), but a rejection does not mean that xt−1 is not a valid
predictor for yt . Therefore, our proposed test is one for the inva-
lidity of the putative PR, not of the putative predictor, xt−1; see
again the discussion on this point in Section 2.

In Theorem 2 we now detail the limiting distribution of S
under Assumption 1.

Theorem 2. For the DGP (1), (2), (3) and under
Assumption 1,

S
w→
∫ 1

0
{F (r, cx) + gzG(r, cx, cz)}2dr, (11)

where

F (r, cx) : = Bη,y|x(r) −
∫ 1

0
B̄ηc,x(s)dBη,y|x(s)

×
{∫ 1

0
B̄ηc,x(s)

2

}−1 ∫ r

0
B̄ηc,x(s),

G(r, cx, cz) : =
(

ωzz

ωy|x

)1/2 {∫ r

0
B̄ηc,z(s)

−
∫ 1
0 B̄ηc,x(s)Bηc,z(s)∫ 1

0 B̄
2
ηc,x(s)

∫ r

0
B̄ηc,x(s)

}

with ωy|x := ωyy − ω2
xy/ωxx, Bη,y|x(r) := Bη,y|x(r) − rBη,y|x(1),

r ∈ [0, 1], and Bη,y|x := ω
−1/2
y|x {Mηy − ωxyω

−1
xx Mηx} a standard-

ized heteroscedastic Brownian motion independent of B1.

Remark 7. Notice that the limit in (11) does not depend
on h31 owing to the invariance of the residuals êt to
this parameter arising from the presence of the regres-
sor xt in (9). In the special case cx = cz, the limit is
also invariant to h21 (see Remark 2). In fact, as Mηz =
ωxzω

−1
xx Mηx + ω

1/2
z|x Bη2 for ωz|x := ωzz−ω2

xz/ωxx, in this case the
equality of the decay rate in the Ornstein–Uhlenbeck pro-
cesses Mηc,x and Mηc,z ensures that Bηc,z|x := ω

−1/2
z|x {Mηc,z −

ωxzω
−1
xx Mηc,x} equals the Ornstein–Uhlenbeck process Bηc,2 so

G(r, cx, cz) reduces to

G(r, cx, cx) =
(

ωz|x
ωy|x

)1/2 {∫ r

0
B̄ηc,2(s)

−
∫ 1
0 B̄ηc,x(s)Bηc,2(s)∫ 1

0 B̄
2
ηc,x(s)

∫ r

0
B̄ηc,x(s)

}
.

The term gzG(r, cx, cz) in (11) is key in enabling the test S
to potentially distinguish betweenHu,Hx andHz,Hxz. Clearly if
ωz|x/ωy|x  0, then such a test has low power. This occurs when
εxt and εzt are highly correlated (so ωz|x 0, corresponding to
the part of zt−1 that is not shared and therefore not removed by
the regressor xt−1, on average over t), or more generally, when

εzt corrected for εxt varies little relatively to εyt corrected for
εxt . For cx �= cz the limit of S depends on h21 as G(r, cx, cx) −
G(r, cx, cz) is proportional to h21h−1

11 .

Remark 8. Under Hu,Hx, where gz = 0, the limit distribution
of S in (11) simplifies to

∫ 1
0 F (r, cx)

2 and depends only on cx and
any unconditional heteroscedasticity present in εt .

Remark 9. We have assumed thus far that the εxt are serially
uncorrelated, with et being an m.d.s. More generally we may
consider a linear process assumption for εxt of the form εxt =∑∞

i=0 θivx,t−i where vx,t is the first element of HDtet with the
standard summability and invertibility conditions

∑∞
i=0 i|θi| <

∞ and
∑∞

i=0 θizi �= 0 for all |z| ≤ 1, respectively, satisfied.
Under homoscedasticity, this would include all stationary and
invertible ARMA processes. Notice that εyt remains uncorre-
lated with the increments of xt at all lags (i.e., xt is weakly
exogenous with respect to εyt) under this structure. Here, it may
be shown that the limiting results given in Theorem 2 and in
Theorems 3–5 continue to hold provided we replace (9) in the
calculation of S with the augmented variant

yt = α̂y + β̂xxt−1 + β̂xxt +
p∑
i=1

δ̂ixt−i + êt,

t = p+ 1, . . . ,T, (12)

where p satisfies the standard rate condition that 1/p+ p3/T →
0, as T → ∞, and it is assumed that T 1/2∑∞

i=p+1 |δi| → 0,
where {δi}∞i=1 are the coefficients of the AR(∞) process obtained
by inverting theMA(∞) for εxt . Similarly to BD, we would also
need to restrict the amount of serial dependence allowed in the
conditional variances via the assumption that supi, j≥1 ‖τi j‖ <

∞, where τi j := E(ete′t ⊗ et−ie′t− j ), with ⊗ denoting the Kro-
necker product. Serial correlation of a similar form in εzt will
have no impact on our large-sample results under the null
hypothesis, Hu,Hx, although an effect does arise under Hz,Hxz.
As is standard in the PR literature, we maintain the assumption
that εyt is serially uncorrelated.

Remark 10. Extensions to the case where the putative PR
contains multiple regressors and/or more general deterministic
components can easily be handled in the context of our proposed
PR invalidity test. Specifically, denoting the deterministic com-
ponent as τ ′ft , where ft is as defined in Section 3.2 of BD, an
obvious example being the linear trend case where ft := (1, t )′,
and the vector of putative regressors as xt−1, then we would
need to correspondingly construct S using the residuals from
the regression of yt on ft , xt−1, and xt−1. Doing so would alter
the form of the limit distributions given in Theorem 2 and in
the sequel, but would not alter the primary conclusion given in
Corollary 1, that the fixed regressor wild bootstrap implemen-
tation of this test is asymptotically valid.

A consequence of the result in Theorem 2 is therefore that if
we wish to base a test for PR invalidity on S, then we need to
address the fact that under the null Hu,Hx the limit distribution
of S is not pivotal. To account for the dependence of inference on
any unconditional heteroscedasticity present, we employ a wild
bootstrap procedure based on the residuals êt . However, we also
need to account for the dependence of the limit distribution of S
on cx, and this we carry out by using the observed outcome on
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x := [x0, . . . , xT ]′ as a fixed regressor in the bootstrap procedure
which we detail next.

4.2 A Fixed Regressor Wild Bootstrap Stationarity Test

A standard approach to obtaining bootstrap critical values for
S would involve repeated generation of bootstrap samples for
the original yt , such that they mimic (in a statistical sense)
the behavior of yt with the null Hu,Hx imposed, together with
repeated generation of bootstrap samples for the original xt ,
to mimic the behavior of xt . For each bootstrap sample, these
would then be used to calculate a bootstrap analog of S, which
should reflect the behavior of S under the null. Generation
of bootstrap samples of yt with suitable properties is quite
straightforward, at least in large samples, using a standard wild
bootstrap resampling scheme from the residuals êt from (9).
However, finding bootstrap samples of xt presents a significant
problem since xt = (1 − cxT−1)xt−1 + εxt (assuming αx = 0
for simplicity) and so any corresponding recursion used to
construct bootstrap samples for xt from bootstrap samples of
ext requires, for a size-controlled test, that cx should be known
or consistently estimated. Unfortunately, it is well-known
that consistent estimation of cx is not feasible. To avoid this
problem, we circumvent estimation of cx altogether and instead
follow the approach taken in Hansen (2000), considering a
bootstrap procedure which uses x as a fixed regressor, that is,
the bootstrap statistic S∗ is calculated from the same observed
xt as was used in the construction of S itself.
We now outline the steps involved in our proposed fixed

regressor wild bootstrap.

Algorithm 1 (Fixed Regressor Wild Bootstrap):

(i) Construct the wild bootstrap innovations y∗t := êtwt ,
wherewt , t = 1, . . . ,T , is an IIDN(0, 1) sequence inde-
pendent of the data and êt are the residuals from either
(9) or (12).

(ii) Calculate the fixed regressor wild bootstrap analog of S,

S∗ := (s∗y )
−2T−2

T∑
t=1

(
t∑
i=1

ε̂∗
yi

)2

,

where (s∗y )
2 := (T − 2)−1∑T

t=1(ε̂
∗
yt )

2 and ε̂∗
yt are OLS

residuals from the fitted regression

y∗t = α̂∗
y + β̂∗

x xt−1 + ε̂∗
yt, t = 1, . . . ,T. (13)

(iii) Define the corresponding p-value as P∗
T := 1 − G∗

T (S)
with G∗

T denoting the conditional (on the original data)
cumulative distribution function (cdf) of S∗. In practice,
G∗
T is unknown, but can be approximated in the usual

way by numerical simulation.
(iv) The wild bootstrap test of Hu,Hx at level ξ rejects in

favor of Hz,Hxz if P∗
T ≤ ξ .

Remark 11. The wild bootstrap scheme used to generate y∗t
is constructed so as to replicate the pattern of heteroscedasticity
present in the original innovations; this follows because, condi-
tionally on êt , y∗t is independent over time with zero mean and
variance ê2t .

Remark 12. By definition, the residuals êt from (9) are invari-
ant to the value of βx in (1), and so we can assume that βx = 0
with no loss of generality when generating the bootstrap y∗t data.
We also do not include xt as an additional regressor (or lags
thereof in the case considered in Remark 9) in (13) because the
êt are asymptotically free of any effects arising from correlation
between εxt and εyt , or from any weak dependence in εxt .

Remark 13. Although êt depends on gz under Hz,Hxz, we
show in the next subsection that this does not translate into large-
sample dependence of S∗ on gz.

4.3 Conditional Asymptotics and Bootstrap Validity

We show that the use of xt−1 as a fixed regressor in the construc-
tion of the bootstrap statistic S∗ prevents S∗ from converging
weakly in probability to any nonrandom distribution, in con-
tradistinction to most standard bootstrap applications we are
aware of. Rather, under Assumption 1 and any of the hypothe-
ses Hu,Hx,Hz, and Hxz, the distribution of S∗, given the data,
converges weakly to the random distribution which obtains by
conditioning the limit in (11) corresponding to gz = 0, on the
weak limit B1 of the process T−1/2∑�Tr�

t=1 e1t , r ∈ [0, 1]. This
fact (along with some regularity conditions) makes it possible
to conclude that the bootstrap p-value P∗

T is asymptotically uni-
formU[0, 1]-distributed under Hu,Hx, by using a general result
on bootstrap validity from Cavaliere and Georgiev (2017, Theo-
rem 2). From a pragmatic perspective, such a conclusion ensures
that the bootstrap test is asymptotically size controlled under the
conditions of Assumption 1 alone.
However, under Assumption 1 alone, the shortcoming

remains that the meaning of the large-sample inference per-
formed by our bootstrap test is unclear. Certainly, asymptotic
bootstrap inference is not unconditional because S∗ given the
data does not converge to the unconditional limit distribution of
S. On the other hand, bootstrap inference need not be asymp-
totically equivalent to conditional inference on x either. Indeed,
it is well known that Theorem 2, where the limit distribution
of S is established, cannot be taken to imply that S conditional
on x converges weakly to the limit in (11) conditioned on B1

(the implication is falsified by, for example, Example 1 of
LePage, Podgórski, and Ryznar 1997). Nevertheless, it is not
unreasonable to expect that this result holds true under certain
additional requirements, and we prove that this is in fact the
case. We strengthen Assumption 1, so that under Hu,Hx the
distribution of the statistic S conditional on x converges weakly
to the same random distribution as S∗ given the data, which
allows us to establish that our bootstrap test in large samples
has the meaning of a test conditional on x.
The results we present differ from those given by Hansen

(2000) who considers a joint structural stability test on the con-
stant and slope parameters in a general regression setting; our
test of βz = 0 for the PR in (5) can be seen as the corresponding
individual test for stability of just the intercept. Hansen argues
that, under his Assumption 2, the fixed regressor (wild) boot-
strap asymptotically implements unconditional inference (see
Theorems 5 and 6, Hansen 2000) and that the convergence
P∗
T

w→ U[0, 1] of bootstrap p-values under the null hypothesis
follows from the equivalence of the unconditional limiting null
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distribution of the original statistic and the limiting distribu-
tion of the bootstrap statistic given the data (see Corollaries 1
and 2, Hansen 2000). The results given in this section show
that any such claim about unconditional inference is not cor-
rect, at least for the nonempty class of models satisfying both
Hansen’s and our assumptions. Nonetheless the stated conver-
gence of bootstrap p-values is correct, albeit for a different rea-
son. A fuller treatment of this specific issue is given byGeorgiev,
Harvey, Leybourne, and Taylor (2018).

Theorem 2 is based on the invariance principle given in (4).
Conditional and bootstrap analogs of that theorem can be based
on a conditional joint invariance principle for the original and
the bootstrap data. To obtain this result, we will strengthen
Assumption 1 as follows:

Assumption 2. Let Assumption 1 hold, together with the fol-
lowing conditions:

(a) et is drawn from a doubly infinite strictly stationary and
ergodic sequence {et}∞t=−∞, which is amartingale difference
w.r.t. its own past.

(b) {[e2t, e3t]}∞t=−∞ is an m.d.s. also w.r.t. X ∨ Ft , where
X and Ft are the σ -algebras generated by {e1t}∞t=−∞
and {[e2s, e3s]}ts=−∞, respectively, and X ∨ Ft denotes the
smallest σ -algebra containing both X and Ft .

(c) The initial values sx,0 and sz,0 are measurable w.r.t. X (in
particular, they could be fixed constants).

Remark 14. Arguably, the most restrictive condition in
Assumption 2 is given in part (b). A first leading example where
it is satisfied is that of a symmetric multivariate GARCHprocess
with neither leverage nor asymmetric clustering. Specifically,
let et = �

1/2
t εt , where �t is measurable with respect to the past

[ε21s, ε
2
2s, ε

2
3s]

′, s ≤ t − 1, and {εt}∞t=−∞ is an iid sequence such
thatE(εit |ε1t, ε22t, ε23t ) = 0, i = 2, 3. IfE‖et‖ < ∞, then it could
be seen that E(eit |X ∨ Ft−1) = 0, i = 2, 3. Another example is
that of a multivariate stochastic volatility process et = H1/2

t εt
with {Ht}∞t=−∞ independent of {εt}∞t=−∞ and where {εt}∞t=−∞
is an iid sequence with E(εit |ε1t ) = 0, i = 2, 3 (which is cer-
tainly true if εt is multivariate standard Gaussian, as is usually
assumed in the stochastic volatility framework). If E‖et‖ < ∞,
then again E(eit |X ∨ Ft−1) = 0, i = 2, 3. These two examples
are also the leading examples given in the univariate context by
Deo (2000), and in sec. 3 of Gonçalves and Kilian (2004). It
would be interesting, although beyond the scope of our article, to
investigate how Assumption 2(b) could be weakened to the case
where {et} could be well approximated by a sequence satisfying
Assumption 2(b). For instance, following Rubshtein (1996), the
conclusions of Theorem 5 in the supplementary appendix would
remain valid if Assumption 2(b) was replaced by the condition
that supt≥1 E{E(∑t

s=1 eis|X )}2 < ∞, i = 2, 3.

In Theorem 3, we now establish three things: first, a condi-
tional invariance principle that can be assembled from results
and ideas disseminated throughout the probabilistic literature
(see, in particular, Awad 1981; Rubshtein 1996), second, a
bootstrap extension of that result, and third, associated con-
vergence results for stochastic integrals. For simplicity, a one-
dimensional bootstrap partial-sum process is considered; it
is constructed from quantities ẽTt that we shall subsequently

specify to be the residuals êt from the regression in (9).
Analogously to the definition of x, let y := [y1, . . . , yT ]′ and
z := [z0, . . . , zT ]′.

Theorem 3. Let ẽTt (t = 1, . . . ,T ) be scalar measurable
functions of x, y, z and such that

∑�Tr�
t=1 ẽ

2
Tt

p→ ∫ r
0 m

2(s)ds for
r ∈ [0, 1], where m is a square-integrable real function on
[0, 1]. Introduce ε̃tb := wt ẽTt (t = 1, . . . ,T ), and B̃η(r) :=∫ r
0 m(s)dB̃1(s), r ∈ [0, 1], where B̃1 is a standard Brownian
motion independent of B. Under Assumption 2, the following
converge jointly as T → ∞:(

T−1/2
�Tr�∑
t=1

εt,T
−1

T∑
t=1

t−1∑
s=1

εxs[εyt, εzt]

) ∣∣∣∣x
w→
(
Mη(r),

∫ 1

0
Mηx(s)d[Mηy(s),Mηz(s)]

) ∣∣∣∣B1,

r ∈ [0, 1], in the sense of weak convergence of random mea-
sures on D3 × R

2, and(
T−1/2

�Tr�∑
t=1

[e1t, ε̃tb],T
−1

T∑
t=1

t−1∑
s=1

εxsε̃tb

) ∣∣∣∣x, y, z
w→
(
B1(r), B̃η(r),

∫ 1

0
Mηx(s)dB̃η(s)

) ∣∣∣∣B1,

r ∈ [0, 1], in the sense of weak convergence of random mea-
sures on D2 × R.

Remark 15. Let Ex(·) := E(·|x) and E∗(·) := E(·|x, y, z). The
convergence concept used in Theorem 3 is defined as follows.
Let ζ , ζT and ξ, ξT (T ∈ N) be random elements of the metric
spaces S and T , respectively, such that ζ , ξ and B1 are defined
on the same probability space, and similarly for ζT , ξT and
x, y, z. We say that ζT |x w→ ζ |B1 and ξT |x, y, z w→ ξ |B1 jointly
in the sense of weak convergence of random measures on S
and T if for all bounded continuous functions f : S → R and
g : T → R it holds that[

Ex( f (ζT )),E
∗(g(ξT ))

]′ w→ [E ( f (ζ )|B1) ,E(g(ξ )|B1)]
′

as T → ∞, in the sense of standard weak convergence of ran-
dom vectors in R2.

We are already in a position to establish in Theorem 4 the
large-sample behavior of S conditional on x, and of S∗, its boot-
strap analog from Algorithm 1, conditional on the data. These
two limiting distributions will be seen to coincide under the null
hypothesis.

Theorem 4. Under DGP (1)–(3) and Assumption 2, the fol-
lowing converge jointly as T → ∞, in the sense of weak con-
vergence of random measures on R:

S|x w→
∫ 1

0
{F (r, cx) + gzG(r, cx, cz)}2dr

∣∣∣∣B1 (14)

S∗|x, y, z w→
∫ 1

0
F (r, cx)

2dr

∣∣∣∣B1, (15)

where the processes F and G are as defined in Theorem 2.
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Remark 16. A comparison of (14) and (15) shows that the
bootstrap statistic S∗, conditional on the data, and the original
statistic S, conditional on x, converge jointly to the same ran-
dom distribution when gz = 0, that is, under the null hypothesis,
Hu,Hx. An implication of this is that the bootstrap approxima-
tion is consistent in the sense that

sup
u∈R

∣∣Px (S ≤ u) − P∗(S∗ ≤ u)
∣∣ p→ 0, (16)

given that the random cdf of
∫ 1
0 F (r, cx)

2dr|B1 is sample-path
continuous. Here Px and P∗ denote probability conditional on
x and on all the data, respectively. Thus, the distribution of the
“fixed-regressor bootstrap” statistic S∗ conditional on the data
consistently estimates the large-sample distribution of the orig-
inal statistic S conditional on the “fixed regressor” x. This result
differs from the usual formulation of bootstrap validity, where
two cdfs with a common nonrandom limit are compared; here, in
contrast, Px(S ≤ u)

w→ P(
∫ 1
0 F (r, cx)

2dr ≤ u|B1), u ∈ R, with a
nondegenerate random limit.

In Corollary 1, we formulate the conclusion of asymptotic
validity of the bootstrap test based on S and S∗ in terms of the
bootstrap p-values.

Corollary 1. Let P∗
T := P∗(S∗ > S). Under Hu,Hx and

Assumption 2, P∗
T |x w→p U[0, 1] and P∗

T
w→ U[0, 1].

An implication of Corollary 1 is that comparison of the statis-
tic S with a ξ level bootstrap critical value (approximated by
the upper tail ξ percentile from the order statistic formed from
B independent simulated bootstrap S∗ statistics, which we will
denote by cvξ,B) results in a bootstrap test with correct asymp-
totic size (ξ ) under Hu,Hx, conditionally on x and uncondition-
ally. In what follows we denote by SB the fixed regressor wild
bootstrap procedure outlined in Algorithm 1, whereby S is com-
pared to the critical value cvξ,B. The asymptotic local power of
SB under Hz,Hxz depends on the parameter gz.

Remark 17. For the bootstrap statistic, S∗, the same limiting
distribution is obtained in (15) under the alternative hypothesis,
Hz,Hxz, as under the null hypothesis. In contrast, in the case of S,
a stochastic offset, arising from the term gzG(r, cx, cz), is seen in
the limiting distributions (in (14) conditionally on x, and in (11)
unconditionally). Although, for a given alternative, the asymp-
totic local power is different for the bootstrap test based on S∗

and an (infeasible) test based on the unconditional limit of S and
knowledge of the parameter cx (the former power is a random
variable depending on B1 and the latter power is a number), we
comment in Remark 18 on some qualitative similarities.

Remark 18. The limiting functional for S in (11) and (14) is
dominated in probability (both unconditionally and condition-
ally on B1) by g2z

∫ 1
0 G(r, cx, cz)

2dr for large gz and, as a result,
asymptotic local power approaches 1 as gz diverges. Nonethe-
less, asymptotic local power is not monotone in |gz|. For exam-
ple, in the case cx = cz, the null component F (r, cx) in (11) and
(14) involves a term in h32Bη2(r), while the alternative compo-
nent gzG(r, cx, cz) involves a term in gz

∫ r
0 B̄ηc,2 (see Remark 7).

Because Bη2(r) and
∫ r
0 B̄ηc,2 are positively correlated, it can

be shown that E{∫ 1
0 F (r, cx)G(r, cx, cz)dr} �= 0 for h32 �= 0, and

similarly for the conditional expectation given B1, a.s. As a

result, when h32 �= 0, there exist values of gz (dependent onB1 in
the conditional case) which render the expectations of the limits
in (11) and (14) (respectively, unconditional and conditional on
B1), smaller than their expectations under the null hypothesis.
For such gz the limit distribution under the alternative does not
first-order stochastically dominate the limit distribution under
the null, translating into power being less than size for some
size levels.

4.4 Asymptotic Local Power of Stationarity Tests Under
Hz

We now consider the asymptotic local power of S and SB, the
latter on average over B1. We use the same set of homoscedas-
tic simulation models as for the size of tu and Q in Figure 1, so
we overlay this information on them. For the asymptotic power
of S under Hz, we use the limit expression (11), having first
obtained 0.10-level critical values from simulating (11) under
gz = 0. Since these critical values depend on knowledge of cx,
S here is an infeasible test against which to benchmark the power
of SB. The asymptotic power of SB is also based on the limit dis-
tribution of S under Hz but compared against a simulated limit
bootstrap critical value cvξ,B with ξ = 0.10. For each replica-
tion, this critical value is obtained by simulating the limit (15)
using B = 2000 replications, conditioning on the simulated B1

for that Monte Carlo replication.
When c = 0, we see the power of S rising rapidly with depar-

tures from gz = 0. For gz = 50, its power is very close to 1.
Turning attention to SB, it has a very similar power profile to
that of S; indeed, its power marginally exceeds that of S. It is
of course anticipated from Remark 17 that SB does not have the
same asymptotic local power function as S, but the fact that its
power exceeds that of S is a welcome finding as SB, unlike S, is
a feasible procedure. When c = 10 the powers of S and SB are
near identical, but at a lower level than when c = 0. There is also
a nonmonotonicity in the power profiles of S and SB, anticipated
from Remark 18, for σzy = −0.70 when gz is small, with power
dipping below size. However, for large enough gz, this anomaly
disappears. (We note that S is not LBI when we allow correla-
tion between εyt and εzt so this anomalous behavior is perhaps
not entirely surprising.)
The important comparison here is between the power of SB

(restricting attention to the feasible procedure) and the size of
tu and Q (as their size profiles are similar we only refer to tu).
When c = 0, the power of SB exceeds the size of tu, hence the
invalidity of the PR is detected with greater frequency than tu
spuriously rejects in favor of predictability of yt by xt−1. This
demonstrates the capability of SB to detect PR invalidity in cases
where the important size problems associated with tu exist. That
the power of SB exceeds the size of tu under Hz is possibly to be
expected, because S is designed to detect departures from the
null of gz = 0 whereas such departures simply represent model
misspecification in the context of the PR test tu. With c = 10, we
again see that the power of SB generally out-strips the sizes of
tu, with the size/power differences appearing even more marked
than for c = 0. Again, the only exception to this is for σzy =
−0.7 when gz is small.
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Figure 2. Finite sample rejection frequencies of SB (power) and tu, Q, IVcomb (size): T = 200, gx = 0, cx = cz = c;
SB: — , tu: - - - , Q: – – , IVcomb: · · ·

The supplementary appendix to this article contains asymp-
totic power simulation results for some additional parameter
configurations (for which many possibilities exist). We consider
the current setup with c = 5 and c = 20 and we find that the
power of SB with c = 20 is lower than for c = 10 due to a less
persistent zt−1 lessening the impact of model misspecification.
Other simulations where we allow cz to be different to cx confirm
that the main driver of power for SB is cz and not cx, as would be
expected. We also consider σxz �= 0 (with cz and cx equal or dif-
ferent; note that we reduce themagnitudes of σxy and σzy in some
cases to ensure � remains positive definite). Here the interplay
between SB and tu (Q) becomes rather more complex. For exam-
ple, with cz = cx, setting σxz = ±0.5 causes the power of SB to
suffer while the frequency with which tu rejects increases, while
for cz �= cx, only small changes are observed for σxz �= 0 com-
pared to σxz = 0.

5. FINITE SAMPLE SIZE AND POWER UNDER Hz

We now evaluate the finite sample size properties of the PR
tests and the size and power of SB. For the PR tests, we con-
sider the feasible versions of tu and Q, proposed by CES and
CY, respectively, both of which rely on Bonferroni bounds to
control size. (We are grateful to Campbell and Yogo for mak-
ing their Gauss code available for these two procedures.) We
also consider the IV-based test of BD that combines fractional
and sine function instruments, denoted IVcomb, comparing this
with its asymptotic χ2(1) critical value. For SB we use B = 499
replications.
To begin, we continue to abstract from heteroscedasticity

and consider finite sample DGPs for the same settings as used
in the main asymptotic simulations. Specifically, we simulate
the DGP (1)–(3) for T = 200 with αy = αx = αz = 0, gx =
0, sx,0 = sz,0 = 0, dit = 1 (i = 1, 2, 3), and et ∼ IIDN(0, I3) .
Figure 2 reports the finite sample analogs of Figure 1, that is,
rejection frequencies of nominal 0.10-level (two-sided for tu,Q,
and IVcomb ) tests under Hz. Simulations are again conducted

using 10,000 Monte Carlo replications. On comparing Figure 2
with its large-sample counterpart Figures 1, it is clear that our
asymptotic simulations provide a close approximation to the
finite sample rejection frequencies of tu, Q, and SB, particularly
in terms of the relative behavior of the tests, albeit in absolute
terms the finite sample rejection frequencies tend to be slightly
lower than their asymptotic counterparts. For tu and Q, this is
partly due to the feasible tests not having the same large-sample
properties as the infeasible tests. The general observations made
on the basis of the asymptotic simulations apply equally here;
finite sample size of the PR tests increases with gz, giving rise to
an increasing likelihood of concluding spurious predictive abil-
ity. As anticipated in the discussion of Section 3.1, a similar pat-
tern of rejections is found for IVcomb; its sizes are close to those
of tu and Q. As regards SB, its finite sample power increases
with gz, with the invalidity of the PR generally being detected
with greater frequency than the PR tests’ spurious rejections.
Hence, the ability of SB to detect PR invalidity in cases where
well-known PR tests suffer problematic over-size is displayed
in finite samples also.
Finally, we examine the impact of unconditional het-

eroscedasticity in the DGP on the size of SB and IVcomb when the
error processes are subject to a single break in volatility. (We do
not consider tu and Q here since these procedures are not robust
to heteroscedastic errors.) Specifically, we again simulate the
DGP (1)–(3) for T = 200 with gx = gz = 0, et ∼ IIDN(0, I3),
but setting dit = I(t ≤ �τT�) + σiI(t > �τT�) for i = 1, 3. We
set τ = {0.3, 0.7} thereby allowing for two (common) volatility
break timings, and σi = {1, 4, 1

4 } allowing for both upward and
downward volatility shifts (these magnitudes being substantial
for illustrative purposes). We consider cx = {0, 5, 10} and for
simplification abstract from time-varying correlation between
εxt and εyt by setting h21 = h31 = h32 = 0. Table 1 reports the
results for nominal 0.10-level tests (two-sided for IVcomb ). It
is clear that the size of SB is very well controlled across all the
patterns of time-varying volatility of εxt and εyt . The wild boot-
strap aspect of the bootstrap methods that we propose therefore
works well in achieving size close to the nominal level even for
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Table 1. Finite sample size of SB and IVcomb under volatility shifts: T = 200, gx = gz = 0, dit = 1(t ≤ �τT�) + σi1(t > �τT�), i = 1, 3

cx = 0 cx = 5 cx = 10

τ = 0.3 τ = 0.7 τ = 0.3 τ = 0.7 τ = 0.3 τ = 0.7

σ1 σ3 SB IVcomb SB IVcomb SB IVcomb SB IVcomb SB IVcomb SB IVcomb

1 1 0.098 0.110 0.098 0.110 0.103 0.104 0.103 0.104 0.102 0.105 0.102 0.105
4 0.101 0.109 0.101 0.112 0.106 0.107 0.105 0.111 0.105 0.108 0.107 0.110
1
4 0.102 0.112 0.098 0.104 0.104 0.105 0.099 0.105 0.104 0.106 0.102 0.105

4 1 0.100 0.109 0.102 0.113 0.103 0.107 0.104 0.112 0.104 0.108 0.104 0.113
4 0.099 0.109 0.102 0.117 0.107 0.110 0.107 0.119 0.106 0.114 0.109 0.123
1
4 0.101 0.107 0.099 0.099 0.104 0.102 0.102 0.100 0.106 0.102 0.102 0.103

1
4 1 0.102 0.114 0.099 0.111 0.102 0.108 0.105 0.107 0.104 0.109 0.110 0.106

4 0.103 0.105 0.103 0.108 0.102 0.100 0.108 0.106 0.104 0.100 0.108 0.105
1
4 0.103 0.117 0.098 0.108 0.105 0.112 0.101 0.108 0.106 0.113 0.101 0.110

the large volatility changes that we consider. (We also simulated
the finite sample size of SB under a variety of conditionally het-
eroscedastic specifications, including multivariate GARCH and
EGARCH, the latter an example of an asymmetric GARCH
process. The size of SB was found to be well controlled, with
only minor deviations from the nominal level.) The IVcomb test
also displays a good degree of robustness to heteroscedasticity,
although size can be a little inflated for some settings.
The supplementary appendix also contains results for the

same settings as above but with gz = 25 and gz = 50, that
is, power for SB and size for IVcomb, with cz = cx and addi-
tionally allowing for a volatility break in εzt via d2t = I(t ≤
�τT�) + σ2I(t > �τT�). It is clear that the presence of (uncon-
ditional) heteroscedasticity can have a substantial influence on
the level of power attainable. Other things equal, a volatility
increase in εzt (an increase in σ2) leads to higher SB power,
with a volatility decrease in εzt having the opposite effect, while
volatility changes in εyt have the reverse effect, with an increase
(decrease) in σ3 resulting in lower (higher) power for SB. Volatil-
ity changes in εxt (changes in σ1) appear to have relatively little
effect. A similar pattern of rejection frequencies is also observed
for the sizes of the IVcomb test under heteroscedasticity. In the
same caseswhere SB power is increased (decreased), so the over-
size of IVcomb increases (decreases). It appears, therefore, that
SB has attractive size and power properties in finite samples as
well as in the limit, and it is encouraging to see that for the most
part these carry over to situations where the errors are uncondi-
tionally heteroscedastic.

6. AN EMPIRICAL APPLICATION TO U.S. EQUITY
DATA

To illustrate how our proposed procedure may be used
in practice, we reconsider the results from the empirical
analysis investigating the predictability of excess returns
using the U.S. equity data reported in CY. CY consider
four different series of stock returns, dividend-price ratio,
and earnings-price ratio. The first is annual S&P 500
index data over the period 1871–2002. The other three
series are annual, quarterly, and monthly NYSE/AMEX

value-weighted index data (1926–2002). Full data descrip-
tions are provided in CY. The data can be obtained from
https://sites.google.com/site/motohiroyogo/home/research/
CY analyze the time series behavior of these data and test for

predictability in excess returns (relative to an appropriate risk
free rate), using as putative predictors for a variety of sample
windows: the dividend-price ratio, denoted d − p ; the earnings-
price ratio, denoted e− p ; the three-month T-bill rate, denoted
r3, and a measure of the long-short yield spread, denoted y− r1.
Details on the construction of these variables can be found in
CY; as is conventional, excess returns and the predictor variables
appear in logs. CY argue that all of these possible predictors
display high persistence with, inmost cases, the 95% confidence
interval for the largest autoregressive root containing unity. A
priori then, bivariate tests of predictability would seem to be at
potential risk from the spurious predictability problem.
Table 2 reports the application of a variety of statistics to

the same sets of bivariate PRs as in Table 5 of CY. Here S is
our PR invalidity statistic; KPSS is the KPSS for stationarity
of the predictor appearing in that regression; IVcomb is the PR
test of BD. The S statistic is implemented using BIC selection
for the order of p in the fitted regression (12), starting from
pmax = 12, with an appropriate degrees of freedom adjustment
made for s2y . (We have simulated this means of selection of p
across a number of different stationary ARMADGPs for εxt and
it appears to control the size of SB well.) For the KPSS statis-
tic the long run variance estimate is based on the QS kernel with
automatic bandwidth selection. For each test, a p-value is given.
For S this relates to our fixed regressor wild bootstrap test, SB
using B = 9999 replications; for KPSS it is based on the wild
bootstrap method of Cavaliere and Taylor (2005), again using
B = 9999; for IVcomb it relates to a χ2(1) distribution. Finally,
under Q, an entry of ∗ (NS) denotes that CY’s Q test rejects
(does not reject) the null of no predictability at the 0.10 level.
Notice first that the p-values for KPSS are relatively close

to zero for most of the predictors. The KPSS test is known
to reject the null of stationarity with high probability when
a series displays local-to-unit root behavior (increasingly as
the local-to-unity parameter approaches zero), so the p-value
can be viewed as an indicator of the strength of persistence in
a series (higher persistence associated with a lower p-value).
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Table 2. Application to U.S. Equity Indices

Series Obs. Predictor S p-Val. KPSS p-Val. IVcomb p-Val. Q

Panel A: S&P 1880–2002, CRSP 1926–2002

S&P 500 123 d − p 0.358 0.057 0.669 0.043 0.187 0.426 NS
e− p 1.111 0.000 0.449 0.087 1.087 0.139 ∗

Annual 77 d − p 0.081 0.658 0.572 0.077 1.383 0.083 ∗
e− p 0.522 0.008 0.465 0.116 0.988 0.162 ∗

Quarterly 305 d − p 0.531 0.017 1.201 0.007 0.474 0.319 NS
e− p 1.302 0.000 0.889 0.026 0.624 0.267 ∗

Monthly 913 d − p 1.449 0.000 2.588 0.000 − 0.423 0.337 NS
e− p 1.522 0.000 1.938 0.001 − 0.139 0.445 ∗

Panel B: S&P 1880–1994, CRSP 1926–1994

S&P 500 115 d − p 0.346 0.081 0.495 0.028 0.388 0.350 NS
e− p 1.207 0.000 0.251 0.146 1.600 0.054 ∗

Annual 69 d − p 0.100 0.611 0.390 0.062 1.593 0.055 ∗
e− p 0.803 0.002 0.272 0.222 1.206 0.114 ∗

Quarterly 273 d − p 0.894 0.001 0.753 0.009 0.451 0.327 NS
e− p 2.028 0.000 0.420 0.114 0.711 0.239 ∗

Monthly 817 d − p 1.626 0.000 1.473 0.000 − 0.598 0.276 NS
e− p 2.434 0.000 0.839 0.021 − 0.164 0.435 ∗

Panel C: CRSP 1952–2002

Annual 51 d − p 0.368 0.051 0.351 0.210 1.286 0.099 NS
e− p 0.058 0.675 0.244 0.270 0.979 0.163 NS
r3 0.071 0.726 0.269 0.151 − 1.391 0.082 NS

y− r1 0.085 0.657 0.626 0.014 0.472 0.381 NS
Quarterly 204 d − p 0.518 0.017 0.645 0.062 1.128 0.129 NS

e− p 1.511 0.000 0.550 0.064 0.764 0.223 NS
r3 0.071 0.659 0.585 0.017 − 2.661 0.004 ∗

y− r1 0.235 0.146 0.855 0.003 0.946 0.172 ∗
Monthly 612 d − p 0.345 0.073 1.449 0.004 0.550 0.290 NS

e− p 1.729 0.000 1.264 0.004 0.363 0.358 NS
r3 0.091 0.535 1.296 0.000 − 3.439 0.000 ∗

y− r1 0.422 0.028 1.373 0.000 1.856 0.032 ∗
NOTES: Returns are for the annual S&P 500 index and the annual, quarterly, and monthly CRSP value-weighted index. The predictor variables are the log dividend-price ratio d − p, the
log earnings-price ratio e− p, the three-month T-bill rate r3, and the long-short yield spread y− r1. In the column headed Q, ∗ (NS) indicates those cases where the Q test of Campbell
and Yogo (2006) rejects (does not reject) the null hypothesis of no predictability at the 10% level. The columns headed p-val. indicate the p-values of the tests in the preceding column
calculated as detailed in the main text.

We conclude that, in accordance with the findings of CY and
BD, these possible predictors all display (to differing degrees)
strongly persistent behavior. The least persistent appears to be
the annual log earnings-price ratio, e− p, regardless of which
sample window is considered. Interestingly, while CY suggest
that r3 and y− r1 are the least persistent variables, we find
small p-values for these series in almost every case, suggesting
they are strongly persistent.
For both the full sample results in Panel A and the sub-sample

considered in Panel B, the Q test delivers rejections at the 0.10
level in the case of e− p, for all four of the data series con-
sidered. The Q test also rejects at the 0.10 level for d − p, but
only for annual data. The IVcomb test also generally rejects with
annual data. These results, when taken at face value, signal sig-
nificant predictability of excess returns by e− p in particular,
but also by d − pwith annual data. However, in the case of e− p
any such conclusions of predictability are immediately thrown
into serious question once we observe that SB also rejects very
strongly in all these cases, suggesting that such a PR model

is potentially spurious, or at the very least, under-specified by
some unincluded persistent process. Interestingly, in the annual
data the SB test for d − p is highly insignificant in both Panels
A and B suggesting no evidence that the significant outcome of
the Q test is spurious here. So although the evidence from the Q
tests alone suggests that e− p has predictive power for excess
returns with a less consistent body of evidence of predictability
from d − p, a consideration of the Q tests in tandem with SB
suggests that the stronger evidence for genuine predictability
may well lie with d − p ; indeed the results are not inconsistent
with d − p being an omitted manifest persistent predictor when
testing for predictability from e− p.
Turning to the results in Panel C, the Q test is seen to be

significant at the 0.10 level only for r3 and y− r1 for quarterly
and monthly, but not annual, data. Among these cases, only
y− r1 for monthly data is flagged up as potentially spurious by
SB. Consequently, with this exception, the rejections delivered
by Q in Panel C do not appear problematic when judged by
our PR validity test. For the IVcomb test in Panel C, significant
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predictability at the 0.10 level is again (as with Q) signaled for
monthly r3 and monthly y− r1, but also signaled for annual
d − p and both annual and quarterly r3. The results for SB
again suggest that most of these rejections do not appear to be
obviously problematic, although SB does reject at roughly the
0.05 level for annual d − p.

7. CONCLUSIONS

In this article, we have examined the issue of spurious pre-
dictability that can potentially arise with recently proposed tests
for predictability. We have shown that the outcomes from these
tests have considerable potential to spuriously signal that a
putative predictor is a genuine predictor whenever unincluded
persistent (manifest and/or latent) variables are present in the
underlying data generation process. To guard against this possi-
bility, we have proposed a diagnostic test for such PR invalidity
based on a well-known stationarity testing approach. To again
allow for an unknown degree of persistence in the putative (and
latent) predictors, and to allow for both conditional and uncon-
ditional heteroscedasticity in the data, a fixed regressor wild
bootstrap test procedure was proposed and its asymptotic valid-
ity established. Doing so required us to establish some novel
asymptotic results pertaining to the use of the fixed regressor
bootstrap with nonstationary regressors, which are likely to have
important applications beyond the present context. Monte Carlo
simulations were reported which suggested that our proposed
methods work well in practice. A reconsideration of the empir-
ical study of the predictability of U.S. stock returns reported in
CY highlighted the potential value of our procedure in practice.
We have proposed what we believe to be the first serious diag-

nostic testing exercise in the context of fitted PRs, suggesting
within-sample misspecification tests directed to have power to
detect the presence of persistent variables in the underlyingDGP
but not included in the PR. We hope that this article encourages
further research in this area, developing additional within- and
out-of-sample diagnostic procedures for PRs.

SUPPLEMENTARY MATERIALS

This supplement contains the additional Monte Carlo simula-
tion results described in sections 4.4 and 5, together with math-
ematical proofs for the large sample results given in sections 3
and 4 of the article.
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