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ABSTRACT KEYWORDS

This article considers estimation of Panel Vector Autoregressive Models of Bias correction; dynamic
order 1 (PVAR(1)) with focus on fixed T consistent estimation methods in panel data; fixed T
First Differences (FD) with additional strictly exogenous regressors. Additional consistency; maximum
results for the Panel FD ordinary least squares (OLS) estimator and the FDLS likelihood; Monte Carlo
type estimator of Han and Phillips (2010) are provided. Furthermore, we sim- simulation

plify the analysis of Binder et al. (2005) by providing additional analytical JEL CLASSIFICATION
results and extend the original model by taking into account possible cross- C13;C33

sectional heteroscedasticity and presence of strictly exogenous regressors.

We show that in the three wave panel the log-likelihood function of the

unrestricted Transformed Maximum Likelihood (TML) estimator might violate

the global identification assumption. The finite-sample performance of the

analyzed methods is investigated in a Monte Carlo study.

1. Introduction

When the feedback and interdependency between dependent variables and covariates is of particular
interest, multivariate dynamic panel data models might arise as a natural modeling strategy. For example,
particular policy measures can be seen as a response to the past evolution of the target quantity, meaning
that the reduced form of two variables can be modeled by means of a Panel Vector Autoregressive Models
(VAR) (PVAR) model. In this article, we aim at providing a thorough analysis of the performance of fixed
T consistent estimation techniques for PVAR model of order 1 (PVARX(1)) based on observations in first
differences. We mainly focus on situations when the number of time periods is assumed to be relatively
small, while the number of cross-section units is large.

The estimation of univariate dynamic panel data models and the incidental parameter problem of the
maximum likelihood (ML) estimators have received a lot of attention in the last three decades, see Nickell
(1981) and Kiviet (1995) among others. However, a similar analysis for multivariate panel data models
was not covered and investigated in detail. Main exceptions are articles by Holtz-Eakin et al. (1988),
Hahn and Kuersteiner (2002), Binder et al. (2005, hereafter BHP), and Hayakawa (2015) presenting
theoretical results for linear PVAR models. For empirical examples of PVAR models for microeconomic
panels, see Arellano (2003b, pp. 116-120), Michaud and van Soest (2008), Ericsson and Irandoust (2004),
and Koutsomanoli-Filippaki and Mamatzakis (2009), among others.

Because of the inconsistency of the Fixed Effects (FE, ML) estimator, the estimation of Dynamic
Panel Data (DPD) models has been mainly concentrated within the generalized method of moments
(GMM) framework, with the version of the Arellano and Bond (1991) estimator and estimators of
Arellano and Bover (1995), Blundell and Bond (1998), and Ahn and Schmidt (1995, 1997). However,
Monte Carlo studies have revealed that the method of moments (MM)-based estimators might be subject
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to substantial finite-sample biases, see Kiviet (1995), Alonso-Borrego and Arellano (1999), and BHP.
These potentially unattractive finite sample properties of the GMM estimators have led to the recent
interest in likelihood-based methods, that are not subject to the incidental parameter bias. In this article,
the ML estimator based on the likelihood function of the first differences of Hsiao et al. (2002), BHP, and
Kruiniger (2008) is analyzed (hereafter TML).

Monte Carlo results presented in BHP suggest that the Transformed Maximum Likelihood (TML)-
based estimation procedure outperforms the GMM based methods in terms of both finite sample bias
and root mean square error (RMSE). However, their analysis is incomplete because particularly they did
not consider cases where the models are stable but the initial condition is not mean and/or covariance
stationary. Furthermore, the Monte Carlo analysis was limited to situations where error terms are
homoscedastic both in time and in the cross-section dimension, leaving relevant cases of heteroscedastic
error terms unaddressed. We address both issues in the Monte Carlo designs presented in Section 5.

We aim to contribute to the literature in multiple ways. First of all, we show that the multivariate
analogue of the First Difference Least Squares (FDLS) estimator of Han and Phillips (2010) is consistent
only over a restricted parameter set. Secondly, we consider properties of the TML estimator for models
with cross-sectional heteroscedasticity and mean nonstationarity. Furthermore, we show that in the
three wave panel the log-likelihood function of the unrestricted TML estimator can violate the global
identification condition. Finally, the extensive Monte Carlo study expands the finite sample results
available in the literature to cases with possible nonstationary initial conditions and cross-sectional
heteroscedasticity.

The article is structured as follows. In Section 2 we present the model and underlying assumptions.
Theoretical results for the panel first difference (FD) estimator are presented in Sections 3. We continue
in Section 4 discussing the properties of the TML estimator under different assumptions regarding
stationarity and heteroscedasticity. In Section 5 we analyze finite sample performance of estimators
considered in the article by means of a Monte Carlo analysis. Finally, we conclude in Section 6.

Here we briefly discuss notation. Bold upper-case Greek letters are used to denote the original
parameters, i.e., {®, X, ¥}, while the lower-case Greek letters {¢, 0, ¥} denote vec(:) (vech(:) for
symmetric matrices) of corresponding parameters, in the univariate setup corresponding parameters
are denoted by {¢,52, 1r*}. Where necessary, we use subscript 0 to denote the true values of the
aforementioned quantities. We use p(A) to denote the spectral radius! of a matrix A € R"*". The
commutation matrix K, is defined such that for any [a x b] matrix A, vec(A’) = K,pvec(A).
The duplication matrix Dy, is defined such that for symmetric [a X a] matrix vecA = Dyvech A.
We define y;,_ = (1/7T) Zthl ;1 and similarly y; = (1/T) Zthl ;- The lag-operator matrix L is
defined such that for any [T x 1] vector x = (x1,...,x7), L7x = (0,1, ...,xr—1) . The jth column of the
[x x x] identity matrix is denoted by e;. X is used to indicate variables after Within Group transformation
(for example, y;, = y;, — y;), while ¥ is used for variables after a “quasi-averaging” transformation.? For
further details regarding the notation used in this article, see Abadir and Magnus (2002).

2. The model and assumption

In this article, we consider the PVAR(1) specification
Vie =0+ Py, | +€ir i=1,...,N, t=1,...,T, (2.1

where ¥isisan [m x 1] vector, ® is an [m x m] matrix of parameters to be estimated, #; is an [m x 1]
vector of fixed effects, and e;; is an [m Xx 1] vector of innovations independent across i, with zero mean
and constant covariance matrix X.3 If we set m = 1, the model reduces to the linear DPD model with
AR(1) dynamics.

;‘;')(A) = max;(|)»i|)!.wherg Aj's are (possibly complex) eigenvalues of a matrix A.
Vi =¥i —yioandy,_ =y —yjo-
3Later in the article, we present the detailed analysis when X is i specific.
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For a prototypical example of (2.1) consider the following bivariate model; see, e.g., Bun and Kiviet
(2006), Akashi and Kunitomo (2012), and Hsiao and Zhou (2015):

Vit = Myi + VYit—1 + BXit + Ui,
Xit = Nxi + QYit—1 + pXir—1 + Vi,

where E[u;v;;] = 0,y. This system has the reduced form

()’i,t) _ (ﬁyi + ﬁ'?xi) n ()/ + B9 ﬁp) <)’i,t—1> " (“i,t + ,BVi,t) (2.2)
Xit Nxi (] Jo Xif—1 Vit ' ’

Depending on the parameter values, the process {x,-,t}tT= o can be either exogenous (¢ = oy, = 0), weakly
exogenous (o, = 0), or endogenous (o, # 0).

For many empirically relevant applications, the PVAR(1) model specification might be too restrictive
and incomplete. The original model then can be extended by including strictly exogenous variables (the
PVARX(1) model)

yl’)[ = ni‘i“l)yi)[_] +Bxi,t+€i,t, l= 1,...,N, t= 1,...,T, (23)

where x;; is a [k x 1] vector of strictly exogenous regressors and B is an [m x k] parameter matrix.?
Furthermore, some models with group specific spatial dependence, as in, e.g., Kripfganz (2015) and
Verdier (2015), can be also formulated as a reduced form PVARX(1).

2.1. Assumptions and definitions
At first we define several notions that are primarily used for the model without exogenous regressors.
Definition 1 (Effect stationary initial condition). The initial condition y; , is said to be effect stationary
if

Ely;olnil = (In — ®0) "', (2.4)
implying that the process {}’i,t}tho generated by (2.1) is effect stationary, E[y;,|n;] = Ely;,In;], for
p(®o) < 1.

Note that effect nonstationarity does not imply that the process {)’i,t}th o is mean nonstationary, i.e.,
Ely; ;] # Ely;ol- The latter property of the process crucially depends on E[#;].

Definition 2 (Covariance stationary initial condition). The initial condition y; , is said to be covariance
stationary if

o0
Ely,olmil = (In — ®0) 'n;,  varlygln] =Y @4To(®)),
t=0

implying that the process {J’i,t}tho generated by (2.1) is covariance stationary, i.e., the autocovariance
function of {yi,t}tT=0 is not time dependent.
Definition 3 (Common dynamics). The individual heterogeneity 5; is said to satisfy the “common

dynamics” assumption if

N, = Im— Po)u;. (2.5)

“Note that the model considered in Han and Phillips (2010) substantially differs from (2.3). They consider a model specification
with lags of x;j¢ and restricted parameters. Their specification can be accommodated within (2.3) only if the so-called
common factor restrictions on B are imposed.



ECONOMETRIC REVIEWS (&) 653

Under the common dynamics assumption, individual heterogeneity drops from the model in the pure
unit root case ®¢ = I,,,. Without this assumption the process { yi,t}th o has a discontinuity at I, as at this
point the unrestricted process is a Multivariate Random Walk with drift. Combination of two notions
results in E[y; o|#;] = p;, note that this term is well defined for p(®¢) = 1.

Definition 4 (Extensibility). The data generating process (DGP) satisfies extensibility condition if
9Ty = (BoZo)".

We call this condition “Extensibility” as in some case this condition is sufficient to extend univariate
conclusions to general m > 1 situations. One of the important implications of this condition is that

oo
Y B To(®h) = (I — ¥ ' o = ToUm — ¥5) .
t=0

As a referee of this journal rightly pointed out, this condition is highly restrictive and uncommon in the

literature, but as we will see from theoretical point of view this condition can be of a particular interest.

At first we summarize the assumptions regarding the DGP used in this article, that are similar to those

made by Hsiao et al. (2002) and Binder et al. (2005).

(A.1) Thedisturbances€;;,t < T, are independent and identically distributed (i.i.d.) for all i with finite
fourth moment, with E[e;;] = 0,, and E[si,te‘;’s] = 1(s=1) X0, X being a positive definite (p.d.)
matrix.

(A.2) The initial deviation u;p = y;, — p; is i.i.d. across cross-sectional units, with E[u;] = 0,, with
variance ¥, ¢ and a finite fourth moment.

(A.3) Foralliandt =1,..., T, the moment restrictions E[ui,oeg’t] = O,, are satisfied.
(A.4) N — oo, but T is fixed.
(A.5) Regressors (if present) x; are strictly exogenous E[x,-,seg’t] = Opxm» Y, s = 1,. .., T with a finite

fourth moment.

(A.6) Matrix ®; € R"™*™ satisfies p(®g) < 1.

(A.6)* Denote by k a [p x 1] vector of unknown coefficients. ¥ € I', where I is a compact subset of R?
and K € interior(T).

We denote the set of Assumptions (A.1)-(A.6) by SA and by SA* set when in addition the (A.6)*
assumption is satisfied. SA assumptions are used to establish results for the Panel FD estimators,
while SA* are used to study asymptotic properties of the TML estimator. Assumption (A.6) is needed
to ensure that the Hessian of the TML estimator has a full rank® in the model without regressors.
On the other hand, in Assumption (A.6)* we implicitly extend the parameter space for ® to satisfy
the usual compactness assumption so that both consistency and asymptotic normality can be proved
directly, assuming the model is globally identified over the parameter space. However, as we show
in Section 4.2.4, the extended parameter space (beyond stationary region) might violate the global
identification condition. As for now the dimension of k¥ (“p”) is left unspecified and depends on a
particular parametrization used for estimation (with/without exogenous regressors, with/without mean
term, etc.). In Section 4.2.2, we consider the situation where we allow for individual specific ¥, ¢ and
¥ matrices.

Note that Assumption (A.2) does not impose any restrictions on y; ; and u; directly, but instead on the
initial deviation u; ¢ (that in principle can be linear or nonlinear function of ;). However, it is important
to note that all estimators in first differences remain invariant to the distributional characteristics of p;
only if

Yio = K +uip

5See, e.g., Bond etal. (2005), Ahn and Thomas (2006) and Juodis (2014a) for proofs that the Hessian matrix of the TML estimator
is singular at the unit root in Panel AR(1) and Panel VAR(1) models, respectively.



654 A.JUODIS

with the idiosyncratic component u;¢ independent of ;. As emphasized in Hsiao et al. (2002) and
Hayakawa and Pesaran (2012), in this case u; can be spatially correlated and/or depend on &;;,t =
1,..., T without affecting the distribution of the estimator in FDs. Later in the article, we discuss
situations when this restriction might be violated and the consequences for the properties of the TML
estimator.

3. Ordinary Least Squares (OLS) in first differences

Original model in levels contains individuals effects that we remove using the FD transformation. In that
case the model specification is given by

Ayi)t = (I’Ayi,t_l +BAxi,t+A€i,t, i= 1,...,N, t= 2,...,T.

Before proceeding, we define the following variables:

N T
Ay, 1
Awip = ( A;fi’tl ) ,  Sy= (N 21: tz; Aw,-,tAw;,t> ,
i= =
Ty =plimy Sy, Y =(®,B).

After pooling observations for all t and 7, we define the pooled panel FD estimator (FDOLS) as

N T

=/ (1

Y = SN (N Z Z AWi,tAy;)t> . (31)
i=1 t=1

Similarly to the conventional FE transformation, the FD transformation introduces correlation between

the explanatory variable Ay;, ; and the modified error term Ae;;. As a result this estimator is
inconsistent,® with the asymptotic bias derived in Proposition 3.1.

Proposition 3.1. Let {y;,}]_, be generated by (2.3) and Assumptions SA be satisfied. Then

. < L =
plimy_, (¥ — Yp) = —(T — DX} <0k 0 ) ) (3.2)
Xm

It is easy to see that FDOLS is numerically equal to the FE estimator with T = 2, and thus the
asymptotic bias is identical as well. Furthermore, as long as T > 2 the bias correction approaches as in
Kiviet (1995) and Bun and Carree (2005) are readily available for this estimator (for more details, please
refer to Appendix B). However, the consistency and asymptotic normality of any estimator based on
iterative procedure crucially depends on existence of the unique fixed point. As a result, similarly to the
estimator of Bun and Carree (2005), this estimator might fail to converge for some DGP specifications.
These issues stimulate us to look for other analytical bias-correction procedures that have desirable finite
sample properties irrespective of the DGP parameter values and initialization y; ;. Some special cases for
the model without exogenous regressors are discussed in the next section.

3.1. No exogenous regressors

In the model without exogenous regressors the FDOLS estimator is given by

LN LN -1
P = (K] ZZAyi,tAy;,tl) (K] ZZAYi,tlAJ’;',t1> : (3.3)

i=1 t=1 i=1 t=1

Slrrespective whether T = fixed or T — oo.
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Assume that y, , is covariance stationary and as a consequence

o0
Yw=(T—-1) (Eo + Iy — o) <Z ‘1’6):0(‘?6)/) Im — <I’o)/> .
t=0
In the univariate case it is well known that covariance stationarity of y; ¢ is a sufficient condition to obtain
an analytical bias-corrected estimator. However, it is no longer sufficient for m > 1 and general matrices
®( and X. One special case for analytical bias-corrected estimator is obtained for (®¢, X) that satisfy
the “extensibility” condition, so that

Sw=2T—1D)Eo (In+ @) .
The resulting fixed T consistent estimator for ® is then given by
®rprs = 2@ + L. (3.4)

It can be similarly shown that this estimator is also fixed T consistent if ®, = I,, and the common
dynamics assumption is satisfied. For m = 1, this estimator was analyzed by Han and Phillips (2010),
who labeled it the First Difference Least-Squares (FDLS) estimator, and proved its consistency and
asymptotic normality under various assumptions. It should be noted that the same estimator (or the
moment conditions it is based on) has been studied earlier in the DPD literature, see Bond et al. (2005),
Ramalho (2005), Hayakawa (2007), and Kruiniger (2007).

Proposition 3.2 (Asymptotic Normality FDLS). Let DGP for covariance stationary y; , satisfy extensibility
condition together with conditions of Proposition 3.1. Then

VN (&FDLS - ‘/’o) 4, N (02,8, (3.5)

where
LN
3= (E;Vl ® Im)f{(E;VI ®Ip), X= thN—moN E vec 9; (vec ;)

i=1

T
Oi= (Z(szi,t + U — <I>0)Ayi,t—l)Ay;,t—l> .

t=2

Proof of Proposition 3.2 follows directly as an application of the standard Lindeberg-Lévy Central
Limit Theorem (CLT) (see, e.g., White (2000) for a general reference on asymptotic results).

Note that if the extensibility condition is violated the multivariate analogue of the FDLS estimator is
not fixed T consistent. In that case, the moment conditions similar to Han and Phillips (2010) can be
considered. However, for general ®( and X matrices these moment conditions are nonlinear in ¢ and
require numerical optimization, making this approach undesirable, because the closed-form estimator
is the main advantage of FDLS estimator as compared to the TML estimator that we describe in the next
section.

4. Transformed MLE
4.1. The log-likelihood function for PVARX(1)

Independently, Hsiao et al. (2002) and Kruiniger (2002)” suggested to build the quasi-likelihood for a
transformation of the original data, such that after the transformation the likelihood function is free
from incidental parameters. In particular, the likelihood function for the first differences was analyzed.

7Later appeared in Kruiniger (2008).
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BHP extended the univariate analysis of Hsiao et al. (2002) and Kruiniger (2002) to the multivariate case,
allowing for possible cointegration between endogenous regressors.

In order to estimate (2.3) using the TML estimator of BHP, we need to fully describe the density
function f(Ay;|AX;). The only thing that needs to be specified and not imposed directly by (2.3)
is E[Ay;|AX;], where AX; is a [Tk x 1] vector of stacked exogenous variables. Conditional mean
assumption is actually stronger than necessary for consistency and asymptotic normality of the TML
estimator, so we follow the approach of Hsiao et al. (2002) and consider the following linear projection
for the first observation:

ProjlAy; | |AX{] = y + G AX; = BAx;; + GAX], AX! = (1,AX)), (TX.D)

with the projection error denoted by v; ;. For the resulting TML estimator to be consistent and standard
inference procedures to be applicable, population projection coeflicients have to be identical for all cross-
sectional units. This requirement can be violated if u; is individual specific function of u; (or u;p is a
function of u; and p; is deterministic).

Remark 4.1. Note that Ax; is still an element of AX}L. Thus the corresponding parameter for Ax;;
in G is defined as Gax;, = Grax;; — B. Finally, it is important to note in general the true value of
GAxi,l # Omxk‘

Before proceeding, we define
AE; = (It — LT ® ®)AY; — (It ® B)AX; — vec(GAX]¢)),

where AY; = vec(Ay;,..., Ay, r). Then assuming (conditional) joint normality of the error terms
and the initial observation, the log-likelihood function (up to a constant) is of the form

N N 1 &
—1
00 === log|Zaz| — Etr<():AT) N ; AE,AE;), (4.1)

with k = (¢',0',¥',vecB,vecG) and ¥ = E[v,-,lv;)l]. The ¥ A, matrix has a block tridiagonal
structure, with —X on lower and upper first off-diagonal blocks, and 2¥ on all but first (1,1) diagonal
blocks. The first (1,1) block is set to ¥, which takes into account the fact that the variance of v;  is treated
as a free parameter.

Remark 4.2. Note that the results for the TML estimator derived in this article do not require normality
assumption. If normality assumption is violated, £ (k) is a (quasi) log-likelihood function. For brevity, we
use the term log-likelihood rather than quasi log-likelihood even if the normality assumption is violated.
In its general form, the asymptotic variance-covariance matrix of the estimator has a “sandwich” form.
This “sandwich” form allows for /N consistent inference, when the normality assumption is violated.

Remark 4.3. As it is discussed in BHP, the log-likelihood function in (4.1) depends on a fixed number
of parameters and satisfies the usual regularity conditions. Therefore, under SA* the maximizer of this
(quasi) log-likelihood function is consistent with limiting normal distribution as N — co. Consistency
is derived assuming that the log-likelihood function has a unique global maximum at the true value .
Note that for this log-likelihood function consistency of the resulting estimator cannot be proved based
on zeros of the gradient vector, as in general more than one solution will solve the First Order Conditions
(FOC). Section 4.2.4 contains some details for AR(1) on this issue, while the follow-up article of Bun et al.
(2015) provides more detailed analysis for the ARX(1) model.

Next we show that conditioning (projecting) on exogenous variables in first differences leads to
concentrated log-likelihood functions in ¢ only.
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Theorem 4.1. Let Assumptions SA* and (TX.D) be satisfied. Then the log-likelihood function of BHP for
model (2.3) can be rewritten

N T
N 1 N 3 L 3 i
e == <(T —Dlog|Z|+ tr<2 IN DO G — 5y, — BR)Gy — B, — Bxf,t)’>)

i=1 t=1
N T
-5 <log O] + tr(@)—lN Z(j;,. — GAX] — ®y,_ — B%)(J; — GAX] — ®y,_ — B&é,)’)) ,
i=1

where k = (¢’,a’,0/,vecB’,Vec G’)/, O=X+T(¥—X)andx; = x; — xip.
Proof. In Appendix A.2. O

The main conclusion of Theorem 4.1 is that in the case where W is unrestricted, both the score and
the Hessian matrix of the log-likelihood function have closed form expressions, that are easy to use. That
implies that there is no need to use involved algorithms of BHP in order to compute the inverse and the
determinant of the block tridiagonal matrix X .

In order to simplify the notation, we introduce a new variable,

&,(k) =y, — GAX| — ®y,_ — Bi;. (4.2)
Using this definition,® we can formulate the following result.

Proposition 4.1. Let Assumptions SA* be satisfied. Then the score vector associated with the log-likelihood
function of Theorem 4.1 is given by’

vec <271 S Y Gie — ®Fiy — BEF +TOT Y 51‘(")5’;7)
D) vec(Y (Z71Znk) — (T - DE)T))
V(i) = D, vec(5(@7 ' (My(x) — ©)07")) . (43)
vec (E_l Zfil ZtT=1(5’i,z — ®y;, | — Bxi)x;, + 70! Zfil Ei(’c)&;)
vec (T@_1 >N Ei(lc)AX:r/)
Furthermore, the score vector satisfies the usual regularity condition

E[V (k)] = 0.
Proof. In Appendix A.2.

The dimension of the k& vector is substantial especially for moderate values of m and k, and hence
from a numerical point of view, maximization with respect to all parameters might not be appealing.
Next we show that it is possible to construct the concentrated log-likelihood function with respect to
the ¢ parameter only.!? To simplify further notation, we define the following concentrated variables
(assuming N > Tk):

N N -1
5=, (zyiu:) (z Ax:Ax:) AX,
i=1

i=1

8Some other variables used in this section are defined in Appendix A.2, so we do not repeat it here.
9See also similar derivations in Mutl (2009).
9The key observation for this result is that, although B parameter enters both tr(-) components, ¥; belongs to the column

space spanned by AX,T. Hence after concentrating out G, B is no longer present in the second term.
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Using the newly defined variables, the concentrated log-likelihood function for k¢ = {¢’,0”,0'}’ is given
by

i=1 t=1

N T &
ey <10g |®| + tr<®_lﬁ Z(j’i —®y, )y, — ‘I’j’i_)/>) .

i=1

N T
N 1 ) , . . /
(k) = Y <(T — Dlog|X| + tr<Z_IK] Z Z(yi,t =@y D0 — ®yir ) ))

Continuing, we can concentrate out both ¥ and @ to obtain the concentrated log-likelihood function
for the ¢ parameter vector only:

N T
N(T —1) 1 , , , ,
5 mJNG_DEZXm@—¢onm—¢nHY

i=1 t=1

e(p) = —

— Elog

T N
N 20— 250G, — 25|
i=1

However, as there is no closed-form solution for @, numerical routines should be used to maximize this
concentrated likelihood function.!! The corresponding FOC can be derived from Proposition 4.1 for
the unrestricted model.

Remark 4.4. Thelog-likelihood function in Theorem 4.1 can be expressed in terms of the log-likelihood
function for observations in levels £; (i) (“within group” part), as

e = 6@ — 2 (logl@] + 1 @—lzﬁf;()&()’
k) = (&) — — | log r N (10 (k ,

i=1
where & = (¢', 0, vec B')'. The additional (“Between” group) term corrects for the fixed T inconsistency

of the standard ML (FE) estimator. This result is just a generalization of Kruiniger (2006, 2008) and Han
and Phillips (2013) conclusions to PVARX(1) with respect to the functional form of £(x).!2

Remark 4.5. In the online appendix, Juodis (2014b), we derive the exact expression for the empirical
Hessian matrix Y (£ rar) and show that this matrix as well as its inverse are not block-diagonal and

hence the TMLE of ® and ¥ (as well as ©) are not asymptotically independent.!* Non-block-diagonality

"For PVAR(1) model with spatial dependence of autoregressive type as in Mutl (2009), both ® and X parameters can be
concentrated out but not the spatial dependence parameter A.

12Grassetti (2011) also discusses similar decomposition of the log-likelihood function for panel ARX(1) model.

13This result is in sharp contrast to the pure time series VAR's where it can be shown that estimates are indeed asymptotically
independent.
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of the covariance matrix needs to be taken into account, e.g., for the impulse response analysis as in Cao
and Sun (2011).

Remark 4.6. As a referee of this article points out, in general, for a fixed T the estimator based on
First Differences (TMLE) is dominated in terms of efficiency compared by the estimator based on the
likelihood function in levels (conditional on y;, see, e.g., Alvarez and Arellano, 2003, and Kruiniger,
2013). However, the estimator in levels requires separate distributional assumptions on y; , and u;, unlike
the TML estimator that imposes i.i.d. assumption on y; , — p; only.

4.2. PVAR(1)/AR(1) specific results

In this section, we investigate specific results of the TML estimator when the model does not include
additional strictly exogenous regressors. In this case, the quasi log-likelihood function can be simplified
and written as

N

T
N 1 - - - - ,
L) = -5 ((T —Dlog|X| + tr(Z IK] Z Z(J’i,t =@y, D — ®Yis1) ))

i=1 t=1

N T
- <log |®| + tr<®lﬁ > G — 5,0, - <1>5),._)’>) , (4.4)

i=1

where k = (¢',07, 0/)/, ©® =X+ T(¥ - X),and ¥ = varAy, ;. Model without exogenous regressors
was considered in BHP for TML estimator and in Alvarez and Arellano (2003) for the model in levels. In
Section 4.2.1, we provide results when covariance-stationarity assumption is imposed on ¥. Note that in
this specification we assume that E[u;o] = 0,, hold, and later in Section 4.2.3 we investigate properties
of the maximizer (4.4) when this assumption is violated. Possible problems with respect to bimodality
of the log-likelihood function in the AR(1) context are discussed in Section 4.2.4.

4.2.1. Likelihood function with imposed covariance-stationarity

If one is willing to strengthen some of the original assumptions by assuming that #;y comes from the
(covariance) stationary distribution, then the log-likelihood function is a function of k” = {¢, ¢} only.
The ® matrix in this case is no longer treated as a free parameter but instead is restricted to be of the
following form:

oo
O=X+TU,—®) (Z <1>f):(<1>f)’) I, — ®).

t=0
Note that if one imposes covariance stationarity of u;p, it is no longer possible to construct the
concentrated log-likelihood for ¢ parameter and a joint optimization over full parameter vector x°”
is required.!* Kruiniger (2008) presents asymptotic results for the univariate version of this estimator
under a range of assumptions regarding types of convergence. Results for PVAR(1) can be proved
similarly.

Proposition 4.2. Let Assumptions SA* be satisfied. Then the score vector associated with the log-likelihood
function in (4.4) under covariance stationarity is given by'>

vec (Won (k")) + Typvec Win (k) )

D}, (vee(B(ET@n k™) = (T = DE)E) + I gvec Win (k™)) *5)

V(KCOV) — (

Unless the parameter space for ® and X is such that the “extensibility condition” is satisfied, see univariate results in Han
and Phillips (2013).
>Note that there is a mistake in the derivations of the Jp¢ term in Mutl (2009).
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Here we define I = ® — I, and

N
Win(e) = — (@' Mn(k) —©)07),

Wa N (k)

N T N
! Z Z()N’i,t —®y,, )i+ TO~! Z@i - @y, )y,

i=1 t=1 i=1
—T((¢'D),(I2 — ®' ® ®)7") ®I,,2)
X Iy Ky, ® Iy) — (Imz ® vec(IT) + vec(IT) ® Imz)
+T((0e D),z —®®®) ) QMM I, — 2 ® ®)"))
X In @Ky ®@Ln) (I, ®¢ + ¢ ®L,2),
Joo =L+ T QM) (I, —®®®) .

Joo

Proof. In Appendix A.3. O

It can be seen that E[V(k(™)] # 0,21 (1/2)(m+1)m> unless the initial condition is indeed covariance
stationary (that is in contrast with the conclusion of Proposition 4.1 for the unrestricted estimator). Thus

violation of the covariance stationarity implies that the £ estimator is inconsistent.

Remark 4.7. Han and Phillips (2013) discuss possible problems of the TML estimator with imposed
covariance stationarity near unity. They observe that the log-likelihood function can be ill-behaved
and bimodal close to ¢9 = 1. In this article, we do not investigate this possibility of bimodality for
PVAR model as the behavior of the log-likelihood function close to unity is not of prime interest for
us. Furthermore, the bimodality in Han and Phillips (2013) is not related to the bimodality of the
unrestricted TML estimator as discussed in Section 4.2.4.

4.2.2. Cross-sectional heterogeneity

In this subsection, we consider model with possible cross-sectional heterogeneity in {X,¥,}. For

notational simplicity, we consider a model without exogenous regressors. All results presented can be

extended to a model with exogenous regressors at the expense of more complicated notation.

(A.1)** The disturbances €;;,t < T, are independent and heterogeneously distributed (i.h.d.) for all i
with E[e;;] = 0,, and E[e;,€;5] = 1(s=¢ X0,i» X0, being p.d. matrix and max; E [||e,<,t||4+‘3] <
oo for some § > 0.

(A.2)** The initial deviations u; are i.h.d. across cross-sectional units, with E[u; o] = 0,, and finite p.d.
variance matrix ¥, o ; and max; E [||u,;o ||4+5] < 00, for some § > 0.

We denote by ¥ and similarly by ¥, the limiting values of corresponding sample averages, i.e.,

fo = limy_ o (1/N) Zfi 1 Zo,i.w Existence of the higher-order moments as presented in Assumptions

(A.1)**~(A.2)** is a standard sufficient condition for the Lindeberg-Feller CLT to apply. We denote

by SA** the set of assumptions SA*, with (A.1)-(A.2) replaced by (A.1)**-(A.2)**. The univariate

analogues of results presented in this section for the TMLE estimator were derived by Kruiniger (2013)

and Hayakawa and Pesaran (2012).

Remark 4.8. As an example of DGP that satisfies (A.2)**, consider the equation
Yio = Ki + F(1eyo, (4.6)

with p; being nonstochastic m dimensional vector, F(-) : R™ — R™*™ real function, and &) ~
(0,15 X 0). In this example, E[u; o] = 0,,, while E[ui,ou;’o] = F(u;)ZyoF(ny)'.

16As it was mentioned in Kruiniger (2013), Assumptions (A.1)**~(A.2)** are actually stronger than necessary, as it is sufficient
to assume that (1/N) Z?’ﬂ E[e,-yss;s] = (1/N) Z;L E[s,-,ts;t] foralls,t = 2,..., T to prove consistency and asymptotic
normality.
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The unrestricted log-likelihood function for k = (¢',07,...,04,07,...,0)) suffers from the
incidental parameter problem, as the number of parameters grows with the sample size, N. That implies
that no +/N consistent inference can be made on the ¢; and ; parameters, but that does not imply that
¢ parameter cannot be consistently estimated. Notably, we consider the pseudo log-likelihood function
Zp ( IC) 17

N T
N 41 - - - - ,
G0 = =3 ((T ~ 1) log %[ + tr(z L D D G = i )Gy — By ) ))

i=1 t=1

N T
-5 <log |®] + tr<®_lﬁ Z(j)i - ®y, )(y; — ‘I’j}i_),)> >

i=1
obtained if one would mistakenly assume that observations are i.i.d. We shall prove that the conclusions
. MY
from Section 4.1 continue to hold, with k¢ replaced by pseudo-true values ¥ = (¢ ,5',8 )’, where
& = vechXy, 0 = vech®,, é = &0
N

v 1
2o+ T — ®o) ( Jim le \I'u,o,i) I — ®0)'-
1=

v

(o)

We assume that & satisfy a compactness property similar to (A.5)*. It is not difficult to see that the point-
wise probability limit of (1/N)£, (k) is given by

1 1
pth%msz(x) =3 ((T — D1og|Z| + tr(Z ' plimy_, . Zn(k)))

1
-3 (log |1®] + tr(®'plimy_, My (K))),
where
plimy_, o Zn (k) = (T — 1)Eg + (¥ — ®) (plimy_, . ,Ry) (®o — &)’
_ 1 ((<1> —®)EZ) + oE (P — <1>)/)
T 0 0 0 0 5
plimN_)OOMN(IC) =0+ (&g — P) (plimN—>ooPN) (Py — (D)/
1 — ) ) r—/ /
+ = (@ — )26, + 6E'(@ - @)

Note that we would obtain the same probability limit of the pseudo log-likelihood function if u;p and
{ei,t}f\i{tzl were 1.1.d. Gaussian with parameters . Hence identification follows from the result for i.i.d.

data. Similarly, denote iy = ((i/, o é;\,)/ , where

1 o 1
GNZNZO'OJ: 0N=ﬁ200,i, ¢ = 9o
i=1 i=1
Consistency and asymptotic normality of k follows using standard arguments, see, e.g., Amemiya (1985).

Proposition 4.3 (Consistency and asymptotic normality). Under Assumptions SA**, the maximizer of

£,(k) is consistent k 2k Furthermore, under these assumptions

VN (& = ty) —5 N(©O, Bpanr),

7Here “p” stands for pseudo and is used to distinguish from the standard TMLE log-likelihood function where inference on
¥ and @ is possible.
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where

Bpur = Hy ' TeH,

N
H; = lim E [—%’Hﬁ’ (:2)} and Iy = lim_ %E [z; vy (1c0) V) (:co,i)’} .

i=
In Appendix, we show that the expected value of this log-likelihood function evaluated at i is zero.
Here by Vlgl) (k0,;) we denote the contribution of one cross-sectional unit i to the score of the pseudo log-
likelihood function V, (k) evaluated at the true values {¢, 0¢,;, 00,i}. Note that unless cross-sectional
heterogeneity disappears (at a sufficiently fast rate) as N — oo, the standard “sandwich” formula of
the variance-covariance matrix evaluated at £ is not a consistent estimate of the asymptotic variance-

covariance matrix in Proposition 4.3, as in general

1 & 1 & 1 & /
. 12 . .
Nh—l;%o N El 00,i0; 7 (Nh—lflo N 21 O'O,i) (Nll—??)oﬁ -21 Uo,i> , (4.7)
1= 1= 1=

while H; and B ppy, are not block-diagonal for fixed T. However, under some restrictive assumptions on
higher order moments of initial observations and variance of strictly-exogenous regressors (when they
are present) Hayakawa and Pesaran (2012) argue that it is possible to construct a modified consistent
estimator of Z, for the ARX(1) model. In the Monte Carlo section of this article we use the standard
“sandwich” estimator for variance-covariance matrix without any modifications. We leave derivation of
modified consistent estimator of Z, for general PVARX(1) case for future research.

4.2.3. Misspecification of the mean parameter
Let us assume that one does not acknowledge the fact that data in differences is mean nonstationary (as
a consequence of E[u;o] = y,, # Om) and considers the log-likelihood function as in (4.4).18 Denote

by k = ((I)/,d’,é/)/, where
¢=0¢p 6=00  0=00+ Tvech[(Iy — ®o)E[u;ouol(In — ®o)'].
Hence 6 is a function of the second moment of u;, rather than the variance of u;. Analogously to the

univariate result in Kruiniger (2002), we have the following result.

Proposition 4.4. Let all but E [u;o] = Yu, = Om Assumptions SA* be satisfied. Then k the maximizer of

(4.4) is consistent in a sense that i 2, K. Furthermore, under these assumptions
~ . d
VN (§ — k) — N(0, By),
where

Bur =M, TeH; ",

N—o0 N—oo

N
1 ) . 1 N o)
H, = lim E|:—N’HN(K)i|,and I, = lim E|:N§ v“)(:c)v(’)(:c)’]

i=1

In Appendix A.3, we show that the expected value of this log-likelihood function evaluated at k is
zero.

Remark 4.9. One can think of y = (®9 — I,)y,, as a (restricted) time effect for Ay, ;. In general,
the noninclusion of the time effects (when they are present in the model for y; ,¢t > 1) results in

'8Please note that we maintain the assumption that E[u;g] = p, is common for all .
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inconsistency of the TML estimator. As it was already discussed in BHP, inclusion of time effects
is equivalent to cross-sectional demeaning of all Ay, , beforehand. The resulting estimator £ is then
consistent for k(. As a result, if the cross-sectional demeaning is performed beforehand, the noninclusion
of the y parameter is inconsequential.

Remark 4.10. Note that by combining analysis in Propositions 4.4 and 4.3 we can see that for cases
where E[Ay, || = p; are individual specific (as y,, are individual specific), one still obtains consistent
estimate of @ by simply maximizing €, (k).'® As an example for this situation, we consider DGP

Yio=THi+e0 &0~ (0m Ty),
with T # I, and p; being nonstochastic individual specific effects. Hence, the mean E [Ayi)l] = (Py—
I,)(T —I,,)p; =y, is individual specific.

4.2.4. Identification and bimodality issues for three-wave panels

In this section, we study the behavior of the log-likelihood function for the TML estimator with an
unrestricted initial condition. Consistency and asymptotic normality of any ML estimator, among others,
requires the assumption that the expected log-likelihood function has the unique maximum at the true
value. As we shall prove in this section, this condition is possibly violated for the TML estimator with
unrestricted initial condition for T' = 2. For the ease of exposition, we consider univariate setup as in
Hsiao et al. (2002).

Theorem 4.2. Let assumptions SA* be satisfied. Then for all po € (—=1;1) and T = 2, the following
equation holds for any value oflpio > 0:
plimy_, . £°(¢o) = plimy_, £ (¢p) (4.8)
Consequently the expected log-likelihood function has two local maxima
ko = (d’o,%z,@g)/,
Kp = (9p05.05)

where

-1 1 (6}
¢p52<xx )+¢0, XEI+(1_¢O)2w5,O/U()2=5(_()2+1)'

%
Proof. In Appendix A.4

Recall that based on the definition of ® in Theorem 4.1, the true value of 67 is given by
65 =05 + T(L—90)Wip Vo = Elufy].

Several remarks regarding the results in Theorem 4.2 are worth mentioning.?® First of all, instead
of proving the result using the concentrated log-likelihood function, it can be proved similarly by
considering the expected log-likelihood function directly. Secondly, if the parameter space is expressed
in terms of k = (¢, o2, ¥2)’, then the value of ¥? in both sets is equal to g/fg = wﬁ = (002 + 9&)/2.

Remark 4.11. While deriving the result we assumed that E[u;9o] = 0 and y is not included in the
parameter set. If E[u;] # 0, then two cases are possible: a) misspecified log-likelihood function as in
Section 4.2.3 is considered and the result remains unchanged and b) y parameter is included in the set
of parameters and, as a result, Theorem 4.2 does not hold true. For intuition observe that in the latter

1Please refer to the proof of Proposition 4.3 in the Appendix.
2We should emphasize that Theorem 4.2 has any theoretical meaning only if ¢ € T.
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case the trivial estimator ¢ = (Zf\il Ayi2)/ (Z?; Ay; ) is consistent. However, the key observation
for this special case is that the model does not contain time effects. If, on the other hand, the model
contains time effects, ¢ is no longer consistent, and consequentially, the main result of this section is still
valid after cross-sectional demeaning of the data.

Remark 4.12. In the covariance stationary case, it can be shown that the conclusion of Theorem
4.2 extends to PVAR(1) if the extensibility condition is satisfied and in addition ®¢ is symmetric. In
particular, this condition is satisfied by all three stationary designs in BHP with the pseudo value equal
to the identity matrix.

Without loss of generality, we can rewrite ¥ as

o2

2 0
=—o0—7, a > 0.
l»//u,O 1_¢0

To get more intuition about the problem at hand, we can rewrite ¢, in the following way:

P (g +90)(1 — ) + 2
P 1 ta+do(l—a)

From here it can be easily seen that then the pseudo-true value ¢, is equal to unity for covariance
stationary initialization (¢ = 1). Furthermore, we can consider other special cases such as

ol < L =0 — ¢ = ¢o,
lpol < L € (0,1) = o < ¢p < 1.

In Monte Carlo simulations, it is common to impose some restrictions on the parameter space. In most
cases, ¢ is restricted to the stable region (—1;1), e.g., Hsiao et al. (2002). However, as it is clearly seen
from Fig. 1 (and derivations above) a stable region restriction on ¢ does not solve the bimodality issue
and ¢, can lie in this interval.

By construction, the concentrated log-likelihood function is a sum of two quasi-concave functions
with maxima at different points (Within Group and Between Group parts), bimodality does not
disappear for T > 2. Thus by adding these two terms we end up having function with possibly two
modes, with the first one being of order Op(NT) while the second one of order Op(N). This different
order of magnitude explains why for larger values of T the Within Group (WG) mode determines
the shape of the whole function. To illustrate the problem described, we present several figures of
plimy,_, . £°(¢) for stationary initial conditions.

The behavior of the concentrated log-likelihood function in Figs. 2a—c is in line with the theoretical
results provided earlier. Note that once ¢y is approaching unity, the log-likelihood function becomes
flatter and flatter between the two points.

We can see from Fig. 1c that once T is substantially bigger than 2, the “true value” mode starts to
dominate the “pseudo value” mode. Based on all figures presented, we can suspect that at least for
covariance stationary initial conditions (or close to) the TML estimator is biased positively, with the
magnitude diminishing in T.

The main intuition behind the result in Theorem 4.2 is quite simple. When the log-likelihood function
for 6 (or v/) is considered, no restrictions on the relative magnitude of those terms compared to o2 are
imposed. In particular, it is possible that 2 < &2 but that is a rather strange result given that

05 = o + T(1 — ¢o) E[u,].

(4.9)

But that is exactly what happens in the i, vector as

2 _ 2 2 _p2
6, =0y, o, =b5.
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Figure 1. Histogram for the TMLE estimator with T = 3, ¢¢ = 0.5, N = 250, and 10,000 MC replications. The initial observation is from

covariance stationary distribution. Starting values for all iterations are set to (@ = {0.0,0.1,. . ., 1.5}. No non-negativity restrictions
imposed.
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Figure 2. Concentrated asymptotic log-likelihood function. In all figures, the first mode is at the corresponding true value ¢, while the
second mode is located at ¢ = 1. The initial observation is from covariance stationary distribution. The dashed line represents the WG
part of the log-likelihood function, while the dotted line the BG part. The solid line, which stands for the log-likelihood function is a sum
of dashed and dotted lines.



666 A.JUODIS

Hence the implicit estimate of (1 — ¢0)2E[u?’0] is negative as we do not fully exploit the implied structure
of varAy;, which is a so-called “negative variance problem” documented in panel data, among others,
by Maddala (1971).2! This problem was already encountered in some Monte Carlo studies performed
in the literature (even for larger values of T), while some other authors only mention this possibility,
e.g., Alvarez and Arellano (2003) and Arellano (2003a). For instance, Kruiniger (2008) mentions that
for values of ¢y close to unity the non-negative constraint on (1 — ¢0)2E[ul.2’0], if imposed, is binding in
50 % of the cases. @ or W parameter, on the other hand, is by construction p.d. (or non-negativity for
univariate case). That explains why in some studies (for instance Ahn and Thomas, 2006) no numerical
issues with the TML estimator were encountered. In this article, we analyze the limiting case of T = 2
and quantify the exact location of the second mode. Observations made in this section provide intuition
for some of the Monte Carlo results presented in Section 5.

4.2.5. Time-series heteroscedasticity
Unlike the case with cross-sectional homoscedasticity, time-series homoscedasticity is necessary for
fixed T consistency of ®. However, in this section we show that, for T sufficiently large, one can still
consistently estimate ®.22 At first, we concentrate out the @ parameter and consider the normalized
version of the log-likelihood function

N
1 T .. N ..
(k) = == log| = > G, — 5 )G — F,)'
i=1

T—1 1 L&
2T log | 2] - tr<21m Z Z(j’i,t — @y DB — q’j’i,t—l)/)'

i=1 t=1

As the term inside the first log-determinant term is of order Op(T), the first component of the log-
likelihood function is of order op(1). Thus as N, T — oo (jointly)

2T 2NT 4
i=1 t=1

N T
T-—1 1 . - - -
LK) = c+0p(1) — log |Z] — tl'(E_l_ E § Dip — @YD) Oy — q)yi,tl)/>'

Clearly, the remaining component is just the FE effect log-likelihood function, and consistency of %
and @ follows directly. For the case with time-series heteroscedasticity in 3, the log-likelihood function
consistently estimates Yoo = limr_, oo % Zthl ¥ assuming that this limit exists.

The gradient of the log-likelihood function with respect to ¢ is given by

N T -1 N

_ - - - 1 A .. . e

Vg (i) = vec (E DI (I)yi,t—l)y;',t—l> + vec <<f®> > - ‘I’J’i—)}’;—>-
i=1 1=1 i=1

As it was argued in the previous sections, the second (“Between”) component of the derivative with
respect to @ is of lower order than the first (“Within”) component. As a result, under the assumption
that N/T — p evaluated at the true value of ®

-1 N —1 N
1 (1 A) ! .. Y A 1 . RN
—(=0) D G,—®F )V =vo(=0) =D Fi— ®eF )y +op(1)
NT \T i=1 r N i=1

= /P (I — ®) W0 (T — @0)) " [(Iy — ®0)W,0] + 0p(1)
= /0 (In — ®) " +0p(1),

2'Note that Maddala (1971) considers the Random Effects estimator for Dynamic Panel Data models, similarly to Alvarez and
Arellano (2003).

2|n order to show similar results for general models with exogenous regressors, one has to prove thatas T — oo theincidental
parameter matrix G does not result in an incidental parameter problem.
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where the corresponding result is valid irrespective of whether time-series heteroscedasticity is present
or not. Now consider the bias for the score of the fixed effects estimator evaluated at ®; and X =
% Zthl ¥, (asin, e.g., Juodis, 2013)

T
1 =—1 I S
——E| X €it¥ii1 | = —+/PTX E[ley;/]1+0(1
/NT |: ZZ Vit 1:| «/ﬁ (€] (1)

i=1 t=1
T—2 / ¢ !
- _“/755:‘1 (Z (Z <1>{)> ):T”) +o(1)

t=0 1=0
/!

= ((I —®))~ IZ — o) T t) +o(1)

/

T-2
_ 1 -1
= —on — ®)) L+ 712 (Z <I>6+12T1t> +o(1)

t=0

IS

= — /P — @)~ +o(D).

Here the last line follows if one assumes that X sequence is bounded, so that the sum term is of order
O(1). Hence, assuming that N/T — p, the standardized score (NT)~V/ 2V¢ (ko) has an asymptotic
distribution correctly centered at zero. As a result, the large N, T distribution of the TML estimator is
identical to the one of the bias-corrected FE estimator of Hahn and Kuersteiner (2002).

Remark 4.13. Note that inclusion of the time-effects, which is equivalent to the cross-sectional
demeaning of data does not change conclusions of this section. The bias of the FE estimator, as shown by
Hahn and Moon (2006), is the same as without time-effects. It can easily seen that this result also applies
under time-series heteroscedasticity.

In the previous section, we have shown that in the correctly specified model with time-series
homoscedasticity the score of the TML estimator fully removes the induced bias of the FE estimator. This
conclusion was established based on the assumption that N — oo for a fixed value of T. In this section,
we have extended this result by showing that under presence of possible time-series heteroscedasticity
the estimating equations of the TML estimator remove the leading bias of the FE estimator.

5. Simulation study
5.1. Monte Carlo setup

At first we present the general DGP that can be used to generate initial conditions y; y:

0
Yio = Ai + Eip; + Cieip, €ip ~ I1ID | 0y, Z 30 (@) |, (5.1)
=0

for some parameter matrices A; [m x 1], E; [m x m], and C; [m x m]. The special case of this setup is
the (covariance) stationary model if A; = 0,, and C; = E; = I,,,. We distinguish between stability and
stationarity conditions. We call the process {yi)t}tho dynamically stable if p(®) < 1 and (covariance)
stationary if in addition the first two moments are constant over time (t = 0,...,T).
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In what follows, we set A; = 0, for all designs.”> We generate the individual heterogeneity u; (rather
than #;) using a procedure similar to BHP

, 5 id id
ni=m (—) U qi < x2(1), n; < N(02, X3). (5.2)

Unlike in the article of BHP, we do not fix X3 = X, but instead we extend the approach of Kiviet (2007)
by specifying?*2

T

t=1

T -1
vecX; = (l D (PHE —Ty) + 1) ® (BGH(E — L) + Im)> (I2 — ® ® ®9) ' vecEo. (5.3)

The way we generate u; ensures that the individual heterogeneity is not normally distributed, but still
iid. across individuals. In the effect stationary case, the particular way the p; are generated does not
influence the behavior of TML log-likelihood function. However, the non-normality of u; in the effect
nonstationary case implies non-normality of u; o and, hence, a quasi maximum likelihood interpretation
of the likelihood function. With respect to the error terms, we restrict our attention to &; ; being normally
distributed Vi, .26

5.2, Designs
The parameter set which is common for all designs consists of a triplet {N; T; 7 } with possible values
N ={100;250}, T =1{36), 7 ={L;3).

In the DPD literature, it is well known that in the effect stationary case a higher value 7 leads to worse
finite sample properties of the GMM estimators, see e.g. Bun and Windmeijer (2010) and Bun and Kiviet
(2006). That might also have indirect influence on the TML estimator even in the effect stationary case, as
we use generalized method of moments (GMM) estimators as starting values for numerical optimization
of the log-likelihood function.

In this article, six different Monte Carlo designs are considered. The first one is adapted from the
original analysis of BHP, while the other five are constructed to reveal whether the TML estimator is
robust with respect to different assumptions regarding the parameter matrix ®, the initial conditions
¥;0»> and cross-sectional heteroscedasticity. In the case where observations are covariance stationary or
cointegrated, BHP calibrated the design matrices ® and X such that the population RZAIZ7 remained
approximately constant (& 0.237) between designs.

Design 1 (Covariance Stationary PVAR with p(®¢) = 0.8 from BHP).
o _ (06 02 s _ (007 —0.02 5. _ (0123 0015
°=\o02 06)’ 0=\ -002 007 )’ 1= 10015 0.123)"

The second eigenvalue is equal to 0.4, and the population R} values are given by RZAI = 0.2396,
I=1,2.

2In the online Appendix some additional results for Design 2 are presented with A; = 15.

24See the online Appendix of this article.

Zif variance of &; differs between individuals, then we evaluate this expression at >, rather than at X.

26The analysis can be extended to the cases where the error terms are skewed and/or have fatter tails as compared to the
Gaussian distribution. As a partial robustness of their results BHP considered t- and chi square distributed disturbances, but
the results were close to the Gaussian setup. The estimation output for these setups was not presented in their article.

7 Computation of the population R? for stationary series RzA, =1- 1%—/” I = 1, where vec(T) in the covariance stationary

case is given by vec(T') = (((Im — ®0) ® (Im — ®0)) (I,,2 — B9 @ ®)) " + Imz) Dimo.
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Although the Monte Carlo designs in BHP are well chosen, they are quite limited in scope as the
analysis was mainly focused on the influence of p(®¢). Furthermore, all design matrices in the stationary
designs were assumed to be symmetric and Toeplitz,2® which substantially shrinks the parameter space
for @y and X.

Design 2 (Covariance Stationary PVAR with p (@) = 0.50498).
o _ (04 0I5 s _ (007 005 5. _ (0079 0.052
0= \~01 06 ) 0= \0.05 0.07)° 7= 10.052 0.100)"
Eigenvalues of @ in this design are given by 0.5 2 0.0707114, and the population R% values are given by

2 _ 2
RY, = 0.23434 and R}, = 0.23182.

The parameter matrix ®( was chosen such that the population R} are comparable between Designs
1 and 2, but the extensibility condition is violated.

In Designs 3-4, we study finite sample properties of the estimators when the initial condition is not
effect-stationary.?’

Design 3 (Stable PVAR with p(®() = 0.50498). We take ®( and X from Design 2, but with
Ei:0.5X12, Ci:Iz, i=1,...,N,

5. __(0.090 0.059 5. _(0.083 0.055
1T=3 =\ 0.059 0.144 )’ 7.T=6 =\ 0,055 0.122 )"
Design 4 (Stable PVAR with p(®() = 0.50498). We take @y and X from Design 2, but with
E;=15x I, Ci =1, i=1,...,N,

5. _(0.069 0.045 5. _(0.074 0.049
PT=3710.045 0.074)° PT=6710.049 0.083)"
In Section 4.2.2 we presented theoretical results for the TML estimator when unrestricted cross-

sectional heteroscedasticity is present. This design is used to investigate the impact of multiplicative
cross-sectional heteroscedasticity on the estimators.

Design 5 (Stable PVAR with p(®¢) = 0.50498 with non-i.i.d. €;;). As a basis for this design, we take
®( and X from Design 2, but with

iid X
E =1, Ci = g, Zoi = 97 Xo, o7 ~x2),i=1,...,N.

The last design is dedicated to reveal the robustness properties of the TML estimator when time-series
heteroscedasticity is present. From Section 4.2.5, we know that this estimator is not fixed T consistent
in this case.

Design 6 (Stable PVAR with time-series heteroscedasticity). As a basis for this design, we take ®¢ and
¥ from Design 2 E; = C; = I, but with X are generated as

Yo, = (0.95—0.05T + 0.1¢) x Xy, t=1,...,T.

ZHence they satisfied the “Extensibility” condition.

2Note that effect nonstationarity in these designs has no impact on the first unconditional moment of the {J'i,t}rTzo process. It
can be explained by the fact that E[;] = 05 is a sufficient condition for the {J'i,t}rTzo process to have a zero mean. Thus there
is no reason to allow for mean nonstationarity by including y parameter into the log-likelihood function, but it is crucial to
allow for a covariance nonstationary initial condition.
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This particular form of the time-series heteroscedasticity was chosen such that the
T30 30, = =,

For convenience, we have multiplied both the mean and the median bias by 100. Similarly to BHP, we
only present results for ¢11 and ¢12, as results for the other two parameters are similar both quantitatively
and qualitatively. The number of Monte Carlo simulations is set to B = 10, 000.

5.3. Technical remarks

As starting values for TMLE estimation algorithm, we used estimators available in a closed form. Namely,
we used “AB-GMM,” “Sys-GMM,” and FDLS, the additive bias-corrected FE estimator as in Kiviet (1995),
and the bias-corrected estimator of Hahn and Kuersteiner (2002). Here “AB-GMM” stands for the
Arellano and Bond (1991) estimator, and “Sys-GMM” is the System estimator of Blundell and Bond
(1998) which incorporates moment conditions based on the initial condition. All aforementioned GMM
estimators are implemented in two steps, with the usual clustered weighting matrix used in the second
step.30

We denote by “TMLE” the global maximizer of the TML objective in (4.4). By “TMLEr” we denote
the estimator which is obtained similarly as “TMLE,” but instead of selecting the global maximum, the
local maximum that satisfies I(:) — ):?| > 0 restriction is selected when possible31 and global maximum
otherwise. The TML estimator with imposed covariance stationarity is denoted by “TMLEc” Finally, we
denote by “TMLESs” the estimator that is obtained by choosing the local maximum of TMLE objective
function with the lowest spectral norm.>? This choice is motivated by the fact that for univariate three-
wave panel the second mode is always larger than the true mode; in PVAR one can think of spectral
norm as measure of distance.

Regarding inference, for all the TML estimators we present results based on robust “sandwich” type
standard errors labeled (7). In case of GMM estimators, we provide rejection frequencies based on
commonly used Windmeijer (2005) corrected S.E.

5.4. Results

5.4.1. Estimation
In this section, we briefly summarize the main findings of the MC study as presented in Tables C.1 to
C.6 in Appendix C. Inference related issues are discussed in the next section.

Design 1. For GMM estimators, results are similar to those in BHP. Irrespective of N, the properties
of all GMM estimators deteriorate as T and/or 7 increase, and these effects are substantial both for
diagonal and oft-diagonal elements of ®. Similarly, we can see that for small values of T, the performance
of the TML estimator is directly related to the corresponding bias and the RMSE properties of the GMM
estimators.>> Hence using the estimators that are biased towards pseudo-true value helps to find the
second mode that happens to be the global maximum in that replication. On the other hand, if the
resulting estimators are restricted in some way (TMLEs, TMLEr, TMLEc), the strong dependence on
starting values is no longer present (especially for TMLEs). In terms of both the bias and the RMSE,
we can see that the TMLEc estimator performs remarkably well irrespective of design parameter values
for both diagonal and off-diagonal elements. The FDLS estimator does perform marginally worse as
compared to the TMLEc estimator but still outperforms all the GMM estimators. All the TML estimators

30That takes the form “Z'uu'Z".

31In principle, this restriction is necessary but not sufficient for 6 — L tobe p.s.d. However, for the purpose of exposition, in
this article we stick to this condition rather than checking non-negativity of the corresponding eigenvalues.

32However, unlike the univariate studies of Hsiao et al. (2002) and Hayakawa and Pesaran (2012), where the ¢ parameter was
restricted to lie in the stationary region, in the numerical routine for the TMLE no restrictions on the parameter space of ¢
are imposed.

33This contrasts sharply with the finite sample results presented in BHP.



ECONOMETRIC REVIEWS (&) 671

(except for TMLEc) tend to have an asymmetric finite sample distribution that results in corresponding
discrepancies between estimates of mean and median.

In Section 4.2.4, we have mentioned that the second mode of the unrestricted TML estimator is
located at & = I,,. Based on the results in Table C.1, we can see that the diagonal elements for the
TML estimator are positively biased towards 1, while the oft-diagonal elements are negatively biased in
direction of 0 (at least for small N and T). Thus the bimodality problem remains a substantial issue even
for T > 2 and choosing global optimum is not always the best strategy as TMLEs clearly dominates
TMLE for small values of T. For T = 6, the TMLEr and TMLEs provide equivalent results and some
improvements over “global” standard TMLE.

Design 2. One of the implications of this setup is that the FDLS estimator is not consistent. More
importantly, for this setup we do not know whether the bimodality issue even for T' = 2 is still present.
Thus the need for the TMLEr and TMLEs estimators is less obvious. However, the motivation becomes
clear once we look at the corresponding results in Table C.2. TMLEs and TMLEr dominate TMLE in
all cases, with TMLEs being the preferred choice. We can observe that the bias of the TML estimator
in terms of both the magnitude and the sign does not change dramatically as compared to Design 1.
Observe that the bias of the TMLEc in the diagonal elements does not decrease with T fast enough to
match the performance of the TMLEr/TMLEs estimators, while for the off-diagonal elements quite a
substantial bias remains even for N = 250, T = 6.3

Designs 3 and 4. As it was expected, the properties of Sys-GMM (that rely on the effect-stationarity
implied moment conditions) deteriorate significantly compared to Design 2. We observe that for 7 =1
the AB-GMM estimator is more biased in comparison to Design 2 (for Design 3), but is less biased if
7 = 3. The intuition of these patterns is similar to the one presented by Hayakawa (2009) within the
univariate setting. Unlike the previous designs, the TML estimator exhibits lower bias for m = 3 despite
the fact that the quality of the starting values diminished in the same way as in the effect-stationary
case. Magnitudes of the effect nonstationary initial conditions considered in these designs are sufficient
to ensure that the restrictions imposed from TMLEr estimator are satisfied even for small values of N
and T.

Design 5. Unlike in Designs 34, the setup of Design 5 has no impact on consistency of estimators
(except FDLS). As can be clearly seen from Table C.6, the same cannot be said about the variance of the
estimators. The introduction of cross-sectional variation in X ; affected all estimation techniques by
means of higher RMSE/MAE values. On the other hand, effects are less clear for bias with improvements
for some estimators and higher bias for others.

Design 6. In this setup, all TML estimators are inconsistent due to the time-series heteroscedasticity,
with the TMLEc estimator seems to be affected the most in terms of both the bias and precision. By
comparing the results in Tables C.2 and C.6, we see that diagonal elements (¢1; in this case) are mostly
affected as the estimation quality of the off-diagonal elements remains unaffected. Furthermore, the Sys-
GMM estimator, albeit still consistent, also shows some signs of deteriorating finite sample properties.
For T' = 6, the bias of TMLE/TMLEs/TMLEr estimators diminishes, as can be expected given that the
bias is of order O(T2).

5.4.2. Size and power properties

We briefly summarize the main findings regarding the size and the power of the two-sided ¢-test for ¢;

as presented in Tables C.7 to C.12 in Appendix C. Results for the other entries are available from the

author upon request.

e Except for TMLEc, for N = 100 all estimators result in substantially oversized test statistics with
relatively low power. In many cases, rejection frequencies for alternatives close to the unit circle are
of similar magnitude to size.

34As it will turn out later, these properties will play a major role to explain the finite sample properties of the LR test of
covariance stationarity, that is presented in the online Appendix.
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e When the estimator is consistent, the inference based on TMLEc serves as a benchmark both for size
and power.

e In designs with the effect stationary initial condition (except N = 250, T = 6 to be discussed next),
the empirical rejection frequencies based on all the TML (except for TMLEc) as well as the AB-GMM
estimators do not result in symmetric power curves, due to the substantial finite sample bias of the
estimators.

e Results for T = 6 and N = 250 suggest that the TML estimators without imposed stationarity
restrictions are well sized and have good power properties in all designs with almost perfectly
symmetric power curves.

e Although all the TML estimators (without imposed stationarity restriction) are inconsistent with
time-series heteroscedastic error terms, the actual rejection frequencies for N = 250 are only
marginally worse in comparison to the benchmark case. The same, however, cannot be said about
the TMLEc estimator.

e Indesign with cross-sectional heteroscedasticity, the TML based test statistics become more oversized
compared to the benchmark case. The only exception is the case with N = 250 and T = 6, where the
actual size increases by at most 1%.

The results on bias and size presented here suggest that under the assumption of time homoscedas-
ticity, likelihood based techniques might serve as a viable alternative to the GMM based methods in
the simple PVAR(1) model. Particularly, the TML estimator of BHP tends to be robust with respect to
nonstationarity of the initial condition and cross-sectional heterogeneity of parameters. Furthermore, in
the finite sample, likelihood-based methods are robust even if smooth time-series heteroscedasticity is
present. However, the TML estimator might suffer from serious bimodality problems when the number
of cross-sectional units is small and the length of time series is short. In these cases, the resulting
estimator heavily depends on the way the estimator is chosen. For some designs in 30%-40% of all MC
replications no local maxima satisfying |® — £| > 0 was available even for N = 250. However, this
problem becomes marginal once T = 6 where such fractions drop to 1%-10%. Based on these results
we suggest that the resulting TMLE estimator is chosen such that (when possible) local maxima should
satisfies a positive semi-definite (p.s.d.) |(:) — %| > 0 restriction (TMLEr), and otherwise the solution
with smaller spectral norm should be chosen (TMLEs).

6. Conclusions

In this article, we provide a thorough analysis of the performance of fixed T consistent estimation
techniques for PVARX(1) model-based on observations in first differences. We have mostly emphasized
the results and properties of the likelihood based method. We have extended the approach of BHP
with inclusion of strictly exogenous regressors and shown how to construct a concentrated likelihood
function for the autoregressive parameter only.

The key finding of this paper is that in the three-wave panel the expected log-likelihood function of
BHP in the univariate setting does not have the unique maximum at the true value. This result has been
shown to be robust irrespective of initialization. Furthermore, we have provided a sufficient condition
for this result to hold for PVAR(1) in the three-wave panel.

Finally, we have conducted an extensive MC study with the emphasis on designs where the set of
standard assumptions about the stationarity and the cross-sectional homoscedasticity were violated.
Results suggest that likelihood-based inference techniques might serve as a feasible alternative to GMM
based methods in a simple PVARX(1) model. However, for small values of N and/or T the TML estimator
is vulnerable to the choice of the starting values for the numerical optimization algorithm. These finite
sample findings have been related to the bimodality results derived in this article. We proposed several
ways of choosing the estimator among local maxima. Particularly, we suggest that the resulting TMLE
estimator is chosen such that local maxima should satisfies p.s.d. restriction (TMLEr), and otherwise the
solution with smaller spectral norm should be chosen (TMLEs).
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Appendices

Appendix A: Proofs

Firstly, we define a set of new auxiliary variables, that are used in the derivations
Eit@) =y, — Py ci(p) =y, — @y,

N T

N T
Znw) = = YN E@EP, Q= 3D R @),

i=1 t=1 i=1 t=1

N N
T . . 12 T PARE] /
My(o) = < Y E@E@), Nyt =3 5 &@)

i=1 i=1
| NI r N T2
- _ - -_ 1
N Zzyi,t—l)’;,pp Py = N Z)’if}’gf’ == Z(T —1-0,
i=1 t=1 i=1 1=0

In the derivations, we use several results concerning differentials (for more details refer to Magnus and
Neudecker, 2007)

dlog |X| = tr(X~'(dX)), d(trX) = tr(dX),
d(vec X) = vec(dX), dx'= —xl@xx,
dXY = (dX)Y + X(dY), dX®X)=dX) X + X ®dX),
vec( dX ®X) = (I, ® Ky, @ I,) (1,2 ® vec X)vec d(X).

Ry

Appendix A.1. Auxiliary results
Lemma Appendix A.1.

T—1 T—2 T—2
Y=Y & TI,+ (Z(T— Do, — Y <I>é> (Im — ®0) = Op.

Proof.
T-1 T-2 T—2
Y= Z @) — TI, + (Z(T— Ho) — Zcbf)) (I, — ®0)
T-2 T-2 —1 T-2 T-1
=& '+ o —TL,+T (Z o — Y <1>’0> — (Z 1, — Y (- 1)<I>{))

1=0 1=0 =1 =1 I=1

T-1 T-2
=0+ @)~ TL, + T, — @) ) — (Z &, — (T - 2)@5—1)
=1 =1

T-2 T-2
=o) '+ > o —Te] ! - (Z @) — (T - 2)<1>§—1>
1=0 =1

=(1-N&'+el7 +(T-20 =0,.
Lemma Appendix A.2. Under Assumptions SA* the following equality holds
1
E[Ny(ko)] = - E®,.

for ®g = g + T(Ln — ®o)Elu;ous; j1(In — ®0)".
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Proof. Define Iy = ® — I,,,. Then

E[Nn(ko)'] = ( Z(y, oy, )yl>

i=1

T-1 T-2
=E | (Houio + &;) (( @ — T1m> Yio+ (Z(T —1- 1)<1>g) — Houi+>

=0

/

In Lemma Appendix A.1, we showed that ¥ = O,,. Thus

N T-1t-1
T . .
E |:N Z;(yi - q’Oyi—)y;—j| =E (Houlo +é ) ( Mouio + (Z 52(; q’o"'i,ts)
i= =
1
T

t=1

= (Im — ®o)E[u;ott ]I, — o)’ E' +

Appendix A.2. Log-likelihood function
Proof of Theorem 4.1. Let

0
Ayi, Lo -0 1
Aegip 1 1 .
ar=| 2 = e R
: o o .
Aeir 1 -~ 1 1 PR P (|
o --- 0 1 0

and let D be a [T x T 4+ 1] matrix which transforms a [T + 1 x 1] vector x into a [T x 1] vector
of corresponding first differences. Also define ® = T(¥ — X) + ¥ and & = X7!@. If we denote
I = X1, it then follows

r -1, O, --- Oy
I, 2I,
Ipne=Ur®Y) | 0, . . . Op
: . . . -1,
On -+ On —I, 2I,

=Ir®@X)[(DD' ®@1I) + (ere] @ (T — 21,y))]
= Ir® %) [(CrCr) ™ @ L) + (er€] ® (T — L))
Subsequently, the determinant is given by (using the fact that |Cr| = 1)

1Zacl = IZIT1((CHCr) L @ Iy) + (1€}, & (T — 1))
= 2|7, + (&, CCrei (T — L,)|[(CrCr) 7Y
= 2| |L, + (€, CyCrei (T —1,,))]
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= 12|11, + T(T — L)
= z/7|1el =z e),

where the second line follows by means of the Matrix Determinant Lemma.>®> Using the Woodbury
formula, we can evaluate X ;1

23 = [(CrC) ' @ L) + (e1€, ® T — L)) Ir@ ")
= ((C7C1) ® Iy) — (CCrer) @ Iy) (T — Iy) ™' + T1,,)
x ((€,CrCr) @ I)(Ir @ £71)
= (Cr®IL)UCT@L)Ir® T
= (CrL)UIr ® 271)(Cr @ Iy),
where U is
U = Ity — ((Cre)) ® Iy) (T — L,)R ") ((¢,Cp) ® )
=In— a1 ®ILy) (T —In)R ") (F @ Iy) = It — 1717 @ (T —L)R")

1 / -1 1 / 1 / —1
=Ip, — ?lTlT ® (Im - ) =Ip, — ?lTlT QI + ?lTlT QR L
1
= WT®Im+?m’T®Sz*1,
so that
_ _ 1 _
EA}[ = (C,T ® I,) |:WT X ! + ?lTl/T R0 1:| (Cr ®1Ip).

Now using the fact that R = (I, — LT ® ®) and defining z; = Wig> -+ > YiT)
Z= (Cr@Iy)Imm — Lt Q@ ®)vec(ziD')
= vec(z;D'C — ®z,D'L’.C}) = vec((CrDz;) — ®(CrLrDz}))
= vec((Y; — lTJ’i,o)/ - ®(Y;- — lT}’i,o)/)~

Hence the log likelihood function of BHP can be rewritten in the following way (where k = (¢',0”/,8’)’):
N
k) =c— B ((T — D1og|X| +log |®] + tr(X ™' Zy (k) + tr(@ ' My (k))) . (A1)

In order to include exogenous regressors in the model, we denote the following quantities:
y = GAXIT, )V(i = (Xi1>.-->XiT)-
The Z term in this case is given by
Z=(Cr®1ILy) (Ipm — Lt ® ®)vec(ziD') — (IT ® B)vec(AX;) — vec(ye)))
=vec((Yi —11(jp +¥)) — ®(Yio —11y;) — B(X; — 17xip)").
Result follows directly based on derivations for PVAR(1) model by redefining Zy and My.

35Alternatively, | o7 | can be evaluated using the general formula for tridiagonal matrices in Molinari (2008).
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Appendix A.3. Score vector

Proof of Proposition 4.1. Here for simplicity we derive first differential of £(k) without exogenous
regressors

—%d@(:c) = (T - Dr(T~'(dX)) + tr(@ 1 (dO®))

—tr(TNAX)T ' ZN (k) — tr(O@ 1 (dO®)O ' My (k))
+ tr(Z 71 (dZn(K))) + tr(@ ! (dMy ()
=t (T = DT — Zy(k) Z~'(dX2))

+tr(@~'(@ — My(k))© ' (dO®))

—2tr(Z71((d®)Qy(k))) — 2tr(© ! ((d®)Ny (k))).
Based on these derivations, we conclude that the corresponding [2m? + m x 1] score vector is given by

( vec (271Qu(k) + © Ny (k)') )
V(k) =N .

D) vec(—1 (X7 (T - DX — Zy(k)Z™H)
D}, vec(—3(©71(@ — My (1))@ 1)

(A2)

Mean zero result follows directly from Lemma Appendix A.2 and the fact that E[Z;'Qy(ko)'] =
—(1/T)E’ (the “Nickell bias”).

Proof of Proposition 4.2. We need to derive the exact expression for vecd® under assumption that
vecE[ujou;)] = (I,2 — ® ® ®) lvec X. At first, we rewrite the expression for vec @ (we prefer to
work with vec(-) rather than vech(-) to avoid excessive use of duplication matrix D,,)

vec® = vec X + T ((Iy — ®) ® (I, — ®)) vec E[u;ou;]
=vecE + T (I — ®) ® Iy — @) (I, — ® ® &) 'vec T = Jypvec X.
Using rules for differentials, we get that
d(vec®) = Jspd(vec X) + d(J59)vec X.
Using the product rule for differentials

%d(Iab’) =— @)Uy —®)+ I — ) Q@d(®) (I, — PR D)

+ Ty =) Ty — ) U2 — P ® D)~
X (d(@)®®+®Rd(®) I, —d® &)

Recall definition of E[ui,ou;’o] = Wy and ¥, = vec ¥. As d(Js¢)vec X is already a vector by taking
vec(-) of this term, nothing changes

%vec(d(]ao)vec )= -y ®I,2)vec (A(®) @ Iy — @) + (I, — ®) ® d(P))

+ (o ((Tn—®)QUn— ) U2 — 2R D)7 "))
x vec (d(®) ® (®) + (®) ® d(P)).
Using the formula for vec(dX ® X)

%duawvec T = () @ L) (I © Koy © L) (L ® (i — ) + ( — ) @ L2)db

+ W ((In—2)@ U —®) U,z — 2R D) "))
XIn @Ky LI,z ¢ + ¢ Q1,2)de.
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Recall the definition of Jggto conclude that
d(Jsg)vec X = Jgode. (A.3)

The desired results follows by combining differential results for dvec ® with proof of Proposition 4.1.

Proof of Proposition 4.4. Consider the score vector evaluated at &

vee (25 Qu(gy) + O 'Nu(9y))
V() =N | D vec(— (5 (T — DZo — Zn(9p)Z, ) |- (A.4)
D), vec(—1(©7' (O — My()© )
Now observe that the mean of E[u; 9] does not influence the “Nickell bias” E[ X, 1QN(qSO)’ 1=-1/DE’

and the unbiasedness of the FE estimator of X as E[Zn(¢py)] = (T — 1) X. On the other hand, My (¢)
and N (@) are (implicitly) influenced by yp. Similarly, as in the proof of Appendix A.2,

N T—1t—1
E [N i;(y,- - <I>0)’i—))’§_j| = E | (Mouip + &) (: Mou;o + (Z > <I>f)s,~,t5>>

/

t=1 s=0
— MBI, E' + ~%0E = LOF’
i,04i0 0o~ T 0= T -
Note that this term depends on the second uncentered moment of u;( rather than second centered
moment of u;. Finally,

N
T . . . _ _
E |:ﬁ ;(yi — @0y, )y, — ‘I’oyi_)/i| =TE [(Houi,o + &;) (Mouio + &) ]
i=
= TToE[u;ouly] My + o = ©.
Combining all results we conclude that E[V (k)] = 0.

Proof of Proposition 4.3. To see that E[V (kn)] = 0 we just make use of proof for Proposition 4.4. Note
that

T N
E [N > 6, - %y,-_)y;_}

i=1

L X T—1t-1
=3 Z E | (Touip + &) <E Mouip + (Z Qf)si,t—s))

i=1 t=1 s=

/

N

1 1 - 1 -

= HON <El E[ui,ou;)0]> MyE' + ?EN:./ = TON:/
i=

and

N N
T " N .. T - _
E [N ;0’:’ — @0y, )(¥; — <I>0yi—)/j| =N ;E [(Houi,o + &) (Mouip + €i)/]

N

1 , -

= THOK] (E E[u,«,ou;,o]> Iy + Xy = Op.
i=1

On the other hand, E[)‘:;QN(%)'] = —(1/T)E’ and E[ZN($,)] = (T — 1)Zy. Combining these
intermediate results the desired final conclusion E[V (k)] = 0 follows. Note that in this case, E[u;] is
allowed to be nonzero and individual specific.
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Appendix A.4. Bimodality
Proof of Theorem 4.2. Let us denote the true value for 62 as 6 that for general T is equal to
05 = o + T(1 — ¢o) E[uj].
Thus at T = 2 it is equal to
05 = og + 2(1 — ¢0)*E[u].
For some ¢, we denote the variables
) N | N2
05 =E [N > G- ¢yi_>2} ,  o;=E [ﬁ > Zl@,t - qw,-,t_l)z} :
i=1 i=1 t=

and a = ¢y — ¢.
As we assume that the observations are i.i.d., it is sufficient to analyze previous expressions for some
arbitrary individual i. At first we proceed with expression for aé (recall definition of x variable)

L N2
042, =E |:Kf Z Z(}/i,t - ¢5’i,r—1)2:|

i=1 t=1
= 0.5E[(Ayiz2 — ¢Ayi1)’]
= 0.5E[(Agiz + (¢o — $)Ayi1) ]
= 0.5E [(Aéin + (do — D) (1 — do)uio + £i1))’]
= 0.5E [(£i2 + (do — ®)(1 — po)uio + (do — ¢ — Deir)’]
= 0.5(c (1 + (o — ¢ — 1)*) + (g0 — $)*(1 — ¢0)*Eluf])
= 0.503 (1 —2(¢o — @) + 1 + (¢o — $)%x)
= 0.5002 (azx +2(1— a)) .
Similarly, we can derive expression for 67 and 6 in terms of the x and a:
05 = oq +2(1 — ¢0)°E[uiy] = o5 2x — 1).
For 9;, it follows that

2 N
67 =E [N > Gi— ¢y1~_)2}
i=1

= 2B [ (& — uio — ¢ (i — i0))°]

= 2B [(& + dothi— — uio — ¢ (i — ;0))°]

= 0.5E [(ei2 + i1 + do (i1 + uig) — 2uio — P (uin — ui0))?]

= 0.5E[(ei2 + i1 (1 + o — @) + uio(do(1 + do) — 2 — d (o — 1)))?]

= 0.502 [1+ (1 +a)* + (1 — ¢0)*E[uyl(a + 2)*]

= 0.505 [14 (1 +a)* + (1 — ¢0)*E[uio(a + 2)* /o ]

= 0.505 [14+ (1 +a)* + (x — 1)(a+2)*] = 0504 [a*x + (a + 1)(4x — 2)].

Continuing

059425 = 0.2506l (azx —2(a— 1)) (azx +(a+1)(4x — 2))
= 02504 (a* (a®x* + 2xa(2x — 2) + (2x — 2)*) + 4(2x — 1))
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= 0.250; (a* (ax + 2(x — 1))* + 4(2x — 1))
= 0.2506l (az (ax 4+ 2(x — 1))2) + 0595.

The first term in the brackets is obviously equal for true value ¢ (a = 0) and for
1—x 1—x x—1
a=2——=>¢y—¢p=2—— = ¢ =2—— + ¢y.
x x x
Appendix B: Iterative bias correction procedure

Algorithm 1. Iterative bias-correction procedure FDOLS:

1. For k =1 to k™

2. Given Y& compute YO =7+ (T — l)i(T(k_l))Slfjl.

3LIFIYR -y =Dy < ¢, stop. For some pre-specified matrix norm || - ||.
To initialize iterations, we set Y© = ?, and fI(T(k_l)) is defined as

~ 1 N T ’
(YY) = WNT—D Z (Z (Ay;, — YAwi) (Ay;, — YAwiy) ) . (B.1)

i=1 t=2

Asymptotic normality of the estimator can be proved by treating it as the solution of the estimating
equations

N T

1
N ((Ayi,t — YAwi) AW, + S Ay = YAwi)(Ay,, — TAW,-,,)’S> = Opx(hrmy (B2)
i=1 t=2

where § = [I,, O, xk]-

Proposition Appendix B.1. Let Assumptions SA be satisfied and the iterative procedure in Algorithm 1
has the unique fixed point. Then

VN (Disc — v0) —5 Npu(0,2, ), (B.3)

where

_ _ 1
F=vizvh V= (Ea®In) = 5 Tngetm) + Ko tetm) (S E08) @ L),
=
X = plimN_)OON 2‘/603:' (vec D)),

i=

T
_ / 1 /
0= Z (Ay;y — Yowi)w;, + E(Ayi,t — Yowi) (Ay;, — Yowir)'S ).

=2

Note that asymptotic distribution of the estimator depends upon the choice of 3(®). Different
asymptotic distribution is obtained if instead of using the X estimator in (B.1) we can opt for the standard
infeasible ML estimator

. 1
=577 Z

i=1

(Z (i — @3, — Bxiy) (7, — 5y, — chi,t)’) :

t=1
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