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ABSTRACT

This article considers estimation of Panel Vector Autoregressive Models of
order 1 (PVAR(1)) with focus on �xed T consistent estimation methods in
First Di�erences (FD) with additional strictly exogenous regressors. Additional
results for the Panel FD ordinary least squares (OLS) estimator and the FDLS
type estimator of Han and Phillips (2010) are provided. Furthermore, we sim-
plify the analysis of Binder et al. (2005) by providing additional analytical
results and extend the original model by taking into account possible cross-
sectional heteroscedasticity and presence of strictly exogenous regressors.
We show that in the three wave panel the log-likelihood function of the
unrestricted Transformed Maximum Likelihood (TML) estimator might violate
the global identi�cation assumption. The �nite-sample performance of the
analyzed methods is investigated in a Monte Carlo study.

KEYWORDS

Bias correction; dynamic
panel data; �xed T
consistency; maximum
likelihood; Monte Carlo
simulation

JEL CLASSIFICATION

C13; C33

1. Introduction

When the feedback and interdependency between dependent variables and covariates is of particular
interest,multivariate dynamic panel datamodelsmight arise as a naturalmodeling strategy. For example,
particular policymeasures can be seen as a response to the past evolution of the target quantity, meaning
that the reduced formof two variables can bemodeled bymeans of a Panel Vector AutoregressiveModels
(VAR) (PVAR)model. In this article, we aim at providing a thorough analysis of the performance of �xed
T consistent estimation techniques for PVARmodel of order 1 (PVARX(1)) based on observations in �rst
di�erences. We mainly focus on situations when the number of time periods is assumed to be relatively
small, while the number of cross-section units is large.

The estimation of univariate dynamic panel data models and the incidental parameter problem of the
maximum likelihood (ML) estimators have received a lot of attention in the last three decades, seeNickell
(1981) and Kiviet (1995) among others. However, a similar analysis for multivariate panel data models
was not covered and investigated in detail. Main exceptions are articles by Holtz-Eakin et al. (1988),
Hahn and Kuersteiner (2002), Binder et al. (2005, herea�er BHP), and Hayakawa (2015) presenting
theoretical results for linear PVARmodels. For empirical examples of PVARmodels for microeconomic
panels, seeArellano (2003b, pp. 116–120),Michaud and van Soest (2008), Ericsson and Irandoust (2004),
and Koutsomanoli-Filippaki and Mamatzakis (2009), among others.

Because of the inconsistency of the Fixed E�ects (FE, ML) estimator, the estimation of Dynamic
Panel Data (DPD) models has been mainly concentrated within the generalized method of moments
(GMM) framework, with the version of the Arellano and Bond (1991) estimator and estimators of
Arellano and Bover (1995), Blundell and Bond (1998), and Ahn and Schmidt (1995, 1997). However,
MonteCarlo studies have revealed that themethod ofmoments (MM)-based estimatorsmight be subject
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to substantial �nite-sample biases, see Kiviet (1995), Alonso-Borrego and Arellano (1999), and BHP.
These potentially unattractive �nite sample properties of the GMM estimators have led to the recent
interest in likelihood-basedmethods, that are not subject to the incidental parameter bias. In this article,
theML estimator based on the likelihood function of the �rst di�erences of Hsiao et al. (2002), BHP, and
Kruiniger (2008) is analyzed (herea�er TML).

Monte Carlo results presented in BHP suggest that the Transformed Maximum Likelihood (TML)-
based estimation procedure outperforms the GMM based methods in terms of both �nite sample bias
and root mean square error (RMSE). However, their analysis is incomplete because particularly they did
not consider cases where the models are stable but the initial condition is not mean and/or covariance
stationary. Furthermore, the Monte Carlo analysis was limited to situations where error terms are
homoscedastic both in time and in the cross-section dimension, leaving relevant cases of heteroscedastic
error terms unaddressed. We address both issues in the Monte Carlo designs presented in Section 5.

We aim to contribute to the literature in multiple ways. First of all, we show that the multivariate
analogue of the First Di�erence Least Squares (FDLS) estimator of Han and Phillips (2010) is consistent
only over a restricted parameter set. Secondly, we consider properties of the TML estimator for models
with cross-sectional heteroscedasticity and mean nonstationarity. Furthermore, we show that in the
three wave panel the log-likelihood function of the unrestricted TML estimator can violate the global
identi�cation condition. Finally, the extensive Monte Carlo study expands the �nite sample results
available in the literature to cases with possible nonstationary initial conditions and cross-sectional
heteroscedasticity.

The article is structured as follows. In Section 2 we present the model and underlying assumptions.
Theoretical results for the panel �rst di�erence (FD) estimator are presented in Sections 3. We continue
in Section 4 discussing the properties of the TML estimator under di�erent assumptions regarding
stationarity and heteroscedasticity. In Section 5 we analyze �nite sample performance of estimators
considered in the article by means of a Monte Carlo analysis. Finally, we conclude in Section 6.

Here we brie�y discuss notation. Bold upper-case Greek letters are used to denote the original
parameters, i.e., {8,6,9}, while the lower-case Greek letters {φ, σ ,ψ} denote vec(·) (vech(·) for
symmetric matrices) of corresponding parameters, in the univariate setup corresponding parameters
are denoted by {φ, σ 2,ψ2}. Where necessary, we use subscript 0 to denote the true values of the
aforementioned quantities. We use ρ(A) to denote the spectral radius1 of a matrix A ∈ R

n×n. The
commutation matrix Ka,b is de�ned such that for any [a × b] matrix A, vec(A′) = Ka,bvec(A).
The duplication matrix Dm is de�ned such that for symmetric [a × a] matrix vecA = DmvechA.

We de�ne ȳi− ≡ (1/T)
∑T

t=1 yi,t−1 and similarly ȳi ≡ (1/T)
∑T

t=1 yi,t . The lag-operator matrix LT is
de�ned such that for any [T×1] vector x = (x1, . . . , xT)

′,LTx = (0, x1, . . . , xT−1)
′. The jth columnof the

[x×x] identity matrix is denoted by ej. x̃ is used to indicate variables a�erWithin Group transformation
(for example, ỹi,t = yi,t − ȳi), while ẍ is used for variables a�er a “quasi-averaging” transformation.2 For
further details regarding the notation used in this article, see Abadir and Magnus (2002).

2. Themodel and assumption

In this article, we consider the PVAR(1) speci�cation

yi,t = ηi +8yi,t−1 + εi,t , i = 1, . . . ,N, t = 1, . . . ,T, (2.1)

where yi,t is an [m × 1] vector, 8 is an [m × m] matrix of parameters to be estimated, ηi is an [m × 1]
vector of �xed e�ects, and εi,t is an [m × 1] vector of innovations independent across i, with zero mean
and constant covariance matrix 6.3 If we set m = 1, the model reduces to the linear DPD model with
AR(1) dynamics.

1ρ(A) ≡ maxi(|λi|), where λi ’s are (possibly complex) eigenvalues of a matrix A.
2ÿi = ȳi − yi,0 and ÿi− = ȳi− − yi,0 .
3Later in the article, we present the detailed analysis when6 is i speci�c.
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For a prototypical example of (2.1) consider the following bivariate model; see, e.g., Bun and Kiviet
(2006), Akashi and Kunitomo (2012), and Hsiao and Zhou (2015):

yi,t = ηyi + γ yi,t−1 + βxi,t + ui,t ,

xi,t = ηxi + φyi,t−1 + ρxi,t−1 + vi,t ,

where E[ui,tvi,t] = σuv. This system has the reduced form
(
yi,t
xi,t

)
=
(
ηyi + βηxi

ηxi

)
+
(
γ + βφ βρ

φ ρ

)(
yi,t−1

xi,t−1

)
+
(
ui,t + βvi,t

vi,t

)
. (2.2)

Depending on the parameter values, the process {xi,t}Tt=0 can be either exogenous (φ = σuv = 0), weakly
exogenous (σuv = 0), or endogenous (σuv 6= 0).

For many empirically relevant applications, the PVAR(1) model speci�cation might be too restrictive
and incomplete. The original model then can be extended by including strictly exogenous variables (the
PVARX(1) model)

yi,t = ηi +8yi,t−1 + Bxi,t + εi,t , i = 1, . . . ,N, t = 1, . . . ,T, (2.3)

where xi,t is a [k × 1] vector of strictly exogenous regressors and B is an [m × k] parameter matrix.4

Furthermore, some models with group speci�c spatial dependence, as in, e.g., Kripfganz (2015) and
Verdier (2015), can be also formulated as a reduced form PVARX(1).

2.1. Assumptions and de�nitions

At �rst we de�ne several notions that are primarily used for the model without exogenous regressors.

De�nition 1 (E�ect stationary initial condition). The initial condition yi,0 is said to be e�ect stationary
if

E[yi,0|ηi] = (Im −80)
−1ηi, (2.4)

implying that the process {yi,t}Tt=0 generated by (2.1) is e�ect stationary, E[yi,t|ηi] = E[yi,0|ηi], for
ρ(80) < 1.

Note that e�ect nonstationarity does not imply that the process {yi,t}Tt=0 is mean nonstationary, i.e.,
E[yi,t] 6= E[yi,0]. The latter property of the process crucially depends on E[ηi].

De�nition 2 (Covariance stationary initial condition). The initial condition yi,0 is said to be covariance
stationary if

E[yi,0|ηi] = (Im −80)
−1ηi, var[yi,0|ηi] =

∞∑

t=0

8t
060(8

t
0)

′,

implying that the process {yi,t}Tt=0 generated by (2.1) is covariance stationary, i.e., the autocovariance

function of {yi,t}Tt=0 is not time dependent.

De�nition 3 (Common dynamics). The individual heterogeneity ηi is said to satisfy the “common
dynamics” assumption if

ηi = (Im −80)µi. (2.5)

4Note that themodel considered inHan andPhillips (2010) substantially di�ers from (2.3). They consider amodel speci�cation
with lags of xi,t and restricted parameters. Their speci�cation can be accommodated within (2.3) only if the so-called
common factor restrictions on B are imposed.
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Under the commondynamics assumption, individual heterogeneity drops from themodel in the pure
unit root case80 = Im. Without this assumption the process {yi,t}Tt=0 has a discontinuity at Im, as at this
point the unrestricted process is a Multivariate Random Walk with dri�. Combination of two notions
results in E[yi,0|µi] = µi, note that this term is well de�ned for ρ(80) = 1.

De�nition 4 (Extensibility). The data generating process (DGP) satis�es extensibility condition if

8060 = (8060)
′.

We call this condition “Extensibility” as in some case this condition is su�cient to extend univariate
conclusions to generalm ≥ 1 situations. One of the important implications of this condition is that

∞∑

t=0

8t
060(8

t
0)

′ = (Im −82
0)

−160 = 60(Im −82′
0 )

−1.

As a referee of this journal rightly pointed out, this condition is highly restrictive and uncommon in the
literature, but as we will see from theoretical point of view this condition can be of a particular interest.

At �rst we summarize the assumptions regarding theDGPused in this article, that are similar to those
made by Hsiao et al. (2002) and Binder et al. (2005).
(A.1) The disturbances εi,t , t ≤ T, are independent and identically distributed (i.i.d.) for all iwith �nite

fourth moment, with E[εi,t] = 0m and E[εi,tε′
i,s] = 1(s=t)60, 60 being a positive de�nite (p.d.)

matrix.
(A.2) The initial deviation ui,0 ≡ yi,0 − µi is i.i.d. across cross-sectional units, with E[ui,0] = 0m with

variance9u,0 and a �nite fourth moment.
(A.3) For all i and t = 1, . . . ,T, the moment restrictions E[ui,0ε′

i,t] = Om are satis�ed.
(A.4) N → ∞, but T is �xed.
(A.5) Regressors (if present) xi,t are strictly exogenous E[xi,sε′

i,t] = Ok×m, ∀t, s = 1, . . . ,T with a �nite
fourth moment.

(A.6) Matrix80 ∈ R
m×m satis�es ρ(80) < 1.

(A.6)* Denote by κ a [p× 1] vector of unknown coe�cients. κ ∈ Ŵ, where Ŵ is a compact subset of Rp

and κ0 ∈ interior(Ŵ).
We denote the set of Assumptions (A.1)–(A.6) by SA and by SA* set when in addition the (A.6)*

assumption is satis�ed. SA assumptions are used to establish results for the Panel FD estimators,
while SA* are used to study asymptotic properties of the TML estimator. Assumption (A.6) is needed
to ensure that the Hessian of the TML estimator has a full rank5 in the model without regressors.
On the other hand, in Assumption (A.6)* we implicitly extend the parameter space for 8 to satisfy
the usual compactness assumption so that both consistency and asymptotic normality can be proved
directly, assuming the model is globally identi�ed over the parameter space. However, as we show
in Section 4.2.4, the extended parameter space (beyond stationary region) might violate the global
identi�cation condition. As for now the dimension of κ (“p”) is le� unspeci�ed and depends on a
particular parametrization used for estimation (with/without exogenous regressors, with/without mean
term, etc.). In Section 4.2.2, we consider the situation where we allow for individual speci�c 9u,0 and
60 matrices.

Note that Assumption (A.2) does not impose any restrictions on yi,0 andµi directly, but instead on the
initial deviation ui,0 (that in principle can be linear or nonlinear function ofµi). However, it is important
to note that all estimators in �rst di�erences remain invariant to the distributional characteristics of µi

only if

yi,0 = µi + ui,0

5See, e.g., Bondet al. (2005), AhnandThomas (2006) and Juodis (2014a) for proofs that theHessianmatrix of the TMLestimator
is singular at the unit root in Panel AR(1) and Panel VAR(1) models, respectively.



654 A. JUODIS

with the idiosyncratic component ui,0 independent of µi. As emphasized in Hsiao et al. (2002) and
Hayakawa and Pesaran (2012), in this case µi can be spatially correlated and/or depend on εi,t , t =
1, . . . ,T without a�ecting the distribution of the estimator in FDs. Later in the article, we discuss
situations when this restriction might be violated and the consequences for the properties of the TML
estimator.

3. Ordinary Least Squares (OLS) in �rst di�erences

Original model in levels contains individuals e�ects that we remove using the FD transformation. In that
case the model speci�cation is given by

1yi,t = 81yi,t−1 + B1xi,t +1εi,t , i = 1, . . . ,N, t = 2, . . . ,T.

Before proceeding, we de�ne the following variables:

1wi,t ≡
(
1yi,t−1

1xi,t

)
, SN ≡

(
1

N

N∑

i=1

T∑

t=1

1wi,t1w′
i,t

)
,

6W ≡ plimN→∞SN , ϒ ≡ (8,B) .

A�er pooling observations for all t and i, we de�ne the pooled panel FD estimator (FDOLS) as

ϒ̂
′ = S−1

N

(
1

N

N∑

i=1

T∑

t=1

1wi,t1y′
i,t

)
. (3.1)

Similarly to the conventional FE transformation, the FD transformation introduces correlation between
the explanatory variable 1yi,t−1 and the modi�ed error term 1εi,t . As a result this estimator is

inconsistent,6 with the asymptotic bias derived in Proposition 3.1.

Proposition 3.1. Let {yi,t}Tt=1 be generated by (2.3) and Assumptions SA be satis�ed. Then

plimN→∞(ϒ̂ −ϒ0)
′ = −(T − 1)6−1

W

(
60

Ok×m

)
. (3.2)

It is easy to see that FDOLS is numerically equal to the FE estimator with T = 2, and thus the
asymptotic bias is identical as well. Furthermore, as long as T ≥ 2 the bias correction approaches as in
Kiviet (1995) and Bun and Carree (2005) are readily available for this estimator (for more details, please
refer to Appendix B). However, the consistency and asymptotic normality of any estimator based on
iterative procedure crucially depends on existence of the unique �xed point. As a result, similarly to the
estimator of Bun and Carree (2005), this estimator might fail to converge for some DGP speci�cations.
These issues stimulate us to look for other analytical bias-correction procedures that have desirable �nite
sample properties irrespective of the DGP parameter values and initialization yi,0. Some special cases for
the model without exogenous regressors are discussed in the next section.

3.1. No exogenous regressors

In the model without exogenous regressors the FDOLS estimator is given by

8̂1 =
(
1

N

N∑

i=1

T∑

t=1

1yi,t1y′
i,t−1

)(
1

N

N∑

i=1

T∑

t=1

1yi,t−11y′
i,t−1

)−1

. (3.3)

6Irrespective whether T = �xed or T → ∞.
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Assume that yi,0 is covariance stationary and as a consequence

6W = (T − 1)

(
60 + (Im −80)

( ∞∑

t=0

8t
060(8

t
0)

′
)
(Im −80)

′
)
.

In the univariate case it is well known that covariance stationarity of yi,0 is a su�cient condition to obtain
an analytical bias-corrected estimator. However, it is no longer su�cient form > 1 and general matrices
80 and60. One special case for analytical bias-corrected estimator is obtained for (80,60) that satisfy
the “extensibility” condition, so that

6W = 2(T − 1)60

(
Im +8′

0

)−1
.

The resulting �xed T consistent estimator for8 is then given by

8̂FDLS = 28̂1 + Im. (3.4)

It can be similarly shown that this estimator is also �xed T consistent if 80 = Im and the common
dynamics assumption is satis�ed. For m = 1, this estimator was analyzed by Han and Phillips (2010),
who labeled it the First Di�erence Least-Squares (FDLS) estimator, and proved its consistency and
asymptotic normality under various assumptions. It should be noted that the same estimator (or the
moment conditions it is based on) has been studied earlier in the DPD literature, see Bond et al. (2005),
Ramalho (2005), Hayakawa (2007), and Kruiniger (2007).

Proposition 3.2 (AsymptoticNormality FDLS). Let DGP for covariance stationary yi,t satisfy extensibility
condition together with conditions of Proposition 3.1. Then

√
N
(
φ̂FDLS − φ0

)
d−→ Nm(0m2 ,F), (3.5)

where

F ≡ (6−1
W ⊗ Im)X(6

−1
W ⊗ Im), X ≡ plimN→∞

1

N

N∑

i=1

vecOi (vecOi)
′ ,

Oi ≡
(

T∑

t=2

(21yi,t + (Im −80)1yi,t−1)1y′
i,t−1

)
.

Proof of Proposition 3.2 follows directly as an application of the standard Lindeberg–Lévy Central
Limit Theorem (CLT) (see, e.g., White (2000) for a general reference on asymptotic results).

Note that if the extensibility condition is violated the multivariate analogue of the FDLS estimator is
not �xed T consistent. In that case, the moment conditions similar to Han and Phillips (2010) can be
considered. However, for general80 and60 matrices these moment conditions are nonlinear in8 and
require numerical optimization, making this approach undesirable, because the closed-form estimator
is the main advantage of FDLS estimator as compared to the TML estimator that we describe in the next
section.

4. TransformedMLE

4.1. The log-likelihood function for PVARX(1)

Independently, Hsiao et al. (2002) and Kruiniger (2002)7 suggested to build the quasi-likelihood for a
transformation of the original data, such that a�er the transformation the likelihood function is free
from incidental parameters. In particular, the likelihood function for the �rst di�erences was analyzed.

7Later appeared in Kruiniger (2008).
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BHP extended the univariate analysis of Hsiao et al. (2002) andKruiniger (2002) to themultivariate case,
allowing for possible cointegration between endogenous regressors.

In order to estimate (2.3) using the TML estimator of BHP, we need to fully describe the density
function f (1yi|1Xi). The only thing that needs to be speci�ed and not imposed directly by (2.3)
is E[1yi,1|1Xi], where 1Xi is a [Tk × 1] vector of stacked exogenous variables. Conditional mean
assumption is actually stronger than necessary for consistency and asymptotic normality of the TML
estimator, so we follow the approach of Hsiao et al. (2002) and consider the following linear projection
for the �rst observation:

Proj[1yi,1|1Xi] = γ + Gπ1Xi = B1xi,1 + G1X†
i , 1X†

i = (1,1X′
i)

′, (TX.D)

with the projection error denoted by vi,1. For the resulting TML estimator to be consistent and standard
inference procedures to be applicable, population projection coe�cients have to be identical for all cross-
sectional units. This requirement can be violated if ui,0 is individual speci�c function of µi (or ui,0 is a
function of µi and µi is deterministic).

Remark 4.1. Note that 1xi,1 is still an element of 1X†
i . Thus the corresponding parameter for 1xi,1

in G is de�ned as G1xi,1 = Gπ1xi,1 − B. Finally, it is important to note in general the true value of
G1xi,1 6= Om×k.

Before proceeding, we de�ne

1Ei ≡ (ITm − LT ⊗8)1Y i − (IT ⊗ B)1Xi − vec(G1X†
i e

′
1),

where 1Y i = vec(1yi,1, . . . ,1yi,T). Then assuming (conditional) joint normality of the error terms
and the initial observation, the log-likelihood function (up to a constant) is of the form

ℓ(κ) = −N

2
log |61τ | − N

2
tr

(
(
6−1
1τ

) 1

N

N∑

i=1

1Ei1E′
i

)
, (4.1)

with κ = (φ′, σ ′,ψ ′, vecB′, vecG′)′ and 9 = E[vi,1v′
i,1]. The 61τ matrix has a block tridiagonal

structure, with −6 on lower and upper �rst o�-diagonal blocks, and 26 on all but �rst (1,1) diagonal
blocks. The �rst (1,1) block is set to9 , which takes into account the fact that the variance of vi,1 is treated
as a free parameter.

Remark 4.2. Note that the results for the TML estimator derived in this article do not require normality
assumption. If normality assumption is violated, ℓ(κ) is a (quasi) log-likelihood function. For brevity, we
use the term log-likelihood rather than quasi log-likelihood even if the normality assumption is violated.
In its general form, the asymptotic variance-covariance matrix of the estimator has a “sandwich” form.
This “sandwich” form allows for

√
N consistent inference, when the normality assumption is violated.

Remark 4.3. As it is discussed in BHP, the log-likelihood function in (4.1) depends on a �xed number
of parameters and satis�es the usual regularity conditions. Therefore, under SA* the maximizer of this
(quasi) log-likelihood function is consistent with limiting normal distribution as N → ∞. Consistency
is derived assuming that the log-likelihood function has a unique global maximum at the true value κ0.
Note that for this log-likelihood function consistency of the resulting estimator cannot be proved based
on zeros of the gradient vector, as in generalmore than one solutionwill solve the First Order Conditions
(FOC). Section 4.2.4 contains some details forAR(1) on this issue, while the follow-up article of Bun et al.
(2015) provides more detailed analysis for the ARX(1) model.

Next we show that conditioning (projecting) on exogenous variables in �rst di�erences leads to
concentrated log-likelihood functions in φ only.
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Theorem 4.1. Let Assumptions SA* and (TX.D) be satis�ed. Then the log-likelihood function of BHP for
model (2.3) can be rewritten

ℓ(κ) = −N

2

(
(T − 1) log |6| + tr

(
6−1 1

N

N∑

i=1

T∑

t=1

(ỹi,t −8ỹi,t−1 − Bx̃i,t)(ỹi,t −8ỹi,t−1 − Bx̃i,t)
′
))

− N

2

(
log |2| + tr

(
2−1 T

N

N∑

i=1

(ÿi − G1X†
i −8ÿi− − Bẍi)(ÿi − G1X†

i −8ÿi− − Bẍi)
′
))

,

where κ =
(
φ′, σ ′, θ ′, vecB′, vecG′)′,2 ≡ 6 + T(9 − 6) and ẍi ≡ x̄i − xi,0.

Proof. In Appendix A.2.

The main conclusion of Theorem 4.1 is that in the case where 9 is unrestricted, both the score and
theHessianmatrix of the log-likelihood function have closed form expressions, that are easy to use. That
implies that there is no need to use involved algorithms of BHP in order to compute the inverse and the
determinant of the block tridiagonal matrix 61τ .

In order to simplify the notation, we introduce a new variable,

ξ i(κ) ≡ ÿi − G1X†
i −8ÿi− − Bẍi. (4.2)

Using this de�nition,8 we can formulate the following result.

Proposition 4.1. Let Assumptions SA* be satis�ed. Then the score vector associated with the log-likelihood
function of Theorem 4.1 is given by9

∇(κ) =




vec
(
6−1

∑N
i=1

∑T
t=1(ỹi,t −8ỹi,t−1 − Bx̃i,t)ỹ

′
i,t−1 + T2−1∑N

i=1 ξ i(κ)ÿ
′
i−
)

D′
mvec

(
N
2 (6

−1(ZN(κ)− (T − 1)6)6−1)
)

D′
mvec

(
N
2 (2

−1(MN(κ)−2)2−1)
)

vec
(
6−1

∑N
i=1

∑T
t=1(ỹi,t −8ỹi,t−1 − Bx̃i,t)x̃

′
i,t + T2−1∑N

i=1 ξ i(κ)ẍ
′
i

)

vec
(
T2−1∑N

i=1 ξ i(κ)1X†′
i

)



. (4.3)

Furthermore, the score vector satis�es the usual regularity condition

E[∇(κ0)] = 0p.

Proof. In Appendix A.2.

The dimension of the κ vector is substantial especially for moderate values of m and k, and hence
from a numerical point of view, maximization with respect to all parameters might not be appealing.
Next we show that it is possible to construct the concentrated log-likelihood function with respect to
the φ parameter only.10 To simplify further notation, we de�ne the following concentrated variables
(assuming N > Tk):

ẏi ≡ ÿi −
(

N∑

i=1

ÿi1X†′
i

)(
N∑

i=1

1X†
i1X†′

i

)−1

1X†
i ,

8Some other variables used in this section are de�ned in Appendix A.2, so we do not repeat it here.
9See also similar derivations in Mutl (2009).
10The key observation for this result is that, although B parameter enters both tr(·) components, ẍi belongs to the column

space spanned by1X†
i . Hence after concentrating out G, B is no longer present in the second term.
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ẏi− ≡ ÿi− −
(

N∑

i=1

ÿi−1X†′
i

)(
N∑

i=1

1X†
i1X†′

i

)−1

1X†
i ,

ýi,t ≡ ỹi,t −
(

N∑

i=1

T∑

t=1

ỹi,t x̃
′
i,t

)(
N∑

i=1

T∑

t=1

x̃i,t x̃
′
i,t

)−1

x̃i,t ,

ýi,t−1 ≡ ỹi,t−1 −
(

N∑

i=1

T∑

t=1

ỹi,t−1x̃
′
i,t

)(
N∑

i=1

T∑

t=1

x̃i,t x̃
′
i,t

)−1

x̃i,t .

Using the newly de�ned variables, the concentrated log-likelihood function for κ c = {φ′, σ ′, θ ′}′ is given
by

ℓc(κ c) = −N

2

(
(T − 1) log |6| + tr

(
6−1 1

N

N∑

i=1

T∑

t=1

(ýi,t −8ýi,t−1)(ýi,t −8ýi,t−1)
′
))

− N

2

(
log |2| + tr

(
2−1 T

N

N∑

i=1

(ẏi −8ẏi−)(ẏi −8ẏi−)
′
))

.

Continuing, we can concentrate out both 6 and2 to obtain the concentrated log-likelihood function
for the φ parameter vector only:

ℓc(φ) = −N(T − 1)

2
log

∣∣∣∣∣
1

N(T − 1)

N∑

i=1

T∑

t=1

(ýi,t −8ýi,t−1)(ýi,t −8ýi,t−1)
′
∣∣∣∣∣

− N

2
log

∣∣∣∣∣
T

N

N∑

i=1

(ẏi −8ẏi−)(ẏi −8ẏi−)
′
∣∣∣∣∣.

However, as there is no closed-form solution for 8̂, numerical routines should be used to maximize this
concentrated likelihood function.11 The corresponding FOC can be derived from Proposition 4.1 for
the unrestricted model.

Remark 4.4. The log-likelihood function in Theorem 4.1 can be expressed in terms of the log-likelihood
function for observations in levels ℓcl (κ̃) (“within group” part), as

ℓ(κ) = ℓcl (κ̃)− N

2

(
log |2| + tr

(
2−1 T

N

N∑

i=1

ξ i(κ)ξ i(κ)
′
))

,

where κ̃ = (φ′, σ ′, vecB′)′. The additional (“Between” group) term corrects for the �xedT inconsistency
of the standardML (FE) estimator. This result is just a generalization of Kruiniger (2006, 2008) and Han
and Phillips (2013) conclusions to PVARX(1) with respect to the functional form of ℓ(κ).12

Remark 4.5. In the online appendix, Juodis (2014b), we derive the exact expression for the empirical
Hessian matrixHN(κ̂TMLE) and show that this matrix as well as its inverse are not block-diagonal and

hence the TMLE of 8̂ and 6̂ (as well as 2̂) are not asymptotically independent.13Non-block-diagonality

11For PVAR(1) model with spatial dependence of autoregressive type as in Mutl (2009), both 2 and 6 parameters can be
concentrated out but not the spatial dependence parameter λ.

12Grassetti (2011) also discusses similar decomposition of the log-likelihood function for panel ARX(1) model.
13This result is in sharp contrast to the pure time series VAR’s where it can be shown that estimates are indeed asymptotically
independent.
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of the covariance matrix needs to be taken into account, e.g., for the impulse response analysis as in Cao
and Sun (2011).

Remark 4.6. As a referee of this article points out, in general, for a �xed T the estimator based on
First Di�erences (TMLE) is dominated in terms of e�ciency compared by the estimator based on the
likelihood function in levels (conditional on yi,0, see, e.g., Alvarez and Arellano, 2003, and Kruiniger,
2013).However, the estimator in levels requires separate distributional assumptions on yi,0 andµi, unlike
the TML estimator that imposes i.i.d. assumption on yi,0 − µi only.

4.2. PVAR(1)/AR(1) speci�c results

In this section, we investigate speci�c results of the TML estimator when the model does not include
additional strictly exogenous regressors. In this case, the quasi log-likelihood function can be simpli�ed
and written as

ℓ(κ) = −N

2

(
(T − 1) log |6| + tr

(
6−1 1

N

N∑

i=1

T∑

t=1

(ỹi,t −8ỹi,t−1)(ỹi,t −8ỹi,t−1)
′
))

− N

2

(
log |2| + tr

(
2−1 T

N

N∑

i=1

(ÿi −8ÿi−)(ÿi −8ÿi−)
′
))

, (4.4)

where κ =
(
φ′, σ ′, θ ′)′,2 ≡ 6 + T(9 − 6), and 9 = var1yi,1. Model without exogenous regressors

was considered in BHP for TML estimator and in Alvarez and Arellano (2003) for the model in levels. In
Section 4.2.1, we provide results when covariance-stationarity assumption is imposed on9 . Note that in
this speci�cation we assume that E[ui,0] = 0m hold, and later in Section 4.2.3 we investigate properties
of the maximizer (4.4) when this assumption is violated. Possible problems with respect to bimodality
of the log-likelihood function in the AR(1) context are discussed in Section 4.2.4.

4.2.1. Likelihood function with imposed covariance-stationarity

If one is willing to strengthen some of the original assumptions by assuming that ui,0 comes from the
(covariance) stationary distribution, then the log-likelihood function is a function of κcov = {φ, σ } only.
The 2 matrix in this case is no longer treated as a free parameter but instead is restricted to be of the
following form:

2 = 6 + T(Im −8)

( ∞∑

t=0

8t6(8t)′
)
(Im −8)′.

Note that if one imposes covariance stationarity of ui,0, it is no longer possible to construct the
concentrated log-likelihood for φ parameter and a joint optimization over full parameter vector κ cov

is required.14 Kruiniger (2008) presents asymptotic results for the univariate version of this estimator
under a range of assumptions regarding types of convergence. Results for PVAR(1) can be proved
similarly.

Proposition 4.2. Let Assumptions SA* be satis�ed. Then the score vector associated with the log-likelihood
function in (4.4) under covariance stationarity is given by15

∇(κ cov) =
(

vec
(
W2,N(κ

cov)
)
+ J′φθvecW1,N(κ

cov)

D′
m

(
vec(N2 (6

−1(ZN(κ
cov)− (T − 1)6)6−1))+ J′σθvecW1,N(κ

cov)
)
)
. (4.5)

14Unless the parameter space for 8 and 6 is such that the “extensibility condition” is satis�ed, see univariate results in Han
and Phillips (2013).

15Note that there is a mistake in the derivations of the Jφθ term in Mutl (2009).
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Here we de�ne5 ≡ 8− Im and

W1,N(κ) ≡ N

2

(
2−1(MN(κ)−2)2−1

)
,

W2,N(κ) ≡ 6−1
N∑

i=1

T∑

t=1

(ỹi,t −8ỹi,t−1)ỹ
′
i,t−1 + T2−1

N∑

i=1

(ÿi −8ÿi−)ÿ
′
i−,

Jφθ ≡ −T
((
σ ′D′

m(Im2 −8′ ⊗8′)−1
)
⊗ Im2

)

× (Im ⊗ Km ⊗ Im)−
(
Im2 ⊗ vec(5)+ vec(5)⊗ Im2

)

+ T
((
σ ′D′

m(Im2 −8′ ⊗8′)−1
)
⊗
(
(5⊗5) (Im2 −8⊗8)−1

))

× (Im ⊗ Km ⊗ Im)
(
Im2 ⊗ φ + φ ⊗ Im2

)
,

Jσθ ≡ Im2 + T (5⊗5)
(
Im2 −8⊗8

)−1
.

Proof. In Appendix A.3.

It can be seen that E[∇(κ cov0 )] 6= 0m2+(1/2)(m+1)m, unless the initial condition is indeed covariance
stationary (that is in contrast with the conclusion of Proposition 4.1 for the unrestricted estimator). Thus
violation of the covariance stationarity implies that the κ̂ cov estimator is inconsistent.

Remark 4.7. Han and Phillips (2013) discuss possible problems of the TML estimator with imposed
covariance stationarity near unity. They observe that the log-likelihood function can be ill-behaved
and bimodal close to φ0 = 1. In this article, we do not investigate this possibility of bimodality for
PVAR model as the behavior of the log-likelihood function close to unity is not of prime interest for
us. Furthermore, the bimodality in Han and Phillips (2013) is not related to the bimodality of the
unrestricted TML estimator as discussed in Section 4.2.4.

4.2.2. Cross-sectional heterogeneity

In this subsection, we consider model with possible cross-sectional heterogeneity in {6,9u}. For
notational simplicity, we consider a model without exogenous regressors. All results presented can be
extended to a model with exogenous regressors at the expense of more complicated notation.
(A.1)** The disturbances εi,t , t ≤ T, are independent and heterogeneously distributed (i.h.d.) for all i

with E[εi,t] = 0m and E[εi,tεi,s] = 1(s=t)60,i, 60,i being p.d. matrix and maxi E
[
‖εi,t‖4+δ

]
<

∞ for some δ > 0.
(A.2)** The initial deviations ui,0 are i.h.d. across cross-sectional units, with E[ui,0] = 0m and �nite p.d.

variance matrix9u,0,i and maxi E
[
‖ui,0‖4+δ

]
< ∞, for some δ > 0.

We denote by 6̌0 and similarly by 9̌u,0 the limiting values of corresponding sample averages, i.e.,

6̌0 = limN→∞(1/N)
∑N

i=160,i.
16 Existence of the higher-order moments as presented in Assumptions

(A.1)**–(A.2)** is a standard su�cient condition for the Lindeberg–Feller CLT to apply. We denote
by SA** the set of assumptions SA*, with (A.1)–(A.2) replaced by (A.1)**–(A.2)**. The univariate
analogues of results presented in this section for the TMLE estimator were derived by Kruiniger (2013)
and Hayakawa and Pesaran (2012).

Remark 4.8. As an example of DGP that satis�es (A.2)**, consider the equation

yi,0 = µi + F(µi)εy0, (4.6)

with µi being nonstochastic m dimensional vector, F(·) : R
m → R

m×m real function, and εy0 ∼
(0m,6y0). In this example, E[ui,0] = 0m, while E[ui,0u′

i,0] = F(µi)6y0F(µi)
′.

16As it wasmentioned in Kruiniger (2013), Assumptions (A.1)**–(A.2)** are actually stronger than necessary, as it is su�cient

to assume that (1/N)
∑N

i=1 E[εi,sε′
i,s] = (1/N)

∑N
i=1 E[εi,tε′

i,t] for all s, t = 2, . . . , T to prove consistency and asymptotic

normality.
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The unrestricted log-likelihood function for κ = (φ′, σ ′
1, . . . , σ

′
N , θ

′
1, . . . , θ

′
N)

′ su�ers from the
incidental parameter problem, as the number of parameters grows with the sample size,N. That implies
that no

√
N consistent inference can be made on the σ i and θ i parameters, but that does not imply that

φ parameter cannot be consistently estimated. Notably, we consider the pseudo log-likelihood function
ℓp(κ)

17

ℓp(κ) = −N

2

(
(T − 1) log |6| + tr

(
6−1 1

N

N∑

i=1

T∑

t=1

(ỹi,t −8ỹi,t−1)(ỹi,t −8ỹi,t−1)
′
))

− N

2

(
log |2| + tr

(
2−1 T

N

N∑

i=1

(ÿi −8ÿi−)(ÿi −8ÿi−)
′
))

,

obtained if one would mistakenly assume that observations are i.i.d. We shall prove that the conclusions

from Section 4.1 continue to hold, with κ0 replaced by pseudo-true values κ̌ = (φ̌
′
, σ̌ ′, θ̌

′
)′, where

σ̌ = vech6̌0, θ̌ = vech2̌0, φ̌ = φ0,

2̌0 = 6̌0 + T(Im −80)

(
lim

N→∞
1

N

N∑

i=1

9u,0,i

)
(Im −80)

′.

We assume that κ̌ satisfy a compactness property similar to (A.5)*. It is not di�cult to see that the point-
wise probability limit of (1/N)ℓp(κ) is given by

plimN→∞
1

N
ℓp(κ) = −1

2

(
(T − 1) log |6| + tr

(
6−1plimN→∞ZN(κ)

))

− 1

2

(
log |2| + tr

(
2−1plimN→∞MN(κ)

))
,

where

plimN→∞ZN(κ) = (T − 1)6̌0 + (80 −8)
(
plimN→∞RN

)
(80 −8)′

− 1

T

(
(80 −8)46̌0 + 6̌04

′(80 −8)′
)
,

plimN→∞MN(κ) = 2̌0 + (80 −8)
(
plimN→∞PN

)
(80 −8)′

+ 1

T

(
(80 −8)42̌0 + 2̌04

′(80 −8)′
)
.

Note that we would obtain the same probability limit of the pseudo log-likelihood function if ui,0 and

{εi,t}N,T
i=1,t=1 were i.i.d. Gaussian with parameters κ̌ . Hence identi�cation follows from the result for i.i.d.

data. Similarly, denote κ̄N = (φ̄
′
, σ̄ ′

N , θ̄
′
N)

′, where

σ̄N = 1

N

N∑

i=1

σ 0,i, θ̄N = 1

N

N∑

i=1

θ0,i, φ̄ = φ0.

Consistency and asymptotic normality of κ̂ follows using standard arguments, see, e.g., Amemiya (1985).

Proposition 4.3 (Consistency and asymptotic normality). Under Assumptions SA**, the maximizer of

ℓp(κ) is consistent κ̂
p−→ κ̌ . Furthermore, under these assumptions

√
N
(
κ̂ − κ̄N

) d−→ N(0,BPML),

17Here “p” stands for pseudo and is used to distinguish from the standard TMLE log-likelihood function where inference on
6 and2 is possible.
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where

BPML = H
−1
ℓ IℓH

−1
ℓ ,

Hℓ = lim
N→∞

E

[
− 1

N
H

N
p (κ̌)

]
, and Iℓ = lim

N→∞
1

N
E

[
N∑

i=1

∇(i)
p (κ0,i)∇(i)

p (κ0,i)
′
]
.

In Appendix, we show that the expected value of this log-likelihood function evaluated at κ̄N is zero.

Here by∇(i)
p (κ0,i)we denote the contribution of one cross-sectional unit i to the score of the pseudo log-

likelihood function ∇p(κ̄) evaluated at the true values {φ0, σ 0,i, θ0,i}. Note that unless cross-sectional
heterogeneity disappears (at a su�ciently fast rate) as N → ∞, the standard “sandwich” formula of
the variance-covariance matrix evaluated at κ̂ is not a consistent estimate of the asymptotic variance-
covariance matrix in Proposition 4.3, as in general

lim
N→∞

1

N

N∑

i=1

σ 0,iσ
′
0,i 6=

(
lim

N→∞
1

N

N∑

i=1

σ 0,i

)(
lim

N→∞
1

N

N∑

i=1

σ 0,i

)′

, (4.7)

whileHℓ andBPML are not block-diagonal for �xedT. However, under some restrictive assumptions on
higher order moments of initial observations and variance of strictly-exogenous regressors (when they
are present) Hayakawa and Pesaran (2012) argue that it is possible to construct a modi�ed consistent
estimator of Iℓ for the ARX(1) model. In the Monte Carlo section of this article we use the standard
“sandwich” estimator for variance-covariance matrix without any modi�cations. We leave derivation of
modi�ed consistent estimator of Iℓ for general PVARX(1) case for future research.

4.2.3. Misspeci�cation of themean parameter

Let us assume that one does not acknowledge the fact that data in di�erences is mean nonstationary (as
a consequence of E[ui,0] = γ u0 6= 0m) and considers the log-likelihood function as in (4.4).18 Denote

by κ̇ = (φ̇
′
, σ̇ ′, θ̇

′
)′, where

φ̇ = φ0, σ̇ = σ 0, θ̇ = σ 0 + Tvech
[
(Im −80)E[ui,0u′

i,0](Im −80)
′].

Hence θ̇ is a function of the second moment of ui,0, rather than the variance of ui,0. Analogously to the
univariate result in Kruiniger (2002), we have the following result.

Proposition 4.4. Let all but E
[
ui,0
]

= γ u0
= 0m Assumptions SA* be satis�ed. Then κ̂ the maximizer of

(4.4) is consistent in a sense that κ̂
p−→ κ̇ . Furthermore, under these assumptions

√
N
(
κ̂ − κ̇

) d−→ N(0,BML),

where

BML = H
−1
ℓ IℓH

−1
ℓ ,

Hℓ = lim
N→∞

E

[
− 1

N
H

N(κ̇)

]
, and Iℓ = lim

N→∞
E

[
1

N

N∑

i=1

∇(i)(κ̇)∇(i)(κ̇)′
]
.

In Appendix A.3, we show that the expected value of this log-likelihood function evaluated at κ̇ is
zero.

Remark 4.9. One can think of γ = (80 − Im)γ u0 as a (restricted) time e�ect for 1yi,1. In general,
the noninclusion of the time e�ects (when they are present in the model for yi,t , t > 1) results in

18Please note that we maintain the assumption that E[ui,0] = γ u0 is common for all i.
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inconsistency of the TML estimator. As it was already discussed in BHP, inclusion of time e�ects
is equivalent to cross-sectional demeaning of all 1yi,t beforehand. The resulting estimator κ̂ is then
consistent for κ0. As a result, if the cross-sectional demeaning is performed beforehand, the noninclusion
of the γ parameter is inconsequential.

Remark 4.10. Note that by combining analysis in Propositions 4.4 and 4.3 we can see that for cases
where E

[
1yi,1

]
= γ i are individual speci�c (as γ u0

are individual speci�c), one still obtains consistent

estimate of8 by simply maximizing ℓp(κ).
19 As an example for this situation, we consider DGP

yi,0 = Ŵµi + εy0, εy0 ∼ (0m,6y0),

with Ŵ 6= Im andµi being nonstochastic individual speci�c e�ects. Hence, the mean E
[
1yi,1

]
= (80 −

Im)(Ŵ − Im)µi = γ i is individual speci�c.

4.2.4. Identi�cation and bimodality issues for three-wave panels

In this section, we study the behavior of the log-likelihood function for the TML estimator with an
unrestricted initial condition. Consistency and asymptotic normality of anyML estimator, among others,
requires the assumption that the expected log-likelihood function has the uniquemaximum at the true
value. As we shall prove in this section, this condition is possibly violated for the TML estimator with
unrestricted initial condition for T = 2. For the ease of exposition, we consider univariate setup as in
Hsiao et al. (2002).

Theorem 4.2. Let assumptions SA* be satis�ed. Then for all φ0 ∈ (−1; 1) and T = 2, the following
equation holds for any value of ψ2

u,0 > 0:

plimN→∞ℓ
c(φ0) = plimN→∞ℓ

c(φp) (4.8)

Consequently the expected log-likelihood function has two local maxima

κ0 =
(
φ0, σ

2
0 , θ

2
0

)′
,

κp =
(
φp, θ

2
0 , σ

2
0

)′
,

where

φp ≡ 2

(
x − 1

x

)
+ φ0, x ≡ 1 + (1 − φ0)

2ψ2
u,0/σ

2
0 = 1

2

(
θ20

σ 2
0

+ 1

)
.

Proof. In Appendix A.4

Recall that based on the de�nition of2 in Theorem 4.1, the true value of θ2 is given by

θ20 = σ 2
0 + T(1 − φ0)

2ψ2
u,0, ψ2

u,0 = E[u2i,0].
Several remarks regarding the results in Theorem 4.2 are worth mentioning.20 First of all, instead
of proving the result using the concentrated log-likelihood function, it can be proved similarly by
considering the expected log-likelihood function directly. Secondly, if the parameter space is expressed
in terms of κ = (φ, σ 2,ψ2)′, then the value of ψ2 in both sets is equal to ψ2

0 = ψ2
p = (σ 2

0 + θ20 )/2.

Remark 4.11. While deriving the result we assumed that E[ui,0] = 0 and γ is not included in the
parameter set. If E[ui,0] 6= 0, then two cases are possible: a) misspeci�ed log-likelihood function as in
Section 4.2.3 is considered and the result remains unchanged and b) γ parameter is included in the set
of parameters and, as a result, Theorem 4.2 does not hold true. For intuition observe that in the latter

19Please refer to the proof of Proposition 4.3 in the Appendix.
20We should emphasize that Theorem 4.2 has any theoretical meaning only if φp ∈ Ŵ.
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case the trivial estimator φ̂ = (
∑N

i=11yi,2)/(
∑N

i=11yi,1) is consistent. However, the key observation
for this special case is that the model does not contain time e�ects. If, on the other hand, the model
contains time e�ects, φ̂ is no longer consistent, and consequentially, the main result of this section is still
valid a�er cross-sectional demeaning of the data.

Remark 4.12. In the covariance stationary case, it can be shown that the conclusion of Theorem
4.2 extends to PVAR(1) if the extensibility condition is satis�ed and in addition 80 is symmetric. In
particular, this condition is satis�ed by all three stationary designs in BHP with the pseudo value equal
to the identity matrix.

Without loss of generality, we can rewrite ψ2
u,0 as

ψ2
u,0 = α

σ 2
0

1 − φ20
, α ≥ 0.

To get more intuition about the problem at hand, we can rewrite φp in the following way:

φp = (φ20 + φ0)(1 − α)+ 2α

1 + α + φ0(1 − α)
. (4.9)

From here it can be easily seen that then the pseudo-true value φp is equal to unity for covariance
stationary initialization (α = 1). Furthermore, we can consider other special cases such as

|φ0| ≤ 1,α = 0 → φp = φ0,

|φ0| ≤ 1,α ∈ (0, 1) → φ0 < φp < 1.

In Monte Carlo simulations, it is common to impose some restrictions on the parameter space. In most
cases, φ is restricted to the stable region (−1; 1), e.g., Hsiao et al. (2002). However, as it is clearly seen
from Fig. 1 (and derivations above) a stable region restriction on φ does not solve the bimodality issue
and φp can lie in this interval.

By construction, the concentrated log-likelihood function is a sum of two quasi-concave functions
with maxima at di�erent points (Within Group and Between Group parts), bimodality does not
disappear for T > 2. Thus by adding these two terms we end up having function with possibly two
modes, with the �rst one being of order OP(NT) while the second one of order OP(N). This di�erent
order of magnitude explains why for larger values of T the Within Group (WG) mode determines
the shape of the whole function. To illustrate the problem described, we present several �gures of
plimN→∞ℓ

c(φ) for stationary initial conditions.
The behavior of the concentrated log-likelihood function in Figs. 2a–c is in line with the theoretical

results provided earlier. Note that once φ0 is approaching unity, the log-likelihood function becomes
�atter and �atter between the two points.

We can see from Fig. 1c that once T is substantially bigger than 2, the “true value” mode starts to
dominate the “pseudo value” mode. Based on all �gures presented, we can suspect that at least for
covariance stationary initial conditions (or close to) the TML estimator is biased positively, with the
magnitude diminishing in T.

Themain intuition behind the result inTheorem4.2 is quite simple.When the log-likelihood function
for θ (or ψ) is considered, no restrictions on the relative magnitude of those terms compared to σ 2 are

imposed. In particular, it is possible that θ̂2 < σ̂ 2 but that is a rather strange result given that

θ20 = σ 2
0 + T(1 − φ0)

2E[u2i,0].
But that is exactly what happens in the κp vector as

θ2p = σ 2
0 , σ 2

p = θ20 .
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Figure 1. Histogram for the TMLE estimator with T = 3,φ0 = 0.5, N = 250, and 10,000MC replications. The initial observation is from

covariance stationary distribution. Starting values for all iterations are set to φ(0) = {0.0, 0.1, . . . , 1.5}. No non-negativity restrictions
imposed.

Figure 2. Concentrated asymptotic log-likelihood function. In all �gures, the �rst mode is at the corresponding true valueφ0 , while the
second mode is located at φ = 1. The initial observation is from covariance stationary distribution. The dashed line represents the WG
part of the log-likelihood function, while the dotted line the BG part. The solid line, which stands for the log-likelihood function is a sum
of dashed and dotted lines.
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Hence the implicit estimate of (1−φ0)2E[u2i,0] is negative as we do not fully exploit the implied structure
of var1yi,1, which is a so-called “negative variance problem” documented in panel data, among others,
by Maddala (1971).21 This problem was already encountered in some Monte Carlo studies performed
in the literature (even for larger values of T), while some other authors only mention this possibility,
e.g., Alvarez and Arellano (2003) and Arellano (2003a). For instance, Kruiniger (2008) mentions that
for values of φ0 close to unity the non-negative constraint on (1 − φ0)

2E[u2i,0], if imposed, is binding in
50 % of the cases.2 or 9 parameter, on the other hand, is by construction p.d. (or non-negativity for
univariate case). That explains why in some studies (for instance Ahn and Thomas, 2006) no numerical
issues with the TML estimator were encountered. In this article, we analyze the limiting case of T = 2
and quantify the exact location of the secondmode. Observations made in this section provide intuition
for some of the Monte Carlo results presented in Section 5.

4.2.5. Time-series heteroscedasticity

Unlike the case with cross-sectional homoscedasticity, time-series homoscedasticity is necessary for
�xed T consistency of 8. However, in this section we show that, for T su�ciently large, one can still
consistently estimate 8.22 At �rst, we concentrate out the 2 parameter and consider the normalized
version of the log-likelihood function

ℓc(κc) = − 1

2T
log

∣∣∣∣∣
T

N

N∑

i=1

(ÿi −8ÿi−)(ÿi −8ÿi−)
′
∣∣∣∣∣

− T − 1

2T
log |6| − tr

(
6−1 1

2NT

N∑

i=1

T∑

t=1

(ỹi,t −8ỹi,t−1)(ỹi,t −8ỹi,t−1)
′
)
.

As the term inside the �rst log-determinant term is of order OP(T), the �rst component of the log-
likelihood function is of order oP(1). Thus as N,T → ∞ (jointly)

ℓc(κ c) = c + op(1)− T − 1

2T
log |6| − tr

(
6−1 1

2NT

N∑

i=1

T∑

t=1

(ỹi,t −8ỹi,t−1)(ỹi,t −8ỹi,t−1)
′
)
.

Clearly, the remaining component is just the FE e�ect log-likelihood function, and consistency of 6̂

and 8̂ follows directly. For the case with time-series heteroscedasticity in6t the log-likelihood function

consistently estimates 6∞ ≡ limT→∞ 1
T

∑T
t=16t assuming that this limit exists.

The gradient of the log-likelihood function with respect to φ is given by

∇φ(κ) = vec

(
6−1

N∑

i=1

T∑

t=1

(ỹi,t −8ỹi,t−1)ỹ
′
i,t−1

)
+ vec

((
1

T
2̂

)−1 N∑

i=1

(ÿi −8ÿi−)ÿ
′
i−

)
.

As it was argued in the previous sections, the second (“Between”) component of the derivative with
respect to 8 is of lower order than the �rst (“Within”) component. As a result, under the assumption
that N/T → ρ evaluated at the true value of80

1√
NT

(
1

T
2̂

)−1 N∑

i=1

(ÿi −80ÿi−)ÿ
′
i− = √

ρ

(
1

T
2̂

)−1 1

N

N∑

i=1

(ÿi −80ÿi−)ÿ
′
i− + op(1)

= √
ρ
(
(Im −80)9u,0(Im −80)

′)−1 [
(Im −80)9u,0

]
+ op(1)

= √
ρ
(
Im −8′

0

)−1 + op(1),

21Note that Maddala (1971) considers the Random E�ects estimator for Dynamic Panel Data models, similarly to Alvarez and
Arellano (2003).

22Inorder to showsimilar results for generalmodelswithexogenous regressors, onehas toprove that as T → ∞ the incidental
parameter matrix G does not result in an incidental parameter problem.
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where the corresponding result is valid irrespective of whether time-series heteroscedasticity is present
or not. Now consider the bias for the score of the �xed e�ects estimator evaluated at 80 and 6̄ =
1
T

∑T
t=16t (as in, e.g., Juodis, 2013)

1√
NT

E

[
6̄

−1
N∑

i=1

T∑

t=1

ε̃i,t ỹ
′
i,t−1

]
= −√

ρT6̄
−1

E[ε̄iȳi′] + o(1)

= −
√
ρ

T
6̄

−1

(
T−2∑

t=0

(
t∑

l=0

8l
0

)
6T−1−t

)′

+ o(1)

= −
√
ρ

T
6̄

−1

(
(Im −80)

−1
T−2∑

t=0

(
Im −8t+1

0

)
6T−1−t

)′

+ o(1)

= −√
ρ(Im −8′

0)
−1 + 1

T
6̄

−1

(
T−2∑

t=0

8t+1
0 6T−1−t

)′

+ o(1)

= −√
ρ(Im −8′

0)
−1 + o(1).

Here the last line follows if one assumes that 6s sequence is bounded, so that the sum term is of order
O(1). Hence, assuming that N/T → ρ, the standardized score (NT)−1/2∇φ(κ0) has an asymptotic
distribution correctly centered at zero. As a result, the large N,T distribution of the TML estimator is
identical to the one of the bias-corrected FE estimator of Hahn and Kuersteiner (2002).

Remark 4.13. Note that inclusion of the time-e�ects, which is equivalent to the cross-sectional
demeaning of data does not change conclusions of this section. The bias of the FE estimator, as shown by
Hahn andMoon (2006), is the same as without time-e�ects. It can easily seen that this result also applies
under time-series heteroscedasticity.

In the previous section, we have shown that in the correctly speci�ed model with time-series
homoscedasticity the score of the TML estimator fully removes the induced bias of the FE estimator. This
conclusion was established based on the assumption that N → ∞ for a �xed value of T. In this section,
we have extended this result by showing that under presence of possible time-series heteroscedasticity
the estimating equations of the TML estimator remove the leading bias of the FE estimator.

5. Simulation study

5.1. Monte Carlo setup

At �rst we present the general DGP that can be used to generate initial conditions yi,0:

yi,0 = Ai + Eiµi + Ciεi,0, εi,0 ∼ IID


0m,

∞∑

j=0

8
j
060(8

j
0)

′


 , (5.1)

for some parameter matrices Ai [m × 1], Ei [m × m], and Ci [m × m]. The special case of this setup is
the (covariance) stationary model if Ai = 0m and Ci = Ei = Im. We distinguish between stability and
stationarity conditions. We call the process {yi,t}Tt=0 dynamically stable if ρ(8) < 1 and (covariance)
stationary if in addition the �rst two moments are constant over time (t = 0, . . . ,T).
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In what follows, we set Ai = 02 for all designs.
23 We generate the individual heterogeneity µi (rather

than ηi) using a procedure similar to BHP

µi = π

(
qi − 1√

2

)
η̌i, qi

iid∼ χ2(1), η̌i
iid∼ N(02,6η̌). (5.2)

Unlike in the article of BHP, we do not �x6η̌ = 6, but instead we extend the approach of Kiviet (2007)
by specifying24,25

vec6η̌ =
(
1

T

T∑

t=1

(
8t

0(E − Im)+ Im
)
⊗
(
8t

0(E − Im)+ Im
)
)−1

(
Im2 −80 ⊗80

)−1
vec60. (5.3)

The way we generateµi ensures that the individual heterogeneity is not normally distributed, but still
i.i.d. across individuals. In the e�ect stationary case, the particular way the µi are generated does not
in�uence the behavior of TML log-likelihood function. However, the non-normality of µi in the e�ect
nonstationary case implies non-normality of ui,0 and, hence, a quasi maximum likelihood interpretation
of the likelihood function.With respect to the error terms, we restrict our attention to εi,t being normally
distributed ∀i, t.26

5.2. Designs

The parameter set which is common for all designs consists of a triplet {N;T;π} with possible values

N = {100; 250}, T = {3; 6}, π = {1; 3}.
In the DPD literature, it is well known that in the e�ect stationary case a higher value π leads to worse
�nite sample properties of the GMMestimators, see e.g. Bun andWindmeijer (2010) and Bun andKiviet
(2006). Thatmight also have indirect in�uence on the TML estimator even in the e�ect stationary case, as
we use generalizedmethod ofmoments (GMM) estimators as starting values for numerical optimization
of the log-likelihood function.

In this article, six di�erent Monte Carlo designs are considered. The �rst one is adapted from the
original analysis of BHP, while the other �ve are constructed to reveal whether the TML estimator is
robust with respect to di�erent assumptions regarding the parameter matrix 80, the initial conditions
yi,0, and cross-sectional heteroscedasticity. In the case where observations are covariance stationary or

cointegrated, BHP calibrated the design matrices 8 and 6 such that the population R2
1l

27 remained
approximately constant (≈ 0.237) between designs.

Design 1 (Covariance Stationary PVAR with ρ(80) = 0.8 from BHP).

80 =
(
0.6 0.2
0.2 0.6

)
, 60 =

(
0.07 −0.02

−0.02 0.07

)
, 6η̌ =

(
0.123 0.015
0.015 0.123

)
.

The second eigenvalue is equal to 0.4, and the population R21 values are given by R2
1l = 0.2396,

l = 1, 2.

23In the online Appendix some additional results for Design 2 are presented with Ai = ı2.
24See the online Appendix of this article.
25If variance of εi,t di�ers between individuals, then we evaluate this expression at 6̄n rather than at6.
26The analysis can be extended to the cases where the error terms are skewed and/or have fatter tails as compared to the
Gaussian distribution. As a partial robustness of their results BHP considered t- and chi square distributed disturbances, but
the results were close to the Gaussian setup. The estimation output for these setups was not presented in their article.

27Computation of the population R2 for stationary series R2
1l

= 1 − 6l,l
Ŵl,l

, l = 1, where vec(Ŵ) in the covariance stationary

case is given by vec(Ŵ) =
(
((Im −80)⊗ (Im −80))

(
Im2 −80 ⊗80

)−1 + Im2

)
Dmσ .
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Although the Monte Carlo designs in BHP are well chosen, they are quite limited in scope as the
analysis wasmainly focused on the in�uence ofρ(80). Furthermore, all designmatrices in the stationary
designs were assumed to be symmetric and Toeplitz,28 which substantially shrinks the parameter space
for80 and 6.

Design 2 (Covariance Stationary PVAR with ρ(80) = 0.50498).

80 =
(

0.4 0.15
−0.1 0.6

)
, 60 =

(
0.07 0.05
0.05 0.07

)
, 6η̌ =

(
0.079 0.052
0.052 0.100

)
.

Eigenvalues of80 in this design are given by 0.5± 0.070711i, and the population R21 values are given by
R212 = 0.23434 and R212 = 0.23182.

The parameter matrix80 was chosen such that the population R21 are comparable between Designs
1 and 2, but the extensibility condition is violated.

In Designs 3–4, we study �nite sample properties of the estimators when the initial condition is not
e�ect-stationary.29

Design 3 (Stable PVAR with ρ(80) = 0.50498). We take80 and 60 from Design 2, but with

Ei = 0.5 × I2, Ci = I2, i = 1, . . . ,N,

6η̌,T=3 =
(
0.090 0.059
0.059 0.144

)
, 6η̌,T=6 =

(
0.083 0.055
0.055 0.122

)
.

Design 4 (Stable PVAR with ρ(80) = 0.50498). We take80 and 60 from Design 2, but with

Ei = 1.5 × I2, Ci = I2, i = 1, . . . ,N,

6η̌,T=3 =
(
0.069 0.045
0.045 0.074

)
, 6η̌,T=6 =

(
0.074 0.049
0.049 0.083

)
.

In Section 4.2.2 we presented theoretical results for the TML estimator when unrestricted cross-
sectional heteroscedasticity is present. This design is used to investigate the impact of multiplicative
cross-sectional heteroscedasticity on the estimators.

Design 5 (Stable PVAR with ρ(80) = 0.50498 with non-i.i.d. εi,t). As a basis for this design, we take
80 and 60 from Design 2, but with

Ei = I2, Ci = ϕiI2, 60,i = ϕ2i 60, ϕ2i
iid∼ χ2(1), i = 1, . . . ,N.

The last design is dedicated to reveal the robustness properties of the TML estimatorwhen time-series
heteroscedasticity is present. From Section 4.2.5, we know that this estimator is not �xed T consistent
in this case.

Design 6 (Stable PVAR with time-series heteroscedasticity). As a basis for this design, we take80 and
60 from Design 2 Ei = Ci = I2, but with 60,t are generated as

60,t = (0.95 − 0.05T + 0.1t)× 60, t = 1, . . . ,T.

28Hence they satis�ed the “Extensibility” condition.
29Note that e�ect nonstationarity in these designs has no impact on the �rst unconditionalmoment of the {yi,t}Tt=0 process. It

can be explained by the fact that E[µi] = 02 is a su�cient condition for the {yi,t}Tt=0 process to have a zeromean. Thus there
is no reason to allow for mean nonstationarity by including γ parameter into the log-likelihood function, but it is crucial to
allow for a covariance nonstationary initial condition.
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This particular form of the time-series heteroscedasticity was chosen such that the

T−1
∑T

t=160,t = 60.
For convenience, we have multiplied both the mean and the median bias by 100. Similarly to BHP, we

only present results forφ11 andφ12, as results for the other two parameters are similar both quantitatively
and qualitatively. The number of Monte Carlo simulations is set to B = 10, 000.

5.3. Technical remarks

As starting values for TMLE estimation algorithm,we used estimators available in a closed form.Namely,
we used “AB-GMM,” “Sys-GMM,” and FDLS, the additive bias-corrected FE estimator as inKiviet (1995),
and the bias-corrected estimator of Hahn and Kuersteiner (2002). Here “AB-GMM” stands for the
Arellano and Bond (1991) estimator, and “Sys-GMM” is the System estimator of Blundell and Bond
(1998) which incorporatesmoment conditions based on the initial condition. All aforementionedGMM
estimators are implemented in two steps, with the usual clustered weighting matrix used in the second
step.30

We denote by “TMLE” the global maximizer of the TML objective in (4.4). By “TMLEr” we denote
the estimator which is obtained similarly as “TMLE,” but instead of selecting the global maximum, the

local maximum that satis�es |2̂− 6̂| ≥ 0 restriction is selected when possible31 and global maximum
otherwise. The TML estimator with imposed covariance stationarity is denoted by “TMLEc.” Finally, we
denote by “TMLEs” the estimator that is obtained by choosing the local maximum of TMLE objective
function with the lowest spectral norm.32 This choice is motivated by the fact that for univariate three-
wave panel the second mode is always larger than the true mode; in PVAR one can think of spectral
norm as measure of distance.

Regarding inference, for all the TML estimators we present results based on robust “sandwich” type
standard errors labeled (r). In case of GMM estimators, we provide rejection frequencies based on
commonly used Windmeijer (2005) corrected S.E.

5.4. Results

5.4.1. Estimation

In this section, we brie�y summarize the main �ndings of the MC study as presented in Tables C.1 to
C.6 in Appendix C. Inference related issues are discussed in the next section.

Design 1. For GMM estimators, results are similar to those in BHP. Irrespective of N, the properties
of all GMM estimators deteriorate as T and/or π increase, and these e�ects are substantial both for
diagonal and o�-diagonal elements of8. Similarly, we can see that for small values ofT, the performance
of the TML estimator is directly related to the corresponding bias and the RMSE properties of the GMM
estimators.33 Hence using the estimators that are biased towards pseudo-true value helps to �nd the
second mode that happens to be the global maximum in that replication. On the other hand, if the
resulting estimators are restricted in some way (TMLEs, TMLEr, TMLEc), the strong dependence on
starting values is no longer present (especially for TMLEs). In terms of both the bias and the RMSE,
we can see that the TMLEc estimator performs remarkably well irrespective of design parameter values
for both diagonal and o�-diagonal elements. The FDLS estimator does perform marginally worse as
compared to the TMLEc estimator but still outperforms all the GMMestimators. All the TML estimators

30That takes the form “Z′uu′Z”.
31In principle, this restriction is necessary but not su�cient for 2̂− 6̂ to be p.s.d. However, for the purpose of exposition, in
this article we stick to this condition rather than checking non-negativity of the corresponding eigenvalues.

32However, unlike the univariate studies of Hsiao et al. (2002) and Hayakawa and Pesaran (2012), where the φ parameter was
restricted to lie in the stationary region, in the numerical routine for the TMLE no restrictions on the parameter space of φ
are imposed.

33This contrasts sharply with the �nite sample results presented in BHP.
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(except for TMLEc) tend to have an asymmetric �nite sample distribution that results in corresponding
discrepancies between estimates of mean and median.

In Section 4.2.4, we have mentioned that the second mode of the unrestricted TML estimator is
located at 8 = Im. Based on the results in Table C.1, we can see that the diagonal elements for the
TML estimator are positively biased towards 1, while the o�-diagonal elements are negatively biased in
direction of 0 (at least for smallN and T). Thus the bimodality problem remains a substantial issue even
for T > 2 and choosing global optimum is not always the best strategy as TMLEs clearly dominates
TMLE for small values of T. For T = 6, the TMLEr and TMLEs provide equivalent results and some
improvements over “global” standard TMLE.

Design 2. One of the implications of this setup is that the FDLS estimator is not consistent. More
importantly, for this setup we do not know whether the bimodality issue even for T = 2 is still present.
Thus the need for the TMLEr and TMLEs estimators is less obvious. However, the motivation becomes
clear once we look at the corresponding results in Table C.2. TMLEs and TMLEr dominate TMLE in
all cases, with TMLEs being the preferred choice. We can observe that the bias of the TML estimator
in terms of both the magnitude and the sign does not change dramatically as compared to Design 1.
Observe that the bias of the TMLEc in the diagonal elements does not decrease with T fast enough to
match the performance of the TMLEr/TMLEs estimators, while for the o�-diagonal elements quite a
substantial bias remains even for N = 250,T = 6.34

Designs 3 and 4. As it was expected, the properties of Sys-GMM (that rely on the e�ect-stationarity
implied moment conditions) deteriorate signi�cantly compared to Design 2. We observe that for π = 1
the AB-GMM estimator is more biased in comparison to Design 2 (for Design 3), but is less biased if
π = 3. The intuition of these patterns is similar to the one presented by Hayakawa (2009) within the
univariate setting. Unlike the previous designs, the TML estimator exhibits lower bias for π = 3 despite
the fact that the quality of the starting values diminished in the same way as in the e�ect-stationary
case. Magnitudes of the e�ect nonstationary initial conditions considered in these designs are su�cient
to ensure that the restrictions imposed from TMLEr estimator are satis�ed even for small values of N
and T.

Design 5. Unlike in Designs 3–4, the setup of Design 5 has no impact on consistency of estimators
(except FDLS). As can be clearly seen from Table C.6, the same cannot be said about the variance of the
estimators. The introduction of cross-sectional variation in 60,i a�ected all estimation techniques by
means of higher RMSE/MAE values. On the other hand, e�ects are less clear for bias with improvements
for some estimators and higher bias for others.

Design 6. In this setup, all TML estimators are inconsistent due to the time-series heteroscedasticity,
with the TMLEc estimator seems to be a�ected the most in terms of both the bias and precision. By
comparing the results in Tables C.2 and C.6, we see that diagonal elements (φ11 in this case) are mostly
a�ected as the estimation quality of the o�-diagonal elements remains una�ected. Furthermore, the Sys-
GMM estimator, albeit still consistent, also shows some signs of deteriorating �nite sample properties.
For T = 6, the bias of TMLE/TMLEs/TMLEr estimators diminishes, as can be expected given that the
bias is of orderO(T−2).

5.4.2. Size and power properties

We brie�y summarize the main �ndings regarding the size and the power of the two-sided t-test for φ11
as presented in Tables C.7 to C.12 in Appendix C. Results for the other entries are available from the
author upon request.
• Except for TMLEc, for N = 100 all estimators result in substantially oversized test statistics with

relatively low power. In many cases, rejection frequencies for alternatives close to the unit circle are
of similar magnitude to size.

34As it will turn out later, these properties will play a major role to explain the �nite sample properties of the LR test of
covariance stationarity, that is presented in the online Appendix.
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• When the estimator is consistent, the inference based on TMLEc serves as a benchmark both for size
and power.

• In designs with the e�ect stationary initial condition (except N = 250,T = 6 to be discussed next),
the empirical rejection frequencies based on all the TML (except for TMLEc) as well as the AB-GMM
estimators do not result in symmetric power curves, due to the substantial �nite sample bias of the
estimators.

• Results for T = 6 and N = 250 suggest that the TML estimators without imposed stationarity
restrictions are well sized and have good power properties in all designs with almost perfectly
symmetric power curves.

• Although all the TML estimators (without imposed stationarity restriction) are inconsistent with
time-series heteroscedastic error terms, the actual rejection frequencies for N = 250 are only
marginally worse in comparison to the benchmark case. The same, however, cannot be said about
the TMLEc estimator.

• In designwith cross-sectional heteroscedasticity, the TMLbased test statistics becomemore oversized
compared to the benchmark case. The only exception is the case withN = 250 and T = 6, where the
actual size increases by at most 1%.
The results on bias and size presented here suggest that under the assumption of time homoscedas-

ticity, likelihood based techniques might serve as a viable alternative to the GMM based methods in
the simple PVAR(1) model. Particularly, the TML estimator of BHP tends to be robust with respect to
nonstationarity of the initial condition and cross-sectional heterogeneity of parameters. Furthermore, in
the �nite sample, likelihood-based methods are robust even if smooth time-series heteroscedasticity is
present. However, the TML estimator might su�er from serious bimodality problems when the number
of cross-sectional units is small and the length of time series is short. In these cases, the resulting
estimator heavily depends on the way the estimator is chosen. For some designs in 30%–40% of all MC

replications no local maxima satisfying |2̂ − 6̂| > 0 was available even for N = 250. However, this
problem becomes marginal once T = 6 where such fractions drop to 1%–10%. Based on these results
we suggest that the resulting TMLE estimator is chosen such that (when possible) local maxima should

satis�es a positive semi-de�nite (p.s.d.) |2̂ − 6̂| > 0 restriction (TMLEr), and otherwise the solution
with smaller spectral norm should be chosen (TMLEs).

6. Conclusions

In this article, we provide a thorough analysis of the performance of �xed T consistent estimation
techniques for PVARX(1) model-based on observations in �rst di�erences. We have mostly emphasized
the results and properties of the likelihood based method. We have extended the approach of BHP
with inclusion of strictly exogenous regressors and shown how to construct a concentrated likelihood
function for the autoregressive parameter only.

The key �nding of this paper is that in the three-wave panel the expected log-likelihood function of
BHP in the univariate setting does not have the unique maximum at the true value. This result has been
shown to be robust irrespective of initialization. Furthermore, we have provided a su�cient condition
for this result to hold for PVAR(1) in the three-wave panel.

Finally, we have conducted an extensive MC study with the emphasis on designs where the set of
standard assumptions about the stationarity and the cross-sectional homoscedasticity were violated.
Results suggest that likelihood-based inference techniques might serve as a feasible alternative to GMM
basedmethods in a simple PVARX(1)model.However, for small values ofN and/orT the TML estimator
is vulnerable to the choice of the starting values for the numerical optimization algorithm. These �nite
sample �ndings have been related to the bimodality results derived in this article. We proposed several
ways of choosing the estimator among local maxima. Particularly, we suggest that the resulting TMLE
estimator is chosen such that local maxima should satis�es p.s.d. restriction (TMLEr), and otherwise the
solution with smaller spectral norm should be chosen (TMLEs).
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Appendices

Appendix A: Proofs

Firstly, we de�ne a set of new auxiliary variables, that are used in the derivations

ε̃i,t(φ) ≡ ỹi,t −8ỹi,t−1, ε̈i(φ) ≡ ÿi −8ÿi−,

ZN(κ) ≡ 1

N

N∑

i=1

T∑

t=1

ε̃i,t(φ)ε̃i,t(φ)
′, QN(κ) ≡ 1

N

N∑

i=1

T∑

t=1

ỹi,t−1ε̃i,t(φ)
′,

MN(κ) ≡ T

N

N∑

i=1

ε̈i(φ)ε̈i(φ)
′, NN(κ) ≡ T

N

N∑

i=1

ÿi−ε̈i(φ)
′,

RN ≡ 1

N

N∑

i=1

T∑

t=1

ỹi,t−1ỹ
′
i,t−1, PN ≡ T

N

N∑

i=1

ÿi−ÿ
′
i−, 4 ≡

T−2∑

l=0

(T − 1 − l)8l
0.

In the derivations, we use several results concerning di�erentials (for more details refer to Magnus and
Neudecker, 2007)

dlog |X| = tr(X−1(dX)), d(trX) = tr(dX),

d(vecX) = vec(dX), dX−1 = −X−1(dX)X−1,

dXY = (dX)Y + X(dY), d(X ⊗ X) = d(X)⊗ X + X ⊗ d(X),

vec(dX ⊗ X) = (Im ⊗ Km ⊗ Im)(Im2 ⊗ vecX)vec d(X).

Appendix A.1. Auxiliary results

Lemma Appendix A.1.

ϒ ≡
T−1∑

l=0

8l
0 − TIm +

(
T−2∑

l=0

(T − l)8l
0 −

T−2∑

l=0

8l
0

)
(Im −80) = Om.

Proof.

ϒ ≡
T−1∑

l=0

8l
0 − TIm +

(
T−2∑

l=0

(T − l)8l
0 −

T−2∑

l=0

8l
0

)
(Im −80)

= 8T−1
0 +

T−2∑

l=0

8l+1
0 − TIm + T

(
T−2∑

l=0

8l
0 −

T−1∑

l=1

8l
0

)
−
(
T−2∑

l=1

l8l
0 −

T−1∑

l=1

(l − 1)8l
0

)

= 8T−1
0 +

T−1∑

l=1

8l
0 − TIm + T(Im −8T−1

0 )−
(
T−2∑

l=1

8l
0 − (T − 2)8T−1

0

)

= 8T−1
0 +

T−2∑

l=0

8l+1
0 − T8T−1

0 −
(
T−2∑

l=1

8l
0 − (T − 2)8T−1

0

)

= (1 − T)8T−1
0 +8T−1

0 + (T − 2)8T−1
0 = Om.

Lemma Appendix A.2. Under Assumptions SA* the following equality holds

E [NN(κ0)] = 1

T
420.

for20 = 60 + T(Im −80)E[ui,0u′
i,0](Im −80)

′.
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Proof. De�ne50 = 80 − Im. Then

E
[
NN(κ0)

′] = E

(
T

N

N∑

i=1

(ÿi −80ÿi−)ÿ
′
i−

)

= E


(50ui,0 + ε̄i

)
((

T−1∑

s=0

8s
0 − TIm

)
yi,0 +

(
T−2∑

l=0

(T − 1 − l)8l
0

)
−50µi+

)′


+ E


(50ui,0 + ε̄i

)
(
T−1∑

t=1

t−1∑

s=0

8s
0εi,t−s

)′


= E


(50ui,0 + ε̄i

)
(
ϒyi,0 +

(
T−2∑

l=0

(T − 1 − l)8l
0

)
50ui,0 +

(
T−1∑

t=1

t−1∑

s=0

8s
0εi,t−s

))′
 .

In Lemma Appendix A.1, we showed thatϒ = Om. Thus

E

[
T

N

N∑

i=1

(ÿi −80ÿi−)ÿ
′
i−

]
= E


(50ui,0 + ε̄i

)
(
450ui,0 +

(
T−1∑

t=1

t−1∑

s=0

8s
0εi,t−s

))′


= (Im −80)E[ui,0u′
i,0](Im −80)

′4′ + 1

T
604

′ = 1

T
204

′.

Appendix A.2. Log-likelihood function

Proof of Theorem 4.1. Let

1τ i =




1yi,1
1εi,2
...

1εi,T


 , CT =




1 0 · · · 0

1 1
. . .

...
...

. . .
. . . 0

1 · · · 1 1



, LT =




0 · · · · · · · · · 0

1
. . .

. . .
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 0



,

and let D be a [T × T + 1] matrix which transforms a [T + 1 × 1] vector x into a [T × 1] vector
of corresponding �rst di�erences. Also de�ne 2 ≡ T(9 − 6) + 6 and � ≡ 6−12. If we denote
Ŵ ≡ 6−19 , it then follows

61τ = (IT ⊗6)




Ŵ −Im Om · · · Om

−Im 2Im
. . .

. . .
...

Om
. . .

. . .
. . . Om

...
. . .

. . .
. . . −Im

Om · · · Om −Im 2Im




= (IT ⊗6)
[
(DD′ ⊗ Im)+ (e1e

′
1 ⊗ (Ŵ − 2Im))

]

= (IT ⊗6)
[
((C′

TCT)
−1 ⊗ Im)+ (e1e

′
1 ⊗ (Ŵ − Im))

]
.

Subsequently, the determinant is given by (using the fact that |CT | = 1)

|61τ | = |6|T |((C′
TCT)

−1 ⊗ Im)+ (e1e
′
1 ⊗ (Ŵ − Im))|

= |6|T |Im + (e′1C
′
TCTe1(Ŵ − Im))||(C′

TCT)
−1|

= |6|T |Im + (e′1C
′
TCTe1(Ŵ − Im))|
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= |6|T |Im + T(Ŵ − Im)|
= |6|T |�| = |6|T−1|2|,

where the second line follows by means of the Matrix Determinant Lemma.35 Using the Woodbury
formula, we can evaluate 6−1

1τ

6−1
1τ =

[
((C′

TCT)
−1 ⊗ Im)+ (e1e

′
1 ⊗ (Ŵ − Im))

]−1
(IT ⊗6−1)

= ((C′
TCT)⊗ Im)− ((C′

TCTe1)⊗ Im)
(
(Ŵ − Im)

−1 + TIm
)

× ((e′1C
′
TCT)⊗ Im)(IT ⊗ 6−1)

= (C′
T ⊗ Im)U(CT ⊗ Im)(IT ⊗6−1)

= (C′
T ⊗ Im)U(IT ⊗6−1)(CT ⊗ Im),

where U is

U = ITm − ((CTe1)⊗ Im)
(
(Ŵ − Im)�

−1
)
((e′1C

′
T)⊗ Im)

= ITm − (ıT ⊗ Im)
(
(Ŵ − Im)�

−1
)
(ı′T ⊗ Im) = ITm − ıTı

′
T ⊗

(
(Ŵ − Im)�

−1
)

= ITm − 1

T
ıTı

′
T ⊗

(
Im −�−1

)
= ITm − 1

T
ıTı

′
T ⊗ Im + 1

T
ıTı

′
T ⊗�−1

= WT ⊗ Im + 1

T
ıTı

′
T ⊗�−1,

so that

6−1
1τ = (C′

T ⊗ Im)

[
WT ⊗6−1 + 1

T
ıTı

′
T ⊗2−1

]
(CT ⊗ Im).

Now using the fact that R = (ITm − LT ⊗8) and de�ning zi = (yi,0, . . . , yi,T),

Z ≡ (CT ⊗ Im)(ITm − LT ⊗8)vec(ziD
′)

= vec(ziD
′C′

T −8ziD
′L′

TC
′
T) = vec((CTDz

′
i)

′ −8(CTLTDz
′
i)

′)

= vec((Y i − ıTyi,0)
′ −8(Y i− − ıTyi,0)

′).

Hence the log likelihood function of BHP can be rewritten in the followingway (where κ = (φ′, σ ′, θ ′)′):

ℓ(κ) = c − N

2

(
(T − 1) log |6| + log |2| + tr(6−1ZN(κ))+ tr(2−1MN(κ))

)
. (A.1)

In order to include exogenous regressors in the model, we denote the following quantities:

γ = G1X†
i , X̌i = (xi,1, . . . , xi,T).

The Z term in this case is given by

Z ≡ (CT ⊗ Im)
(
(ITm − LT ⊗8)vec(ziD

′)− (IT ⊗ B)vec(1Xi)− vec(γ e′1)
)

= vec((Y i − ıT(yi,0 + γ ))′ −8(Y i− − ıTyi,0)
′ − B(X̌i − ıTxi,0)

′).

Result follows directly based on derivations for PVAR(1) model by rede�ning ZN andMN .

35Alternatively, |61τ | can be evaluated using the general formula for tridiagonal matrices in Molinari (2008).
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Appendix A.3. Score vector

Proof of Proposition 4.1. Here for simplicity we derive �rst di�erential of ℓ(κ) without exogenous
regressors

− 2

N
dℓ(κ) = (T − 1)tr(6−1(d6))+ tr(2−1(d2))

− tr(6−1(d6)6−1ZN(κ))− tr(2−1(d2)2−1MN(κ))

+ tr(6−1(dZN(κ)))+ tr(2−1(dMN(κ)))

= tr(6−1((T − 1)6 − ZN(κ))6
−1(d6))

+ tr(2−1(2− MN(κ))2
−1(d2))

− 2tr
(
6−1((d8)QN(κ))

)
− 2tr

(
2−1((d8)NN(κ))

)
.

Based on these derivations, we conclude that the corresponding [2m2 +m× 1] score vector is given by

∇(κ) = N




vec
(
6−1QN(κ)

′ +2−1NN(κ)
′)

D′
mvec(− 1

2 (6
−1((T − 1)6 − ZN(κ))6

−1))

D′
mvec(− 1

2 (2
−1(2− MN(κ))2

−1))


 . (A.2)

Mean zero result follows directly from Lemma Appendix A.2 and the fact that E[6−1
0 QN(κ0)

′] =
−(1/T)4′ (the “Nickell bias”).

Proof of Proposition 4.2. We need to derive the exact expression for vec d2 under assumption that
vec E[ui,0u′

i,0] = (Im2 − 8 ⊗ 8)−1vec6. At �rst, we rewrite the expression for vec2 (we prefer to
work with vec(·) rather than vech(·) to avoid excessive use of duplication matrixDm)

vec2 = vec6 + T ((Im −8)⊗ (Im −8)) vec E[ui,0u′
i,0]

= vec6 + T ((Im −8)⊗ (Im −8)) (Im2 −8⊗8)−1vec6 = Jσθvec6.

Using rules for di�erentials, we get that

d(vec2) = Jσθd(vec6)+ d(Jσθ )vec6.

Using the product rule for di�erentials

1

T
d(Jσθ ) = − (d(8)⊗ (Im −8)+ (Im −8)⊗ d(8)) (Im2 −8⊗8)−1

+ ((Im −8)⊗ (Im −8)) (Im2 −8⊗8)−1

× (d(8)⊗8+8⊗ d(8)) (Im2 −8⊗8)−1.

Recall de�nition of E[ui,0u′
i,0] = 90 and ψ0 = vec90. As d(Jσθ )vec6 is already a vector by taking

vec(·) of this term, nothing changes

1

T
vec(d(Jσθ )vec6) = −(ψ ′

0 ⊗ Im2)vec (d(8)⊗ (Im −8)+ (Im −8)⊗ d(8))

+
(
ψ ′

0 ⊗
(
((Im −8)⊗ (Im −8)) (Im2 −8⊗8)−1

))

× vec (d(8)⊗ (8)+ (8)⊗ d(8)).

Using the formula for vec(dX ⊗ X)

1

T
d(Jσθ )vec6 = −(ψ ′

0 ⊗ Im2)(Im ⊗ Km ⊗ Im)(Im2 ⊗ (j − φ)+ (j − φ)⊗ Im2)dφ

+
(
ψ ′

0 ⊗
(
((Im −8)⊗ (Im −8)) (Im2 −8⊗8)−1

))

× (Im ⊗ Km ⊗ Im)(Im2 ⊗ φ + φ ⊗ Im2)dφ.
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Recall the de�nition of Jφθ to conclude that

d(Jσθ )vec6 = Jφθdφ. (A.3)

The desired results follows by combining di�erential results for dvec2 with proof of Proposition 4.1.

Proof of Proposition 4.4. Consider the score vector evaluated at κ̇

∇(κ̇) = N




vec
(
6−1

0 QN(φ0)
′ + 2̇

−1
NN(φ0)

′
)

D′
mvec(− 1

2 (6
−1
0 ((T − 1)60 − ZN(φ0))6

−1
0 ))

D′
mvec(− 1

2 (2̇
−1
(2̇− MN(φ0))2̇

−1
))


 . (A.4)

Now observe that themean of E[ui,0] does not in�uence the “Nickell bias” E[6−1
0 QN(φ0)

′] = −(1/T)4′

and the unbiasedness of the FE estimator of6 as E[ZN(φ0)] = (T − 1)60. On the other hand,MN(φ0)

and NN(φ0) are (implicitly) in�uenced by γ . Similarly, as in the proof of Appendix A.2,

E

[
T

N

N∑

i=1

(ÿi −80ÿi−)ÿ
′
i−

]
= E


(50ui,0 + ε̄i

)
(
450ui,0 +

(
T−1∑

t=1

t−1∑

s=0

8s
0εi,t−s

))′


= 50E[ui,0u′
i,0]5′

04
′ + 1

T
604

′ = 1

T
2̇4′.

Note that this term depends on the second uncentered moment of ui,0 rather than second centered
moment of ui,0. Finally,

E

[
T

N

N∑

i=1

(ÿi −80ÿi−)(ÿi −80ÿi−)
′
]

= TE
[(
50ui,0 + ε̄i

) (
50ui,0 + ε̄i

)′]

= T50E[ui,0u′
i,0]5′

0 + 60 = 2̇.

Combining all results we conclude that E[∇(κ̇)] = 0.

Proof of Proposition 4.3. To see that E[∇(κ̄N)] = 0 we just make use of proof for Proposition 4.4. Note
that

E

[
T

N

N∑

i=1

(ÿi −80ÿi−)ÿ
′
i−

]

= 1

N

N∑

i=1

E


(50ui,0 + ε̄i

)
(
450ui,0 +

(
T−1∑

t=1

t−1∑

s=0

8s
0εi,t−s

))′


= 50
1

N

(
N∑

i=1

E[ui,0u′
i,0]
)
5′

04
′ + 1

T
6̄N4

′ = 1

T
2̄N4

′

and

E

[
T

N

N∑

i=1

(ÿi −80ÿi−)(ÿi −80ÿi−)
′
]

= T

N

N∑

i=1

E
[(
50ui,0 + ε̄i

) (
50ui,0 + ε̄i

)′]

= T50
1

N

(
N∑

i=1

E[ui,0u′
i,0]
)
5′

0 + 6̄N = 2̄N .

On the other hand, E[6̄−1
N QN(φ0)

′] = −(1/T)4′ and E[ZN(φ0)] = (T − 1)6̄N . Combining these
intermediate results the desired �nal conclusion E[∇(κ̄N)] = 0 follows. Note that in this case, E[ui,0] is
allowed to be nonzero and individual speci�c.
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Appendix A.4. Bimodality

Proof of Theorem 4.2. Let us denote the true value for θ2 as θ20 that for general T is equal to

θ20 = σ 2
0 + T(1 − φ0)

2E[u2i,0].
Thus at T = 2 it is equal to

θ20 = σ 2
0 + 2(1 − φ0)

2E[u2i,0].
For some φ, we denote the variables

θ2φ = E

[
2

N

N∑

i=1

(ÿi − φÿi−)
2

]
, σ 2

φ = E

[
1

N

N∑

i=1

2∑

t=1

(ỹi,t − φỹi,t−1)
2

]
.

and a = φ0 − φ.
As we assume that the observations are i.i.d., it is su�cient to analyze previous expressions for some

arbitrary individual i. At �rst we proceed with expression for σ 2
φ (recall de�nition of x variable)

σ 2
φ = E

[
1

N

N∑

i=1

2∑

t=1

(ỹi,t − φỹi,t−1)
2

]

= 0.5E
[
(1yi,2 − φ1yi,1

)2]
= 0.5E

[
(1εi,2 + (φ0 − φ)1yi,1

)2]
= 0.5E

[
(1εi,2 + (φ0 − φ)((1 − φ0)ui,0 + εi,1)

)2]
= 0.5E

[
(εi,2 + (φ0 − φ)(1 − φ0)ui,0 + (φ0 − φ − 1)εi,1

)2]
= 0.5(σ 2

0 (1 + (φ0 − φ − 1)2)+ (φ0 − φ)2(1 − φ0)
2E[u2i,0])

= 0.5σ 2
0

(
1 − 2(φ0 − φ)+ 1 + (φ0 − φ)2x

)

= 0.5σ 2
0

(
a2x + 2(1 − a)

)
.

Similarly, we can derive expression for θ20 and θ2φ in terms of the x and a:

θ20 = σ 2
0 + 2(1 − φ0)

2E[u2i,0] = σ 2
0 (2x − 1) .

For θ2φ , it follows that

θ2φ = E

[
2

N

N∑

i=1

(ÿi − φÿi−)
2

]

= 2E
[
(ūi − ui,0 − φ(ūi,− − ui,0))

2
]

= 2E
[
(ε̄i + φ0ūi,− − ui,0 − φ(ūi,− − ui,0))

2
]

= 0.5E
[
(εi,2 + εi,1 + φ0(ui,1 + ui,0)− 2ui,0 − φ(ui,1 − ui,0))

2
]

= 0.5E
[
(εi,2 + εi,1(1 + φ0 − φ)+ ui,0(φ0(1 + φ0)− 2 − φ(φ0 − 1)))2

]

= 0.5σ 2
0

[
1 + (1 + a)2 + (1 − φ0)

2E[u2i,0](a + 2)2
]

= 0.5σ 2
0

[
1 + (1 + a)2 + (1 − φ0)

2E[u2i,0](a + 2)2/σ 2
0

]

= 0.5σ 2
0

[
1 + (1 + a)2 + (x − 1)(a + 2)2

]
= 0.5σ 2

0

[
a2x + (a + 1)(4x − 2)

]
.

Continuing

σ 2
φθ

2
φ = 0.25σ 4

0

(
a2x − 2(a − 1)

) (
a2x + (a + 1)(4x − 2)

)

= 0.25σ 4
0

(
a2
(
a2x2 + 2xa(2x − 2)+ (2x − 2)2

)
+ 4(2x − 1)

)
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= 0.25σ 4
0

(
a2 (ax + 2(x − 1))2 + 4(2x − 1)

)

= 0.25σ 4
0

(
a2 (ax + 2(x − 1))2

)
+ σ 2

0 θ
2
0 .

The �rst term in the brackets is obviously equal for true value φ0 (a = 0) and for

a = 2
1 − x

x
⇒ φ0 − φ = 2

1 − x

x
⇒ φ = 2

x − 1

x
+ φ0.

Appendix B: Iterative bias correction procedure

Algorithm 1. Iterative bias-correction procedure FDOLS:
1. For k = 1 to kmax:
2. Givenϒ(k−1) computeϒ(k) = ϒ̂ + (T − 1)6̂(ϒ(k−1))S−1

N .

3. If ‖ϒ(k) −ϒ(k−1)‖ < ǫ, stop. For some pre-speci�ed matrix norm ‖ · ‖.
To initialize iterations, we setϒ(0) = ϒ̂ , and 6̂(ϒ(k−1)) is de�ned as

6̂(ϒ) = 1

2N(T − 1)

N∑

i=1

(
T∑

t=2

(
1yi,t −ϒ1wi,t

) (
1yi,t −ϒ1wi,t

)′
)
. (B.1)

Asymptotic normality of the estimator can be proved by treating it as the solution of the estimating
equations

N∑

i=1

T∑

t=2

(
(1yi,t −ϒ1wi,t)1w′

i,t + 1

2
(1yi,t −ϒ1wi,t)(1yi,t −ϒ1wi,t)

′S
)

= Om×(k+m), (B.2)

where S = [Im Om×k].

Proposition Appendix B.1. Let Assumptions SA be satis�ed and the iterative procedure in Algorithm 1
has the unique �xed point. Then

√
N
(
υ̂ iBC − υ0

) d−→ Nm(0m2 ,F), (B.3)

where

F ≡ V−1XV−1, V = (61 ⊗ Im)− 1

2
(Im(k+m) + Km,(k+m))((S

′60S)⊗ Im),

X ≡ plimN→∞
1

N

N∑

i=1

vecOi (vecOi)
′ ,

Oi ≡
T∑

t=2

(
(1yi,t −ϒ0wi,t)w

′
i,t + 1

2
(1yi,t −ϒ0wi,t)(1yi,t −ϒ0wi,t)

′S
)
.

Note that asymptotic distribution of the estimator depends upon the choice of 6̂(8). Di�erent
asymptotic distribution is obtained if instead of using the6 estimator in (B.1) we can opt for the standard
infeasible ML estimator

6̂(ϒ) = 1

N(T − 1)

N∑

i=1

(
T∑

t=1

(
ỹi,t −8ỹi,t−1 − Bx̃i,t

) (
ỹi,t −8ỹi,t−1 − Bx̃i,t

)′
)
.
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