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ABSTRACT

We describe stationarity and ergodicity (SE) regions for a recently proposed
class of score driven dynamic correlation models. These models have impor-
tant applications in empirical work. The regions are derived from su�ciency
conditions in Bougerol (1993) and take a nonstandard form. We show that the
nonstandard shape of the su�ciency regions cannot be avoided by reparame-
terizing themodel or by rescaling the score steps in the transition equation for
the correlation parameter. This makes the result markedly di�erent from the
volatility case. Observationally equivalent decompositions of the stochastic
recurrence equation yield regionswith di�erent shapes and sizes.Weuse these
results to establish the consistency and asymptotic normality of themaximum
likelihood estimator. We illustrate our results with an analysis of time-varying
correlations betweenU.K. andGreek equity indices.We �nd that also in empiri-
cal applications di�erent decompositions can give rise to di�erent conclusions
regarding the stability of the estimated model.

KEYWORDS

Asymptotic normality;
consistency; dynamic
copulas; generalized
autoregressive score models;
observation driven models;
stochastic recurrence
equations

JEL CLASSIFICATION

C22; C32; C58

1. Introduction

Time-variation in correlations is an important feature of economic and �nancial data and a crucial ingre-
dient of empirical analyses, such as the assessment of risk and the construction of investment portfolios.
Available models for capturing the time-variation in correlations include, amongst many others, the
Baba-Engle-Kra�-Kroner (BEKK) model of Engle and Kroner (1995), the switching correlation models
of Pelletier (2006), the dynamic conditional correlation (DCC)model of Engle (2002) with its adaptation
by Aielli (2013), the dynamic equicorrelation (DECO) model of Engle and Kelly (2012), the dynamic
copula models of Patton (2009) and Oh and Patton (2012), and the score driven models of Creal et al.
(2011, 2013) and Harvey (2013); see also the overviews of Bauwens et al. (2006) and Silvennoinen and
Teräsvirta (2009).

We focus on the stochastic properties of the recently proposed score driven models of Creal et al.
(2011, 2013) and Harvey (2013), which we refer to as generalized autoregressive score (GAS) models.
These models have proved particularly useful when modeling fat-tailed or skewed data, such as o�en
encountered in empirical �nance; see for example Janus et al. (2014), Harvey and Luati (2014), and Lucas
et al. (2014). The dynamics of correlations and volatilities in these models are driven by the score of the
predictive conditional distribution. If the latter is fat-tailed, the score driven dynamics automatically
correct for in�uential observations, see Creal et al. (2011). In this way, they share some similarities with
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models from the robust generalized autoregressive conditional heteroskedasticity (GARCH) literature;
see for example Boudt et al. (2013). The score driven approach used in the construction of GAS models,
however, provides amuchmore general and uni�ed framework for parameter dynamics that is applicable
far beyond the volatility and correlation context; see Creal et al. (2013, 2014) for a range of other
examples. In addition, from a forecasting perspective GAS models o�en have a similar performance
to correctly speci�ed state-space models, see Koopman et al. (2012).

Despite their proven empirical usefulness, the theoretical properties of GAS models are less well
developed. The complication lies in the highly nonlinear transition dynamics of the time-varying
parameter in typical GAS models. In this article, we contribute to our understanding of the stochastic
properties of GAS models for dynamic correlations. The fundamental question is to understand which
parameterizations, and parameter values generate stationary and ergodic (abbreviated as SE from now
on) time series processes. This o�ers an important characterization of the stochastic properties of
GAS models. SE properties can be combined with the existence of unconditional moments for the
objective function to establish proofs of consistency and asymptotic normality of extremum estimators;
see, e.g., Straumann and Mikosch (2006) for maximum likelihood estimation of nonlinear conditional
volatility models, Francq and Zakoian (2011) and Boussama et al. (2011) for the case of multivariate
GARCHmodels, and Harvey (2013) for GAS volatility models. For each correlation model we consider,
we identify the parameter values that ensure the SE property and call this the “SE region” of the
parameter space. To establish SE regions, we follow the classical average contraction argument for
stochastic recurrence relations as laid out in the su�cient conditions formulated by Bougerol (1993).
Given these conditions, we compute numerically the SE regions for a range of empirically relevant
models.

We have four contributions. First, we are the �rst to derive SE regions for the class of score driven
correlation models that have been suggested recently in the literature. We show that the SE su�ciency
regions take a highly nonstandard form, dissimilar to the familiar triangle and curved triangular
shapes for the GARCH model; see Nelson (1990). In an empirical example, we demonstrate that the
conditions for nonlinear recurrence equations can be used to ensure stationarity of concrete models,
applied on real data. This also extends the results in Blasques et al. (2014b) for volatility and tail
index models with univariate observations to the case of time-varying parameters and multivariate
observations.

Second, we show that the shape and size of the SE su�ciency region as derived from the conditions
of Bougerol (1993) depends on the way the stochastic recurrence equation for the correlation is
constructed from bivariate uncorrelated noise. In particular, we show that the choice of the square root
of the correlation matrix in this construction has a nontrivial e�ect on the size of the SE su�ciency
region.

Third, we show analytically why the correlation case is markedly di�erent from the volatility case.
For the volatility case, Harvey (2013) shows that modeling the log-volatility renders the information
matrix independent of the time-varying volatility. The resulting stochastic recurrence equation becomes
linear, and we can use linear process theory to study the SE properties. A similar feature is generally not
available for the dynamic correlationmodel: neither a reparameterization of the correlation nor a scaling
of the score steps makes the stochastic recurrence equation a linear process. The reason is that unlike in
the volatility case, the GAS steps for the correlation model consist of two separate terms with di�erent
nonlinearities in the correlation parameter.

Fourth, we use our SE results to establish the consistency and asymptotic normality of the ML
estimator.

The remainder of this article is organized as follows. In Section 2, we introduce ourmodel for dynamic
bivariate correlations. In Section 3, we state the conditions for the SE su�ciency regions. In Section 4,
we establish model invertibility as well as the consistency and asymptotic normality of theML estimator.
In Section 5, we determine the SE regions numerically for a number of di�erent models and provide an
empirical illustration for U.K. andGreek equity indices.We conclude in Section 6. TheAppendix gathers
the more technical results and derivations.
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2. Scoremodels for correlations

Consider a real-valued bivariate stochastic sequence of observations {yt}t∈N generated by a zero mean
elliptical conditional distribution with time-varying correlation matrix R(ft),

yt | ft
i.i.d.∼ p(y⊤

t R(ft)
−1yt)

|R(ft)|1/2
, R(ft) =

(

1 ρ(ft)
ρ(ft) 1

)

, (1)

where p : R+
0 → R

+
0 denotes a real-valued density generator function in the quadratic form y⊤

t R(ft)
−1yt ,

the sequence {ft}t∈N is a real-valued sequence for the time-varying parameter ft , ρ(ft) ∈ [−δ, δ] with
δ ∈ (0, 1] is the dynamic correlation parameter at time t, and R(ft) is the correlationmatrix at time t. For
example, if yt is conditionally normal, we have p(x) = (2π)−1 exp(−x/2). We fully focus the exposition
on the correlation case by restricting the variances in (1) to one. Time-varying variances in score driven
models have already been dealt with in for example Creal et al. (2011) and Harvey (2013).

The formulation in (1) can also be interpreted as a copula model, see the discussion in Patton (2009).
Under the assumptions of stationary marginals and no volatility spillovers, stability conditions for the
copula then lead to stability of the whole model. The class of elliptical models is also economically
interesting, as it enables an analytic characterization of the resulting portfolio returns and the risk-return
trade-o�; see for example Chamberlain (1983), Owen and Rabinovitch (1983), and Hamada and Valdez
(2008).

Following Creal et al. (2011, 2013), the GAS dynamics for the time-varying parameter ft in (1) take
the form

ft+1 = ω + βft + αs(ft , yt), t = 1, 2, . . . , (2)

s(ft , yt) = S(ft)q(yt , ft), q(yt , ft) = ∂

∂f
log

p(y⊤
t R(f )

−1yt)

|R(f )|1/2

∣

∣

∣

∣

f=ft

, (3)

with an arbitrary �xed initial condition f1 ∈ F .Wede�ne the parameter vector θ ∈ 2 as θ = (ω,α,β , λ),
where (ω,α,β) ∈ R

3 is a vector of updating parameters, and λ ∈ R
nλ allows nλ ≥ 0 density tail

shape parameters to be estimated. The time-invariant parameter space is described by2 ⊆ R
3+nλ . We

suppress dependence of the scaling and the score on θ by writing s(ft , yt) ≡ (ft , yt ; λ), S(ft) ≡ S(ft ; λ),
and q(yt , ft) ≡ q(yt , ft ; λ). For the case of the bivariate correlation model (1), we obtain

q(yt , ft) = ρ̇(ft)

1 − ρ(ft)2

(

ṗ(y⊤
t R(ft)

−1yt)

(

2ρ(ft)y
⊤
t R(ft)

−1yt − y⊤
t

(

0 1
1 0

)

yt

)

+ ρ(ft)

)

(4)

with ṗ(x) = ∂ log p(x)/∂x and ρ̇(ft) = ∂ρ(f )/∂f |f=ft .
Each choice for the scaling function S in (3) gives rise to a new GAS model. An o�en used choice of

S relates to the local curvature of the score as measured by the information matrix, for example

S(f ) = (It(f ))
−a, It(f ) = Et−1[q(yt , f )q(yt , f )⊤], (5)

where a is typically taken as 0, 1/2 or 1.
The parameter dynamics in (2) and (3) are intuitive. The time-varying parameter ft is updated in the

(scaled) direction of steepest ascent as measured by the scaled conditional log observation density at
time t. For example, standard GARCH and BEKKmodels are special cases of the GAS framework under
normality, see Creal et al. (2013). The GAS setup is very general and can also easily be applied outside
the correlation context as long as a conditional observation density is available. For other examples,
including many new models, we again refer to Creal et al. (2013, 2014).

3. Conditions for stationarity and ergodicity

We follow the approach of Blasques et al. (2014b), who consider a treatment of univariate GAS models.
Our SE results build on the stochastic recurrence relations or iterated random functions approach; see
Diaconis and Freedman (1999) andWu and Shao (2004). In particular, we use the su�cient conditions of
Bougerol (1993) and results in Straumann andMikosch (2006) to establish, for any �xed initial condition
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f1 ∈ F , exponentially fast almost sure convergence of the time series {yt , ft(θ , f1)}t∈N generated by (1)–
(3) to a unique SE solution {yt , ft(θ)}t∈Z.

Let F ⊆ R and Y ⊆ R
2 denote the domains of ft and yt , respectively. We have that ρ : F → (−δ, δ)

for 0 < δ ≤ 1 and s : F × Y ×2 → R is almost surely (a.s.) smooth in all its arguments and Lipschitz
in f ∈ F . Using the model as speci�ed in (1)–(4), we analyze the stochastic properties of yt and ft via
the stochastic recurrence equation

ft+1 = φt(ft ; θ) := ω + βft + αS(ft) q(h(ft)ut , ft), h(ft)h(ft)
⊤ = R(ft), (6)

and {ut} is an independent and identically distributed (i.i.d.) sequence with yt = h(ft)ut . We notice that
the dynamics of {ft} in (6) are now written in terms of the innovation sequence {ut} rather than the
observed data {yt} by substituting h(ft)ut for yt . As a result, when seen as a function of f , the shape
of q(h(f )ut , f ), for every ut , is markedly di�erent from that of q(yt , f ), for every yt . This additional
dependence on f may either complicate or simplify the nonlinear dependence of ft+1 on ft as embedded
in (6). Second, the functional form of (6) is not uniquely de�ned. Each square root h(f ) of the correlation
matrix R(f ) leads to an observationally equivalent model in yt . The choice of h(f ), however, is not
innocuous for determining the size and shape of the SE region, as we see later.

Continuity of φt in ut for every t can be used to ensure that {φt} is an i.i.d. sequence of functions.
Together with Eq. (6), it then follows directly from Bougerol (1993) and Straumann andMikosch (2006)
that there is a unique SE solution to (1)–(3) if φt is contracting on average, i.e., if the Lyapunov exponent
of the mapping is negative. In particular, we obtain the desired SE result if

E log sup
f ,f ∗∈F

|φt(f ; θ)− φt(f
∗; θ)|

|f − f ∗| ≤ E log sup
f∈F

∣

∣

∣

∣

∂φt(f ; θ)

∂f

∣

∣

∣

∣

< 0; (7)

see Bougerol (1993). In computing the supremum in condition (7), f is treated as a parameter rather
than as the random variable ft .

For the score driven dynamic correlation model of Section 2, we prove the following result in the
Appendix.

Lemma 1. Let 9 be a class of functions such that for every ψ ∈ 9, ψ ∈ C1([−δ, δ],R) with
ψ̇(ρ) = ∂ψ(ρ)/∂ρ = O((1 − ρ2)−1/2). Assume that E|ṗ(u⊤

t ut)ui,tuj,t| < ∞ for i, j ∈ {1, 2}, with
ut = (u1,t , u2,t)

⊤. For any �xed initial condition f1 ∈ F , the process {ft(θ , f1)}t∈N generated by the dynamic
correlation model (1)–(4) converges exponentially fast almost surely1 (e.a.s.) to a unique stationary and
ergodic solution {ft(θ)}t∈Z if

inf
ψ∈9

E log sup
f∈F

∣

∣

∣

∣

β + α

(

∂

∂f

(

S(f ) ρ̇(f )

1 − ρ(f )2

))

g(ρ(f ))k(ut)+ α
S(f ) ρ̇(f )2

1 − ρ(f )2
ġ(ρ(f ))k(ut)

∣

∣

∣

∣

< 0, (8)

where

g(ρ) =
(

ρ , ρc2ψ (ρ)−
√

1 − ρ2s2ψ (ρ) ,
√

1 − ρ2c2ψ (ρ)+ ρs2ψ (ρ)
)

, (9)

k(ut) =
(

ṗ(u⊤
t ut)u

⊤
t ut + 1 , ṗ(u⊤

t ut)(u
2
1,t − u22,t) , −2ṗ(u⊤

t ut)u1,tu2,t

)⊤
, (10)

ġ(ρ) = ∂g(ρ)/ρ, c2ψ (ρ) = cos(2ψ(ρ)), and s2ψ (ρ) = sin(2ψ(ρ)).

We note several features of the result stated in Lemma 1. First, the SE region only depends directly
on the parameters α and β , on the functional forms of S(f ) and q(h(f )ut , f ), and on the density of
ut . The dependence on the latter enters in two ways, namely through the expectations operator in (8)
and through the functional form of k(ut) in (10). Also note that the expectations operator in (8) does
not necessarily require the second moments of ut to exist. Instead, we only require the expectation of
|ṗ(u⊤

t ut)ui,tuj,t| for i, j ∈ {1, 2} to exist. This condition ismuchweaker, particularly for fat-tailed elliptical

1A sequence {xt} converges exponentially fast almost surely to a sequence {x̃t} if for some constant c > 1 we have ct · |xt −
x̃t|

a.s.→ 0 for t → ∞.
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densities. For example, it is easily satis�ed for the bivariate Cauchy distribution, even though neither the
second nor the �rst moment exists for this distribution. The continuity and boundedness properties of
s can be veri�ed immediately for parametric distributional forms, notably for the Student’s t density in
Section 5.1.2 Therefore, condition (8) e�ectively forms a su�cient condition for the SE property of the
model.

Second, Eq. (8) directly reveals that the correlation case is markedly di�erent from the volatility
case. For the volatility case, it is shown in Harvey (2013) and Blasques et al. (2014b) that through a
clever choice of parameterization h or scaling S the scaled score in recurrence relation (6) can be made
independent of ft . The SE condition then reduces to the requirement that |β| < 1. In the volatility
case the analogue of the function g(ρ) in (9) is scalar valued. In the correlation case, Eq. (8) shows
that through the trivariate nature of the functions g(ρ) and ġ(ρ) the contraction condition consists of
a number of di�erent terms, each with a di�erent nonlinear dependence on f . It is impossible to o�set
all of these simultaneously by a single choice of scaling function or parameterization. This makes the
correlation model theoretically more interesting in its own right.

Third, the SE su�cient condition in Eq. (8) has an additional degree of �exibility provided by the
choice ofψ . As follows from the proof of Lemma 1, the functionψ determines which square root h(f ) is
used for the correlationmatrix R(f ). For the purpose of guaranteeing a proper correlationmatrix, de�ne
ξ(ρ) = arcsin(ρ)− ψ(ρ), and

h(f ) =
(

cos(ξ(ρ(f ))) sin(ξ(ρ(f )))
sin(ψ(ρ(f ))) cos(ψ(ρ(f )))

)

, ψ(ρ(f )) = kψ · arcsin(ρ(f )), (11)

for some constant kψ ∈ R, such that h(f )h(f )⊤ = R(f ) for all ψ ∈ 9 . This parametrization gives rise
to familiar alternatives for matrix roots. For kψ = 1/2, we obtain symmetric matrix root of Lemma 2,
whereas the choice kψ = 1 reduces to the Cholesky decomposition with y1,t = u1,t and y2,t = ρtu1,t +
√

1 − ρ2t u2,t . Any choice of ψ and thus of h results in an observationally equivalent model for yt . The
dynamic properties of {ft} following from (7), however, depend on the precise ψ that is chosen. We
therefore obtain a su�cient condition for SE if (7) is satis�ed for some choice of ψ ∈ 9 satisfying
the conditions formulated in Lemma 1. This yields the additional in�mum in condition (8). A similar
complication is absent in the volatility case; compare Blasques et al. (2014b) and Harvey (2013).

Fourth, condition (8) simpli�es for particular choices of parameterizations and scale functions. For
example, if we use the familiar Fisher transformation ρ(f ) = tanh(ft), we have ρ̇(ft) = 1−ρ(ft)2 and the
entire middle term in (8) vanishes. For this particular parameterization and �xing the scaling function
to S(f ) ≡ 1, we can even provide further analytical results relating to the optimal choice of the function
ψ . Using a Jensen, triangle, and Cauchy–Schwarz inequality, we obtain a stricter su�cient condition for
SE from (8) as

inf
ψ∈9

E sup
f∈F

∣

∣β + α(1 − ρ(f )2)ġ(ρ(f ))k(ut)
∣

∣

≤ |β| + |α| inf
ψ∈9

E sup
f∈F

∣

∣(1 − ρ(f )2)ġ(ρ(f ))k(ut)
∣

∣

≤ |β| + |α| E‖k(ut)‖ · inf
ψ∈9

sup
f∈F

∥

∥(1 − ρ(f )2) ġ(ρ(f ))
∥

∥ < 1, (12)

where ‖ ·‖ denotes the standard Euclidean norm. Instead of the Cauchy–Schwarz inequality, we can also
use a second triangle inequality to obtain the alternative stricter su�cient condition

|β| + |α| inf
ψ∈9

E sup
f∈F

∣

∣(1 − ρ(f )2)ġ(ρ(f ))k(ut)
∣

∣

≤ |β| + |α| inf
ψ∈9

3
∑

i=1

sup
f∈F

∣

∣(1 − ρ(f )2) ġi((ρ(f )))
∣

∣ · E |ki(ut)| < 1, (13)

2The functional forms for the updating equation for the particular case of the Student’s t distribution are presented in the
Supplemental Appendix accompanying this article.
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where ġi and ki are the ith elements of ġ and k, respectively. Using either of the more stringent SE
conditions (12) or (13), we obtain the following result.

Lemma2. Under the assumptions stated in Lemma1, settingψ(ρ) = kψ arcsin(ρ)with kψ = 1/2 reaches
the functional lower bound for the su�cient condition stated in either Eq. (12) or (13). The condition then
reduces to |β| + |α| E‖k(ut)‖ < 1 for condition (12) and |β| + |α| E|k1(ut)| < 1 for condition (13),
respectively, where k1(ut) is the �rst element of k(ut). The link function becomes the symmetric matrix root

h(f ) =
(

cos
(

arcsin(ρ(f ))/2
)

sin
(

arcsin(ρ(f ))/2
)

sin
(

arcsin(ρ(f ))/2
)

cos
(

arcsin(ρ(f ))/2
)

)

.

The result in Lemma 2 shows that we uniformly obtain the largest SE region for the stricter conditions
(12) or (13) for the symmetric matrix root h in (6). The choice of h in setting up the dynamic Eq. (6) is
thus far from innocuous and directly in�uences the size and shape of the SE region.

4. Asymptotic properties of ML estimator

In this section we establish the invertibility of the GAS model, as well as the consistency and asymptotic
normality of the maximum likelihood estimator (MLE) for the static parameters θ .

Model invertibility is a critical element in the proof of consistency and asymptotic normality of the
MLE since the �lter (2) enters the likelihood function and thus must be ensured to have appropriate
stochastic properties. Similarly to Straumann and Mikosch (2006), this section uses the contraction
condition of Bougerol (1993) in order to ensure model invertibility and bounded moments for the
�ltering sequence. This is crucial for the asymptotic properties of the MLE since the initialized time-
varying parameter and its derivatives enter the likelihood function and its derivatives. The following
result builds on the SE nature of the data {yt}t∈Z which follows easily from the SE nature of the true
time-varying parameter {ft}t∈Z established in the previous section.

Lemma 3 (Model Invertibility). Let 2 be compact, let {yt}t∈Z generated by (1)–(3) be SE, let the scaled
score s be smooth in all arguments and Lipschitz in f ∈ F , and assume that there exists a nonrandom f1
such that the following statements hold:
(i) E log+ |S(f1)q(f1, yt)| < ∞;

(ii) E log supθ∈2 supf ∗
∣

∣

∣
α
(

Ṡ(f ∗)q(f ∗, yt)+ S(f ∗)q̇(f ∗, yt)
)

+ β

∣

∣

∣
< 1.

Here, log+ x ≡ max(log x, 0) for x ∈ R+ and q(ft , yt) is the score expression in (4). Then the GAS
recursion {ft(θ , f1)}t∈N de�ned in (2) converges e.a.s. to a unique limit SE process {ft(θ)}t∈Z that admits
the representation ft(θ) = 8(yt−1, yt−2, ...) for every t and some measurable function8.

Note that the contraction condition (ii) in Lemma 3 is di�erent from the one studied in Lemma
1 since it refers to the �ltering equation that takes the data yt as given. By contrast, the contraction
property in Lemma 1 looks at the GAS model as a data generating process, and hence de�nes the data
yt in terms of the true unknown parameter ft and the innovations ut . The invertibility condition above
is in particular required in order to make dependence on the �xed initial value f1 vanish in the GAS
recursion and therefore in the objective function. To make this transparent, let ℓt(θ , f1) denote the time
t log-likelihood contribution for the vector of static parameters θ , and

LT(θ) :=
1

T

T
∑

t=1

ℓt(θ) = 1

T

T
∑

t=1

(

log p(y⊤
t R(ft(θ , f1))yt)− log |R(ft(θ , f1))|1/2

)

. (14)

De�ne LT(θ) and ℓt(θ) similar to (14), but with the limiting process ft(θ) replacing ft(θ , f1).
Theorem 1 establishes the strong consistency of the MLE assuming the identi�cation of the true

parameter vector θ0 ∈ 2. The strong consistency result holds for every initialization of the �lter
satisfying the conditions of Lemma 3.
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Theorem 1 (Consistency). Let (2,B(2)) be a compact measurable space, and let the conditions of
Lemmas 1 and 3 hold. Furthermore, assume that E supθ∈2 |ℓt(θ)| < ∞ and that θ0 ∈ 2 is the unique

maximizer ofL∞(θ) ≡ Eℓt(θ). Then, for every f1 ∈ F , theMLE, de�ned as θ̂T(f1) := argmaxθ∈2 LT(θ)

satis�es θ̂T(f1)
a.s.→ θ0 as T → ∞.

Theorem 2 establishes the asymptotic normality of the MLE. In this theorem, we let I(θ0) :=
−Eℓ̈t(θ0) denote the Fisher information matrix and J (θ0) := Eℓ̇t(θ0)ℓ̇t(θ0)

⊤ is the expected outer
product of gradients, with ℓ̇t(θ) and ℓ̈t(θ) denoting �rst and second order derivatives of ℓt(θ) with
respect to θ , respectively.

Theorem 2 (Asymptotic Normality). Let the conditions of Theorem 1 hold, and let θ0 be a point in the
interior of 2. Furthermore, let the �rst and second derivatives of the log likelihood contributions ℓt(θ) be
asymptotically SE and satisfy E|ℓ̇t(θ0)|2 < ∞ and E supθ∈2 |ℓ̈t(θ)| < ∞. Then, for every f1 ∈ F , the

ML estimator θ̂T(f1) satis�es

√
T(θ̂T(f1)− θ0)

d→ N
(

0, I−1(θ0)J (θ0)I
−1(θ0)

)

as T → ∞.

The theoretical results in the previous two theorems are supported by unreported simulation
experiments.We �nd that increasing the sample size brings theML estimates over repeatedMonte Carlo
replications closer to their true values in a controlled setting.Moreover, we also �nd that the distribution
of the estimator approaches the normal distribution for increasing sample sizes.

Theorems 1 and 2 rely on high-level conditions and are applicable to the generic setting. For
particularmodels, however, the statements can be further particularized intomore transparent low-level
conditions. Corollaries 1 and 2 provide such primitive conditions for the consistency and asymptotic
normality of the MLE for the parameters of two bivariate models based on the normal and Student’s t
distribution, respectively. We use unit scaling and a parameterization given by ρt = δ · tanh(ft). This
automatically bounds the correlation to the interval (−δ, δ) to render the correlation matrix positive
de�nite. The practitioner can choose a value of δ arbitrarily close to unity to obtain the contraction
conditions in Lemmas 1–3. Proofs of these corollaries can be found in Section D of the Supplementary
Appendix.

Corollary 1. There exists a compact parameter space2 satisfying 0 < δ < 1 and α 6= 0, where the MLE
for the parameters of the bivariate Gaussian model with δ · tanh link function and unit scaling is consistent
and asymptotically normal.

Corollary 2. There exists a compact parameter space 2 satisfying 0 < δ < 1, α 6= 0, and 2 < ν, where
the MLE for the parameters of the bivariate Student’s t model with δ · tanh link function and unit scaling is
consistent and asymptotically normal.

The implied parameter space2, constrained by the above conditions, depends not only on α and β ,
but also on distributional and parametrization choices. The shapes and sizes of the contraction regions
are further analyzed in Section 5. Further analytical and numerical details are developed in Sections C
and D in the Supplemental Appendix.

5. Numerical and empirical results

5.1. Numerical results

Alternative choices for the error density generator p, the scaling function S, the parameterization ρ, and
the matrix square root h give rise to di�erent models with di�erent SE regions. For a number of these
choices, we check for every pair (α,β) whether the su�cient condition (8) is satis�ed. We plot the SE
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region in the (α,β)-plane by numerically identifying, for every �xed β , the corresponding maximum
and minimum values of α that satisfy (8).

To �x ideas, consider the class of Student’s t densities for ut as in Creal et al. (2011). The Fisher
transformation ρ(ft) = tanh(ft) ensures proper value for the correlation parameter. As indicated in
Section 3, this also simpli�es the evaluation of the SE condition in Lemma 1. For the scaling function S,
we adopt the three choices based on the information matrix as presented in Eq. (5).

Next, we investigate the sensitivity of the SE region to the choice of matrix root h(·). For this, we
consider two prominent alternatives, both described by ψ(ρ) = kψ arcsin(ρ) for kψ ∈ R. The �rst
alternative is the symmetric matrix root of Lemma 2 with kψ = 1/2. The second is the familiar (lower
triangular) Cholesky decomposition, which is obtained by setting kψ = 1.

To numerically evaluate the su�cient SE condition (8), we need to solve an optimization problem
within an integration procedure. As the state equation is univariate, the integral can be evaluated via a
quadrature rule. We can gain further numerical e�ciency for the inner optimization problem by storing
maximum and minimum values of S(f ) q(h(f )ut , f ) for each point ut and recycling these for evaluation
at di�erent points in the (α,β)-plane. Local optima are avoided by evaluating the function over a wide
grid and by noting that for the Student’s t distribution (∂/∂f )is(f , yt) → 0 as |f | → ∞ for all i > 1. We
can further halve the computation time by noting that in our setting

∣

∣∂φt(f ; θ)/∂f
∣

∣ =
∣

∣∂φt(f ;−θ)/∂f
∣

∣.
In panel (a) of Fig. 1, we present the results for the normal distribution and the symmetric root h(f ),

i.e., kψ = 1/2. The �gure contains three di�erent regions, each one corresponding to a di�erent form of
scaling in Eq. (5). Points inside each region are combinations of (α,β) for which the su�cient condition
(8) is met. The shape of the su�cient SE region is antisymmetric around the origin due to the absolute
signs in (8), such that we only plot its upper half. The region also shows a nonmonotonic curvature,
particularly in the second quadrant. This feature is due to the use of absolute values, the change in the
location of the supremum in (8) in the second quadrant, and a shi� in the relevant region of integration
if the derivative of S(f )q(h(f )ut , f ) changes sign.

An interesting feature in Fig. 1 is the behavior of the region for square root inverse informationmatrix
scaling, a = 1/2 in (5). First note that a = 1/2 has the property that the update via s(ft , yt) is invariant
with respect to reparametrizations of ft . Furthermore, under correct speci�cation the steps S(f )q(yt , f ) in
(4) are by constructionmartingale di�erences with unit variance; see also Creal et al. (2013). This implies
that {ft}t∈N converges to a covariance stationary process as long as |β| < 1. The region in Fig. 1 shows

Figure 1. Stationarity and ergodicity su�ciency regions for the normal distribution and di�erent scaling choices S(f ) = (It(f ))
−a for

a ∈ {0, 1/2, 1}. The two panels contain di�erent regions obtained by parameterizing the matrix roots h(f )withψ(ρ) = kψ arcsin(ρ).
Panel (a) contains the results for the symmetric matrix root (kψ = 1/2), and panel (b) corresponds to the Cholesky decomposition
(kψ = 1).
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that |β| < 1 is necessary, but not su�cient for (8) to be satis�ed. This relates directly to discussions in the
GARCH literature, where in the univariate setting covariance stationarity is a more restrictive condition
than strict stationarity, but the relation between the two remains an open question in a multivariate
context; see for example Boussama et al. (2011).

Panel (b) in Fig. 1 shows the di�erent SE regions for a di�erent choice of matrix root h(f ), namely
the Cholesky decomposition. It is clear that the su�ciency regions in the (α,β)-plane are smaller than
the corresponding regions for the symmetric root. As models constructed with a symmetric root and a
Cholesky root are observationally equivalent, we can take the larger regions as su�cient regions for SE
to hold; see also Lemma 2. The di�erences make clear that the choice of matrix root is important for
determining the size of the region either analytically or numerically.

We provide more SE regions in the Supplemental Appendix, including regions based on the further
inequalities used to establish Lemma 2. In particular, we show that the SE regions for the Student’s t
distribution under square root information matrix scaling (a = 1/2) are smaller for fatter tails if the
Cholesky decomposition is used (kψ = 1), while the converse holds if we use the symmetric root
decomposition (kψ = 1/2). In Section 5.2, we document how this wedge may also become empirically
relevant.

5.2. Empirical illustration

In this section, we study the time-varying correlation between the London and Athens stock exchange
indexes. We take daily returns of the Financial Times Stock Exchange (FTSE) 100 and the Athex
Composite over the period January 1, 2002 to March 2, 2013. We are particularly interested in whether
there are indications that the correlation between these two markets changed over the course of the
European sovereign debt crisis.

To focus on the correlation part of themodel, we �rst �lter both series usingAR-GARCH typemodels;
see also Patton (2009). The mean of both series is modeled by a �rst order autoregressive progress. We
�nd a strong leverage e�ects in both series and capture these by a GJR(1,2) model of Glosten et al.
(1993) for the FTSE index, and an EGARCH(1,2) speci�cation of Nelson (1991) for the Athens index,
respectively.3 We test the null hypothesis of constant and zero residual correlation against time-varying
alternatives using a Nyblom test of the form

NBc = 1

σ̂ 2

1

T

T
∑

t=1

(

1√
T

t
∑

s=1

(x1sx2s − ρ̄)

)2
d→
∫ 1

0
Bb(z)

2 dz,

NB0 = 1

σ̂ 2
0

1

T

T
∑

t=1

(

1√
T

t
∑

s=1

x1sx2s

)2
d→
∫ 1

0
B(z)2 dz,

where B(z) and Bb(z) = B(z) − zB(1) denote a standard Brownian motion and a standard Brownian
bridge, respectively. The average correlation is estimated by ρ̄ = T−1

∑T
t=1 x1tx2t and σ̂ 2 is a

heteroskedasticity and autocorrelation consistent estimator of the long-run variance of (x1tx2t − ρ̄),
with σ̂ 2

0 de�ned similarly when ρ̄ is set to 0.4 By letting xt denote the univariate volatility-�ltered series,
i.e., xt := yt in the notation of our article, we �nd strong evidence for time-varying correlations. We
therefore use the �ltered univariate series to estimate the GASmodel from Section 2 with a time varying
correlation coe�cient. The Nyblom test can further be used as a diagnostic tool for remaining time-

variation in dynamic correlations when applied to estimated residuals xt := ût = h−1(̂ft)yt . The results
are shown in Fig. 2 and Table 1.

Panel (a) in Fig. 2 shows the dynamic correlations between the �ltered series. As a nonparametric
benchmark, we plot simple 60-day rolling window correlations. The rolling window estimates suggest

3Further robustness results for alternative speci�cations for the marginals can be found in Section E of the Supplemental
Appendix.

4Critical values of the test are simulated by discretizing the processes B(·) and Bb(·) and can also be found in Hansen (1992).
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Figure 2. Empirical results. Panel (a) shows 60-day rolling correlations and the �ltered correlations between the FTSE 100 (U.K.) and
Athex Composite (Greece) equity index returns. The right panel puts the empirical estimates obtained by unconstrained estimation into
the zoomed stationarity and ergodicity region perspective.

Table 1. Estimation results.

EWMA EWMA EWMA t(∞)-GAS t(∞)-GAS t(∞)-GAS t(5)-GAS t(5)-GAS t(5)-GAS t(λ)-GAS
(a = 0) (a = 1/2) (a = 1) (a = 0) (a = 1/2) (a = 1) (a = 1)

λ 5 5 8.9321 ∞ ∞ ∞ 5 5 5 9.1411
(0.0801) (0.9287)

ω 0.0003 0.0012 0.0117 0.0115 0.0112 0.0089 0.0089 0.0088 0.0114
(0.0003) (0.0003) (0.0016) (0.0014) (0.0013) (0.0011) (0.0011) (0.0010) (0.0013)

α 0.0254 0.0283 0.0314 0.0335 0.0316 0.0297 0.0360
(0.0040) (0.0045) (0.0050) (0.0048) (0.0046) (0.0043) (0.0050)

β 0.9757 0.9756 0.9739 0.9752 0.9757 0.9763 0.9797 0.9798 0.9800 0.9762
(0.0085) (0.0063) (0.0030) (0.0021) (0.0016) (0.0012) (0.0013) (0.0011) (0.0009) (0.0012)

Log-likelihood −7,847 −7,847 −7,812 −7,891 −7,890 −7,890 −7,845 −7,845 −7,845 -7,809

AIC 15,697 15,699 15,631 15,778 15,787 15,787 15,696 15,696 15,696 15,626

BIC 15,703 15,711 15,649 15,814 15,805 15,805 15,714 15,714 15,714 15,649

# parameters 1 2 3 3 3 3 3 3 3 4

H5%0 : ρt ≡ 0 reject reject reject reject reject

H5%0 : ρt ≡ ρ̄ reject reject reject reject reject reject reject reject

Inside SE region?
Cholesky (kψ = 1) Yes Yes No No No No No

Symmetric (kψ = 1
2 ) Yes Yes Yes Yes Yes Yes Yes

Heteroskedasticity and autocorrelation consistent (HAC) standard errors in parentheses. Best log-likelihood, AIC, and BIC values across

models are printed in boldface. H5%0 : ρt ≡ 0 and H5%0 : ρt ≡ ρ̄ indicate whether the Nyblom test among residuals rejects constant

zero or estimated correlation, respectively. HAC standard errors are computed using Newey–West weights with min(⌊1.2× T1/3⌋, T)
lags.

that correlations exhibit clear signs of time variation. Correlations lie around 0.4 up to about 2006, then
increase to about 0.6, and come down substantially to around 0.2 during the sovereign debt crisis. On
top of this slow variation, there are also substantial dynamic patters at higher frequencies.

The possibly lower correlations between the U.K. and Greek stock indices are interesting eco-
nomically, particularly given the stable correlation pattern between the two series during almost the
whole of the prelude, height, and a�ermath of the preceding �nancial crisis (2007–2009). The �nancial
crisis, apparently, did not substantially alter the real economic linkages between the two economies
as evidenced by the stable dynamic of the correlations between between the two stock markets. It is
only a�er the announcement of the record Greek de�cit late 2009 and the subsequent actions that gave
rise to the European sovereign debt crisis, that the link between the euro-denominated Greek stock
market and the sterling-denominated FTSE is broken. The correlations remain at low levels even a�er
the nonstandard monetary policy actions by the European Central Bank.
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Table 1 provides the parameter estimates of the GAS models. We provide a benchmark by estimating
a simple exponentially weighted moving average (EWMA) scheme for the correlation based on the
recursion ρt = tanh(ft) and

ft+1 = ω + βft + (1 − β)y1ty2t ,

see also the Gaussian dynamic copula speci�cation of Patton (2006).
We see that the GASmodel is empirically useful both in terms of in-sample likelihood �t and improv-

ing the diagnostics for time-varying correlation. All models indicate that the correlation parameter is
highly persistent: the estimated values of β all lie very close to 1. The scaling function for the score only
has a mild e�ect on the model’s �t: the likelihood values are similar for a = 0, 1/2, 1. The degrees of
freedom parameter λ is estimated around 9. This is substantially fatter-tailed than the normal, but also
substantially lighter-tailed than the Student’s t distribution with the degrees of freedom �xed at 5. The
di�erences in likelihood values, as well as Akaike (AIC) and Bayes (BIC) information criteria indicate
that estimating the degrees of freedom improves the �t of the model substantially. Furthermore, the
estimation of the tail parameter λ also improves the �t in terms of model diagnostics: only the GAS
model with estimated degrees of freedom passes the Nyblom tests for remaining time-variation in the
residual cross-correlations.

We plot the SE region boundaries for the Cholesky and the symmetric root decomposition in panel
(b) of Fig. 2. The estimated values of α and β for the t(λ)-GAS speci�cation are indicated by the cross
mark. The results clearly con�rm the importance of the choice ofψ in verifying the SE properties. For the
symmetric root-based region, we obtain stationarity and ergodicity at the estimated parameter values.
For the Cholesky decomposition, by contrast, we fail to obtain this result. As condition (8) takes the
in�mum over ψ and thus the widest region in panel (b) over all admissible decompositions h(ft), the
Cholesky decomposition is in this setting less powerful to discriminate SE from non-SE regions of the
parameter space. We stress again that all of these regions are only based on su�cient conditions, and
that the actual regions may be wider.

For all models considered, the bottom lines in Table 1 indicate whether the estimated parameters
lie inside the SE region. For the Gaussian models with unit (a = 0) and inverse square root
information matrix scaling (a = 1/2) the choice of matrix decomposition does not have an impact.
Both the symmetric root (kψ = 1/2 in (11)) and Cholesky root (kψ = 1 in (11)) indicate that the
estimated parameters are inside the SE region and satisfy the average contraction condition. For inverse
informationmatrix scaling, however, and for the Student’s t basedmodels, we �nd a similar di�erence as
in panel (b) of Fig. 2: we cannot ensure SE properties based on the Cholesky decomposition, whereas we
can do so for the symmetric root. This again highlights that the use of di�erent constructive devices such
as di�erent matrix decompositions is empirically relevant for the veri�cation of su�cient SE conditions
in a multivariate setting.

6. Concluding remarks

We have derived su�cient regions for stationarity and ergodicity for a new class of score driven dynamic
correlation models. The regions exhibit a highly nonstandard shape. Moreover, we have shown that the
shape and size of the SE regions depends on the type of matrix root that is chosen in checking the
su�cient conditions of Bougerol (1993). Furthermore, we have seen how the stationarity conditions
can be used in establishing results for consistency and asymptotic normality of the maximum likelihood
estimator. The numerical stability conditions were supported by an empirical investigation of the time
varying correlation between U.K. and Greek stock markets. We found a substantial drop in the linkages
between the sterling-denominatedU.K.market and the euro denominatedGreekmarket over the course
of the European sovereign debt crisis. Such a break in dependence betweenmarkets, however, was absent
during the preceding global �nancial crisis.

An interesting possible extension of our current results concerns a generalization to the fully
multivariate (rather than bivariate) setting of score driven correlation models proposed in Creal et al.
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(2011). The challenge here is to limit the number of parameters describing the dynamics of time-varying
volatilities and correlations. We leave this for future work.

Appendix A: Proofs

We �rst state Theorem 3.1 of Bougerol (1993). Denote by log3(φ0) the term inside the expectation on
the le�-hand side of (7).

Theorem 3 (Bougerol, 1993, Theorem 3.1). Let {φt} be a stationary and ergodic sequence of endomorphic
Lipschitz maps. Assume as follows:
1. There exists a f ∈ F and distance measure d such that E[log+ d(φ0(f ), f )] < ∞;
2. E[log+3(φ0)] < ∞;

3. E[log3(φ(r)0 )] < 0, where φ
(r)
0 denotes the r-fold backward iterates.

Then the stochastic recurrence Eq. (6) admits a stationary ergodic solution {ft}.

Proof of Lemma 1. The SE property of {ft} follows from the measurability with respect to {ut}. The
Lipschitz property is obtained from the boundedness of the terms in Eq. (A6) below. Condition 3 is
then ensured by the de�nition of the GAS transition equation and the assumed moments in Lemma 1,
as we can write E[log+ d(φ0(f ), f )] ≤ E|φ0(f ) − f | = E|ω + (β − 1)f + αS(f )q(h(f )u0, f )| ≤
|ω| + |(β − 1)f | + αE|S(f )q(h(f )u0, f )|. As requirement 3 is implied by 3, we can now turn our main
interest towards the study of the latter, nontrivial, condition 3.

We write ξ and ψ for ξ(ρ) and ψ(ρ), respectively. De�ne the shorthand notation cw = cw(ρ) =
cos(w(ρ)) with w : [−δ, δ] → R, and similarly sw = sw(ρ) = sin(w(ρ)). Each matrix root h of the
correlation matrix can be written as

h(f ) =
(

cξ (ρ(f )) sξ (ρ(f ))
sψ (ρ(f )) cψ (ρ(f ))

)

. (A1)

Using (A1), we obtain
(

cξ sξ
sψ cψ

)(

cξ sψ
sξ cψ

)

=
(

1 sξ+ψ
sξ+ψ 1

)

,

such that we require sin(ψ + ξ) = ρ or ξ(ρ) = arcsin(ρ)− ψ(ρ) for some arbitrary function ψ(ρ). It

follows that sξ = ρcψ −
√

1 − ρ2sψ , and cξ =
√

1 − ρ2cψ + ρsψ . From this, we obtain
(

cξ sψ
sξ cψ

)(

0 1
1 0

)(

cξ sξ
sψ cψ

)

=
(

2cξ sψ sξ sψ + cξ cψ

sξ sψ + cξ cψ 2sξ cψ

)

=
(

2cξ sψ cξ−ψ
cξ−ψ 2sξ cψ

)

=
(

−ρc2ψ +
√

1 − ρ2s2ψ + ρ
√

1 − ρ2c2ψ + ρs2ψ
√

1 − ρ2c2ψ + ρs2ψ ρc2ψ −
√

1 − ρ2s2ψ + ρ

)

=: H(ρ)+ ρI.

Using yt = h(f )ut , we can rewrite (4) as

(1 − ρ(f )2)q(h(f )ut , f )/ρ̇(f )

= 2ṗ(u⊤
t ut)ρ(f )u

⊤
t ut − ṗ(u⊤

t ut)u
⊤
t

(

H(ρ(f ))+ ρ(f )I
)

ut + ρ(f )

= ṗ(u⊤
t ut)ρ(f )u

⊤
t ut − ṗ(u⊤

t ut)u
⊤
t H(ρ(f ))ut + ρ(f )

= ρ(f )
(

ṗ(u⊤
t ut)u

⊤
t ut + 1

)

− ṗ(u⊤
t ut)u

⊤
t H(ρ(f ))ut = g(ρ)k(ut), (A2)
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with

g(ρ) =
(

ρ , ρc2ψ −
√

1 − ρ2s2ψ ,
√

1 − ρ2c2ψ + ρs2ψ

)

,

k(ut) =
(

ṗ(u⊤
t ut)u

⊤
t ut + 1 , ṗ(u⊤

t ut)(u
2
1,t − u22,t) , −2ṗ(u⊤

t ut)u1,tu2,t

)⊤
,

and ut = (u1,t , u2,t)
⊤. De�ning ġ(ρ) = ∂g(ρ)/ρ as the derivative of g(ρ), it holds that

ġ(ρ) =
(

1 , c2ψ (ρ)+ ρ · (1 − ρ2)−1/2s2ψ (ρ) , −ρ · (1 − ρ2)−1/2c2ψ (ρ)+ s2ψ (ρ)
)

+ 2ψ̇(ρ)
(

0 , −ρs2ψ (ρ)−
√

1 − ρ2c2ψ (ρ) , −
√

1 − ρ2s2ψ (ρ)+ ρc2ψ (ρ)
)

(A3)

= (1, 0, 0)+
(

(1 − ρ2)−1/2 − 2ψ̇(ρ)
)

·
(

0 ,
√

1 − ρ2c2ψ (ρ)+ ρ · s2ψ (ρ) ,
√

1 − ρ2s2ψ (ρ)− ρ · c2ψ (ρ)
)

. (A4)

The de�nitions in (6) and (A2) then imply that (7) can be written as

∂φt(f ; θ)

∂f
= β + α

(

∂

∂f

(

S(f ) ρ̇(f )

1 − ρ(f )2

))

g(ρ(f ))k(ut)+ α
S(f ) ρ̇(f )

1 − ρ(f )2
∂g(ρ(f ))

∂f
k(ut). (A5)

Proof of Lemma 2. Using (A4), we can rewrite ‖ġ(ρ)‖2 as

1 +
∣

∣

∣

∣

∣

1
√

1 − ρ2
− 2ψ̇(ρ)

∣

∣

∣

∣

∣

2

·
(

c2ψ (ρ)
2 + s2ψ (ρ)

2
)

= 1 +
∣

∣

∣

∣

∣

1
√

1 − ρ2
− 2ψ̇(ρ)

∣

∣

∣

∣

∣

2

≥ 1. (A6)

Forψ(ρ) = arcsin(ρ)/2, the second term vanishes, and we obtain the functional lower bound (1−ρ2) ·
‖ġ(ρ)‖2 = 1−ρ2, which reaches its supremum of 1 at ρ = 0. The rest of the result follows directly from
the de�nition of ξ(ρ) = arcsin(ρ)− ψ(ρ) = arcsin(ρ)/2. For computational reasons, it may be useful
to note that

‖k(ut)‖2 = 2ṗ(u⊤
t ut)

2(u⊤
t ut)

2 + 2ṗ(u⊤
t ut)(u

⊤
t ut)+ 1,

which only depends on the quadratic form u⊤
t ut .

An analogous line of reasoning holds for condition (13) based on applying the triangle inequality
twice.

Proof of Lemma 3. The proof follows immediately fromTheorem 2.8 in Straumann andMikosch (2006)
by noting that our conditions (i) and (ii) imply conditions S.1 and S.2 in their theorem.

Proof of Theorem 1. We follow Blasques et al. (2014a) and appeal to Theorem 3.4 of White (1994),

and obtain θ̂T(f1)
a.s.→ θ0 from the uniform convergence of the criterion function and the identi�able

uniqueness of the maximizer θ0 ∈ 2 de�ned, e.g., in White (1994).
Existence. Note that LT(θ , f1) is a.s. continuous in θ ∈ 2 if each likelihood contribution is. This is

obtained by the smoothness of the scaled score s : F × Y × 2 → R and the resulting continuity of ft
in θ as a composition of t continuous maps. Due to the compactness of 2, by Weierstraß theorem, the

argmax set of the likelihood is nonempty a.s., and hence θ̂T exists.
Uniform Convergence. By an application of the triangle inequality, we have

sup
θ∈2

|LT(θ , f1)− L∞(θ)| ≤ sup
θ∈2

|LT(θ , f1)− LT(θ)| + sup
θ∈2

|LT(θ)− L∞(θ)|.

The �rst term in (A7) vanishes by the convergence of ft(y
1:t−1, θ , f1) to ft(y

t−1, θ) which is estab-
lished in Lemma 3. The maintained smoothness assumption on the scaled score ensures that
ℓt(·, f1) = ℓ(ft(y

1:t−1, ·, f1), yt , ·) is continuous in (ft(y1:t−1, ·, f1), yt). There thus exists a unique SE
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sequence {ft(y1:t−1, ·)}t∈Z satisfying supθ∈2 |ft(y1:t−1, θ , f1)− ft(y
t−1, θ)| e.a.s.→ 0 ∀f1 ∈ F . It thus follows

that supθ∈2 |LT(θ , f1) − LT(θ)|
a.s.→ 0 as t → ∞ by application of the continuous mapping theorem

(see also Theorem 2.3[i] in van der Vaart, 2000) for ℓ : C(2,F)× Y ×2 → R.
The second term in (A7) vanishes by an application of the ergodic theorem for separable Banach

spaces (Theorem 2.7 in Straumann and Mikosch, 2006) to the sequence {LT(·)} with elements taking

values in C(2), so that supθ∈2 |LT(θ) − L∞(θ)|
a.s.→ 0 as T → ∞. This is obtained under the

moment assumption E supθ∈2 |ℓt(θ)| < ∞, by the SE nature of the sequence {ℓt}t∈Z, which is implied
by continuity of ℓ on the SE sequence {(ft(yt−1, ·), yt)}t∈Z, which is SE using Lemmas 1 and 3 and
Proposition 4.3 in Krengel (1985).

Identi�able Uniqueness. Identi�able uniqueness of θ0 ∈ 2, i.e., supθ :‖θ−θ0‖>ǫ ℓ∞(θ) < ℓ∞(θ0) for
all ǫ > 0, follows by the assumed uniqueness of θ0, the compactness of the parameter space2, and the
continuity of Eℓt(θ) in θ ∈ 2, which is implied by the continuity of LT in θ ∈ 2 and the uniform
convergence of the objective function proved above; see, e.g., White (1994).

Proof of Theorem 2. Wemake use of the asymptotic normality conditions found, e.g., in Theorem 6.2 of

White (1994). These conditions are as follows: (i) the strong consistency of θ̂T
a.s.→ θ0 ∈ int(2); (ii) the

a.s. twice continuous di�erentiability of LT(θ , f1) in θ ∈ 2; (iii) the asymptotic normality of the score

√
Tℓ̇t

(

θ0, f
(0:1)
1 )

d→ N(0,J (θ0)
)

, J (θ0) = E
(

ℓ̇t
(

θ0)ℓ̇t
(

θ0)
⊤), (A7)

where {f (i)t (θ ; f
(0:i)
1 )} denotes the i-th derivative process and f

(0:i)
1 denotes the initial conditions for

the �rst i derivative processes, while {f (i)t (θ)} denotes its asymptotic SE counterpart. (iv) the uniform
convergence of the second derivative of the likelihood function

sup
θ∈2

∥

∥L̈T(θ , f
(0:2)
1 )− L̈∞(θ)

∥

∥

a.s.→ 0; (A8)

and (v) the nonsingularity of L̈∞(θ) = EL̈T(θ) = I(θ).
Weak Convergence of the Score. The score sequence {ℓ̇t(θ , f1)} depends not only on the data {yt}

and the initialized process {ft(θ , f1)} but also on the derivative processes {ḟt(θ , f1)} ≡ {∂ft(θ , f1)/∂θ}.
As such, the limit SE nature of the score and its smoothness properties imply that ℓ̇t(θ , f1) =
ℓ̇
(

yt , ft(θ , f1), ḟt(θ , ḟ1)
)

is a continuous function of the limit SE process
(

yt , ft(θ , f1), ḟt(θ , ḟ1)
)

and thus

SE by Theorem 36.4 in Billingsley (1995). Note that the data {yt} is SE under the conditions of Lemma
1, and the process {ft(θ , f1)} and its derivative {ḟt(θ , ḟ1)} both converge e.a.s. to an SE limit under the
conditions of Lemma 3 since it is easy to show that the contraction condition in (ii) of Lemma 3 for

{ft(θ , f1)} is also the relevant contraction condition for any derivative process {f (i)t (θ , f
(i)
1 )} of any order;

see Blasques et al. (2014a).
The remainder of the proof now follows along similar lines as in Blasques et al. (2014a, Theorem 4).

As a continuous function of the SE process {yt , ft(θ), ḟt(θ)}, the score sequence {ℓ̇t(θ)} is also SE, and we
can apply the central limit theorem (CLT) for SE martingales in Billingsley (1961) to obtain

√
TL̇T

(

θ0)
d→ N(0,J (θ0)

)

as T → ∞. (A9)

As a result, we can also conclude by Theorem 18.10[iv] in van der Vaart (2000) that

√
TL̇T

(

θ0, f
(0:1)
1 )

d→ N(0,J (θ0)
)

as T → ∞,

if we show that

‖L̇T

(

θ0, f
(0:1)
1 )− L̇T

(

θ0)‖
e.a.s.→ 0 as T → ∞, (A10)

since the exponential rate in (A10) implies that
√
T‖L̇T

(

θ0, f
(0:1)
1 )− L̇T

(

θ0)‖
a.s.→ 0 as T → ∞.
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To establish the e.a.s. convergence in (A10), we use the e.a.s. convergence |ft(y1:t−1, θ0, f1) −
ft(y

t−1, θ0)|
e.a.s.→ 0 and ‖f (1)t (y1:t−1, θ0, f

(0:1)
1 ) − f

(1)
t (y1:t−1, θ0)‖

e.a.s.→ 0, as implied by the condi-

tions of Lemma 3. From the di�erentiability of ℓ̇t(θ , f
(0:1)
1 ) = ℓ̇

(

θ , y1:t , f
(0:1)
t (y1:t−1, θ , f

(0:1)
1 )

)

in

f
(0:1)
t (y1:t−1, θ , f

(0:1)
1 ) and the convexity of F , we use the mean-value theorem to obtain

‖L̇T

(

θ0, f
(0:1)
1 )− L̇T

(

θ0)‖ ≤
1+nθ
∑

j=1

∣

∣

∣

∂ℓ̇(y1:T , f̂
(0:1)

T )

∂fj

∣

∣

∣
·
∣

∣f
(0:1)
j,T (y1:T−1, θ0, f

(0:1)
1 )− f

(0:1)
j,t (y1:T−1, θ0)

∣

∣

=
1+nθ
∑

i=1

Op(1)oe.a.s(1) = oe.a.s.(1),

where nθ = dim(2) denotes the dimension of the static parameter vector θ and f
(0:1)
j,t denotes the jth

element of f
(0:1)
t , and f̂

(0:1)
is on the segment connecting f

(0:1)
j,t (y1:t−1, θ0, f

(0:1)
1 ) and f

(0:1)
j,t . Note that

f
(0:1)
t ∈ R

1+nθ because it contains ft ∈ R as well as f
(1)
t ∈ R

nθ . Finally, the last equality follows from the
assumed �nite moments of the likelihood derivatives and the e.a.s. convergence of the initialized process
(see also van der Vaart, 2000, p. 12).

Uniform Convergence of Second Derivatives.We use the triangle inequality to write

sup
θ∈2

‖L̈T(θ , f1)− L̈∞(θ)‖ ≤ sup
θ∈2

‖L̈T(θ , f1)− L̈T(θ)‖ + sup
θ∈2

‖L̈T(θ)− L̈∞(θ)‖. (A11)

The �rst term vanishes a.s. with T → ∞ by application of a continuous mapping theorem
because the maintained smoothness assumptions ensure that L̈T(·, f1) is continuous in its argu-

ments {(yt , f (0:2)t (y1:t−1, ·, f 0:2))} and the invertibility conditions of Lemma 3 guarantee that there

exists a unique SE sequence {f (0:2)t (yt−1, ·)}t∈Z such that supθ∈2
∥

∥

(

yT , f
(0:2)
T (y1:T−1, θ , f 0:2)

)

−
(

yT , f
(0:2)
T (y1:T−1, θ)

)

∥

∥

a.s.→ 0. The second term in (A11) converges under a uniform law of large numbers

by the maintained assumption that E supθ∈2 ‖ℓ̈t(θ)‖ < ∞ and the SE nature of {ℓ̈t}t∈Z.
Finally, the nonsingularity of the limit L̈∞(θ) = Eℓ̈t(θ) = I(θ) in (v) is implied by the uniqueness

of θ0 as a maximizer of L̈∞(θ) in2.
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