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Researchers frequently test identifying assumptions in regression-based research designs (which include
instrumental variables or difference-in-differences models) by adding additional control variables on the
right-hand side of the regression. If such additions do not affect the coefficient of interest (much), a study
is presumed to be reliable. We caution that such invariance may result from the fact that the observed
variables used in such robustness checks are often poor measures of the potential underlying confounders.
In this case, a more powerful test of the identifying assumption is to put the variable on the left-hand side
of the candidate regression. We provide derivations for the estimators and test statistics involved, as well as
power calculations, which can help applied researchers interpret their findings. We illustrate these results
in the context of estimating the returns to schooling.

KEY WORDS: Balancing; Hausman test; Robustness checks; Specification testing; Variable addition.

1. INTRODUCTION

The identification of causal effects depends on explicit or
implicit assumptions, which typically form the core of a debate
about the quality and credibility of a particular research design.
In regression-based strategies, this is the claim that variation in
the regressor of interest is as good as random after conditioning
on a sufficient set of control variables. In instrumental variables
models, it involves the assumption that the instrument is as good
as randomly assigned. In panel or differences-in-differences
designs, it is the parallel trends assumption. The credibility of
a design can be enhanced when researchers can show explic-
itly that these assumptions are supported by the data. This is
often done through some form of balancing tests or robustness
checks.
The research designs mentioned above are all variants of

regression strategies. If the researcher has access to a variable
for a potentially remaining confounder, tests of the identifying
assumption take two canonical forms. The variable can be added
as a control on the right-hand side (RHS) of the regression. The
identifying assumption is confirmed if the estimated effect of
interest is insensitive to this variable addition—we call this the
coefficient comparison test. Alternatively, the variable can be
placed on the left-hand side (LHS) of the regression instead of
the outcome variable. A zero coefficient on the causal variable
of interest then confirms the identifying assumption. This is the
balancing test, which is typically carried out using baseline char-
acteristics or pretreatment outcomes in a randomized trial or in
a regression discontinuity design.

Researchers often rely on one or the other of these tests. The
main point of our article is to show that the balancing test, using
the proxy for the candidate confounder on the LHS of the regres-
sion, is generally more powerful. This is particularly the case
when the available variable is a noisy measure of the true under-
lying confounder. The attenuation due to measurement error
often implies that adding the candidate variable on the RHS as
a regressor does little to eliminate any omitted variables bias.
The same measurement error does comparatively less damage
when putting this variable on the LHS. Regression strategies
work well in finding small but relevant amounts of variation
in noisy dependent variables. We collect basic results for the
relevant parameters in the presence of measurement error in
Section 3.
These two testing strategies are intimately related through

the omitted variables bias formula. The omitted variables bias
formula shows that the coefficient comparison test involves two
regression parameters, the coefficient from the balancing test
and the coefficient from the added regressor in the outcome
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equation. Both of these parameters have to be nonzero for the
coefficient comparison test to fail and actual confounding to
take place. The balancing test focuses on a single parameter.
The two tests, therefore, investigate the same hypothesis under
the maintained assumption that the added regressor matters
in the outcome equation. The ultimate source of the power
loss in the coefficient comparison test comes from estimating
a nuisance parameter. This is a standard reason for power
differences in the econometrics literature but turns out to be
relatively unimportant in the numerical examples we present.
The nuisance parameter in the coefficient comparison test is
more difficult to estimate when there is more measurement error
in the added regressor. In the examples we study in Section 5,
measurement error is the source of quantitatively meaningful
power differences between the two tests.
A second point we are making is that the two strategies, coef-

ficient comparison and balancing, both lead to explicit statisti-
cal tests. The balancing test is a simple t-test used routinely by
researchers. When adding a covariate on the RHS, comparing
the coefficient of interest across the two regressions can be done
using a generalized Hausman test. In practice, we have not seen
this test carried out in applied papers, where researchers typi-
cally just eye-ball the results (an exception is Gelbach 2016).We
provide the relevant test statistics and discuss how they behave
undermeasurement error in Section 4.We demonstrate the supe-
rior power of the balancing test under different scenarios in
Section 5.
The principles underlying our analysis are well known but

the consequences do not seem to be fully appreciated in applied
work. McCallum (1972) and Griliches (1977) are classic ref-
erences for the issues arising when regression controls are
measured with error. Battistin and Chesher (2014) discuss
identification in the presence of a mismeasured covariate in
nonlinear models based on assumptions about the degree of
measurement error in the covariate. We follow McCallum
(1972) and Griliches (1977) in framing our discussion around
the omitted variables bias arising in linear regressions, the
general framework used most widely in empirical studies. The
insights we exploit build on Pischke and Schwandt (2012) but
we go beyond the analysis in all of these papers in our explicit
discussion of testing, which forms the core of our inquiry.
Our focus is on specification testing for a particular research

design. The statistical model we discuss below—a base-
line regression and an augmented regression with additional
covariates—bears a close relationship tomodels in a large litera-
ture, which attempts to use control strategies for point or interval
identification. One recent strand of this literature is interested in
the selection of control variables in a causal regression and infer-
ence for the parameter of interest after such an initial variable
selection step (Belloni, Chernozhukov, and Hansen, 2014a,b;
Chernozhukov et al. 2017; Chernozhukov et al. 2018). A sec-
ond strand uses the relationship between a treatment variable
of interest and observed covariates to model the corresponding
relationship with additional unobserved confounders in order to
estimate the true causal effect (Altonji, Elder, and Taber 2005;
Altonji et al. 2016; Oster forthcoming). Although this literature
is focused on identification of the causal parameter, the tools
can be used for specification checking as well, so in practice

the conceptual difference to our approach may not be quite as
sharp. Nevertheless, the parameters of interest are different, and
our focus is on statistical inference about the credibility of a
given baseline design rather than identification of the causal
parameter.
Also, related is an older literature by Hausman (1978), Haus-

man and Taylor (1980), and Holly (1982) (see also the summary
in MacKinnon 1992, sec. II.9), which considers the relative
power of the Hausman test compared to alternatives, in partic-
ular an F-test for the added covariates in the outcome equation
when potentially multiple covariates are added. This compar-
ison effectively maintains that there is a lack of balance, and
instead tests whether the added regressors matter for explaining
the outcome. While this is a different exercise from ours, this
literature highlights the potential power of the Hausman test
when it succinctly transforms a test with multiple restrictions
(like the F-test for the added covariates) into a test with a single
restriction (the coefficient comparison test). We discuss how to
extend our framework to multiple added controls in Section 5.3.
Our basic findings largely carry over to this setting but we also
reach the conclusion that the Hausman test has a role to play
when the goal is to summarize a large number of restrictions.
Griliches (1977) used estimates of the returns to schooling

as example for the methodological points he makes. Such esti-
mates have formed a staple of labor economics ever since. We
use Griliches’ data from the National Longitudinal Survey of
Young Men (NLS) to briefly illustrate our power results in
Section 6. It is well suited for our purposes because the data
contain various test score measures, which can be used as con-
trols in a regression strategy (as in Griliches 1977), as well as a
myriad of other useful variables on individual and family back-
ground. The empirical results illustrate and support our theoret-
ical claims.

2. A SIMPLE FRAMEWORK

Consider the following simple framework starting with a pop-
ulation regression equation:

yi = βssi + esi , (1)

where yi is an outcome like log wages, si is the causal variable
of interest, like years of schooling, and esi is the regression
residual. The researcher proposes this short regression model
to be causal, that is, βs is the parameter of interest. This
might be the case because the data come from a randomized
experiment, so the simple bivariate regression is all we need.
More likely, the researcher has a particular research design
applied to observational data. For example, in the case of a
regression strategy controlling for confounders, yi and si would
be residuals from regressions of the original outcome and
treatment variables on the chosen controls. In the case of panel
data or differences-in-differences designs, the controls are sets
of fixed effects. In the case of instrumental variables, si would
be the predicted value from a first stage regression. In practice,
(1) encompasses a wide variety of empirical approaches, and
should be thought of as a short-hand for these. We have this
broader interpretation in mind but for presentational clarity we
use the simple bivariate regression throughout the discussion in
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our article. All subsequent regression equations and results also
inherit the structure of the actual underlying research design but
we illustrate results in terms of the simple bivariate formulation
in (1). We also suppress constants to avoid clutter.

Now consider the possibility that the population regression
parameter βs from (1) may not actually capture a causal effect.
There may be a candidate confounder xi, so that the long
regression

yi = β lsi + γ xi + ei, (2)

generates a coefficient β l that might differ from βs. To make
things concrete, in the returns to schooling context, xi would
be a measure of the remaining part of an individual’s earnings
capacity which is also related to schooling, like ability, or family
background.
Researchers who find themselves in a situation where they

start with a proposed causal model (1) and a measure for a
candidate confounder xi typically do one of two things: They
either regress xi on si and check whether si is significant, or they
include xi on the RHS of the original regression as in (2), and
check whether the estimate of β changes materially when xi is
added to the regression of interest. The first strategy constitutes
a test for “balance,” a standard check for successful random-
ization in an experiment. The second strategy is a “coefficient
comparison test.” An appreciable difference between β l and βs

suggests that the original estimate βs does not have a causal
interpretation. Researchers typically interpret passing either of
these tests as strengthening the case for a causal interpretation
of the parameter βs. In case the tests reject, the researcher
concludes that neither parameter is likely to be causal, and the
research design is a flawed one.
It is tempting to conclude that strategy (2) is preferable

because the comparison of β l and βs does not just carry infor-
mation about the validity of regression (1) but also provides a
better estimate β l . It is important to caution against this interpre-
tation. If xi is an imperfect control or there are multiple omitted
variables in (1), then (2) does not necessarily reduce the omit-
ted variables bias (Frost 1979 or more recently De Luca, Mag-
nus, and Peracchi forthcoming and Kassenboehmer and Schurer
2018). The literatures along the lines of Altonji, Elder, and Taber
(2005) and Belloni, Chernozhukov, and Hansen (2014b) all start
from the premise that there is a set of regressors xi so that regres-
sion (2) is preferable, at least in principle. Only in the special
case, where xi is the only missing confounder and we measure it
without error will the parameter β l from the controlled regres-
sion be the causal effect of interest. In practice, there is usu-
ally little reason to believe that these two conditions are met,
and hence a difference between β l and βs only indicates a poor
research design.
The relationship between the two testing strategies is easy to

see. Write the regression of xi on si, which we will call the bal-
ancing regression, as

xi = δsi + ui. (3)

The change in the coefficient on si after adding xi to the regres-
sion (1) is given by the omitted variables bias formula

βs − β l = γ δ. (4)

This change consists of two components, the coefficient γ on
xi in the outcome Equation (2) and the coefficient δ from the
balancing regression.
Here, we consider the relationship between these two

approaches: the balancing test, consisting of an investigation of
the null hypothesis

H0 : δ = 0, (5)

compared to the inspection of the coefficient movement βs − β l .
The latter strategy of comparing βs and β l is often done infor-
mally, but it can be formalized as a statistical test of the null
hypothesis

H0 : βs − β l = 0, (6)

which we will call the coefficient comparison test. From (4), it
is clear that (6) amounts to

H0 : βs − β l = 0 ⇔ γ = 0 or δ = 0. (7)

This highlights that the two approaches formally test the same
hypothesis under the maintained assumption γ �= 0. We may
often have a strong sense that γ �= 0; that is, we are dealing
with a variable xi which we believe affects the outcome, but we
are unsure whether it is related to the regressor of interest si.
In this case, both tests would seem equally suitable. Neverthe-
less, in other cases γ may be zero, or we may be unsure. In this
case, the coefficient comparison test seems to dominate because
it directly addresses the question we are after, namely, whether
the coefficient of interest β is affected by the inclusion of xi in
the regression.
Be this as it may, our main point is a practical one, that the

coefficient comparison test suffers particularly when a true con-
founder (γ �= 0) is measured with error. In general, confounders
like xi may not be easy to measure. If the available measure for
xi contains classical measurement error, the estimator of γ in
(2) will be attenuated, and the comparison βs − β l will be too
small (in absolute value) as a result. The estimator of δ from the
balancing regression is still consistent in the presence of clas-
sical measurement error; this regression simply loses precision
because the mismeasured variable is on the LHS. The measure-
ment error drives a wedge between the asymptotic values of the
two test statistics and the balancing test becomes relatively more
powerful than the coefficient comparison test. In order to make
these statements precise, we start by reviewing results for the
relevant population parameters in the case of classical measure-
ment error in the following section, before moving on to infer-
ence, power calculations, and simulations.

3. POPULATION PARAMETERS IN THE PRESENCE
OF MEASUREMENT ERROR

The candidate variable xi is not observed. Instead, the
researcher works with the mismeasured variable

xmi = xi + mi. (8)

We start by assuming the measurement error mi is classi-
cal, that is, E(mi) = 0, cov(xi,mi) = 0, cov(si,mi) = 0. In
Section 5, we also investigate the impact of mean-reverting
measurement error. As a result of the measurement error, the
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researcher compares the regressions

yi = βssi + esi

yi = βmsi + γ mxmi + emi . (9)

Notice that the short regression does not involve the mismea-
sured xi, so that βs = β l + γ δ as before. However, the popula-
tion regression coefficients βm and γ m are now different from
β l and γ from Equation (2)

βm = β l + γ δθ

γ m = γ (1 − θ ). (10)

The amount of measurement error is captured by the
parameter θ

θ = σ 2
m

σ 2
u + σ 2

m

,

where σ 2
• denotes the variance of the random variable in the

subscript (McCallum 1972; Garber and Klepper 1980). 1 − θ

is the multivariate attenuation factor, which takes the role of
the familiar attenuation factor λ = σ 2

x /(σ 2
x + σ 2

m) in a bivari-
ate regression. Recall that ui is the residual from the balanc-
ing regression (3). Notice that θ involves only the variation in
xmi which is orthogonal to si. This is the part of the variation
in xmi relevant to the estimate of γ m in regression (9), which
also has si as a regressor. Approaches along the lines of Bat-
tistin and Chesher (2014), Altonji, Elder, and Taber (2005),
and Oster (forthcoming), which effectively treat Equation (2) as
structural, require assumptions on θ or a function of it for point
identification.
The population coefficient βm differs from β l but less so than

βs. In fact, with classical measurement error βm lies between βs

and β l , as can be seen from (10). The parameter γ m is attenuated
compared to γ ; the attenuation is bigger than in the case of a
bivariate regression of yi on xmi without the regressor si if xmi and
si are correlated because σ 2

u < σ 2
x .

These results highlight a number of issues. The gap βs − βm

is too small compared to the desired βs − β l , directly affecting
the coefficient comparison test. This is a consequence of the fact
that γ m is biased toward zero. Ceteris paribus, this is making the
assessment of the hypothesis γ = 0more difficult, which in turn
affects the inference for βs = β l .

Finally, with the mismeasured xmi , the balancing regression
becomes

xmi = δmsi + umi (11)

= δsi + ui + mi.

This regression involves measurement error in the dependent
variable, which has no effect on the population parameter
δm = δ. Because the variance of the residual in (11) is larger
than in (3), the estimator δ̂m is less efficient than δ̂ in the case
with no measurement error.

4. INFERENCE

In this section, we consider how conventional standard errors
and test statistics for the quantities of interest are affected in the
homoscedastic case (see online Appendix A for details on the

setup, derivations, and an extension to robust standard errors).
The primitive disturbances are si, ui, ei, and mi, which we
assume to be uncorrelated with each other. Other variables are
determined by (2), (3), and (8). We use these results to analyze
the power of the two alternative tests in the next section. Start-
ing with theoretical results for the baseline homoscedastic case,
we extend these results in simulations. Our basic conclusions
are the same in all these different scenarios.
Start with the estimator δ̂m and its associated t-statistic. δ̂m is

still a consistent estimator for δ but its standard error is inflated
compared to the case with no measurement error. Denoting
the estimated standard error of a given estimator by ŝe(•), a
test based on the t-statistic tδm = δ̂m/ŝe(̂δm) remains consistent
because mi is correctly accounted for in the residual of the bal-
ancing regression (11). However, the t-statistic is asymptotically
smaller in absolute value than in the error-free case. As n → ∞,
the scaled t-statistic is

plim

(
1√
n
tδm
)

= √
1 − θ

δ(
σu
σs

) .

This means the null hypothesis (5) is rejected less often. The test
is less powerful than in the error-free case (θ = 0); the power
loss is captured by the term

√
1 − θ .

We next turn to γ̂ m, the estimator for the coefficient on the
mismeasured xmi in (9). The parameter γ is of interest since
it determines the coefficient movement βs − β l = γ δ in con-
junction with the result from the balancing regression. For ease
of exposition, we impose conditional homoscedasticity of emi
given si and xmi here and leave the more general case to the
online Appendix A.3.2. Denote the asymptotic standard error by
se(•), that is, se(•) ≡ 1√

n
plim{√nŝe(•)}. The asymptotic stan-

dard error for γ̂ m is

se (γ̂ m) =
√
1 − θ√
n

√
θγ 2 + σ 2

e

σ 2
u

.

Measurement error enters the standard error in two ways: the
first is an attenuation factor compared to the standard error
for a correctly measured xi, while the second is an additive
effect that depends on the value of γ . The parameters in the
two terms are not directly related, so se(γ̂ m) ≷ se(γ̂ ). Mea-
surement error does not necessarily inflate the standard error
here.
The two terms have a simple, intuitive interpretation. Mea-

surement error attenuates the parameter γ m toward zero, the
attenuation factor is 1 − θ . The standard error is attenuated in
the same direction; this is reflected in the

√
1 − θ factor, which

multiplies the remainder of the standard error calculation. The
second influence from measurement error comes from the term
θγ 2, which results from the fact that the residual variance
var(emi ) is larger when there is measurement error. The increase
in the variance is related to the true γ , which enters the residual.
The t-statistic for testing whether γ m = 0 has a limit

plim

(
1√
n
tγ m

)
= √

1 − θ
γ√

θγ 2 + σ 2
e

σ 2
u

.

In addition to the two sources of measurement error in the
standard error, the t-statistic involves the attenuation factor
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1 − θ for the coefficient γ m. As in the case for the balancing
regression, the t-statistic for γ̂ m is smaller than tγ for the
error-free case. But in contrast to the balancing test statistic
tδm , measurement error reduces tγ m relatively more, due to the
fact that measurement error in a regressor both attenuates the
relevant coefficient toward zero (captured by

√
1 − θ ) and

introduces additional variance into the residual (the θγ 2-term)
in the denominator. As a result, classical measurement error
makes the assessment of whether γ = 0 more difficult com-
pared to the assessment of whether δ = 0. As we will see, this
contributes to the greater power of the balancing test statistic.
Finally, consider the quantity βs − βm, which enters the coef-

ficient comparison test. Before proceeding, we note that the
covariance term in the expression for the asymptotic variance
of β̂s − β̂m

var
(
β̂s − β̂m

) = var
(
β̂s
)+ var

(
β̂m
)− 2cov

(
β̂s, β̂m

)
(12)

reduces the sampling variance of β̂s − β̂m. This covariance
term is positive and generally sizable compared to var(β̂s) and
var(β̂m) since the regression residuals esi and e

m
i are highly cor-

related. Because 2cov(β̂s, β̂m) gets subtracted, looking at the
standard errors of β̂s and β̂m alone can potentially mislead the
researcher into concluding that the two coefficients are not sig-
nificantly different from each other when in fact they are.
The coefficient comparison test itself can be formulated as a

t-test as well, since we are interested in the movement in a single
parameter, that is,

t(βs−βm ) = β̂s − β̂m

ŝe(β̂s − β̂m)
,

where ŝe(β̂s − β̂m) is a consistent standard error estimator.
Using (4) and (10), we obtain

plim

(
1√
n
t(βs−βm )

)
= √

1 − θ
δγ√

γ 2 σ 2
u

σ 2
s

+ θδ2γ 2 + δ2
σ 2
e

σ 2
u

.

(13)
Under the alternative hypothesis (δ �= 0) and the maintained
assumption γ �= 0, the three test statistics are asymptotically
related in the following way:

plim

(
1

1√
n
t(βs−βm )

)2

= plim

(
1

1√
n
tδm

)2

+ plim

(
1

1√
n
tγ m

)2

.

(14)
This result highlights a number of things. First of all, under

the maintained hypothesis γ �= 0, the balancing test alone is
more powerful. This is not surprising at all, since the balancing
test only involves estimating the parameter δ, while the coeffi-
cient comparison test involves estimating both δ and γ . Impos-
ing γ �= 0 in the coefficient comparison test is akin to tγ m → ∞,
and this would restore the equivalence of the balancing and coef-
ficient comparison tests. Note that the power advantage from
imposing γ �= 0 exists regardless of the presence of measure-
ment error.
The second insight is that measurement error affects the

coefficient comparison test in two ways. The test statistic is
subject to both the attenuation factor

√
1 − θ and the term

θδ2γ 2 in the variance, which is inherited from the t-statistic
for γ̂ m. Importantly, however, all these terms interact in the

coefficient comparison test. In our numerical exercises below,
it turns out that the way in which measurement error attenuates
γ m compared to γ is a major source of the power disadvantage
of the coefficient comparison test. Our simulations demonstrate
that the differences in power between the coefficient com-
parison and balancing tests can be substantial when there is
considerable measurement error in xmi .

5. POWER COMPARISONS

5.1 Asymptotic and Monte Carlo Results with Classical
Measurement Error

The ability of a test to reject when the null hypothesis is false
is described by the power function of the test. The power func-
tions here are functions of d, the values the parameter δ might
take on under the alternative hypothesis, while we keep γ �= 0
fixed. Using our results from the previous section, it is easy to
demonstrate that under the alternative hypothesis δ �= 0

Powertδm (d) > Powert(βs−βm ) (d; γ ). (15)

We give a full derivation in the online Appendix A.
In practice, this result may or may not be important. In addi-

tion, when the standard error is estimated, the powers of the two
tests may differ from the theoretical results above. Therefore,
we carry out a number of Monte Carlo simulations to assess the
performance of the two tests.
Table 1 displays the parameter values we use as well as the

implied values of the population R2 of regression (9). The values
were chosen so that for intermediate amounts of measurement
error in xmi the R2s are reflective of regressions fairly typical of
those in applied microeconomics, for example, a wage regres-
sion. Note that the amounts of measurement error we consider
are comparatively large. In our empirical application, we use
variables like mother’s education and the presence of a library
card in the household as measures of family background. We
suspect that these variables pick up at most a minor part of the
true variation of family background, even in the presence of
other covariates, so that values of θ = 0.7 or θ = 0.85 for the
measurement error are not unreasonable.

Table 1. Parameters for power calculations and implied R2s

σ 2
s = 1 β = 1

σ 2
u = 3 γ = 3

σ 2
e = 30 n = 100

R2

d θ = 0 θ = 0.7 θ = 0.85

0 0.48 0.16 0.09
0.5 0.53 0.23 0.16
1.0 0.59 0.33 0.27
1.5 0.66 0.44 0.39
2.0 0.72 0.54 0.50

NOTE: The implied population R2s do not depend on n, but the subsequent power calcula-
tions do.
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Figure 1. Theoretical rejection rates. d is the value the coefficient in the balancing equation takes on under the alternative hypothesis.

In Figure 1, we start by plotting the theoretical power
functions for both tests for three different magnitudes of the
measurement error. We calculate these power functions using
the t-distribution with n− 2 degrees of freedom, consistent
with how Stata 14 performs the balancing test (this distribution
choice makes little difference with our sample size of 100). The
thin lines show the power functions with no measurement error.
The power functions can be seen to increase quickly with d, and
both tests reject with virtual certainty once d exceeds values of
1. The balancing test is slightly more powerful but this differ-
ence is small, and only visible in the figure for a small range of d.
Themedium thick lines correspond to θ = 0.7, that is, 70% of

the variance of xmi is measurement error after partialling out si.
Measurement error of that magnitude visibly affects the power
of both tests. The balancing test still rejects with certainty for
d > 1.5, while the coefficient comparison test does not reject
with certainty for the parameter values considered in the figure.
This discrepancy becomes even more pronounced when we set
θ = 0.85 (thick lines). The power of the coefficient comparison
test does not rise above 0.65 in this case, while the balancing
test still rejects with probability 1 when d is around 2.

The results in Figure 1 highlight that there are parameter
combinations where the balancing test has substantially more
power than the coefficient comparison test. In other regions of
the parameter space, the two tests have more similar power, for
example, when d < 0.5. While we highlight the consequences
of measurement error throughout the article, we should note
that formally any particular value of θ can be mimicked by
an appropriate combination of values for γ and σ 2

u . This is an
immediate consequence of the fact that the classical measure-
ment error model is underidentified by one parameter. In that
sense “measurement error” is simply a label for a certain set
of parameter values. It is always difficult to choose empirically
relevant values for simulations, and we take comfort from the

fact that the results emerging from this section are also reflected
in the empirical example in Section 6.
Before going on to simulations ofmore complicated cases, we

contrast the theoretical power functions in Figure 1, based on
asymptotic approximations, to simulated rejection rates of the
same tests in Monte Carlo samples. Figure 2 shows the power
functions for the two tests without measurement error (θ = 0)
and with a large amount of measurement error (θ = 0.85), as
well as their simulated counterparts. We computed 25,000 repli-
cations in these simulations, and each repeated sample contains
100 observations. Without measurement error, the theoretical
power functions are closely aligned with the empirical rejec-
tion rates (thinner lines). Adding measurement error, this is also
true for the balancing test (the solid thicker lines are on top of
each other and not distinguishable) but not for the coefficient
comparison test (broken thicker lines).
Figure 2 reveals that the empirical rejection rates of the coef-

ficient comparison test in the presence of measurement error
deviate substantially from the power function calculation based
on the asymptotic approximation. This discrepancy is almost
completely explained by the fact that we use the asymptotic
values of standard errors in the calculations but estimated stan-
dard errors in the simulations. The joint distribution between the
coefficient and standard error estimators is difficult to character-
ize, especially in the case of the coefficient comparison test, so
we abstract away from the sampling variation in estimating the
standard errors in the theoretical derivations of the power func-
tions. Figure 2 shows that the test is severely distorted under
the null in the simulations; it barely rejects more than 1% of
the time for a nominal size of 5%. While this problem leads to
too few rejections under the null, it is important to note that the
same issue arises for positive values of d until about d = 1.5.
For larger values of d, the relationship reverses. In other words,
formoderate values of d, the coefficient comparison test statistic
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Figure 2. Theoretical and simulated rejection rates. Comparison of asymptotic rejection rates (from Figure 1) with rejection rates based on
Monte Carlo simulations. Baseline refers to the theoretical rejection rates without measurement error. d is the value the coefficient in the balancing
equation takes on under the alternative hypothesis.

is biased downwards under the alternative, and the test has too
little power. This highlights another advantage of the balancing
test—a standard t-test where no such problem arises. We note
that this is a small sample problem, which goes away when we
increase the sample size (in unreported simulations).We suspect
that this problem is related to the way in which the coefficient
comparison test effectively combines the simple tδm and tγ m test
statistics in a nonlinear fashion, as can be seen in Equation (14),
and the fact that tγ m sometimes is close to 0 in small samples
despite the fact that we fix γ substantially above 0.

5.2 Monte Carlo Results with Mean-Reverting
Measurement Error

The homoscedastic case with classical measurement error is
highly stylized and does not correspond well to the situations
typically encountered in empirical practice. We explore the case
of mean-reverting measurement error (Bound et al. 1994) using
simulations in this subsection. Some additional results can be
found in the online Appendix D. We generate measurement
error as

mi = κxi + μi,

where κ is a parameter and cov(xi, μi) = 0, so that κxi captures
the error related to xi and μi the unrelated part. When −1 <

κ < 0, the error is mean reverting, that is, the κxi-part of the
error reduces the variance in xmi compared to xi.

The case of mean-reverting measurement error captures a
variety of ideas, including the one that we may observe only
part of a particular confounder made up of multiple compo-
nents. Imagine we would like to include in our regression a
variable xi = w1i + w2i, where w1i and w2i are two orthogonal

variables. We observe xmi = w1i. For example, xi may be family
background, w1i is mother’s education and other parts of family
background correlated with it, and w2i are all relevant parts
of family background which are uncorrelated with mother’s
education. As long as selection bias due to w1i and w2i is
the same, this amounts to the mean-reverting measurement
error formulation above. Note that λ = var(xi)/var(xmi ) > 1
in this case, so the mismeasured xmi has a lower variance than
the true xi. This scenario is also isomorphic to the model
studied by Oster (forthcoming). See online Appendix B for
details.
The mismeasured xmi can now be written as

xmi = (1 + κ ) δsi + (1 + κ ) ui + μi,

so mean reversion directly affects the coefficient in the balanc-
ing regression, which will be smaller than δ for a negative κ .
As a result, the balancing test will reject less often. At the same
time, a negative κ offsets and possibly reverses the attenuation
bias on γ . This brings the power functions of the balancing and
coefficient comparison tests closer together.
For the simulations we set κ = −0.5, so the error is mean

reverting. We also fix σ 2
μ in the simulations. However, it is

important to note that the nature of the measurement error
will change as we change the value of d under the alternative
hypotheses. xi depends on δ and the correlated part of the mea-
surement error depends in turn on xi. We show results for two
cases with σ 2

μ = 0.75 and σ 2
μ = 2.25. Under the null, these two

parameter values correspond to λ = 2 and λ = 1, respectively.
The case λ = 2 corresponds to the Oster (forthcoming) model
just described with var(w1i) = var(w2i). These models exhibit
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Figure 3. Simulated rejection rates with mean-reverting measurement error. Comparison of baseline rejection rates (from Figure 1) with
simulated rejection rates based on mean-reverting measurement error and robust standard errors. d is the value the coefficient in the balancing
equation takes on under the alternative hypothesis.

relatively large amounts of mean reversion. Figure 3 demon-
strates that the balancing test again dominates for these param-
eter values. The gap is small for the σ 2

μ = 0.75 case but grows
with σ 2

μ, the classical portion of the measurement error. This
finding is not surprising as the mean-reversion part in the mea-
surement error biases the estimate of γ in the opposite direction
from the classical part and can in principle flip the sign of the
bias around. As a result, the coefficient comparison test could
have greater power.

5.3 Multiple Controls

So far we have concentrated on the case of a single added regres-
sor xi. Often in empirical practice, we may want to add a set of
additional covariates at once. It is straightforward to extend our
framework to that setting. Some interesting new issues arise in
this analysis.
Suppose there are k added regressors, that is, xi is a k × 1

vector, and

yi = β lsi + x′
iγ + ei (16)

xi = δsi + ui

βs − β l = γ ′δ,

where γ , δ, and ui are k × 1 vector analogs of their scalar
counterparts in Section 2. The coefficient comparison test
compares the βs from Equations (1) and (16) just as before.
Lee and Lemieux (2010) suggest a balancing test for multiple
covariates in the context of evaluating regression discontinuity
designs. Let x( j) denote the n× 1 vector of all the observations
on the jth x-variable. Stack all the x-variables on the LHS of

the regression to obtain⎡⎢⎢⎣
x(1)
x(2)
...

x(k)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
s 0 0 0
0 s 0 0
0 0 ... 0
0 0 0 s

⎤⎥⎥⎦
⎡⎢⎢⎣

δ1
δ2
...

δk

⎤⎥⎥⎦+

⎡⎢⎢⎣
u(1)

u(2)

...

u(k)

⎤⎥⎥⎦ ,

where s = [s1, s2, . . . , sn]′ and u( j) is the vector of residuals
corresponding to covariate x( j). The balancing test is an F-test
for the joint significance of the δ coefficients, the null is δ = 0.
We will call this stacking of equations the LHS balancing

test. While it is the natural multivariate extension, an alterna-
tive would be to regress s on the covariates x

si = π′xi + vi,

(including any other covariates implicit in the regressions in
Equation (16)) and test whether the coefficient vector π is sig-
nificantly different from zero. This is a standard F-test. We refer
to this test as the RHS balancing test. Notice that even though
the balancing variables are now on the right, this is conceptually
still a balancing test. Applied researchers sometimes use this
RHS test; for example, Bruhn and McKenzie (2009) reported
it being used in some experimental studies in development
economics.
While putting the balancing variables on the RHS might at

first glance seem unusual, it turns out that the LHS and RHS
tests are closely related. This should not be surprising as both
tests exploit the joint covariance matrix of the x( j) and s. This
can be seen most clearly in the case of a single covariate xi (i.e.,
k = 1), where the LHS and the RHS tests using a conventional
covariance matrix for homoscedastic residuals are numerically
identical.
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Figure 4. Simulated rejection rates with multiple controls: All covariates unbalanced. Simulated rejection rates for simultaneous tests for
adding four additional covariates at once. All covariates are unbalanced under the alternative hypothesis; d is the value the coefficient in the
balancing equation takes on under the alternative hypothesis for all covariates simultaneously.

The intuition for this is the following: In the single covariate
case, the F-test amounts to the overall F-test for the signifi-
cance of the regression. This, in turn, is a function of the R2 of
the regression. Since only two variables xi and si are involved,
this is the square of the correlation coefficient between the two.
But the correlation coefficient is not directional, so the forward
and reverse regression have to deliver the same F-statistic (in
the case when covariates are present in the regression, replace
the R2 and correlation coefficient with their partial equivalents
in this argument).
With multiple covariates (k > 1), the LHS and RHS tests are

no longer equivalent. However, the scaled F-statistics of the two
tests have the same probability limit in the special case, where
the LHS regression has a spherical error structure var(ui) =
σ 2Ik and the RHS regression is homoscedastic, as we show in
the online Appendix C. (See Ludwig, Mullainathan, and Spiess
2017 for a similar result.)
How do the balancing tests with multiple covariates perform

in practice? Figures 4 and 5 show simulations using a similar
design as described in Table 1 for all k balancing equations.
We set k = 4 and generate normally distributed, spherical errors
and impose homoscedasticity and independence when perform-
ing the joint test of the δ j’s or the π j’s. Our experiments with
other moderate values of k for the most part did not reveal differ-
ent insights. With multiple covariates, there are different ways
of specifying the alternative hypotheses now. The null hypoth-
esis may fail for one, various, or all of the k covariates. We
show rejection rates under two polar versions of the alterna-
tive hypothesis. Figure 4 shows simulations for the case where
all covariates are unbalanced, that is, δ1 = δ2 = · · · = δk = d.
Figure 5 analyzes the casewhere only the first covariate is unbal-
anced, while the others remain balanced, that is, δ1 = d, δ2 =
· · · = δk = 0.

These figures highlight a number of results. The LHS and
RHS balancing tests are indeed very similar as their power
functions virtually lie on top of each other in both figures.
When all covariates are unbalanced as in Figure 4 and when
measurement error is absent, the Hausman test turns out to be
an efficient test in combining the k separate hypotheses into
one single test-statistic, which is generated from the estimates
of only two parameters, the long and short βs. The balancing
tests, on the other hand, have to rely on the estimation of k
parameters. In this case, the rejection rates for the coefficient
comparison test (thin broken lines), therefore, lie above the
ones for both the balancing tests (thin solid and dash-dot lines).
In the presence of measurement error, however, the balancing
tests are again more powerful than the coefficient comparison
test as can be seen from the juxtaposition of the thicker lines.
This power advantage of the balancing tests is greater when

only one covariate is unbalanced as can be seen in Figure 5. Both
tests are less powerful in this case, but the power loss for the
coefficient comparison test is nowmuch more pronounced. This
is particularly noticeable in the case with measurement error in
the covariates (thick lines) but the balancing tests outperform
the coefficient comparison test even without measurement error
in this case. Empirically relevant cases may often lie in between
these extremes. Researchers may be faced with a set of potential
controls to investigate, some of which may be unbalanced with
the treatment while others are not. Figures 4 and 5 demonstrate
that the balancing test will frequently be the most powerful tool
in such a situation, but the coefficient comparison test also has
a role to play in the multivariate case.
The simulations reveal some further insights. With measure-

ment error, the small sample issue of the coefficient compar-
ison test, which we highlighted in Figure 2, arises again. On
top of this, we found in unreported simulations that both the
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Figure 5. Simulated rejection rates with multiple controls: One covariate unbalanced. Simulated rejection rates for simultaneous tests for
adding four additional covariates at once. Only one of the four covariates is unbalanced under the alternative hypothesis; d is the value the
coefficient in the balancing equation takes on under the alternative hypothesis for this covariate.

LHS and RHS balancing tests with robust standard errors (clus-
tered standard errors across equations for the LHS test and
heteroscedasticity-robust standard errors for the RHS test) have
a size distortion under the null hypothesis and reject too often.
This is due the standard small sample distortion of these covari-
ance matrices discussed in the literature (MacKinnon andWhite
1985; Chesher and Jewitt 1987; Angrist and Pischke 2009,
chap. 8). We find that this bias tends to get worse when more
covariates are added. Applied researcher may be most inter-
ested in the testing strategies discussed here when k is large
(so that a series of single variable balancing tests is unattrac-
tive), and will want to rely on a robust covariance matrix. An
upward size distortion may be less of an issue for a conserva-
tive researcher in a balancing test (where it means the researcher
will falsely decide not to go ahead with a research design where
the covariates are actually balanced) than in a test for the pres-
ence of nonzero treatment effects (where the same bias leads to
false discoveries). Nevertheless, we suspect that most applied
researchers would prefer a test with a correct size under the null
and a steep power function. As a result, research on improve-
ments for the bias problem in multivariate tests is therefore par-
ticularly important (we discuss some current approaches in our
working paper, Pei, Pischke, and Schwandt 2017).
The upshot is that it is in principle straightforward to extend

the balancing test to multiple covariates. An interesting finding
is that a RHS test offers a computationally simple alternative
that closely mimics the performance of the more standard LHS
balancing test. Yet, at this point implementation issues related
to the small sample bias of robust covariance estimators also
hamper our ability to confidently carry out balancing tests for
multiple covariates. Moreover, sometimes we are interested
in the robustness of the original results when the number
of added regressors is very large. An example would be a

differences-in-differences analysis in a state-year panel, where
the researcher is interested in checking whether the results are
robust to the inclusion of state specific trends. The balancing
test does not seem to be the right framework to deal with this
situation. The coefficient comparison test has a role to play in
this scenario.

6. EMPIRICAL ANALYSIS

We illustrate the theoretical results in the context of estimat-
ing the returns to schooling using data from the NLS. This is a
panel study of about 5000 male respondents interviewed from
1966 to 1981. The dataset has featured in many prominent anal-
yses of the returns to education, including Griliches (1977) and
Card (1995). We use the NLS extract posted by David Card and
augment it with the variable on body height measured in the
1973 survey. We estimate regressions similar to Equation (2).
The variable yi is the log hourly wage in 1976 and si is the num-
ber of years of schooling reported by the respondent in 1976.
Our samples are restricted to observations without missing val-
ues in any of the variables used.
Table 2 presents OLS regressions for the return to schooling

controlling for the respondent’s score on the Knowledge of the
World ofWork test (KWW), a variable used by Griliches (1977)
as a proxy for ability. Additional covariates are experience, race,
and past and present residence. The estimated return to school-
ing is 0.061.
In columns (2)–(4), we include variables that might proxy for

the respondent’s family background, mother’s education (col-
umn 2), whether the household had a library card when the
respondent was 14 (column 3), and body height measured in
inches (column 4). Mother’s education captures an important
component of a respondent’s family background. The library
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Table 2. Regressions for returns to schooling and specification checks controlling for the KWW score

Log hourly earnings Mother’s years
of education

Library card at
age 14

Body height in
inches

(1) (2) (3) (4) (5) (6) (7) (8)

Years of education 0.0609 0.0596 0.0608 0.0603 0.0591 0.2500 0.0133 0.0731
(0.0059) (0.0060) (0.0059) (0.0059) (0.0060) (0.0422) (0.0059) (0.0416)

KWW score 0.0070 0.0068 0.0069 0.0069 0.0067 0.0410 0.0076 0.0145
(0.0015) (0.0016) (0.0016) (0.0015) (0.0016) (0.0107) (0.0016) (0.0117)

Mother’s years of 0.0053 0.0048
education (0.0037) (0.0037)

Library card at age 14 0.0097 0.0045
(0.0215) (0.0216)

Body height in inches 0.0078 0.0075
(0.0034) (0.0034)

p-values
Coefficient
comparison test

0.161 0.651 0.156 0.084

LHS balancing test:
Individual

0.000 0.025 0.079

LHS balancing test:
Joint

0.000

RHS balancing test:
Joint

0.000

NOTE: The number of observations is 1773 in all regressions. Heteroscedasticity robust standard errors in parentheses. The joint LHS balancing test is conducted via the suest Stata
command. All regressions control for experience, experience-squared, indicators for black, for southern residence and residence in an SMSA in 1976, indicators for region in 1966 and
living in an SMSA in 1966.

card measure has been used by researchers to proxy for parental
attitudes (e.g., Farber and Gibbons 1996). Body height is deter-
mined by parents’ genes and by nutrition and disease environ-
ment during childhood. It is unlikely a particularly powerful
control variable but it is predetermined and correlated with fam-
ily background, self-esteem, and ability (e.g., Persico, Postle-
waite, and Silverman 2004 and Case and Paxson 2008).
Conditional on the KWWscore, these three variables are only

weakly correlated with earnings and only the coefficient for
body height is marginally significant. The estimated return to
education moves very little when these additional controls are
included; the differences to column (1) are in the order of 0.001.
In column (5), we enter all three variables simultaneously. The
coefficients on the controls are slightly attenuated, and the return
to education falls slightly further to 0.059. Below the estimates
in columns (2)–(5), we display the p-values comparing each of
the estimated returns to education to the one from column (1).
None of the tests reject at the 5% level. These results from the
coefficient comparison test seem to confirm the impression that
the coefficient movements are not statistically significant.
It might be tempting to conclude from this evidence that the

return to schooling estimated in column (1) should be given a
causal interpretation but this conclusion is premature. A first
caution actually comes from the coefficient comparison test in
column (5), which is significant at the 10% level. The coeffi-
cient movement of 0.002 is not large, and the individual stan-
dard errors in columns (1) and (5) of 0.006 do not suggest that
this movement might be significant. Equation (12) warns that
relying on the individual standard errors can be rather mislead-
ing. Nevertheless, most researchers would probably not find the

evidence in columns (1)–(5) worrisome enough to abandon their
research project.
More potent warnings emerge from the balancing regressions

in columns (6)–(8), where we regress maternal education, the
library card, and body height on education while controlling
for the KWW score. The education coefficient is positive and
strongly significant for mother’s education and the library card,
and more marginally so for body height. Moreover, both the
LHS and RHS joint balancing tests reject the hypothesis that all
three controls are balanced with a p-value of virtually zero. The
magnitudes of the coefficients, particularly, mother’s education,
are substantively important. These estimates reflect selection
bias: individuals with more education have significantly better
educated mothers, were more likely to grow up in a household
with a library card, and experienced more body growth when
young. Our interpretation of these results is that education lev-
els are related to family background in these regressions but
the available background measures are fairly useless as controls
when put on the RHS. These measurement problems matter less
for the estimates in columns (6)–(8), and these specifications are
therefore informative about the role of selection. Comparing the
p-values at the bottom of the table to the corresponding ones for
the coefficient comparison test in columns (2)–(4) demonstrates
the superior power of the balancing test and illustrates the mes-
sage of our article in a forceful fashion.

7. CONCLUSION

Using predetermined characteristics as dependent variables
offers a useful specification check for a variety of identification
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strategies popular in empirical economics. We argue that this
is the case even for variables which might be poorly measured
and are of little value as control variables. Such variables are
available inmany datasets.We encourage researchers to bemore
inventive in finding such measures and perform balancing tests
with themmore frequently.We show that this is generally amore
powerful strategy than adding the same variables on the RHS
of the regression as controls and looking for movement in the
coefficient of interest.
We have illustrated our theoretical results with an application

to the returns to education. We find the balancing test indeed to
be useful for gauging selection bias due to confounders, even
when they are potentially measured poorly. It is important to
point out that the balancing test does not address any other
issues that may also haunt a successful empirical investigation
of causal effects. One possible issue is measurement error in
the variable of interest. This is exacerbated as more potent con-
trols are added to a regression. Griliches (1977) showed that a
modest amount of measurement error in schooling may explain
patterns of returns in controlled and uncontrolled regressions.
Another issue, also discussed by Griliches, is that controls like
test scores might themselves be influenced by schooling, which
would make them bad controls.
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