
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=lecr20

Econometric Reviews

ISSN: 0747-4938 (Print) 1532-4168 (Online) Journal homepage: https://www.tandfonline.com/loi/lecr20

Testing the homogeneous marginal utility of
income assumption

Thomas Demuynck

To cite this article: Thomas Demuynck (2018) Testing the homogeneous marginal utility of income
assumption, Econometric Reviews, 37:10, 1120-1136, DOI: 10.1080/07474938.2016.1222235

To link to this article:  https://doi.org/10.1080/07474938.2016.1222235

Published with license by Taylor & Francis
Group, LLC© Thomas Demuynck

Published online: 17 Oct 2016.

Submit your article to this journal 

Article views: 1656

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=lecr20
https://www.tandfonline.com/loi/lecr20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/07474938.2016.1222235
https://doi.org/10.1080/07474938.2016.1222235
https://www.tandfonline.com/action/authorSubmission?journalCode=lecr20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=lecr20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/07474938.2016.1222235
https://www.tandfonline.com/doi/mlt/10.1080/07474938.2016.1222235
http://crossmark.crossref.org/dialog/?doi=10.1080/07474938.2016.1222235&domain=pdf&date_stamp=2016-10-17
http://crossmark.crossref.org/dialog/?doi=10.1080/07474938.2016.1222235&domain=pdf&date_stamp=2016-10-17


ECONOMETRIC REVIEWS

2018, VOL. 37, NO. 10, 1120–1136

http://dx.doi.org/10.1080/07474938.2016.1222235

Testing the homogeneous marginal utility of income assumption

Thomas Demuynck

ECARES, Université Libre de Bruxelles, Bruxelles and Maastricht University, Maastricht, The Netherlands

ABSTRACT

We develop a test for the hypothesis that every agent from a population of
heterogeneous consumers has the same marginal utility of income function.
This homogeneous marginal utility of income (HMUI) assumption is often
(implicitly) used in applied demand studies because it has nice aggregation
properties and facilitates welfare analysis. If the HMUI assumption holds, we
can also identify the common marginal utility of income function. We apply
our results using a U.S. cross sectional dataset on food consumption.
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1. Introduction

In empirical demand analysis, it is o�en (implicitly) assumed that consumers have identical marginal
utility of income functions. We call this the homogeneous marginal utility of income assumption
(HMUI). The main contribution of this article is to provide a statistical test for the HMUI assumption.
We provide two groups of tests. The �rst is based on the conditional quantiles of the Engel share function.
The second is based on the values of the conditional moments of this function. The tests are obtained
using an overidenti�cation result on the marginal utility of income function (given that the HMUI
assumption holds). As such, if theHMUI assumption holds, it becomes possible to identify this common
marginal utility of income function.

The HMUI assumption is frequently imposed on many functional forms in the parametric demand
literature, like the Gorman polar form (Gorman, 1961) or the Almost Ideal Demand System (Deaton
and Muellbauer, 1980), because it has nice aggregation properties. In particular, if HMUI assumption
holds, then individual demand functions can be expressed as the sum of the mean demand function,
which satis�es all regularity properties of an individual demand function (i.e., homogeneity, adding
up, Slutsky symmetry, and negativity), and an individual heterogeneity term that has mean zero.1 As
such, the representative demand function can easily be estimated using a parametric or nonparametric
conditional mean estimator. Given that the mean demand function satis�es all regularity assumptions,
it can also be used to conduct welfare analysis, e.g. computation of the deadweight loss of proposed
tax changes or the computation of (average) equivalent and compensating variation. We refer to
Hausman and Newey (1995), Blundell et al. (2003), and Blundell et al. (2012) for such applications.
Schlee (2007) showed that if the HMUI assumption is satis�ed and if the marginal utility of income
decreases with income (which is a reasonable assumption), then the compensating variation obtained
from using the mean demand function will be a lower bound for the mean of the agents’ compensating
variation.

The problem of measuring the marginal utility of income is an old problem which dates back to
the contributions of Frisch (1932), Samuelson (1937), Vickrey (1945), and Morgan (1945). More recent

CONTACT Thomas Demuynck thomas.demuynck@ulb.ac.be ECARES, Université Libre de Bruxelles and Maastricht University,
Avenue F. D. Roosevelt 50, CP 114, B-1050 Brussels, Belgium.
1Various recent studies analyze demand behavior and test rationality restrictions for settings where the HMUI assumption
does not necessarily holds. See, for example Hausman and Newey (2016) and Dette et al. (2016).
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studies try to measure the marginal utility of income using data from happiness studies (Layard et al.,
2008). In this article, we show that the marginal utility of income function is easily identi�ed if the
HMUI assumption holds. This allows us to make interpersonal comparison of utility. For example, if
we redistribute one dollar from an individual with income x towards an individual with income y, then
aggregate utility changes by β(y)− β(x) where β(.) is the commonmarginal utility of income function.
In this sense, the HMUI assumption and our identi�cation result greatly simplify cost bene�t analysis.

Interestingly, our test and identi�cation results only require data on the consumption of a single good
or group of goods and the expenditure levels for a single cross-section of consumers. In this sense, there
is no need for multiple cross-sections, panel data, or consumption data on multiple goods. On the other
hand, if observations on multiple goods are available, additional testable restrictions can be obtained.

We implement our test using the 2007 wave of the Consumer Expenditure Survey (CEX), a U.S.
consumer budget survey. We focus our analysis on the consumption of food. Based on this data set,
we �nd that we cannot reject the HMUI assumption. Next, we estimate the marginal utility of income
function. According to our estimates, aggregate welfare increases equally when we either give one dollar
to an agent at the median of the income distribution, 0.61 dollars to someone at the 1st decile, or 1.45
dollars to someone at the 9th decile.

Overview. Section 2 contains the framework and the main testability and identi�cation results. Section
3 presents our estimation procedure and describes our statistical test for the HMUI assumption. Section
4 contains the application, and Section 5 concludes.

2. The HMUI assumption

We consider a probability space (J,�, P) of agents where agent j ∈ J has a twice-continuously
di�erentiable and measurable, indirect utility function vj(p, x) : Rn

++ × I → R. The indirect utility
function vj(p, x) gives the maximal utility for agent j obtainable at prices p and income x. This function
is strictly quasi-convex, homogeneous of degree zero in prices and income, strictly increasing in x, and
decreasing in p. We assume that the domain of income levels I ⊆ R++ is convex and open. Denote by
V(p, x) the mean indirect utility function over all agents for a vector of prices and income,

V(p, x) = Ej[vj(p, x)].
The fact that we aggregate conditional on some level of income di�ers from how aggregation is typically
performed in representative consumer settings.2 If qj(p, x) denotes the Marshallian demand of agent j
for good q, then the mean demand function for good q is de�ned by

q̄(p, x) = Ej[qj(p, x)].
Lewbel (2001) calls this the statistical demand function, but we follow Schlee (2007) and use the
term “mean demand function.” Using Roy’s identity, we can express this demand function in terms of
derivatives of the indirect utility functions of the agents

q̄(p, x) = Ej


−

∂vj(p,x)

∂pq

∂vj(p,x)

∂x


 .

On the other hand, the demand function for the representative agent with utility function V(p, x), is
given by

Q(p, x) = −
Ej

[
∂vj(p,x)

∂pq

]

Ej

[
∂vj(p,x)

∂x

] .

2In representative consumer (macroeconomic) settings representatitve indirect utility function depend on prices and aggre-
gate income. See for example Lewbel (1989) for aggregation in such settings.
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The two demand functionsQ(p, x) and q̄(p, x) will coincide if and only if the marginal utility of income
functions, ∂vj(p, x)/∂x, are identical for all agents j = 1, . . . , n.3 We call this the HMUI. By integrating
out the indirect utility function, we obtain that the HMUI assumption requires the existence of agent
speci�c functions Aj and a function B such that

vj(p, x) = Aj(p)+ B(p, x). (1)

The key feature of this utility function is that income only enters via the function B which is the same
for all consumers. We refer to Lewbel (2001) and Schlee (2007) for a detailed discussion of this family
of indirect utility functions.

Consider a setting where all agents’ indirect utility function satis�es the HMUI assumption, i.e.,
Eq. (1). Let qR be a subset of goods with price vector pR. The share of these goods as a fraction of the total

expenditure x is given by s = p′
RqR
x . Using Roy’s identity, we see that the share function for the goods in

R for agent j has the functional structure

sj(p, x) = −
aj(p)+ b(p, x)

xβ(p, x)
, (2)

where aj(p) = p′
R∇pRAj(p), b(p, x) = p′

R∇pRB(p, x), andβ(p, x) = ∂B(p, x)/∂x.We take this functional
form as a starting point to develop our test. Observe that β(p, x), being the marginal utility of income,
is strictly positive.

We consider the setting where we have a single cross-section with �xed prices p for all goods, and
we observe the consumption share of the goods in R, together with the disposable income for a large
number of agents. This allows us to identify the joint distribution of shares and expenditure levels (wj, xj)
where wj = sj(p, xj), i.e., wj is the consumption share of the goods in R for some agent j with income
xj.

4 Given that we restrict ourselves to a single cross-section, with identical prices for all consumers,
we omit from now on the dependency on prices and simply write sj(x) instead of sj(p, x), i.e., sj(x) is
the Engel share curve of consumer j. Similarly, we write aj and b(x) instead of aj(p) and b(p, x). If,
in addition to household income, we also observe some individual characteristics, like household size,
education level, marital status, age, etc., it is possible to take these into account by performing the entire
analysis conditional on some value of these characteristics. In addition, this would allow us to make
both functions Aj and B dependent on these observable characteristics. For ease of notation, however,
we omit such observable characteristics although we will control for household composition and some
other characteristics in the empirical application.

Letwj(x) be cumulative distribution function (cdf)wj conditional on xj = x, i.e., the random variable
with cdf, Pr(wj ≤ w|xj = x).

Assumption 1. For all x ∈ I, the random variable wj(x) is continuously distributed on its domain and has
�nite mean.

If theHMUI speci�cation (2) holds, thenAssumption 1 implies that aj is also continuously distributed
and has a �nite mean.

Assumption 2. For all values w ∈ [0, 1] and any level of income x ∈ I,

Pr(wj ≤ z|xj = x) = Pr(sj(xj) ≤ z|xj = x) = Pr(sj(x) ≤ z).

Assumption 2 states that the distribution of agents’ types (i.e., unobserved preference heterogeneity)
is independently distributed from the expenditure levels. This is not an innocuous assumption, but

3The necessary part of this result requires that Q(p, x) equals q̄(p, x) for all distributions of agents and agents have di�erent
demand functions.

4We use wj instead of sj in order to make clear the distinction between what is observed, wj , and the underlying data
generating process sj(p, x).



ECONOMETRIC REVIEWS 1123

similar assumptions are frequently used in the literature.5 Again, if we have observations on additional
household characteristics, the independence assumption can be relaxed to independence conditional on
the value of these characteristics. Assumption 2 also rules out endogeneity of the expenditure level. In
principle, endogeneity of the expenditure level could be allowed for by using nonparametric IVor control
functionmethods for regressionmodels under endogeneity (see, for example, Imbens and Newey, 2009,
for a possible approach). A particular di�culty, however, lies in �nding an appropriate instrument.

If sj(x) has the HMUI speci�cation (2), then Assumption 2 also implies that for all a in the support
of aj,

Pr(aj ≤ a|xj = x) = Pr(aj ≤ a).

Let w̄(x) be the mean Engel share curve, conditional on the expenditure level x, i.e., E(wj|xj = x); then,
if (2) holds, we have

w̄(x) = Ej[wj|xj = x],
= Ej[sj(xj)|xj = x] = Ej[sj(x)],

= −
Ej

[
aj
]
+ b(x)

xβ(x)
≡ − ā + b(x)

xβ(x)
.

2.1. Testable implications from conditional quantiles

Let zπ (x) be the π th quantile of the distribution of the random variable (wj − w̄(xj)) conditional on the
expenditure level xj = x (i.e., the π th conditional quantile of the error wj − w̄(xj))

Pr(wj − w̄(xj) ≤ zπ (x)|xj = x) = π .

The value of zπ (x) is identi�ed from the joint distribution of (wj, xj). The following proposition shows
that for the HMUI assumption to hold, the ratio of zπ (x) x and zπ (y) y, for two di�erent incomes x and
y, should not depend on the value of π .

Proposition 1. If Assumptions 1 and 2 hold and the share functions sj(.) are of the form (2), then for all
income levels x, y ∈ I,

zπ (x) x β(x) = zπ (y) y β(y). (3)

In particular, if zπ (y) 6= 0, then

zπ (x) x

zπ (y) y
= β(y)

β(x)
. (4)

Proof. If the demand functions sj(x) are of the form (2), then we have that

Pr(wj − w̄(xj) ≤ zπ (x)|xj = x) = π ,

⇐⇒ Pr(−aj + ā ≤ zπ (x)β(xj)xj|xj = x) = π ,

⇐⇒ Pr(−aj ≤ zπ (x)β(x)x − ā) = π .

Here the last line follows fromAssumption 2. Performing the same derivation at the income level y gives

Pr(wj − w̄(xj) ≤ zπ (y)|xj = y) = π ,

⇐⇒ Pr(−aj ≤ zπ (y)β(y)y − ā) = π ,

Equating these two expressions and using Assumption 1, we obtain that zπ (x)β(x)x = zπ (y)β(y)y or
equivalently (if zπ (y) 6= 0)

zπ (x) x

zπ (y) y
= β(y)

β(x)
.

5See for example, Lewbel (2001, Eq. 4), Hausman and Newey (2016, Assumption 1), Dette et al. (2016), Blundell et al. (2014,
Assumption A.1), and Bhattacharya (2015).
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As the right-hand side is independent of π , so must be the le�-hand side.

Conditions (3) and (4) show two things. First of all, given that zπ (x)x
zπ (y)y

is independent of π , it provides

us with a test for the hypothesis that the HMUI assumption is satis�ed. In fact, this ratio is also
independent of the particular subset of goods under consideration. Given this, if we have observations
on the consumption of more than one good or group of goods, this would yield an additional testable
implication. Second, if it is indeed the case that the le�-hand side is independent ofπ , then condition (3)
shows how to identify the value ofβ(.), up to a normalization, i.e., themarginal utility of income function

is identi�ed. In particular, if we normalize for a �xed level of income ȳ, β(ȳ) = 1, then β(x) = zπ (ȳ)ȳ
zπ (x)x

.
Proposition 1 shows that condition (3) is a necessary condition if every individual has a share function

of the form (2). The following proposition shows that condition (3) is in fact the strongest testable
implication of theHMUI speci�cation (2). In particular, it shows that (i) condition (3) can not be further
strengthened and (ii) that there is no subclasses of distributions over shares and expenditures (wj, xj) for

which (3) becomes both a necessary and su�cient condition for (2).6 The proof is given in Appendix B.

Proposition 2. Consider a joint distribution of shares and expenditure levels (wj, xj). Let w̄(x) be the
conditional mean

w̄(x) = Ej(wj|xj = x),

and let zπ (x) be the π th conditional quantile of wj − w̄(xj) given xj = x, i.e.,

Pr(wj − w̄(x) ≤ zπ (x)|xj = x) = π .

In addition, assume that for all x ∈ I, zπ (x) is strictly increasing in π ∈ [0, 1] and that there exists a
function β(x) : R++ → R++ such that (3) is satis�ed, i.e., for all π ∈ [0, 1] and all x, y ∈ I,

zπ (x)xβ(x) = zπ (y)yβ(y).

Then, we have as follows:
(i) There exists a distribution of share functions sj(x) that satis�es the HMUI speci�cation (2) and, for

all x ∈ I and π ∈ [0, 1],
Pr(sj(x)− w̄(x) ≤ zπ (x)) = π and Ej(sj(x)) = w̄(x).

(ii) There exists a distribution of share functions sj(x) that violates the speci�cation (2) and, for all x ∈ I
and π ∈ [0, 1],

Pr(sj(x)− w̄(x) ≤ zπ (x)) = π and Ej(sj(x)) = w̄(x).

The �rst part of Proposition 2 demonstrates that (3) is optimal in the sense that any other feature
of the distribution of (wj, xj) cannot further contribute to �nding validations of (2). Additionally, the
second part shows the limitation that accepting (3) never allows us to con�rm that the demand share
functions are of the HMUI form (2), i.e., it is impossible to �nd su�cient conditions to test (2). As such,
the HMUI speci�cation (2) is refutable but not veri�able.

If we are willing to impose additional assumptions on the data generating process, it becomes possible
to obtain a necessary and su�cient testable implication of (2). In particular, consider the following
assumption.

Assumption 3. There exists a function h : J → R such that for all x ∈ I and all j, j′ ∈ J, h(j) ≥ h(j′) if
and only if sj(x) ≥ sj′(x).

Assumption 3 states that the heterogeneity component can be brought back to a single dimension
h(j) that perfectly orders the Engel share curves. Similar assumptions have been used in the literature

6See Theorem 1 of Mouri�e and Wan (2015) and Proposition 1.1 of Kitagawa (2015) for similar type results for treatment
response models.
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(e.g., Blundell et al., 2014; Hoderlein and Vanhems, 2013). Imposing it identi�es the individual Engel
share curves sj(x) by the conditional quantile functions of wj(x). As such, Assumption 3, together with
Assumptions 1 and 2, gives (3) as a necessary and su�cient condition for speci�cation (2). The proof
follows immediately from the �rst part of the proof of Proposition 2.

Corollary 1. If Assumptions 1, 2, and 3 hold, then for all j ∈ J, sj(x) is of the form (2) if and only if (3)
holds.

We base our test of the HMUI assumption on condition (4). However, one caveat is in order. Notice
that the identi�cation of β(x) fails if zπ (y) = 0. This would occur if, for example, π = 0.5 and the
conditional distribution of wj given xj = y is symmetric around w̄(y). As such, we should focus only on
values of π for which zπ (y) is signi�cantly di�erent from zero.

2.2. Testable implications from conditional moments

The procedure above developed testable implications by using the conditional quantiles of the variable
wj− w̄(xj). A similar result can be obtained by using the conditional moments of the variablewj− w̄(xj).
In order to use this test, one must strengthen Assumption 1.

Assumption 4. For all x ∈ I, the random variable wj − w̄(xj) has �nite conditional moments up to order
m; i.e.,

µm(x) = Ej[(wj − w̄(xj))
m|xj = x],

exists and is �nite.

Ifm ≥ 2 and (2) holds, then the variance of wj − w̄(xj) conditional on xj = x is de�ned by

µ2(x) = Ej[(wj − w̄(xj))
2|xj = x],

= Ej

[(−aj + ā

β(xj)xj

)2

|xj = x

]
,

= 1

β(x)2x2
Ej[(aj − ā)2].

From this, we obtain that for two di�erent income levels x and y,
√
µ2(x)

µ2(y)

x

y
= β(y)

β(x)
.

More general, we have the following result.

Proposition 3. If Assumptions 1, 2, and 4 hold and if the share functions sj(.) are of the form (2), then for
all income levels x and y ∈ I,

(
µm(x)

)1/m
x β(x) =

(
µm(y)

)1/m
y β(y). (5)

In particular, if µm(y) 6= 0, then
(
µm(x)

µm(y)

)1/m x

y
= β(y)

β(x)
. (6)

The right-hand side of Eq. (6) is independent of m, which gives another set of testable implications.
Moreover, it gives us another means to identify the marginal utility of income function. Caution should
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be taken when µm(y) is (close to) zero, which can happen if the conditional distribution is symmetric
andm is odd. Given this, we focus in our empirical analysis on the even moments.

3. Implementation

We estimate the conditional quantiles and moments in two steps. Consider an iid sample i = 1, . . . , n of
shares and incomes (wi, xi). First, we nonparametrically estimate the mean consumption share function
w̄(x).We do this using a (leave one out) local linear kernel regression of the consumption shareswi on the
log of expenditure, ln(xi). In particular, we de�ne, ŵn(xi) as the optimal value of a0 in the minimization
problem

min
a0,b0

∑

j6=i

[wj − a0 − b0(ln(xi)− ln(xj))]2κ
(
ln(xj)− ln(xi)

hn

)
,

where κ(.) is a symmetric kernel and hn is the bandwidth. In practice, we use the Gaussian kernel and
choose hn by cross-validation. If hn → 0 and nhn → ∞ for n → ∞, we know that the estimator
ŵn(xi) consistently estimates w̄(xi). Under suitable conditions (see Li and Racine, 2007, Section 2.4), the
random variable

√
nhn(ŵn(xi)− w̄(xi)) has an asymptotic normal distribution.

Next, we estimate Pr(wi − w̄(xi) ≤ z|xi = x) by using a smoothed nonparametric conditional cdf
estimator, i.e., the solution of a1 in the minimization problem

min
a1,b1

∑

j

[
K

(
z − wj + ŵn(xj)

gn

)
− a1 − b1(ln(xj)− ln(x))

]2
κ

(
ln(xj)− ln(x)

hn

)
, (7)

where K(y) =
∫ y
−∞ κ(ψ)dψ and gn is a suitable chosen bandwidth of the order o(hn). Finally, we

estimate zπ (x) as the nonparametric quantile estimator, ẑn,π (x) of this local linear kernel estimator (see
Li and Racine, 2007, Section 6.3). Other estimators for the conditional cdf and quantiles are possible but
provide very similar results. The derivation of the asymptotic properties of ẑn,π (x) is made di�cult by
the fact that the mean share function w̄(xi) is replaced by the estimate ŵn(xi). However, using a proof
which is very similar to the one of Zhou and Zhu (2015, Theorems 1 and 2), it can be shown that the
estimator satis�es the so called adaptiveness property whichmeans that substituting the truemean share
function w̄(xi) by its estimate ŵn(xi) does not change the consistency of ẑn,π (x) or asymptotic normality
of

√
nhn(ẑn,π (x)− zπ (x)).

The conditional moments µ(x)m are estimated as the solution of a2 in the following minimization
problem:

min
a2,b2

∑

j

[
(wj − ŵn(xj))

m − a2 − b2(ln(x)− ln(xj))
]2
k

(
ln(xj)− ln(x)

hn

)
. (8)

This gives us the estimator µ̂m
n (x). Using a proof similar to the one of Fan and Yao (1998, Theorem 1),

it can be shown that the substitution of w̄(xi) by the estimator ŵn(xi) in (8) does not in�uence the
consistency of µ̂m

n (x) nor the asymptotic normality of
√
nhn(µ̂

m
n (x)− µm(x)).

Testing the HMUI Assumption. For �xed numbers I,K, J ∈ N, consider a �nite set of income levels
[y1, . . . , yI] a �nite set of values [π1, . . . ,πK] from (0, 1) and a �nite number of integers [m1, . . . ,mJ]
larger than 1. Let x be some �xed income level, and de�ne

θπk(yi) = zπk(x) x

zπk(yi) yi
,

τmj(yi) =
(
µmj

(x)

µmj
(yi)

)1/mj

x

yi
.
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Conditions (4) and (6) show that, if the HMUI assumption holds and if all moments µmj
(.) exist, then

the values of θπk(yi) and τmj(yi) should be equal for all values of πk and mj. In other words, for all yi,
πℓ, πk,mj, andmo,

θπ j(yi) = θπk(yi) = τmj(yi) = τmo(yi),

let

Z = max
{yi}i≤I

{
max

{mj}j≤J ,{πk}k≤K

{θπk(yi), τmj(yi)} − min
{mj}j≤J ,{πk}k≤K

{θπk(yi), τmj(yi)}
}
.

Observe that by de�nition, Z ≥ 0. However, if the HMUI assumption holds, then Z = 0. As such, we can
test the HMUI by developing a test for the null hypothesis Z = 0 against the alternative hypothesis that
Z > 0. Consider the estimate Ẑn of Z obtained by replacing the quantiles zπ (.) and moments µm(.) by
their estimates ẑn,π (.) and µ̂

m
n (.) using a sample of size n and a bandwidth of size hn. Given the �niteness

of I,K, and J, we know that the randomvariable
√
nhn(̂Zn−Z) has a nondegenerate limiting distribution.

A one-sided (1 − α)% con�dence interval for this random variable at Z = 0 is determined by the value
cα for which,

Pr
(√

nhn(̂Zn − Z) ≤ cα

)
= 1 − α,

⇐⇒ Pr
(√

nhnẐn ≤ cα

)
= 1 − α,

⇐⇒ Pr

(
0 ≥ − cα√

nhn
+ Ẑn

)
= 1 − α.

In order to test the null hypothesis, we should determine the number cα , compute the value of −cα√
nhn

+Ẑn,

and verify if this value is larger than zero. We reject the HMUI assumption at the (1 − α)% con�dence
level if it is.

The value of cα is determined by the (asymptotic) distribution of
√
nhn(̂Zn − Z), which is not

known. In addition, a bootstrap approximationwould not be valid given that the asymptotic distribution
of

√
nhn(̂Zn − Z) is discontinuous in Z at Z = 0. Appendix A contains a discussion and some

simulation results, which clearly shows the inconsistency of the bootstrap. Moreover, kernel estimators
have an asymptotic bias, which further complicates the bootstrap procedure (see, for example Horowitz,
2001). As a solution, we resort to a subsampling procedure. Although subsampling underperforms the
bootstrap in settings where both are applicable, it has the advantage that it is valid under very weak
conditions. We refer to Politis et al. (1999) for a detailed discussion of this procedure.

The idea of subsampling is to take subsamples from the observed sample of size v ≪ n without
replacement. Assume that the corresponding bandwidth is given by hv with hv → 0 and vhv → ∞, and
let Z∗

v,n be the estimate of Z obtained from such a subsample. If we take a large number of subsamples,
we can compute the value of ĉα such that for (1 − α)100% of the subsamples,

√
vhvZ

∗
v,n ≤ ĉα .

Then asymptotically, under the null hypothesis Z = 0 and for vhv → ∞ and nhn/(vhv) → ∞,

Pr
(√

nhnẐn ≤ ĉα

)
→ (1 − α).

This gives the following procedure. First, we take a large number of subsamples of size v and compute

the value of ĉα .
7 Next, we compute −ĉα√

nhn
+ Ẑn and look whether this value is larger than zero. If it is, we

reject the HMUI assumption at the (1 − α)% con�dence level.

7We draw 10,000 subsamples of size v = n0.7 . Results are not sensitive to variations in this subsample size.
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A possible disadvantage of subsampling is that it may not give uniformly valid inference, although
subsampling gives asymptotic valid pointwise inference (see Andrews and Guggenberger, 2009a,b).8

The uniformity problem occurs because the asymptotic distribution of
√
nhn(̂Zn − Z) is discontinuous

at Z = 0. In particular, it can be shown that the subsampling procedure does not converge uniformly to
the limiting distribution for values of Z > 0 close to 0.9 As such, the subsampling procedure does not
provide correct inference if one wishes to derive con�dence intervals for Z when Z is very close to 0. In
our setup, however, we only care about testing the null hypothesis Z = 0 (i.e., establishing a con�dence
interval around Z when Z = 0). When we restrict ourselves to data generating processes for which the
true parameter value has Z = 0, subsampling does gives asymptotically valid inference.

4. Application

Data Description.We use data from the CEX, which is a U.S. consumer cross-sectional budget survey.
We focus on the 2007 diary survey, and we base our analysis on the consumption share of food.10 Taking
food as the commodity of interest has the advantage that it is nondurable. As the diary survey reports
expenditures on a two-week basis, we �rst convert these to yearly equivalents. Next, we deseasonalize
using a dummy regression approach.11 In order to take into account that variation in expenditures can
be driven by the household composition, e.g., the number of adults or the number of kids living in the
family we de�ate total expenditures by the Organisation for Economic Co-operation and Development
(OECD) equivalence scale of the household. Given that we use the diary data, the expenditure level used
should be interpreted as expenditures on nondurable consumption. The restriction to nondurables is
valid if nondurable consumption is separable in the utility function.

Next, we control for several observable characteristics by restricting our sample to (i) households
who have completed the two-week diary, (ii) households who are not living in student housing, (iii)
households who are vehicle owners, (iv) households where both members work at least 17 hours, (v)
households in which both members are not self-employed, (vi) households in which the age of the
reference person is at least 21, and �nally we restrict attention to (vii) households that consist of a
husband, a wife, and possibly children. Finally, we also remove some outlier observations.12 This leaves
us with a sample size of 2,163 observations.

Results. Figure 1 plots the values of θ̂π (y) = ẑπ (x) x
ẑπ (y) y

and τ̂m(y) =
(
µ̂m(x)
µ̂m(y)

)1/m
x
y , where x is the median

expenditure level in 2007 and y ranges over the di�erent quantiles of the expenditure level in the data
set.We focus on the values of π = 0.1, 0.15, 0.25, 0.75, 0.85, and 0.9, which are su�ciently far away from
the average in the sample such that zπ (y) 6= 0 and on the even moments m = 2, 4, 6, 8. Tables 2 and 3
in Appendix C contain the exact �gures. If the HMUI hypothesis holds, then these graphs should trace
out the marginal utility of income function β(y)/β(x) for varying value of y. We see that in most cases
the graphs are downward sloping, which is consistent with the widely accepted idea that the marginal
utility of income is decreasing, i.e., one additional dollar is worth more to a poor person than to a rich
person. The HMUI hypothesis holds if these various graphs are identical for varying values of π andm.
Visual inspection shows that the graphs are indeed quite close to each other. Implementing our test gives

8I would like to thank a referee for pointing this out.
9This can be modelled by considering Z as a drifting sequence that converges to zero.
10Food is an aggregate of cereals, bakery products, beef, pork, poultry, seafood, other meat, eggs, milk products, other dairy
products, fresh fruit, fresh vegetables, processed fruit, processed vegetables, sweets, fat and oils, non-alcoholic beverages,
prepared food, snacks, and condiments.

11Speci�cally, the expenditures on each category (reported for two weeks) are regressed onmonth dummies. Residuals from
this regression (which can be interpreted as the variation in expenditures that cannot be explained by seasonality or by
months) are added to the mean expenditures for each category in order to construct deseasonalized expenditures.

12In particular, we removed observations for which rescaled total expenditures or expenditure shares are not within three
standard deviations from themean and observations for which total rescaled expenditures are among the 5% lowest or 5%
highest expenditures or for which the expenditure share is close to zero.
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Figure 1. Estimates of the marginal utility of income (θ̂π (y
i)) left and τm(y

i) right.

Figure 2. Estimates of the marginal utility of income with 90% con�dence interval.

for a signi�cance level of α = 0.05 a critical value (i.e., −ĉα/
√
nhn + Ẑn) of −0.227 and a critical value

of −0.1553 for a signi�cance level of α = 0.10. The p-value for the hypothesis that Z = 0 is equal to
0.4058. As such, on the basis of our test, we do not reject the hypothesis that Z = 0.

Figure 2 and Table 4 give the estimate of the marginal utility of income function
β(y)
β(x) obtained as the

average over all considered quantiles and moments together with the 95% pointwise CI based on the
same subsampling procedure. The marginal utility of income function allows us to make interpersonal
welfare comparisons. For example, redistributing one dollar from an individual at the median income
level towards an individual at the �rst decile improves aggregate utility by 1.64−1 = 0.64. In otherwords,
in order to increase aggregate utility by one unit, one can either allocate $1 to somebody at the median
income level or $0.61 (i.e., 1/1.64) to somebody at the �rst decile. Giving the same dollar to someone
at the 9th decile only increases aggregate utility by 0.69. Alternatively, in order to increase utility by one
unit, one should allocate as much as 1.45$ (i.e., 1/0.69) to somebody at the 9th decile.
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5. Conclusion

We developed a test to verify whether a population of individuals have the same marginal utility of
income function. The homogeneousmarginal utility of income assumption is frequently used in applied
demand and welfare analyses. In addition, if the test is not rejected, it allows us to identify the marginal
utility of income function. Interestingly, our test and identi�cation results are modest in terms of data
requirements. We apply our procedure to a U.S. cross-sectional data set on food consumption, and we
�nd that we cannot reject the homogeneous marginal utility of income hypothesis. We estimate that
(conditional on the HMUI assumption) one dollar is more than twice as valuable to someone at the �rst
decile compared to someone at the ninth decile of the (disposable) income distribution.

Appendix A: Inconsistency of the bootstrap

In this appendix,we discusswhy the bootstrap provides incorrect inference for testing the null hypothesis
that theHMUI assumptionholds. The arguments used here are very similar to the ones given byAndrews
(2000).

Consider the setting where we only consider one value of θ and one value of τ that are estimated

based on a �nite sample of size n using estimators θ̂n and τ̂n. Let

√
nhn

(
θ̂n − θ

τ̂n − τ

)
→
(
W1

W2

)
∼ J,

where J is a nondegenerate distribution. Usually, J will be a bivariate normal distribution with full
support. Let Z(a, b) = max{a, b} − min{a, b} be our test statistic, and de�ne

Tn =
√
nhn

(
Z(θ̂n, τ̂n)− Z(θ , τ)

)
.

If the null hypothesis Z(θ , τ) = 0 holds, i.e., θ = τ , then by the continuous mapping theorem,

Tn = max{
√
nhn(θ̂n − θ),

√
nhn(τ̂n − τ)} − min{

√
nhn(θ̂n − θ),

√
nhn(τ̂n − τ)},

→ max{W1,W2} − min{W1,W2}
Consider now a bootstrap procedure to estimate the distribution ofTn. Denote by θ

∗
n and τ

∗
n the estimates

of θ and τ based on a bootstrap sample of {(wi, xi), i = 1, . . . , n}. Assume that the bootstrap is valid in
the sense that the joint distribution of [

√
nhn(θ

∗
n − θ̂n),

√
nhn(τ

∗
n − τ̂n)] can be used to approximate the

joint distribution of [W1,W2], i.e., J.
Now, take the case where the null hypothesis holds, i.e., Z(θ , τ) = 0, and assume that the distribution

J is such that there are values c > 0 and α > 0 such that limn→∞ Pr(
√
nhn(θ̂n − τ̂n) > c) > α. This will

be the case, for example, if J is the bivariate normal distribution andW1,W2 are not perfectly correlated.
Consider the event

where is the indicator function. Then,
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From the Hewitt–Savage zero–one law, one establishes that Pr (A) = 1.13 As such, for each ω ∈ A, we

have that
√
nhn(θ̂n(ω) − τ̂n(ω) > c occurs in�nitely o�en. For a �xed ω ∈ A, consider the in�nite

subsequence {nk|k ≥ 1} of {n|n ≥ 1} for which
√
nkhnk(θ̂nk(ω) − τ̂nk(ω)) ≥ c. Observe that in this

sequence θ̂nk > τ̂nk , so Z(θ̂nk , τ̂nk) =
√
nkhnk(θ̂nk − τ̂nk) ≥ c. Then,

√
nkhnk

(
Z(θ∗

nk
, τ ∗

nk
)− Z(θ̂nk , τ̂nk)

)
=
√
nkhnk max{θ∗

nk
− θ̂nk , τ

∗
nk

− θ̂nk},

−
√
nkhnk min{θ∗

nk
− τ̂nk , τ

∗
nk

− τ̂nk},

=
√
nkhnk max{(θ∗

nk
− θ̂nk), (τ

∗
nk

− τ̂nk)+ (τ̂nk − θ̂nk)},

−
√
nkhnk min{(θ∗

nk
− θ̂nk)+ (θ̂nk − τ̂nk), (τ

∗
nk

− τ̂nk)},

≤ max{
√
nkhnk(θ

∗
nk

− θ̂nk),
√
nkhnk(τ

∗
nk

− τ̂nk)− c},

− min{
√
nkhnk(θ

∗
nk

− θ̂nk)+ c,
√
nkhnk(τ

∗
nk

− τ̂nk)},
→ max{W1,W2 − c} − min{W1 + c,W2},
≤ max{W1,W2} − min{W1,W2}.

Here, the last inequality is strict with positive probability. Along the subsequence nk, the sequence√
nkh(Z

∗
nk

− Ẑnk) 6→ max{W1,W2}−min{W1,W2}. Conclude that
√
nh(Z∗

n − Ẑn) 6→ max{W1,W2}−
min{W1,W2} as n → ∞ conditional on the empirical distribution. This is true for all ω ∈ A, so with
probability one, the bootstrap is not consistent.

SimulationResults.As an additional exercise to demonstrate the invalidity of the bootstrap, we preform
a simple a Monte Carlo simulation. Let

Z = max
i

{max{µi|i = 1, . . . ,T} − min{µi|i = 1, . . . ,T}} = 0,

where {µi|i = 1, . . . ,T} are the means of n independent and identically distributed (i.i.d.) normally
distributed variables with mean zero and variance σ i. Consider the �nite sample test statistic

Ẑn = max
i

{max{µ̂i
n|i = 1, . . . ,T} − min{µ̂i

n|i = 1, . . . ,T}},

where µ̂i
n is the sample average for a sample of size n. Clearly,

√
n(̂Zn−Z) = √

nẐn has a non-degenerate
distribution, so we focus on testing the null hypothesisZ = 0.We take four scenarios with varying values
of T, namely T = 4, 8, 16, and 32. We set the lowest variance, say σ 1, equal to one. The other values
increase with 0.5 increments, i.e., σ 2 = 1.5, σ 3 = 2, . . ..

For each scenario, we consider sample sizes of n = 1,000, 2,000, 3,000 and 4,000, and for each of these
cases, we perform 1000Monte Carlo iterations. For each iteration, we verify whether the null hypothesis

Table 1. Simulation results.

Scenario I Scenario II Scenario III Scenario IV

T = 4 T = 8 T = 16 T = 32

sample size subs bootstr subs bootstr subs bootstr subs bootstr

1000 0.04 0.19 0.03 0.30 0.03 0.46 0.04 0.66
2000 0.04 0.22 0.03 0.29 0.04 0.43 0.03 0.61
3000 0.04 0.20 0.04 0.33 0.05 0.43 0.05 0.61
4000 0.05 0.21 0.05 0.32 0.04 0.43 0.05 0.60

13This follows from the fact that A is determined by the random variables {(wi , xi), i = 1, . . .}, which are independently
distributed, and that A is invariant to �nite permutations of the indices i = 1, 2, . . ..
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(Z = 0) is rejected at the 95% signi�cance level based on 500 subsamples of size n0.6 and 500 bootstrap
samples. Table 1 gives the fraction of Monte Carlo iterations where the null hypothesis is rejected. As
can be seen from the tables, the subsampling procedure gives rejection probabilities close to 0.05. The
bootstrap on the other hand is clearly not consistent. In this setting, the rejection probability is too high,
ranging from around 20% in scenario I up to 60% in scenario IV.

Appendix B: Proof of Proposition 2

Let w̄(x) = Ej(wj|xj = x) and Pr(wj − w̄(x) ≤ zπ (x)|xj = x) = π .

First of all, observe that
∫ 1
0 zπ (x)dπ = 0 as zπ (x) is the quantile of a conditional error term which

has, by construction, mean zero. Also (by assumption), zπ (x) is strictly increasing in π ∈ [0, 1].
Next, z0(x) = inf j{wj − w̄(x)|xj = x} and z1(x) = supj{wj − w̄(x)|xj = x}. So,

z0(x)+ w̄(x) = inf
j

{wj|xj = x} ≥ 0,

z1(x)+ w̄(x) = sup
j

{wj|xj = x} ≤ 1.

Part 1. Let r ∼ U[0, 1] be a uniformly distributed random variable, distributed independently from x.
De�ne the share functions

sr(x) = w̄(x)+ zr(x),

for x ∈ I. In other words, we de�ne the share function of individual r with the quantiles of the observed
conditional share functions.

Fact 1: sr(x) ∈ [0, 1]. We have that

sr(x) = w̄(x)+ zr(x) ≤ w̄(x)+ z1(x) ≤ 1,

sr(x) = w̄(x)+ zr(x) ≥ w̄(x)+ z0(x) ≥ 0.

This shows that sr(x) : I → [0, 1].

Fact 2: Er(sr(x)) = w̄(x). Indeed,

Er(sr(x)) =
∫ 1

0
(w̄(x)+ zr(x))dr = w̄(x)

Fact 3: Pr(sr(x) ≤ zπ (x)) = π .

Pr(sr(x)− w̄(x) ≤ zπ (x)) =
∫ 1

0
I(w̄(x)+ zr(x)− w̄(x) ≤ zπ (x))dr,

=
∫ 1

0
I(zr(x) ≤ zπ (x))dr,

=
∫ 1

0
I(r ≤ π)dr = π .

The last line is due to the strict monotonicity of zπ (x) in π .

Fact 4: sr(x) satis�es condition (2). For all x, y ∈ I and π ∈ [0, 1], we have that
zπ (x)xβ(x) = zπ (y)yβ(y).

As such, the values cπ ≡ zπ (x)xβ(x) only depend on π . Substituting,

sr(x) = w̄(x)+ cr

xβ(x)
= cr + w̄(x)xβ(x)

xβ(x)
.
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De�ne −ar = cr and −b(x) = w̄(x)xβ(x). Then,

sr(x) = −ar + b(x)

xβ(x)
,

which has the HMUI speci�cation (2).

Part II. As before, de�ne cπ = zπ (x)xβ(x), which is independent of x ∈ I. Observe that
∫ 1
0 cπdπ =

xβ(x)
∫ 1
0 zπ (x)dπ = 0. In addition, cπ is strictly increasing and continuous in π (as zπ (x) is strict

continuous and increasing in π). Let δ = 1/N for some largeN ∈ N. We will later on choose the speci�c
value of δ. Then, there exists a strictly increasing (continuous) function g : [0, δ/2] → R such that

cπ = g

(
πδ

2

)
.

Consider the function h(r) : [0, δ] → R where

h(r) =
{
g(δ/2 − r) if 0 ≤ r ≤ δ/2,

g(r − δ/2) if δ ≥ r ≥ δ/2.

The function g is continuous on [0, δ] strictly decreasing on [0, δ/2] and strictly increasing on [δ/2, δ].
For r ∈ R, let ⌊r⌋ equal (r mod δ) which is contained in [0, δ]. Now, extend h(r) to the domain R+

by de�ning

ℓ(r) = h(⌊r⌋).
Observe that the function ℓ : R+ → [c0, c1] is periodic in the sense that ℓ(x) = ℓ(x+ aδ) for all a ∈ N.

Consider the uniformly distributed random variable r ∼ U(0, δ), independently distributed from x,
and specify the stochastic functions,

sr(x) = ℓ(x + r)

xβ(x)
+ w̄(x) = h(⌊x + r⌋)

xβ(x)
+ w̄(x).

Fact 1: sr(x) ∈ [0, 1]. First observe that for all x, z0(π)xβ(x) = c0 and z1(π)xβ(x) = c1. Also, for all
r ∈ [0, δ] :

c1 = h(δ) > h(r) > h(δ/2) = c0.

Given this,

z0(x) = c0

xβ(x)
≤ sr(x)− w̄(x) = h(⌊x + r⌋)

xβ(x)
≤ c1

xβ(x)
= z1(x).

This shows that z0(x) ≤ sr(x)− w̄(x) ≤ z1(x). Then,

0 ≤ z0(x)+ w̄(x) ≤ sr(x) ≤ z1(x)+ w̄(x) ≤ 1.

Fact 2: Er(sr(x)) = w̄(x). We have

Er(ℓ(x + rj)) = 1

δ

∫ δ

0
ℓ(x + r)dr = 1

δ

∫ x+δ

x
ℓ(r)dr,

= 1

δ

∫ 0

x
ℓ(r)dr + 1

δ

∫ x+δ

0
ℓ(r)dr = 1

δ

∫ 0

x
ℓ(r + δ)dr + 1

δ

∫ x+δ

0
ℓ(r)dr,

= 1

δ

∫ δ

x+δ
ℓ(r)dr + 1

δ

∫ x+δ

0
ℓ(r)dr = 1

δ

∫ δ

0
ℓ(r)dr = 1

δ

∫ δ

0
h(r)dr,

= 1

δ

∫ δ/2

0
h(r)dr + 1

δ

∫ δ

δ/2
h(r)dr,
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= 1

δ

∫ δ/2

0
g(δ/2 − r)dr + 1

δ

∫ δ

δ/2
g(r − δ/2)dr,

= −1

δ

∫ 0

δ/2
g(r)dr + 1

δ

∫ δ/2

0
g(r)dr = 1

δ
2

∫ δ/2

0
g(r)dr,

=
∫ 1

0
g(πδ/2)dπ =

∫ 1

0
cπdπ = 0.

The second line uses the periodicity of ℓ. The third line uses the fact that ℓ and h are identical on [0, δ].
Conclude that, Er(sr(x)) = Er(ℓ(x+r))

xβ(x) + w̄(x) = w̄(x).

Fact 3: Pr(sr(x)− w̄(x) ≤ zπ (x)) = π . We have

Pr(sj(x)− w̄(x) ≤ zπ (x)) = Pr(ℓ(x + rj) ≤ zπ (x)xβ(x)) = Pr(ℓ(x + rj) ≤ cπ ).

Then,

Pr(ℓ(x + rj) ≤ cπ ) = 1

δ

∫ δ

0
I(ℓ(x + r) ≤ cπ )dr,

= 1

δ

∫ x+δ

x
I(ℓ(r) ≤ cπ )dr = 1

δ

∫ 0

x
I(ℓ(r) ≤ cπ )dr + 1

δ

∫ x+δ

0
I(ℓ(r) ≤ cπ )dr,

= 1

δ

∫ x+δ

0
I(ℓ(r) ≤ cπ )dr + 1

δ

∫ 0

x
I(ℓ(r + δ) ≤ cπ )dr,

= 1

δ

∫ x+δ

0
I(ℓ(r) ≤ cπ )dr + 1

δ

∫ δ

x+δ
I(ℓ(r) ≤ cπ )dr,

= 1

δ

∫ δ

0
I(h(r) ≤ cπ )dr = 1

δ

∫ δ/2

0
I(h(r) ≤ cπ )dr + 1

δ

∫ δ

δ/2
I(h(r) ≤ cπ )dr,

= 1

δ

∫ δ/2

0
I(g(δ/2 − r) ≤ cπ )dr + 1

δ

∫ δ

δ/2
I(g(r − δ/2) ≤ cπ )dr,

= −1

δ

∫ 0

δ/2
I(g(r) ≤ cπ )dr + 1

δ

∫ δ/2

0
I(g(r) ≤ cπ )dr,

= 1

δ
2

∫ δ/2

0
I(g(r) ≤ cπ )dr = 1

δ
2

∫ δ/2

0
I(r ≤ g−1(cπ ))dr,

= 1

δ
2

∫ g−1(cπ )

0
dr = 1

δ
2g−1(cπ ) = 1

δ
2
πδ

2
= π .

Fact 4: the functions sr(x) do not satisfy (2). Observe that if HMUI is satis�ed, then for any r and
p ∈ [0, 1] and for all x, y > 0, it must be that,

sr(x)− Ev(sv(x))

sp(x)− Ev(sv(x))
= sr(y)− Ev(sv(y))

sp(y)− Ev(sv(y))
.

In other words, we need that for all x, y ∈ I and all r, p ∈ [0, δ],
h(⌊x + r⌋)
h(⌊x + p⌋) = h(⌊y + r⌋)

h(⌊y + p⌋) .

We can always �nd numbers 0 < r1 < δ/2 and δ/2 < r2 < δ such that h(r) > 0 for all 0 < r < r1 and
for all δ > r > r2.
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Take δ small enough such that there is an a ∈ N for which [aδ, (a+ 1)δ] ⊆ I. Let x, y ∈ I, r, p ∈ [0, δ]
such that 0 < ⌊x + r⌋ < ⌊x + p⌋ < r1 and r2 <⌋y + r⌋ < ⌊y + p⌋ < δ (this can always be done by
taking r and p su�ciently small and r < p, taking x strictly above but close to aδ and choosing y strictly
below but very close to (a + 1)δ). Observe that h(⌊x + r⌋) > h(⌊x + p⌋) > 0 (as h is strictly decreasing
on [0, δ/2]) and 0 < h(⌊y + r⌋) < h(⌋y + p⌋) (as h is strictly increasing on [δ/2, δ]). As such,

ℓ(x + r)

ℓ(x + p)
> 1 >

ℓ(y + r)

ℓ(y + p)
,

so the HMUI assumption is not satis�ed.

Appendix C: Tables

Table 2. Estimates of β(y)/β(x) using the conditional quantiles.

Percentile π = 0.1 π = 0.15 π = 0.25 π = 0.75 π = 0.85 π = 0.9

0.10 1.5353 1.5125 1.6733 1.7581 1.5621 1.6611
0.15 1.3481 1.3493 1.4099 1.4014 1.2456 1.3451
0.20 1.2923 1.2470 1.2673 1.3322 1.1311 1.2242
0.25 1.1996 1.1655 1.1662 1.2594 1.0964 1.1662
0.30 1.0997 1.0767 1.0951 1.1680 1.0435 1.0974
0.35 1.0402 1.0232 1.0664 1.1059 0.9848 1.0449
0.40 1.0088 1.0261 1.0475 1.0620 0.9621 0.9968
0.45 0.9960 1.0233 1.0279 1.0228 0.9843 0.9869
0.50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.55 0.9851 0.9622 0.9673 0.9928 0.9883 1.0197
0.60 0.9570 0.9142 0.9328 0.9989 0.9552 1.0138
0.65 0.9243 0.8800 0.9082 1.0038 0.9231 0.9933
0.70 0.8846 0.8479 0.8773 1.0046 0.8825 0.9552
0.75 0.8440 0.8182 0.8394 1.0061 0.8337 0.8970
0.80 0.8208 0.7887 0.8064 0.9965 0.7887 0.8375
0.85 0.7988 0.7566 0.7747 0.9439 0.7434 0.7795
0.90 0.7518 0.7149 0.7206 0.8377 0.6785 0.7069

Table 3. Estimates of β(y)/β(x) using the conditional moments.

Percentile m = 2 m = 4 m = 6 m = 8

0.10 1.6090 1.6376 1.6925 1.7452
0.15 1.3842 1.4005 1.4172 1.4341
0.20 1.2917 1.3055 1.3009 1.2960
0.25 1.2304 1.2523 1.2394 1.2192
0.30 1.1530 1.1901 1.1935 1.1741
0.35 1.0758 1.1097 1.1331 1.1367
0.40 1.0279 1.0462 1.0687 1.0845
0.45 1.0077 1.0125 1.0238 1.0346
0.50 1.0000 1.0000 1.0000 1.0000
0.55 0.9927 0.9968 0.9891 0.9768
0.60 0.9782 0.9919 0.9814 0.9573
0.65 0.9588 0.9725 0.9558 0.9244
0.70 0.9257 0.9230 0.8877 0.8506
0.75 0.8747 0.8439 0.7925 0.7574
0.80 0.8209 0.7714 0.7195 0.6899
0.85 0.7704 0.7147 0.6702 0.6464
0.90 0.7146 0.6623 0.6297 0.6154
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Table 4. Estimates of β(y)/β(x)with the 90% con�dence bounds.

Percentile Lower bound Estimate Upper bound

0.10 1.3361 1.6440 2.1235
0.15 1.1726 1.3794 1.8040
0.20 1.0952 1.2737 1.6274
0.25 1.0466 1.2054 1.4803
0.30 1.0134 1.1372 1.3313
0.35 0.9935 1.0790 1.2073
0.40 0.9875 1.0370 1.1184
0.45 0.9911 1.0133 1.0520
0.50 1.0000 1.0000 1.0000
0.55 0.9483 0.9874 1.0106
0.60 0.8888 0.9696 1.0208
0.65 0.8400 0.9458 1.0246
0.70 0.7868 0.9027 1.0245
0.75 0.7280 0.8451 1.0177
0.80 0.6752 0.7951 1.0028
0.85 0.6280 0.7499 0.9827
0.90 0.5740 0.6953 0.9509
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