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ABSTRACT

Models with multiple discrete breaks in parameters are usually estimated
via least squares. This paper, �rst, derives the asymptotic expectation of the
residual sum of squares and shows that the number of estimated break points
and the number of regression parameters a�ect the expectation di�erently.
Second, we propose a statistic for testing the joint hypothesis that the breaks
occur at speci�ed points in the sample. Our analytical results cover models
estimated by the ordinary, nonlinear, and two-stage least squares. An
application to U.S. monetary policy rejects the assumption that breaks are
associated with changes in the chair of the Fed.

KEYWORDS

Linear models; nonlinear
models; ordinary least
squares; parameter change;
two-stage least squares; US
monetary policy

JEL CLASSIFICATION

C12; C13; C26; E52

1. Introduction

There has been a considerable literature in econometrics on least square-based estimation and testing in
models with discrete breaks in the parameters. The seminal paper by Bai and Perron (1998) developed a
framework for estimation and inference in linear regression models estimated via ordinary least squares
(OLS) that has served as the template for similar frameworks in more general models, including systems
of linear regression models (Perron and Qu, 2006), linear models with endogenous regressors estimated
via two stage least squares (2SLS, Hall et al., 2012), and nonlinear regression models estimated by
Nonlinear Least Squares (NLS, Boldea and Hall, 2013).

Within these models, the key parameters of interest are those indexing the breaks—the break
fractions—and the regime speci�c coe�cients. If the model in question is assumed to have m breaks,
then these key parameters are estimated by minimizing the residual sum of squares over all possible
data partitions involvingm breaks. The asymptotic analysis then focuses on establishing the consistency
of and a limiting distribution theory for these parameters, and also on the development of a limiting
distribution theory for statistics relating to the number of breaks. However, relatively little attention has
been paid to the minimized residual sum of squares per se, despite its key role in inference for these
models.

The �rst study to examine analytically the consequences of coe�cient break point estimation on
the residual sum of squares appears to be Ninomiya (2005), who considers breaks in the mean of a
Gaussian process with inference on the number of breaks conducted through the Akaike information
criterion (AIC) viewed as the bias-corrected maximum log-likelihood estimator. Ninomiya (2005)
�nds the required bias implies that estimation of each break fraction parameter has an impact on the
the maximized log likelihood equivalent to the estimation of three mean parameters. Kurozumi and
Tuvaandorj (2011) extend Ninomiya’s (2005) analysis to systems of linear regressions with exogenous
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regressors and heteroscedasticity. Within this general case, the implications for the relative impacts of
the parameter estimators and break-estimators are less easily summarized. However, if their results are
specialized to the case of a single regression equation with homoscedastic errors, then their analysis
reveals the same conclusions as Ninomiya’s (2005) regarding the relative impacts of the estimated
parameters and estimated breaks on AIC.

The paper makes three contributions. First, we derive the asymptotic expectation of the residual
sum of squares in models with breaks in the coe�cients at unknown dates. For linear or nonlinear
regression models with exogenous regressors, this expectation depends on the numbers of estimated
break points and estimated mean parameters, with the former having a weight of three relative to each
mean parameter. For the linear model, this �nding reproduces that of Kurozumi and Tuvaandorj (2011),
but the extension to nonlinear models is new. In addition, our derivation is di�erent to Kurozumi and
Tuvaandorj (2011) and is based on a decomposition of the residual sum of squares that, we believe,
provides interesting insights into the derived result. Although the expression is more complicated in
linear models estimated via 2SLS, nevertheless the principal result, namely, that each estimated break
date has the same impact on the expectation as three estimated mean parameters, carries over to this
context. Second, we propose a statistic for testing the joint hypothesis that the breaks occur at speci�ed
points in the sample. Under its null hypothesis, this statistic is shown to have a limiting distribution that
is non-standard but, under certain assumptions, asymptotically pivotal a�er normalization; percentiles
are provided for this limiting distribution. Although the same distribution is obtained by Hansen (2000)
(see also Hansen, 1997) in the context of testing the location of the single threshold in a threshold
autoregressive (TAR) model, no joint test appears to have been proposed previously in the literature.
This statistic can be used to construct con�dence sets for the breaks. This issue has recently received
some attention in linear models; e.g., see Elliott and Mueller (2007), Eo and Morley (2015), and Chang
and Perron (2015). Unlike these previous methods, our approach treats the breaks jointly rather than
constructing individual intervals for each break. Our third contribution is to examine breaks in the U.S.
monetary policy, for which we shed new light on the common assumption that Volcker taking over as
Fed chair marked an immediate policy change [Clarida et al. (2000)].

An outline of the remainder of the paper is as follows. Section 2 obtains the asymptotic expectation of
the minimized residual sum of squares for regression models with exogenous regressors. Section 3 then
examines the case of a model with endogenous regressors estimated via 2SLS, where the reduced form
may be either stable (with no breaks) or unstable and subject to breaks that need not coincide with those
of the structural form. Section 4 proposes our joint test for the hypothesis that breaks occur at certain
prespeci�ed points in the sample, discusses their use to construct joint con�dence sets and an evaluation
of the test properties via a simulation study. Section 5 examines breaks in U.S. monetary policy, while
Section 6 concludes. All proofs are relegated to a mathematical appendix.

2. RSS with exogenous regressors

Our analysis of the asymptotic expectation of the residual sumof squares cover both linear and nonlinear
regression models estimated by least squares. However, since the assumptions di�er in some important
ways, it is convenient to treat the two cases separately. Although the linear case is already covered
by Kurozumi and Tuvaandorj (2011), it is pedagogically convenient to begin by �rst developing our
results in that context for the following reasons. First, our presentation is di�erent from Kurozumi and
Tuvaandorj (2011) as it involves a decomposition of the residual sum of squares that we believe provide
an interesting insight into why the asymptotic expectation takes the form it does in that model. Second,
we apply a similar decomposition in all three models considered here and so an explicit presentation
of the result for the linear model with exogenous regressors serves to underscore for the reader the
common underlying structure that is present in all three cases. Third, this common structure is exploited
to introduce new tests in Section 4 that can be applied in models estimated by OLS, NLS, and 2SLS, and
so it is convenient to highlight how this structure is present in all three cases from the outset. Finally, as
the linear model with exogenous regressors is the simplest—and a leading—case, it provides the most
convenient framework in which to introduce the results.
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2.1. Linearmodels

Consider the case in which the equation of interest is a linear regressionmodel exhibitingm breaks, such
that

yt = x′
tβ

0
i + ut , i = 1, . . . ,m + 1, t = T0

i−1 + 1, . . . ,T0
i , (1)

with T0
0 = 0 and T0

m+1 = T, where T is the total sample size. Thus, yt is the dependent variable, while xt
is a p× 1 vector of exogenous explanatory variables that typically includes the constant term, and ut is a
mean zero error. As usual, in the literature, we require the true break points to be asymptotically distinct.

Assumption 1. T0
i = [Tλ0i ], where 0 < λ01 < ... < λ0m < 1.1

Suppose now that a researcher knows the number of breaks but not their location(s). We use λ to
denote an arbitrary set of m break fractions, with λ = [λ1, . . . , λm]

′ and 0 < λ1 < . . . < λm < 1,
λ0 = 0, and λm+1 = 1. In order tominimize the overall residual sum of squares, the researcher estimates
the regression model

yt = x′
tβ

∗
i + e∗t , i = 1, . . . ,m + 1, t = Ti−1 + 1, . . . ,Ti, (2)

for each possible unique m-partition of the sample, where Ti = [λiT], and e∗t is an error term. This is
embodied in the following assumption:

Assumption 2. Equation (2) is estimated over all partitions (T1, . . . ,Tm) such thatTi−Ti−1 > max{p−

1, ǫT} for some ǫ > 0 and ǫ < infi(λ
0
i+1 − λ0i ).

The parameter ǫ is known as the trimming parameter. Assumption 2 requires that each segment
considered contains su�cient observations for estimation of the model with �nite T, while containing
a positive fraction of the sample asymptotically. The second part of this restriction is motivated by the
requirement that large sample statistical theory can be applied to deduce the limiting behavior of the
relevant statistics in every subsample considered. In applications withmacroeconomic data, ǫ is typically
set equal to 0.2, 0.15, or 0.10, with this choice justi�ed by simulation studies calibrated to the sample
sizes and time series properties of macroeconomic data.2 However, outside these settings, other values
may be appropriate. If judged by the adequacy of the reliability of asymptotic inference, Bai and Perron
(2006) provide simulation evidence that ǫ can be smaller when data are independently and identically
correlated than when the data are heteroscedastic and/or serially correlated. Bai and Perron (2006) also
suggest that the trimming parameter can be reduced as the sample size increases. Such a schememight be
appropriate with high-frequency data.3 However, the appropriate choice of ǫ in this context is potentially
complicated by the fact that asT increases, it seems desirable to allow for the number of break points also
to increase. Killick et al. (2012) provide an algorithm for break point selection that allows the number
of possible breaks to increase with the sample size, but they do not provide any formal guidance on the
choice of ǫ. Thus, while clearly an important issue, it is to our knowledge an open question as to how
the trimming parameter should be chosen as the sample size increases.

The estimates of β∗ = (β∗
1

′, . . . ,β∗
m+1

′)
′
are obtained by minimizing the sum of squared residuals

ST(T1, . . . ,Tm; β) =

m+1∑

i=1

Ti∑

t=Ti−1+1

{
yt − x′

tβi

}2
(3)

1[ · ] denotes the integer part of the quantity in brackets.
2For example, see Bai and Perron (2006).
3We thank a referee for drawing our attention to this issue.
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with respect to β = (β1
′, . . . ,βm+1

′)
′. We denote these estimators by β̂({Ti}

m
i=1) with β̂j({Ti}

m
i=1) being

the associated estimator of β∗
j relating to segment j. The estimators of the break points, (T̂1, . . . , T̂m),

are then de�ned as:

(T̂1, . . . , T̂m) = argminT1,...,TmST

(
T1, . . . ,Tm; β̂({Ti}

m
i=1)

)
(4)

where theminimization is taken over all possible partitions, (T1, . . . ,Tm), and the associatedminimized

residual sum of squares is denoted as RSS(T̂1, . . . , T̂m) = ST

(
T̂1, . . . , T̂m; β̂({T̂i}

m
i=1)

)
. The OLS esti-

mates, β̂({T̂i}
m
i=1), are then the regression parameter estimates associated with the estimated partitions.

The estimated break fractions are collected in λ̂, them× 1 vector with jth element T̂j/T. Bai (1997) and

Bai and Perron (1998) derive the large sample behaviors of λ̂ and β̂({T̂i}
m
i=1), together with various tests

for parameter variation that arises naturally in this context.
Our focus is the large sample behavior of theminimized residual sumof squares. To this end, consider

the asymptotic expectation of the bias term

ξT = RSS(T̂1, . . . , T̂m) − Tσ 2, (5)

where

RSS(T1, . . . ,Tm) =

m+1∑

j=1

RSSj(T1, . . .Tm), (6)

RSSj(T1, . . . ,Tm) =

Tj∑

t=Tj−1+1

{
yt − x′

t β̂j({Ti}
m
i=1})

}2
. (7)

Hence ξT de�ned by (5) is the di�erence between the (minimized) residual sum of squares in (3) and

the expected error sum of squares, Tσ 2 = E[
∑T

t=1 u
2
t ], in the data generating process (DGP) of (1).

The bias term of (5) arises from (i) estimating the unknown break dates, (ii) estimating the regime-
speci�c coe�cients of (1), and (iii) the random disturbances. Re�ecting these, we decompose ξT into
three components,

ξT =

3∑

j=1

ξj,T . (8)

The �rst component,

ξ1,T = RSS(T̂1, . . . , T̂m) − RSS(T0
1 , . . . ,T

0
m), (9)

represents the e�ect on the residual sums of squares from using the estimated rather than the true break
dates. The second component is de�ned as:

ξ2,T = RSS(T0
1 , . . . ,T

0
m) − ESS(T0

1 , . . . ,T
0
m), (10)

where ESS(T0
1 , . . . ,T

0
m) is the error sum of squares for (1) evaluated using the true {β0

i }
m+1
i=1 . Hence ξ2,T

is the impact on the residual sum of squares from estimating the coe�cients of (1) with known (true)
break dates. The �nal component is

ξ3,T = ESS(T0
1 , . . . ,T

0
m) − Tσ 2, (11)

and therefore captures the e�ects of the speci�c random disturbance sequence {ut}. Previous structural
break analyses, including Bai (1997) and Bai and Perron (1998), separately considers the roles of break
date and coe�cient estimation. Therefore, (8) can be viewed as explicitly recognizing a decomposition
that has previously been implicit in the literature.
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Let AE[·] denote the asymptotic expectation of the term in brackets.4 To derive the AE[ξT], we make
the following assumption about the magnitudes of the breaks:

Assumption 3. β0
i+1 − β0

i = θ0T,i = θ0i sT where sT = T−α for some α ∈ (0, 0.5) and i = 1, . . . ,m.

Assumption 3 is the so-called “shrinking breaks” case, which is designed to capture the situation in
which there is uncertainty about the location of the breaks in moderate-sized samples. This assumption,
with breaks restricted to shrink at a slower rate than T−1/2, is commonly employed in the literature to
deduce a limiting distribution for break-point estimators; see Bai (1997) and Bai and Perron (1998).

Assumptions are also imposed about the regressors and errors, as follows.

Assumption 4. T−1
∑T0

i−1+[rT]

t=T0
i−1+1

xtx
′
t

p
→ rQi uniformly in r ∈ (0, λ0i − λ0i−1), where Qi is a positive

de�nite matrix for i = 1, . . .m + 1.

Assumption 5. (i) E[ut |Ft] = 0 where Ft is the σ -algebra generated by {xt , ut−1, xt−1, ut−2, . . .}; (ii)
E[‖ht,i‖d] < Hd < ∞ for t = 1, 2, . . . and some d > 2, where ht,i is the i

th element of ht = utxt ;

(iii) VT,i(r) = Var[T−1/2
∑T0

i−1+[rT]

t=T0
i−1+1

ht] is uniformly positive de�nite for all T su�ciently large5, and

limT→∞ VT,i(r) = rVi, uniformly in r ∈ (0, λ0i −λ0i−1)whereVi is a positive de�nitematrix of constants;

(iv) σ 2
i = E[u2t |Ft , t/T ∈ [λ0i−1, λ

0
i )] is a positive �nite constant for all i; (v) σ 2

i = σ 2, i = 1, . . . ,m+1.

Assumption 6. There exists an l0 > 0 such that for all l > l0, the minimum eigenvalues of Ail =

(1/l)
∑T0

i +l

t=T0
i +1

xtx
′
t and of Āil = (1/l)

∑T0
i

t=T0
i −l

xtx
′
t are bounded away from zero for all i = 1, . . . ,m.

Assumption 4 limits the behavior of the regressor cross product matrix and rules out trend-
ing regressors but allows regime-speci�c behavior. As noted by Qu and Perron (2007, p. 471), an
assumption of this type is introduced with shrinking breaks, so that the limiting distribution of the
break date estimator does not depend on the distribution of ut in (1). The role of Assumption 5 is to
limit the dependence structure of {xtut} and {ut}. In particular, parts (i)–(iii) of Assumption 5 ensure
that {xtut} is a short memory and satis�es a functional central limit theorem within each regime (White
(2001) [Theorem 7.19]). Parts (iv) and (v) concern {ut} and the parts are stated separately since they
are relaxed in some parts of our analysis. Qu and Perron (2007, p. 466) discuss models which satisfy
assumptions of this type. Two prominent time series examples relevant to our case are (a) a regression
model with (nontrending) exogenous variables whose properties are time-invariant within each regime
andwith shortmemory disturbances, such as a stationaryARMA−GARCH process and (b) an individual
equation from a �rst-order VAR systemwhere coe�cient breaks occur simultaneously across equations,
with the roots of each regime-speci�c characteristic polynomial lying outside the unit circle. In both
cases, relaxing part (v) would allow the disturbance parameters to change at the break dates. Finally,
Assumption 6 requires there be enough observations near the true break points, so that they can be
identi�ed and is analogous to the extension proposed in Bai and Perron (1998) to their Assumption A2.

The component ξ1,T is the focus of much of our analysis. This is closely related to the asymptotic
distribution of the estimator for the location of a single break point obtained, under an assumption of a
“shrinking” or “small” break, by Yao (1987) for the mean of an i.i.d. process and very recently extended
to more general linear and nonlinear univariate time series models by Ling (2015). Bai (1997) examines
the break point estimator in a regression model, with Hansen (1997, 2000) considering the analogous
case of threshold estimation in a single threshold TAR model, while multiple breaks are studied in Bai
and Perron (1998). Lemmata 1–3 are stated in the Appendix to Kurozumi and Tuvaandorj (2011).

4For example, see Amemiya (1985) [p. 94].
5That is, there exists γ such that c′VT (1)c > γ > 0 for all vectors of constants c such that ‖c‖ = 1.
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Lemma 1. Under Assumptions 1, 2, 3, 4, 5(i)–(iii), and 6, there exist positive constants Ki, i = 1, . . . ,m,
such that for large T, Pr

(∣∣Ti − T0
i

∣∣ > Kis
−2
T

)
< Ci for any positive Ci < ∞. Then for ki ǫ[−Ki,Ki],

i = 1, . . . ,m,

ξ1,T
d

→

m∑

i=1

min
ki

Gi(ki) (12)

where

Gi(ki) =





|ki| ai,1 − 2 c
1/2
i,1 Wi,1(−ki), if ki ≤ 0

|ki| ai,2 − 2 c
1/2
i,2 Wi,2(ki), if ki > 0

(13)

in which Wi,j(.)(i = 1, . . . ,m, j = 1, 2) are independent Brownian motions on [0,∞) and

ai,j = θ0 ′
i Q(i−1)+j θ

0
i (14)

ci,j = θ0 ′
i V(i−1)+j θ

0
i . (15)

Clearly, minimization of Gi(ki) is equivalent to maximization of G̃i(ki) = −Gi(ki), namely, the
maximum of two independent Brownian motion processes with negative dri�s. The following lemmata
and de�nition provide distributional results relating to this maximum.

Lemma 2. Let W(.) be standard Brownian motion on [0, ∞). Then, for α > 0, γ > 0 and k ǫ[0,∞)

Pr

{
max
k

[γW(k) − αk] > m

}
= exp(−µm)

which is the cumulative distribution function (CDF) of the exponential distribution with parameter µ =

2α/γ 2.

De�nition 1. Let B(µ1,µ2) denote the distribution with CDF

F(w;µ1,µ2) = (1 − e−µ1w)(1 − e−µ2w)

=

∫ w

0
f (b; µ1, µ2) db

where

f (b;µ1,µ2) =

2∑

i=1

µie
−bµi − µe−bµ (16)

for µ =
∑2

i=1 µi.

Lemma 3. Let vi ∼ exponential (µi) for i = 1, 2 and v1 ⊥ v2. Then b = max{v1, v2} ∼ B(µ1,µ2) and

E[b] = µ−1
1 + µ−1

2 − (µ1 + µ2)
−1. (17)

Lemma 2, which is stated in Bai (1997) [p. 563] and, for γ = 1, in Stryhn (1996) [Proposition 1],
makes clear that the maximum value taken by an individual Brownian motion process with negative
dri� follows an exponential distribution. Our notation for the distribution of the maximum of two
independent processes is given by (16 ). The result in (17), which is key to our analysis, follows from
the mean of an exponential distribution and is stated in Kurozumi and Tuvaandorj (2011) [p. 221].
Although not stated in this form, Ninomiya (2005) uses the result in Lemma 3 in his analysis of the
mean shi� model.
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Having established this background, the following proposition gives the form ofAE[ξT] for the linear
model with exogenous regressors.

Proposition 1. Let yt be generated by (1), and Assumptions 1–6 hold. Then we have (i) AE[ξ1,T] =

−3mσ 2; (ii) AE[ξ2,T] = −p(m + 1)σ 2; (iii) AE[ξ3,T] = 0; and so

AE[ξT] = −[(p + 3)m + p]σ 2.

Remark 1. Proposition 1(i) is a corollary of Kurozumi and Tuvaandorj (2011) Proposition 1.6

Remark 2. A comparison of AE[ξ1,T] and AE[ξ2,T] indicates that the break parameters and the
regression parameters a�ect AE[ξT] di�erently. Proposition 1(i) shows that the bias due to estimation
of an additional break date increases in absolute value by 3σ 2. From Proposition 1(ii), estimation of the
regression parameters in the additional regime increases the asymptotic bias in absolute value by pσ 2

(with p the number of regression coe�cients in the additional regime). As noted by Ninomiya (2005),
this can be interpreted as implying estimation of the break fraction has thrice the impact of estimation
of a regression parameter on the bias, providing a theoretical motivation for the modi�ed information
criteria penalty function proposed by Hall et al. (2013) in the context of structural break estimation.7

2.2. Nonlinearmodels

Analogously to (1), consider a univariate nonlinear model withm unknown breaks:

yt = f (xt ,β
0
i ) + ut , i = 1, . . . ,m + 1, t = T0

i−1 + 1, . . . ,T0
i , (18)

where f : Rq ×B → R is a knownmeasurable function onR for each β ∈ B. For simplicity, let ft(β) =

f (xt ,β). To avoid excessive notation, rede�ne the estimators and residual sum of squares analogously to
Section 2.1, replacing x′

tβi by ft(βi) in (3).

Compared with the OLS case, the consistency and large sample distribution of λ̂ and β̂({T̂i}
m
i=1)

have been established to date in the NLS setting only under more restrictive conditions on the dynamic
structure of the data and also the rate of shrinkage between regimes; see Boldea andHall (2013)[Assump-
tions 2–8]. These additional restrictions arise because of the inherent nonlinearity of the model; see
Boldea andHall (2013) for further discussion.We impose these conditions, but for brevity, relegate some
to the Appendix. In addition to (18) replacing (2), Assumption 3 is modi�ed, so that α ∈ [0.25, 0.5), and
analogues are required for Assumptions 4 [with xt replaced by Ft(β0) = ∂ft(β)/∂β)|β=β0] and 5 [with ht
replaced by utFt(β0)]. We note that these assumptions cover a range of models including nonlinear AR,
smooth transition autoregressive and nonlinear ARCH. Boldea and Hall (2013, pp. 160–161) provide a
detailed discussion.

Then, de�ning ξT and ξi,T , i = 1, 2, 3, as in (8)–(11) with the nonlinear regression function f ( ·, · )
replacing its linear counterpart, we have the following theorem.

Theorem 1. Let yt be generated by (18) and the following assumptions hold: 1, 2 with (18) replacing (2), 3
for α ∈ [0.25, 0.5), 5(i), (iv) and (v) and A.1–A.4 (in the appendix). Then AE[ξT] and AE[ξi,T] (i = 1, 2, 3)
are given by the respective expressions in Proposition 1.

Remark 3. Theorem 1 reveals that AE[ξT] does not depend on the form of f ( · ), beyond that embodied
in the assumptions. Consequently, Remark 2 continues to apply in the nonlinear context.

6See Kurozumi and Tuvaandorj (2011) [p. 222].
7Under more general conditions than those imposed in Proposition 1, the form of the trade-o� between estimated breaks
and parameters is di�erent, see Kurozumi and Tuvaandorj (2011) for model selection criteria tailored to this case.
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3. Two stage least squares RSS

Now we consider the case in which the equation of interest is a structural relationship from a simulta-
neous system, with this equation exhibitingm breaks such that

yt = x′
tβ

0
x,i + z′1,tβ

0
z1,i

+ ut , i = 1, . . . ,m + 1, t = T0
i−1 + 1, . . . ,T0

i , (19)

where T0
0 = 0, T0

m+1 = T, and T is the total sample size. Here xt is a p1 × 1 vector of endogenous
explanatory variables, z1,t is a p2 × 1 vector of exogenous variables including the intercept, and ut is
a mean zero error. We de�ne p = p1 + p2. As in the previous section, we assume the location and
magnitude of the breaks are governed by Assumptions 1 and 3, respectively.

As (19) is a structural equation, the endogenous explanatory variables, xt , are (in general) correlated
with the errors, ut , and so 2SLS requires a reduced form representation to be estimated using appropriate
instruments. The reduced form is discussed in the �rst subsection below, before attention is focussed on
(19). It should be noted that the analysis of this section assumes strong instruments; some comments are
made in our Section 6 about extending the analysis to the case of weak instruments.

3.1. Reduced formmodel

The reduced form model is

xt
′ = zt

′10
k + vt

′, k = 1, 2, . . . , h + 1, t = T †
k−1 + 1, . . . ,T †

k , (20)

where T †
0 = 0 and T †

h+1 = T. The vector zt = (z′1,t , z
′
2,t)

′ is q × 1 and contains variables that are
uncorrelated with both ut and vt and are appropriate instruments for xt in the �rst stage of the 2SLS
estimation. The parameter matrices 10

k are each q × p1. In line with Section 2, the number of reduced

form breaks, h, is assumed known, but with the break points {T†
i } unknown.

Assumption 7. T†
k = [Tπ0

k ], where 0 < π0
1 < . . . < π0

h < 1.

Note that the reduced form break fractions, π0 = [π0
1 , . . . ,π

0
h ]′, may or may not coincide with the

breaks in the structural equation, λ0 = [λ01, . . . , λ
0
m]′. Analogously to the structural form Assumption

3, we assume the breaks in the reduced form are shrinking.

Assumption 8. 10
k+1 − 10

k = A0
T,k = A0

krT where rT = T−αr , for αr ǫ (0, 0.5) and k = 1, . . . , h.

The reduced form of (20) can be rewritten as:

xt(π
0)

′
= z̃t(π

0)
′
20 + v

′

t , t = 1, 2, . . . ,T (21)

where 20 = [10′

1 , . . . 1
0′

h+1]
′
, z̃t(π

0) = ι(t,T) ⊗ zt , ι(t,T) is a (h + 1) × 1 vector with �rst element

I{t/T ∈ (0,π0
1 ]}, h + 1th element I{t/T ∈ (π0

h , 1]}, k
th element I{t/T ∈ (π0

k−1,π
0
k ]} for k = 2, . . . , h,

and I{·} is an indicator variable that takes the value one if the event in the curly brackets occurs.
Let π̂ = [π̂1, . . . , π̂h]

′ denote estimators of π0. These estimators are not our prime concern and it is
assumed that they satisfy the following condition.

Assumption 9. π̂ = π0 + Op(T
−(1−2αr)) for some αr ∈ (0, 0.5).

This condition would be satis�ed if, for example, the break dates in the reduced form are estimated by
OLS equation by equation and the estimates of the break fractions are then pooled; see Bai and Perron
(1998) [Proposition 5] and Bai (1997) [Proposition 1]. Notice that under our assumption 8 1− 2αr > 0

8We note that this assumptionmay impose further restrictions upon the data than those assumed below. See Bai and Perron
(1998) and Bai (1997) for further details.
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and π̂ is consistent for π0. Let x̂t denote the resulting �tted values, i.e.,

x̂′
t = z̃t(π̂)′2̂T(π̂) = z̃t(π̂)′

(
T∑

t=1

z̃t(π̂)z̃t(π̂)′

)−1 T∑

t=1

z̃t(π̂)x′
t (22)

where z̃t(π̂) is de�ned analogously to z̃t(π
0).

In the special case when the reduced form is stable, (20) is replaced by a model with a single regime
(h = 0), while Assumptions 7 and 8 are redundant. Obviously, (22) then becomes the corresponding
OLS expression for x̂′

t .

3.2. Structural form RSS

For estimation of (19), the statistic of interest is the minimized residual sum of squares from the second-
stage estimation. Now suppose that a researcher knows the number of breaks in (19) but not their
locations. As in the previous section, we use λ to denote an arbitrary set of m break fractions in the
model of interest. The second stage of 2SLS can begin with the estimation via OLS of

yt = x̂′
tβ

∗
x,i + z′1,tβ

∗
z1,i

+ u∗
t , i = 1, . . . ,m + 1, t = Ti−1 + 1, . . . ,Ti, (23)

for each possible uniquem-partition of the sample, where Ti = [λiT] and u∗
t is an error term. De�ning

β∗
i for a given partition as β∗

i
′ = (β∗

x,i
′,β∗

z1,i
′)′ and replacing xt by ŵt = (̂x′

t , z
′
1,t)

′, estimation proceeds
by minimizing the residual sum of squares as discussed in Section 2, leading to the 2SLS estimates

β̂({T̂i}
m
i=1) = (β̂ ′

1, . . . , β̂
′
m+1)

′ and associated estimated break fractions given by λ̂, the m × 1 vector

with ith element T̂i/T.
Given the existence of breaks in both structural and reduced form equations, wemodify the de�nition

of admissible partitions over which the minimization is achieved.

Assumption 10. Equation (23) is estimated over all partitions (T1, . . . ,Tm) such that Ti − Ti−1 >

max{q − 1, ǫT} for some ǫ > 0 and ǫ < infi(λ
0
i+1 − λ0i ), and ǫ < infk(π

0
k+1 − π0

k ), k = 1, . . . , h.

The generalization inAssumption 10 implies that the search for structural formbreaks not only cover the
relevant structural form intervals but also conducted in all intervals between (true) reduced form breaks.
However, when the reduced form is stable, this latter requirement is redundant. For ease of presentation,
the following assumptions also rede�ne some notation used in Section 2.

Assumption 11. For h1,t = (ut , v
′
t)

′ and ht,i the i
th element of ht = h1,t⊗zt : (i) E[h1,t |Ft] = 0 whereFt

is the σ -algebra generated by {zt , h1,t−1, zt−1, h1,t−2, . . .}; (ii) E[‖ht,i‖d] < Hd < ∞ for t = 1, 2, . . . and

some d > 2; (iii) VT,i(r) = Var[T−1/2
∑T0

i−1+[rT]

t=T0
i−1+1

ht] is uniformly positive de�nite for all T su�ciently

large and limT→∞ VT,i(r) = rVi, uniformly in r ∈ (0, λ0i −λ0i−1)whereVi is a positive de�nite matrix of

constants; (iv)Var[h1,t |Ft , t/T ∈ [λ0i−1, λ
0
i )] = �i, where�i is the (p1 + 1)× (p1 + 1) positive de�nite

matrix of constants given by:

�i =

[
σ 2
i γ ′

i
γi 6i

]
,

with σ 2
i a scalar; (v) �i = �, i = 1, . . . ,m + 1.

Assumption 12. rank{ϒ0
i } = p where ϒ0

i =
[
10

i , 5
]
, for i = 1, 2, · · · , h + 1 where 5′ =

[Ip2 , 0p2×(q−p2)], Ia denotes the a × a identity matrix and 0a×b is the a × b null matrix.
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Assumption 13. There exists an l0 > 0 such that for all l > l0, the minimum eigenvalues of Ail =

(1/l)
∑T0

i +l

t=T0
i +1

ztz
′
t and of Āil = (1/l)

∑T0
i

t=T0
i −l

ztz
′
t are bounded away from zero for all i = 1, . . . ,m.

Assumption 14. (i) T−1
∑T0

i−1+[rT]

t=T0
i−1+1

ztz
′
t

p
→ rQZZ(i) uniformly in r ∈ (0, λ0i − λ0i−1), where QZZ(i) is a

positive de�nite matrix for i = 1, . . . ,m + 1, (ii) QZZ(i) = QZZ , i = 1, . . . ,m + 1.

Assumption 11 requires h1,t to be a conditionally homoscedastic martingale di�erence sequence, and

imposes su�cient conditions to ensure the analogue of T−1/2
∑[Tr]

t=1 ht satis�es a functional central limit
theorem within each regime (see White (2001)[Theorem 7.19]). It also contains the restrictions that
the implicit population moment condition for 2SLS is valid—i.e., E[ztut] = 0—and the conditional
mean of the reduced form is correctly speci�ed. Assumptions 11 and 14 combined imply that Vi =

V = � ⊗ QZZ . Assumptions 12 and 14, in conjunction with Assumption 11, imply the standard rank
condition for identi�cation in IV estimation of the linear regressionmodel.9NoteAssumption 12 implies
q ≥ p. Assumption 13 requires there be enough observations near the true break points of the structural
equation, so that they can be identi�ed.

To facilitate the analysis below, we introduce an alternative version of the structural equation,

yt = x′
tβ

0
x,i + z′1,tβ

0
z,i + ut,i, (24)

where xt = E[xt |zt ] and hence

ut,i = ut + v
′

tβ
0
x,i, (25)

which is the composite disturbance that applies in (19) for regime i when the endogenous xt are
substituted by E[xt |zt ] from the reduced form. Therefore, (24) applies when the reduced form coe�-
cients are known, with xt = E[xt |zt ] embodying the true reduced form regimes when those coe�cients
are subject to breaks. Also de�ne

vt,i = (xt − xt)
′β0

x,i = v
′

tβ
0
x,i. (26)

Applying Assumption 3 to the coe�cient vector β0
i = (β0′

x,i,β
0′
z,i)

′, breaks in the structural form

coe�cients are of asymptotically negligible magnitude, with β0
x,i → β0

x , say, for all i = 1, . . . ,m + 1.
Under this assumption, then we have for all i = 1, . . . ,m + 1

ρ2
i = Var[ut,i] → ρ2 = σ 2 + 2γ ′β0

x + β0′
x 6β0

x , (27)

ρi = Cov[vt,i, ut,i] → ρ = γ ′β0
x + β0′

x 6β0
x , (28)

ω2
i = Var[vt,i] → ω2 = β0′

x 6β0
x . (29)

With known reduced form coe�cients, the quantity ρ2 provides the asymptotic variance of the compos-
ite structural form disturbance ut,i of (25) with shrinking coe�cients. Therefore,Tρ2 plays an analogous
role in our analysis of the residual sum of squares for 2SLS as does Tσ 2 for the OLS case.

Denoting the 2SLSminimized ST

(
T̂1, . . . , T̂m; β̂({T̂i}

m
i=1)

)
as RSS(T̂1, . . . , T̂m), we considerAE[ξT]

where, analogous to (5),

ξT = RSS(T̂1, . . . , T̂m) − Tρ2 (30)

in which AE[·] again denotes the asymptotic expectation operator. Hence ξT is the di�erence between
the residual sum of squares in the second step of 2SLS and the expected error sum of squares in (24).

9See e.g. Hall (2005) [p. 35].
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Generalizing the approach of Section 2 to the 2SLS case requires the role of the reduced form to be
recognized and we now decompose ξT into four components,

ξT =

4∑

j=1

ξj,T .

The �rst component

ξ1,T = RSS(T̂1, . . . , T̂m; π̂ ) − RSS(T0
1 , . . . ,T

0
m;π

0) (31)

represents the e�ect on the second-stage residual sums of squares from estimating the coe�cients of (19)
within each structural form partition based on the estimated rather than the true break dates in both the
structural equation and (if relevant) the reduced form. Both elements of (31) are obtained using x̂t from
(22). The second component is de�ned as:

ξ2,T = RSS(T0
1 , . . . ,T

0
m;π

0) − ESS(T0
1 , . . . ,T

0
m), (32)

where ESS(T0
1 , . . . ,T

0
m) is the error sum of squares for (19) evaluated using the true {β0

i }
m+1
i=1 in

conjunction with x̂t . Hence ξ2,T is the impact on the residual sum of squares from estimating the
coe�cients of (23) with known (true) break dates and evaluated using the �rst stage x̂t with true break
dates. The third component is given by:

ξ3,T = ESS(T0
1 , . . . ,T

0
m) − ESSe(T0

1 , . . . ,T
0
m), (33)

where ESSe(T0
1 , . . . ,T

0
m) is the error sum of squares evaluated using the true {β0

i }
m+1
i=1 in conjunction

with the reduced form xt = E[xt |zt ]. Consequently ξ3,T is the e�ect from using x̂t rather than xt for
computation of the structural equation error sums of squares. The �nal component is

ξ4,T = ESSe(T0
1 , . . . ,T

0
m) − Tρ2, (34)

and hence captures the e�ects of the composite ut,i in the structural equation of (24).
Theorem 2 then generalizes the result of Proposition 1 to the 2SLS case, employing the notation

δλ0i = λ0i − λ0i−1 for i = 1, . . . ,m + 1, (35)

with λ00 = 0 and λ0m+1 = 1; δπ0
i (i = 1, . . . , h + 1) is de�ned analogously for the true reduced form

regime fractions.

Theorem 2. Let yt be generated by (19), xt be generated by (20), and x̂t be given by (22). Let Assumptions
1, 3, 7–14 hold. Then we have: (i) AE[ξ1,T] = −3mρ2; (ii) AE[ξ2,T] = −p(m + 1)ρ2 + p(ρ2 −

σ 2)
∑m+1

i=1 di/(δλ
0
i ); (iii) AE[ξ3,T] = −q(h + 1)(ρ2 − σ 2); (iv) AE[ξ4,T] = 0; and so

AE[ξT] = −[(p + 3)m + p]ρ2 − (ρ2 − σ 2)

[
q(h + 1) − p

m+1∑

i=1

di /(δλ
0
i )

]
,

where

0 <

m+1∑

i=1

di /(δλ
0
i ) ≤ min[(h + 1), (m + 1)]

in which di is de�ned as follows: if there are no reduced form breaks between λ0i−1 and λ0i and so π0
k ≤

λ0i−1 < λ0i ≤ π0
k+1, say, then di = (δλ0i )

2/(δπ0
k+1); if there are reduced form breaks between λ0i−1 and

λ0i and so π0
k ≤ λ0i−1 < π0

k+1 < ... < π0
k+ℓi

< λ0i ≤ π0
k+ℓi+1, say, then

di =
(π0

k+1 − λ0i−1)
2

δπ0
k+1

+
(λ0i − π0

k+ℓi
)2

δπ0
k+ℓi+1

+ π0
k+ℓi

− π0
k+1.
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Remark 4. Theorem 2 indicates that AE[ξT] depends on: the number of structural form breaks,m, the
number of mean parameters in each regime, p, the number of instruments, q, the covariance structure
of the composite error ut,i through (ρ2 − σ 2) = 2γ ′β0

x + β0′
x 6β0

x , and also on the relative locations of
the structural and reduced form breaks.

Remark 5. The expression forAE[ξ1,T] carries over fromProposition 1 and Theorem 1, and so the e�ect
of estimating the residual sumof squares of interest is asymptotically the same irrespective of whether the
model is a linear or nonlinear equation with exogenous regressors or a linear equation with endogenous
regressors and consistently estimated reduced form break dates. We also note that Lemma 3 underlies
this result in all cases.

Remark 6. Theorem 2(i) does not require Assumption 14(ii), and so AE[ξ1,T] has the stated form even
if the instrument cross product matrix exhibits the regime-speci�c behavior delineated in part (i) of that
assumption.

The special case of a stable reduced form is of particular interest. Using the de�nition of di for the case
of no reduced form breaks in the structural form regime i, it immediately follows that a stable reduced
form implies

∑m+1
i=1 di /(δλ

0
i ) =

∑m+1
i=1 (δλ0i ) = 1. The resulting asymptotic expectation of the residual

sum of squares in the second-stage regression is stated as a Corollary to Theorem 2:

Corollary 1. Let yt be generated by (19), with xt generated by (20) and x̂t be given by (22), both with
h = 0. Let Assumptions 1–3, 9, 11, and 12–14 hold. Then we have: (i) AE[ξ1,T] = −3mρ2; (ii) AE[ξ2,T] =

−p(mρ2 + σ 2); (iii) AE[ξ3,T] = −q(ρ2 − σ 2); (iv) AE[ξ4,T] = 0; and so

AE[ξT] = −[(p + 3)m + p]ρ2 − (q − p)(ρ2 − σ 2).

Remark 7. With a stable reduced form, the expression for AE[ξ2,T] in Corollary 1 can be written
as −p

{
(m + 1)ρ2 − (ρ2 − σ 2)

}
. Ignoring the second term, which is independent of m, the term

−(m+ 1)pρ2 can be associated with estimation of the (m+ 1)p structural form coe�cients. Combined
with AE[ξ1,T] = −3mρ2, the comment in Remark 2 about the relative impacts of break-fraction and
regression parameter estimation in models with exogenous regressors applies equally in models with
endogenous regressors estimated via 2SLSwith stable reduced forms.When the reduced form is unstable,
however, this result is modi�ed in that p enters the second term of AE[ξ2,T] in Theorem 2(ii).

Remark 8. Corollary 1 also clari�es the role of the reduced form in minimization of the 2SLS residual
sum of squares in models with no breaks. When conventional 2SLS is applied to a stable structural form
(m = 0, h = 0), (30) becomes ξT = RSS − Tρ2 and

AE[ξT] = −p ρ2 − (q − p)(ρ2 − σ 2). (36)

The result shows that the downward bias in the minimized 2SLS residual sum of squares compared with
E[u2t ] depends not only on the number of structural form coe�cients estimated, p, but also on the extent
of overidenti�cation (q − p) and the additional asymptotic variation induced in the structural form by
the use of IV estimation, namely, E[u2t −u2t ] = (ρ2 −σ 2). In this context where both the reduced forms
and structural forms are stable, Pesaran and Smith (1994) propose a generalized R2 criterion computed
from the second-stage regression, and (36)makes clear that the value of this criterion will asymptotically
depend on characteristics of the reduced form (including the number of instruments) as well as the
goodness-of-�t of the structural form equation itself.

Remark 9. Two further special cases of Theorem 2 are of interest; in both only the numbers of breaks
matter, not their locations per se. First, when all reduced form breaks coincide with structural form
breaks, with possible additional structural form breaks, then

∑m+1
i=1 di/(δλ

0
i ) = h + 1 (see the proof of
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Theorem 2 in the Appendix). In this case,

AE[ξT] = −[(p + 3)m + p]ρ2 − (h + 1)(ρ2 − σ 2)(q − p). (37)

This expression has a similar interpretation to that drawn out in Remark 7, with the �rst term of (37)
giving the bias due to estimation of the structural form coe�cients and break dates, while the second
shows the roles of the additional asymptotic variation from using IV, (ρ2 − σ 2), and the extent of
overidenti�cation (q − p), with the number of reduced form regimes (h+ 1) now magnifying the latter
e�ects. Second, when all structural form breaks coincide with the dates of reduced form breaks, with
possible additional reduced formbreaks, then

∑m
i=1 di/(δλ

0
i ) = m+1 (as again seen from theAppendix)

and

AE[ξT] = −[(p + 3)m + p]ρ2 − (ρ2 − σ 2)
[
q(h + 1) − p(m + 1)

]
. (38)

This has a similar interpretation to (37), although overidenti�cation in the second term of (38) appears
in the form of a comparison of the total numbers of reduced and structural form coe�cients estimated.

Remark 10. For the general case where reduced and structural form break dates do not necessarily
coincide, the theorem shows that although AE[ξT] depends on the relative locations of structural
and reduced form break points, the extent of this dependence is bounded. Consequently, based on
the interpretation of (37) and (38) in Remark 8, the quantity q(h + 1) − p

∑m+1
i=1 di /(δλ

0
i ) might

be interpreted more generally as a measure of the extent of overidenti�cation of the structural form
parameters in the presence of structural and/or reduced form breaks.

Remark 11. Hall, et al. (2015) proposes an information criterion for break selection inmodels estimated
by 2SLS in which the penalty function gives the number breaks thrice the weight of the number
of parameters. They report simulation evidence that suggests this enhanced weighting of the breaks
improves performance over a criteria that weights the estimated breaks and parameters equally in the
penalty function.

4. Testing break dates

The discussion of Sections 2 and 3 notes that AE[ξ1,T] exhibits similar behavior in all the models
considered, and this is due to the large sample behavior of ξ1,T being governed by a version of Lemma
1, and more speci�cally (12)–(13), in each case. The current section exploits this structure to propose a
statistic for testing

H0 : λ
0
i = λi for i = 1, . . . ,m, (39)

with 0 < λ1 < ... < λm < 1, against the alternative hypothesis that at least one λ0i 6= λi (i = 1, . . . ,m).
In other words, we consider the situation where the researcher knows the number of breaks and wishes
to test a joint hypothesis regarding their locations. Given the common structure underlyingAE[ξ1,T], we
consider the OLS case in some detail in the �rst subsection and then note (in Subsection 4.2) how the
result extends to other models considered above.

4.1. OLS-based tests

In the OLS framework (Section 2.1), consider the statistic

Nλ(λ) = RSS(T1, . . . ,Tm) − min
T1,...,Tm

RSS (T1, . . . ,Tm) (40)

where Ti = [λiT] and λ = (λ1, λ2, . . . , λm). The following theorem gives the limiting distribution of
Nλ(λ).
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Theorem 3. Let yt be generated by (1) with H0 of (39) true and Assumptions 1–5 (i)–(iii) and 6 hold. Then,
for the statistic (40),

Nλ(λ)
d

→

m∑

i=1

bi

where {bi}
m
i=1 are mutually independent and bi ∼ B(µi,1,µi,2) with µi,j = 0.5ai,j/ci,j for j = 1, 2, ai,j and

ci,j de�ned in (14) and (15), respectively, andB(µ1,µ2) as in De�nition 1. In addition, if Assumption 5 (iv)
holds, then µi,j = 0.5σ 2

i+j−1; and if Assumption 5(v) also holds, then µi,j = 0.5σ 2.

Remark 12. The limiting distributions in Theorem 3 depend on model parameters. However, asymp-
totically valid inference can be performed by simulating the null distribution using consistent estimators
of µi,j under H0 and then comparing Nλ(λ) to the appropriate percentile of this simulated distribution.
A consistent estimator for µi,j is given by:

µ̂i,j =
θ̂ ′
i Q̂i+j−1θ̂i

2θ̂ ′
i V̂i+j−1θ̂i

(41)

where θ̂i = β̂i+1 − β̂i, β̂i = β̂i({T̂ℓ}
m
ℓ=1) (de�ned in Section 2.1), Q̂ℓ = (T̂ℓ − T̂ℓ−1)

−1
∑T̂ℓ

t=T̂ℓ−1+1
xtx

′
t ,

V̂ℓ = (T̂ℓ − T̂ℓ−1)
−1
∑T̂ℓ

t=T̂ℓ−1+1
û2ℓ,txtx

′
t , ûℓ,t = yt − x′

tβ̂ℓ. This provides a heteroscedasticity-

consistent estimator. If Assumption 5(iv) holds and homoscedasticity applies within each regime, then
an alternative consistent estimator is

µ̂i,j = 0.5σ̂ 2
i+j−1 (42)

where σ̂ 2
ℓ = (T̂ℓ − T̂ℓ−1)

−1
∑T̂ℓ

t=T̂ℓ−1+1
û2ℓ,t . Finally, if Assumption 5(v) holds and the error variance is

constant over all regimes, an additional consistent estimator is10

µ̂i,j = 0.5σ̂ 2 (43)

where σ̂ 2 = T−1
∑m+1

ℓ=1

∑T̂ℓ

t=T̂ℓ−1+1
û2ℓ,t .

Remark 13. If Assumption 5(iv)–(v) holds, then it is possible to normalize the statistic to remove
nuisance parameters from the limiting distribution. To this end consider the F-type test statistic

Fλ(λ) =

RSS(T1, . . . ,Tm) − min
T1,...,Tm

RSS (T1, . . . ,Tm)

σ̂ 2
. (44)

This leads to the following corollary to Theorem 3:

Corollary 2. Under the conditions of Theorem 3, including Assumption 5(iv)–(v), we have Fλ(λ)
d

→∑m
i=1 bi where {bi}

m
i=1 are mutually independent and bi ∼ B(0.5, 0.5).

Percentiles of this limiting distribution, simulated in MATLAB using 10 million replications, are
presented in Table 1. Hansen (1997, 2000) develops a test of the null hypothesis of a known threshold
value in a single threshold TAR model, with his statistic being a special case of Fλ(λ) with m = 1.
The critical values presented by Hansen (1997, 2000) are e�ectively identical to those of Table 1 for
m = 1.

10A degrees of freedom correction can be applied in the denominator of σ̂2, to allow for estimation of coe�cients and also
break dates, as suggested by Proposition 1.
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Table 1. Critical values for test based on Fλ(λ̄).

m 10% 5% 1% m 10% 5% 1%

1 5.9415 7.3581 10.5845 6 25.2819 27.9196 33.3415
2 10.2164 11.9835 15.8540 7 28.8528 31.6485 37.3694
3 14.1666 16.2043 20.5591 8 32.3859 35.3227 41.3215
4 17.9626 20.2202 24.9877 9 35.8842 38.9584 45.2137
5 21.6575 24.1175 29.2265 10 39.3541 42.5614 49.0649

Critical values at the 10, 5, and 1% signi�cance level of the limiting distribution of Fλ(λ̄) in Corollary 2, for models with m number of
breaks.

The statistics above can be used to generate con�dence sets for the break fractions. For the linear
model with exogenous regressors, an approximate 100(1− α)% con�dence set for the break fractions is
given by:

{
λ s.t Nλ(λ) < qm,1−α

}
(45)

where Nλ(λ) is de�ned in (40) and qm,1−α is the 100(1 − α)th quantile of
∑m

i=1 bi de�ned in Theorem
3. Clearly, with Assumptions 5(iv) and (v) imposed, the asymptotic critical values of Table 1 can be
employed for qm,1−α .

The limiting distribution of the multiple break date test statistic in Theorem 3 has not, to the best
of our knowledge, been obtained in the previous literature. Nevertheless, under similar assumptions to
ours, Yao (1987) and Bai (1997) obtain the marginal distribution of a single break fraction estimator.
This special case of the distribution in the theorem is used by Bai (1997) and also Bai and Perron (1998)
to construct a con�dence interval for the date of each break11. Since the m break date distributions
are asymptotically independent, a joint test of the null hypothesis (39) could be deduced from these.
However, rather than using a con�dence interval approach, (44) compares RSS at the hypothesized
break dates with the overall minimized RSS, providing a natural test statistic in the least square context
considered here. In common with the approach of Elliott and Mueller (2007), but not that of Yao
(1987), the con�dence sets in (45) do not imply the dates corresponding to a speci�c λi are necessarily
contiguous. However, unlike ourmethods, Elliott andMueller (2007) results only apply to the one-break
model.

Eo andMorley (2015) recently propose a method for constructing con�dence intervals for individual
breaks in systems of linear models with exogenous regressors based on inverting a likelihood ratio
statistic and show it yields narrower con�dence intervals than those proposed by Bai (1997). It would be
interesting to explore an approach that takes the joint approach proposed here within the context of the
likelihood ratio test-based inference, but this is beyond the scope of the current paper.

4.2. Othermodels

As shown in the Appendix, Lemma 1 continues to apply for nonlinear regression models that satisfy
Assumptions 1, 2 with (18) replacing (2), 3 for α ∈ [0.25, 0.5), 5(i), and A.1–A.4 (in the Appendix).
In the NLS case, however, ai,j, ci,j given in (14) and (15) are replaced by the Appendix expressions (54)
and (55), respectively. It therefore follows from Lemmata 2 and 3, together with De�nition 1, that the
statistic Nλ(λ) given by (40) has the limiting distribution for a nonlinear model as given in the �rst
part of Theorem 3. Further, the imposition of Assumption 5 parts (iv) or (iv) and (v) yields the same
specializations of µi,j as described in Theorem 3.

A consistent estimator ofµi,j for use in simulation of the limiting distribution is given by (41), except

that the following changes are required: β̂i now denotes the NLS estimator of the parameter vector in

11As noted in Subsection 2.1, although they do not explicitly use a decomposition like our Eq. (8), Bai (1997) and Bai and
Perron (1998) implicitly do so when considering break date estimation and inference.
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(estimated) regime i; xt is replaced by Ft(β̂ℓ) = ∂ft(β)/∂β)|
β=β̂ℓ

in Q̂ℓ and V̂ℓ. If Assumption 5(iv)

holds, then an alternative consistent estimator is given by (42) but with ûℓ,t being the NLS residual; if
Assumption 5(v) holds, then a further consistent estimator is given by (43) with the same rede�nition of
the residual. Similarly, we can de�ne an analogous version of Fλ(λ) for this model which has the limiting
distribution given in Corollary 2 under all the assumptions made for this model, including Assumption
5(iv)–(v). Therefore, under these assumptions, the critical values of Table 1 can be applied for testing the
joint break fraction hypothesis of (39) in a nonlinear regression model.

In an analogous way, Theorem 3 extends to 2SLS models that satisfy Assumptions 1, 3, 7–11(i)–(iii),
12–14 with the forms of ai,j, ci,j implied, as appropriate, by either (56)–(57) or (61)–(62) of the Appendix.

In the 2SLS case, however, the construction of a consistent estimator of µi,j for use in simulation of

the limiting distribution depends on the location of the ith break in the structural equation relative to

the reduced form breaks. If π̂k−1 < λ̂i < π̂k for some k, then a consistent estimator of µi,j is given by:

µ̂i,j =
θ̂ ′
i ϒ̂

′
kQ̂ZZ(i + j − 1) ϒ̂k θ̂i

2θ̂ ′
i ϒ̂

′
k8̂(i + j − 1) ϒ̂k θ̂i

(46)

for j = 1, 2, where θ̂i = β̂i+1 − β̂i, β̂i = (β̂ ′
x,i, β̂

′
z1,i

)′ are the 2SLS estimators of the structural

equation coe�cients in the estimated ith regime (as de�ned in Subsection 3.2), ϒ̂k = [1̂k,5] where

1̂k are the OLS estimators of the reduced form parameters in the kth estimated reduced form regime,

Q̂ZZ(ℓ) = (T̂ℓ − T̂ℓ−1)
−1
∑T̂ℓ

t=T̂ℓ−1+1
ztz

′
t , 8̂(ℓ) = ĈℓV̂ℓĈ

′
ℓ , Ĉℓ = ν̂′

ℓ ⊗ Iq, ν̂ℓ = [1, β̂ ′
x,ℓ], V̂ℓ = (T̂ℓ −

T̂ℓ−1)
−1
∑T̂ℓ

t=T̂ℓ−1+1
ĥtĥ

′
t , ĥt = ĥ1,t ⊗zt , ĥ1,t = [ût , v̂

′
t]

′, ût = yt − (x′
t , z1,t)

∑m+1
i=1 β̂iI{t/T ∈ (λ̂i−1, λ̂i]},

v̂′
t = x′

t − z′t
∑h+1

k=1 1̂kI{t ∈ (π̂k−1, π̂k]}. If π̂k−1 = λ̂i for some k then a consistent estimator of µi,j is
given by:

µ̂i,j =
θ̂ ′
i ϒ̂

′
k+j−1Q̂ZZ(i + j − 1) ϒ̂k+j−1 θ̂i

2θ̂ ′
i ϒ̂

′
k+j−18̂(i + j − 1) ϒ̂k+j−1 θ̂i

(47)

and all other de�nitions remain the same.
Regardless of the relative positions of the structural and reduced form breaks, if in addition Assump-

tion 11(iv) holds, then a consistent estimator for µi,j is provided by

µ̂i,j = 0.5ρ̂2
i+j−1 (48)

where ρ̂2
ℓ = (T̂ℓ − T̂ℓ−1)

−1ν̂ℓ {
∑T̂ℓ

t=T̂ℓ−1+1
ĥ1,tĥ

′
1,t }ν̂

′
ℓ. Further, if Assumptions 11(iv)–(v) hold, then an

alternative consistent estimator for µi,j is

µ̂i,j = 0.5ρ̂2 (49)

where ρ̂2 = T−1
∑m+1

ℓ=1 ν̂ℓ {
∑T̂ℓ

t=T̂ℓ−1+1
ĥ1,tĥ

′
1,t }ν̂

′
ℓ. In this last case, the dependence of the limiting

distribution on model parameters can be removed by using

F2SLSλ (λ) =

RSS(T1, . . . ,Tm) − min
T1,...,Tm

RSS (T1, . . . ,Tm)

ρ̂2
. (50)

Under the assumptions listed above for the 2SLS case, including Assumption 11(iv)–(v), and the H0 of
(39), F2SLSλ (λ) converges to the limiting distribution in Corollary 2. This enables the critical values of
Table 1 to be employed also for testing break dates in a structural model estimated by 2SLS.

As discussed for the linear model with exogenous regressors in the previous subsection, the hypoth-
esis tests for break dates can be inverted to obtain joint con�dence intervals for the dates of them breaks
in the models of this subsection.
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4.3. Simulation evidence

A Monte Carlo analysis is undertaken in this section in order to examine the performance of the
normalized statistic Fλ(λ̄) of (44). We consider a linear model with exogenous regressors given by (1)
withm = 1 and p = 2, with the DGP taking the form:

yt =

{
µ1 + γ1wt + ut if t ≤ [0.5T]

µ2 + γ2wt + ut if t > [0.5T]

where ut is a sequence of i.i.d. N(0, 1) random variables and wt is a scalar i.i.d. N(1, 1) random variable
that is uncorrelated with ut . Thus, in terms of the notation in Section 2.1, xt = [1,wt]

′ and β0
i = [µi, γi]

′.
Since the analysis assumes shrinking breaks (Assumption 3 ), we �x µ2 = γ2 = 1 and report results for
µ1 = γ1 = 1 − (0.3 × 50α/Tα), for α = 0.0, 0.1, 0.2, 0.3, 0.4, 0.49 (α = 0 being the �xed breaks case)
and sample sizes T = 120, 240, 360, 480.

Following the implication of Proposition 1 that the impact of the break fraction estimation is thrice
that of a regression parameter, we add−3m as an additional correction in the degrees of freedom for the
variance estimator that takes the, otherwise generic, form:

σ̂ 2 = RSS(T̂1, . . . , T̂m)/(T − m(p + 1) − 3m),

where RSS( · ) is de�ned in (6)–(7).
As in the analysis of Section 2, estimation is performed imposing the true number of breaks. The

break dates are estimated as de�ned in (4) except that in practice regimes are restricted to contain at
least [ǫT] observations. The parameter ǫ, o�en referred to as the trimming parameter, is set at ǫ = 0.1.
The e�cient search algorithm of Bai and Perron (2003) is employed in our analysis.

We examine the power of the test for a range of null hypotheses given by H0 : λ1 = 0.5 + κ for
κ = 0, 0.02, 0.04, . . . , 0.2. Since λ01 = 0.5 in our DGP, κ = 0 corresponds to the case in which the
null is true, and as κ increases the distance between the hypothesized value and the truth increases. The
calculated test statistic is compared to the critical value in Table 1 for a 5% signi�cance level. Power
curves are plotted in Figure 1 for α = 0.0, 0.1, 0.2, 0.3, 0.4, 0.49 and κ from 0 to 0.2, representing values
of λ1 between 0.5 and 0.7. The results are based on 5,000 replications of the DGP for each case with the
simulations performed in MATLAB.

As expected, power increaseswith κ for eachT andα, with power inversely related toα for givenT and
κ . For example, with α = 0.1, power is more than 0.95 whenT = 480 and κ = 20 (λ1 = 0.7) but reaches
little more than 0.5 for these T and κ values when α = 0.4.12 Clearly, it is di�cult to detect deviations
from the hypothesized location when the break is small. On the other hand, although developed under
the shrinking break assumption, the test performs well when the break magnitude is �xed (α = 0).

The test also exhibits good size performance overall. It is generally a little under-sized for small values
of α, is well-sized (with empirical sizes between 0.041 and 0.057) when α = 0.2 and is typically modestly
oversized for larger α, although it remains marginally under-sized for T = 120 even with α = 0.4.
Perhaps not surprisingly, the greatest size distortion across the cases considered occurs for the small
breaks that apply with α = 0.49 and T = 480, where the empirical size is 0.085.

5. U.S. monetary policy

The U.S. monetary policy is widely acknowledged to have undergone change since the 1970s, with many
arguing that this provides a key explanation for changes in the properties of in�ation and (sometimes)
real activity. Studies those explore these issues typically either treat the date(s) of change as known or
employ essentially ad hoc approaches to deal with the issue. For example, Boivan and Giannone (2006)

12The former case represents a change in each of the two coe�cients of magnitude 0.24 compared to 0.1 for the latter, both

to be considered in relation to σ2 = 1.
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Figure 1. Power of Fλ(λ̄) statistics for H0 : λ̄1 = 0.5 + κ . The true break is at λ01 = 0.5. Power is shown for κ = 0, 0.02, . . . , 0.2
where κ = 0 corresponds to the true break and higher values to null hypotheses that are further away from the true break. The tests are
conducted at the 5% signi�cance level. Higher α values correspond to smaller magnitudes of the break determined by 0.3 × 50α/Tα .

split their sample in 1979, re�ecting the date at which Volcker became chairman of the U.S. Federal
Reserve, while Ahmed et al. (2004) use subsamples covering 1960–1979 and 1984–2002, with 1980–
1983 omitted due to uncertainty about potential dates of change. In a similar vein, the seminal study
of Clarida et al. (2000) adopts the 1979 change date, but also acknowledges uncertainty about breaks
and examines interest rate reaction functions estimated over the individual subsamples implied by the
periods of o�ce of the four Fed chairmenwithin their overall sample period, and also consider a possible
post-1982 sample. Although the literature largely accepts that a newmonetary policy regime commenced
immediately on Volcker becoming chairman in 1979Q3, Du�y and Engle-Warnick (2006) throw some
doubt on this �nding, since their application of the sequential test procedure of Bai and Perron (1998) in
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a dynamic monetary policy model �nds a 1980Q3 break rather than a year or more earlier. Nevertheless,
the tests available to Du�y and Engle-Warnick (2006) do not allow for endogeneity and they employ
only backward-looking speci�cations.

We examine hypotheses about breaks in theU.S. monetary policy using the forward-looking dynamic
model

rt = βππt+1|t + βx x̃t+1|t + β1rt−1 + β2rt−2 + β0 + ut (51)

where rt is the actual federal funds rate, while πt+1|t and x̃t+1|t are forecasts of in�ation and a proxy
for the output gap, respectively. We follow Orphanides (2004), who revisits the analysis of Clarida et al.
(2000), by employing real-time data and, more speci�cally, Greenbook forecasts prepared by Fed sta�
for meetings of the Federal Open Market Operations Committee (FOMC).13 The Greenbook provides
forecasts of key variables, including in�ation, output, and unemployment, which informs FOMC interest
rate decisions. Although, for simplicity, our speci�cation in (51) assumes that policymakers focus on
forecasts for the following quarter, Orphanides (2004) �nds results to be largely una�ected for horizons
between 1 and 4 quarters. Our sample period is 1968Q4 to 2005Q4, which is appropriate for our purpose
of examining implicit hypothesesmade in the literature about changes inU.S.monetary policy responses.

Although FOMCmeetings are held more frequently (and sometimes irregularly), we follow the usual
convention of treating them as quarterly by employing forecasts made for the meeting closest to the
middle of the quarter. As Greenbook output gap forecasts are available only from late 1987, we follow
Boivan (2006) and employ a real-time unemployment gap measure as a proxy in (51). More explicitly, as
in Boivan (2006), x̃t+1|t is measured as the natural rate of unemploymentminus the Fed’s forecast, where
the natural rate is computed as an average of the historical unemployment rate over data as available at
t. The in�ation forecasts πt+1|t relate to the Gross National Product (GNP) or Gross Domestic Product
(GDP) price de�ator (as appropriate) and are given in the Greenbook as quarter on quarter growth rates,
expressed as annualized percentage points. The interest rate series is the average actual federal funds rate
for the third month of the quarter, with the third month used to ensure that rt re�ects any monetary
policy change e�ected during that quarter.

As already noted, Greenbook forecasts are prepared by Fed sta� in advance of FOMC meetings and
they are, in principle, conditional on interest rate policy remaining unchanged over the forecast horizon.
However, it may not be appropriate to treat these as exogenous in (51), since Ellison and Sargent (2012)
argue that the FOMC may doubt the accuracy of these sta� forecasts and instead favor a “worst case”
scenario. Consequently the Greenbook forecasts may be measured with error in relation to the forecasts
of the FOMC itself, with themeasurement errors correlated with interest rate decisions. To guard against
this possibility, our analysis of breaks in (51) employs a 2SLS approach. The instruments used are πt−i,
x̃t−i, rt−i, for lags i = 1, 2, GNP/GDP growth (as appropriate at t ) and the interest rate spread between
long-term (10 year) bonds and the short-term federal funds rate, also for the two quarters prior to t,
with all variables real time as at t. Lagged in�ation and growth rates are employed as instruments in
line with new Keynesian models in which expectations in (51) are formed from past observations on
output growth, in�ation and interest rates. There is both theoretical and empirical evidence that the
interest rate spread contains useful information for monetary policymakers [see, for example, Ellingsen
and Söderström (2001) and Rudebusch and Wu (2008)] and hence is also included.14

Based on the analyses of Hall et al. (2013, 2015), we use an information criteria approach to inference
in both the reduced form equations for πt+1|t and x̃t+1|t and in the structural form (51 ). Speci�cally,
we employ Bayesian Information Criterion (BIC) and Hannan-Quinn Information Criterion (HQIC),
with the penalty function in each case taking account of coe�cient and break estimation by counting the
number of e�ective parameters estimated as (p + 3)m, as suggested by Proposition 1. 15 The maximum

13All real-time data we use, including the Greenbook forecasts, were downloaded from the website of the Federal Reserve
Bank of Philadelphia.

14Standard diagnostics reject the null hypothesis of weak identi�cation with our data set.
15Proposition 1 suggests (m + 1)p + 3m parameters but in the context of model comparison using information criteria, we
omit the p parameters that are common across allm break models.
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Table 2. Estimated monetary policy rules.

1968Q4–2005Q4 1968Q4–1980Q3 1980Q4–1985Q3 1985Q4–2005Q4

A. Estimated coe�cients
πt+1|t 0.41 (1.10) 0.80 (3.63) 1.68 (10.53) 0.16 (1.13)
x̃t+1|t 0.23 (0.77) 0.94 (2.77) 0.01 (0.04) 0.09 (0.96)
rt−1 0.65 (1.64) 0.37 (1.08) -0.20 (1.27) 1.33 (8.54)
rt−2 0.11 (0.31) 0.03 (0.17) 0.09 (0.53) -0.43 (3.17)
c 0.12 (0.21) 1.03 (1.04) 3.75 (2.91) 0.09 (0.59)

B. Implied steady-state monetary policy responses

πt+1|t 1.74 (1.01) 1.33 (1.53) 1.51 (5.73) 1.59 (0.74)
x̃t+1|t 1.00 (0.93) 1.56 (1.12) 0.01 (0.04) 0.91 (0.43)

Breaks in the monetary policy rule (51) are detected using the BIC and HQIC information criteria withm(p + 3) e�ective parameters, a
maximumof �ve breaks and aminimumof 10% of sample observations are required to be in each estimatedmonetary policy regime.
In�ation and unemployment gap forecasts are treated as endogenous in themonetary policy rule, with breaks detected separately for
each reduced form equation. Figures in parentheses are t-ratios. The implied steady-state responses of monetary policy to in�ation
and the unemployment gap shown in Panel B are obtained from the estimated coe�cients assuming constant short-term interest
rates (rt = rt−1 = rt−2).

number of breaks is set to 5 in each case, with trimming parameters set to ǫ = 0.15 (15% of the total
sample) for each reduced form equation and ǫ = 0.10 for the structural form. Bai and Perron (2006)
provide a discussion and some evidence on the choice of the trimming parameter for structural break
tests, while the simulations of Hall et al. (2013) consider the choice for information criteria approaches.
We use ǫ = 0.10 in (51) since there are relatively few coe�cients to be estimated and the disturbances
are uncorrelated.

Both criteria �nd the reduced form equation for x̃t+1|t to be stable over the sample period, but three
breaks are indicated in the πt+1|t equation, dated at 1974Q4, 1980Q4, and 1986Q3. Using the reduced
form predictions (with breaks taken into account) rather than observations for πt+1|t and x̃t+1|t in (51),
both criteria then indicate that two breaks occur in the U.S. monetary policy. The search algorithm
estimates the break dates as 1980Q3 and 1985Q3. 16

The estimated monetary policy reaction functions are presented in Table 2, the �rst column of which
shows the 2SLS estimated coe�cients under the assumption that the reduced and structural forms are
stable, with the remaining three columns taking into account of reduced formand structural formbreaks.
Under the assumption of stability, the equation is poorly determined, with no individual coe�cient
signi�cant. On the other hand, allowing for breaks shows U.S. monetary policy to react signi�cantly
to forecasts for both the unemployment gap and in�ation until 1980Q3, followed by a period to 1985Q3
where the response appears to be targeted strongly to in�ation. The �nal regime, from 1985Q4 to
2005Q4, is one of low in�ation and relative stability (the so-called Great Moderation), during which
responses appear to be dominated by interest rate dynamics. It is notable that, nevertheless, the implied
steady-statemonetary policy responses to in�ation are e�ectively constant over thewhole sample period.
This �nding contrasts withClarida et al. (2000), who argue that themonetary policy response to in�ation
was stronger a�er Volcker became Fed chairman than previously, but agrees with the real-time analysis
of Orphanides (2004).

As discussed above, many studies of the U.S. monetary policy, including Clarida et al. (2000) and
Orphanides (2004), assume that a break occurs in 1979Q2, with a new regime applying when Volcker
took up appointment as the Fed chairman in the following quarter. Indeed, Clarida et al. (2000) take
this further and informally investigate whether monetary policy changes with each Fed chairman. In
terms of our analysis, this would imply that the true date of the second break we detect is 1987Q2, with
Greenspan taking up o�ce in August that year.17 Applying the tools of Section 4, we therefore test the

16 It might be noted that, with 149 observations available for estimation, the estimated break dates do not lie at the margin
of the search interval given by ǫ = 0.10.

17Our sample also covers the chairmanship of Burns (1970–1978) and Miller (1978–1979), but our results do not indicate any
change over the �rst subperiod and the second is too short to be analyzed as a separate regime with these techniques.
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Figure 2. 99% break fraction con�dence set for monetary policy application. The con�dence set shows the break fraction pairs (λ1 , λ2)
for which the statistic Fλ(λ̄) does not reject the corresponding joint null hypothesis at the 1% level, when applied to each permissible
null hypothesis subject to a 15 observation minimum segment (ǫ = 0.10). The λ1 = 0.32 break fraction corresponds to 1980Q3 and is
the only date of a �rst break that does not reject the null while λ2 can take any value from 0.42 to 0.62, or 1984Q2 to 1991Q4.

joint null hypothesis

H0 : T
0
1 = 1979Q2,T0

2 = 1987Q2.

Under the assumption of homoscedasticity, the test statistic of (50) is F2SLSλ (λ) = 37.29, which strongly
rejects the null hypothesis at the 1% level in relation to the critical values of Table 1. 18 Relaxing the
homoscedasticity assumption by using the 2SLS analogue of (40) leads to a statistic ofN2SLS

λ (λ) = 49.73,

which also leads to rejection at the 1% level whether the null distribution of bi ∼ B(µi,1,µi,2) is
simulated under the assumption of regime-dependent variances as in (48) or allowing more general
heteroscedasticity as in (46). Indeed, N2SLS

λ (λ) always rejects the joint null hypothesis at this level for
any hypothesized T0

1 6= 1980Q3. On the other hand, there is substantial uncertainty about the second
break date, with a 99% joint con�dence set including all dates from 1984Q2 (the lower bound of the
search interval in combination with 1980Q3) to 1991Q4, inclusive, while reducing the con�dence level
to 90%brings forward the latter date by only two quarters. Figure 2 illustrates the 99% joint con�dence set
graphically in terms of the break fractions, with the horizontal line emphasizing the relative uncertainty
about λ2 in contrast to λ1.

These results shed new light on the timing of changes in the U.S. monetary policy. In particular, the
widely accepted break date of 1979Q2 is not supported, with our results strongly pointing to the break
occurring 1980Q3. Interestingly, Du�y and Engle-Warnick (2006) also �nd evidence of a break at this
later date in a dynamic monetary policy model. Although detailed analysis of the evidence is beyond the
scope of this paper, it is notable that the policies now referred to as “Reaganomics,” and introduced a�er
his election as U.S. President in November 1980, included a focus on the control of in�ation. Therefore,
it may be that the monetary policy regime o�en associated with Volcker as Fed Chairman is for practical
purposes very similar to that of Reagan, making the two di�cult to distinguish empirically. As to the
second break, our results support other studies, including Clarida et al. (2000), who suggest that the date

18Here ρ̂2 is calculated using a scaling of T−1, as in the expression immediately under (49). Applying a degrees of freedom

correction for coe�cient and break estimation through a scaling of (T − 7)−1 yields a statistic of 35.54, which does not
a�ect the substantive conclusions.
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of change is unclear. However, we go further than previous authors in the sense that our 90% con�dence
set includes dates into the early 1990s.

6. Concluding remarks

A considerable literature now exists concerned with least square-based estimation and testing in models
with multiple discrete breaks in the parameters, see inter alia Bai and Perron (1998), Hall et al. (2012),
and Boldea and Hall (2013). In these contexts, if the model is assumed to havem breaks, then the break
points (the points at which the parameters change) are estimated by minimizing the residual sum of
squares over all possible data partitions involving m breaks. A natural side product of this estimation
is the minimized residual sum of squares and this quantity plays an important role in subsequent
inferences about the model. This paper, �rst, derives the asymptotic expectation of the residual sum
of squares, the form of which indicates that the number of estimated break points and the number of
regression parameters a�ect this expectation in di�erent ways. Second, we propose a statistic for testing
the joint hypothesis that the breaks occur at speci�ed �xed break points in the sample. Under its null
hypothesis, this statistic is shown to have a limiting distribution that is nonstandard but simulatable,
being a functional of independent random variables with exponential distributions whose parameters
can be consistently estimated. In a special case, the statistic can be normalized to make it pivotal and
we provide percentiles for the associated limiting distribution. These results cover the cases of either the
linear or nonlinear regression model with exogenous regressors estimated via ordinary (or nonlinear)
least squares or a linear model in which some regressors are endogenous and the model is estimated via
two stage least squares.

The paper also illustrates the usefulness of the results through an application to breaks in the U.S.
monetary policy. Such breaks are widely acknowledge in the literature, but are usually assumed to
coincide with changes in the chair of the Federal Reserve; see, for example, Clarida et al. (2000). When
subjected to test, we reject this hypothesis on the coincidence of change. In particular, thewidely assumed
break date of 1979Q2 associated with the end of the pre-Volcker era is rejected in favor of a break in
late 1980. Nevertheless, we also note that monetary policy under both Volcker, as Fed Chairman, and
President Reagan focused on in�ation, and the start of the new regime may be di�cult to determine
from the data. An important side-product of our analysis is the joint con�dence set we obtain for two
dates of change detected in monetary policy over the period 1969–2005.

Our analysis of the 2SLS case assumes that the instruments are strong and that the di�erence between
the regimes is shrinking. It would be interesting to extend our analysis to the case where the relationship
between the instruments and endogenous regressors is allowed to diminish with the sample size in the
fashion of nearly weak orweak instruments. Recently, Antoine andBoldea (2016) introduce a framework
in which the strength of the instruments is potentially regime dependent and implicitly controls the rate
at which the breaks in the reduced form are shrinking. Interestingly, they show that if a break is located
between two regimes, in one of which the instruments are nearly weak and in the other of which the
instruments are weak, then the break fraction can still be consistently estimated. It would be interesting
to examine the behavior of the statistics considered in our paper within Antoine and Boldea (2016)
framework, however this is le� to future research.

Appendix

Mathematical appendix

Proof of Proposition 1. Part (i): The limiting distribution of ξ1,T is given by Lemma 1. Now
consider the maximization of G̃i(ki) = −Gi(ki) for a single break i. From (13) and Lemma 2, each

max
|ki|

{
2 c

1/2
i,j Wi,j(−ki) − |ki| ai,j

}
for j = 1, 2 is exponential with parameter µj = −0.5ai,j/ci,j. Using
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Assumptions 4 and 5 in (14)–(15) implies that ai,j/ci,j = 0.5σ−2 and application of Lemma 3 then yields

E

[
max
ki

G̃i(ki)

]
= −E

[
min
ki

Gi(ki)

]
= 3σ 2

for each of them breaks. Since these breaks can be considered separately, we have

AE[ξ1,T] = −3mσ 2. (52)

Part (ii): Using standard least square algebra,

ξ2,T = RSS(T0
1 , . . . ,T

0
m) − ESS(T0

1 , . . . ,T
0
m)

=

m+1∑

i=1

T0
i∑

t=T0
i−1+1

(yt − x′
tβ̂i)

2 −

m+1∑

i=1

T0
i∑

t=T0
i−1+1

(yt − x′
tβ

0
i )

2

= −

m+1∑

i=1

(β̂i − β0
i )

′(X′
i Xi)(β̂i − β0

i ) (53)

in which Xi is the (T0
i − T0

i−1) × p data matrix for the ith regime, with typical row x′
t , and the OLS

estimates β̂ = [β̂ ′
1, β̂

′
2, . . . β̂

′
m+1]

′ are obtained imposing the correct break points.
Under Assumption 4,

T−1X′
i Xi

p
→ (δλ0i )Qi = Mi, say

where δλ0i = λ0i − λ0i−1. From Bai and Perron (1998) [Proposition 3], we have under our assumptions
that

T1/2
(
β̂ − β0

)
⇒ N(0,Vβ)

where Vβ = σ 2 diag[M−1
1 ,M−1

2 , . . . ,M−1
m+1]. Therefore, it follows that

−ξ2,T
d

→

m+1∑

i=1

κi

where κi ∼ σ 2χ2
p and κi, κj are independent for i 6= j. Consequently, AE[ξ2,T] = −p(m + 1)σ 2.

Part (iii): This follows directly from E[u2t ] = σ 2.

Proof of Theorem 1. We �rst state the assumptions employed in the Theorem but not stated in the main
text.

Assumption A.1. De�ne vt as follows: if xt contains no lagged values of yt then vt = (x′
t , ut , yt)

′; if xt
contains lagged values of yt then vt = (x∗′

t , yt)
′ where x∗

t contains all elements of xt besides the lagged
values of yt . Then:
(i) {vt} is a piecewise geometrically ergodic process, i.e., for each subsample [T0

j−1+1,T0
j ], there exists

a unique stationary distribution Pj such that:

sup
A

|P(A|B) − Pj(A)| ≤ gj(B)ρt

with 0 < ρ < 1, A ∈ F
T0
j

T0
j−1+t

, B ∈ F
T0
j−1

−∞ , F l
k is the σ -algebra generated by (vk, . . . , vl), and gj(·)

is a positive uniformly integrable function.
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(ii) {vt} is a β-mixing process with exponential decay, i.e., there exists N > 0 such that for B ∈ Fa
−∞,

βt = sup
a

β(Fa
−∞,F∞

a+t) ≤ Nρt , with β(Fa
−∞,F∞

a+t) = sup
A∈F∞

a+t

E|P(A|B) − P(A)|

Assumption A.2. The function ft(·) is a known measurable function, twice continuously di�erentiable
in β for each t.

AssumptionA.3. Let Ft(β) = ∂ft(β)/∂β , a p×1 vector, and f
(2)
t (β), a p×pmatrix of second derivatives,

i.e., f
(2)
t (β) = ∂2ft(β)/(∂β∂β ′), with (i, j)th element f

(2)
t,i,j . Also denote by ‖ · ‖ the Euclidean norm.

Then (i) the common parameter space B is a compact subset of Rp; for some s > 2, we have (ii)

supt,β E|utft(β)|2s < ∞; (iii) supt,β E‖utFt(β)‖2s < ∞; (iv) for i, j = 1, . . . p, supt,β E|utf
(2)
t,i,j (β)|s < ∞.

Assumption A.4. (i) ST(T1, . . . ,Tm;β) has a unique global minimum at β0 and (T0
1 , . . . ,T

0
m); (ii) Let

V∗
T,i(β , r) = Var T−1/2

∑T0
i−1+[Tr]

t=T0
i−1+1

ut(β)Ft(β). Then V∗
T,i(β , r)

p
→ rV∗

i (β), uniformly in β × r ∈

B × [0, λ0i − λ0i−1], where V
∗
i (β) is a positive de�nite (PD) matrix not depending on T, with V∗

i (β)

not necessarily the same for all i; (iii) Let Q∗
T,i(β , r) = T−1

∑T0
i−1+[Tr]

t=T0
i−1+1

Ft(β)Ft(β)′. Then Q∗
T,i(β , r)

p
→

rQ∗
i (β), uniformly inβ×r ∈ B×[0, λ0i −λ0i−1], whereQ

∗
i (β) is a PDmatrix; (iv)E[ft(β

0
i )] 6= E[ft(β

0
i+1)],

for each i = 1, . . . ,m.

The proof follows similar lines to that of Proposition 1. From the arguments of Boldea and Hall (2013),
it follows that (12) and (13) continue to apply, but now with

ai,j = θ0 ′
i Q∗

i+j−1(β
0
i+j−1) θ0i (54)

ci,j = θ0 ′
i V∗

i+j−1(β
0
i+j−1) θ0i (55)

for j = 1, 2. The result for ξ1,T then follows using arguments as for the proofs of Lemma 1 and

Proposition 1. For ξ2,T , the proof again follows the same argument as Proposition 1 using T1/2(β̂i −

β0
i )

d
→ N

(
0, σ 2[Q∗

i (β
0
i )]

−1
)
(under our conditions) from analogous arguments to Boldea and Hall

(2013)[Theorem 2], while (iii) follows from E[u2t ] = σ 2.

Proof of Theorem 2. Part (i): From the principle of least squares, ξ1,T as de�ned for 2SLS by (31) can be
written as

ξ1,T = min
(T1,...,Tm)

RSS(T1, . . . ,Tm) − RSS(T0
1 , . . . ,T

0
m).

There are then two scenarios of interest for the general case of an unstable reduced form with h >

0 in (20), namely, whether the (true) reduced form and structural breaks are common or not. To be
more precise, and following Boldea et al. (2012), we consider scenarios where some breaks occur in the
structural formbut not the reduced form andwhere at least some breaks are common to both; the former
includes the special case of a stable reduced form. These scenarios can be represented as follows.
Scenario 1: π0

j < λ0k+1 < ... < λ0k+ℓ
< π0

j+1

Scenario 2: π0
j−1 ≤ λ0k < π0

j = λ0k+1 < ... < λ0k+ℓ
≤ π0

j+1
Scenario 1

Consider, �rst, a single reduced form break andm structural form breaks, with 0 ≤ π0
1 < λ01 < ... <

λ0m < T, so that

yt = (x′
t , z

′
1,t)β

0
i + ut , i = 1, . . . ,m, t = T0

i−1 + 1, . . . ,T0
i

x′
t =

{
z′t1

0
1 + vt t ≤ T†

1

z′t1
0
2 + vt t > T†

1



ECONOMETRIC REVIEWS 691

As in Boldea et al. (2012), proof of Theorem 3, the relevant intervals for the limiting behavior of {T̂i}
m
i=1

in (31) for 2SLS are again B =
⋃m

i=1 Bi, where Bi =
{∣∣Ti − T0

i

∣∣ ≤ Kis
−2
T

}
for positive constants Ki,

i = 1, . . . ,m. Then, from Boldea et al. (2012) [Proposition 2], the minimization implies that ξ1,T can be
written as:

ξ1,T =

m∑

i=1

min
Ti

{Ai(Ti) + 2Ci(Ti)} + op(1), uniformly in B

with

Ai(Ti) = θ0
′

T,iϒ
0′
2

Ti∨T
0
i∑

t=(Ti∧T
0
i )+1

ztz
′
t ϒ

0
2 θ0T,i

Ci(Ti) = (−1)I{Ti<T0
i } θ0

′

T,i ϒ
0′
2

Ti∨T
0
i∑

t=(Ti∧T
0
i )+1

ztut,i

for θ0T,i and ϒ0
k (k = 1, 2) de�ned in Assumptions 3 and 12, respectively, and ut,i de�ned in (25).

For break i consider Ti = T0
i + [ki s

−2
T ] for ki ǫ[−Ki,Ki]. Using the same arguments as Boldea et al.

(2012) in the proof of their Theorem 2, it follows that the limiting distribution of ξ1,T is given by (12)
and (13) as in Lemma 1, but with [from Assumption 14 and Assumption 11(iii)], (14)–(15) replaced by

ai,j = θ0 ′
i ϒ0′

2 QZZ(i + j − 1)ϒ0
2 θ0i (56)

ci,j = θ0 ′
i ϒ0′

2 8(i + j − 1)ϒ0
2 θ0i (57)

where 8(ℓ) = CℓVℓC
′
ℓ, Cℓ = ν′

ℓ ⊗ Iq, νℓ = [1,β0′
x,ℓ]. Under Assumption 11(iv) 8(ℓ) = νℓ�ℓν

′
ℓ ⊗

QZZ(ℓ), and with the addition of Assumption 11(v), we have 8(ℓ) = νℓ�ν′
ℓ ⊗QZZ(ℓ). Thus, under our

assumptions

ci,j = ρ2
i ai,j → ρ2ai,j (58)

where ρ2 is de�ned in (27) and Assumption 3 is imposed.
Therefore, applying Lemmata 1 and 2, we have

min
|ki|

G(|ki|) ∼ B(ai,j/2ci,j, ai,j/2ci,j) = B(0.5ρ−2, 0.5ρ−2), (59)

and so, as we can consider the breaks separately, it follows from Lemma 3 that

AE[ξ1,T] = −3mρ2. (60)

Under the shrinking breaks Assumption 8, and with distinct reduced and structural form breaks such
that π0

j < λ0k+1 < ... < λ0k+ℓ
< π0

j+1, the result immediately extends to the case where the number of

reduced form breaks is h > 1. It also immediately specializes to the case of a stable reduced form.

Scenario 2
Under this scenario, consider h = 1 in the case where the �rst of the m structural breaks coincides

with the single reduced form break. Hence the data generation process is identical to Scenario 1, except
that T †

1 = T0
1 and, consequently, π

0
1 = λ01.

From Boldea et al. (2012), and since the m breaks at T0
1 , . . . ,T

0
m can be considered separately,

the limiting distribution of ξ1,T applies as for Scenario 1, with ai,j and ci,j as given by (56) and (57),
respectively, for i = 2, . . . ,m, but a1,j and c1,j are as follows:

a1,j = θ0 ′
1 ϒ0′

j QZZ(j)ϒ0
j θ01 , j = 1, 2 (61)

c1,j = θ0 ′
1 ϒ0′

j 8(j)ϒ0
j θ01 , j = 1, 2. (62)
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Under our assumptions, therefore, (58) applies and consequently (59) holds for a break that is common
to the reduced and structural forms. Therefore (60) holds under Scenario 2.

Part (ii): From standard least square algebra,

ξ2,T = RSS(T0
1 ,T

0
2 , . . . ,T

0
m;π

0) − ESS(T0
1 ,T

0
2 , . . . ,T

0
m)

=

m∑

i=1

T0
i∑

t=T0
i−1+1

(yt − x̂t(π
0)′β̂x,i − z′1,tβ̂z,i)

2 −

m∑

i=1

T0
i∑

t=T0
i−1+1

(yt − x̂t(π
0)′β0

x,i − z′1,tβ
0
z,i)

2

= −

m∑

i=1

(β̂i − β0
i )

′(Ŵ ′
i Ŵi)(β̂i − β0

i ) (63)

in which Ŵi is the (T0
i − T0

i−1) × p data matrix for the ith structural form regime, with typical row

(̂xt(π
0)′, z′1t), and β̂i = (β̂ ′

x,i, β̂
′
z,i)

′ are obtained using the true reduced form break fractions of π0.

It is useful to �rst consider Q̃i = Q̃ZZ(λ0i ) − Q̃ZZ(λ0i−1) where Q̃ZZ(r) is uniform in r ∈ (0, 1] limit

of T−1
∑[Tr]

t=1 z̃t(π
0)z̃t(π

0)′. Without loss of generality, assume π0
ℓ < λ ≤ π0

ℓ+1, then it follows from
Assumption 14 that

Q̃ZZ(λ) = φ(λ) ⊗ QZZ (64)

where

φ(λ) = diag[δπ0
1 , . . . , δπ

0
ℓ , λ − π0

ℓ , 0, . . . , 0]

and δπ0
j = π0

j − π0
j−1 (π0

0 = 0, π0
h+1 = 1). Therefore, we have

Q̃i = φ
(1)
i ⊗ QZZ (65)

where φ
(1)
i = φ(λ0i ) − φ(λ0i−1). We note there are two scenarios for φ

(1)
i : if there is no reduced form

break between λ0i−1 and λ0i then

φ
(1)
i = diag[0, . . . , 0, δλ0i , 0, . . . , 0]; (66)

if there are reduced form breaks between λ0i−1 and λ0i , say π0
k < λ0i−1 < π0

k+1 < ... < π0
k+ℓi

< λ0i , then

φ
(1)
i = diag

[
0, . . . , 0, (π0

k+1 − λ0i−1), δπ
0
k+2, . . . , δπ

0
k+ℓi

, (λ0i − π0
k+ℓi

), 0, . . . , 0
]
. (67)

For later reference, it is also useful to note that

Q̃ZZ(1) = φ0 ⊗ QZZ (68)

where

φ0 = φ(1) = diag[δπ0
1 , δπ

0
2 ..., δπ

0
h+1]. (69)

We now return to the proof. From the proof of Hall et al. (2012)[Theorem 8], we have that

T−1Ŵ′
i Ŵi = M̂(i)

ww

p
→ M(i)

ww = ϒ̃ ′Q̃i ϒ̃

where ϒ̃ ′ = [ϒ0′
1 ,ϒ

0′
2 , . . . ,ϒ

0′
h+1]. From Hall et al. (2012)[Theorem 3], we have that

T1/2
(
β̂i − β0

i

)
⇒ N(0,V

β
i,i)

where V
β
i,i, as in Hall et al. (2012)[Theorem 8],

V
β
i,i = Ãi

{
C̃iṼiC̃

′
i − ẼiD̃iṼiC̃

′
i − C̃iṼiD̃

′
ĩE

′
i + ẼiD̃iṼiD̃

′
ĩE

′
i

}
Ã′
i (70)
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and

Ãi = [ϒ̃ ′Q̃i ϒ̃]−1ϒ̃ ′

C̃i = (1,β0′
x,i) ⊗ Ĩq, D̃i = (0,β0′

x,i) ⊗ Ĩq, q̃ = q(h + 1)

Ẽi = Q̃iQ̃ZZ(1)−1

Ṽi = Var


T−1/2

[λ0i T]∑

t=[λ0i−1T]+1

h̃t


 , h̃t =

(
ut

vt

)
⊗ z̃t(π0).

Under Assumption 11, we have

Ṽi = φ
(1)
i ⊗ V = φ

(1)
i ⊗ (� ⊗ QZZ)

where φ
(1)
i is de�ned by (66) or (67), as appropriate. Also using (64),

Ẽi = φ
(2)
i ⊗ Iq,

where φ
(2)
i = φ

(1)
i {φ(1)}−1.

Now consider each of the terms of (70) in turn. First, since (1,β0′
x,i)�(1,β0′

x,i)
′ = ρ2

i in (27), then

C̃iṼiC̃
′
i = ρ2

i (φ
(1)
i ⊗ QZZ).

If φ
(i)
1 is given by (66) and π0

k ≤ λ0i−1 < λ0i ≤ π0
k+1 then

ϒ̃ ′C̃iṼiC̃
′
iϒ̃ = ρ2

i (δλ
0
i )ϒ

0′
k+1QZZϒ0

k+1 → (δλ0i )ρ
2 ϒ0′ QZZ ϒ0 (71)

under Assumption 8. If φ
(i)
1 is given by (67) then we have

ϒ̃ ′C̃iṼiC̃
′
iϒ̃ = ρ2

i

{
(π0

k+1 − λ0i−1)ϒ
0′
k+1QZZϒ0

k+1 + δπ0
k+2ϒ

0′
k+2QZZϒ0

k+2 + ...

+ (λi − π0
k+ℓi

)ϒ0′
k+ℓi+1QZZϒ0

k+ℓi+1

}

→ (δλ0i )ρ
2 ϒ0′QZZ ϒ0 (72)

under Assumption 8. By similar arguments, D̃iṼiC̃
′
i = (φ

(1)
i ⊗ QZZ)ρi and hence

ẼiD̃iṼiC̃
′
i = (φ

(2)
i ⊗ Iq)(φ

(1)
i ⊗ Q)ρi

= ρi(φ
(3)
i ⊗ QZZ)

where φ
(3)
i = φ

(1)
i φ

(2)
i . Using Assumption 8, it follows that

ϒ̃ ′̃EiD̃iṼiC̃
′
iϒ̃ → ρ diϒ

0′QZZ ϒ0 (73)

where di =
∑h+1

j=1 {φ
(3)
i }j,j and {φ

(3)
i }j,j is the (j, j)th element of {φ

(3)
i }. Note that if φ

(1)
i is given by (66)

then

di =
(δλ0i )

2

δπ0
k+1

, (74)

and if φ
(1)
i is given by (67) then

di =
(π0

k+1 − λ0i−1)
2

δπ0
k+1

+
(λ0i − π0

k+ℓi
)2

δπ0
k+ℓi+1

− π0
k+1 + π0

k+ℓi
. (75)
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Finally, since D̃iṼiD̃
′
i = ω2

i (φ0 ⊗ QZZ) where φ0 is de�ned in (69), then

ẼiD̃iṼiD̃
′
ĩE

′
i = ω2

i (φ
(2)
i ⊗ Iq)(φ(1) ⊗ QZZ)(φ

(2)
i ⊗ Iq)

= ω2
i (φ

(3)
i ⊗ QZZ)

since φ
(2)
i φ(1) = φ

(1)
i and φ

(1)
i φ

(2)
i = φ

(3)
i . Consequently, under Assumption 8, we have

ϒ̃ ′̃EiD̃iṼiD̃
′
ĩE

′
iϒ̃ → ω2diϒ

0′QZZ ϒ0. (76)

Substituting from (72), (73), and (76) into (70) yields

V
β
i,i → {M(i)

ww}−1{(δλ0i )ρ
2 − 2ρ di + ω2di}ϒ

0′QZZ ϒ0{M(i)
ww}−1.

Since ϒ0′QZZ ϒ0{M
(i)
ww}−1 = (δλ0i )

−1Ip, and further using (28) and (29),

M(i)
wwV

β
i,i →

{
ρ2 − 2β0′

x γ
di

δλ0i
− β0′

x 6β0
x

di

δλ0i

}
Ip

and hence

AE[ξ2,T] = −

m+1∑

i=1

tr
[
(V

β
i,i)

1/2M(i)
ww(V

β
i,i)

1/2
]

= −

m+1∑

i=1

tr[M(i)
wwV

β
i,i]

= −p(m + 1)ρ2 + p

m+1∑

i=1

di

δλ0i
(2β0′

x γ + β0′
x 6β0

x )

= −p(m + 1)ρ2 + p(ρ2 − σ 2)

m+1∑

i=1

di

δλ0i
(77)

where the last expression is obtained using (27).

Part (iii): For ξ3,T de�ned by (33), consider the regime-speci�c errors

yt − x̂′
tβ

0
x,i − z′1,tβ

0
z,i = (yt − x′

tβ
0
x,i − z′1,tβ

0
z,i) + (xt − x̂t)

′β0
x,i

= ut,i + (xt − x̂t)
′β0

x,i

where x̂t is obtained using the true reduced form break dates. Since

ESS(T0
1 , . . . ,T

0
m) =

m+1∑

i=1

T0
i∑

t=T0
i−1+1

[ut,i + (x′
t − x̂′

t)β
0
x,i]

2

and

ESSe(T0
1 , . . . ,T

0
m) =

m+1∑

i=1

T0
i∑

t=T0
i−1+1

u2t,i, (78)

it immediately follows that

ξ3,T =

m+1∑

i=1





T0
i∑

t=T0
i−1+1

β0′
x,i(xt − x̂t)(xt − x̂t)

′β0
x,i + 2

T0
i∑

t=T0
i−1+1

ut,i(xt − x̂t)
′β0

x,i





=

m+1∑

i=1

(E2i + 2E3i) (79)
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where (obviously)

E2i =

T0
i∑

t=T0
i−1+1

β0′
x,i(xt − x̂t)(xt − x̂t)

′β0
x,i (80)

E3i =

T0
i∑

t=T0
i−1+1

ut,i(xt − x̂t)
′β0

x,i. (81)

From (21) and (22),

x′
t − x̂′

t = z̃′t(2
0 − 2̂T)

= −z̃′t

{
T∑

t=1

z̃t z̃
′
t

}−1 T∑

t=1

z̃t v
′
t (82)

where it is understood that z̃t = z̃t(π
0). Substituting (82) into (80) and using (26), we can write

E2i = T−1/2
T∑

t=1

vt,i z̃
′
t

{
T−1

T∑

t=1

z̃t z̃
′
t

}−1

T−1

T0
i∑

t=T0
i−1+1

z̃t z̃
′
t

×

{
T−1

T∑

t=1

z̃t z̃
′
t

}−1

T−1/2
T∑

t=1

z̃tvt,i.

From (65) and (68), it follows that

AE[E2i] = tr
{
(φ

(4)
i ⊗ Q−1

ZZ

}
limT→∞E



(
T−1/2

T∑

t=1

z̃tvt,i

)(
T−1/2

T∑

t=1

z̃tvt,i

)′



where φ
(4)
i = φ

(2)
i φ−1

0 and, using ω2
i = Var[vt,i] from (29),

limT→∞E



(
T−1/2

T∑

t=1

z̃tvt,i

)(
T−1/2

T∑

t=1

z̃tvt,i

)′

 = ω2

i (φ0 ⊗ QZZ).

Therefore,

AE[E2i] = tr
{
φ0φ

(4)
i ⊗ Iq

}
ω2
i

= tr
{
φ

(2)
i ⊗ Iq

}
ω2
i

= qω2
i bi

where bi =
∑h+1

1 {φ
(2)
i }j,j and {φ

(2)
i }j,j is the (j, j)th element of φ

(2)
i .

Also substituting (82) in the de�nition of (81 ) yields

E3i = −

T0
i∑

t=T0
i−1+1

ut,iz̃
′
t

{
T∑

t=1

z̃t z̃
′
t

}−1 T∑

t=1

z̃t v
′
tβ

0
x,i

= −T−1/2

T0
i∑

t=T0
i−1+1

ut,iz̃
′
t

{
Q̃zz(1)

}−1
T−1/2

T∑

t=1

ztvt,i + op(1).
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Applying similar arguments to those for E2i, we obtain

AE[E3i] = −qρibi

where ρi = Cov[vt,i, ut,i]. Therefore, under Assumption 3, we have

AE[ξ3,T] → q[ω2 − 2ρ]

m+1∑

i=1

bi. (83)

To complete the proof note that
∑m+1

i=1 bi = h + 1 and ω2 − 2ρ = −(ρ2 − σ 2) from (28) to (29)

Part (iv):Using the de�nition of ξ4,T in (34) and also (78), it immediately follows from (27) thatE[ξ4,T] =

0.Simple algebra then yields the result given for AE[ξT] in Theorem 2.

To establish 0 <
∑m+1

i=1 di /(δλ
0
i ) ≤ min[(h+ 1), (m+ 1)], note �rst that di and δλ0i (i = 1, . . . ,m+

1) are strictly positive, by de�nition. For a structural form regime with no intermediate reduced form
breaks, π0

k ≤ λ0i−1 < λ0i ≤ π0
k+1, say, it immediately follows that di/(δλ

0
i ) = {δλ0i }

2/{δπ0
k+1 × δλ0i } =

(δλ0i )/(δπ
0
k+1) ≤ 1, with equality holding if and only if π0

k = λ0i−1 and λ0i = π0
k+1. With intermediate

reduced form breaks, π0
k ≤ λ0i−1 < π0

k+1 < ... < π0
k+ℓi

< λ0i ≤ π0
k+ℓi+1, say, with ℓi ≥ 1, then

di =
(π0

k+1 − λ0i−1)
2

δπ0
k+1

+
(λ0i − π0

k+ℓi
)2

δπ0
k+ℓi+1

+ π0
k+ℓi

− π0
k+1

< π0
k+1 − λ0i−1 + λ0i − π0

k+ℓi
+ π0

k+ℓi
− π0

k+1 = δλ0i

since π0
k+1 − λ0i−1 ≤ δπ0

k+1 and λ0i − π0
k+ℓi

≤ δπ0
k+ℓi+1 , with equality if both λ0i−1 = π0

k and

π0
k+ℓi+1 = λ0i . Therefore, di/δλ

0
i ≤ 1 also in this case. Summed over allm + 1 structural form regimes,

it immediately follows that

0 <

m+1∑

i=1

di /(δλ
0
i ) ≤ m + 1.

From the perspective of the reduced form regimes, de�ne d∗
j as follows: If reduced form regime j

contains no structural form breaks, so that λ0i ≤ π0
j−1 < π0

j ≤ λ0i+1, d
∗
j = δπ0

j /δλi; if reduced form

regime j includes ℓj structural form breaks, λ0i ≤ π0
j−1 < λ0i+1 < ... < λ0i+ℓj

< π0
j ≤ λ0i+ℓj+1, then

d∗
j =

(λ0i+1 − π0
j−1)

2

δλ0i+1 × δπ0
j

+

ℓj∑

s=2

δλ0i+s

δπ0
j

+
(π0

j − λ0i+ℓj
)2

δλ0i+ℓj+1 × δπ0
j

. (84)

From these de�nitions, it follows that each d∗
j ≤ 1; this is obvious for the case of no intermediate

structural form breaks, while (84) implies that

d∗
j ≤

λ0i+1 − π0
j−1

δπ0
j

+

ℓj∑

s=2

δλ0i+s

δπ0
j

+
π0
j − λ0i+ℓj

δπ0
j

=
δπ0

j

δπ0
j

= 1

since (λ0i+1 − π0
j−1) ≤ δλ0i+1 and (π0

j − λ0i+ℓj
) ≤ δλ0i+ℓj+1. Also note that d∗

j = 1 in (84) when

π0
j−1 = λ0i and π0

j = λ0i+ℓj+1. Further, since λ00 = π0
0 = 0 and λ0m+1 = π0

h+1 = 1, it also follows that
∑m+1

i=1 di /(δλ
0
i ) =

∑h+1
j=1 d∗

j ≤ (h + 1), thereby establishing the required result.

Proof of Theorem 3. Under H0,

Nλ(λ) = −ξ1,T .
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From (12) and (13),

−ξ1,T
d

→

m∑

i=1

max
|ki|

Hi(|ki|)

where

Hi(|ki|) =

{
− |ki| ai,1 + 2 c

1/2
i,1 Wi,1(|ki|), ki ≤ 0

− |k| ai,2 + 2 c
1/2
i,2 Wi,2(|ki|), ki > 0

with ai,j, ci,j de�ned in (14), (15). From Lemmata 1 and 2,

max
|ki|

Hi(|ki|) = bi ∼ B(µi,1, µi,2).

The desired result follows because Assumptions 1 and 3 imply independence of bi and bj for i 6= j.
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