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Ignace DE VOS

Department of Economics, Lund University, Tycho Brahes väg 1, P.O. Box 7082, S-220 07, Department of
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Gerdie EVERAERT
Department of Economics, Ghent University, Sint-Pietersplein 6, 9000 Ghent, Belgium (gerdie.everaert@ugent.be)

This article extends the common correlated effects pooled (CCEP) estimator to homogenous dynamic
panels. In this setting, CCEP suffers from a large bias when the time span (T) of the dataset is fixed.
We develop a bias-corrected CCEP estimator that is consistent as the number of cross-sectional units (N)
tends to infinity, for T fixed or growing large, provided that the specification is augmented with a sufficient
number of cross-sectional averages, and lags thereof. Monte Carlo experiments show that the correction
offers strong improvements in terms of bias and variance. We apply our approach to estimate the dynamic
impact of temperature shocks on aggregate output growth.

KEY WORDS: Common correlated effects; Dynamic panel bias; Factor augmented regression; Multi-
factor error structure.

1. INTRODUCTION

Error cross-sectional dependence is one of the major themes
in recent panel data econometrics. It is well documented that
neglecting such dependencies can distort inference or even
lead to inconsistent estimates (see Andrews 2005; Sarafidis and
Robertson 2009; Sarafidis and Wansbeek 2012 for details). One
of the leading approaches to model cross-sectional dependence
is by assuming a multifactor error structure, in which cross-
section units are simultaneously influenced by a limited number
of unobserved common factors, to which they can respond with
different intensities. The common factors may reflect business
cycle fluctuations, technological progress, risk and liquidity
premia or other global trends and shocks that affect all cross-
sectional units in the panel with a potentially differential impact
across units arising from differences in institutions, absorptive
capacity, technological rigidities, innate ability, preferences,
risk aversion, social background, etc. (see, e.g., Ahn, Lee,
and Schmidt 2001; Moon and Perron 2007; Eberhardt and
Teal 2011; Sarafidis and Wansbeek 2012). Not accounting for
unobserved global variables or shocks results in inconsistent
estimates when the omitted factors are correlated with the
included regressors.

A popular estimation technique for panel data models with
a multifactor error structure is the common correlated effects
(CCE) estimator introduced by Pesaran (2006). This consists of
augmenting the model with the cross-sectional averages (CSA)
of the observed variables such that asymptotically—as the
cross-sectional dimension N → ∞—the effect of the common
factors is eliminated. Both a mean group and a pooled version
are suggested, depending on whether the slope coefficients
are assumed to be heterogeneous (variable) or homogenous
(constant) over cross-sectional units. Under the more general
assumption of slope heterogeneity, the mean group (CCEMG)
estimator is calculated as the average of the individual CCE

slope coefficient estimates. The pooled (CCEP) estimator yields
efficiency gains when the slope coefficients are homogenous
over cross-sectional units. Under the appropriate set of assump-
tions, the CCEMG and the CCEP estimators are consistent
as N → ∞ for either the time series dimension T fixed or
T → ∞. Building on the results in Pesaran (2006), the CCE
approach is shown to be robust to various generalizations (see,
e.g., Chudik, Pesaran, and Tosetti 2011; Harding and Lamarche
2011; Kapetanios, Pesaran, and Yamagata 2011; Pesaran and
Tosetti 2011). The computational straightforwardness of the
CCE approach in combination with its robustness has led to
numerous applications in many areas of economics and beyond.

The CCE methodology is well developed in the static model
but was originally not intended for use in dynamic settings.
Dynamic models are, however, common in practice since many
(economic) variables tend to react slowly to changes in their
determinants and hence display considerable persistence over
time. Typically a lagged dependent variable is added to the
empirical specification to account for these dynamics. However,
this has important consequences for the properties of the CCE
estimators. A first complication arises in the approximation
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of the common factors. Chudik and Pesaran (2015) showed
that the combination of dynamics and coefficient heterogeneity
requires that an infinite number of lagged CSA should be added
to the model to eliminate the factors. As this is not feasible
in finite samples, they suggest to let the number of CSA grow
with T . The implications of dynamics for approximating the
common factors in models with homogenous slope coefficients
have not yet been studied. Second, Everaert and De Groote
(2016) show that in a dynamic setting the CCEP estimator is
inconsistent as N → ∞ with T fixed, and that its asymptotic
bias tends to be much larger than the standard dynamic panel
data bias (Nickell 1981) of the FE estimator in the absence of
common factors. Especially when persistence is high, the CCEP
estimator remains notably biased even for a moderately long
time dimension T up to 50 periods. Monte Carlo simulations
further show that the small sample properties of the CCEP
estimator are not very sensitive to the size of N. Similar results
were obtained by Chudik and Pesaran (2015) for the CCEMG
estimator. Hence, in dynamic panels it is mainly the time series
dimension that should be sufficiently large to allow for reliable
CCE estimation and inference. This is problematic especially
for estimating micro-level dynamic models where N tends to
be large and T is typically (very) small, for instance when
estimating dynamic employment equations with firm-level data
(see, e.g., Carlsson, Eriksson, and Gottfries 2013; Eriksson and
Stadin 2017), but also in macro-level panels, where although T
tends to be larger than or similar to N the available time span is
in many cases smaller than what is needed to make the bias neg-
ligibly small. In an attempt to reduce the small T bias, Chudik
and Pesaran (2015) suggested the recursive mean adjustment
of So and Shin (1999) or the split-panel jackknife of Dhaene
and Jochmans (2015). Although these approaches succeed in
mitigating the bias, they are unable to resolve the issue for
short-T panels. Despite these two important complications, the
CCE approach is increasingly used to estimate dynamic panel
data models with common factors in a variety of empirical
settings, including—among many others—development eco-
nomics (Temple and Van de Sijpe 2017); economic growth
(Minniti and Venturini 2017); international economics (Wu and
Wu 2018); the economics of inequality (Madsena, Minnitib,
and Venturini 2018); environmental economics (Tao 2018).

This article considers the CCEP approach to estimate a
homogenous dynamic panel data model. We first show that, in
contrast to the heterogeneous slope model, only a finite number
of lagged CSA are required to eliminate the factors from the
error terms. We next remove the finite T bias of the CCEP
estimator by deriving a bias-corrected alternative (referred to as
CCEPbc) based on large N analytical bias expressions allowing
for multiple common factors and exogenous variables. We
show that, when correctly specified, the resulting estimator is
consistent as N → ∞ with T fixed or T → ∞. Monte
Carlo simulations show that CCEPbc provides considerable
improvements (both in terms of bias and variance) over the
original CCEP estimator and is practically unbiased in all
of the considered settings. Moreover, CCEPbc is found to
outperform both (i) alternative bias-adjusted CCEP estimators
and (ii) the bias-corrected least squares with interactive fixed
effects estimator of Moon and Weidner (2017), which is the
main alternative to the CCEP methodology in dynamic panels.

We further find that a (bootstrap) hypothesis test based on
the CCEPbc estimator has an actual size close to the desired
nominal level, even when T is small.

The remainder of this article is structured as follows. Sec-
tion 2 outlines the model and assumptions. In Section 3, we
extend the CCEP estimator to homogenous dynamic panel data
models and derive an expression for its finite T inconsistency
that will be used in Section 4 to construct a bias-corrected
CCEP estimator. Monte Carlo simulation results are presented
in Section 5. In Section 6, we use our CCEPbc approach
to estimate the dynamic impact of temperature shocks on
aggregate output growth in a panel of 125 countries. Section 7
concludes. Proofs and additional results are collected in an
online supplement.

Before proceeding we introduce some notation that will be
used throughout the article. For a T × c matrix A, ‖A‖ =
[tr (

AA′)]1/2 denotes the Euclidian (Frobenius) matrix norm,
tr(·) the trace, rk(·) the rank, vec(·) is the vectorization opera-
tor, and (A′A)† is the Moore–Penrose pseudoinverse of A′A. A
−p subscript corresponds to the p-period lag of the respective
variable or matrix so that A−p = LpA, where L is the lag
operator.

2. MODEL AND ASSUMPTIONS

Consider the following first-order dynamic panel data model

yit = αi + ρyi,t−1 + x′
itβ + eit, (1)

eit = γ ′
ift + εit, (2)

for i = 1, . . . , N and t = 1, . . . , T and where yit is the
observation on the dependent variable for unit i at time t, αi

is an unobserved individual effect, xit an individual-specific
kx × 1 column vector of strictly exogenous regressors, and eit

a multifactor error term that is composed of an m × 1 vector
of unobserved common factors ft with heterogeneous factor
loadings γ i and an idiosyncratic error term εit. The unknown
parameters ρ and β are assumed to be homogenous over cross-
sectional units i and bounded by a finite constant. For notational
convenience we assume yi0 known.

Following Pesaran, Smith, and Yamagata (2013), we also
exploit information regarding the unobserved common factors
that is shared by variables other than yit and xit. To this end
consider a kg×1 vector of individual-specific strictly exogenous
covariates git that have no effect on the dependent variable yit
but that are driven by the same factors ft that affect yit. The
individual-specific covariates and other variables are collected
in the k × 1 column vector zit = [

x′
it, g′

it

]′, with k = kx + kg,
and are assumed to be generated as

zit =
[

xit

git

]
= cz,i +

p∑
l=1

λlzi,t−l + �′
ift + vit, (3)

where cz,i is a k × 1 column vector of unobserved individual
effects, p denotes the autoregressive order of zit, λl is a k × k
matrix of coefficients corresponding to lags l = 1, . . . , p of zit,
�i is a m × k matrix of factor loadings, and vit a k × 1 vector
of idiosyncratic errors. The assumption that p is equal for all
variables in zit is for notational convenience only and can easily
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be relaxed within the current notation by interpreting p as the
maximum lag length and setting some of the parameters in λl

equal to zero.
We make the following assumptions:

Assumption 1 (Idiosyncratic errors). The εit and vit are
iid across i and t with E(εitvjs) = 0k×1, E(ε4

it) < ∞, and
E(‖vit‖4) < ∞ for all i, j, t, and s. In particular,

εit ∼ iid(0, σ 2
ε ), vit ∼ iid(0k×1, �v),

with σ 2
ε > 0 and �v a positive definite k × k matrix.

Assumption 2 (Common factors). The ft are covariance sta-
tionary with absolute summable autocovariances, E(‖ft‖4) <

∞ and they are distributed independently of εis, vis, γ i, and �i

for all i, t, and s.

Assumption 3 (Factor loadings). The γ i and �i are iid
across i, independent of εjt, vjt, and ft for all i, j, and t, with

E(
∥∥γ i

∥∥4
) < ∞ and E(‖�i‖4) < ∞. In particular,

γ i = γ + ηi, ηi ∼ iid(0m×1, �η), (4)

�i = � + νi, vec(νi) ∼ iid(0mk×1, �ν), (5)

where E(
∥∥η′

i ⊗ ν′
i

∥∥) ≥ 0 and �η, �ν are bounded m × m and
km × km matrices, respectively.

Assumption 4 (Rank condition). The (1 + k) × m matrix
C = [

γ , �
]′ has rk(C) = m.

Assumption 5 (Stationarity). |ρ| < 1 and the elements in λl

are such that λ(L) = Ik − ∑p
l=1 λlLl is invertible. The process

of yit was initiated in the infinite past.

For future reference, we let kw = 1 + kx and stack the model
in Equations (1) and (2) over time as

yi = αiιT + wiδ + Fγ i + εi, (6)

where δ = [ρ, β ′]′ and wi = [yi,−1, Xi] are kw × 1 and
T × kw, and Xi = [xi1, . . . , xiT ]′, yi = [yi1, . . . , yiT ]′, yi,−1 =
[yi0, . . . , yi,T−1]′, F = [f1, . . . , fT ]′, εi = [εi1, . . . , εiT ]′, and
ιT is a T × 1 column vector of ones. Similarly specify Gi =
[gi1, . . . , giT ]′ and Zi = [Xi, Gi].

3. CCEP ESTIMATION IN DYNAMIC PANELS

Pesaran (2006) developed the CCE approach in a static
model with strictly exogenous regressors and showed that under
Assumption 4 the differential effects of the unobserved factors
can be eliminated as N → ∞ by augmenting the model with
the CSA of the observables. In this section, we first review
whether the CSA still serve as suitable proxies for the factors in
homogenous dynamic panels. We next show that, in contrast
to the static case, the CCEP estimator is inconsistent when
N → ∞ and T fixed by deriving its bias expression that will be
used in Section 4 to construct a bias-corrected CCEP estimator.

3.1. Cross-Sectional Averages as Proxies for the Com-
mon Factors

Rewriting Equations (1)–(3) as

ρ (L) yit = αi + x′
itβ + γ ′

ift + εit,

λ (L) zit = cz,i + �′
ift + vit,

where ρ(L) = 1 − ρL and λ(L) = Ik − ∑p
l=1 λlLl, and taking

CSA yields

ρ (L) ȳt = ᾱ + x̄′
tβ + γ ′ft + Op(N

−1/2), (7)

λ (L) z̄t = c̄z + �′ft + Op(N
−1/2), (8)

with the affix notation on ȳt used to denote the CSA ȳt =
1
N

∑N
i=1 yit and similarly for all other series. Under Assumption

4 that C has full column rank, we can solve for ft to obtain

ft = (
C′C

)−1 C′
([

ρ(L) −(β∗)′
0 λ (L)

] [
ȳt
z̄t

]
−

[
ᾱ

c̄z

])
+ Op

(
1√
N

)
, (9)

with β∗ = [β ′, 0′
kg×1]′. Equation (9) shows that as N → ∞

the factors can be approximated by the CSA of yit and zit as
well as a finite number of their lags determined by the orders
of the polynomials ρ(L) and λ(L). This result differs from
the heterogeneous dynamic model considered by Chudik and
Pesaran (2015) who find that an infinite number of lags is
required in this case.

The intuition behind the above result is that in the presence
of dynamics the lags are needed to separate the contempora-
neous factor from its past realizations within the CSA. This
is necessary to approximate ft in function of observables as
N → ∞. To see this, consider the simple case of models (1)
and (2) with one factor and β = 0. The CSA of yit can then be
written as

ȳt = ᾱ + γ̄ ft + ε̄t + ρ

(
ᾱ

1 − ρ
+ γ̄ f+t−1 + ε̄+

t−1

)
, (10)

= ᾱ

1 − ρ
+ γ

[
ft + ρf+t−1

] + Op(N
−1/2), (11)

so that it is not only a function of the factors at time t, a constant
and an Op(N−1/2) term, but also of the past realizations of the
factors through f+t−1 = ∑∞

l=0 ρlft−l−1. Solving the contempo-
raneous factor ft from (11) would therefore still depend on the
unobservable f+t−1 so a proxy cannot be constructed from it.
However, noting that the term inside the brackets of (10) equals
ȳt−1, subtracting ρȳt−1 from (10) yields

ȳt − ρȳt−1 = ᾱ + γ ft + Op(N
−1/2), (12)

so that the past factor realizations are cut out and this equation
can be solved for ft as a function of observables, estimable
parameters and an Op(N−1/2) term. The combination of observ-
ables can then be used to project out the factors at time t as
N → ∞. A similar reasoning holds for zit as well. This clearly
illustrates the difference with the static case in Pesaran (2006),
where the absence of dynamics implies that ρ = 0 so that the
CSA do not contain the past factors and, hence, lags are not
required to separate them from ft.
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Remark 1. The requirement that we have to know the
order of λ(L) may be unfortunate in practice as p is typically
unknown (and may also differ over variables included in zit).
Decisions on p imply assumptions about the autoregressive
order of zit that may be hard to verify since the observed
persistence in zit may stem from serially correlated factors ft

or from λ(L) �= Ik. However, as more time series observations
become available the factor approximation should not suffer
from including too many lags p∗ > p of z̄t. Hence, in practice
it may be convenient to choose p∗ = T1/3� as in Chudik
and Pesaran (2015), with x� denoting the integer part of x, to
make the CCEP estimator robust to misspecification of p while
ensuring that the number of lags does not increase too fast in T
and sufficient degrees of freedom are available.

3.2. Dynamic CCEP Estimator

In light of the discussion in the previous section, construct
the following T × c matrix Q = [ιT , ȳ, ȳ−1, Z̄, . . . , Z̄−p∗ ] and
augment the model in Equation (6) as

yi = wiδ + Qκ i + ei, (13)

where the CSA in Q serve to control for the common factors
absorbed in the error terms ei, and κ i are parameters to be
estimated along with the slope coefficients of interest δ =
[ρ, β ′]′. Assuming that T ≥ kw + c (estimability) and setting
pooling weights to N−1, the dynamic CCEP estimator for δ in
Equation (13) is

δ̂ =
(

N∑
i=1

w′
iMwi

)−1 N∑
i=1

w′
iMyi, (14)

where M = IT − H and H = Q(Q′Q)†Q′ is the projection on
Q.

The dynamic CCEP estimator in Equation (14) controls, as
N → ∞, for the unobserved factors provided that the rank
condition (Assumption 4) holds and the model is augmented
with a sufficient number (p∗ ≥ p) of lagged CSA. However,
despite controlling for the factors, the inclusion of the CSA
induces a new finite T bias term. The following theorem
provides an analytical expression of the asymptotic bias of the
dynamic CCEP estimator for N → ∞ and T fixed conditional
on the factors and CSA.

Theorem 1. Suppose that p∗ ≥ p and Assumptions 1–5 hold,
and let C be the σ -algebra generated by the common factors and
[ȳ, Z̄, . . . , ȳ−p∗ , Z̄−p∗ ]. The CCEP estimator in Equation (14) is
inconsistent as N → ∞ and T fixed with its asymptotic bias
conditional on C given by

plim
N→∞

δ̂ = m (δ) = δ − σ 2
ε

T
−1υ(ρ, H), (15)

with υ(ρ, H) = υ(ρ, H)q1, q1 = [1, 01×kx ]′, υ(ρ, H) =∑T−1
t=1 ρt−1 ∑T

s=t+1 hs,s−t, and hs,s−t is the element on row s

and column s − t of H.  = limN→∞ 1
NT

∑N
i=1 w′

iMwi is given
in (C-7) of the online supplement. Letting Sx = [0kx×1, Ikx ]′,
Equation (15) can be decomposed as

plim
N→∞

(ρ̂ − ρ) = − 1

T

σ 2
ε

σ 2
y̆−1

υ(ρ, H), (16)

plim
N→∞

(
β̂ − β

) = −ζ plim
N→∞

(ρ̂ − ρ), (17)

with σ 2
y̆−1

= plimN→∞
y̆′−1y̆−1

NT , ζ = (S′
xSx)

−1S′
xq1 and

where y̆−1 = Mx[y′
1,−1, . . . , y′

N,−1]′, Mx = M − X̆(X̆′X̆)−1X̆′,
X̆ = M[X′

1, . . . , X′
N]′, and M = IN ⊗ M.

Theorem 1 extends the results in Everaert and De Groote
(2016), who consider a model with one factor and no additional
covariates, to a model with multiple factors and exogenous
regressors. Also in this more general setting, the asymptotic
bias of the CCEP estimator is not caused by the factor structure
but it is induced by projecting the data on Q as this induces
weak endogeneity in the transformed lagged dependent variable
and hence inconsistency of the autoregressive parameter ρ̂ for
finite T , as shown in Equation (16). Concerning the coefficients
of the exogenous regressors, Equation (17) reveals that the
bias of β̂ is a fraction −ζ of the bias of ρ̂, with ζ being the
CCEP estimates (as N → ∞) when regressing yi,−1 on Xi.
As such, the direction of the distortion in β̂ is determined by
the correlation between yi,−1 and Xi given by ζ , but it is the
inconsistency of ρ̂ that creates bias for the entire coefficient
vector. The inconsistency in ρ̂ is therefore the principal driver
of the overall bias, and we study it in more detail in Section A.2
of the online supplement. The most important conclusions of
that analysis are:

• The asymptotic bias is expected to be negative for ρ > 0.
• The asymptotic bias is a stochastic variable because it

depends on the projection matrix H, which is a random
matrix even as N → ∞.

• The absolute value of the asymptotic bias is, ceteris paribus,
increasing in the persistence ρ and the number of CSA
(columns of Q), and decreasing in T and in the importance
of the factors when there is more than one factor.

The key practical implication of Theorem 1 is that there is
a trade-off associated with augmenting the model with the
CSA. On the one hand, to control for the unobserved common
factors, a sufficient number of CSA should be included such
that the rank condition is satisfied and p∗ > p. Simulation
evidence further suggests that even when the rank condition is
satisfied, using additional CSA improves factor approximation
in finite N samples (see Section 5). On the other hand, in
finite T settings, the augmentation generates a bias term that
increases in magnitude with the number of CSA. As such,
whereas adding CSA is beneficial to treat the common factor
problem, it can simultaneously be detrimental for the finite T
properties of the CCEP estimator. Our objective in the next
section is to resolve this trade-off by removing the bias induced
by projecting out the CSA.
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4. BIAS-CORRECTED DYNAMIC CCEP

In what follows we develop a bias-corrected CCEP estimator
based on the analytical bias expression for N → ∞ and T
fixed presented in Equation (15) of Theorem 1, and derive its
asymptotic distribution.

4.1. Bias Correction Procedure

The CCEPbc estimator δ̂bc can be obtained as the vector δ0
that satisfies

δ̂ − m̂(δ0) = 0kw×1, (18)

with m̂(·) the feasible version of the asymptotic bias expression
in Equation (15),

m̂(δ0) = δ0 − T−1σ̂ 2
ε (δ0)̂

−1
υ(ρ0, H), (19)

where  is replaced by its sample analog ̂ = 1
NT

∑N
i=1

w′
iMwi and the unknown variance σ 2

ε is substituted by the
function

σ̂ 2
ε (δ0) = 1

N(T − c)

N∑
i=1

‖M (yi − wiδ0)‖2 . (20)

The traditional estimator for σ 2
ε based on the uncorrected CCEP

error terms êi = yi − wîδ is inconsistent for finite T due to the
inconsistency of δ̂, but by constructing σ̂ 2

ε (·) as a function of the
parameters of interest, solving (18) implies that we use a bias-
adjusted estimator for σ 2

ε as well. In summary, the CCEPbc
estimator is

δ̂bc = arg min
δ0∈χ

1

2

∥∥̂δ − m̂(δ0)
∥∥2

, (21)

with χ ⊆ R
kw . This optimization problem is easily managed by

standard numerical solvers and requires very little additional
programming besides computing the CCEP estimates δ̂. The
solution δ̂bc is equivalent to the vector of parameters that
follows from inverting δ̂ = m̂(δ) so that we can alternatively
write the CCEPbc estimator as δ̂bc = m̂−1(̂δ). Notice how
Equation (21) implies that the bias adjustment can be seen
as a minimum distance estimator, or a GMM approach that
employs the bias-corrected orthogonality conditions in (18) to
estimate the population parameters. To make this point explicit,
straightforward manipulations in (18) give

δ̂ − m̂(δ0) = (δ − δ0)

+ ̂
−1

[
1

NT

N∑
i=1

w′
iM(Fγ i + εi) + bε(δ0)

]
= 0kw×1, (22)

with bε(δ0) = T−1σ̂ 2
ε (δ0)υ(ρ0, H). This shows that the

moment conditions underlying CCEPbc in Equation (21) are
identical to those of the CCEP estimator, except for the bε(δ0)

term which corrects for the finite T bias. In this sense, our
approach is similar in spirit to ideas presented in Chudik and
Pesaran (2017). Also note that Bun and Carree (2005) use a
similar approach to obtain a bias-corrected FE estimator in
dynamic panel data models without common factors.

Remark 2. The CCEPbc estimator outlined above is a
generally applicable method in the sense that it does not require
the number of factors to be known. In the single factor setting,
Equations (16) and (17) can be simplified to obtain more
efficient restricted bias corrections. We present two alternative
restricted CCEPbc estimators in Section A.3 of the online
supplement.

4.2. Asymptotic Properties and Inference

The CCEPbc estimator presented in Equation (21) builds on
the orthogonality conditions in Equation (22) to estimate the
population parameters of interest. We show in Theorem 3 of the
online supplement that these moment conditions are satisfied
as N → ∞ at δ0 = δ and that the CCEPbc estimator is thus
consistent as N → ∞ and T fixed

δ̂bc − δ −→p 0kw×1. (23)

As such, in dynamic models the proposed correction restores
the large N finite T consistency of the CCEP estimator estab-
lished by Pesaran (2006) in a static setting.

The finite T distribution of the CCEPbc estimator is gen-
erally intractable due to the presence of nuisance parameters,
unless one makes the very stringent assumption that m = 1 + k
(see, e.g., Karabiyik, Reese, and Westerlund 2017 for more
details). In the next theorem, we establish asymptotic normality
for the CCEPbc estimator in the general m ≤ 1 + k case letting
(N, T) → ∞.

Theorem 2. Let Assumptions 1–5 hold and suppose that
p∗ ≥ p and χ ⊆ R

kw is compact such that |ρ0| < 1 with δ ∈ χ .
Then, as (N, T) → ∞ it holds that δ̂bc −→p δ, and provided
T/N → 0

√
NT (̂δbc − δ)

d−→ N
(

0kw×1, ̇
−1

�̇
−1

)
, (24)

with ̇ and � defined in Equations (D-30) and (D-53) of the
online supplement, respectively.

Theorem 2 establishes that the CCEPbc estimator is asymp-
totically normally distributed as (N, T) → ∞ and that it
enables unbiased inference provided T/N → 0. This require-
ment on the relative growth rate of N and T stems from
estimating the factors with the CSA and it is identical to what
Pesaran (2006) and Karabiyik, Reese, and Westerlund (2017)
require for unbiased inference with CCEP in the static model.

The asymptotic variance in Equation (24) can consistently,
as (N, T) → ∞, be estimated by

�̂ = (�̂
′
�̂)−1�̂

′
�̂�̂(�̂

′
�̂)−1, (25)

where �̂ = Ja(̂δbc) and Ja(·) is the Jacobian presented in
Equation (A-2), and with �̂ = 1

NT

∑N
i=1 q̂îq′

i, q̂i = w′
iM̂ei +

σ̂ 2
ε (̂δbc)υ(ρ̂bc, H) and êi = yi − wîδbc.

In practice, in particular in settings when T is not large,
the bootstrap provides a convenient alternative to (25) for
estimating the finite sample variance of δ̂bc. To that end, we
follow Kapetanios (2008) and obtain bootstrap samples by
resampling whole cross-sectional units with replacement from
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the original dataset. In particular, let B0 = [a1, . . . , aN] be the
original dataset, with ai = [di,−p∗ , . . . , diT ]′ and dit = [yit, z′

it]′.
Bootstrap sample j = 1, . . . , J is generated by drawing N
indices with replacement from (1, . . . , N), and collecting the ai

corresponding to these indices in Bj. This resampling scheme
is valid as N → ∞ and preserves both the dynamics and the
assumed factor structure in the data. The distribution of δ̂bc is
then simulated by applying CCEPbc to each of the J bootstrap
datasets [B1, . . . ,BJ] to obtain the corresponding coefficient

vectors [̂δb
bc,1, . . . , δ̂

b
bc,J]. Inference can then be made using the

bootstrapped variance-covariance matrix

�̂b = lim
J→∞

1

J − 1

J∑
j=1

(̂
δ

b
bc,j − δ̄

b
bc

) (̂
δ

b
bc,j − δ̄

b
bc

)′
, (26)

with δ̄
b
bc = 1

J

∑J
j=1 δ̂

b
bc,j the average of the estimates over the J

samples.

Remark 3. Lemmas 14 and 15 in the online supplement
show that, in contrast to the CCEPbc estimator, the asymptotic
distribution of the uncorrected CCEP estimator in Equation (14)
features bias terms unless both N/T → 0 (due to the finite T
bias in Theorem 1) and T/N → 0 (due to estimation of the
factors). As this is clearly a contradiction, bias correction is
crucial for reliable inference with the CCEP approach despite
that the estimator is consistent as (N, T) → ∞ in the dynamic
model.

5. MONTE CARLO SIMULATION

In this section, we use Monte Carlo simulations to investi-
gate the small sample properties of our bias-corrected CCEP
estimator and compare its performance to the original CCEP
estimator and a number of alternative methods proposed in the
literature.

5.1. Design

We generate data for yit and zit according to the model in
Equations (1)–(3) assuming a single explanatory variable xit

(kx = 1) and one additional variable git (kg = 1) that has
no impact on yit but provides additional information about the
common factors. We set β = 1 − ρ to normalize the long-
run impact of xit to one and assume λ(L) = (1 − λL)I2 which
restricts the autoregressive order of xit and git to be at most
one (p = 1). This implies that the one period lagged CSA x̄t−1
should be added to the CCE orthogonalization matrix in settings
where λ �= 0 (and preferably also ḡt−1 when git is used as an
additional variable).

The m common factors are generated as

fjt = θ fj,t−1 + μjt,

with μjt ∼ N
(
0, (1 − θ2)/m

)
for every j = 1, . . . , m. The

reason for dividing the variance by m is to prevent the factors
from dominating the model as their number m rises. We will
conduct experiments with m = 1 and m = 2.

The fixed effects are generated as αi ∼ N
(
0, σ 2

α

)
and cz,i ∼

N
(
0, σ 2

c I2
)

and the idiosyncratic errors as εit ∼ N
(
0, 1 − ρ2

)

and vit ∼ N
(
0, (1 − λ2)I2

)
. The variance parameters σ 2

α and
σ 2

c are set such that the contributions of the fixed effects
to the variance of yit and zit equal that of their respective
idiosyncratic innovations (εit and vit). The factor loadings in the
data generating process (DGP) of yit, xit, and git are generated
as

Ci =
⎡⎣ γ ′

i
�x′

i
�

g′
i

⎤⎦=
⎡⎣γ1,i γ2,i

�x
1,i �x

2,i
�

g
1,i �

g
2,i

⎤⎦∼ IIDU

⎡⎣ [0, γu] [0, γu − 3/5]
[0, 1] [0, 0.2]

[−0.6, 0] [−1.4, 0]

⎤⎦,

when m = 2 or with the second column set to zero in case
m = 1. The upper bound γu is calibrated such that the relative
importance of the factors and the idiosyncratic errors in the
total variance of yit, denoted RI, is either 1 or 3. RI = 1
corresponds to cases where the factors have a normal influence
on yit whereas RI = 3 is a scenario where the factors are
very influential. The specific values for the upper and lower
bounds of the uniform distributions for the loadings in Ci are
sufficiently different to ensure that the rank condition is satis-
fied and that the full set of CSA contains enough independent
information about the common factors.

Experiments are conducted for combinations of the fol-
lowing parameter values: ρ ∈ {0.4; 0.8}, RI ∈ {1; 3}, and
λ ∈ {0; 0.6}. The autoregressive parameter θ in the DGP of
the factors is set to 0.6 in all experiments to account for the
fact that factors are often persistent in practice. We consider
ρ = 0.8, λ = 0, m = 1, and RI = 1 our baseline
scenario. This is a challenging setting for our bias-correction
procedure as the large autoregressive parameter ρ will result
in a considerable bias for the CCEP estimator. We generate
datasets with N = (25, 50, 100, 500, 1000, 5000) and T =
(10, 15, 20, 30, 50, 100). As such, next to a typical macro panel
dimension (N small and T small to moderate) we also consider
a more micro panel perspective (N large and T small). To
conserve space we will report only a few relevant combinations
of N and T in each table.

We initialize yi,−50, zi,−50, and fj,−50 at zero and discard
the first 50 observations to neutralize initial conditions. We
generate 2000 datasets for each combination of N and T and
calculate performance measures including median bias, root
mean squared error (RMSE), and actual size. Although ana-
lytical variance expressions are available for some estimators,
to make fair comparisons we obtain standard errors using a
bootstrap approach for each of the considered estimators. Fol-
lowing Kapetanios (2008), we resample cross-sectional units
as a whole as described in Section 4.2. The advantage of this
scheme is that it preserves both the persistence and the cross-
sectional dependence in the data and is valid even when T is
small. We calculate actual test size using bootstrap standard
errors based on 150 bootstrap samples. The reported actual
size is the false rejection probability of a t-test at the 5%
nominal significance level. Results for the CCEPbc estimator
with standard errors estimated using (25) are available upon
request.

We summarize and discuss our main findings below. We start
with some baseline results for estimating ρ and β using various
estimators and sample sizes. Next, we focus on a number of
interesting aspects with respect to estimating ρ by considering
changes to the baseline design and alternative setups for the
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bias corrections. Since differences between estimators are more
pronounced for large N we mostly report tables for N = 500
in the main text. Small N versions (N = 25) are provided in
Section E of the online supplement, while in Section F we fix
T = 10 and plot the behavior of CCEPbc as N grows very large
to assess its behavior as N → ∞.

5.2. Baseline Results

We start our discussion with a comparison of the per-
formance of our CCEPbc estimator to various alternative
estimators in the baseline scenario where ρ = 0.8, λ = 0,
m = 1, and RI = 1. The CCEP estimator is included
as the benchmark estimator. Inspired by Chudik and Pesaran
(2015), we also consider two alternative bias-corrected CCEP
estimators as direct comparisons to our approach, that is, the
recursive mean adjustment (denoted CCEPrm) proposed by
So and Shin (1999) and the split-panel jackknife correction
(denoted CCEPjk) of Dhaene and Jochmans (2015). We find
that CCEPrm provides no improvement over CCEP in any
scenario so we exclude it from the tables. In our baseline
scenario, the CCEP estimator and the various bias corrections
thereof make no use of the additional git variable or lags of
the exogenous variables (which is in line with λ = 0) in
the orthogonalization matrix. Finally, we consider Moon and
Weidner’s (2017) bias-corrected version of the least squares
with interactive effects estimator of Bai (2009). This estimator
(denoted FLSbc) is implemented selecting the correct number
of factors (2 in our baseline scenario due to the presence of
fixed effects) and a bandwidth for the bias correction equal to 4
(which is the optimal choice based on the simulation results of
Moon and Weidner for high persistence settings).

The results in Table 1 show that the original CCEP estimator
has a severe negative small T bias for ρ of which a fraction is
carried over to the estimates for β. When T = 10, the bias
for ρ̂ amounts to −0.4, while the more moderate time series
dimensions of T = 20 and T = 30 still result in biases of
−0.18 and −0.11, respectively. Even for T = 50, the bias
of −0.06 should not be neglected as this implies seriously
distorted inference. Figure 1 further visualizes this in a setting
with N = 500 and shows that even for T = 100 the CCEP
estimator will suffer from some bias and hence unreliable
inference. Although the CCE approach relies on N → ∞, the
results show that biases are more or less stable over alternative
values of N. Experiments for ρ = 0.4 (see Table E-1 in the
online supplement) confirm that the absolute value of the bias
of the CCEP estimator is increasing in ρ.

The main takeaway from Table 1 is that our bias-corrected
CCEP estimator is (nearly) unbiased in all of the considered
sample sizes and hence offers a strong improvement over the
original CCEP estimator. Interestingly, CCEPbc also provides a
considerable variance reduction whenever N > 25. This is due
to the fact that the bias of the CCEP estimator is stochastic, as
discussed in Theorem 1, which contributes to its variance. The
combination of bias removal and variance reduction implies
that the RMSE of the CCEPbc estimator is always much lower
than that of the CCEP estimator, even for moderately large T .
The behavior of CCEPbc for N = 500 and varying T is also
visualized in Figure 1, showing that in contrast to the CCEP

estimator our corrected version is correctly centered. In Figure
F-1 of the online supplement, we set T = 10 and let the cross-
section size N grow large to illustrate the behavior of CCEPbc
as N → ∞ and T fixed. The plot reveals that the corrected
estimator is indeed consistent as N → ∞, which is clearly
not the case for the uncorrected estimator. CCEPbc also offers
substantial improvements regarding inference. In contrast to the
CCEP, its actual size is always close to the nominal 5% level.
As all of these findings hold for each of the considered sample
sizes, the CCEPbc is not only an appropriate small T estimator
but should also be preferred over CCEP for larger values of T .
Moreover, Table 1 shows that the performance of the CCEPbc
estimator is not too sensitive to the size of N. As such, it is even
applicable in a sample as small as N = 25 and T = 10.

The alternative bias-adjusted estimators offer some allevia-
tion of the bias but appear less effective compared to CCEPbc.
The FLSbc still has a considerable negative small T bias for ρ,
while the CCEPjk is able to remove a lot of bias but at the cost
of a much larger variance. Accordingly, these alternatives have
a much larger RMSE compared to CCEPbc, which should be
preferred even for larger T due the more effective correction.
Since the bias for β̂ is a fraction of that for ρ̂, also β̂ is not
correctly centered for the alternative estimators and the test
size for this coefficient is generally distorted, whereas in the
case of CCEPbc it is at the desired 5% level. Similar results
are obtained in the low persistence scenario (see Table E-1 in
the online supplement), but differences between estimators are
smaller since there is less bias to correct for.

5.3. Number of Factors and Their Strength

In this section, we analyze the performance of CCEPbc
when varying the number of factors (m is 1 and 2) and their
strength (RI is 1 and 3). Table 2 reports simulation results for
N = 500. Small N results are provided in Table E-2 of the
online supplement. Next to the CCEP estimator and its bias
corrections that do not use the CSA of git when approximating
the factors, we now also include CCEP variants that do use git
and denote them by adding the (+g) suffix.

The results in Table 2 show that the performance of CCEP
and of its bias corrections is not very sensitive to the number
of factors or their strength. Only when we drive up the factor
strength in the presence of two factors (see the lower right panel
of Table 2), we note a slight increase in the bias of our CCEPbc
approach. Table 3 further summarizes the behavior of CCEPbc
for various sizes of N and T with two strong factors. The top
panel reveals that even though the small T bias clearly decreases
as N grows, it results in distorted inference unless N is much
larger than T . The explanation for this finding is that even
though the rank condition is exactly satisfied (2 observables for
2 factors) the information in ȳt and x̄t may not be sufficiently
distinct to effectively remove two strong factors in finite N
settings. In this case, CCEP will have an additional finite N bias
term which is not taken into account by our CCEPbc estimator.

Although the remaining bias in the presence of two strong
factors disappears as N increases further (see Figure F-4 in
the online supplement), we find that the inclusion of ḡt is
a highly effective solution in finite samples. The additional
information on the factors that is added through including ḡt
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Table 1. Monte Carlo results for ρ and β: baseline design

Results for ρ̂

Bias RMSE Size

Estimator (N, T) 10 20 30 50 10 20 30 50 10 20 30 50

CCEP 25 −0.385 −0.176 −0.109 −0.061 0.417 0.188 0.118 0.067 0.90 0.92 0.90 0.81
100 −0.391 −0.176 −0.112 −0.062 0.417 0.185 0.115 0.064 1.00 1.00 1.00 1.00
500 −0.397 −0.183 −0.113 −0.062 0.421 0.189 0.116 0.063 1.00 1.00 1.00 1.00

5000 −0.396 −0.179 −0.111 −0.062 0.417 0.186 0.114 0.063 1.00 1.00 1.00 1.00

CCEPbc 25 −0.004 0.000 0.000 0.000 0.151 0.064 0.038 0.022 0.06 0.08 0.06 0.06
100 −0.003 0.001 0.000 −0.001 0.100 0.031 0.017 0.011 0.08 0.04 0.04 0.06
500 0.000 0.001 0.000 0.000 0.057 0.014 0.008 0.005 0.06 0.04 0.05 0.04

5000 0.000 0.000 0.000 0.000 0.015 0.004 0.002 0.002 0.02 0.05 0.05 0.05

CCEPjk 25 0.027 0.037 0.028 0.014 0.358 0.124 0.074 0.037 0.40 0.31 0.30 0.25
100 0.044 0.045 0.032 0.015 0.325 0.110 0.063 0.028 0.51 0.53 0.55 0.46
500 0.031 0.036 0.031 0.016 0.315 0.108 0.058 0.025 0.63 0.72 0.78 0.73

5000 0.045 0.040 0.035 0.016 0.312 0.105 0.059 0.024 0.66 0.84 0.92 0.90

FLSbc 25 −0.261 −0.067 −0.029 −0.012 0.276 0.089 0.054 0.033 0.37 0.04 0.04 0.04
100 −0.271 −0.076 −0.038 −0.019 0.271 0.084 0.043 0.022 0.97 0.72 0.49 0.27
500 −0.280 −0.079 −0.038 −0.018 0.270 0.083 0.041 0.020 0.99 0.99 1.00 0.98

5000 −0.283 −0.077 −0.037 −0.018 0.270 0.081 0.040 0.019 1.00 1.00 1.00 1.00

Results for β̂

CCEP 25 −0.033 −0.011 −0.006 −0.002 0.058 0.033 0.024 0.018 0.09 0.07 0.06 0.06
100 −0.033 −0.010 −0.005 −0.002 0.042 0.018 0.013 0.009 0.29 0.11 0.07 0.06
500 −0.033 −0.011 −0.005 −0.002 0.038 0.014 0.008 0.004 0.73 0.40 0.18 0.09

5000 −0.033 −0.010 −0.005 −0.002 0.036 0.012 0.005 0.002 0.97 0.94 0.76 0.33

CCEPbc 25 −0.001 0.000 −0.001 0.000 0.052 0.031 0.024 0.018 0.04 0.05 0.07 0.06
100 0.001 0.000 0.000 0.000 0.026 0.015 0.012 0.009 0.05 0.05 0.05 0.06
500 0.000 0.000 0.000 0.000 0.012 0.007 0.005 0.004 0.04 0.05 0.05 0.05

5000 0.000 0.000 0.000 0.000 0.004 0.002 0.002 0.001 0.04 0.06 0.04 0.06

CCEPjk 25 0.014 0.012 0.006 0.003 0.097 0.041 0.029 0.020 0.25 0.13 0.11 0.08
100 0.018 0.013 0.008 0.003 0.056 0.025 0.016 0.011 0.33 0.22 0.14 0.10
500 0.019 0.011 0.008 0.003 0.044 0.017 0.011 0.006 0.52 0.43 0.35 0.17

5000 0.019 0.012 0.008 0.004 0.041 0.016 0.009 0.004 0.69 0.81 0.84 0.70

FLSbc 25 −0.016 0.001 0.000 0.001 0.051 0.036 0.029 0.022 0.04 0.03 0.03 0.02
100 −0.021 −0.003 −0.002 0.000 0.032 0.016 0.012 0.009 0.18 0.05 0.03 0.03
500 −0.023 −0.004 −0.002 −0.001 0.027 0.009 0.006 0.004 0.62 0.15 0.08 0.06

5000 −0.022 −0.004 −0.002 −0.001 0.025 0.006 0.003 0.001 0.89 0.54 0.25 0.09

NOTES: (i) Reported are simulation results for estimating ρ and β in the baseline case (ρ = 0.8, β = 0.2, λ = 0, m = 1). The factor has a contribution to the variance of the dependent
variable that is equal to that of the idiosyncratic errors (RI = 1). (ii) CCEPbc is the bias-corrected CCEP estimator. CCEPjk is the jackknife CCEP correction and FLSbc is the bias-
adjusted least squares with interactive effects estimator supplied with the correct number of factors (m+1). CCEP estimators do not use ḡt and include no lags of x̄t . (iii) The size column
reports actual test size for t-tests based on bootstrap standard errors estimated with 150 bootstrap samples.

yields a notable improvement in the finite N performance of the
CCEPbc approach in the lower right panel of Table 2. This is
further demonstrated in the lower panel of Table 3 which shows
that the CCEPbc(+g) estimator suffers less bias compared to
CCEPbc and has an adequate actual size for all combinations
of N and T .

The above discussion shows that additional covariates can
have a beneficial effect on CCE-type estimators when factors
are very influential in the model, even in cases where the
rank condition is already satisfied. However, comparing the

bias of the CCEP estimator to that of CCEP(+g) in Table 2
also confirms our theoretical finding that adding more CSA to
the orthogonalization matrix increases the bias of the uncor-
rected CCEP estimator. Fortunately, the CCEPbc adjustment
is effective in removing this bias. For less influential factors
(RI = 1) the only downside is a relative loss in efficiency
compared to not using git. Finally, comparing CCEP(+g) over
different factor strengths confirms our claim (see discussion
in Theorem 1) that more influential factors (i.e., increasing RI
from 1 to 3) do not change the bias in the one factor case (upper
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Figure 1. Monte Carlo results for ρ: comparison of CCEP and CCEPbc over T for N = 500. NOTES: Reported are simulation results for
estimating ρ in the baseline case when N = 500 (see notes in Table 1). Dotted red lines indicate the population parameter value (ρ = 0.8). The
boxplot “whiskers” extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box.

Table 2. Monte Carlo results for ρ: number and strength of factors (N = 500)

Bias RMSE Size Bias RMSE Size Bias RMSE Size Bias RMSE Size Bias RMSE Size Bias RMSE Size

One factor

RI = 1 RI = 3

T = 10 T = 20 T = 30 T = 10 T = 20 T = 30

CCEP −0.397 0.421 1.00 −0.183 0.189 1.00 −0.113 0.116 1.00 −0.399 0.424 1.00 −0.182 0.189 1.00 −0.112 0.116 1.00
CCEPbc 0.000 0.057 0.06 0.001 0.014 0.04 0.000 0.008 0.05 0.001 0.055 0.06 0.000 0.014 0.04 0.000 0.008 0.04
CCEPjk 0.031 0.315 0.63 0.036 0.108 0.72 0.031 0.058 0.78 0.037 0.312 0.63 0.040 0.108 0.73 0.031 0.059 0.79
CCEP(+g) −0.406 0.431 1.00 −0.183 0.191 1.00 −0.113 0.116 1.00 −0.408 0.433 1.00 −0.183 0.190 1.00 −0.112 0.116 1.00
CCEPbc(+g) 0.000 0.066 0.06 0.000 0.014 0.02 0.000 0.008 0.04 0.000 0.064 0.06 0.000 0.014 0.03 0.000 0.008 0.04
CCEPjk(+g) – – – 0.041 0.116 0.41 0.033 0.060 0.53 – – – 0.044 0.116 0.42 0.033 0.061 0.56
FLSbc −0.280 0.270 0.99 −0.079 0.083 0.99 −0.038 0.041 1.00 −0.259 0.248 0.99 −0.064 0.072 1.00 −0.035 0.038 1.00

Two factors

RI = 1 RI = 3

T = 10 T = 20 T = 30 T = 10 T = 20 T = 30

CCEP −0.408 0.431 1.00 −0.190 0.197 1.00 −0.117 0.120 1.00 −0.402 0.425 1.00 −0.181 0.188 1.00 −0.109 0.112 1.00
CCEPbc 0.000 0.058 0.06 0.000 0.014 0.04 0.000 0.008 0.04 0.006 0.070 0.10 0.006 0.020 0.08 0.005 0.012 0.12
CCEPjk 0.035 0.311 0.62 0.034 0.107 0.72 0.031 0.059 0.79 0.034 0.316 0.64 0.045 0.116 0.73 0.037 0.063 0.76
CCEP(+g) −0.447 0.471 1.00 −0.209 0.216 1.00 −0.128 0.131 1.00 −0.416 0.443 1.00 −0.190 0.196 1.00 −0.115 0.118 1.00
CCEPbc(+g) 0.000 0.070 0.08 0.000 0.016 0.03 0.000 0.008 0.05 0.000 0.067 0.06 0.001 0.014 0.04 0.000 0.008 0.05
CCEPjk(+g) – – – 0.036 0.122 0.50 0.034 0.067 0.60 – – – 0.049 0.124 0.52 0.035 0.064 0.60
FLSbc −0.532 0.525 1.00 −0.204 0.199 1.00 −0.097 0.098 1.00 −0.518 0.504 1.00 −0.170 0.170 1.00 −0.066 0.071 0.98

NOTES: (i) Data for this experiment are generated with ρ = 0.8, β = 0.2, and λ = 0. RI = (1, 3) represents factors that have a contribution to the total variance of the dependent
variable that is equal to, or, respectively, 3 times that of the idiosyncratic errors. We display results for estimating ρ with N = 500. (ii) CCEP is the pooled CCE estimator and CCEPbc its
bias-corrected version. CCEPjk represents the jackknife corrected CCEP and FLSbc is the bias-adjusted least squares with interactive effects estimator supplied with the correct number
of factors (m + 1). CCEP-type estimators with suffix “(+g)” indicate that ḡt was included in the orthogonalization matrix. No lags of x̄t and ḡt are employed. (iii) The reported actual test
size (size) is for a t-test using bootstrap standard errors based on 150 samples.

panel) but it will reduce the bias when more than one factor is
present (lower panel).

5.4. Dynamics in zit

In this section, we allow for dynamics in zit (setting λ =
0.6) to analyze the importance of including lagged CSA to

adequately capture the common factors. Table 4 reports the
main results in a setting where factors are strong (RI = 3)
and N = 500. Results for N = 25 are reported in Table E-3
of the online supplement. We let CCEP and CCEPbc with
suffix notation p1 denote the estimators that are correctly
specified with one lag of Z̄ = [X̄, Ḡ] added to the orthog-
onal projection matrix M. The suffix notation pT is used
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Table 3. Monte Carlo results for ρ: CCEPbc estimators with two highly influential factors

Bias Size

(N, T) 10 20 30 50 100 10 20 30 50 100

CCEPbc
25 0.014 0.019 0.017 0.017 0.016 0.08 0.12 0.09 0.16 0.27

100 0.012 0.013 0.012 0.012 0.011 0.13 0.10 0.14 0.24 0.42
500 0.006 0.006 0.005 0.005 0.004 0.10 0.08 0.12 0.17 0.28

5000 0.001 0.001 0.001 0.001 0.001 0.04 0.06 0.06 0.06 0.08
CCEPbc(+g)

25 0.006 0.008 0.006 0.006 0.006 0.05 0.08 0.05 0.06 0.09
100 0.004 0.003 0.002 0.002 0.002 0.07 0.04 0.05 0.06 0.06
500 0.000 0.001 0.000 0.001 0.000 0.06 0.04 0.05 0.05 0.05

5000 0.000 0.000 0.000 0.000 0.000 0.02 0.05 0.05 0.05 0.05

NOTES: (i) Reported are simulation results for estimation and inference on the ρ coefficient. Data for this experiment are generated with ρ = 0.8, β = 0.2, m = 2, and λ = 0. Factors
have a contribution to the total variance of the dependent variable that is 3 times that of the idiosyncratic errors (RI = 3). (ii) CCEPbc is the unrestricted corrected CCEP estimator. The
“(+g)” indicates that ḡt was included in the orthogonalization matrix. No lags of x̄t and ḡt are used. (iii) The test size (size) is for a t-test using bootstrap standard errors based on 150
samples.

Table 4. Monte Carlo results for ρ: dynamics in zit with strong factors (N = 500)

Bias RMSE Size Bias RMSE Size Bias RMSE Size Bias RMSE Size

One factor

T = 10 T = 20 T = 30 T = 50

CCEP p0(+g) −0.600 0.610 0.99 −0.253 0.261 1.00 −0.146 0.150 1.00 −0.076 0.078 1.00
CCEP p1(+g) −0.685 0.713 0.95 −0.271 0.280 1.00 −0.152 0.157 1.00 −0.078 0.079 1.00
CCEP pT (+g) – – – −0.336 0.349 0.99 −0.203 0.210 1.00 −0.091 0.093 1.00
CCEPbc p0(+g) 0.000 0.090 0.05 0.000 0.017 0.03 −0.001 0.009 0.04 0.000 0.005 0.04
CCEPbc p1(+g) −0.001 0.140 0.03 0.001 0.020 0.02 0.000 0.009 0.03 0.000 0.005 0.04
CCEPbc pT (+g) – – – 0.001 0.029 0.02 −0.001 0.013 0.03 0.000 0.006 0.03
CCEPjk p1(+g) – – – 0.140 0.227 0.27 0.088 0.124 0.43 0.039 0.050 0.58
FLSbc −0.269 0.257 0.98 −0.058 0.065 0.99 −0.029 0.032 0.99 −0.014 0.015 0.95

Two factors

T = 10 T = 20 T = 30 T = 50

CCEP p0(+g) −0.655 0.661 1.00 −0.290 0.296 1.00 −0.170 0.174 1.00 −0.091 0.092 1.00
CCEP p1(+g) −0.779 0.794 0.99 −0.320 0.328 1.00 −0.179 0.183 1.00 −0.089 0.090 1.00
CCEP pT (+g) – – – −0.400 0.409 1.00 −0.246 0.251 1.00 −0.105 0.107 1.00
CCEPbc p0(+g) −0.034 0.096 0.13 −0.018 0.028 0.24 −0.013 0.017 0.35 −0.009 0.011 0.45
CCEPbc p1(+g) 0.007 0.155 0.06 0.000 0.021 0.03 −0.001 0.010 0.04 0.000 0.005 0.05
CCEPbc pT (+g) – – – 0.001 0.033 0.03 −0.001 0.014 0.04 0.000 0.006 0.05
CCEPjk p1(+g) – – – 0.134 0.233 0.48 0.106 0.146 0.71 0.050 0.062 0.81
FLSbc −0.528 0.519 1.00 −0.174 0.172 1.00 −0.069 0.073 0.99 −0.021 0.023 0.97

NOTES: (i) Reported are simulation results for estimating the ρ coefficient. Data for this experiment are generated with ρ = 0.8, β = 0.2, and λ = 0.6. The contribution of the factors to
the total variance of the dependent variable is 3 times that of the idiosyncratic errors (RI = 3). We display results for estimating ρ with N = 500. (ii) CCEP is the pooled CCE estimator
and CCEPbc its unrestricted bias-correction. CCEPjk represents the jacknife corrected CCEP and FLSbc is the bias-corrected least squares with interactive effects estimator supplied
with the correct number of factors (m + 1). All CCEP estimators additionally include ḡt to project out the factors. CCEP estimators with a p0, p1, or pT suffix, respectively, include no,
one or T1/3� lags of x̄t and ḡt in the orthogonalization matrix. (iii) The reported test size (size) is for a t-test using bootstrap standard errors based on 150 samples.

to indicate the inclusion of pT = T1/3� lags while p0
denotes the misspecified variant without lags of Z̄. We report
results for CCEP-type estimators that add the CSA of git

to avoid that the results are driven by using an insufficient
number of covariates to proxy for the common factors. The
correctly specified FLSbc and jackknife correction are included
as alternative estimators. Note that some estimators cannot
be implemented when T = 10 due to insufficient degrees

of freedom (because of the larger number of CSA used for
orthogonalization).

The simulation results for the misspecified CCEPbc p0
estimator reveal that it performs well when m = 1 but that
it is not correctly centered when m = 2, despite the use
of ḡt. Especially when T is large, the bias that remains in
the latter case results in large size distortions. This suggests
that the lag of ȳt holds enough information to deal with the
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unobserved components in the single factor case but that it is
not sufficient to control for multiple strong factors without lags
of x̄t (and ḡt). The correctly specified CCEPbc p1 estimator
instead performs much better, with an adequate size for all
values of T . This confirms that the approximation of the factors
requires the number of lagged CSA to be equal to the AR lag
order (p) of the exogenous variables. When p is unknown, we
have suggested to follow the approach of Chudik and Pesaran
(2015) and specify the number of lags as p∗ = T1/3� to let
them grow with T as a precaution against misspecification.
As this implies orthogonalization on a large number of CSA,
the resulting bias of the uncorrected CCEP pT estimator is
very large. CCEPbc pT is however highly effective in removing
the distortions and has an adequate size. The price paid for
this robustness is that the larger number of CSA translates
in a substantially higher variance compared to the correctly
specified CCEPbc p1. As expected, this difference disappears
as T grows. Results for small N (see Table E-3 in the online
supplement) are highly similar (with marginally larger biases)
but whenever bias remains it has a much smaller impact on
inference.

6. TEMPERATURE SHOCKS AND ECONOMIC
GROWTH

In this section, we apply our bias-corrected CCEP estimator
to identify the dynamic effects of temperature shocks on aggre-
gate output growth. In line with the recent literature (see, e.g.,
Dell, Jones, and Olken 2012; Colacito, Hoffmann, and Phan
2018) we consider the benchmark dynamic model

git = αi + ρgi,t−1 + β1Tit + β2Ti,t−1 + uit, (27)

where git is per-capita real output growth and Tit is temperature.
The lagged dependent variable gi,t−1 is included to capture
output growth persistence, while lagged temperature Ti,t−1 is
added to discriminate between permanent and transitory output
effects. The contemporaneous impact of a transitory 1◦C rise in
temperature on output growth is measured by β1. If β2 = −β1,
the impact on output growth is reversed in the next period (or
periods if ρ > 0) such that the level of output (eventually)
bounces back, that is, the cumulative growth effect (β1 +
β2)/(1 − ρ) = 0. There is no (complete) reversal if β2 �= −β1,
which implies that the level of output is permanently affected
by a transitory temperature shock. Typically no additional
variables are included because most economic and political
variables are potentially affected by weather variables, such
that including them as controls implies that the estimates do
not capture all relevant channels through which weather affects
the economy.

The strategy in the recent climate-economy literature (see
Dell, Jones, and Olken 2014 for an overview) is to exploit
random variation in weather events over time within countries
to identify its causal effects. Country fixed effects αi are
included to isolate weather effects from time-invariant char-
acteristics, while time fixed effects (possibly interacted with
region dummies) are added to neutralize common shocks. In
panels with a relatively short time span, the latter avoids that the
estimates pick up spurious correlation between global trends

in weather and growth. However, time fixed effects impose a
homogenous reaction (within regions) to common shocks. We
allow for a more general heterogeneous response by letting uit

take the multifactor structure specified in Equation (2).
Data are taken from Dell, Jones, and Olken (2012), who have

collected yearly output growth and annual average temperatures
for an unbalanced panel of 125 countries over the period 1961–
2003. We follow their approach of allowing the temperature
effects to be different for “rich” and “poor” countries (defined
as having above, respectively, below-median PPP-adjusted per
capita GDP). We further split the time dimension into two
subperiods since weather effects may have become either larger
(due to intensification) or smaller (due to adaptation) in recent
years (Dell, Jones, and Olken 2014). This results in a balanced
sample of 93 countries over the period 1962–1982 and 118
countries over the period 1983–2003. As this makes the time
series dimension relatively short (T = 21), at least much
smaller than N, this is the ideal setting to illustrate our CCEPbc
estimator.

Estimation results are presented in Table 5. Beginning with
the left panel for the first part of the sample, the FE estimates in
column (1) confirm the finding of Dell, Jones, and Olken (2012)
that temperature shocks have a significantly negative effect
on output growth only in poor countries, where a transitory
1◦C rise in temperature reduces output growth in the same
year by about 2 percentage points. Moreover, output does not
significantly bounce back in the year after the shock, resulting
in a 1.67% permanent decrease in output. The CCEP estimates
in column (2) show a highly similar contemporaneous impact,
but the coefficient on Ti,t−1 increases substantially, even to the
extent that temperature shocks only have a temporary impact
on output. The bounce-back effect is, however, only significant
at the 10% level of significance. Theorem 1 implies that the
CCEP estimates of ρ and β2 are expected to be downward
biased, while β1 should be unbiased. This is because gi,t−1 is
not correlated with future temperature shocks (which show no
significant persistence) and negatively correlated with current
shocks, such that the CCEP estimates ζ of gi,t−1 on Tit and
Ti,t−1 in Equation (17) are expected to show a zero value for Tit

and a negative value for Ti,t−1. The CCEPbc estimation results
reported in column (3) indeed show an upward adjustment of
the coefficients on gi,t−1 and Ti,t−1. In particular, the coefficient
on Ti,t−1 turns significant at the 5% level of significance,
reinforcing the finding that temperature shocks only have a
transitory impact on output.

Turning to the results for the second part of the sample
reported in columns (4)–(6), temperature shocks again only
have a negative impact in poor countries, but this now turns out
to be more moderate. The contemporaneous impact decreases
from roughly −2 to around −1.2, suggesting that there may
be some adaptation in more recent years. Note that the FE
estimates now reveal a significant bounce-back effect while
this is not the case for the CCEP and CCEPbc estimators.
However, the three estimators agree that there is no significant
permanent impact of temperature shocks on output. Concerning
our bias-correction method, it is interesting to note that the
CCEP estimate for ρ reported in column (5) is only 0.07 and not
significant, while its bias-corrected estimate in column (6) is
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Table 5. Temperature shocks and economic growth

N = 93, 1962–1982 N = 118, 1983–2003

FE CCEP CCEPbc FE CCEP CCEPbc
(1) (2) (3) (4) (5) (6)

gi,t−1 0.17 0.15 0.24 0.18 0.07 0.22
(0.07)∗∗ (0.08)∗ (0.08)∗∗∗ (0.08)∗∗ (0.06) (0.07)∗∗∗

Rich countries
Tit 0.17 0.47 0.48 0.13 0.47 0.44

(0.45) (0.53) (0.52) (0.20) (0.39) (0.37)

Ti,t−1 −0.30 −0.35 −0.39 0.44 0.09 0.08
(0.33) (0.55) (0.54) (0.22)∗∗ (0.34) (0.32)

Poor countries
Tit −2.08 −1.94 −1.93 −1.26 −1.11 −1.24

(0.57)∗∗∗ (0.79)∗∗ (0.80)∗∗ (0.45)∗∗∗ (0.66)∗ (0.68)∗
Ti,t−1 0.69 1.76 1.84 0.83 0.30 0.57

(0.69) (0.91)∗ (0.92)∗∗ (0.33)∗∗ (0.66) (0.68)

Implied cumulative growth effects (β1 + β2)/(1 − ρ)

Rich countries −0.16 0.14 0.12 0.70 0.60 0.66
(0.83) (0.98) (1.05) (0.37)∗ (0.64) (0.68)

Poor countries −1.67 −0.21 −0.12 −0.53 −0.87 −0.87
(0.75)∗∗ (1.17) (1.27) (0.44) (0.85) (0.94)

NOTES: The dependent variable git is the growth rate of per-capita real GDP, Tit is the average annual temperature. Both subsamples include a balanced sample of countries. The FE
specifications include country, region × year, and poor × year fixed effects (see Dell, Jones, and Olken 2012 for region compositions). Rich and poor are defined as countries having
above, respectively, below-median PPP-adjusted per capita GDP in the first year of the sample. The CCEP estimators use the contemporaneous and one-year lagged CSA of git , rich ×
Tit , and poor × Tit . Bootstrapped standard deviations are reported in brackets. ***/**/* denote significance at the 1%/5%/10% level, respectively.

0.22 and highly significant. Moreover, the coefficient on Ti,t−1

roughly doubles when bias-correcting the CCEP estimator, but
given the relatively large standard error it is not significant.

7. CONCLUSION

In this article, we extend the CCEP estimator designed by
Pesaran (2006) to dynamic homogenous panel data models and
develop a bias-corrected version that eliminates its finite T
bias. We first show that in homogenous dynamic panels, the
unobserved common factors can be effectively approximated
by CSA of the observed data provided that a sufficient number
of observables is available (rank condition) and an appropriate
number of lagged CSA is added to the model. This number
of lags should coincide with the autoregressive order of the
observed data. We next derived the asymptotic bias expression
for N → ∞ of the CCEP estimator and used this to devise a
bias-corrected estimator. We show that the resulting CCEPbc
estimator is consistent as N → ∞, both for T fixed or
T → ∞.

Extensive Monte Carlo experiments show that, when appro-
priately specified, CCEPbc performs very well and is superior
to the original CCEP estimator and to alternative corrections
available in the literature. More specifically, CCEPbc is found
to be nearly unbiased across all of the sample sizes and designs
we considered. Hence, it offers a strong improvement over the
severely biased CCEP estimator. This is especially the case
when T is small but even holds true for large T . Interestingly,
CCEPbc also provides a notable variance reduction compared

to the original CCEP estimator. This is due to the fact that
the stochastic bias of the latter also drives up its variance.
Moreover, using bootstrapped standard errors, the actual size
of CCEPbc was found to be close to the 5% nominal level.
The Monte Carlo simulations further show that it is important
to include a sufficient number of CSA of observables in the
model. First, the number of observables is important to satisfy
the rank condition, but even when this already holds it is
beneficial in terms of bias correction and inference to add CSA
of additional observables when these hold information about
highly influential common factors. Second, the simulation
results confirm our theoretical finding that lagged CSA should
be added to the model in line with the autoregressive order of
the observables. In case the autoregressive order is unknown,
letting the number of lags grow with T was found to be a robust
approach.

SUPPLEMENTARY MATERIALS

The supplemental material includes an appendix with (i) derivations,
lemmas and proofs, (ii) a detailed analysis of the asymptotic bias expression
presented in Theorem 1, (iii) two restricted CCEPbc estimators and (iv)
additional Monte Carlo simulation results.
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