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ABSTRACT

This paper develops tests of the null hypothesis of linearity in the context
of autoregressive models with Markov-switching means and variances.
These tests are robust to the identi�cation failures that plague conventional
likelihood-based inference methods. The approach exploits the moments of
normal mixtures implied by the regime-switching process and uses Monte
Carlo test techniques to deal with the presence of an autoregressive com-
ponent in the model speci�cation. The proposed tests have very respectable
power in comparison with the optimal tests for Markov-switching parameters
of Carrasco et al. (2014), and they are also quite attractive owing to their
computational simplicity. The new tests are illustrated with an empirical
application to an autoregressive model of USA output growth.
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1. Introduction

The extension of the linear autoregressive model proposed by Hamilton (1989) allows the mean and
variance of a time series to depend on the outcome of a latent process, assumed to follow a Markov
chain. The evolution over time of the latent state variable gives rise to an autoregressive process with a
mean and variance that switch according to the transition probabilities of the Markov chain. Hamilton
(1989) applies the Markov-switching model to USA output growth rates and argues that it encompasses
the linear speci�cation. This class of models has also been used to model potential regime shi�s in
foreign exchange rates (Engel and Hamilton, 1990), stock market volatility (Hamilton and Susmel,
1994), real interest rates (Garcia and Perron, 1996) , corporate dividends (Timmermann, 2001), the term
structure of interest rates (Ang and Bekaert, 2002b), portfolio allocation (Ang and Bekaert, 2002a), and
government policy (Davig, 2004). A comprehensive treatment of Markov-switching models and many
references are found in Kim and Nelson (1999), and more recent surveys of this class of models are
provided by Guidolin (2011) and Hamilton (2016).

A fundamental question in the application of such models is whether the data-generating process
(DGP) is indeed characterized by regime changes in its mean or variance. Statistical testing of this
hypothesis poses serious di�culties for conventional likelihood-based methods because two important
assumptions underlying standard asymptotic theory are violated under the null hypothesis of no regime
change. Indeed, if a two-regime model is �tted to a single-regime linear process, the parameters which
describe the second regime are unidenti�ed. Moreover, the derivatives of the likelihood function with
respect to themean and variance are identically zero when evaluated at the constrainedmaximumunder
both the null and alternative hypotheses. These di�culties combine features of the statistical problems
discussed in Davies (1977, 1987), Watson and Engle (1985), and Lee and Chesher (1986). The end
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result is that the informationmatrix is singular under the null hypothesis, and the usual likelihood-ratio
test does not have an asymptotic chi-squared distribution in this case. Conventional likelihood-based
inference in the context ofMarkov-switchingmodels can thus be verymisleading in practice. Indeed, the
simulation results reported by Psaradakis and Sola (1998) reveal just how poor the �rst-order asymptotic
approximations to the �nite-sample distribution of the maximum-likelihood (ML) estimates can be.

Hansen (1992, 1996) and Garcia (1998) proposed likelihood-ratio tests speci�cally tailored to deal
with the kind of violations of the regularity conditions which arise in Markov-switching models. Their
methods di�er in terms of which parameters are considered of interest and those taken as nuisance
parameters. Both methods require a search over the intervening nuisance parameter space with an
evaluation of the Markov-switching likelihood function at each considered grid point, which makes
them computationally expensive. Carrasco et al. (2014) derive asymptotically optimal tests for Markov-
switching parameters. These information matrix-type tests only require estimating the model under the
null hypothesis, which is a clear advantage over Hansen (1992, 1996) and Garcia (1998). However, the
asymptotic distribution of the optimal tests is not free of nuisance parameters, so Carrasco et al. (2014)
suggest a parametric bootstrap procedure to �nd the critical values.

In this paper, we propose new tests for the Markov-switching models which, just like the Carrasco
et al. (2014) tests, circumvent the statistical problems and computational costs of likelihood-based
methods. Speci�cally, we �rst propose computationally simple test statistics—based on least-squares
residual moments—for the hypothesis of no Markov switching (or linearity) in autoregressive models.
The residual moment statistics considered include statistics focusing on the mean, variance, skewness,
and excess kurtosis of estimated least-squares residuals. The di�erent statistics are combined through
the minimum or the product of approximate marginal p-values.

Second, we exploit the computational simplicity of the test statistics to obtain exact and asymptotically
valid test procedures, which do not require deriving the asymptotic distribution of the test statistics
and automatically deal with the identi�cation di�culties associated with such models. Even if the
distributions of these combined statistics may be di�cult to establish analytically, the level of the
corresponding test is perfectly controlled. This is made possible through the use of Monte Carlo (MC)
test methods. When no new nuisance parameter appears in the null distribution of the test statistic,
such methods allow one to control perfectly the level of a test, irrespective of the distribution of the
test statistic, as long as the latter can be simulated under the null hypothesis; see Dwass (1957), Barnard
(1963), Birnbaum (1974), andDufour (2006). This feature holds for a �xed number of replications, which
can be quite small. For example, 19 replications of the test statistic are su�cient to obtain a test with
exact level 0.05. A larger number of replications decreases the sensitivity of the test to the underlying
randomization and typically leads to power gains. Dufour et al. (2004), however, �nd that increasing the
number of replications beyond 100 has only a small e�ect on power.

Furthermore, when nuisance parameters are present—as in the case of linearity tests studied here—
the procedure can be extended through the use of maximized Monte Carlo (MMC) tests (Dufour,
2006). Two variants of this procedure are described: a fully exact version which requires maximizing a
p-value function over the nuisance parameter space under the null hypothesis (here, the autoregressive
coe�cients), and an approximate one based on a (potentially much smaller) consistent set estimator of
the autoregressive parameters. Both procedures are valid (in �nite samples or asymptotically) without
any need to establish the asymptotic distribution of the fundamental test statistics (here, residual
moment-based statistics) or the convergence of the empirical distribution of the simulated test statistics
toward the asymptotic distribution of the fundamental test statistic used (as in bootstrapping).

When the nuisance-parameter set on which the p-values are computed is reduced to a single point—
a consistent estimator of the nuisance parameters under the null hypothesis—the MC test can be
interpreted as a parametric bootstrap. The implementation of this type of procedure is also considerably
simpli�ed through the use of our moment-based test statistics. It is important to emphasize that
evaluating the p-value function is far simpler to do than computing the likelihood function of the
Markov-switching model, as required by the methods of Hansen (1992, 1996) and Garcia (1998). The
MC tests are also far simpler to compute than the informationmatrix-type tests of Carrasco et al. (2014),
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which require a grid search for a supremum-type statistic (or numerical integration for an exponential-
type statistic) over a priori measures of the distance between potentially regime-switching parameters
and another parameter characterizing the serial correlation of the Markov chain under the alternative.

Third,we conduct simulation experiments to examine the performance of the proposed tests using the
optimal tests of Carrasco et al. (2014) as the benchmark for comparisons. The new moment-based tests
are found to perform remarkably well when compared with the asymptotically optimal ones, especially
when the variance is subject to regime changes. Finally, the proposedmethods are illustrated by revisiting
the question ofwhetherUSA realGNPgrowth can be described as an autoregressivemodelwithMarkov-
switching means and variances using the original Hamilton (1989) data set from 1952 to 1984, as well as
an extended data set from 1952 to 2010.We �nd that the empirical evidence does not justify a rejection of
the linear model over the period 1952–1984. However, the linear autoregressive model is �rmly rejected
over the extended time period.

The paper is organized as follows. Section 2 describes the autoregressive model with Markov-
switching means and variances. Section 3 presents the moments of normal mixtures implied by the
regime-switching process and the test statistics we propose to combine for capturing those moments.
Section 3 also explains how the MC test techniques can be used to deal with the presence of an
autoregressive component in the model speci�cation. Section 4 examines the performance of the
developedMC tests in simulation experiments using the optimal tests forMarkov-switching parameters
of Carrasco et al. (2014) as the benchmark for comparison purposes. Section 5 then presents the results
of the empirical application to USA output growth and Section 6 concludes.

2. Markov-switchingmodel

We consider an autoregressive model with Markov-switching means and variances de�ned by

yt = µst +
r

∑

k=1

φk(yt−k − µst−k
) + σstεt (1)

where the innovation terms {εt} are independently and identically distributed (i.i.d.) according to the
N(0, 1) distribution. The time-varying mean and variance parameters of the observed variable yt are
functions of a latent �rst-order Markov chain process {St}. The unobserved random variable St takes
integer values in the set {1, 2} such that Pr(St = j) =

∑2
i=1 pij Pr(St−1 = i), with pij = Pr(St =

j | St−1 = i). The one-step transition probabilities are collected in the matrix:

P =
[

p11 p12

p21 p22

]

where
∑2

j=1 pij = 1 , for i = 1, 2. Furthermore, St and ετ are assumed independent for all t, τ .
The model in (1) can also be conveniently expressed as

yt =
2

∑

i=1

µiI[St = i] +
r

∑

k=1

φk

(

yt−k −
2

∑

i=1

µiI[St−k = i]
)

+
2

∑

i=1

σiI[St = i]εt (2)

where I[A] is the indicator function of eventA, which is equal to 1 whenA occurs and 0 otherwise. Here,
µi and σ 2

i are the conditional mean and variance given the regime St = i.
The model parameters are collected in the vector θ = (µ1,µ2, σ1, σ2,φ1, . . . , φr , p11, p22)

′. The
sample (log) likelihood, conditional on the �rst r observations of yt , is then given by

LT(θ) = log f (yT1 | y0−r+1; θ) =
T

∑

t=1

log f (yt | yt−1
−r+1; θ) (3)
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where yt−r+1 = {y−r+1, . . . , yt} denotes the sample of observations up to time t, and

f (yt | yt−1
−r+1; θ) =

2
∑

st=1

2
∑

st−1=1

...

2
∑

st−r=1

f (yt , St = st , St−1 = st−1, . . . , St−r = st−r | yt−1
−r+1; θ) .

Hamilton (1989) proposes an algorithm for making inferences about the unobserved state variable St
given observations on yt . His algorithm also yields an evaluation of the sample likelihood in (3), which
is needed to �nd the maximum likelihood estimates of θ .

The sample likelihood LT(θ) in (3) has several unusual features that make it notoriously di�cult
for standard optimizers to explore. In particular, the likelihood function has several modes of equal
height. Thesemodes correspond to the di�erent ways of reordering the state labels. There is no di�erence
between the likelihood for µ1 = µ∗

1 , µ2 = µ∗
2 , σ1 = σ ∗

1 , and σ2 = σ ∗
2 and the likelihood for µ1 = µ∗

2 ,
µ2 = µ∗

1 , σ1 = σ ∗
2 , and σ2 = σ ∗

1 . Rossi (2014, Chapter 1) provides a nice discussion of these issues in the
context of normalmixtures, which is a special case implied by (2) when theφs are zero. He shows that the
likelihood has numerous points where the function is not de�nedwith an in�nite limit. Furthermore, the
likelihood function also has saddle points containing local maxima. This means that standard numerical
optimizers are likely to converge to a local maximum and will therefore need to be started from several
points in a constrained parameter space to �nd the ML estimates.

3. Tests of linearity

The Markov-switching model in (2) nests the following linear autoregressive speci�cation as a special
case:

yt = c +
r

∑

k=1

φkyt−k + σ1εt , (4)

where c = µ1(1−
∑r

k=1 φk). Here,µ1 and σ 2
1 refer to the single-regimemean and variance parameters.

It is well known that the conditional ML estimates of the linear model can be obtained from an ordinary
least-squares (OLS) regression (Hamilton, 1994, Chapter 5). A problemwith theML approach is that the
likelihood function will always increase when moving from the linear model in (4) to the two-regime
model in (2) as any increase in �exibility is always rewarded. To avoid over�tting, it is therefore desirable
to test whether the linear speci�cation provides an adequate description of the data.

Givenmodel (2), the null hypothesis of linearity can be expressed as (µ1 = µ2, σ1 = σ2), or (p11 = 1,
p21 = 1), or (p12 = 1, p22 = 1). It is easy to see that if (µ1 = µ2, σ1 = σ2), then the transition
probabilities are unidenti�ed. On the contrary, if (p11 = 1, p21 = 1), then it is µ2 and σ2 which become
unidenti�ed, whereas if (p12 = 1, p22 = 1) then µ1 and σ1 become unidenti�ed. One of the regularity
conditions underlying the usual asymptotic distributional theory ofML estimates is that the information
matrix be nonsingular; see, for example, Gouriéroux and Monfort (1995, Chapter 7). Under the null
hypothesis of linearity, this condition is violated because the likelihood function in (3) is �at with respect
to the unidenti�ed parameters at the optimum. A singular informationmatrix results also from another,
less obvious, problem: the derivatives of the likelihood function with respect to the mean and variance
are identically zero when evaluated at the constrained maximum; see Hansen (1992) and Garcia (1998).

3.1. Mixturemodel

We begin by considering the mean-variance switching model:

yt = µ1I[St = 1] + µ2I[St = 2] +
(

σ1I[St = 1] + σ2I[St = 2]
)

εt , (5)

where εt ∼ i.i.d.N(0, 1). The Markov chain governing St is assumed ergodic, and we denote the ergodic
probability associated with state i by πi. Note that a two-state Markov chain is ergodic provided that
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p11 < 1, p22 < 1 and p11 + p22 > 0 (Hamilton, 1994, p. 683). As we already mentioned, the null
hypothesis of linearity (no regime changes) can be expressed as

H0(µ, σ) : µ1 = µ2 and σ1 = σ2,

and a relevant alternative hypothesis states that the mean and/or variance is subject to the �rst-order
Markov switching. The tests of H0(µ, σ) we develop exploit the fact that the marginal distribution of
yt is a mixture of two normal distributions. Indeed, under the maintained assumption of an ergodic
Markov chain we have

yt ∼ π1N(µ1, σ
2
1 ) + π2N(µ2, σ

2
2 ), (6)

where π1 = (1 − p22)/(2 − p11 − p22) and π2 = 1 − π1. In the spirit of Cho and White (2007) and
Carter and Steigerwald (2012, 2013), the suggested approach ignores the Markov property of St .

The marginal distribution of yt given in (6) is a weighted average of two normal distributions.
Timmermann (2000) shows that themean (µ), unconditional variance (σ 2), skewness coe�cient (

√
b1),

and excess kurtosis coe�cient (b2) associated with (6) are given by

µ = π1µ1 + π2µ2, (7)

σ 2 = π1σ
2
1 + π2σ

2
2 + π1π2(µ2 − µ1)

2, (8)

√

b1 =
π1π2(µ1 − µ2)

{

3(σ 2
1 − σ 2

2 ) + (1 − 2π1)(µ2 − µ2
1)

2
}

(

π1σ
2
1 + π2σ

2
2 + π1π2(µ2 − µ1)2

)3/2
, (9)

b2 = a

b
, (10)

where

a = 3π1π2(σ
2
2 − σ 2

1 )2 + 6(µ2 − µ1)
2π1π2(2π1 − 1)(σ 2

2 − σ 2
1 )

+ π1π2(µ2 − µ1)
4(1 − 6π1π2),

b =
(

π1σ
2
1 + π2σ

2
2 + π1π2(µ2 − µ1)

2
)2
.

When compared with a bell-shaped normal distribution, the expressions in (7)–(10) imply that a
mixture distribution can be characterized by any of the following features: the presence of two peaks,
right or le� skewness, or excess kurtosis. The extent to which these characteristics will be manifest
depends on the relative values of π1 and π2 by which the component distributions in (6) are weighted
and on the distance between the component distributions. This distance can be characterized by either
the separation between the respectivemeans,1µ = µ2−µ1, or by the separation between the respective
standard deviations, 1σ = σ2 − σ1, where we adopt the convention that µ2 > µ1 and σ2 > σ1. For
example, if 1σ = 0, then the skewness and relative di�erence between the two peaks of the mixture
distribution depends on 1µ and the weights π1 and π2. When π1 = π2, the mixture distribution is
symmetric with two modes becoming more distinct as 1µ increases. On the contrary, if 1µ = 0,
then the mixture distribution will have heavy tails depending on the di�erence between the component
standard deviations and their relative weights. See Hamilton (1994, Chapter 22), Timmermann (2000),
and Rossi (2014, Chapter 1) for more on these e�ects.

To test H0(µ, σ), we propose a combination of four test statistics based on the theoretical moments
in (7)–(10). The four individual statistics are computed from the residual vector ε̂ = (ε̂1, ε̂2, . . . , ε̂T)′

comprising the residuals ε̂t = yt − ȳ, themselves computed as the deviations from the sample mean.
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Each statistic is meant to detect a speci�c characteristic of mixture distributions. The �rst of these
statistics is

M(ε̂) = |m2 − m1|
√

s22 + s21

, (11)

where

m2 =
∑T

t=1 ε̂tI[ε̂t > 0]
∑T

t=1 I[ε̂t > 0]
, s22 =

∑T
t=1(ε̂t − m2)

2
I[ε̂t > 0]

∑T
t=1 I[ε̂t > 0]

,

and

m1 =
∑T

t=1 ε̂tI[ε̂t < 0]
∑T

t=1 I[ε̂t < 0]
, s21 =

∑T
t=1(ε̂t − m1)

2
I[ε̂t < 0]

∑T
t=1 I[ε̂t < 0]

.

The statistic in (11) is a standardized di�erence between the means of the observations situated above
the sample mean and those below the sample mean. The next statistic partitions the observations on the
basis of the sample variance σ̂ 2 = T−1

∑T
t=1 ε̂2t . Speci�cally, we consider

V(ε̂) = v2(ε̂)

v1(ε̂)
, (12)

where

v2 =
∑T

t=1 ε̂2t I[ε̂2t > σ̂ 2]
∑T

t=1 I[ε̂2t > σ̂ 2]
, v1 =

∑T
t=1 ε̂2t I[ε̂2t < σ̂ 2]

∑T
t=1 I[ε̂2t < σ̂ 2]

,

so that v2 > v1. Note that we partition on the basis of average values because (6) is a two-component
mixture. The last two statistics are the absolute values of the coe�cients of skewness and excess kurtosis:

S(ε̂) =
∣

∣

∣

∣

∣

∑T
t=1 ε̂3t

T(σ̂ 2)3/2

∣

∣

∣

∣

∣

(13)

and

K(ε̂) =
∣

∣

∣

∣

∣

∑T
t=1 ε̂4t

T(σ̂ 2)2
− 3

∣

∣

∣

∣

∣

, (14)

which were also considered in Cho and White (2007). Observe that the statistics in (11)–(14) can only
be nonnegative and are each likely to be larger in value under the alternative hypothesis. Taken together,
they constitute a potentially useful battery of statistics to testH0(µ, σ) by capturing characteristics of the
�rst four moments of normal mixtures. As one would expect, the power of the tests based on ( 11)–(14)
will generally be increasing with the frequency of regime changes.

It is easy to see that the statistics in (11)–(14) are exactly pivotal as they all involve ratios and can
each be computed from the vector of standardized residuals ε̂/σ̂ , which are scale and location invariant
under the null of linearity. That is, the vector of statistics (M(ε̂),V(ε̂), S(ε̂),K(ε̂))′ is distributed like
(

M(η̂),V(η̂), S(η̂),K(η̂)
)′
, where η ∼ N(0, IT) and η̂ = η − η̄. The null distribution of the proposed

test statistics can thus be simulated to any degree of precision, thereby paving the way for an MC test as
follows.

First, compute each of the statistics in (11)–(14) with the actual data to obtain
(M(ε̂),V(ε̂), S(ε̂),K(ε̂))′. Then generateN−1mutually independentT×1 vectors ηi, i = 1, . . . , N−1,
where ηi ∼ N(0, IT). For each such vector, compute η̂i = (η̂i1, η̂i2, . . . , η̂iT)′ with typical element
η̂it = ηit − ηi, where ηi is the sample mean, and compute the statistics in (11)–(14) based on η̂i so as to
obtain N − 1 statistics vectors (M(η̂i),V(η̂i), S(η̂i),K(η̂i))

′, i = 1, . . . , N − 1. Let ξ denote any one of
the above four statistics, ξ0 its original data-based value, and ξi, i = 1, . . . , N − 1, the corresponding
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simulated values. The individual MC p-values are then given by

Gξ [ξ0;N] = N + 1 − Rξ [ξ0;N]
N

, (15)

where Rξ [ξ0;N] is the rank of ξ0 when ξ0, ξ1, . . . , ξN−1 are placed in increasing order. The associated
MC critical regions are de�ned as

W
(ξ)
N =

{

Rξ [ξ0;N] ≥ cN(αξ )
}

with

cN(αξ ) = N − I[Nαξ ] + 1,

where I[x] denotes the largest integer not exceeding x. These MC critical regions are exact for any given
sample size, T. Further discussion and applications of the MC test technique can be found in Dufour
and Khalaf (2001) and Dufour (2006).

Note that the MC p-values GM[M(ε̂);N], GV [V(ε̂);N], GS[S(ε̂);N], and GK[K(ε̂);N] are not
statistically independent and may in fact have a complex dependence structure. Nevertheless, if we
choose the individual levels such that αM + αV + αS + αK = α then, for TS = {M,V , S,K}, we have by
the Boole–Bonferroni inequality:

Pr





⋃

ξ∈TS
W

(ξ)
N



 ≤ α,

so the induced test, which consists in rejectingH0(µ, σ)when any of the individual tests rejects, has level
α. For example, if we set each individual test level at 2.5%, so that we reject if Gξ [ξ0;N] ≤ 2.5% for any
ξ ∈ {M,V , S,K}, then the overall probability of committing a Type I error does not exceed 10%. Such
Bonferroni-type adjustments, however, can be quite conservative and lead to power losses; see Savin
(1984) for a survey of these issues.

To resolve these multiple comparison issues, we propose an MC test procedure based on combining
individual p-values. The idea is to treat the combination like any other (pivotal) test statistic for the
purpose of MC resampling. As with double bootstrap schemes (MacKinnon, 2009), this approach can
be computationally expensive because it requires a second layer of simulations to obtain the p-value
of the combined (�rst-level) p-values. Here, we can ease the computational burden using approximate
p-values in the �rst level. A remarkable feature of the MC test combination procedure is that it remains
exact even if the �rst-level p-values are only approximate. Indeed, theMC procedure implicitly accounts
for the fact that the p-value functions may not be individually exact and yields an overall p-value for the
combined statistics which itself is exact. For this procedure, we make use of approximate distribution
functions taking the simple logistic form:

F̂[x] = exp(γ̂0 + γ̂1x)

1 + exp(γ̂0 + γ̂1x)
, (16)

whose estimated coe�cients are given in Table 1 for selected sample sizes. These coe�cients were
obtained by the method of nonlinear least-squares (NLS) applied to simulated distribution functions
comprising amillion draws for each sample size. The approximate p-value of, say,M(ε̂) is then computed

as ĜM[M(ε̂)] = 1− F̂M[M(ε̂)], where F̂M[x] is given by (16) with associated γ̂ s from Table 1. The other

p-values ĜV , ĜS, and ĜK are computed in a similar way.
We consider two methods for combining the individual p-values. The �rst one rejects the null when

at least one of the p-values is su�ciently small so that the decision rule is e�ectively based on the statistic

Fmin(ε̂) = 1 − min
{

ĜM[M(ε̂)], ĜV [V(ε̂)], ĜS[S(ε̂)], ĜK[K(ε̂)]
}

. (17)
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Table 1. Coe�cients of approximate distribution functions.

F̂M F̂V F̂S F̂K

γ̂0 γ̂1 γ̂0 γ̂1 γ̂0 γ̂1 γ̂0 γ̂1

T = 50 −16.178 8.380 −7.700 0.879 −1.944 8.423 −2.191 5.106
T = 100 −23.041 12.125 −10.923 1.253 −1.975 11.614 −2.101 6.538
T = 150 −28.289 14.961 −13.394 1.539 −1.995 14.128 −2.068 7.690
T = 200 −32.719 17.348 −15.484 1.781 −2.012 16.311 −2.051 8.680
T = 250 −36.653 19.463 −17.312 1.992 −2.021 18.197 −2.046 9.597

Note: The entries are the coe�cients of the approximate distribution functions in (16) used to compute the �rst-level p-values in the
test combination procedure. The coe�cients are obtained by NLS with one million simulated samples for each sample size, T .

The criterion in (17) was suggested by Tippett (1931) and Wilkinson (1951) for combining inferences
obtained from independent studies. The secondmethod, suggested by Fisher (1932) and Pearson (1933),
again for independent test statistics, is based on the product (rather than the minimum) of the p-values:

F×(ε̂) = 1 − ĜM[M(ε̂)] × ĜV [V(ε̂)] × ĜS[S(ε̂)] × ĜK[K(ε̂)]. (18)

The MC p-value of the combined statistic in (17), for example, is then given by

GFmin [Fmin(ε̂);N] = N + 1 − RFmin [Fmin(ε̂);N]
N

, (19)

where RFmin [Fmin(ε̂);N] is the rank of Fmin(ε̂) when Fmin(ε̂), Fmin(η̂1), . . . , Fmin(η̂N−1) are placed in
ascending order. Although the statistics which enter into the computation of (17) and ( 18) may have
a rather complex dependence structure, the MC p-values computed as in (19) are provably exact. See
Dufour et al. (2004) and Dufour et al. (2014) for further discussion and applications of these test
combination methods.

3.2. Autoregressive dynamics

In this section, we extend the proposed MC tests to Markov-switching models with state-independent
autoregressive dynamics. To keep the presentation simple, we describe in detail the test procedure in the
case of models with a �rst-order autoregressive component. Models with higher-order autoregressive
components are dealt with by a straightforward extension of the AR(1) case. For convenience, the
Markov-switching model with AR(1) component that we treat is given here as

yt = µst + φ(yt−1 − µst−1) + σstεt (20)

where

µst = µ1I[St = 1] + µ2I[St = 2],
σst = σ1I[St = 1] + σ2I[St = 2].

The tests exploit the fact that, given the true value of φ, the simulation-based procedures of the previous
section can be validly applied to a transformed model. The idea is that if φ in (20) were known we could
test whether zt(φ) = yt − φyt−1, de�ned for t = 2, . . . , T, follows a mixture of at least two normals.

Indeed, when µ1 6= µ2 (µ1,µ2 6= 0), the random variable zt(φ) follows a mixture of two normals
(when φ = 0), three normals (when |φ| = 1), or four normals otherwise. That is, when φyt−1 is
subtracted on both sides of (20), the result is a model with a mean that switches between four states
according to

zt(φ) = µ∗
1I[S∗

t = 1] + µ∗
2I[S∗

t = 2] + µ∗
3I[S∗

t = 3] + µ∗
4I[S∗

t = 4] +
(

σ1I[St = 1] + σ2I[St = 2]
)

εt

where

µ∗
1 = µ1(1 − φ), µ∗

2 = µ2 − φµ1, µ∗
3 = µ1 − φµ2, µ∗

4 = µ2(1 − φ) (21)
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and S∗
t is a �rst-order, four-state Markov chain with transition probability matrix

P =













p11 p12 0 0

0 0 p21 p22

p11 p12 0 0

0 0 p21 p22













.

If µ1 6= µ2, the quantities in (21) admit either two distinct values (when φ = 0), three distinct values
(when φ = 1 or −1), or four distinct values otherwise. Under H0(µ, σ), the �ltered observations zt(φ),
t = 2, . . . , T, are i.i.d. when evaluated at the true value of the autoregressive parameter.

To deal with the fact that φ in unknown, we use the extension of the MC test technique proposed
in Dufour (2006) to deal with the presence of nuisance parameters. Treating φ as a nuisance parameter
means that the proposed test statistics become functions of ε̂t(φ), where ε̂t(φ) = zt(φ) − z̄(φ). Let �φ

denote the set of admissible values for φ which are compatible with the null hypothesis. Depending on
the context, the set�φ may beR itself, the open interval (−1, 1), the closed interval [−1, 1], or any other
appropriate subset of R. In light of a minimax argument (Savin, 1984), the null hypothesis may then be
viewed as a union of point null hypotheses, where each point hypothesis speci�es an admissible value
for φ. In this case, the statistic in (19) yields a test of H0(µ, σ) with level α if and only if

GFmin [Fmin(ε̂);N] ≤ α, ∀φ ∈ �φ ,

or, equivalently,

sup
φ∈�φ

GFmin [Fmin(ε̂);N] ≤ α .

In words, the null is rejected whenever for all admissible values of φ under the null, the corresponding
point null hypothesis is rejected. Therefore, if Nα is an integer, we have under H0(µ, σ),

Pr
[

sup
{

GFmin [Fmin(ε̂);N] : φ ∈ �φ

}

≤ α
]

≤ α ,

i.e., the critical region sup{GFmin [Fmin(ε̂);N] : φ ∈ �φ} ≤ α has level α. This procedure is called
an MMC test. It should be noted that the optimization is done over �φ holding �xed the values of the
simulated T × 1 vectors ηi, i = 1, . . . , N − 1, with ηi ∼ N(0, IT) – from which the simulated statistics
are obtained.

The maximization involved in the MMC test can be numerically challenging for Newton-type
methods because the simulated p-value function is discontinuous. Searchmethods for nonsmooth objec-
tives which do not rely on gradients are therefore necessary. A computationally simpli�ed procedure can
be based on a consistent set estimatorCT of φ; i.e., one for which limT→∞ Pr[φ ∈ CT] = 1. For example,
if φ̂T is a consistent point estimate of φ and c is any positive number, then the set

CT =
{

φ ∈ �φ : ‖φ̂T − φ‖ < c
}

is a consistent set estimator of φ; i.e., limT→∞ Pr[‖φ̂T − φ‖ < c] = 1, ∀c > 0. Under H0(µ, σ), the
critical region based on (19) satis�es

lim
T→∞

Pr
(

sup
{

GFmin [Fmin(ε̂);N] : φ ∈ CT

}

≤ α
)

≤ α .

The procedure may even be based on the singleton set CT = {φ̂T}, which yields a local MC (LMC) test
based on a consistent point estimate. See Dufour (2006) for additional details.

4. Simulation evidence

This section presents simulation evidence on the performance of the proposedMC tests usingmodel (20)
as the DGP. As a benchmark for comparison purposes, we take the optimal tests for Markov-switching
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parameters developed by Carrasco et al. (2014) (CHP). To describe these tests, let ℓt = ℓt(θ0) denote
the log of the predictive density of the tth observation under the null hypothesis of a linear model. For
model (20), the parameter vector under the null hypothesis becomes θ0 = (c,φ, σ 2)′ and we have

ℓt = −1

2
log(2πσ 2) − (yt − c − φyt−1)

2

2σ 2
.

Let θ̂0 denote the conditional maximum likelihood estimates under the null hypothesis (which can be
obtained by OLS) and de�ne

ℓ
(1)
t = ∂ℓt

∂θ

∣

∣

∣

θ=θ̂0
and ℓ

(2)
t = ∂2ℓt

∂θ∂θ ′

∣

∣

∣

θ=θ̂0
.

The CHP information matrix-type tests are calculated with

Ŵ∗
T = Ŵ∗

T(h, ρ) =
∑

t

µ∗
2,t(h, ρ)/

√
T

where

µ∗
2,t(h, ρ) = 1

2
h′

[

ℓ
(2)
t + ℓ

(1)
t ℓ

(1)′
t + 2

∑

s<t

ρt−sℓ
(1)
t ℓ(1)′

s

]

h .

Here, the elements of vector h are a priorimeasures of the distance between the corresponding switching
parameters under the alternative hypothesis, and the scalar ρ characterizes the serial correlation of the
Markov chain. To ensure identi�cation, the vector h needs to be normalized such that ‖h‖ = 1. For

given values of h and ρ, let ε̂∗ = ε̂
∗
(h, ρ) denote the residuals of an OLS regression ofµ∗

2,t(h, ρ) on ℓ
(1)
t .

Following the suggestion in CHP, h in the case of model (20) is a three-dimensional vector whose �rst
and third elements (corresponding to a switching mean and variance) are generated uniformly over the
unit sphere, and ρ takes values in the interval [ρ, ρ̄] = [−0.7, 0.7]. The nuisance parameters in h and ρ

can be dealt with in two ways. The �rst is with a supremum-type test statistic:

supTS = sup
{h,ρ : ‖h‖=1,ρ<ρ<ρ̄}

1

2

(

max

(

0,
Ŵ∗
T√

ε̂
∗′
ε̂

∗

))2

and the second is with an exponential-type statistic (based on an exponential prior):

expTS =
∫

{‖h‖=1,ρ<ρ<ρ̄}
9(h, ρ) dh dρ

where

9(h, ρ) =















√
2π exp

[

1

2

(

Ŵ∗
T√

ε̂
∗′
ε̂

∗ − 1

)2
]

8

(

Ŵ∗
T√

ε̂
∗′
ε̂

∗ − 1

)

if ε̂∗′
ε̂

∗ 6= 0 ,

1 otherwise.

Here, 8(·) stands for the standard normal cumulative distribution. CHP suggests using a parametric
bootstrap to assess the statistical signi�cance of these statistics because their asymptotic distributions

are not free of nuisance parameters. This is done by generating data from the linear AR model with θ̂0
and calculating supTS and expTS with each arti�cial sample. We implemented this procedure using 500
bootstrap replications.

In the following tables, LMC and MMC stand for the local and MMC procedures, respectively. The
�rst-level p-values are computed from the estimated distribution functions in Table 1, and the subscript
“min" is used to indicate that the �rst-level p-values are combined via their minimum, whereas the
subscript “×” indicates that they are combined via their product. The MC tests were implemented with
N = 100, and the MMC test was performed by maximizing the MC p-value by grid search over an
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Table 2. Empirical size of tests for Markov-switching.

φ = 0.1 φ = 0.9

Test T = 100 T = 200 T = 100 T = 200

LMCmin 5.3 4.6 4.9 4.4
LMC× 5.2 4.9 4.7 4.4
MMCmin 0.6 0.6 0.8 1.0
MMC× 0.2 0.5 0.9 1.2
supTS 4.8 5.1 6.0 4.5
expTS 6.8 6.2 5.4 6.9

Note: The DGP is an AR(1) model and the nominal level is 5%. LMC and MMC stand for the local and maximized MC procedures,
respectively. The subscript “min" means that the �rst-level p-values are combined via their minimum, while the subscript “×" means
that they are combinedvia their product. The supTS andexpTS tests refer to the supremum-type andexponential-type tests of Carrasco
et al. (2014).

Table 3. Empirical power of tests for Markov-switching with φ = 0.1.

(p11 , p22) = (0.9, 0.9) (p11 , p22) = (0.9, 0.5) (p11 , p22) = (0.9, 0.1)

Test T = 100 T = 200 T = 100 T = 200 T = 100 T = 200

1µ = 2,1σ = 0
LMCmin 5.8 4.7 14.4 26.7 20.1 39.2
LMC× 6.8 4.6 12.5 23.4 19.0 36.6
MMCmin 0.4 0.3 1.9 7.6 2.8 15.5
MMC× 0.6 0.3 2.3 7.1 3.1 13.9
supTS 24.3 49.9 23.8 47.0 24.4 45.6
expTS 15.6 25.4 24.6 47.1 28.9 52.3

1µ = 0,1σ = 1
LMCmin 39.4 62.0 48.4 72.6 40.0 55.7
LMC× 42.6 64.3 49.4 73.2 41.3 55.5
MMCmin 15.5 39.0 28.1 55.2 21.2 40.7
MMC× 17.1 43.2 27.3 52.8 19.9 39.8
supTS 32.4 58.0 29.9 46.4 22.8 30.4
expTS 40.1 62.6 43.9 68.3 34.4 52.4

1µ = 2,1σ = 1
LMCmin 52.3 84.0 82.1 98.8 78.5 96.3
LMC× 46.6 75.4 82.8 98.9 80.0 96.3
MMCmin 21.7 51.9 57.0 92.5 57.1 89.5
MMC× 23.0 49.0 61.3 93.5 59.6 90.2
supTS 72.7 96.2 80.8 96.9 65.5 89.7
expTS 75.6 97.0 86.6 99.4 78.2 96.2

Note: The DGP ismodel (20) withφ = 0.1 and the nominal level is 5%. LMC andMMC stand for the local andmaximizedMC procedures,
respectively. The subscript “min" means that the �rst-level p-values are combined via their minimum, while the subscript “×" means
that they are combinedvia their product. The supTS andexpTS tests refer to the supremum-type andexponential-type tests of Carrasco
et al. (2014).

interval de�ned by taking two standard errors on each side of φ̂0, the OLS estimate of φ. The simulation
experiments are based on 1000 replications of each DGP con�guration.

For a nominal 5% level, Table 2 reports the empirical size (in percentage) of the LMC, MMC, supTS,
and expTS tests for φ = 0.1, 0.9 and T = 100, 200. The MMC tests are seen to perform according to the
developed theory with empirical rejection rates ≤ 5% under the null hypothesis. The LMC tests based

on φ̂0 perform remarkably well, revealing an empirical size close to the nominal 5% level in each case.
The same can be said about the bootstrap supTS and expTS tests even though they seem to be less stable
than the LMC tests.

Tables 3 and 4 report the empirical power (in percentage) of the tests for φ = 0.1 and φ = 0.9,
respectively. The DGP con�gurations vary the separation between the means 1µ = µ2 − µ1 and
standard deviations 1σ = σ2 − σ1 as (1µ,1σ) = (2, 0), (0, 1), (2, 2); the sample size as T = 100,
200; and the transition probabilities as (p11, p22) = (0.9, 0.9), (0.9, 0.5), (0.9, 0.1).

As expected, the power of the proposed tests increases with 1µ and 1σ , and the sample size.
For given values of 1µ and 1σ , test power tends to increase with the frequency of regime switches.
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Table 4. Empirical power of tests for Markov-switching with φ = 0.9.

(p11 , p22) = (0.9, 0.9) (p11 , p22) = (0.9, 0.5) (p11 , p22) = (0.9, 0.1)

Test T = 100 T = 200 T = 100 T = 200 T = 100 T = 200

1µ = 2,1σ = 0
LMCmin 15.5 21.8 14.5 22.2 14.8 24.5
LMC× 15.2 23.0 14.4 20.9 14.9 25.9
MMCmin 3.8 7.9 3.7 6.9 3.3 7.9
MMC× 3.6 7.4 3.8 9.1 3.2 9.7
supTS 8.4 12.5 11.9 18.2 20.7 45.6
expTS 21.7 32.6 22.1 33.5 25.6 43.2

1µ = 0,1σ = 1
LMCmin 37.8 64.7 48.1 70.9 38.9 61.7
LMC× 40.9 68.1 48.5 72.8 40.1 62.7
MMCmin 17.1 42.2 27.8 55.5 22.6 47.3
MMC× 19.9 43.8 28.1 55.4 22.2 45.2
supTS 32.2 67.4 30.0 50.3 20.0 34.1
expTS 54.1 84.7 52.8 78.6 41.9 65.3

1µ = 2,1σ = 1
LMCmin 40.9 64.4 65.7 88.8 70.9 89.0
LMC× 42.1 65.8 67.6 91.2 72.0 90.6
MMCmin 16.8 37.5 41.8 76.6 50.2 77.3
MMC× 19.3 44.1 46.4 83.2 53.3 82.1
supTS 34.6 62.9 53.2 79.8 58.6 82.3
expTS 53.9 77.9 75.1 94.7 77.4 94.2

Note: The DGP ismodel (20) withφ = 0.9 and the nominal level is 5%. LMC andMMC stand for the local andmaximizedMC procedures,
respectively. The subscript “min" means that the �rst-level p-values are combined via their minimum, while the subscript “×" means
that they are combinedvia their product. The supTS andexpTS tests refer to the supremum-type andexponential-type tests of Carrasco
et al. (2014).

For example, when 1µ = 2 and 1σ = 1, the power of the MC tests increases when p22 decreases
(increase) from 0.9 (0.1) to 0.5. Comparing the LMCmin and MMCmin to LMC× and MMC×, respec-
tively, reveals that there is a power gain in most cases from using the product rule to combine the
�rst-level p-values in the MC procedure. Not surprisingly, the LMC procedures (based on the point

estimate φ̂0) have better power than theMMCprocedures, whichmaximize theMC p-value over a range
of admissible values for φ to hedge the risk of committing a Type I error.

The supTS and expTS generally tend to be more powerful than the MC tests, particularly when there
are regimes only in the mean (e.g., 1µ = 2, 1σ = 0). Nevertheless, it is quite remarkable that the
LMC tests have power approaching that of the supTS and expTS tests as soon as the variance is also
subject to regime changes. In some cases, the LMC tests even appear to outperform the optimal CHP
tests. For instance, this can be observed in the middle portion of Table 3, where 1µ = 0 and 1σ = 1.
Another important remark is that the proposed moment-based MC tests are far easier to compute than
the information matrix-type bootstrap tests.

5. Empirical illustration

In this section, we present an application of our test procedures to the study by Hamilton (1989)
who suggested modeling USA output growth with a Markov-switching speci�cation as in (2) with
r = 4 and where only the mean is subject to regime changes. With this model speci�cation, business
cycle expansions and contractions can be interpreted as a process of switching between states of high
and low growth rates. Hamilton estimated his model by the method of maximum likelihood with
quarterly data ranging from 1952Q2 to 1984Q4. Probabilistic inferences on the state of the economy
were then calculated and compared with the business-cycle dates as established by the National Bureau
of Economic Research. On the basis of simulated residual autocorrelations, Hamilton argued that his
Markov-switching model encompasses the linear AR(4) speci�cation.
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Table 5. MC test results: USA real GNP growth.

Test p-Value φ1 φ2 φ3 φ4 |z|
1952Q2 – 1984Q4
LMCmin 0.57 0.31 0.13 −0.12 −0.09 1.50
LMC× 0.57 0.31 0.13 −0.12 −0.09 1.50
MMCmin 1.00 0.48 0.20 −0.23 −0.16 1.23
MMC× 1.00 0.38 0.30 −0.28 −0.09 1.32

1952Q2 – 2010Q4
LMCmin 0.01 0.34 0.12 −0.08 −0.07 1.59
LMC× 0.01 0.34 0.12 −0.08 −0.07 1.59
MMCmin 0.05 0.43 0.09 0.05 0.05 1.33
MMC× 0.06 0.46 0.08 0.05 0.02 1.41

Note: LMC and MMC stand for the local and maximized MC procedures, respectively. The subscript “min" means that the �rst-level p-
values are combined via their minimum, while the subscript “×" means that they are combined via their product. Entries under |z| are
the smallest moduli of the roots of the autoregressive polynomial for the corresponding line.

We applied our proposed MC procedures to formally test the linear AR(4) speci�cation. In this
context, the LMC and MMC procedures are based on the �ltered observations:

zt(φ) = yt − φ1yt−1 − φ2yt−2 − φ3yt−3 − φ4yt−4,

where yt is 100 times the change in the logarithm of USA real GNP. Following Carrasco et al. (2014),
we considered Hamilton’s original data set (135 observations of yt) and an extended data set including
observations from 1952Q2 to 2010Q4 (239 observations of yt). The φ values used in zt(φ) for the LMC
procedure are obtained by an OLS regression of yt on a constant and four of its lags. The MMC test
procedure maximizes the MC p-value by grid search over a four-dimensional box de�ned by taking two
standard errors on each side of the OLS parameter estimates. To ensure stationarity of the solutions, we
only considered grid points for which the roots of the autoregressive polynomial 1−φ1z−φ2z

2−φ3z
3−

φ4z
4 = 0 lie outside the unit circle. The number of MC replications was set as N = 100.
Table 5 shows the test results for the LMC andMMC procedures based on theminimum and product

combination rules. For the MMC statistics, the table reports the maximal MC p-value, the φ values that
maximized the p-value function, and the smallestmodulus of the roots of 1−φ1z−φ2z

2−φ3z
3−φ4z

4 =
0. These points on the grid with the highest MMC p-values can be interpreted as the Hodges–Lehmann-
stye estimates of the autoregressive parameters (Hodges and Lehmann, 1963). In the case of the LMC
statistics, the reported φ values are simply the OLS point estimates.

For Hamilton’s data, the results clearly show that the null hypothesis of linearity cannot be rejected
at usual levels of signi�cance. Furthermore, the retained values of the autoregressive component yield
covariance-stationary representations of output growth. This shows that the GNP data from 1952 to
1984 are entirely compatible with a linear and stationary autoregressive model. It is interesting to note
from Table 5 that the MMCmin and MMC× procedures �nd φ values yielding p-values = 1 for the
period 1952Q2–1984Q4. OurMC tests, however, reject the stationary linear AR(4) model with p-values
≤ 0.06 over the extended sample period from 1952 to 2010, which agrees with the �ndings of Carrasco
et al. (2014). The results presented here are also consistent with the evidence in Kim and Nelson (1999)
and McConnell and Perez-Quiros (2000) about a structural decline in the volatility of business cycle
�uctuations starting in the mid-1980s—the so-called Great Moderation.

6. Conclusion

We have shown how the MC test technique can be used to obtain provably exact and useful tests of
linearity in the context of autoregressive models with Markov-switching means and variances. The
developed procedure is robust to the identi�cation issues that plague conventional likelihood-based
inference methods, because all the required computations are done under the null hypothesis. Another
advantage of our MC test procedure is that it is easy to implement and computationally inexpensive.
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The suggested test statistics exploit the fact that, under the Markov-switching alternative, the obser-
vations unconditionally follow a mixture of at least two normal distributions once the autoregressive
component is properly �ltered out. Four statistics, each ones meant to detect a speci�c feature of
normal mixtures, are combined together either through the minimum or the product of their individual
p-values. Of course, onemay combine any subset of the proposed test statistics or even include others not
considered here. As long as the individual statistics are pivotal under the null of linearity, the proposed
MC test procedure will control the overall size of the combined test.

The provably exact MMC tests require the maximization of a p-value function over the space
of admissible values for the autoregressive parameters. A simpli�ed version (LMC test) limits the
maximization to a consistent set estimator. Strictly speaking, the LMC tests are no longer exact in �nite
samples. Nevertheless, the level constraint will be satis�ed asymptotically undermuchweaker conditions
than those typically required for the bootstrap. In terms of both the size and power, the LMC tests based
on a consistent point estimate of the autoregressive parameters were found to perform remarkably well
in comparison with the bootstrap tests of Carrasco et al. (2014).

The developed approach can also be extended to allow for nonnormal mixtures. Indeed, it is easy to
see that the standardized residuals ε̂/σ̂ remain pivotal under the null of linearity as long as εt in (5) has
a completely speci�ed distribution. As in Beaulieu et al. (2007), the MMC test technique can be used
to further allow the distribution of εt to depend on unknown nuisance parameters. Such extensions go
beyond the scope of the present paper and are le� for future work.
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