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Parameter estimation and inference with spatial lags and
cointegration

Jan Mutla and Leopold Sögnerb

aEBS Real Estate Management Institute, EBS Business School, Germany; bInstitute for Advanced Studies and Vienna
Graduate School of Finance, Austria

ABSTRACT

This article studies dynamic panel datamodels in which the long run outcome
for a particular cross-section is a�ectedby aweighted averageof the outcomes
in the other cross-sections. We show that imposing such a structure implies
a model with several cointegrating relationships that, unlike in the standard
case, are nonlinear in the coe�cients to be estimated. Assuming that the
weights are exogenously given, we extend the dynamic ordinary least squares
methodology and provide a dynamic two-stage least squares estimator. We
derive the large sample properties of our proposed estimator under a set of
low-level assumptions. Thenourmethodology is applied toUS�nancialmarket
data, which consist of credit default swap spreads, as well as �rm-speci�c and
industry data. We construct the economic space using a “closeness”measure
for �rms based on input–output matrices. Our estimates show that this partic-
ular form of spatial correlation of credit default swap spreads is substantial and
highly signi�cant.

KEYWORDS

Cointegration; credit risk;
dynamic ordinary least
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autocorrelation
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1. Introduction

This article investigates the estimation of nonstandard cointegrating relationships under the presence
of regressor endogeneity and serial correlation in the disturbances. Following literature on panel
cointegration, we augment the cointegrating vectors by peer or neighborhood e�ects, which are modeled
as spatial lags following Cli� and Ord (1973). In addition to the kind of endogeneity typically dealt with
in panel cointegration models (Mark and Sul, 2003; Mark et al., 2005; Baltagi, 2008; Pesaran, 2015), this
article shows that the spatial lag results in further regressor endogeneity of a di�erent type.

Several approaches have emerged in the literature to estimate cointegrating relationships and to
perform statistical inference. One possibility is to use a simple estimation routine, e.g., ordinary least
squares (OLS) and then work out the (sometimes complicated) large sample distribution of the estimated
parameters (Phillips and Hansen, 1990; Phillips and Loretan, 1991). Another opportunity is to adjust
the estimation routine, such that the large sample distribution is either simpler or free of nuisance
parameters. Examples along these lines are the fully modi�ed least squares estimator (see, e.g., Phillips
and Hansen, 1990; Phillips and Moon, 1999; Pedroni, 2000), the integrated modi�ed least squares
estimator (Vogelsang and Wagner, 2014, in which integrated modi�ed least squares estimation is
linked to �xed-b inference) and the dynamic least squares approach. Dynamic least squares estimation
includes time-series leads and lags of the �rst di�erences of the regressors to control for the serial
correlation and regressor endogeneity. This kind of estimator has been proposed by Phillips and Loretan
(1991), Saikkonen (1991), and Stock and Watson (1993). It has been applied to panel data, e.g., in
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Kao and Chiang (2000), Mark and Sul (2003) and Mark et al. (2005), in which a seemingly unrelated
regression (SUR) type model is considered (for an overview on panel cointegration, see, e.g., Pesaran,
2015, Chapter 31). A further alternative is provided by the autoregressive distributed lag approach, in
which cointegrating relationships including lagged variables can be investigated (the reader is referred
to Pesaran and Shin, 1995; Binder et al., 2005; Chudik and Pesaran, 2013a,b). Almost recently, spatial
correlation and cointegration have been investigated in Yu et al. (2008) and Sögner and Wagner (2017).
While Yu et al. (2008) considered maximum-likelihood estimation in a spatial dynamic panel model,
Sögner and Wagner (2017) and Sögner et al. (2017) investigate fullymodi�ed as well as integratedmodi�ed
OLS estimation in a model close to the model presented in this article.

This article develops an econometric tool suitable for investigating situations, in which the long run
outcome for a particular cross-section cannot be assumed to be independent of the outcomes of the
other cross-sections and, at the same time, autocorrelation of the disturbances and regressor endogeneity
are present. To adequately cope with the endogeneity arising from the inclusion of the spatial lags,
we propose using a dynamic two-stage least squares (D2SLS) estimator, which combines dynamic least
squares (DOLS) and two stage least squares (2SLS) estimation. Section 2 describes the model assumptions
and Section 3 obtains the large sample distribution of our estimator and shows how to correctly conduct
inference. The �nite sample properties are investigated by a Monte Carlo study in Section 4.

Finally, Section 5 applies our methodology to a �nancial dataset, in which we construct the economic
space using a “closeness” measure for �rms based on input–output matrices. The weights matrix obtained
from input–output data should approximate possible correlation patterns due to technology and demand
shocks working their way through the economy. We �nd that our particular form of cross-sectional
spillovers is substantial and highly signi�cant.

2. Themodel and assumptions

Suppose that the data are generated from1

yit = ρ

n∑

j=1

Wijyjt +β ′
IxIit +β ′

CxCt +β ′
LxLi +αi + λt + u†

it = ρy∗
it +β ′xit +β ′

LxLi +αi + λt + u†
it , (1)

where yit is the scalar response random variable and xit is a k × 1 column vector of prediction random
variables. The vector xit is integrated of order one (I(1)) and permitted to consist of individual speci�c
regressors xIit of dimension kI ≥ 1, and cross-sectionally common regressors xCt of dimension kC ≥ 0.

The regressors xLt , of dimension kL ≥ 0, are time invariant. Hence, β :=
(
β ′
I , β

′
C

)′ ∈ Rk, with βI ∈ RkI ,

βC ∈ RkC and k = kI + kC. In addition, xit :=
(
x′
Iit , x

′
Ct

)′ ∈ Rk. The time index is t = 1, . . . ,T,
while i = 1, . . . , n is the cross-sectional index. The individual and time e�ects, αi, i = 1, . . . , n, and λt ,
t = 1, . . . ,T, are (as in �xed e�ects model) allowed to be correlated with xit and xLi. The term y∗

it :=∑n
j=1 Wijyjt is referred to as a spatial lag and represents the contemporaneous impact of the neighboring

observations on yit (see, e.g., Cli� and Ord, 1973; Kelejian and Prucha, 1998, 1999; Kapoor et al., 2007).

1In this article, the following notation will be applied: For vectors and matrices we use boldface. If not otherwise stated, the
vectors considered are column vectors. Given a rM × cM matrixM, the termM(ra :rb ,ca :cb) = [M](ra :rb ,ca :cb) stands for “from
row ra to row rb and from column ca to column cb of matrix M”. The i, j element of M is [M](i,j) or in shorter notation Mij .
0(a×b) and 1(a×b) stands for a × bmatrix of zeros and ones; 0(a) and is used to abbreviate 0(a×1) ; Ia is the a × a identity
matrix, while I(·) stands for an indicator function. Given a vector x ∈ R

n , diag(x) transforms x into a n× n diagonal matrix,

while for xi ∈ R
ℓ×k (i = 1, . . . , n), diag(x1 , . . . , xn) yields a nℓ×nk block diagonalmatrix.⊗ denotes the Kronecker product.

2 E-3 stands for 2 · 10−3 = 0.002. [Tr] denotes the integer part of Tr,⇒ stands forweak convergence (see, e.g., Klenke, 2008,

Chapter 13), while
P→ and

a.s.→ denote convergence in probability and almost sure convergence (see, e.g., Klenke, 2008,
Chapter 6). ν ∼ N (a,A) denotes that ν is a normally distributed vector with mean a and covariance A, while χ2

n denotes a

χ2 randomvariablewith ndegrees of freedom. Variableswhere thewithin-transformdescribed in (9), (12), or (14) is applied,
are—if not otherwise stated—denoted by the superscripts ˜ , ` , and ˘ , respectively. 1xt = xt − xt−1 abbreviates the �rst
di�erence of xt .
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We collect the weights Wij into an n × n spatial weights matrix W and follow the spatial econometrics
literature by maintaining the following assumption regarding the cross-sectional (or spatial) structure
of the model2:

Assumption 1 (Spatial Lag). The spatial weights Wij are nonstochastic and observable with Wii = 0 and
W 6= 0(n×n). The parameter ρ is such that the largest absolute eigenvalue of ρW is smaller than one.

The restriction that Wii = 0 is a normalization of the model, which requires that no observation is its
own neighbor. The second part of the assumption guarantees that the matrix (In − ρW) is invertible (see,
e.g., Horn and Johnson, 1985, Corollary 5.6.16). That is, the inverse K := (In −ρW)−1 is well-de�ned.3

The invertibility of the matrix (In − ρW) is needed to provide a unique solution of the model and rule
out multiple solutions for yit that would be consistent with the explanatory variables and disturbances.

To obtain the prediction variables, let xIt :=
((
x′
Iit

)
i=1,...,n

)′
∈ RkI ·n and xt :=

(
x′
It , x

′
Ct

)′ ∈ RkIn+kC .

We assume that xt follows a vector random walk process, i.e., xt = xt−1 + vt , where vIt := 1xIt , vCt :=
1xCt and vt :=

(
v′
It , v

′
Ct

)′
. In addition, we de�ne vIit := 1xIit and vit :=

(
v′
Iit , v

′
Ct

)′ ∈ Rk. Together with

the noise terms u†
t :=

(
u†

1t , . . . , u†
nt

)′ ∈ Rn, we de�ne η†
Iit :=

(
u†
it , v

′
Iit

)′ ∈ RkI+1, η†
It :=

(
u†′
t , v′

It

)′ ∈
R(kI+1)·n and η†

t :=
(
u†′
t , v′

It , v
′
Ct

)′ ∈ R(kI+1)·n+kC . The (auto-) covariance matrices of η†
t , abbreviated by

Ŵ†
ℓ ∈ R((kI+1)·n+kC)×((kI+1)·n+kC), for any lag ℓ ∈ Z, are

Ŵ†
ℓ := E

(
η†
t−ℓη

†′
t

)
=
(

Ŵ†
ℓ,uu Ŵ†

ℓ,uv

Ŵ†
ℓ,vu Ŵℓ,vv

)
=
(
E
(
u†
t−ℓu

†′
t

)
E
(
u†
t−ℓv

′
t

)

E
(
vt−ℓu

†′
t

)
E
(
vt−ℓv

′
t

)
)

, where

Ŵ†
ℓ,uu := E

(
u†
t−ℓu

†′
t

)
= diag

(
Ŵ†

ℓ,u1u1
, . . . , Ŵ†

ℓ,unun

)
∈ Rn×n . (2)

Let 3† :=
∑∞

ℓ=1 E
(
η†
t−ℓη

†′
t

)
∈ R((kI+1)·n+kC)×((kI+1)·n+kC). Then, the long run covariance matrix �† ∈

R((kI+1)·n+kC)×((kI+1)·n+kC) and the half-long run covariance matrix1† ∈ R((kI+1)·n+kC)×((kI+1)·n+kC) of
η†
t are given by (see, e.g., Phillips and Hansen, 1990)

�† :=
∞∑

ℓ=−∞
E
(
η†
t−ℓη

†′
t

)
= Ŵ†

0 + 3† + 3†′ and 1† :=
∞∑

ℓ=0

E
(
η†
t−ℓη

†′
t

)
= Ŵ†

0 + 3† . (3)

�† contains the submatrices: �vv :=
∑∞

ℓ=−∞ E
(
v†
t−ℓv

†′
t

)
∈ R(kI ·n+kC)×(kI ·n+kC), �vivj

:=
∑∞

ℓ=−∞ E
(
v†
i,t−ℓv

†′
j,t

)
∈ R(kI+kC)×(kI+kC), and �†

uu :=
∑∞

ℓ=−∞ E
(
u†
t−ℓu

†′
t

)
= diag

(
�†

u1u1
, . . . , �†

unun

)
∈

Rn×n. The same notation is applied to 1†. In order to fully specify the model, we augment our set of
assumptions by

Assumption 2 (Error Dynamics I). η†
Iit and η†

Ijt are independent for all i, j = 1, . . . , n with i 6= j. The

common components vCt ∈ RkC are permitted to be correlated with η†
Iit . The stochastic process

(
η†
t

)
t∈Z is

weakly stationary and obeys a functional central limit theorem. That is,

1√
T

[Tr]∑

t=1

η†
t ⇒ B

†(r) =
(
�†
)1/2

W
†(r) , (4)

where r ∈ [0, 1] and B†(r) is a Brownian motion in R(kI+1)·n+kC , while W†(r) is a standard Brownian
motion in R(kI+1)·n+kC . The long run covariance matrix �† ∈ R((kI+1)·n+kC)×((kI+1)·n+kC) is �nite and of

2Throughout the analysis we only consider one spatial lag term. However, the theory considered in this article can also be

applied to a model where yit = ρ1
∑n

j=1W1,ijyjt + · · · + ρkρ
∑n

j=1Wkρ ,ijyjt + β ′xit + αi + u†it in a straightforward way. The

restriction that only one matrixW is included is used to keep the notation simple.
3The spectral radius is the lower bound for every induced matrix norm (cf. Theorem 5.6.9 in Horn and Johnson, 1985). Our
assumption will, for example, be satis�ed when the maximum absolute row or column sums of ρW are less than one.
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full rank; 0 < �† < ∞ in short form. Moreover,

1

T

T∑

t=2




t−1∑

j=1

vj


 u†

t ⇒
∫ 1

0
Bv(s)dB

†
u(s)

′ + 3†
vu . (5)

In addition, for η†
t η

†′
t a weak law of large numbers holds, i.e. 1

T

∑T
t=1 η†

t η
†′
t

P→ E
(
η†
t η

†′
t

)
. To

vtu
†
it a central limit theorem can be applied. That is, 1√

T

∑T
t=1

(
vtu

†
it − E

(
vtu

†
it

))
⇒ ν(vu†), where

ν(vu†) ∼ N

(
0(kIn+kC×1),D

(
vtu

†
it

)
)

and 0 < D(
vtu

†
it

) < ∞. Convergence in (4), (5) and

1√
T

∑T
t=1

(
vtu

†
it − E

(
vtu

†
it

))
is joint.

The parameter vector β 6= 0(k×1) and k ≥ kI ≥ 1. If kL > 0 the time invariant regressors xLi ∈ RkL

are independent of xjs as well as u
†
js for all i, j = 1, . . . , n and all t = 1, . . . ,T.

The Brownian motion B†(r) ∈ R(kI+1)·n+kc consists of the pairwise independent Brownian motions
BvIi

(r), BvIj
(r) ∈ RkI , for i, j = 1, . . . , n, the Brownian motion BvC(r) ∈ RkC arising from the common

component vCt , and the Brownian motions B†
ui

(r) ∈ R arising from the common components u†
it .

Then, Bv(r) :=
(
BvI1

(r)′, . . . ,BvIn
(r)′,BvC(r)′

)′
∈ RkI ·n+kC . The same notation is applied to W†(r).

In addition, Bvi
(r) :=

(
BvIi

(r)′,BvC(r)′
)′

∈ Rk, where, in general, B†
ui

(r) and Bvi
(r) as well as B†

ui
(r)

and Bv(r) are correlated.
Conditions on the stochastic process (η†

t )t∈Z, where a functional central limit theorem holds, are
provided in de Jong and Davidson (2000), Davidson (1994), and White (2001), as well as in Mark
and Sul (2003), Mark et al. (2005), and Phillips (2014). In the latter articles (η†

t ) has a moving average

representation η†
t = 9† (L) ε†

t , where 9† (L) is a lag polynomial and ε†
t =

(
ε†′
I1t , . . . , ε†′

Int , ε
′
Ct

)′ ∈
R(kI+1)n+kC is a noise term. This also allows for heteroscedastic ε†

t , which can be important if �nancial
data sets are analyzed (Section 5).

Weak stationary of (η†
t ), in particular of the components u†

it , is necessary to obtain a cointegrating
relationship in (1). To see this, by Assumption 2, (xt) follows a vector random walk process and is
therefore integrated of order one. yit arises from a weighted sum of I(1) random variables, the �xed e�ects
αi and λt , the (stationary) term β ′

LxLi as well as the stationary noise term u†
it . To exclude cointegration

relationships between the components of xit and to guarantee that yit is I(1), we imposed the assumption
that β 6= 0(k) and that the long run covariance matrix is of full rank. Hence, by Assumption 2 the rank of

�vv is kI ·n+kC. The regressors xLi are assumed to be independent of η†
t and therefore strictly exogenous,

such that u†
jt and xLi are uncorrelated for all pairs i, j = 1, . . . , n and t = 1, . . . ,T.

Remark 1. By yt :=
(
y1t , . . . , ynt

)′
, y∗

t :=
(
y∗

1t , . . . , y∗
nt

)′
, u†

t :=
(
u†

1t , . . . , u†
nt

)′
, xL :=

(
x′
L1, . . . , x′

Ln

)′ ∈
RnkL , λ := (λ1, . . . , λT)′ α := (α1, . . . , αn)

′, β̃ := In ⊗ β ′ ∈ Rn×nk, and β̃L := In ⊗ β ′
L ∈ Rn×nkL , we

obtain the structural form (triangular system)

yt = ρy∗
t + β̃xt + β̃LxL + α + λt1(n×1) + u†

t , where xt = xt−1 + vt . (6)

Assumption 1 guarantees that In − ρW has the full rank n. This allows us to obtain the reduced form

yt = (In − ρW)−1
(
β̃xt + β̃LxL + α + λt1(n×1) + u†

t

)
, where xt = xt−1 + vt . (7)

Observe that the system constitutes n cointegrating equations. The cointegrating relationships do not
have the usual linear form in the sense that the solution for yit is a nonlinear function of the parameter
ρ. When we consider the data generated by (1) we observe that: (i) xit and u†

it can be correlated, since
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Assumption 2 does not exclude correlation between vit and u†
it . (ii) For ρ 6= 0, yjt depends on yit and

vice versa. (iii) u†
it and u†

jt are independent by Assumption 2. (iv) Since yjt depends on yit we know that

y∗
it = Wijyjt and u†

it are correlated in general. (v) By Assumption 2 there is no correlation between u†
jt

and xL.

3. Estimation procedure and large sample results

The goal of the following analysis is to construct a dynamic two-stage least squares (D2SLS) estimator
and to show that it leads to asymptotically unbiased estimates of the parameters ρ, βI and βC or βL.
In particular, Section 3.1 applies the methodology of projecting on the leads and lags of the (�rst
di�erenced) dependent variables xit ∈ Rk or xt ∈ Rkn introduced in Saikkonen (1991). We shall
observe that these projections eliminate the correlation between xit and u†

it but not the y∗
it and u†

it
correlation discussed in Remark 1. To get rid of the latter type of correlation, instrumental variables
will be applied. Since βI as well as βL or α as well as λ are not separately estimable (see, e.g., Hsiao,
2015, Section 3.6.1), we consider di�erent cases: Section 3.2 considers a model without time e�ects λ

and without longitudinally common regressors xLi, i.e., kL = 0. In this case model (1) becomes

yit = ρ

n∑

j=1

Wijyjt + β ′
IxIit + β ′

CxCt + αi + u†
it = ρy∗

it + β ′xit + αi + u†
it , where

xt = xt−1 + vt , xt = (x′
I1t , . . . , x′

Int , x
′
Ct)

′ ∈ RnkI+kC , β =
(
β ′
I , β

′
C

)′ ∈ Rk, and k = kI + kC. (8)

Motivated by the empirical example discussed in Section 5, model (8) will be considered to be the leading
case in the following. To simplify the algebra, we apply the within-transformation (see, e.g., Baltagi, 2008,
p. 11) and derive the asymptotic distribution of the estimates of the slope coe�cients ρ and β using
within-transformed data. That is, the variables in deviations from their individual means (means taken
with respect to the time series dimension) are

ỹit := yit − 1

T

T∑

t=1

yit , x̃it := xit − 1

T⋆

T∑

t=1

xit , ỹ∗
it :=

n∑

j=1

Wij̃yjt and ũ†
it := u†

it − 1

T

T∑

t=1

u†
it , (9)

such that (8) a�er applying the within-transformation (9) reads as follows:

ỹit = ρ

n∑

j=1

Wij̃yjt + β ′
ĨxIit + β ′

Cx̃Ct + ũ†
it⋆

= ρ̃y∗
it + β ′̃xit + ũ†

it⋆
. (10)

For this model Section 3.2 obtains theT → ∞-limit distribution for the ordinary least squares (OLS), the
dynamic ordinary least squares (DOLS) and the two stage least squares (2SLS) estimator, where second-
order asymptotic bias terms show up. Then, the T → ∞-limit distribution of the D2SLS estimator is
provided, where no second-order bias term shows up and the asymptotic limit distribution is a zero mean
Gaussian mixture distribution (for a de�nition of the Gaussian mixture distribution see, e.g., Johansen,
1995, Chapter 13.1).

In a second step, Section 3.3 will consider the case where “kC = 0, kL > 0, no cross-sectional �xed
e�ects are present (α = 0(n×1)) but time �xed e�ects are included (i.e., λ 6= 0(T×1)).” In this case model
(1) becomes

yit = ρ

n∑

j=1

Wijyjt + β ′
IxIit + β ′

LxLi + λt + u†
it = ρy∗

it + β ′xit + β ′
LxLi + λt + u†

it ,

xt = xt−1 + vt , where xt = xIt = (x′
I1t , . . . , x′

Int)
′ ∈ RnkI , vt = 1xt , kI = k , and β = βI . (11)
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Another within-transformation can be applied to model (11) to get rid of the time �xed e�ects λ (see,
e.g., Baltagi, 2008). That is,

ỳit := yit − 1

n

n∑

i=1

yit , ỳ∗
it := y∗

it − 1

n

n∑

j=1

y∗
jt , x̀it := x̀Iit = xIit − 1

n

n∑

j=1

xIjt ,

x̀Li := xLi −
1

n

n∑

j=1

xLj and ù†
it := uit − 1

n

n∑

j=1

u†
jt , such that

ỳit = ρ

n∑

j=1

Wijỳjt + β ′
I x̀Iit + β ′

Lx̀Li + ù†
it = ρỳ∗

it + β ′
I x̀Iit + β ′

Lx̀Li + ù†
it . (12)

For this within-transformed model a D2SLS estimator can be developed. However, in this article we shall
consider model (11) jointly with the case where “kL = kC = 0 and cross-sectional �xed e�ects as well
as time �xed e�ects are allowed.” In this case model (1) becomes equal to4

yit = ρ

n∑

j=1

Wijyjt + β ′
IxIit + αi + λt + u†

it = ρy∗
it + β ′

IxIit + αi + λt + u†
it ,

xt = xt−1 + vt , where xt = xIt = (x′
I1t , . . . , x′

Int)
′ ∈ Rk , β = βI , k = kI , and vt = 1xt . (13)

To model (13) the within-transformation (see, e.g., Baltagi, 2008)

y̆it := yit − 1

T

T∑

t=1

yit − 1

n

n∑

j=1

yjt + 1

Tn

n∑

j=1

T∑

t=1

yjt , y̆∗
it :=

n∑

j=1

Wijy̆jt ,

x̆it := x̆Iit := xIit − 1

T

T∑

t=1

xit − 1

n

n∑

j=1

xjt + 1

Tn

n∑

j=1

T∑

t=1

xjt ,

ŭ†
it := u†

it − 1

T

T∑

t=1

u†
it − 1

n

n∑

j=1

u†
jt + 1

Tn

n∑

j=1

T∑

t=1

u†
jt is applied to obtain

y̆it = ρ

n∑

j=1

Wijy̆jt + β ′
I x̆Iit + ŭ†

it = ρy̆∗
it + β ′

I x̆Iit + ŭ†
it . (14)

In addition, since x̆Li := xLi− 1
T

∑T
t=1 xLi− 1

n

∑n
j=1 xLj+ 1

Tn

∑n
j=1

∑T
t=1 xLj = xLi−T

T xLi−
1
n

∑n
j=1 xLj+

T
Tn

∑n
j=1 xLj = 0(kL×1), applying the within-transform used in (14) to model (11) also results in y̆it =

ρy̆∗
it +β ′

I x̆Iit + ŭ†
it . This allows for a joint treatment of the models (11) and (13). For model (14) the limit

distribution for the parameters ρ and βI will be obtained when T or (n,T) become large in Section 3.3.
For the model (11), given the estimates of ρ and βI , an estimate of βL will be derived by means of a
further ordinary least squares regression.

4To distinguish a model where the econometrician decides to include di�erent kinds for �xed e�ects (given that kC = 0 or
kL = 0), indicator functions of the form I(α) and I(λ) can be included intomodel (1). To simplify the notation and to improve
the readability we assume that if kC = 0 and kL = 0, then time �xed e�ects as well as cross-sectionally �xed e�ects are
included.
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3.1. Projection facility

Assumption 2 implies that potentially all leads and lags of 1xIit = vIit and 1xCt = vCt are correlated with
u†
it . In the next step, we follow DOLS literature and remove the correlation of u†

it and vit by projecting
on the leads and lags of the prediction variables. This implies that for each i, we project on 1xit−s =(
1x′

Iit−s, 1x′
Ct−s

)′ =
(
v′
Iit−s, v

′
Ct−s

)′
for s = −p, . . . , 0, . . . , p. The projection of u†

it on the p leads and

lags of 1xit yields a truncation component
∑+p

s=−p δ′
i,s1xi,t−s, vectors of projection coe�cients δi,s ∈ Rk

(for s = −p, . . . , p), a truncation error ep;it :=
∑

s>p,s<−p δ′
i,s1xi,t−s plus a new disturbance uit , such

that

u†
it = δ′

p;iζ p;it + ep;it + uit = δ′
p;iζ p;it + up;it and up;it := ep;it + uit , where

ζ p;it :=
(
v′
Ii,t−p, v′

C,t−p, . . . , v′
Ii,t , v

′
C,t , . . . , v′

Ii,t+p, v′
C,t+p

)′
∈ R(2p+1)k and

δp;i :=
(
δ′
i,−p, . . . , δ′

i,0, . . . , δ′
i,+p

)′
∈ R(2p+1)k . (15)

The subscript p denotes that the truncation error ep;it as well as the noise term up;it = ep;it +uit depend
on the number of leads and lags p. ζ p;it is by construction orthogonal to the new noise term uit , while
the term up;it = ep;it + uit can still be correlated with 1xit for some p < ∞.

A further alternative is to follow the system DOLS approach (see, e.g., Park and Ogaki, 1991) and

project on the leads and lags of all cross-sections. That is, ζ ♯p;it = ζ ♯p;t :=
(
v′
t−p, . . . , v′

t , . . . v
′
t−p

)′
∈

R(2p+1)(kIn+kC), where in Section 2, we already de�ned vt = 1xt =
(
v′
I1t , . . . , v′

Int , v
′
Ct

)′ ∈ Rn·kI+kC .
Then,

u†
it = δ′

♯p;iζ ♯p;t + e♯p;it + uit = δ′
♯p;iζ ♯p;t + u♯p;it ,

ζ ♯p;t =
(
v′
t−p, . . . , v′

t , . . . , v′
t+p

)′
∈ R(2p+1)(kIn+kC) ,

u♯p;it := e♯p;it + uit , and δ♯p;i :=
(
δ′
♯i,−p, . . . , δ′

♯i,0, . . . , δ′
♯i,+p

)′
∈ R(2p+1)(kIn+kC) . (16)

We shall observe that projecting on the own leads and lags (15) is su�cient to eliminate the correlation
asymptotically between the regressors and the noise term in model (8), while with time �xed e�ects or
kL > 0, where the within-transform (14) is applied, the projection on all leads and lags (16) is used to
get rid of the correlation between x̆Iit and ŭ†

it .
5 Now we impose an additional restriction on the error

dynamics that will guarantee that the truncation error ep;it (or e♯p;it) converges to zero when T becomes
large:

Assumption 3 (Error Dynamics II; see Saikkonen (1991), Mark et al. (2005)). Suppose that p = p(T).

Then p(T) has to ful�ll
p(T)3

T → 0 and
√
T
∑

|s|>p(T) ‖δi,s‖2 → 0 (or
√
T
∑

|s|>p(T) ‖δ♯i,s‖2 → 0 when
projecting on the full cross-section of leads and lags) as T → ∞, where ‖.‖2 stands for the Euclidean norm.

Assumption 3 requires that p(T) does not grow too fast, while the second part restricts the depen-
dence between the noise term and the regressors. Based on Assumptions 2–3, for model (10), if T
becomes large then—due to the increase in the number of leads and lags p(T)—the truncation error ep;it

becomes small. As a result, the di�erence between up;it and uit becomes small, such that up;it becomes

5By contrast, when skipping the assumption of independent cross-sections, Online Appendix A-4 demonstrates that in this
case a projection on all leads and lags becomes necessary already for model (8). The Online Appendix can be downloaded
from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2256929.
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orthogonal to ζ p;it as T → ∞. For the transformed model (14), x̆Iit as well as ŭ†
it contain weighted

elements from the other cross-sections j = 1, . . . , n, j 6= i. The projections on the full cross-section of
leads and lags is applied to the transformed model (14). Then the truncation error e♯p;it becomes small
such that ŭ♯p,it converges to ŭit and the x̆Iit , ŭ♯p,it-correlation gets small for large T due to Assumption 3.

A�er applying the projections (15) for the transformed model (10) as well as (16) with the
transformed model (14), we arrive at the new covariance stationary process

(
ηt
)
t∈Z, where ηt :=(

u′
t , v

′
t

)′ ∈ R(kI+1)n+kC , ηIt :=
(
(η′

it)i=1,...,n

)′ ∈ R(kI+1)n, ηit :=
(
uit , v

′
it

)′ ∈ RkI+1, vt =(
v′
I1t , . . . , v′

Int , v
′
Cit

)′ ∈ Rn·kI+kC , and ut := (u1t , . . . , unt)
′ ∈ Rn). For any ℓ ∈ Z we get Ŵℓ :=

E
(
ηt−ℓη

′
t

)
∈ R((kI+1)·n+kC)×((kI+1)·n+kC), the new long run covariance matrix � :=

∑∞
ℓ=−∞ E

(
ηt−ℓη

′
t

)

and new half long covariance 1 :=
∑∞

ℓ=0 E
(
ηt−ℓη

′
t

)
u†
it (16) the projection on all leads and lags is used

to get rid of the correlation between x̆Iit and u†
it (16). By applying the notation introduced in (2) and (3),

we get Ŵℓ,vu = �vu = 1vu = 0(nk×n) as well as �uiuj = Ŵℓ,uiuj = 0, for i 6= j by Assumption 2. By the
construction of the noise process uit , the correlation between uit and vj,t−ℓ is zero for all j = 1, . . . , n
and ℓ ∈ Z.

In addition, while the time index t goes from 1 to T in (1), a�er the projection facilities are applied
only the observations p+ 1, . . . ,T − p can be used to estimate the model parameters. By de�ning t⋆ :=
t − p+ 1 we obtain a new time index which accounts for the projection facility. Then T⋆ = T − 2p and
t⋆ = 1, . . . ,T⋆.

Given the assumptions on the error dynamics, a functional central limit theorem can be applied, such
that if T⋆ → ∞:

1√
T⋆

[T⋆r]∑

t⋆=1

ηt⋆ ⇒ B(r) = �1/2
W(r) . (17)

W(r) is a standard Brownian motion in RkI ·n+kC , while B(r) = �1/2W(r). These Brownian motions

contain the components, Bvi =
(
BvIi(r)

′,BvC(r)′
)′

and Wvi :=
(
WvIi(r)

′,WvC(r)′
)′

. By Assumption 2
and the construction of ηt⋆ , Bui(r) and Bvi(r) as well as Bui(r) and Bv(r) are independent for all i =
1, . . . , n. This also yields Bui(r) =

√
�uiuiWui(r). By Davidson (1994, Theorem 30.2), 1√

T⋆
x̃i[rT⋆] ⇒

Bvi(r) −
∫ 1

0 Bvi(s)ds and 1
T2

⋆

∑[rT⋆]
t⋆=1 x̃it⋆ x̃

′
it⋆

⇒
∫ r

0 B̃vi(s)B̃
′
vi
(s)ds, for T⋆ → ∞, where the demeaned

Brownian motion Bvi(r) −
∫ 1

0 Bvi(s)ds is abbreviated by B̃vi(r). Assumption 2 and some algebra results

in 1
T⋆

∑[T⋆]
t⋆=1 x̃it⋆ ũit⋆ ⇒

√
�uiui

∫ 1
0 B̃vi(s)dWui(s) + 1viui (see also Davidson, 1994, Theorem 30.13).

Since, vit⋆ and uit⋆ are uncorrelated, 1viui = 0(k) and 1
T⋆

∑[T⋆]
t⋆=1 x̃it⋆ ũit⋆ ⇒

√
�uiui

∫ 1
0 B̃vi(s)dWui(s). By

contrast, 1
T⋆

∑[T⋆]
t⋆=1 x̃it⋆ ũ

†
it⋆

⇒
√

�uiui

∫ 1
0 B̃vi(s)dW

†
ui

(s) + 1†
viui

, where - in general - 1†
viui

6= 0(k). In

addition, we derive 1√
T⋆
x̀i[rT⋆] ⇒ Bvi(r) − 1

n

∑n
j=1 Bvj(r) =: B̀vi(r), where B̀ui(r) and B̀v(r) are de�ned

in the same way, and 1√
T⋆
x̆i[rT⋆] ⇒ Bvi(r)−

∫ 1
0 Bvi(s)ds− 1

n

∑n
j=1 Bvj(r)+ 1

n

∑n
j=1

∫ 1
0 Bvj(s)ds =: B̆vi(r),

where B̆ui(r) and B̆v(r) are de�ned in an equivalent way (for more details see Online Appendix A-2).

3.2. Large sample properties of some parameter estimators formodel (8)

This subsection investigates the model de�ned in (8), where kL = 0 and no time e�ects are
included. To write down our estimator in a compact way, we de�ne the model in a stacked notation.

De�ne ỹ :=
(
ỹ11, . . . , ỹ1T⋆ , . . . , ỹn1, . . . , ỹnT⋆

)′
, y∗ :=

(
ỹ∗

11, . . . , ỹ∗
1T⋆

, . . . , ỹ∗
n1, . . . , ỹ∗

nT⋆

)′
, x̃ :=

(
x̃11, . . . , x̃1T⋆

, . . . , x̃n1, . . . , x̃nT⋆

)′
, and ũp :=

(
ũp;11, . . . , ũp;1T⋆

, . . . , ũp;n1, . . . , ũp;nT⋆

)′
, where ỹ, ỹ∗,
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and ũp are of dimension nT⋆ × 1, while x̃ is an nT⋆ × k matrix. Furthermore, we have

ζ̃ p :=




ζ̃
′
p;11 0(1×(2p+1)k) 0(1×(2p+1)k)

...

ζ̃
′
p;1T⋆

0(1×(2p+1)k) 0(1×(2p+1)k)

0(1×(2p+1)k) ζ̃ p;21 0(1×(2p+1)k)

. . .

0(1×(2p+1)k) 0(1×(2p+1)k) ζ̃ p;nT⋆




∈ RnT⋆×(2p+1)k·n and

δp :=




δp;1
...

δp;n


 ∈ R(2p+1)k·n×1 . (18)

This provides us with model (10) in stacked form:

ỹ = ρỹ∗ + x̃β + ζ̃ pδp + ũp =
(
ỹ∗, x̃

)
γ + ζ̃ pδp + ũp = X̃p

(
γ ′, δ′

p

)′
+ ũp = X̃pθ

′
p + ũp , (19)

where γ :=
(
ρ, β ′)′ ∈ R1+k and θp :=

(
γ ′, δ′

p

)′
∈ R1+k+(2p+1)·kn. The right-hand side variables are

collected in X̃p =
(
ỹ∗, x̃, ζ p

)
∈ RnT⋆×k+1+(2p+1)·kn. The transpose of the rows of the matrix X̃p are

the column vectors X̃p;it⋆ :=
(
ỹ∗
it⋆

, x̃′
it⋆

, 0(1×(2p+1)k·(i−1)), ζ̃
′
p;it⋆

, 0(1×(2p+1)k·(n−i−1))

)′
∈ Rk+1+(2p+1)·kn.

Including the projection facility (15), model (8) can be written as ỹit⋆ = X̃′
p;it⋆

θp + ũp;it⋆
. In addition, we

apply the following notation: Let Wi ∈ R1×n stand for the ith row of W. The n · (kI + kC) × nkI + kC
matrix C transforms x̃t =

(
x̃′
I1t , . . . , x̃′

Int , x̃
′
Ct

)′ ∈ RkIn+kC into
(
x̃′
I1t , x̃

′
Ct , . . . , x̃′

Int , x̃
′
Ct

)′ ∈ R(kI+kC)·n.
Note that each row of C contains exactly one element equal to 1, while the other elements are zero. In

addition, C has full column rank nkI + kC. For kC = 0, C = InkI . Moreover, let ũt :=
(
ũ1t , . . . , ũnt

)′
and

ζ̃ p,t = diag(ζ̃
′
p,1t , . . . , ζ̃

′
p,nt) ∈ Rn×(2p+1)·kn. Then, ỹ∗

it =
∑n

j=1 Wij
∑n

l=1 Kjl

(
βx̃lt + δ′

p;lζ̃ p;lt∗ + ũlt

)
can

be expressed more compactly by WiK
(
β̃Cx̃t + ζ̃ p,tδp + ũt

)
. In the same way as

(
x̃′

1t , . . . , x̃′
nt

)′ = Cx̃t

we proceed with ṽ, resulting in Cṽt = C1x̃t the half-long covariance matrix C1vu ∈ Rkn×n, and the
superposition of the components of the demeaned Brownian motion CB̃v ∈ Rkn.

Let us start with the OLS-estimator, where p = ∅, ũit = ũ†
it , T = T⋆, t = t⋆, X̃OLS

it :=
(
ỹ∗
it , x̃

′
it

)′
and

γ̂OLS :=
(
ρ̂OLS, β̂

′
OLS

)′
=
(

n∑

i=1

T∑

t=1

X̃OLS
it X̃OLS′

it

)−1 n∑

i=1

T∑

t=1

X̃OLS
it ỹit . (20)

To obtain the T → ∞-limit distribution, X̃OLS
it is scaled by 1/T. This yields

Proposition 1. Consider the �xed e�ects spatial correlation model (8) and the OLS estimator (20) based
on the within-transformed model (10). Suppose that the Assumptions 1 and 2 hold.

Then, for n �xed and T → ∞, it follows that the T → ∞ limits of MOLS
X̃X̃,Tni

:= 1
T2

∑T
t=1 X̃

OLS
it X̃OLS′

it

andMOLS
X̃X̃,Tn

:=
∑n

i=1 M
OLS
X̃X̃,Tni

are

M
X̃X̃,ni

:=
∫ 1

0
gi(r)gi(r)

′dr , gi(r) :=
(
WiKβ̃CB̃v(r)

B̃vi(r)

)
, and MX̃X̃,n :=

n∑

i=1

MX̃X̃,ni , (21)
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while the T → ∞ limits ofmOLS
X̃ũ†,ni

:= 1
T

∑T
t=1 X̃

OLS
it ũ†

it andm
OLS
X̃ũ†,n

:=
∑n

i=1 m
OLS
X̃ũ†,ni

are

mX̃ũ†,ni :=
(
WiK

∫ 1
0 β̃CB̃v(r)dB

†
ui

(r)√
�†

uiui

∫ 1
0 B̃vi(r)dW

†
ui

(r)

)
+
(
WiK

[
β̃C1†

vui
+ Ŵ†

0,uui

]

1†
viui

)
, and mX̃ũ†,n :=

n∑

i=1

mX̃ũ†,ni .

For the centered and scaled ordinary least squares estimator of γ we observe:

T
(
γ̂OLS − γ

)
⇒ M−1

X̃X̃,n
mX̃ũ†,n . (22)

Proof. See Appendix A.

Note that mX̃ũ†,n contains the “usual” second-order bias term
∑n

i=1 1†
viui

in the coordinates
2 to k + 1, while in the �rst component of mX̃ũ†,n we observe the second-order bias term
∑n

i=1 WiK
(
β̃C1†

vui
+ Ŵ†

0,uui

)
arising from a spatial lag. Next, the panel DOLS estimator, derived in

Mark and Sul (2003) as

θ̂DOLS;p :=
(
X̃′
pX̃p

)−1
X̃′
p̃y , (23)

results in θ̂DOLS;p − θp =
(∑n

i=1

∑T⋆
t⋆=1 X̃p;it⋆

X̃′
p;it⋆

)−1 ∑n
i=1

∑T⋆
t⋆=1 X̃p;it⋆

ũp;it⋆
. To obtain the T → ∞-

limit distribution of γ̂DOLS;p :=
(
ρ̂DOLS;p, β̂

′
DOLS;p

)′
, the �rst k + 1 components of X̃p;it⋆ are scaled by

1/T⋆, while the remaining components are scaled by 1/
√
T⋆, resulting in the scaling matrix AX̃p :=

diag
(
T−1

⋆ · Ik+1,T−0.5
⋆ · I(2p+1)nk

)
∈ Rk+1+(2p+1)nk×k+1+(2p+1)nk. For the DOLS estimator we obtain:

Proposition 2. Consider the �xed e�ects spatial correlation model (8) and the DOLS estimator (23) based
on the within-transformed model (10). Suppose that the Assumptions 1 to 3 hold. Let T⋆ = T − 2p(T).
Then, for n �xed and T → ∞, it follows that:

(a) T⋆(γ̂DOLS;p − γ ) and
√
T⋆(δ̂DOLS,p − δp) are asymptotically independent.

(b) T⋆

(
γ̂DOLS;p − γ

)
⇒ M−1

X̃X̃,n
mX̃ũ,n, whereMX̃X̃,n follows from (21),

mX̃ũ,ni :=
(
WiK

∫ 1
0 β̃CB̃v(r)dBui(r)√

�uiui

∫ 1
0 B̃vi(r)dWui(r)

)
+
(
WiKŴ0,uui

0(k)

)
, and mX̃ũ,n :=

n∑

i=1

mX̃ũ,ni .

MX̃X̃,n,mX̃ũ,ni andmX̃ũ,n are the T → ∞-limits of
[∑n

i=1

∑T⋆
t⋆=1 AX̃pX̃p;it⋆

X̃′
p;it⋆

AX̃p

]
(1:k+1,1:k+1)

=

MX̃X̃,nT ,
[∑T⋆

t⋆=1 AX̃pX̃p;it⋆
ũit⋆

]
(1:k+1,1)

=: mX̃ũ,nTi and
[∑n

i=1

∑T⋆
t⋆=1 AX̃pX̃p;it⋆

ũit⋆

]
(1:k+1,1)

=:

mX̃ũ,nT .

Proof. See Appendix A.

Since Ŵ0,uiui > 0 projecting on the leads and lags 1xit⋆+s, s = −p(T), . . . , −1, 0, 1, . . . , p(T), is not
su�cient to obtain convergence to a zero mean Gaussian mixture distribution. Comparing theOLS limit
M−1

X̃X̃,n
mX̃ũ†,n to the DOLS limit M−1

X̃X̃,n
mX̃ũ,n, we observe that by projecting on the leads and lags, the

second-order bias terms C1†
vui

and 1†
viui

are removed, but not the correlation term WiKŴ0,uui arising
from the spatial lag.

To obtain convergence to a mean zero Gaussian mixture distribution, we shall estimate the model
using instruments for the endogenous variable ỹ∗

it =
∑n

j=1 Wij̃yjt = Wĩyt , for which we assume:
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Assumption 4 (Valid Instruments; see Kitamura and Phillips (1997)). The instruments z̃∗
it ∈ Rqρ ful�ll

the requirements for instrumental variable estimation as stated, e.g., in Ruud (2000, Chapter 20), Phillips
and Hansen (1990) and Kitamura and Phillips (1997). In particular, (i) the number of instruments is

larger or equal to the number of parameters (order condition), (ii) 1
T2

⋆

∑T∗
t⋆=1(ỹ

∗
it⋆

, x̃′
it⋆

)′((̃z∗
it⋆

)′, x̃′
it⋆

) weakly

converges to amatrix of rank k+1 (almost surely) as T⋆ → ∞, and (iii) 1
T2

⋆

∑T⋆
t⋆=1((̃z

∗
it⋆

)′, x̃′
it⋆

)′((̃z∗
it⋆

)′, x̃′
it⋆

)

weakly converges to a matrix of rank k + qρ (almost surely) as T⋆ → ∞.

By following Kelejian and Prucha (1998), we base the instruments on the spatial lags of the explana-

tory variables. In more detail, our model can be solved as ỹ =
[
IT ⊗ (In − ρW)−1

] (
x̃β + ζ̃ pδp + ũp

)
.

The matrix (In − ρW)−1 can then be expanded as (In − ρW)−1 =
∑∞

s=0 (ρW)s (see, e.g., Horn and
Johnson, 1985, Corollary 5.6.16). This implies that variables of the form

∑n
j=1 Wij̃xjt⋆κ ,

∑n
j=1 W

2
ij̃xjt⋆κ , . . .

are suitable instruments for Wỹ. x̃jt⋆κ is the coordinate κ of x̃jt⋆ , while Wτ
ij stands for [Wτ ](i,j) and Wτ

i

for [Wτ ](i,1:n), where τ ∈ N. If x̃jt⋆κ is a component speci�c variable, x̃jt⋆κ and ũit⋆ , for i 6= j, are
independent by Assumption 2, while if x̃jt⋆κ is a common variable, then asymptotic independence will
be established for the D2SLS estimator when T → ∞. Note that these instruments have an intuitive
interpretation: we instrument the Wij weighted sum of the neighbors/peers ỹjt⋆ by the Wij weighted sum
of the characteristics of the neighbors (their x̃it⋆ values). The higher-order spatial lags as instruments
then use the characteristics of the neighbors of the neighbors, etc. Hence, we work with the instruments

z̃∗it⋆κ = x̃∗
it⋆κ

:=
n∑

j=1

W
τκ

it⋆
x̃jt⋆κ , (24)

where κ ∈ K ⊂ {1, . . . , k}, K is an index set collecting the indices of the instruments used, and τκ ∈ N.

Let K(l) stand for the lth element of the set K. Then, z̃∗
it⋆

=
(
x̃∗
it⋆K(1)

, . . . , x̃∗
it⋆K(qρ )

)′
∈ Rqρ , the exponents

τκ are τK(l)
, l = 1, . . . , qρ . By then×nk selector matricesC(K(j)) (where the coe�cients

[
CK(j)

]
(ι,(ι−1)n+nι)

are equal for all ι = 1, . . . , n), we get z̃∗it⋆K(j)
= x̃∗

it⋆K(j)
= W

τK(j)

i C(K(j))x̃t⋆ , for j = 1, . . . , qρ . To keep the

notation simple, we consider - as already stated at the beginning of Section 2 - a model with one spatial
lag (kρ = 1). Hence, with qρ ≥ 1 the order condition is met.

We collect the variables z̃∗
it⋆

=
(
W

τK(1)

i C(K(1))x̃t⋆ , . . . ,W
τK(qρ )

i C(K(qρ ))x̃t⋆

)′
∈ Rqρ in the

nT⋆ × qρ matrix z∗ :=
(
z̃∗

1t⋆
, . . . , z̃∗

nt⋆

)′
. The set of our instruments is then Z̃p :=

(
z∗, x, ζ p

)
∈

RT⋆n×qρ+k+(2p+1)k·n. The rows of Z̃p ∈ RnT×qρ+k+(2p+1)k·n are the transpose of the qρ +k+(2p+1)k·n-

dimensional column vectors Z̃p;it⋆ :=
(
z̃∗′
it⋆

, x̃′
it⋆

, 0(1×(2p+1)k·(i−1)), ζ̃
′
p;it⋆

, 0(1×(2p+1)k·(n−i−1))

)′
. Next we

consider two-stage least squares (2SLS) estimation. Since no projection on leads and lags is applied with

2SLS, we get p = ∅, T = T⋆ and t = t⋆ as well as X̃2SLS
it :=

(
ỹ∗
it , x̃

′
it

)′ = X̃OLS
it and Z̃2SLS

it :=
(
z̃∗′
it , x̃′

it

)′
.

Collecting X̃2SLS
it and Z̃2SLS

it results in X̃2SLS and Z̃2SLS. The noise term and the projection operator are

given by ũ†
it and P2SLS := Z̃2SLS

(̃
Z2SLS′Z̃2SLS

)−1
Z̃2SLS′. The term x̃it contained in Z̃2SLS

it , is still correlated

with ũ†
it . This correlation does not vanish if T → ∞. To see this, consider the two stage least squares

estimator

γ̂ 2SLS :=
(
X̃′

2SLSP2SLSX̃
′
2SLS

)−1
X̃′

2SLSP2SLSỹ . (25)

By scaling X̃2SLS
it and Z̃2SLS

it by 1/T we obtain:

Proposition 3. Consider the �xed e�ects spatial correlation model (8) and the 2SLS estimator (25) based
on the within-transformed model (10). Suppose that the Assumptions 1 to 4 hold. Instruments are based
on (24).
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Then, for n �xed and T → ∞, it follows that the T → ∞-limits ofM2SLS
X̃Z̃,nTi

:= 1
T2

∑T
t=1 X̃

2SLS
it Z̃2SLS′

it ,

M2SLS
X̃Z̃,nT

:=
∑n

i=1 M
2SLS
X̃Z̃,ni

, M2SLS
Z̃Z̃,nTi

:= 1
T2

∑T
t=1 Z̃

2SLS
it Z̃2SLS′

it , M2SLS
Z̃Z̃,nT

:=
∑n

i=1 M
2SLS
Z̃Z̃,ni

, m2SLS
Z̃ũ,nTi

:=
1
T

∑T
t=1 Z̃

2SLS
it ũ†

it , andm
2SLS
Z̃ũ,nT

:=
∑n

i=1 m
2SLS
Z̃ũ,nTi

are provided by

MX̃Z̃,ni :=
∫ 1

0
gi(r)hi(r)

′dr , MX̃Z̃,n :=
n∑

i=1

MX̃Z̃,ni , where

hi(r) :=
(
W

τK(1)

i C(K(1))B̃v(r), . . . ,W
τK(j)

i C(K(j))B̃v(r), . . . ,W
τK(qρ )

i C(K(qρ ))B̃v(r), B̃vi(r)
′
)′

∈ Rqρ+k ,

MZ̃Z̃,ni :=
∫ 1

0
hi(r)hi(r)

′dr , MZ̃Z̃,n :=
n∑

i=1

MZ̃Z̃,ni and

mZ̃ũ†,ni :=




W
τK(1)

i

∫ 1
0 C(K(1))B̃v(r)dB

†
ui

(r)

...

W
τK(qρ )

i

∫ 1
0 C(K(qρ ))B̃v(r)dB

†
ui

(r)
√

�†
uiui

∫ 1
0 B̃vi(r)dW

†
ui

(r)




+




W
τK(1)

i C(K(1))1
†
vui

...

W
τK(qρ )

i C(K(qρ ))1
†
vui

1†
viui




,

as well asmZ̃ũ†,n :=
n∑

i=1

mZ̃ũ†,ni . (26)

The asymptotic limit distributed of the centered and scaled 2SLS estimator of γ is provided by:

T
(
γ̂ 2SLS − γ

)
⇒
(
MX̃Z̃,nM

−1

Z̃Z̃,n
M′

X̃Z̃,n

)−1
MX̃Z̃,nM

−1

Z̃Z̃,n
mZ̃ũ†,n . (27)

Proof. See Appendix A.

Note that 2SLS eliminates the correlation term
∑n

i=1 WiKŴ†
0,uui

in mX̃ũ†,ni, while the second-order
bias arising from serial correlation is still present. We do not attain convergence to a zero mean Gaussian
mixture distribution.

We now construct a two stage-least square procedure for our panel setting where leads and lags
of 1x̃it as well as instruments z̃∗

it are included. Let us de�ne the projection operator PHp projecting

on the column space spanned by Z̃p (see, e.g., Ruud, 2000, Chapter 3). In formal terms PHp :=
Z̃p

(
Z̃′
pZ̃p

)−1
Z̃p. Since Z̃p is a T⋆n× qρ + k+ (2p+ 1)k · n matrix, PHp has to be a T⋆n× T⋆n matrix.

The dynamic two-stage least squares estimator of θp = (ρ, β ′, δ′
p)

′ = (γ ′, δ′
p)

′ is de�ned as follows:

θ̂D2SLS;p :=
(
X̃′
pPHpX̃p

)−1
X̃′
pPHp̃y = (γ ′, δ′

p)
′ +

(
X̃′
pPHpX̃p

)−1
X̃′
pPHpũp . (28)

Let X̃it⋆,,(1:k+1) and Z̃it⋆,,(1:k+qρ ) stand for the �rst k + 1 and k + qρ elements of X̃p;it⋆ and Z̃p;it⋆ .
For the asymptotic analysis we apply the scaling matrix AX̃p as well as the scaling matrix AZ̃p :=
diag

(
T−1

⋆ · Ik+qρ
,T−0.5

⋆ · I(2p+1)nk

)
∈ Rk+qρ+(2p+1)nk×k+qρ+(2p+1)nk. The matrix AX̃p is diagonal with

1/T⋆ in the �rst k + 1 elements while the matrix AZ̃p is diagonal with 1/T⋆ in the �rst k + qρ elements.

The other scaling factors, i.e. all the further elements on the main diagonals of AX̃p and AZ̃p are T−0.5
⋆ .

Let M⋆

X̃X̃,nTi
:=

∑T⋆
t⋆=1 AX̃pX̃it⋆X̃

′
it⋆
AX̃p, M⋆

X̃X̃,nT
:=

∑n
i=1 M

⋆

X̃X̃,nTi
, M⋆

X̃Z̃,nTi
:=

∑T⋆
t⋆=1 AX̃pX̃it⋆ Z̃

′
it⋆
AZ̃p,

M⋆

X̃Z̃,nT
:=

∑n
i=1 M

⋆

X̃Z̃,nTi
, M⋆

Z̃Z̃,nTi
:=

∑T⋆
t⋆=1 AZ̃pZ̃it⋆,Z̃

′
it⋆,AZ̃p, M⋆

X̃Z̃,nT
:=

∑n
i=1 M

⋆

X̃Z̃,nTi
, m⋆

Z̃ũ,nTi
:=
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∑T⋆
t⋆=1 AZ̃pZ̃it⋆,(1:k+1)ũit⋆ , and m⋆

Zu,nT :=
∑n

i=1 m
⋆

Z̃ũ,nTi
, as well as

M
X̃X̃,nTi

:= 1

T2
⋆

T⋆∑

t⋆=1

(
X̃it⋆,(1:k+1)X̃

′
it⋆,(1:k+1

)
=
[
M⋆

X̃X̃,nTi

]
(1:k+1,1:k+1)

,

M
X̃X̃,nT

:=
n∑

i=1

M
X̃X̃,nTi

∈ Rk+1×k+1 ,

M
X̃Z̃,nTi

:= 1

T2
⋆

T⋆∑

t⋆=1

(
X̃it⋆,(1:k+1)Z̃

′
it⋆,(1:k+qρ )

)
=
[
M⋆

X̃Z̃,nTi

]
(1:k+1,1:k+qρ )

,

M
X̃Z̃,nT

:=
n∑

i=1

M
X̃Z̃,nTi

∈ Rk+1×k+qρ ,

M
Z̃Z̃,nTi

:= 1

T2
⋆

T⋆∑

t⋆=1

(
Z̃it⋆,,(1:k+qρ )Z̃

′
it⋆,,(1:k+qρ )

)
=
[
M⋆

Z̃Z̃,nTi

]
(1:k+qρ ,1:k+qρ )

,

M
Z̃Z̃,nT

:=
n∑

i=1

M
Z̃Z̃,nTi

∈ Rk+qρ×k+qρ ,

m
Z̃ũ,nTi

:= 1

T⋆

T⋆∑

t⋆=1

(̃
Zit⋆,(1:k+1)ũit⋆

)
=
[
m⋆

Z̃ũ,nTi

]
(1:k+qρ ,1)

and

mZ̃ũ,nT :=
n∑

i=1

m
Z̃ũ,nTi

=
[
m⋆

Z̃ũ,nT

]
(1:k+qρ ,1)

∈ Rk+qρ .

Next, we summarize the large sample properties of the D2SLS estimator:

Theorem1 (T → ∞ limits forD2SLS Estimation). Consider the �xed e�ects spatial correlationmodel (8)
and the D2SLS estimator (28) based on the within-transformed model (10). Suppose that Assumptions 1–4
hold. Let T⋆ = T − 2p(T). Then, for n �xed and T → ∞, it follows that

1. T⋆(γ̂D2SLS;p − γ ) and
√
T⋆(δ̂D2SLS;p − δp) are asymptotically independent.

2. MX̃X̃,nTi, MX̃X̃,nT , MZ̃Z̃,nTi, MZ̃Z̃,nT , MX̃Z̃,nT , MX̃X̃,nT , mZ̃ũ,nTi, and mZ̃ũ,nT converge weakly to MX̃X̃,ni,
MX̃X̃,n,MZ̃Z̃,ni,MZ̃Z̃,n,MX̃Z̃,n,MX̃X̃,n,mZ̃ũ,ni, andmZ̃ũ,n, where

mZ̃ũ,ni :=
∫ 1

0
hi(r)dBui(r) =

√
�uiui

∫ 1

0
hi(r)dWui(r) and mZ̃ũ,n :=

n∑

i=1

mZ̃ũ,ni . (29)

MX̃X̃,n andMX̃X̃,ni are provided in (21), whileMX̃Z̃,ni,MX̃Z̃,n,MZ̃Z̃,n, andMZ̃Z̃,ni are provided in (26).

In addition, T⋆

(
γ̂D2SLS;p − γ

)
converges weakly toM−1

n mn, where

Mn := MX̃Z̃,nM
−1

Z̃Z̃,n
M′

X̃Z̃,n
and mn :=

n∑

i=1

MX̃Z̃,nM
−1

Z̃Z̃,n
mZ̃ũ,ni = MX̃Z̃,nM

−1

Z̃Z̃,n
mZ̃ũ,n . (30)

3. Suppose that �̂uu is a consistent estimator of �uu = diag(�uiui)i=1,...,n, then

VnT :=
[
MX̃Z̃,nTM

−1

Z̃Z̃,nT
M′

X̃Z̃,nT

]−1
DnT

[
MX̃Z̃,nTM

−1

Z̃Z̃,nT
M′

X̃Z̃,nT

]−1

⇒
[
MX̃Z̃,nM

−1

Z̃Z̃,n
M′

X̃Z̃,n

]−1
Dn

[
MX̃Z̃,nM

−1

Z̃Z̃,n
M′

X̃Z̃,n

]−1
=: Vn , where
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DnT := MX̃Z̃,nTM
−1

Z̃Z̃,nT

(
n∑

i=1

�̂uiuiMZ̃Z̃,nTi

)
M−1

Z̃Z̃,nT
M′

X̃Z̃,nT
, and

Dn := MX̃Z̃,nM
−1

Z̃Z̃,n

(
n∑

i=1

�uiuiMZ̃Z̃,ni

)
M−1

Z̃Z̃,n
M′

X̃Z̃,n
.

Given an s× (k + 1) restriction matrix R, the Wald type statistic

Wγ ,nT =
(
T⋆R

(
γ̂D2SLS;p − γ

))′ (
RVnTR

′)−1
(
T⋆R

(
γ̂D2SLS;p − γ

))
, (31)

converges in distribution to a χ2 random variable with s degrees of freedom.

Proof. See Appendix A.

Remark 2. Since the signal to noise ratio goes to in�nity, we observe that the OLS, the DOLS, the
2SLS, and the D2SLS estimator is consistent, when considering T → ∞-limits. Su�cient conditions
for consistent estimation of the covariance matrix �uu are discussed in Jansson (2002) and in Online
Appendix A-6.

In addition, observe that if β = 0(k×1) or k = 0, the variable yit becomes I(0) (see, e.g., Eqs. (1) and
(7)). In this case the signal to noise ratio does not go to in�nity and the ordinary least squares estimator
is not consistent (for a proof see Sögner and Wagner, 2017).

Remark 3. Projecting on all leads and lags as proposed in system-DOLS (see Park and Ogaki, 1991)
and the DSUR approach (see Mark et al., 2005) does not eliminate this bias. Based on Mark et al.
(2005), D2SLS can be augmented to a richer correlation structure by projecting on the leads and lags
of all regressors as described in (16). However, by this projection facility the dimension of the nuisance
parameter becomes (2p + 1) · (kIn2 + kCn). Due to numerical constraints, this estimator can hardly be
implemented when n is large (see Section A-4 in the Online Appendix and Section 4).

Remark 4. The following subsection also derives limits when both n and T become large. For the

model (10), where x̃Ct and x̃Iit are used as regressors, we observe that 1
nT2

⋆

∑n
j=1

∑T⋆
t⋆=1 x̃Ct x̃

′
Ct =

1
T2

⋆

∑T⋆
t⋆=1 x̃Ct x̃

′
Ct such that the T → ∞ limit as well as the (n,T) → ∞ limit remain random variables.

By this fact, the (n,T) → ∞ limit of the centered and scaled parameter vector is not a mean zero normal
vector if kC > 0.6

3.3. Large sample properties of the D2SLS parameter estimator formodel (13)

Using the within-transform (14) and the projection facility (16), we get by δ̆♯p;i :=
(
δ♯p;j − 1

n

∑n
j=1 δ♯p;j

)

and some algebra (see Online Appendix A-3)7

y̆it = ρy̆∗
it⋆

+ β ′
I x̆Iit⋆ + δ̆

′
♯p;iζ̃ ♯p;t⋆ + ŭp;it⋆

= WiK
(
β̃I x̆t⋆ +

(
In ⊗ ζ̃

′
♯p;t⋆

)
δ̆♯p + ŭt⋆

)
, (32)

6In a former version we obtained (n, T) → ∞-limits for model with locally common variables, in which case the joint limit is
a normally distributed zero mean random vector. These results are available on request.

7To simplify the notation we write ŭit⋆ and ŭt⋆ when the within-transform (14) is applied to u
♯it⋆

and u
♯t⋆

(i.e., we skip

the symbol ♯). In addition, although δ♯p;j − 1
n

∑n
j=1 δ

♯p;j corresponds to the within-transform de�ned in (12) we use

the abbreviation δ̆♯p;i to emphasize that this parameter is related to the model based on the within-transform (14). To

obtain (32) note that with kC = 0, we have β = β I , β̃ I = β̃ = In ⊗ β I ∈ R
n×kIn , and C = InkI such that

WiK
(
β̃Cx̆t⋆ +

(
In ⊗ ζ̃

′
♯p;t⋆

)
+ ŭt⋆

)
= K

(
β̃ Ix̆t⋆ +

(
In ⊗ ζ̃

′
♯p;t⋆

)
+ ŭt⋆

)
.
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where x̆t⋆ := x̆It⋆ :=
(
x̆I1t⋆ , . . . , x̆Int⋆

)′ ∈ RnkI×1, ŭt⋆ :=
(
ŭ1t⋆

, . . . , ŭnt⋆
)′ ∈ Rn×1. The vector

δ̃
′
♯p ∈ R(2p+1)kIn

2
and the matrix In ⊗ ζ̃

′
♯p;t⋆

∈ Rn×(2p+1)kIn
2

collect the projection parame-

ters δ̆♯p;i and the corresponding leads and lags of 1x̃Iit⋆ , while Wi is the ith row of the n × n

matrix W, describing the impact by all other n − 1 cross-sections on yit (as well as y̆it⋆). In addi-

tion, let X̆p;it⋆
:=

(
y̆∗
it⋆

, x̆′
it⋆

, 0(1×(2p+1)kI ·(i−1)), ζ̃
′
♯p;it⋆

, 0
(1×(2p+1)kI ·(N−i−1))

)′ ∈ R1+kI+(2p+1)kIn
2

and

Z̆p;it⋆
:=

(
z̆∗′
it⋆

, x̆′
it⋆

, 0
(1×(2p+1)kI ·(i−1))

, ζ̃
′
♯p;it⋆

, 0
(1×(2p+1)kI ·(N−i−1))

)′ ∈ Rqρ+kI+(2p+1)kIn
2
, where z̆∗

it⋆
=

(
z̆it⋆K(1)

, . . . , z̆∗it⋆K(qρ )

)′ ∈ Rqρ . The su�x ˘ denotes that the within-transformation – described in

(14) – is applied to the instruments z∗it⋆ de�ned in (24). Then, y̆it = X̆′
p;it⋆

θ̆p + ŭp;it⋆
, where θ̆p :=

(
γ̆ ′, δ̆

′
♯p

)′
, γ̆ :=

(
ρ, β ′

I

)′
and δ̆♯p :=

(
δ̆
′
♯p;i, . . . , δ̆

′
♯p;i, . . . , δ̆

′
♯p;n

)′ ∈ R(2p+1)n2kI . By collecting X̆it⋆
and

Z̆it⋆
, we obtain the matrices X̆ ∈ RnT⋆×1+kI+(2p+1)n2kI and Z̆ ∈ RnT⋆×qρ+kI+(2p+1)n2kI . Finally, let

y̆ :=
(
y̆1p+1, . . . , y̆nT−p

)′ ∈ RnT⋆ , ŭp :=
(
ŭ1p+1, . . . , ŭnT−p

)′ ∈ RnT⋆ and PH̆p := Z̆p

(
Z̆′
pZ̆p

)−1
Z̆p.

From (32) we deduce the dynamic two-stage least squares estimator of θ̆p:

̂̆
θD2SLS;p =

(
̂̆γ ′
D2SLS;p,

̂̆
δ
′
D2SLS;♯p

)′
:=
(
X̆′
pPH̆pX̆p

)−1
X̆′
pPH̆py̆ = θ̆p +

(
X̆′
pPH̆pX̆p

)−1
X̆′
pPH̆pŭp .

(33)

To obtain the T → ∞ asymptotic limit distribution of the estimator
̂̆
θD2SLS;p, we

apply the scaling matrices AX̆p := diag
(
T−1

⋆ · IkI+kC+1,T−0.5
⋆ · I(2p+1)(n2kI+kCn)

)
∈

RkI+kC+1+(2p+1)(n2kI+nkC)×kI+kC+1+(2p+1)(n2kI+nkC) and ĂZ̆p := diag
(
T−1

⋆ · IkI+kC+qρ
,T−0.5

⋆ ·
I(2p+1)(n2kI+nkC)

)
∈ RkI+kC+qρ+(2p+1)(n2kI+nkC)×kI+kC+qρ+(2p+1)(n2kI+kCn); (note that kC = 0

in this subsection). That is, the terms arising from the spatial lag and the I(1) components are
scaled by 1/T⋆, while all projection variables are scaled by 1/

√
T⋆. Given these scaling factors,

we de�ne M⋆

X̆Z̆,nTi
:=

∑T⋆
t⋆=1 AX̆pX̆p;it⋆

Z̆′
p;it⋆

AZ̆p, M⋆

Z̆Z̆,nTi
:=

∑T⋆
t⋆=1 AZ̆pZ̆p;it⋆

Z̆′
p;it⋆

AZ̆p, M
X̆Z̆,nTi

:=
[
M⋆

X̆Z̆,nTi

]
(1:1+kI ,1:qρ+kI)

, M
Z̆Z̆,nTi

:=
[
M⋆

Z̆Z̆,nTi

]
(1:qρ+kI ,1:qρ+kI)

, m⋆

Z̆ŭ,nTi
:=

∑T⋆
t⋆=1 AZ̆pZ̆p;it⋆

ŭp;it⋆
, and

m
Z̆ŭ,nTi

:=
[
m⋆

Z̆ŭ,nTi

]
(1:qρ+kI)

, as well as

ği(r) :=
(
WiKβ̃CB̆v(r)

B̆vi(r)

)
=
(
WiKβ̃IB̆v(r)

B̆vi(r)

)
∈ RkI+1 ,

h̆i(r) :=




W
τK(1)

i C(K(1))B̆v(r)
...

W
τK(qρ )

i C(K(qρ ))B̆v(r)

B̆vi(r)
′




∈ Rqρ+kI , and

mZ̆ŭ,ni :=




∫ 1
0 W

τK(1)

i C(K(1))

[∫ 1
0 B̆v(r)

(
dBui(r) − 1

n

∑n
j=1 dBuj(r)

)]

...
∫ 1

0 W
τK(qρ )

i C(K(qρ ))

[∫ 1
0 B̆v(r)

(
dBui(r) − 1

n

∑n
j=1 dBuj(r)

)]

∫ 1
0 B̆vi(r)

(
dBui(r) − 1

n

∑n
j=1 dBuj(r)

)




, (34)

where mZ̆ŭ,ni ∈ Rqρ+kI , B̆v :=
(
B̆′
v1

, . . . , B̆′
vi

, . . . , B̆′
vn

)′
∈ RnkI , and B̆vi = Bvi −

∫ 1
0 Bvi(r)dr −

1
n

∑n
j=1 Bvj + 1

n

∑n
j=1

∫ 1
0 Bvj(r)dr. Since kC = 0, Bvi = BvIi , B̆vi = B̆vIi , and B̆v = B̆vI . In

addition, let Nh̆ := 1
n1(1×n) ⊗ Iqρ+kI ∈ R(qρ+kI)×(qρ+kI)n, h̆(r) :=

(
h̆1(r)

′, . . . , h̆i(r)
′, . . . ,
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h̆n(r)
′)′ ∈ R(qρ+kI)n, M6

Z̆
∑

Z̆,nTi
:=

∑T⋆
t⋆=1

([
AZ̆pZ̆p;it⋆

]
(1:qρ+kk,1)

)(
1
n

∑n
l=1

[
AZ̆pZ̆p;lt⋆

]
(1:qρ+kk,1)

)′
,

M6∑
Z̆Z̆,nTi

:=
∑T⋆

t⋆=1

(
1
n

∑n
l=1

[
AZ̆pZ̆p;lt⋆

]
(1:qρ+kk,1)

)([
AZ̆pZ̆p;it⋆

]
(1:qρ+kk,1)

)′
, and M6∑

Z̆
∑

Z̆,nTi
:=

∑T⋆
t⋆=1

(
1
n

∑n
l=1

[
AZ̆pZ̆p;lt⋆

]
(1:qρ+kk,1)

)(
1
n

∑n
j=1

[
AZ̆pZ̆p;jt⋆

]
(1:qρ+kk,1)

)′
. Then, for the dynamic two stage

least squares estimator
̂̆
θD2SLS;p we obtain:

Theorem 2 (T → ∞ limits for D2SLS Estimation). Consider the �xed e�ects spatial correlation models
(11) and (13) and the D2SLS estimator (33) based on the within-transformed model (32). Suppose that
Assumptions 1–4 hold. Let T⋆ = T − 2p(T).

Then, for n �xed and T → ∞, it follows that

1. T⋆(̂̆γD2SLS;p − γ̆ ) and
√
T⋆(̂δ̆D2SLS;♯p − δ̆♯p) are asymptotically independent.

2. T⋆

(
̂̆γD2SLS;p − γ̆

)
converges weakly to M̆−1

n m̆n, whereMX̆Z̆,ni := limT→∞MX̆Z̆,nTi =
∫ 1

0 ği(r)h̆i(r)
′dr,

MZ̆Z̆,ni := limT→∞MZ̆Z̆,nTi =
∫ 1

0 h̆i(r)h̆i(r)
′dr,MX̆Z̆,n := limT→∞MX̆Z̆,nT =

∑n
i=1 MX̆Z̆,ni,MZ̆Z̆,n :=

limT→∞MZ̆Z̆,nT =
∑n

i=1 MX̆Z̆,ni, M̆n := MX̆Z̆,nM
−1

Z̆Z̆,n
M′

X̆Z̆,n
, mZ̆ŭ,ni = limT→∞mZ̆ŭ,nTi, mZ̆ŭ,n :=

∑n
i=1 mZ̆ŭ,ni, and m̆n := MX̆Z̆,nM

−1

Z̆Z̆,n
m′

Z̆ŭ,n
.

3. Suppose that �̂uu is a consistent estimator of �uu = diag(�uiui)i=1,...,n, then

V̆nT :=
[
MX̆Z̆,nTM

−1

Z̆Z̆,nT
M′

X̆Z̆,nT

]−1
D̆nT

[
MX̆Z̆,nTM

−1

Z̆Z̆,nT
M′

X̆Z̆,nT

]−1

⇒
[
MX̆Z̆,nM

−1

Z̆Z̆,n
M′

X̆Z̆,n

]−1
D̆n

[
MX̆Z̆,nM

−1

Z̆Z̆,n
M′

X̆Z̆,n

]−1
=: V̆n , where

D̆nT := MX̆Z̆,nTM
−1

Z̆Z̆,nT
PZ̆ŭZ̆ŭ,nTM

−1

Z̆Z̆,nT
M′

X̆Z̆,nT
,

PZ̆ŭZ̆ŭ,nT =
n∑

i=1

�̂uiui

(
M

Z̆Z̆,nTi
− M6

Z̆
∑

Z̆,nTi
− M6∑

Z̆Z̆,nTi
+ M6∑

Z̆
∑

Z̆,nTi

)
,

D̆n := MX̆Z̆,nM
−1

Z̆Z̆,n
PZ̆ŭZ̆ŭ,nM

−1

Z̆Z̆,n
M′

X̆Z̆,n
, PZ̆ŭZ̆ŭ,n =

∑

i=1

PZ̆ŭZ̆ŭ,ni , and

PZ̆ŭZ̆ŭ,ni = �uiui

(∫ 1

0
h̆i(r)h̆i(r)

′dr −
∫ 1

0
h̆i(r)

(
Nh̆h̆(r)

)′
dr −

∫ 1

0

(
Nh̆h̆(r)

)
h̆i(r)

′dr

+
∫ 1

0

(
Nh̆h̆(r)

) (
Nh̆h̆(r))

)′
dr

)
. (35)

Given an s× (k + 1) restriction matrix R, the Wald type test statistic

W̆γ ,nT =
(
T⋆R

(
̂̆γD2SLS;p − γ̆

))′ (
RV̆nTR

′)−1
(
T⋆R

(
̂̆γD2SLS;p − γ̆

))
, (36)

converges in distribution to a χ2 random variable with s degrees of freedom.

Proof. See Appendix 2.

In the following the joint limit theory developed in Phillips and Moon (1999, 2000) will be applied
to obtain joint limits, i.e., (n,T) → ∞-limits.8 Consider draws with double index (i, t), where i, i =
1, . . . , n, stands for the cross-sectional index of the draw and t, t = 1, . . . ,T, for the time-series dimen-
sion of the draw. To derive the joint (n,T) → ∞-limit distribution we impose

8The de�nitions of sequential convergence (“�rst T → ∞, then n → ∞”) and joint convergence (“T , n → ∞”) in probability
are provided in De�nitions 1 and 2 in Phillips and Moon (2000).
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Assumption 5.

(a) For the stochastic process
(
ηt
)
t∈Z =

(
ηIt
)
t∈Z Assumptions 1–10 stated in Phillips and Moon (1999)

hold.
(b) If kL > 0 a law of large numbers can be applied to x̀Lix̀

′
Li. That is,

1
n

∑n
i=1 x̀Lix̀

′
Li converges in probability

toE
(
x̀Lix̀

′
Li

)
for n → ∞, where thematrixE

(
x̀Lix̀

′
Li

)
is regular. For x̀Liù

†
it⋆
a joint central limit theorem

can be applied. That is, 1√
nT⋆

∑n
i=1

∑T⋆
t⋆=1 x̀Liù

†
it⋆

⇒ ν
(x̀Liù

†
it)

for (n,T) → ∞, where ν
(x̀Liù

†
it)

∼

N

(
0(kL×1),D(x̀Liù

†
it)

)
and 0 < D

(x̀Liù
†
it)

< ∞. The joint limit ν
(x̀Liù

†
it)
is equal to the sequential “�rst

T, then n → ∞”-limit.

Part (b) of Assumption 5 will be used to obtain the asymptotic limit distribution of an estimator of
βL. By the last part of Assumption 2 we already get E

(
x̀Liù

†
it

)
= 0(kL×1). Su�cient conditions for a

joint central limit theorem to hold, where the joint limit agrees with the sequential limit are provided in
Phillips and Moon (1999, pp. 1070–1071).

For a panel cointegration model joint limit theory was, e.g., applied Kao and Chiang (2000), Pedroni
(2000), Mark and Sul (2003), Baltagi (2008, Chapter 12.6), and Pesaran (2015, Chapter 31.10). By Assump-
tion 5 Lemma 1(d) of Phillips and Moon (1999) applies, such that for the long run covariances �i =(

�uiui �uivi

�viui �vivi

)
, i = 1, . . . , n, we observe that E (�i) := �̄ :=

(
�̄uiui �̄uivi

�̄viui �̄vivi

)
. Moreover, let

j1 = kI + 1, l0 = qρ + 1, and l1 = qρ + kI , then it follows that

 lim

(n,T)→∞
1

n

n∑

i=1

T⋆∑

t⋆=1

AX̆pX̆p;it⋆ Z̆
′
p;it⋆

AZ̆p




(2:j1,l0:l1)

=


 lim

(n,T)→∞
1

n

n∑

i=1

T⋆∑

t⋆=1

AZ̆pZ̆p;it⋆ Z̆
′
p;it⋆

AZ̆p




(l0:l1,l0:l1)

= lim
(n,T)→∞

1

nT⋆

n∑

i=1

T⋆∑

t⋆=1

x̆it⋆ x̆
′
it⋆

= E

(∫ 1

0
B̆vi(r)B̆vi(r)

′dr
)

= 1

6
�̄vivi . (37)

For more details on these limits see Online Appendix A-2. To obtain y̆∗
it⋆

, the spatial weights matrix W{n}
satis�es:

Assumption 6 (Spatial Lag II). The requirements of Assumption 1 continue to hold for the n × n matrix
W{n}. That is, for all n ∈ N as well as for n → ∞ the spatial weights

(
W{n},ij

)
i,j=1,...,n

are nonstochastic

and observable with W{n},ii = 0 andW{n} 6= 0(n×n). For any ρ ∈ (−1, 1), the largest absolute eigenvalue
of ρW{n} is smaller than one and the sequences of the largest absolute eigenvalues of ρW{n} is bounded
away from one. In addition, |W{n},ij| ≤ w̄ and |Kij| = |

[
(In − ρW{n})−1

]
(ij)

| ≤ ω̄ for all i, j = 1, . . . , n

and n ∈ N ∪ ∞.

The inverse K{n} :=
(
In − ρW{n}

)−1
exists by the assumption on the largest eigenvalue of ρW{n} for

each �nite n as well as for n → ∞ (see, e.g., Heuser, 1992, Theorem 12.4 on the Neumann Series). By
|W{n},ij| ≤ w̄ and |K{n},ij| ≤ w̄, the elements of W{n} and K{n} are bounded. Since an eigenvalue of ρW{n}
can be kept small by decreasing ρ when n becomes large, we postulate ρ ∈ (−1, 1).9

To obtain the (n,T) → ∞ asymptotic limit distribution of the estimator D2SLS estimator (33), we
apply the scaling matrices 1√

n
AX̆p and 1√

n
AZ̆p. That is, the terms arising from the spatial lag and the I(1)

9On spatial weightsW{n} for a large cross-sectional dimension see, e.g., Kapoor et al. (2007), Kelejian and Prucha (2008), and
Drukker et al. (2013). The subscript {n} is added to express the dependence on n.
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components are scaled by 1/(
√
nT⋆), while all projection variables are scaled by 1/

√
nT⋆. Given these

scaling factors, we de�ne Q⋆

X̆Z̆,nT
:= 1

n

∑n
i=1 M

⋆

X̆Z̆,nTi
= 1

n

∑n
i=1

∑T⋆
t⋆=1 AX̆pX̆p;it⋆ Z̆

′
p;it⋆

AZ̆p, Q⋆

Z̆Z̆,nT
:=

1
n

∑n
i=1 M

⋆

Z̆Z̆,nTi
= 1

n

∑n
i=1

∑T⋆
t⋆=1 AZ̆pZ̆p;it⋆ Z̆

′
p;it⋆

AZ̆p, Q
X̆Z̆,nT

:=
[
Q⋆

X̆Z̆,nT

]
(1:1+kI ,1:qρ+kI)

, Q
Z̆Z̆,nT

:=
[
Q⋆

Z̆Z̆,nT

]
(1:qρ+kI ,1:qρ+kI)

, q⋆

Z̆ŭ,nT
:= 1√

n

∑n
i=1 m

⋆

Z̆ŭ,nTi
= 1√

n

∑n
i=1

∑T⋆
t⋆=1 AZ̆pZ̆p;it⋆

ŭp;it⋆
, and q

Z̆ŭ,nT
:=

[
q⋆

Z̆ŭ,nT

]
(1:qρ+kI ,1)

. If the joint limits of these terms exist, the joint limits will be abbreviated by

Q⋆

X̆Z̆
, . . . , q

Z̆ŭ
.

In addition, under the premise that all expectations containing a term arising from a spatial lag exist,

we get the expectations E
(
M⋆

X̆Z̆nTi

)
and E

(
M⋆

Z̆Z̆nTi

)
, where—by the congruence of the joint and the

sequential limits (implied by our model assumptions)—we observe that E
(
M⋆

X̆Z̆nTi

)
and E

(
M⋆

Z̆Z̆nTi

)

are block diagonal with E

(
M

X̆Z̆nTi

)
and E

(
M

Z̆Z̆nTi

)
in the north-west. The south-east blocks of both

matrices are equal and contain expectations of the autocovariance matrices Ŵℓ,vivi . Observe that

E

(
M

X̆Z̆nTi

)
=




E

([
MX̆Z̆,nTi

]
(1,1)

)
E

([
MX̆Z̆,nTi

]
(1,2:k+qρ )

)

E

([
MX̆Z̆,nTi

]
(2:k+1,1)

)
E

(∫ 1

0
B̆vi (r)B̆vi (r)

′dr
)




=




E




∫ 1

0

n∑

j=1

n∑

ℓ=1

W{n},ijK{n},jℓβ
′
IB̆vℓ (r)




W
τK(1)

{n},i CK(1)B̆v (r)

.

.

.

W
τK(qρ )

{n},i CK(qρ )B̆v (r)




′

dr


 E




n∑

j=1

n∑

ℓ=1

W{n},ijK{n},jℓβ
′
I

∫ 1

0
B̆vℓ (r)B̆vi (r)

′dr




E




∫ 1

0
B̆vi (r)




W
τK(1)

{n},i CK(1)B̆v (r)

.

.

.

W
τK(qρ )

{n},i CK(qρ )B̆v (r)




′

dr




′

1

6
�̄vivi




, and

(38)

E

(
M

Z̆Z̆nTi

)
:=




E

([
M

Z̆Z̆,nTi

]
(1:qρ ,1:qρ )

)
E

([
M

Z̆Z̆,nTi

]
(1:qρ ,2:k+qρ )

)

E

([
M

X̆Z̆,nTi

]
(2:k+qρ ,1:qρ )

)
E

(∫ 1

0
B̆vi (r)B̆vi (r)

′dr
)




=




E




∫ 1

0




W
τK(1)
{n},i CK(1)B̆v (r)

.

.

.

W
τK(qρ )

{n},i CK(qρ )B̆v (r)







W
τK(1)
{n},i CK(1)B̆v (r)

.

.

.

W
τK(qρ )

{n},i CK(qρ )B̆v (r)




′

dr




E




∫ 1

0




W
τK(1)
{n},i CK(1)B̆v (r)

.

.

.

W
τK(qρ )

{n},i CK(qρ )B̆v (r)



B̆vi (r)

′dr




E




∫ 1

0
B̆vi (r)




W
τK(1)
{n},i CK(1)B̆v (r)

.

.

.

W
τK(qρ )

{n},i CK(qρ )B̆v (r)




′

dr




1

6
�̄vivi




.

(39)

Given Assumption 5, we observe from (37) that the expectations as well as the joint limits for the terms
in the south-east are equal to 1

6E
(
�vivi

)
= 1

6 �̄vivi . In addition, the other terms in (38) and (39) contain
sums arising from a spatial lag. To guarantee the existence of the expectations in (38) and (39) and to
make a joint weak law of large numbers applicable, we impose:

Assumption 7.

(a) For any n,T as well as (n,T) → ∞, the expectations (38) and (39) exist. For any T, n ∈ N as well

as for n → ∞ also the second moments of
[
MX̆Z̆,nTi

]
(1,1)

,
[
MX̆Z̆,nTi

]
(1,2:k+qρ )

,
[
MX̆Z̆,nTi

]
(2:k+1,1:qρ)

,
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[
MZ̆Z̆,nTi

]
(1:qρ ,1:qρ )

,
[
MZ̆Z̆,nTi

]
(1:qρ ,qρ+1:k+qρ )

=
[
MZ̆Z̆,nTi

]′
(qρ+1:k+qρ ,1:qρ )

, M6∑
Z̆Z̆,nTi

= M6′
Z̆
∑

Z̆,nTi
,

M6∑
Z̆
∑

Z̆,nTi
and

[
mZ̆ŭ,nTi

]
(1:qρ ,1)

exist.

(b) If the (T, n) → ∞-limits exist, the rank condition and the order condition are met.

By Assumption 5 the limit theory developed in Phillips and Moon (1999) can be applied
immediately to all components of M··,nTi and mZ̆ŭ,nTi not containing terms with a spatial

lag. Due to Assumption 7(a) the expected values E
(
M⋆

X̆Z̆,nTi

)
as well as E

(
M⋆

Z̆Z̆,nTi

)
exist,

and the joint limits
[

lim(n,T)→∞ 1
n

∑n
i=1

∑T⋆
t⋆=1 AX̆pX̆p;it⋆ Z̆

′
p;it⋆

AZ̆p

]
(1:j1,1:l1)

=: QX̆Z̆ and
[

lim(n,T)→∞ 1
n

∑n
i=1

∑T⋆
t⋆=1 AZ̆pZ̆p;it⋆ Z̆

′
p;it⋆

AZ̆p

]
(1:l1,1:l1)

=: QZ̆Z̆ satisfy QX̆Z̆ = E
(
M

X̆Z̆,nTi

)
=

E
(
M

X̆Z̆,ni

)
as well as QZ̆Z̆ = E

(
M⋆

Z̆Z̆,nTi

)
= E

(
M⋆

Z̆Z̆,ni

)
. By the assumption on the moments of

M6∑
Z̆Z̆,nTi

= M6′
Z̆
∑

Z̆,nTi
and M6∑

Z̆
∑

Z̆,nTi
the joint limit of PZ̆ŭZ̆ŭ,nT exists and is equal to the expectation

of PZ̆ŭZ̆ŭ,ni.
Note that the existence of the expectations of the nonsouth-east terms in (38) and (39) is nontrivial.

To see this, the joint limits should be equal (given the existence of the expectations and regularity con-
ditions following from Phillips and Moon, 1999) to the expectations of the T → ∞ limits of MX̆Z̆,nTi

and MZ̆Z̆,nTi obtained in Theorem 2. By considering, e.g., the (1, 1) element of E
(
MX̆Z̆,ni

)
we observe

|
[
E
(
MX̆Z̆,ni

)]
(1,1)

| = |E
( ∫ 1

0

∑n
j=1

∑n
ℓ=1 W{n},ijK{n},jℓβ

′B̆vℓ(r)
∑n

ι=1 W{n},iι

[
CK(1)

]
(ι,(ι−1)n+1ι)

B̆vι(r)dr
)
|

≤ ω̄3n · |
∑n

ℓ=1

∑n
ι=1 E

( ∫ 1
0 |β ′B̆vℓ(r)

[
CK(1)

]
(ι,(ι−1)n+1ι)

B̆vι(r)dr
)
|, where |W{n},ij| and |K{n},ij| ≤ ω̄ by

Assumption 6 and E
( ∫ 1

0 β ′B̆vj(r)
[
CK(1)

]
(ι,(ι−1)n+1ι)

B̆vι(r)
)

= 0(kI×1) for j 6= ι, while for j = ι it is a

β ,
[
CK(1)

]
(ι,(ι−1)n+1ι)

weighted sum of 1
6 �̄vivi (note that the coe�cients

[
CK(1)

]
(ι,(ι−1)n+1ι)

are equal for

all ι = 1, . . . , n). In addition, suppose thatW{n},ij ≥ ω > 0 for all i 6= j andK{n},ij ≥ ω > 0 for all i, j, then

|
[
E
(
MX̆Z̆,ni

)]
(1,1)

| = |E
( ∫ 1

0

∑n
j=1

∑n
ℓ=1 W{n},ijK{n},jℓβ

′B̆vℓ(r)
∑n

ι=1 W{n},iι

[
CK(1)

]
(ι,(ι−1)n+1ι)

B̆vι(r)dr
)
|

≥ ω3n · |E
(
β ′B̆vι(r)

[
CK(1)

]
(ι,(ι−1)n+1ι)

B̆vι(r)dr
)
|, which becomes large if n becomes large. Hence, in

general the (1, 1) element of E
(
MX̆Z̆,ni

)
need not be �nite. Similar calculations can be performed with

the north-east and the south-west element as well as for E
(
MZ̆Z̆,ni

)
. Intuitively, either only a �nite subset

of spatial weights is nonzero or the weights decay su�ciently fast such that these expected values exist.
The existence of the second moments of MX̆Z̆,nTi, MZ̆Z̆,nTi, and mZ̆ŭ,nTi, will be used to apply a joint

central limit theory to qZ̆ŭ,nT . The variance will be provided by PZ̆ŭZ̆ŭ := E
(
�uiui

( ∫ 1
0 h̆i(r)h̆i(r)

′dr −∫ 1
0 h̆i(r)

(
Nh̆h̆(r)

)′
dr −

∫ 1
0

(
Nh̆h̆(r)

)
h̆i(r)

′dr +
∫ 1

0

(
Nh̆h̆(r)

)(
Nh̆h̆(r)

)′
dr
))

= �̄uiuiE
( ∫ 1

0 h̆i(r)h̆i(r)
′dr −∫ 1

0 h̆i(r)
(
Nh̆h̆(r)

)′
dr −

∫ 1
0

(
Nh̆h̆(r)

)
h̆i(r)

′dr +
∫ 1

0

(
Nh̆h̆(r)

)(
Nh̆h̆(r)

)′
dr
)

(see Online Appendix A-2 and
Theorems 1 and 2 of Phillips and Moon, 1999). This yields:

Theorem 3 (Joint (n,T) → ∞-Limits for D2SLS Estimation). Consider the �xed e�ects spatial correla-
tion model (10) and the D2SLS estimator (33) based on the within-transformed model (14). Suppose that
the Assumptions 1 to 7 hold. Let T⋆ = T − 2p(T), then for (n,T) → ∞, where n6/T → 0, it follows that:

I. QZ̆Z̆,nT

P→ QZ̆Z̆ , QX̆Z̆,nT

P→ QX̆Z̆ . The asymptotic distribution of
√
nT⋆(γ̆D2SLS;p − γ ) is a normal

distribution with mean vector 0(k+1) and covariance matrix

V̆Q̆ :=
[
QX̆Z̆Q

−1

Z̆Z̆
Q′
X̆Z̆

]−1
D̆Q̆

[
QX̆Z̆Q

−1

Z̆Z̆
Q′
X̆Z̆

]−1
, where D̆Q̆ := QX̆Z̆Q

−1

Z̆Z̆
PZ̆ŭZ̆ŭQ

−1

Z̆Z̆
Q′
X̆Z̆

. (40)

II. Suppose that a consistent estimator of PZ̆ŭZ̆ŭ, denoted by PZ̆ŭZ̆ŭ,nT is available, such

that D̆Q̆,nT := QX̆Z̆,nTQ
−1

Z̆Z̆,,nT
PZ̆ŭZ̆ŭ,,nTQ

−1

Z̆Z̆,,nT
Q′
X̆Z̆,,nT

and V̆Q̆,nT :=
[
QX̆Z̆,nTQ

−1

Z̆Z̆,nT
Q′
X̆Z̆,nT

]−1
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D̆Q̆,nT

[
QX̆Z̆,nTQ

−1

Z̆Z̆,nT
Q′
X̆Z̆,nT

]−1
are estimators of D̆Q̆ and V̆Q̆. Then, D̆Q̆,nT and V̆Q̆,nT converge in

probability to D̆Q̆ as well as V̆Q̆.

Proof. See Section B.

From Theorem 3 it follows that the Wald type test de�ned in Theorem 1 can still be applied in a
setting where T and n are large. The limit distribution of the Wald statistic is still a χ2-distribution
with s degrees of freedom. In addition, we observe that the D2SLS estimator is

√
nT consistent, with

n6/T → 0. Although the OLS, the DOLS, the 2SLS, and the D2SLS estimators are consistent for n �xed
and T → ∞, the OLS, the DOLS, and the 2SLS are in general (due to the second-order bias terms) not√
nT consistent.
In a �nal step we investigate model (11), where—in addition to ρ and βI—the parameter βL has to

be estimated. From (12) we derive the regression model

ỳit⋆ − ρ

n∑

j=1

Wijỳjt⋆ − β ′
I x̀Iit⋆ = β ′

Lx̀Li + ù†
it⋆

, (41)

and the infeasible estimator

β̂L =




n∑

i=1

T⋆∑

t⋆=1

x̀Lix̀
′
Li




−1
n∑

i=1

T⋆∑

t⋆=1

x̀Li


ỳit⋆ − ρ

n∑

j=1

Wijỳjt⋆ − β ′
I x̀Iit⋆




=
(
T⋆

n∑

i=1

x̀Lix̀
′
Li

)−1 n∑

i=1

x̀Li

T⋆∑

t⋆=1

(
β ′
Lx̀Li + ù†

it⋆

)
. (42)

To obtain a feasible estimator we plug in ̂̆γD2SLS into (42), resulting in

β̂L =




n∑

i=1

T⋆∑

t=1

x̀Lix̀
′
Li




−1
n∑

i=1

T⋆∑

t⋆=1

x̀Li


ỳit⋆ − ρ̂

n∑

j=1

Wijỳjt⋆ − β̂
′
I x̀Iit⋆


 , such that

β̂L − βL = =
(

n∑

i=1

x̀Lix̀
′
Li

)−1 n∑

i=1

x̀Li
1

T⋆

T⋆∑

⋆=1

[
ù†
it⋆

+
(
̂̆γD2SLS − γ̆

)′ (
ỳ∗
it⋆

, x̀′
Iit⋆

)′
]

. (43)

For the feasible estimator (43) Appendix C shows that the (n,T) → ∞-asymptotic limit distribu-

tion10 of
√
nT⋆

(̂̀
βL − βL

)
is a normal distribution with mean vector 0(kL×1) and covariance matrix

E
(
x̀Lix̀

′
Li

)−1
D(

x̀Liù
†
it⋆

)E
(
x̀Lix̀

′
Li

)−1 = E
(
�†

uiui

)
E
(
x̀Lix̀

′
Li

)−1
. In more detail, by Assumption 5.(b) the

term 1
n

∑n
i=1 x̀Lix̀

′
Li converges in probability to E

(
x̀Lix̀

′
Li

)
by a weak law of large numbers. In addi-

tion, by Assumption 5(b) a joint central limit theorem applies to 1√
nT⋆

∑n
i=1

∑T⋆
t⋆=1 x̀Liù

†
it , such that

1√
nT⋆

∑n
i=1

∑T⋆
t⋆=1 x̀Liù

†
it converges to a normally distributed vector ν

(x̀Liù
†
ti)

where ν
(x̀Liù

†
ti)

∼

N

(
0(kL×1),D

(
x̀Liù

†
it⋆

)
)

and D(
x̀Liù

†
it⋆

) = E
(
�†

uiui

)
E
(
x̀Lix̀

′
Li

)
. Hence, we observe that limn,T→∞

√
nT⋆

(
β̂L − βL

)
= E

(
x̀Lix̀

′
Li

)−1
ν

(x̀Liù
†
ti)

. Suppose that ˆ̄�†
uiui

= 1
n

∑n
i=1 �̂†

uiui
consistently estimates

10For (n, T) → ∞ and n6/T → 0.
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�̄†
uiui

:= E
(
�†

uiui

)
for (T, n) → ∞, then the covariance matrix E

(
x̀Lix̀

′
Li

)−1
D(

x̀Liù
†
it⋆

)E
(
x̀Lix̀

′
Li

)−1 =

E
(
�†

uiui

)
E
(
x̀Lix̀

′
Li

)−1
can be estimated consistently using the the �nite sample analogs ˆ̄�†

uiui
as well as

1
n

∑n
i=1 x̀Lix̀

′
Li.

4. Monte Carlo simulations

This section investigates the small sample properties of the D2SLS estimator as well as the size and power
of the Wald type test obtained in the Theorems 1 and 2. We generate the data based on an error process
that follows from Assumption 2. Regarding the error dynamics we consider η†

Iit and vCt generated from

η†
Iit = 9†

Ii (L) ε†
Iit , for i = 1, . . . , n, and, vCt =

n∑

i=1

9CIiη
†
Iit + 9C (L) εCt , (44)

where 9CIi, i = 1, . . . , n, are kC × kI + 1 matrices. To operationalize this, we need to specify the lag

polynomials 9†
Ii (L) and 9C (L). In particular, we have to specify the error dynamics of the vectors η†

Iit
and vCt , where we assume the same error dynamics for all cross-sections i = 1, . . . , n as well as for
the common regressors. For model (8) we use four explanatory variables, where kI = kC = 2 and
βI = βC = (1, 1)′. Hence, k = 4 and β = (1, 1, 1, 1)′. In this case the number of instruments is qρ = 2.
The individual variables xIit are used to construct the instruments z̃∗

it . To model the correlation between

η†
Iit and vCt we use (44), where the kC ×kI matrix 9CIi = 0.1

n ·1(2×3) for i = 1, . . . , n. For the model (13)
the individual variables are used to construct the instruments as well, such that z̆∗

it = x̆∗
it , kI = k = 2,

and qρ = 2. In both cases the exponents τ used to construct these instruments in (24) are set to one.
Regarding the error dynamics we use stationary designs close to Binder et al. (2005) to generate the

data for the vectors η†
Iit , for i = 1, . . . , n, and vct . The innovations ε†

Iit are generated as independent

draws from ε†
Iit ∼ N

(
0(kI+1), 6Iε

)
, where N (., .) stands for a normal distribution. To obtain vCt , the

innovations εCt are iid normal, where εCt ∼ N
(
0(kC), 6Cε

)
. In the following Monte Carlo experiments

[6Iε](i,i) = [6Cε](i,i) = 1 for all diagonal terms and [6Iε](i,j) = [6Cε](i,j) = 0.8 for all o�-diagonal
elements.

In the �rst three designs we generate η†
Iit and vCt by the �rst-order vector autoregressive system

(VAR(1)) η†
Iit = 8†

Iiη
†
Ii,t−1 + ε†

Iit and vCt = 8CvC,t−1 + εCt , where the 3 × 3 matrix 8†
Ii and the 2 × 2

matrix 8C come from one of the following designs: Design DGP = 1, stands for stationary VAR(1)

with maximum eigenvalue of 0.6, where
[
8†

Ii

]
(i,i)

=
[
8C

]
(i,i)

= 0.4 and
[
8†

Ii

]
(i,j)

=
[
8C

]
(i,j)

= 0.1 (for

i 6= j). In design DGP = 2 we consider a stationary VAR(1) with maximum eigenvalue of 0.8, where[
8·

·
]
(i,i)

= 0.6 and
[
8·

·
]
(i,j)

= 0.1, while with design DGP = 3,
[
8·

·
]
(i,i)

= 0.75, and
[
8·

·
]
(i,j)

= 0.1

yield a largest eigenvalue of 0.95. In addition, we consider a �nite-order vector moving average (MA)
processes of the form η†

Iit = ε†
Iit +

∑q
l=1 9†

Iilε
†
Ii,t−l and vCt = εCt +

∑q
l=1 9ClεC,t−l where we choose:

Design DGP = 4, which is a �rst-order MA process with parameter 9†
Ii1 (presented in (45)) and 9†

C1,
while with DGP = 5 we use an MA(2) model with parameters

9†
Ii1 =




0.6 0.1 0.1
0.1 0.6 0.1
0.1 0.1 0.6


 , 9†

Ii2 =




0.4 0.1 0.1
0.1 0.4 0.1
0.1 0.1 0.4


 ,

9C1 =
(

0.6 0.1
0.1 0.6

)
, and 9C2 =

(
0.4 0.1
0.1 0.4

)
.

Recall that the disturbance in the equation for yit is given by the �rst element of the vector η†
Iit , while its

remaining elements contain 1xIit . The maximum number of leads and lags of the explanatory variables
that are conditionally correlated with the disturbances is equal to one in the Designs 1-3, while for the
Designs 4 and 5 all lags of the explanatory variables are conditionally correlated with the disturbances.
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The remaining parameters of the model are chosen as follows: We generate the individual e�ects αi from
αi ∼ N (0, 1), while if time �xed e�ects are included then λt ∼ N (0, 1). For a model where kL > 0, we
work with βL = (1, 1)′ and xLi ∼ N

(
0(2×1), I2

)
for i = 1, . . . , n.

The spatial correlation parameter ρ is chosen from the set {−0.95, −0.5, −0.1, 0, 0.1, 0.5, 0.95}. The
choice of W is based on Kapoor et al. (2007). In more details we consider: (i) A “one step ahead-one step
behind circular world” with corresponding entries 1/2, where the last element in each row is subject
to some noise. That is Wi,i+1 = 0.5 − ζi and Wi+1,i = 0.5 for i = 1, . . . , n − 1. W1,n = 0.5 − ζ1

and Wn,1 = 0.5, the other entries are zeros. ζi, i = 1, . . . , n, are iid uniformly distributed noise terms
on the interval [0, 0.2]. (ii) A “three step ahead-three step behind circular world” with corresponding
entries 1/6. (iii) A “�ve step ahead-�ve step behind circular world” with corresponding entries 1/10.
(iv) A “one step ahead-one step behind Rook constellation” with corresponding entries 1/2. This design
is noncircular. Here Wi,i+1 = 0.5 − ζi and Wi+1,i = 0.5 for i = 1, . . . , n − 1; the other entries are zero.
(v) A “two step ahead-two step behind Queen constellation”. In this noncircular design Wi,i+1 = 0.3,
Wi,i+2 = 0.2 − ζi, Wi+1,i = 0.3, and Wi+2,i = 0.2 for i = 1, . . . , n − 2; the other entries are zero. Thus,
we have in total 175 di�erent data generating processes (5, 7, 5 di�erent settings for the autoregressive
structure of η†

it , the spatial correlation parameter ρ and the spatial correlation matrix W, respectively).
If the noise terms ζi are zero, we observed that some of the matrices become di�cult to invert for model
(13) when the weights Wij are proportional to 1/n for all i 6= j. In this case also instruments based on
x̃∗
it⋆

can be used, where we did not observe that problem. The asymptotic limit distribution with these
instruments is obtained in Online Appendix A-5.

Estimates of �uiui are obtained by �̂uiui
= 1

T⋆

∑T⋆
t⋆=1

∑T⋆
s⋆=1 k

(
|t⋆−s⋆|
bT

)
̂̃uit⋆̂̃uis⋆ , where k(.) is a kernel

function with bandwidth bT and ̂̃uit⋆ are the residuals.11 For the estimation of the long run covariance
�uiui we applied the Bartlett and the truncated kernel.12 The truncated kernel exhibits a better per-

formance than the Bartlett kernel. For the truncated kernel k
(

|t⋆−s⋆|
bT

)
= 1 for |t⋆−s⋆|

bT
≤ 1 and 0 for

|t⋆−s⋆|
bT

> 1. Hence, only ̂̃uit⋆̂̃uis⋆ where |t⋆ − s⋆| ≤ bT are used to estimate �uiui . In our simulation runs
we use a bT ≤ 15, where bT depends on the serial correlation of the residuals.

When implementing the D2SLS estimators (28) and (33), the number of leads and lags p included in
the regression has to be chosen. Recent literature proposed to choose p by information criteria (see, e.g.,
Kejriwal and Perron, 2008; Kurozumi and Tuvaandorj, 2010). With small T and n the implementation
of such criteria is straightforward. However, since a dataset with (relatively) large n and T is going to be
considered, working with small p becomes necessary due to computational restrictions. In particular,
we set p = 2 for all components i = 1, . . . , n. For all designs working with p = 2 performed better than
working with p = 1.

Last but not least M is the number of Monte Carlo steps and m is the index of the corresponding
iteration. For n = 5 and 10, M = 2, 000 while for n = 50 and n = 100 due to the higher computational
requirements M = 1, 000. Although, we know that for OLS, 2SLS, and DOLS we did not obtain weak
convergence to a zero mean Gaussian mixture distribution, the Wald statistic is also calculated for these
estimation methods. For the model (13) we only projected on the own leads an lags ζ̃ it⋆ with the DOLS
and the D2SLS estimator. For OLS and 2SLS we do not project on any leads and lags, e.g., p = ∅, while
Z̆p;it⋆

is replaced by X̆p;it⋆
with the OLS and the DOLS estimator of γ̆ .

We tried to consider the cases whereT = 200 and n = 5, 10, 50 and 100. With these nwe investigated
the size of the Wald statistic and obtained the percentages of the simulation runs where the true null
hypothesis ρ = 0 was rejected at αc = {0.01, 0.05, 0.1} signi�cance levels. To obtain the power of the
Wald type test we choose ρ = {−0.95, −0.5, −0.1, 0.1, 0.5, 0.95} and investigate how o�en the false null-
hypothesis of ρ = 0 is rejected.13

11For model (13) we work the the residualŝ̆uit⋆ .
12For more details in consistent estimation of the covariance see Section A-6.
13Tables A-1 to A-9 in the Online Appendix present summary statistics from these simulation runs for the leading case given
by (8). For model (13) further results are provided in the Tables A-11 to A-13.
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As a �rst result we observe that projecting on all leads and lags can only be performed for small n due
to numerical constraints. We already observe that for n = 5 the performance of the SD2SLS estimators
is poor (i.e. (A-24) discussed Online Appendix A-4 for model (8) and (33) for model (13)). Although the
projection on all leads and lags is not necessary to obtain a mean zero Gaussian mixture limit distribution
(Theorem1) for model (8), for model (13) where the estimator (33) is applied, theoretically correct
estimates of the parameter γ̆ can only be obtained when the cross-sectional dimension is small. For
larger n, i.e. already for n = 20 and larger, the so�ware package was hardly able/was not able to invert
the matrices contained in the estimator (33). Hence, we were not able to perform a Monte Carlo study
for model (13) with n > 10. In addition, for n = 5 and n = 10, Table 2 shows substantial oversizing
for the estimator (33). The columns where (33) is applied are abbreviated by SD2SLS. Regarding the
size of the Wald type test, the (second-order biased) estimators 2SLS, DOLS, and D2SLS (and still OLS)
perform better than the estimator (33). For ρ 6= 0, and n = 5 or n = 10, the estimators reject the wrong
null-hypothesis ρ = 0 in more than 88% of our simulation runs. That is, the power is acceptable. Online
Appendix A-7 demonstrates that the bias and the root mean squared error of the estimator (33) are high.
In addition, given a small n and kL > 0, we observed very poor results for the estimator (43). Therefore,
parameter estimation for βL based on �rst using (33) to estimate β = βI and ρ and then applying the
estimator (43) does not work in practice. We claim that this e�ect is caused by the properties of the
estimator (33) and the fact that a small cross-sectional dimension n is available to estimate βL.

Hence, the remaining part of this section investigates the small sample properties of model (8) and
the estimator (28). Regarding power, for ρ = {−0.95, −0.5, −0.1, 0.1, 0.5, 0.95} the false null-hypothesis
of ρ = 0 has been rejected in almost all of the simulation runs for the above simulation designs. When
considering the 5 × 6 × 5 = 150 di�erent designs, where ρ 6= 0, we observe that even with n = 5,
in almost 99% of all simulation runs the false null hypothesis was rejected at a 5% signi�cance level
(see the last rows of Table 1). The smallest rejection rates are observed with ρ = ±0.1 and the moving
average designs DGP = 4 and DGP = 5. For n = 10, n = 50, and n = 100 we observed that the
false null hypothesis has been rejected in almost all cases. To analyze the size of the Wald type test, the
rejection rates of the Wald type test for the true null hypothesis ρ = 0 are investigated. The comparison of
D2SLS to DOLS is of special interest. With n = 5, the oversizing remains modest for DOLS and D2SLS.
The rejection rates observed are very similar, although D2SLS uses the instrumental variables where
the numerical complexity is increased. With the moving average process stronger oversizing e�ects are
obtained. The performance of DOLS is very close to the performance of our D2SLS estimator; here in
some settings undersizing is observed. With 2SLS the oversizing observed is large, while substantial
oversizing can be observed when OLS is applied. If the correlation of vit and u†

it is decreased (e.g., by
choosing a diagonal 6.ε or a VAR model with smaller eigenvalues), the oversizing behavior of OLS
and 2SLS decreases. With small correlations, the performance of OLS and 2SLS is comparable to the
performance of DOLS and D2SLS. There also exist data generating processes where the performance of
the Wald type test for DOLS is much worse than for D2SLS. This takes place if Ŵ0,uiui is large compared
to the variance of vit . This e�ect can be expected by looking at the asymptotic bias term arising for DOLS
(Proposition 2).

Remark 5. The question also arises whether the oversizing e�ect observed with the D2SLS estimator
can be attributed to instrumental variable estimation, the choice of the instruments or the inclusion of
common variables. Note that for ρ = 0 (and Wii = 0, for i = 1, . . . , n), the asymptotic bias of the DOLS
estimator is zero.14 By comparing the rejection rates of the DOLS and the D2SLS estimator, oversizing
with D2SLS is approximately equal to—and some cases even smaller—than oversizing with DOLS (these
e�ects are present with or without common variables).

14To see this, by Proposition 2 the asymptotic bias term is given by WiKŴ0,uui for i = 1, . . . , n. For ρ = 0 we get K =
(In − 0W)−1 = In andWiK = WiIn = Wi . By Assumption 1Wii = 0, while by Assumption 2 Ŵ0,ujui = 0 for i 6= j. This yields

WiKŴ0,uui =
∑n

j=1WijŴ0,ujui = 0. The assumption that Ŵ0,ujui 6= 0, for i 6= j, is important to obtain an asymptotically

unbiased DOLS estimator for ρ = 0.

ECONOMETRIC REVIEWS 619



T
a
b
le
1
.
M
o
d
el
(8
):
Si
ze

an
d
P
o
w
er
fo
r
th
e
Pa
ra
m
et
er

ρ
,S
im
u
la
ti
o
n
d
es
ig
n
s
D
G
P

=
1
−
5
an
d
W

=
(i
)
−

(v
):
Fi
rs
t
fo
u
r
b
lo
ck
s:
R
ej
ec
ti
o
n
s
ra
te
s
o
ft
h
e
W
al
d
ty
p
e
te
st
fo
r
th
e
tr
u
e
n
u
ll
h
yp
o
th
es
is

ρ
=

0
in

p
er
ce
n
ta
g
e
te
rm

s,
g
iv
en

th
e
si
g
n
i�
ca
n
ce

le
ve
ls

α
c

=
{0
.0
1
,0
.0
5
,0
.1

}.
Q
(α

)
st
an
d
s
fo
r
th
e
α
q
u
an
ti
le
o
ft
h
e
co
rr
es
p
o
n
d
in
g
M
o
n
te
C
ar
lo
sa
m
p
le
s.
La
st
b
lo
ck
:R
ej
ec
ti
o
n
s
ra
te
s
o
ft
h
e
W
al
d
ty
p
e
te
st
fo
r
th
e

fa
ls
e
n
u
ll
h
yp
o
th
es
is

ρ
=

0
in
p
er
ce
n
ta
g
e
te
rm

s,
g
iv
en

th
e
si
g
n
i�
ca
n
ce

le
ve
ls

α
c

=
{0
.0
1
,0
.0
5
,0
.1

}.

α
c

=
0
.0
1

α
c

=
0
.0
5

α
c

=
0
.1
0

O
LS

2
SL
S

D
O
LS

D
2
SL
S

SD
2
SL
S

O
LS

2
SL
S

D
O
LS

D
2
SL
S

SD
2
SL
S

O
LS

2
SL
S

D
O
LS

D
2
SL
S

SD
2
SL
S

n
=

5
,T

=
2
0
0
,ρ

=
0

m
in

0
.6

0
.7

1
.7

1
.6

1
3
.4

2
.5

2
.6

6
.5

5
.6

2
5
.0

5
.4

5
.7

1
1
.6

1
0
.7

3
3
.4

m
ax

2
9
.3

5
.3

5
.7

3
.8

4
9
.9

4
8
.3

1
5
.0

1
3
.9

9
.0

5
9
.6

5
9
.5

2
4
.8

2
1
.3

1
5
.1

6
5
.1

Q
(9
9
)

2
9
.2

5
.3

5
.3

3
.7

4
9
.5

4
8
.2

1
4
.9

1
3
.5

8
.9

5
9
.5

5
9
.3

2
4
.7

2
0
.5

1
5
.1

6
5
.0

Q
(9
5
)

2
4
.2

5
.1

4
.1

3
.4

4
8
.1

4
1
.8

1
4
.7

1
1
.7

8
.6

5
9
.2

5
2
.1

2
4
.5

1
7
.7

1
5
.0

6
4
.6

Q
(9
0
)

5
.2

5
.1

3
.6

3
.2

4
8
.0

1
5
.6

1
4
.5

9
.5

8
.6

5
9
.0

2
5
.2

2
4
.4

1
5
.4

1
4
.8

6
4
.6

n
=

1
0
,T

=
2
0
0
,ρ

=
0

m
in

0
.6

0
.5

1
.5

1
.5

2
.3

2
.3

5
.4

5
.2

4
.1

4
.3

9
.9

9
.7

m
ax

3
.1

3
.3

2
.4

2
.4

1
0
.1

1
1
.6

7
.9

7
.7

1
8
.0

1
9
.3

1
3
.8

1
3
.7

Q
(9
9
)

3
.0

3
.3

2
.4

2
.4

1
0
.1

1
1
.5

7
.8

7
.7

1
7
.8

1
9
.2

1
3
.7

1
3
.5

Q
(9
5
)

3
.0

3
.3

2
.2

2
.2

9
.9

1
0
.9

7
.7

7
.7

1
7
.0

1
8
.5

1
3
.4

1
2
.9

Q
(9
0
)

2
.8

3
.1

2
.1

2
.1

9
.6

9
.0

7
.7

7
.6

1
6
.1

1
5
.6

1
2
.8

1
2
.7

n
=

5
0
,T

=
2
0
0
,ρ

=
0

m
in

0
.2

0
.2

0
.2

0
.2

3
.6

3
.8

2
.0

2
.0

9
.2

8
.6

5
.4

5
.4

m
ax

2
9
.0

2
7
.0

5
.2

5
.2

5
8
.8

5
6
.8

1
3
.4

1
3
.0

7
6
.8

7
5
.0

1
9
.6

1
9
.2

Q
(9
9
)

2
9
.0

2
7
.0

5
.2

5
.1

5
8
.6

5
6
.8

1
3
.4

1
2
.9

7
6
.7

7
5
.0

1
9
.5

1
9
.2

Q
(9
5
)

2
8
.3

2
6
.8

5
.0

4
.8

5
7
.8

5
6
.8

1
2
.9

1
2
.3

7
6
.1

7
4
.8

1
8
.8

1
8
.6

Q
(9
0
)

2
6
.2

2
6
.4

4
.8

4
.5

5
7
.5

5
6
.6

1
1
.7

1
1
.8

7
5
.4

7
4
.0

1
8
.1

1
7
.2

n
=

1
0
0
,T

=
2
0
0
,ρ

=
0

m
in

0
.4

0
.2

0
.6

0
.6

4
.2

4
.4

3
.2

3
.2

9
.0

9
.0

8
.0

7
.8

m
ax

5
6
.2

5
3
.0

4
.6

4
.6

7
9
.2

7
7
.6

1
3
.6

1
3
.2

8
9
.0

8
8
.8

1
9
.2

2
0
.0

Q
(9
9
)

5
6
.2

5
3
.0

4
.6

4
.6

7
9
.1

7
7
.6

1
3
.4

1
3
.2

8
8
.9

8
8
.8

1
9
.2

1
9
.8

Q
(9
5
)

5
6
.0

5
2
.8

4
.3

4
.4

7
8
.7

7
7
.2

1
2
.6

1
3
.1

8
8
.6

8
8
.4

1
9
.0

1
9
.1

Q
(9
0
)

5
5
.8

5
2
.5

3
.8

4
.0

7
8
.4

7
6
.3

1
2
.2

1
2
.4

8
8
.4

8
7
.6

1
8
.2

1
8
.8

n
=

5
,T

=
2
0
0
,ρ

6=
0
,ρ

∈
{−

0
.9
,−

0
.5
,−

0
.1
,0
.1
,0
.5
,0
.9

}
m
in

1
0
0
.0

9
9
.8

1
0
0
.0

1
0
0
.0

9
7
.2

1
0
0
.0

9
9
.8

1
0
0
.0

1
0
0
.0

9
7
.6

1
0
0
.0

9
9
.8

1
0
0
.0

1
0
0
.0

9
8
.2

m
ax

1
0
0
.0

9
9
.8

1
0
0
.0

1
0
0
.0

9
6
.8

1
0
0
.0

9
9
.8

1
0
0
.0

1
0
0
.0

9
7
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

9
7
.0

Q
(1

)
1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

9
9
.2

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

9
9
.2

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

9
9
.2

Q
(5

)
1
0
0
.0

1
0
0
.0

1
0
0
.0

9
9
.8

9
9
.4

1
0
0
.0

1
0
0
.0

1
0
0
.0

9
9
.8

9
9
.4

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

9
9
.4

Q
(1
0
)

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

620 J. MUTL AND L. SÖGNER



T
a
b
le
2
.
M
o
d
el
(1
3
):
Si
ze

an
d
P
o
w
er
fo
r
th
e
Pa
ra
m
et
er

ρ
,S
im
u
la
ti
o
n
d
es
ig
n
s
D
G
P

=
1

−
5
an
d
W

=
(i
)
−

(v
):
Fi
rs
t
fo
u
r
b
lo
ck
s:
R
ej
ec
ti
o
n
s
ra
te
s
o
f
th
e
W
al
d
ty
p
e
te
st
fo
r
th
e
tr
u
e
n
u
ll
h
yp
o
th
es
is

ρ
=

0
in
p
er
ce
n
ta
g
e
te
rm

s,
g
iv
en

th
e
si
g
n
i�
ca
n
ce

le
ve
ls

α
c

=
{0
.0
1
,0
.0
5
,0
.1

}.
Q
(α

)
st
an
d
s
fo
r
th
e
α
q
u
an
ti
le
o
ft
h
e
co
rr
es
p
o
n
d
in
g
M
o
n
te
C
ar
lo
sa
m
p
le
s.
La
st
tw
o
b
lo
ck
s:
R
ej
ec
ti
o
n
s
ra
te
s
o
ft
h
e
W
al
d
ty
p
e
te
st

fo
r
th
e
fa
ls
e
n
u
ll
h
yp
o
th
es
is

ρ
=

0
in
p
er
ce
n
ta
g
e
te
rm

s,
g
iv
en

th
e
si
g
n
i�
ca
n
ce

le
ve
ls

α
c

=
{0
.0
1
,0
.0
5
,0
.1

}.

α
c

=
0
.0
1

α
c

=
0
.0
5

α
c

=
0
.1
0

O
LS

2
SL
S

D
O
LS

D
2
SL
S

SD
2
SL
S

O
LS

2
SL
S

D
O
LS

D
2
SL
S

SD
2
SL
S

O
LS

2
SL
S

D
O
LS

D
2
SL
S

SD
2
SL
S

n
=

5
,T

=
2
0
0
,ρ

=
0

m
in

1
.7

1
.6

0
.7

0
.3

1
3
.7

5
.7

5
.5

3
.7

2
.0

2
5
.4

1
0
.3

9
.9

7
.6

4
.4

3
3
.9

m
ax

1
8
.8

9
.0

2
1
.5

1
6
.3

4
1
.3

3
1
.3

1
8
.1

3
5
.0

2
7
.4

5
2
.3

3
9
.6

2
6
.1

4
2
.5

3
4
.9

6
0
.1

Q
(9
9
)

1
.7

1
.6

0
.7

0
.4

1
3
.8

5
.7

5
.5

3
.7

2
.2

2
5
.6

1
0
.4

9
.9

7
.6

4
.7

3
4
.2

Q
(9
5
)

1
.9

1
.7

0
.9

0
.6

1
4
.4

5
.9

5
.5

3
.9

2
.7

2
6
.6

1
0
.9

1
0
.1

7
.8

5
.9

3
5
.2

Q
(9
0
)

2
.1

1
.9

0
.9

0
.8

1
5
.1

6
.4

5
.8

4
.3

3
.3

2
6
.9

1
1
.7

1
0
.7

8
.1

6
.8

3
5
.5

n
=

5
,T

=
2
0
0
,ρ

6=
0
,ρ

∈
{−

0
.9
,−

0
.5
,−

0
.1
,0
.1
,0
.5
,0
.9

},
m
in

9
4
.3

9
4
.8

9
8
.9

7
4
.3

8
2
.4

9
8
.0

9
8
.0

9
9
.4

8
1
.2

8
6
.5

9
8
.8

9
9
.0

9
9
.5

8
4
.5

8
8
.8

m
ax

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

Q
(1

)
9
5
.4

9
5
.3

9
9
.0

7
5
.9

8
3
.7

9
8
.2

9
8
.5

9
9
.4

8
2
.1

8
8
.0

9
9
.0

9
9
.1

9
9
.6

8
5
.0

8
9
.8

Q
(5

)
9
8
.1

9
8
.6

1
0
0
.0

7
9
.1

8
9
.6

9
8
.8

9
9
.3

1
0
0
.0

8
5
.7

9
2
.4

9
9
.4

9
9
.6

1
0
0
.0

8
8
.8

9
3
.7

Q
(1
0
)

1
0
0
.0

1
0
0
.0

1
0
0
.0

8
4
.7

9
4
.5

1
0
0
.0

1
0
0
.0

1
0
0
.0

8
9
.1

9
6
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

9
0
.6

9
6
.5

n
=

1
0
,T

=
2
0
0
,ρ

=
0

m
in

1
.2

1
.0

0
.4

0
.1

3
0
.8

4
.1

4
.3

1
.8

0
.7

4
2
.4

9
.8

9
.0

5
.0

3
.1

4
8
.6

m
ax

1
5
.6

9
.0

2
1
.0

7
.2

8
7
.0

2
8
.4

1
7
.0

3
7
.0

1
5
.0

8
9
.6

3
7
.4

2
6
.4

4
3
.8

2
0
.6

9
2
.2

Q
(9
9
)

1
.2

1
.0

0
.4

0
.1

3
1
.0

4
.4

4
.3

2
.1

0
.9

4
3
.0

1
0
.1

9
.0

5
.2

3
.1

4
9
.4

Q
(9
5
)

1
.4

1
.0

0
.6

0
.2

3
1
.9

5
.5

4
.6

3
.2

1
.4

4
4
.8

1
1
.3

9
.4

6
.2

3
.2

5
1
.8

Q
(9
0
)

1
.8

1
.5

0
.7

0
.2

3
2
.6

7
.2

5
.9

3
.7

1
.4

4
5
.2

1
2
.5

1
1
.7

7
.2

3
.3

5
2
.6

n
=

1
0
,T

=
2
0
0
,ρ

6=
0
,ρ

∈
{−

0
.9
,−

0
.5
,−

0
.1
,0
.1
,0
.5
,0
.9

}
m
in

1
0
0
.0

1
0
0
.0

1
0
0
.0

9
5
.0

9
7
.6

1
0
0
.0

1
0
0
.0

1
0
0
.0

9
6
.0

9
8
.6

1
0
0
.0

1
0
0
.0

1
0
0
.0

9
6
.8

9
8
.6

m
ax

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

Q
(1

)
1
0
0
.0

1
0
0
.0

1
0
0
.0

9
5
.8

9
8
.4

1
0
0
.0

1
0
0
.0

1
0
0
.0

9
6
.7

9
8
.7

1
0
0
.0

1
0
0
.0

1
0
0
.0

9
7
.2

9
8
.8

Q
(5

)
1
0
0
.0

1
0
0
.0

1
0
0
.0

9
8
.8

9
9
.6

1
0
0
.0

1
0
0
.0

1
0
0
.0

9
9
.2

9
9
.6

1
0
0
.0

1
0
0
.0

1
0
0
.0

9
9
.5

9
9
.6

Q
(1
0
)

1
0
0
.0

1
0
0
.0

1
0
0
.0

9
9
.8

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

ECONOMETRIC REVIEWS 621



Summing up, we observe that the estimator (28) exhibits (in most cases) some oversizing behavior
as already observed in the literature where dynamic least squares estimation has been applied (see, e.g.,
Mark and Sul, 2003). However, even with the true null-hypothesis ρ = 0, where no spatial endogenetiy is
present, theD2SLS estimator in most cases outperforms theDOLS, theOLS as well as the 2SLS estimator.

5. Empirical illustration

In this section, we apply the tools developed in the former sections to credit risk data. To model cor-
porate default swap (CDS) spreads we follow Berndt et al. (2008) and use the distance to default, the
debt to value ratio, interest rates and the VIX volatility index as explanatory variables. By the matrix
W we model a speci�c form of default risk correlation, where W will be derived from input–output
data obtained the Bureau of Labor Statistics (BLS). The CDS dataset already used in Schneider et al.
(2010), comprises CDS spreads of 278 �rms obtained from the Markit Group. We focus on the �ve
year maturities which are typically the most liquid ones. The observation period is January 2, 2001
to May 30, 2008. In line with a bulk of quantitative �nance literature we stick to weekly data, such
that T = 230. The CDS data are matched with �rm speci�c characteristics obtained from Thomson
Datastream and Compustat data. We construct the KMV distance to default, DDit , from �rm speci�c
data by following Crosbie and Bohn (2003). Moreover, we calculate the debt to value ratio, DVRit . DVRit
is measured in percentage terms. We also include the VIX volatility from the Chicago Board Options
Exchange (http://www.cboe.com/micro/VIX/vixintro.aspx) as an explanatory variable. Additionally, we
include a the year interest rate, denoted by r2t and measured in percentage terms, from the Federal
Reserve (http://federalreserve.gov/releases/h15/data.htm). A�er matching the �rm speci�c data with the
CDS data and excluding observations where data problems are observed, with work with a cross-section
of n = 148, yit = lnCDSit , the common variables are xCt = (r2t ,VIXt)

′, while xIit = (DDit , lnDVRit)
′.15

Using our data set, we apply model (8) and estimate the parameter vector γ by two-stage least squares,
DOLS, OLS, and D2SLS. The results are presented in Table 3. Based on our theoretical results, only the
D2SLS estimator should be used. The results from the other estimation methods are included only for
comparison. When instrumental variables are used in the estimation, the logarithm of the distance to
default and the debt-to-value ratio are used in (24), i.e., qρ = 2. All the p-values presented in Table 3 are
obtained by a Wald type test as described in Theorem 1.

For the distance to default and the debt to value ratio the parameters are highly signi�cant and have
the signs expected from �nance literature. The impact of the short term interest rate r2t is signi�cant
as well. When the short term interest rate r2t increases, the logarithm of the CDS spread decreases. The
VIX volatility index is not signi�cant whenD2SLS estimation is performed and default signi�cance levels
(1%, 5%, 10%) are applied. With the dynamic two stage least squares estimator the spatial correlation
parameter ρ is positive as expected and highly signi�cant.

Table 3. Parameter Estimates for model (8) applied to CDS data. The response variable yit is the natural logarithm of the CDS spread
on a �rm level. The explanatory variables are the distance to default, DDit , the logarithm of the debt to value ratio, lnDVRit , a two year
bond yield r2t and the VIX volatility index VIXt . T = 230, n = 148, p = 2 leads and lags are used; the number of instruments is qρ = 2.

γ̂ OLS 2SLS DOLS D2SLS

ρ 0.8023 < 0.001 0.5413 < 0.001 0.7861 < 0.001 0.5021 < 0.001
βDD −0.0434 0.0059 −0.0516 0.0017 −0.0751 < 0.001 −0.0893 < 0.001
βlnDVR 0.4233 < 0.001 0.4519 < 0.001 0.4220 < 0.001 0.4509 < 0.001
βr2 −0.1354 < 0.001 −0.1616 < 0.001 −0.1209 < 0.001 −0.1468 < 0.001
βVIX 0.0007 0.3225 0.0009 0.2018 −0.0006 0.2720 −0.0006 0.2726

15For more details on the data see Section A-8 in the Online Appendix.
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6. Conclusions

In this paper, we studied panel data models with a cointegration relationship including a spatial lag. Due
to this spatial lag, standard estimation techniques do not provide us with appropriate tools to estimate the
parameters and to perform inference. Based on this problem we stick to the usual assumptions used in
the dynamic least squares estimation and develop a dynamic two stage least squares estimator. We show
that the parameter vector of interest is asymptotically independent of the nuisance parameters. Moreover,
we derive the asymptotic distribution of the parameters when the time-series dimension becomes large.
Convergence to a zero mean Gaussian mixture is attained, which also allows the application of a Wald
type test. In addition, a limit result, where the time-series and the cross-sectional dimension become
large is obtained. The limit distribution is a Gaussian distribution.

Our estimation methodology is applied to simulated data to investigate the small sample properties,
and to �nancial data to test for the impact of spatial correlation on credit default swap spreads. Given this
�nancial data set and a spatial correlation matrix obtained from input–output data, our analysis shows
that spatial correlation is highly signi�cant.

A. Proof of the Propositions 1–3 as well as Theorems 1 and 2

The estimators considered in Section 3 can be expressed by means of

(γ̂ ′, δp
′
)′(m) − (γ ′, δ′

p)
′ =

(
X̃

′(m)
p PHpX̃

(m)
p

)−1
X̃

′(m)
p P

(m)
Hp u

(m)
p , PHp = Z̃

(m)
p

(
Z̃

′(m)
p Z̃

(m)
p

)−1
Z̃

′(m)
p , and

(
̂̆γ ′

,
̂̆
δ
′
♯p

)′
−
(
γ̆ ′, δ̆

′
♯p

)′
=
(
X̆′
pPH̆pX̆p

)−1
X̆′
pPH̆p

ŭp , PH̆p = Z̆p

(
Z̆′
pZ̆p

)−1
Z̆′
p , (45)

where m = OLS, . . . ,D2SLS. For OLS and 2SLS, p = ∅, while for OLS and DOLS we have Z̃
(m)
p = X̃

(m)
p ,

such that Z̃
(m)
p is equal to the identity matrix. X̃

(m)
p is a T⋆n× 1 + k+ (2p+ 1)k · n matrix while Z̃

(m)
p is of

dimension T⋆n × qρ + k + (2p + 1)k · n, where X̃
(m)
it⋆;p and Z̃

(m)
it⋆;p are the transpose of the it⋆ elements of

X̃
(m)
p and Z̃

(m)
p . The variables containing the su�x ˘ were de�ned in Section 3.3. Then, with r ∈ [0, 1],

we obtain for DOLS and D2SLS

T0.5
⋆ · AX̃pX̃

(m)
i[rT⋆];p =




T0.5
⋆ · 1

T⋆
·
(
WiK

(
β̃Cx̃[rT⋆] + ζ̃ p;i[rT⋆]δp + ũ

(m)
[rT⋆]

))

T0.5
⋆ · 1

T⋆
· x̃i[rT⋆]

0((2p+1)k·(i−1)×1)

ζ̃ p;i[rT⋆]
0((2p+1)k·(n−i−1)×1)




and

T0.5
⋆ · AX̆pX̆i[rT⋆];p =




T0.5
⋆ · 1

T⋆
·
(
WiK

(
(In ⊗ β̆)x̆I[rT⋆] + ζ̆ ♯p;[rT⋆]δ̆p + ŭ[rT⋆]

))

T0.5
⋆ · 1

T⋆
· x̆Ii[rT⋆]

0((2p+1)knI ·(i−1)×1)

ζ̃ ♯p;[rT⋆]
0((2p+1)kIn·(n−i−1)×1)




. (46)

By Assumption 2 the components 1 to k+1 provided in (46) weakly converge to gi(r) and ği(r) asT → ∞
(de�ned in (21) as well as (34) in the main text). For the OLS and the 2SLS estimator, (46) implies that[
T0.5

⋆ · AZ̃pX̃
(m)
i[rT⋆];p=

]
(1:k+1,1)

converges weakly to gi(r). In addition, forD2SLSwe getT0.5
⋆ ·AZ̃pZ̃

m
i[rT⋆];p =

T0.5
⋆ ·AZ̃p

(
T−0.5

⋆ z̃∗
i[rT⋆],T

−0.5
⋆ x̃′

i[rT⋆], 0
′
((2p+1)k(i−1)×1)

, ζ̃
′
p;i[rT⋆], 0

′
((2p+1)k·(n−i−1)×1)

)′
, where the �rst k+qρ

components weakly converge to hi(r) asT → ∞ (Proposition 3). Also for the 2SLS estimator we observe
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that the T → ∞ limit of T−0.5
⋆ Z̃

(2SLS)
i[rT⋆];p is hi(r). For the �rst qρ + kI coordinates of T0.5

⋆ · AZ̆pZ̆
m
i[rT⋆];p we

derive weak convergence to h̆i(r) de�ned in (34). Note that for kC = 0, β = βI , k = kI , and C = InkI .

Step 1 (Asymptotic Limit Distribution): First we consider:

M⋆

X̃Z̃,nTi
:=

T⋆∑

t⋆=1

AX̃pX̃it⋆;pZ̃
′
it⋆;pAZ̃p = 1

T⋆

T⋆∑

t⋆=1




T−0.5
⋆ ỹ∗

it⋆
T−0.5

⋆ x̃it⋆
0((2p+1)k·(i−1)×1)

ζ̃ p;it⋆
0((2p+1)k·(n−i−1)×1)







T−0.5
⋆ z̃∗

it⋆
T−0.5

⋆ x̃it⋆
0((2p+1)k·(i−1)×1)

ζ̃ p;it⋆
0((2p+1)k·(n−i−1)×1)




′

.

(47)

By Theorem 30.2 in Davidson (1994)
[

limT→∞ M⋆

X̃Z̃,nTi

]
(1:k+1,1:k+qρ )

=
∫ 1

0 gi(r)hi(r)
′dr = MX̃Z̃,ni.

In addition, by a law of large numbers (see, e.g., White, 2001, Chapter 3.2), the terms in the south-east
converge in probability to elements of Ŵℓ,vv. Last but not least the terms in the south-west and the terms in

the north-east convergence weakly when scaled by 1/T, that is 1
T⋆

∑T⋆
t⋆=1 x̃it⋆ ũit⋆ ⇒

∫ 1
0 B̃vi(r)dB

†
uj
(r) +

1†
viui

such that T
−3/2
⋆

∑T⋆
t⋆=1 x̃it⋆ ũ

†
it⋆

converges to zero in probability. The same result is observed for

T
−3/2
⋆

∑T⋆
t⋆=1 x̃it⋆ ũit⋆ . Hence,

[
M⋆

X̃Z̃,ni

]
(1:k+1,k+qρ+1:k+qρ+(2p+1)nk)

=
[
M⋆

Z̃Z̃,ni

]′
(k+qρ+(2p+1)nk,1:k+1)

=

0(k+1×(2p+1)nk). In the same way M⋆

Z̃Z̃,nTi
converges to

[
M⋆

Z̃Z̃,nTi

]
(1:k+1,1:k+qρ )

=
∫ 1

0 hi(r)hi(r)
′dr =

MZ̃Z̃,ni, the south-eastern block contains elements of Ŵℓ,vv, while the remaining blocks are zero. M⋆

X̃X̃,nTi

converges to
[
M⋆

X̃X̃,nTi

]
(1:k+1,1:k+1)

=
∫ 1

0 gi(r)gi(r)
′dr = MX̃X̃,ni, the south-eastern block contains

elements of Ŵℓ,vv, while the remain blocks are zero. The same steps also apply to M⋆

X̆Z̆,nTi
and M⋆

Z̆Z̆,nTi
.

In the second step we obtain the limit of the terms containing ũ
(m)
it or ŭit : For the OLS estimator we

obtain the limit of 1
T

∑T
t=1 X̃

OLS
it ũ†

it by applying Assumptions 1 and 2 as follows:

mX̃ũ†,nTi = 1

T

T∑

t=1

(
WiK

(
β̃Cx̃t + ζ̃ p,tδp + ũt

)

x̃it

)
ũ†
it

⇒


WiK

[∫ 1
0 β̃

[
CB̃v(r)dB

†
ui

(r) + C1†
vui

]
+ Ŵ†

0,uui

]
√

�†
uiui

∫ 1
0 B̃vi(r)dW

†
ui

(r) + 1†
viui


 = mX̃ũ†,ni .

Then, mX̃ũ†,n =
∑n

i=1 mX̃ũ†,ni and T
(
γ̂OLS − γ

)
⇒ M−1

X̃X̃,n
mX̃ũ†,n, by the continuous mapping theo-

rem. This proves Proposition 1(b). For the DOLS estimator we have to obtain the limit of

m⋆

X̃ũ,nTi
:= 1

T0.5
⋆

T⋆∑

t⋆=1




T−0.5
⋆ ỹ∗

it⋆
T−0.5

⋆ x̃it⋆
0((2p+1)k·(i−1)×1)

ζ̃ p;it⋆
0((2p+1)k·(n−i−1)×1)



ũit =

T⋆∑

t⋆=1




T−1
⋆ WiK

(
β̃Cx̃t⋆ + ζ̃ p,t⋆δp + ũt⋆

)

T−1
⋆ x̃it⋆

0((2p+1)k·(i−1)×1)

T−0.5
⋆ ζ̃ p;it⋆

0((2p+1)k·(n−i−1)×1)



ũit .

(48)

By Assumptions 1–3, theT → ∞-limit of 1
T⋆

∑T⋆
t⋆=1 ζ̃ p,t⋆ ũit = 0((2p+1)nk×1). Moreover,T−1

⋆

∑T⋆
t⋆=1 ũt⋆ ũit

converges to Ŵ0,uui by a law of large numbers and the fact that |ũt⋆ − ũt⋆ | goes to zero su�ciently fast by
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Assumption 3. Hence, we observe that

[
m⋆

X̃ũ,nTi

]
(1:k+1)

⇒
[

lim
T→∞

m⋆

X̃ũ,nTi

]

(1:k+1)

= mX̃ũ,ni =
(
WiK

(∫ 1
0 β̃CB̃v(r)dBui(r) + Ŵ0,uui

)

√
�uiui

∫ 1
0 B̃vi(r)dWui(r)

)
.

To obtain the limit of
[

limT→∞ m⋆

X̃ũ,nTi

]
(k+2:(2p+1)nk)

a central limit theorem was assumed to hold in

Assumption 2. From (49) we obtain mX̃ũ,n =
∑n

i=1 mX̃ũ,ni. Since MX̃X̃,n is a regular matrix, we observe

that T⋆

(
γ̂DOLS;p − γ

)
⇒ M−1

X̃X̃,n
mX̃ũ,n. This proves Proposition 2.(b).

For 2SLS we consider the limit of mZ̃ũ†,nTi :=
∑n

i=1
1
T

∑T
t=1 Z̃

2SLS
it ũ†

it . We observe that

1

T

T∑

t=1




W
τK(1)

i C(K(1))x̃t
...

W
τK(qρ )

i C(K(qρ ))x̃t
x̃it



ũ†
it ⇒




W
τK(1)

i C(K(1))

(∫ 1
0 B̃v(r)dB

†
ui

(r) + 1†
vui

)

...

W
τK(qρ )

i C(K(qρ ))

(∫ 1
0 B̃v(r)dB

†
ui

(r) + 1vui

)

∫ 1
0 B̃vi(r)dB

†
ui

(r) + 1†
vui




=
∫ 1

0
hi(r)dB

†
ui

(r) +




W
τK(1)

i C(K(1))1
†
vui

...

W
τK(qρ )

i C(K(qρ ))1
†
vui

1†
viui




= mZ̃ũ†,ni . (49)

mZ̃ũ†,n =
∑n

i=1 mZ̃ũ†,ni Then, the continuous mapping theorem results in T
(
γ̂ 2SLS − γ

)
⇒(

MX̃ Z̃ ,nM
−1

Z̃ Z̃ ,n
M′

X̃ Z̃ ,n

)−1
MX̃ Z̃ ,nM

−1

Z̃ Z̃ ,n
mZ̃ ũ†,n, which proves Proposition 3(b).

Finally, for the D2SLS estimator (28), we derive the T → ∞-limit of m⋆

Z̃ũ,nT
=
∑n

i=1 m
⋆

Z̃ũ,nTi
, where

m⋆

Z̃ũ,nTi
=

T⋆∑

t=1

AZ̃p




W
τK(1)

i C(K(1))x̃t⋆
...

W
τK(qρ )

i C(K(qρ ))x̃t⋆
x̃it⋆

0((2p+1)k·(i−1)×1)

ζ̃ p;it⋆
0((2p+1)k·(n−i−1)×1)




uit⋆ ⇒




W
τK(1)

i C(K(1))

∫ 1
0 B̃v(r)dBui(r)
...

W
τK(qρ )

i C(K(qρ ))

∫ 1
0 B̃v(r)dBui(r)∫ 1

0 B̃vi(r)dBui(r)
0((2p+1)k·(i−1)×1)

ν(ζ̃ p;it⋆
ũit)

0((2p+1)k·(n−i−1)×1)




. (50)

Since vi⋆ and ui⋆ are uncorrelated, 1viui = 0(k) and therefore no correlation terms show up in (50).
To obtain limT→∞ T−0.5

⋆

∑
ζ̃ p;it⋆

ũit⋆ we assumed that a central limit theorem can be applied and con-
vergence to a normally distribution vector ν(ζ̃ p;it⋆

ũit)
with mean zero takes place. For the �rst k + qρ

components we observe that
[
m⋆

Z̃ũ,ni

]
(1:k+qρ )

=
∫ 1

0 hi(r)dBui(r) = mZ̃ũ,ni.

Hence, by the block diagonal structure of M⋆

X̃Z̃,n
and M⋆

Z̃Z̃,nT
, the invertability of Mn = M

X̃Z̃,n
M−1

Z̃Z̃,nT

M′
X̃Z̃,n

and the continuous mapping theorem, we observe that T⋆

(
γ̂D2SLS;p − γ

)
converges weakly to

M−1
n mn, wheremn =

∑n
i=1 MX̃Z̃,nM

−1

Z̃Z̃,n
mZ̃ũ,ni = MX̃Z̃,nM

−1

Z̃Z̃,n
mZ̃ũ,n. In addition,Bv andBui are uncor-

related and therefore independent, no second-order bias terms show up. Hence, we observe converge to
zero mean Gaussian mixture distribution. This proves Theorem 1(b).
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In a similar way, for theD2SLS estimator (33) we derive theT → ∞-limit ofm⋆

Z̆ŭ,nT
=
∑n

i=1 m
⋆

Z̆ŭ,nTi
.

Using (A-8) obtained in Online Appendix A-2, we derive

m⋆

Z̆ŭ,nTi
=

T⋆∑

t=1

AZ̆p




W
τK(1)

i C(K(1))x̆t⋆
...

W
τK(qρ )

i C(K(qρ ))x̆t⋆
x̆it⋆

0((2p+1)kn·(i−1)×1)

ζ̆ ♯p;t⋆
0((2p+1)kn·(n−i−1)×1)




uit⋆ ⇒




mZ̆ŭ,ni

0((2p+1)kn·(i−1)×1)

ν(ζ̆ ♯p;t⋆
ŭit)

0((2p+1)kn·(n−i−1)×1)


 , where

mZ̆ŭ,ni :=




∫ 1
0 W

τK(1)

i C(K(1))

[
B̆v(r)

(
dBui(r) − 1

n

∑n
j=1 dBuj(r)

)]

...
∫ 1

0 W
τK(qρ )

i C(K(qρ ))

[
B̆v(r)

(
dBui(r) − 1

n

∑n
j=1 dBuj(r)

)]

∫ 1
0 B̆vi(r)

(
dBui(r) − 1

n

∑n
j=1 dBuj(r)

)




. (51)

The term ν(ζ̆ ♯p;t⋆
ŭit)

is normally distributed with mean zero. Therefore, by the block diagonal structure of

M⋆

X̆Z̆,n
andM⋆

Z̆Z̆,nT
, the invertability of M̆n = M

X̆Z̆,n
M−1

Z̆Z̆,nT
M′

X̆Z̆,n
and the continuous mapping theorem,

we observe thatT⋆

(
̂̆γD2SLS;p − γ̆

)
converges weakly to M̆−1

n m̆n, where m̆n =
∑n

i=1 MX̆Z̆,nM
−1

Z̆Z̆,n
mZ̆ŭ,ni.

Step 2 (Asymptotic independence): By this block diagonal structure of the limits of

M⋆

Z̃Z̃,nT
and M⋆

X̃Z̃,nT
, we observe that T⋆(γ̂

(m)
p − γ ) and

√
T⋆(̂δ

(m)

p − δ) are uncorrelated for m = OLS,

DOLS, 2SLS and D2SLS. Due to the properties of Brownian motion and normal random variables these
terms are independent. In same way we observe that M⋆

X̆Z̆,nTi
and M⋆

Z̆Z̆,nTi
converge to a block diag-

onal matrices, where the block in the south east contains covariance matrices of the leads and lags
of v̆t⋆ and v̆t⋆ . By the continuous mapping theorem (see, e.g., Klenke, 2008, p. 257), for the elements

in the north-west we obtain
[

limT→∞ M⋆

X̆Z̆,nTi

]
(1:k+1,1:k+qρ )

=
∫ 1

0 ği(r)h̆i(r)
′dr = MX̆Z̆,ni as well as

[
limT→∞ M⋆

Z̆Z̆,nTi

]
(1:k+1,1:k+qρ )

=
∫ 1

0 h̆i(r)h̆i(r)
′dr = MZ̆Z̆,ni.

The matrices M
X̃X̃,n

, M
Z̃Z̃,n

and M
X̃Z̃,n

are matrices of full rank by Assumption 4. In addition, Sec-

tion A-1 in the Online Appendix provides su�cient conditions where M
X̃X̃,n

, M
X̆X̆,n

, M
Z̃Z̃,n

and M
Z̆Z̆,n

are full rank matrices.

Step 3 (Wald statistic Wγ ,n): We follow Phillips and Hansen (1990), Johansen (1995), and Park
and Phillips (1988) to derive the so called observed Wald-statistic Wγ ,nT and its limit Wγ ,n. Consider the
s × k + 1 restriction matrix R.

For the D2SLS estimator (28), the T → ∞-limit of m⋆

Z̃ũ,nT
=

∑n
i=1 m

⋆

Z̃ũ,nTi
was derived

in (50). Conditional on B̃v(r), r ∈ [0, 1], we observe that V

(
mZ̃ũ,nm

′
Z̃ũ,n

|B̃v(r), r ∈ [0, 1]
)

=

E

(
mZ̃ũ,nm

′
Z̃ũ,n

|B̃v(r), r ∈ [0, 1]
)

=
∑n

i=1 �uiuiMZ̃Z̃,ni. This follows from the cross-sectional indepen-

dence imposed in Assumption 2 and the result that
∫ 1

0 B̃v(r)dBui(r) is a mean zero Gaussian mixture

distribution where B̃v(r) and Bui(r) are independent (see (A-14) in the Online Appendix).

Endowed with a consistent estimator, �̂uu, of the long run covariance matrix �uu =
diag(�uiui)i=1,...,n we obtain by the above convergence results and the continuous mapping theorem

VnT =
[
MX̃Z̃,nTM

−1

Z̃Z̃,nT
M′

X̃Z̃,nT

]−1
DnT

[
MX̃Z̃,nTM

−1

Z̃Z̃,nT
M′

X̃Z̃,nT

]−1
⇒

[
MX̃Z̃,nM

−1

Z̃Z̃,n
− M′

X̃Z̃,n

]−1
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Dn

[
MX̃Z̃,nM

−1

Z̃Z̃,n
M′

X̃Z̃,n

]−1
:= Vn, where DnT = MX̃Z̃,nTM

−1

Z̃Z̃,nT

(∑n
i=1 �̂uiuiMZ̃Z̃,nTi

)
M−1

Z̃Z̃,nT
M′

X̃Z̃,nT

and Dn = MX̃Z̃,nM
−1

Z̃Z̃,n

(∑n
i=1 �uiuiMZ̃Z̃,ni

)
M−1

Z̃Z̃,n
M′

X̃Z̃,n
. Then the Wald statistic (31) satis�es

Wγ ,nT ⇒ Wγ ,n =
(
T⋆R

(
γ̂D2SLS;p − γ

))′ (
RVnR

′)−1
(
T⋆R

(
γ̂D2SLS;p − γ

))
. (52)

Due to the fact that we have derived a zero mean normal mixture distribution, under the null hypothesis
the Wald statistic Wγ ,n follows a χ2 distribution with s degrees of freedom. This completes the proof of
Theorem 1.

In a further step we consider the Wald type test obtained in Theorem 2. Assume that a consistent
estimator of �uu = diag(�uiui)i=1,...,n is available. From (A-17) obtained in the Online Appendix, we

observe that V
(
mZ̆ŭ,nm

′
Z̆ŭ,n

|B̃v(r), r ∈ [0, 1]
)

= E

(
m̆Z̆ŭ,nm

′
Z̆ŭ,n

|B̃v(r), r ∈ [0, 1]
)

and

E

(
mZ̆ŭ,nm

′
Z̆ŭ,n

|B̃v(r), r ∈ [0, 1]
)

=
n∑

i=1

n∑

l=1


�uiul −

1

n
�uiui −

1

n
�ulul +

1

n2

n∑

j=1

�ujuj



∫ 1

0
h̆i(r)h̆l(r)

′dr

or using the more compact notation used in (A-18)

=
n∑

i=1

�uiui

(∫ 1

0
h̆i(r)h̆i(r)

′dr −
∫ 1

0
h̆i(r)

(
Nh̆h̆(r)

)′
dr −

∫ 1

0

(
Nh̆h̆(r)

)
h̆i(r)

′dr

+
∫ 1

0

(
Nh̆h̆(r)

) (
Nh̆h̆(r))

)′
dr

)
. (53)

Note that by Assumption 2, �uiul = 0 for any i 6= l. By the assumption that

�̂uiui consistently estimates �uiui , Eq. (53) and the continuous mapping theorem we get

V̆nT =
[
MX̆Z̆,nTM

−1

Z̆Z̆,nT
M′

X̆Z̆,nT

]−1
D̆nT

[
MX̆Z̆,nTM

−1

Z̆Z̆,nT
M′

X̆Z̆,nT

]−1
⇒

[
MX̆Z̆,nM

−1

Z̆Z̆,n
− M′

X̆Z̆,n

]−1

D̆n

[
MX̆Z̆,nM

−1

Z̆Z̆,n
M′

X̆Z̆,n

]−1
:= V̆n, where

D̆nT = MX̆Z̆,nTM
−1

Z̆Z̆,nT
PZ̆ŭZ̆ŭ,nTM

−1

Z̆Z̆,nT
M′

X̆Z̆,nT
, with

PZ̆ŭZ̆ŭ,nT :=
n∑

i=1

n∑

l=1


�̂uiul −

1

n
�̂uiui −

1

n
�̂ulul +

1

n2

n∑

j=1

�̂ujuj




×




T⋆∑

t⋆=1

AZ̆pZ̆p;it⋆
Z̆′
p;lt⋆

AZ̆p




(1:qρ+kI :1:qρ+kI)

and

D̆n = MX̆Z̆,nM
−1

Z̆Z̆,n
PZ̆ŭZ̆ŭ,nM

−1

Z̆Z̆,n
M′

X̆Z̆,n
, with

PZ̆ŭZ̆ŭ,n =
n∑

i=1

PZ̆ŭZ̆ŭ,ni , where by (53) and (A-18)

PZ̆ŭZ̆ŭ,ni = �uiui

(∫ 1

0
h̆i(r)h̆i(r)

′dr −
∫ 1

0
h̆i(r)

(
Nh̆h̆(r)

)′
dr −

∫ 1

0

(
Nh̆h̆(r)

)
h̆i(r)

′dr

+
∫ 1

0

(
Nh̆h̆(r)

) (
Nh̆h̆(r))

)′
dr

)
.

Then the Wald statistic (31) satis�es

W̆γ ,nT =
(
T⋆R

(
̂̆γD2SLS;p − γ̆

))′ (
RV̆nTR

′)−1
(
T⋆R

(
̂̆γD2SLS;p − γ̆

))
, (54)

and converges to a χ2-distributed random variable with s degrees of freedom.
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B. Joint limits: Proof of Theorem 3

By Assumption 5, the process
(
η†
it

)
t∈Z, ηit ∈ RkI , allows to apply the joint asymptotic limit theory

developed in Phillips and Moon (1999, 2000). Phillips and Moon (1999, Lemma 2) show that for(
η†
it

)
t∈Z, a panel Beveridge-Nelson decomposition exists (see also Johansen, 1995, p. 36), given that their

Assumptions 1 and 2 are met. Hence, we consider a linear process
(
η†
it

)
t∈Z, with Wold representation

η†
it =

∑∞
s=0 C

†
s;ηi

ε†
it−s, where C†

s;ηi
∈ R(kI+1)×(kI+1) for i = 1, . . . , n and η†

t =
∑∞

s=1 C
†
s;ηε

†
t−s,

where C†
s;η = diag

(
C†
s;η1

, . . . ,C†
s;ηn

)
and ε†

t−s :=
(
ε†′

1t−s, . . . , ε†′
nt−s

)′
. Since uit can be written as

uit = u†
it − �uiv�

−1
vv vt = u†

it − �uivi�
−1
vivi

vit (the last equality follows from independence across i),

also for
(
ηit
)
t∈Z, a Wold representation ηit⋆ =

∑∞
s=0 Cs;ηiεit⋆−s as well as a panel Beveridge-Nelson

decomposition exists. A�er applying the within-transform de�ned in (32), we obtain

η̆it⋆ = Cηi(1)ε̆it⋆ − η̊it⋆ + η̊it⋆−1, η̊it⋆ :=
∞∑

s=0

C̊s;ηi ε̆it⋆−s⋆ , C̊s;ηi :=
∞∑

κ=s+1

Cκ ;ηi , Cηi(1) :=
∞∑

s=0

Cs,ηi ,

v̆it⋆ = Cvi(1)ε̆it⋆ − v̊it⋆ + v̊it⋆−1 , v̊it⋆ :=
∞∑

s=0

C̊s;vi ε̆it⋆−s⋆ , C̊s;vi :=
∞∑

κ=s+1

Cκ ;vi and

ŭit⋆ = Cui(1)ε̆uit⋆ − ůit⋆ + ůi⋆−1 , ůit⋆ :=
∞∑

s=0

C̊s;ui ε̆t⋆−s⋆ , C̊s;ui :=
∞∑

κ=s+1

Cκ ;ui ,

such that for partial sums we get

[rT⋆]∑

t⋆=1

η̆it⋆ = Cηi(1)

[rT⋆]∑

t⋆=1

ε̆it⋆ + η̊i0⋆
− η̊i[rT⋆] and x̆i[rT⋆] = x̆i0⋆ +




[rT⋆]∑

t⋆=1

η̆it⋆




(2:kI+1)

= x̆i0⋆ +
[rT⋆]∑

t⋆=1

v̆it⋆ .

(55)

The term η̊i0⋆
denotes η̊it⋆ at t⋆ = 0. Cs;ηi is a matrix polynomial satisfying the conditions of Phillips

and Moon (1999, Assumption 1), while Cs;ηi(1) :=
∑∞

s=0 Cs;ηi as well as Cs;vi and Cs;ui are submatrix
polynomials of Cs;ηi . Note that uit and vt as well as vit are uncorrelated by construction. Hence, Cηi(1)

is block diagonal. Cui(1) stands for the corresponding row of Cηi(1) to obtain uit . The same notation is
applied to obtain vit . Using the Beveridge–Nelson decomposition (55) and t⋆ = t − p, we obtain

QZ̆Z̆nT := 1

n

n∑

i=1

MZ̆Z̆,nTi = 1

n

n∑

i=1

M̄Z̆Z̆,nTi +
1

n

n∑

i=1

RZ̆Z̆,nTi , where M̄Z̆Z̆,nTi := 1

T2
⋆

T⋆∑

t⋆=1

M̄Z̆,it⋆
M̄

′
Z̆,it⋆

,

M̄Z̆,it⋆
:=




n∑

j=1

W
τK(1)

{n},ij

[
C(K(1))

]
(j,(j−1)n+1:jn)


Cvj(1)

t⋆∑

s⋆=1

ε̆js⋆




...
n∑

j=1

W
τK(qρ )

{n},ij

[
C(K(qρ ))

]
(j,(j−1)n+1:jn)


Cvj(1)

t⋆∑

s⋆=1

ε̆j⋆




Cvi(1)
∑t⋆

s⋆=1 ε̆is⋆




∈ Rqρ+kI , and

RZ̆Z̆,nTi := MZ̆Z̆,nTi − M̄Z̆Z̆,nTi ∈ Rqρ+k×qρ+k . (56)

With K{n},jℓ :=
[
K{n}

]
(j,ℓ)

we get

QX̆Z̆,nT := 1

n

i∑

i=1

MX̆Z̆nTi = 1

n

n∑

i=1

M̄X̆Z̆nTi +
1

i

n∑

i=1

RX̆Z̆nT , where M̄X̆Z̆nTi := 1

T2
⋆

T⋆∑

t⋆=1

M̄X̆,it⋆
M̄

′
Z̆,it⋆

,
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M̄X̆,it⋆
:=




n∑

j=1

n∑

ℓ=1

W{n},ijK{n},jℓβ̆
′

Cvℓ(1)

t⋆∑

s⋆=1

εℓs⋆




Cvi(1)

t⋆∑

s⋆=1

εis⋆




∈ R1+kI ,

RX̆Z̆,nTi := MX̆Z̆,nTi − M̄X̆Z̆,nTi ∈ R1+k×qρ+k , (57)

and

qZ̆ŭ,nT = 1√
n

n∑

i=1

mZ̆ŭ,nTi = 1√
n

n∑

i=1

m̄Z̆ŭ,nTi +
1√
n

n∑

i=1

RZ̆ŭ,nTi , where

m̄Zu,nTi := 1

T⋆

T⋆∑

t⋆=1

M̄Z̆,it⋆
M̄ŭ,it⋆ , M̄ŭ,it⋆ := Cui(1)ε̆it⋆ ∈ R , RZ̆ŭ,nTi := mZ̆ŭ,nTi − m̄Z̆ŭ,nTi ∈ Rqρ+k .

(58)

Step 1, (T, n) → ∞-Limits ofQX̆Z̆,nT ,QZ̆Z̆,nT and qZ̆ŭ,nT : In the following steps we adapt Phillips
and Moon (1999, Lemmata 13 and 16) to the requirements of our model. First we show:

Lemma1. Suppose that the expectationsQZ̆Z̆ andQX̆Z̆ exist, Assumptions 1–6 hold, andW{n} aswell as the

error structure are such that E

([
MX̆Z̆,nTi

]2

(lr lc)

)
< ∞, lr = 1, . . . , k+ 1 for lc = 1 and lc = 1, . . . , k+ qρ

for lr = 1, . . . , qρ , E

([
MZ̆Z̆,nTi

]2

(lr ,lc)

)
< ∞, lr = 1, . . . , k + 1 for lc = 1, . . . , qρ and lc = 1, . . . , k + qρ

for lr = 1, . . . , qρ for all T ∈ N and n ∈ N ∪ {∞}.
Then QX̆Z̆,nT and QZ̆Z̆,nT converge in probability to QX̆Z̆ and QZ̆Z̆ as (n,T) → ∞ with n6

T → 0.

Proof. For
[
QX̆Z̆,nT

]
(2:k+1,qρ :qρ+k)

and
[
QZ̆Z̆,nT

]
(qρ :qρ+k,qρ :qρ+k)

joint convergence in probability

results already from Phillips and Moon (1999, Lemma 13(a)). That is,
[
QX̆Z̆

]
(2:k+1,qρ :qρ+k)

=
[
QZ̆Z̆

]
(qρ :qρ+k,qρ :qρ+k)

= 1
6 �̄vivi . For the remaining components by (56) and a panel Beveridge-Nelson

(55) decomposition we obtain:

QZ̆Z̆,nT = 1

n

∑

i=1

MZ̆Z̆,nTi = 1

n

n∑

i=1

M̄Z̆Z̆,nTi +
1

n

n∑

i=1

R̄Z̆Z̆,nTi , where MZ̆Z̆,nTi = 1

T2
⋆

T⋆∑

t⋆=1

MZ̆,it⋆
M

′
Z̆,it⋆

,

MZ̆,it⋆
:= M̄Z̆,it⋆

+




n∑

j=1

W
τK(1)

{n},ij

[
C(K(1))

]
(j,(j−1)n+1:jn)

(
x̊j0⋆ − v̊jt⋆ + v̊j0⋆

)

...
n∑

j=1

W
τK(qρ )

{n},ij

[
C(K(qρ ))

]
(j,(j−1)n+1:jn)

(
x̊j0⋆ − v̊jt⋆ + v̊j0⋆

)

(
x̊i0⋆ − v̊it⋆ + v̊i0⋆

)




and

R̄Z̆Z̆,nTi := RZ̆Z̆,nTi = MZ̆Z̆,nTi − M̄Z̆Z̆,nTi . (59)

For QX̆Z̆,nT , we use (57) to obtain:

QX̆Z̆,nT = 1

n

n∑

i=1

MX̆Z̆,nTi = 1

n

n∑

i=1

M̃X̆Z̆,nTi +
1

n

n∑

i=1

R̄X̆Z̆,nTi , where
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MX̆Z̆,nTi = 1

T2
⋆

T⋆∑

t⋆=1

MX̆,it⋆
M

′
Z̆,it⋆

, M̌X̆,it⋆
:= M̄X̆,it⋆

+




n∑

j=1

n∑

ℓ=1

W{n},ijK{n},jℓŭ
†
ℓt⋆

0(k)


 ,

ŭ†
it⋆

= Cui(1)†ε̆it⋆ + ů†
it⋆

− ů†
it⋆−1 , ů†

it⋆
=

∞∑

s=0

C†
s;ui

ε̆†
it−s ,

MX̆,it⋆
:= M̌X̆,it⋆

+




n∑

j=1

n∑

ℓ=1

W{n},ij [K](j,ℓ) β̆
′ (
x̊j0⋆ − v̊jt⋆ + v̊j0⋆

)

(
x̊i0⋆ − v̊it⋆ + v̊i0⋆

)


 ,

R̄X̆Z̆,nTi = MX̆Z̆,nTi − M̌X̆Z̆,nTi and

RX̆Z̆,nTi = MX̆Z̆,nTi − M̄X̆Z̆,nTi = R̄X̆Z̆,nTi + M̃X̆Z̆,nTi − M̄X̆Z̆,nTi . (60)

By following Phillips and Moon (1999, p. 1100), expression (59) decomposes QZ̆Z̆,nT into the term
1
n

∑n
i=1 M̃Z̆Z̆,nTi, consisting of weighted sums containing Cvi(1)

∑t⋆+p
s=1 ε̆is and ŭ†

it , and the residual term
1
n

∑n
i=1 R̄Z̆Z̆,nTi. A similar decomposition is obtained for QX̆Z̆,nT in (60).

The assumptions stated in Lemma 1 on the moments of MZ̆Z̆,nTi and MX̆Z̆,nTi are su�cient for

M̌X̆Z̆,nTi and M̄Z̆Z̆,nTi to be uniformly integrable in T⋆ (see, e.g., Klenke, 2008, Theorem 6.25); (the
assumption of second moments can be made weaker by demanding for moments 1 + ǫ, ǫ > 0 to
exist and then applying Billingsley (1986, p. 348)). For the south-eastern parts of M̃X̆Z̆,nTi and M̄Z̆Z̆,nTi
uniform integrability already follows from Phillips and Moon (1999, Assumptions 1 and 2)). Then

by Billingsley (1986, Theorem 25.12), we observe that 1
n

∑n
i=1 M̄Z̆Z̆,nTi

P→ E

(
M̄Z̆Z̆,nTi

)
= QZ̆Z̆ and

1
n

∑i
i=1 M̃X̆Z̆,nTi

P→ E

(
M̄X̆Z̆,nTi

)
= QX̆Z̆ as (T, n) → ∞. Note thatE

(
M̄X̆Z̆,nTi

)
= QX̆Z̆ = E

(
MX̆Z̆,nTi

)

and E

(
M̄Z̆Z̆,nTi

)
= QZ̆Z̆ = E

(
MZ̆Z̆,nTi

)
as de�ned in (38) as well as (39).

The residual terms R̄X̆Z̆,nTi and R̄Z̆Z̆,nTi decompose into sums to of the remaining terms obtained in
Phillips and Moon (1999, p. 1101, “Rki,T” in their notation). These remaining terms in Phillips and Moon
(1999) have expectations of the order 1√

T
O(1) and 1

TO(1). In addition the condition n/T → 0 has to

be met such that weighted sums of these residual terms become small. Since n, n2, and n3 summands of
this structure show up in the nonsouth-east terms of R̄Z̆Z̆,nTi and R̄X̆Z̆,nTi, and the weights are bounded

by our Assumption 6 (i.e., |W{n},ij| ≤ w̄ and |K{n},ij| ≤ w̄), we obtain the requirement that n3
√
T

→ 0 ⇔
n6

T → 0 to make the impact of these remaining terms su�ciently small. Then, by Phillips and Moon

(1999, Corollary 1) lim(T,n)→∞ QX̆Z̆,nT = QX̆Z̆ = E

(
MX̆Z̆,nTi

)
and lim(T,n)→∞ QZ̆Z̆,nT = QZ̆Z̆ =

E

(
MZ̆Z̆,nTi

)
, given that n6

T → 0.

Next we consider the limit of 1√
nT⋆

∑n
i=1

∑T⋆
t⋆=1 Z̆it⋆(1:k+qρ )ŭit⋆ :

Lemma 2. Suppose that the Assumptions of Lemma 1 hold. In addition, W{n} and
(
ηit
)
t∈Z are such that

E

([
mZ̆ŭ,nTi

]2

(lr ,1)

)
< ∞, lr = 1, . . . , qρ for all i,T ∈ N as well as for all n ∈ N and n → ∞. Let

(n,T) → ∞ and n6/T → 0.
Then qZ̆ŭ,nT = 1√

nT⋆

∑n
i=1

∑T⋆
t⋆=1 Z̆it⋆(1:k+qρ )ŭit ⇒ qZ̆ŭ ∼ N (0(k+qρ ,1), 4), where 4 =

PZ̆ŭZ̆ŭ and PZ̆ŭZ̆ŭ = �̄uiuiE
( ∫ 1

0 h̆i(r)h̆i(r)
′dr −

∫ 1
0 h̆i(r)

(
Nh̆h̆(r)

)′
dr −

∫ 1
0

(
Nh̆h̆(r)

)
h̆i(r)

′dr +∫ 1
0

(
Nh̆h̆(r)

)(
Nh̆h̆(r)

)′
dr
)
.
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Proof. Equation (58) results in:

qZ̆ŭ,nT = 1√
n

n∑

i=1

mZ̆ŭ,nTi = 1√
n

n∑

i=1

m̄Z̆ŭ,nTi +
1√
n

n∑

i=1

R̄Z̆ŭ,nTi

mZ̆ŭ,nTi = 1

T⋆

T⋆∑

t⋆=1

MZ̆,it⋆

[
Mŭ,it⋆ + ĕp;it⋆

]
,

Mŭ,it⋆ := M̄ŭ,it⋆ +
(
−ůit⋆ + ůit⋆−1

)
and ,

R̄Z̆ŭ,nTi := mZ̆ŭ,nTi − m̄Z̆ŭ,nTi , RZ̆ŭ,nTi = R̄Z̆ŭ,nTi +
1

T⋆

T⋆∑

t⋆=1

MZ̆,it⋆
ĕp;it⋆ . (61)

Since MZ̆,it⋆
does not depend on ŭit⋆ the di�erence between RZ̆ŭ,nTi and R̄Z̆ŭ,nTi can be obtained in

a straightforward way. Equation (61) has two main di�erences compared to the corresponding term
considered at the beginning of the proof of Lemma 16 in Phillips and Moon (1999):

First, ĕ♯p;it⋆(= ĕp;it⋆ in shorter notation) described in (16) shows up, and second, a sum over n terms

is included by W
τK(1)

{n}i C(K(1)) · · · due to the instruments used in our article. Note that the projection error
terms e♯p;it⋆ are of the order op(1) for T⋆ → ∞ and each i. The term MZ̆,it⋆

is bounded in probability

by Assumption 7. By this RZ̆ŭ,nTi − R̄Z̆ŭ,nTi converges to a vector of zeros in probability for T → ∞ for
each n ∈ N ∪ {∞}.

Second, we consider the e�ect caused by the spatial lag: Observe that the �rst components of qZ̆ŭ,nT
can be considered to be n-fold sums over terms considered in Phillips and Moon (1999). By Klenke

(2008, Theorem 6.25) uniform integrability of
[
m̄Z̆ŭ,nTi

]
(1:qρ ,1)

in T (as well as in T⋆) follows from the

fact that the �rst two moments of mZ̆ŭ,nTi are �nite for all T⋆ as stated in the assumptions of Lemma 2.
For the remaining coordinates of mZ̆ŭ,nTi uniform integrability already follows from the Assumptions in
Phillips and Moon (1999, see proof of Lemma 13). This allows us to apply a joint central limit theorem, in
particular Phillips and Moon (1999, Theorem 3), where 1√

n

∑n
i=1 m̄Z̆ŭ,nTi converges to a normal random

variable qZ̆ŭ with a kI + qρ-dimensional mean zero and covariance 4 = PZ̆ŭZ̆ŭ, where (see also Online
Appendix A-2)

PZ̆ŭZ̆ŭ = �̄uiuiE

(∫ 1

0
h̆i(r)h̆i(r)

′dr −
∫ 1

0
h̆i(r)

(
Nh̆h̆(r)

)′
dr −

∫ 1

0

(
Nh̆h̆(r)

)
h̆i(r)

′dr

+
∫ 1

0

(
Nh̆h̆(r)

) (
Nh̆h̆(r)

)′
dr

)
. (62)

In addition, the components qρ +1 to qρ +k of R̄Z̆ŭ,nTi, jointly converge to zero if n/T → 0. This follows

already from Phillips and Moon (1999, Lemma 13 or 16; for qρ to qρ + k, R̄Z̆ŭ,nTi can be decomposed
into “Ri,Tk” in their notation), where the authors show that the residual terms “Rk,iT” can be decomposed
into components with an expected norm of order O(1/T), O(

√
n/T) = √

n/TO(1) and O(
√
n/T)

(by this fact Phillips and Moon (1999) added the requirement n/T → 0, which is su�cient to obtain
(n,T) → ∞ convergence for these coordinates). In our analysis the �rst qρ components of R̄Z̆ŭ,nTi
contain n-fold sums of the terms investigated in Phillips and Moon (1999, p. 1108). Since n terms of this
structure show up due to a spatial lag, and the elements of W{n} and K{n} are bounded by w̄, the residual
term R̄Z̆ŭ,nTi contains terms of the form n · O(1/T), n · √

n/TO(1) and n · O(
√
n/T). These residual

terms demand for n3/T → 0. Hence, n6/T → 0 is su�cient to meet this requirement and all the terms
contained in R̄Z̆ŭ,nTi converge to zero in probability, such that for (T, n) → ∞, weak convergence of
qZ̆ŭ,nT to a normal random vector qZ̆ŭ with mean zero and covariance 4 = PZ̆ŭZ̆ŭ obtained in (62)
follows (see, e.g., the central limit theorem provided in Phillips and Moon, 1999, Theorem 3). By our
model assumptions PZ̆ŭZ̆ŭ is equal to the expectation of PZ̆ŭZ̆ŭ,ni.
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Given that the assumptions stated in Theorem 3 hold, we observe joint convergence (in probability) of
QX̆Z̆,nT , QZ̆Z̆,nT to QX̆Z̆ , QZ̆Z̆ for (T, n) → ∞, where n6/T → 0. In addition, under the conditions stated
in Theorem 3, qZ̆ŭ,nT weakly converges to qZ̆ŭ. qZ̆ŭ is multivariate normal with mean vector 0(k+qρ×1)

and covariance matrix 4 = PZ̆ŭZ̆ŭ.

Step 2, (T, n) → ∞-Limits of
√
nT⋆

(
̂̆γD2SLS;p − γ̆

)
: Consider the south-east blocks of Q⋆

Z̆Z̆,nT

and Q⋆

X̆Z̆,nT
. In both matrices we consider sums of elements v̆it⋆ v̆

′
it⋆+ℓ scaled by 1

nT⋆
. By a joint law of

large numbers convergence (in probability) to elements of Ŵℓ,vivi is obtained. The south-west and the
north-eastern blocks of these matrices converge to zero in probability. To see this, in these blocks of
Q⋆

Z̆Z̆,nT
and Q⋆

X̆Z̆,nT
we meet terms similar to qZ̆ŭ,nT scaled by a higher rate. In particular, these terms

contain 1
n

∑n
i=1 mZ̆v̆,nTi := 1√

nT3
⋆

∑n
i=1 MZ̆,it⋆

v̆′
is and 1

n

∑n
i=1 mZ̆v̆,nTi := 1√

nT3
⋆

∑n
i=1 MZ̆ŭ,nt⋆i

v̆′
is. Given

Assumptions 1 and 2 of Phillips and Moon (1999), vit and v̆it are of the same stochastic order as u†
it and

ŭit . Hence, for 1√
nT2

⋆

∑n
i=1 MZ̆,it⋆

v̆′
is and 1√

nT2
⋆

∑n
i=1 MX̆,it⋆

v̆′
is a joint central limit theorem holds. Based

on these results, the terms 1
n

∑n
i=1 mZ̆v̆,nTi and 1

n

∑n
i=1 mX̆v̆,nTi converge to zero in probability.

By Lemma 1 we observe convergence in probability of the matrices QX̆Z̆,nT and QZ̆Z̆,nT to QX̆Z̆ and
QZ̆Z̆ . Lemma 2 shows weak convergence to a normal distribution. The requirements of these Lemmata
are met by the assumptions stated in Theorem 3. By a mapping theorem for random variables converging
in probability (see, e.g., White, 2001, Theorem 2.27), we observe that the (n,T) → ∞-asymptotic
distribution of

√
nT⋆(̂̆γD2SLS;p − γ̆ ) is a normal distribution with mean vector 0(k+1,1) and a covariance

matrix VQ̆. Since we have assumed that PZ̆ŭZ̆ŭ can be estimated consistently, D̆Q̆,nT and V̆Q̆,nT converge

in probability to D̆Q̆ and V̆Q̆, respectively.

C. Estimation of βL

This section obtains the limit distributions for the estimator (43). Note that conditional on x̀Li:

lim
T→∞

√
T⋆

(
β̂L − βL

)

= lim
T→∞

√
T⋆

(
n∑

i=1

x̀Lix̀
′
Li

)−1
1

T⋆

n∑

i=1

x̀Li




T⋆∑

t⋆=1

ù†
it⋆

+
(
̂̆γD2SLS − γ̆

)′ T⋆∑

t⋆=1

(
ỳ∗
it , x̀

′
Iit

)′



= lim
T→∞

√
T⋆

(
n∑

i=1

x̀Lix̀
′
Li

)−1 n∑

i=1

x̀Li


 1

T⋆

T⋆∑

t⋆=1

ù†
it⋆

+ T⋆

T2
⋆

(
̂̆γD2SLS − γ̆

)′ T⋆∑

t⋆=1

(
ỳ∗
it , x̀

′
Iit

)′



= lim
T→∞

(
n∑

i=1

x̀Lix̀
′
Li

)−1 n∑

i=1

x̀Li


T⋆

−1/2
T⋆∑

t⋆=1

ù†
it⋆

+ T⋆

(
̂̆γD2SLS − γ̆

)′
T

−3/2
⋆

T⋆∑

t⋆=1

(
ỳ∗
it , x̀

′
Iit

)′



=
(

n∑

i=1

x̀Lix̀
′
Li

)−1 n∑

i=1

x̀Li

[∫ 1

0
dBùi(r) +

[
lim

T→∞
T⋆

(
̂̆γD2SLS − γ̆

)]′ ∫ 1

0
g̀i(r)dr

]

where g̀i(r) :=
(
WiKCB̀v(r)

B̀vi(r)

)
=
(
WiKB̀v(r)

B̀vi(r)

)
∈ RkI+1 . (63)

Hence, we observe that conditional on x̀Li the T → ∞ limit distribution of the centered and scaled
estimator of β̀L converges to a nonstandard limit containing the limit of the centered parameter γ̆ .
C = InkI since kC = 0. The terms in (63) are Op(1), such that

√
T⋆

(
β̂L − βL

)
is Op(1). Since

the distribution of x̀Li has not been speci�ed, the (“unconditional”) asymptotic limit distribution of√
T⋆

(
β̂L − βL

)
cannot be obtained.
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In the next step, we use the second part of Assumption 5 and apply a joint central limit theorem to
1√
nT⋆

∑n
i=1

∑T⋆
t⋆=1 x̀Liù

†
it .

16 Then for the joint limit we derive

lim
(n,T)→∞

√
nT⋆

(
β̂L − βL

)

= lim
(n,T)→∞

(
1

n

n∑

i=1

x̀Lix̀
′
Li

)−1

·


n−1/2T

−1/2
⋆

n∑

i=1

T⋆∑

t⋆=1

x̀Liù
†
it⋆

+ n1/2T⋆

(
̂̆γD2SLS − γ̆

)′
n−1/2n−1/2T

−3/2
⋆

n∑

i=1

T⋆∑

t⋆=1

(
ỳ∗
it , x̀

′
Iit

)′



=
(
E
(
x̀Lix̀

′
Li

))−1
ν(x̀Liùti) where ν(x̀Liùti) ∼ N

(
0(kL×1),D

(
x̀Liù

†
it⋆

)
)

and

D(
x̀Liù

†
it⋆

) = E
(
�†

uiui

)
E
(
x̀Lix̀

′
Li

)
. (64)

Note that by the independence of xLi and u†
it postulated in Assumption 2, D(

x̀Liù
†
it⋆

) =

E

((
ù†
it⋆

)2
x̀Lix̀

′
Li

)
+
∑∞

s⋆=−∞, s⋆ 6=t⋆
E

((
ù†
is⋆
ù†
it⋆

)
x̀Lix̀

′
Li

)
= E

(
�†

uiui

)
E
(
x̀Lix̀

′
Li

)
. To obtain (64)

we have to show that the term n−1/2

(
n1/2T⋆

(
̂̆γD2SLS − γ̆

)′
n−1/2T

−3/2
⋆

∑n
i=1

∑T⋆
t⋆=1

(
ỳ∗
it , x̀

′
Iit

)′)

converges in probability to zero. To derive this result we show that(
n1/2T⋆

(
̂̆γD2SLS − γ̆

)′
n−1/2T

−3/2
⋆

∑n
i=1

∑T⋆
t⋆=1

(
ỳ∗
it , x̀

′
Iit

)′)
is Op(1). Note that x̀Li is stationary with

an expectation equal to zero,
(
ỳ∗
it , x̀

′
Iit

)′
is I(1) and independent of x̀Li and

√
nT⋆

(
̂̆γD2SLS − γ̆

)′
= Op(1)

[for (n,T) → ∞ and n6/T → 0]. Then,

lim
(n,T)→∞

1

T⋆

n∑

i=1

x̀Li

(
̂̆γD2SLS − γ̆

)′ T⋆∑

t⋆=1

(
ỳ∗
it , x̀

′
Iit

)′

= lim
(n,T)→∞

T−1
n∑

i=1

T⋆∑

t⋆=1

x̀Li
(
ỳ∗
it , x̀

′
Iit

) √
nT⋆√
nT⋆

(
̂̆γD2SLS − γ̆

)

= lim
(n,T)→∞


n−1/2T−3/2

n∑

i=1

x̀Li

T⋆∑

t⋆=1

(
ỳ∗
it , x̀

′
Iit

)′

Op(1) . (65)

For the term n−1/2T−3/2
∑n

i=1

∑T⋆
t⋆=1 x̀Li

(
ỳ∗
it , x̀

′
Iit

)′
we already observed in (63) that

limT→∞ T−3/2
∑T⋆

t⋆=1 x̀Li
(
ỳ∗
it , x̀

′
Iit

)′ = x̀Li
∫ 1

0 g̀i(r)dr. Then, the sequential “�rst T, then n”-limit

of n−1/2T−3/2
∑n

i=1

∑T⋆
t⋆=1 x̀Li

(
ỳ∗
it , x̀

′
Iit

)′
is a normally distributed random vector with a kL-dimensional

mean vector of zeros and and �nite covariance. Assumptions 5–7 are su�cient that also the joint limit

of the term n−1/2T−3/2
∑n

i=1

∑T⋆
t⋆=1 x̀Li

(
ỳ∗
it , x̀

′
Iit

)′
is a normal random variable. By this result, the fact

that
√
nT⋆

(̂̆γD2SLS − γ̆
)

converges to a normal random variable and the continuous mapping theorem,

16To apply Phillips and Moon (1999, Theorem 3) let m
X̀ù,Tni

:= 1√
T⋆

∑T⋆
t⋆=1 x̀Liù

†
it⋆
. If the limes inferior of the smallest

eigenvalue of the covariance ofm
X̀ù,Tni is larger than zero and ||m

X̀ù,Tni||2 is uniformly integrable in T⋆ , this theorem can be

applied. In the notation of Phillips andMoon (1999), Yi,T⋆ = m
X̀ù,Tni

where we set Ci = IkL such that Yi,T⋆ = CiQi,T⋆ = Qi,T⋆ .

The joint and the sequential limits are equal if 1
n

∑n
i=1 �uiui x̀Lix̀

′
Li converges in probability to D(

x̀Li ù
†
it⋆

).
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we observe that n−1/2
(
n1/2T⋆

(̂̆γD2SLS − γ̆
)′
n−1/2T−3/2

∑n
i=1 x̀Li

∑T⋆
t⋆=1

(
ỳ∗
it , x̀

′
Iit

)′)
converges to zero in

probability. Hence, by (64)
√
nT⋆

(
β̂L − βL

)
converges to a normally distributed random variable with

mean zero and variance E
(
x̀Lix̀

′
Li

)−1
D(

x̀Liù
†
it⋆

)E
(
x̀Lix̀

′
Li

)−1 = E
(
�†

uiui

)
E
(
x̀Lix̀

′
Li

)−1
[for (n,T) → ∞ and

n6/T → 0].
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