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ABSTRACT KEYWORDS

This article studies dynamic panel data models in which the long run outcome Cointegration; credit risk;
for a particular cross-section is affected by a weighted average of the outcomes dynamic ordinary least
in the other cross-sections. We show that imposing such a structure implies squares; spatial

a model with several cointegrating relationships that, unlike in the standard ~ 2utocorrelation

case, are nonlinear in the coefficients to be estimated. Assuming that the JEL CLASSIFICATION
weights are exogenously given, we extend the dynamic ordinary least squares C31;C33;G13
methodology and provide a dynamic two-stage least squares estimator. We

derive the large sample properties of our proposed estimator under a set of

low-level assumptions. Then our methodology is applied to US financial market

data, which consist of credit default swap spreads, as well as firm-specific and

industry data. We construct the economic space using a “closeness” measure

for firms based on input-output matrices. Our estimates show that this partic-

ular form of spatial correlation of credit default swap spreads is substantial and

highly significant.

1. Introduction

This article investigates the estimation of nonstandard cointegrating relationships under the presence
of regressor endogeneity and serial correlation in the disturbances. Following literature on panel
cointegration, we augment the cointegrating vectors by peer or neighborhood effects, which are modeled
as spatial lags following Cliff and Ord (1973). In addition to the kind of endogeneity typically dealt with
in panel cointegration models (Mark and Sul, 2003; Mark et al., 2005; Baltagi, 2008; Pesaran, 2015), this
article shows that the spatial lag results in further regressor endogeneity of a different type.

Several approaches have emerged in the literature to estimate cointegrating relationships and to
perform statistical inference. One possibility is to use a simple estimation routine, e.g., ordinary least
squares (OLS) and then work out the (sometimes complicated) large sample distribution of the estimated
parameters (Phillips and Hansen, 1990; Phillips and Loretan, 1991). Another opportunity is to adjust
the estimation routine, such that the large sample distribution is either simpler or free of nuisance
parameters. Examples along these lines are the fully modified least squares estimator (see, e.g., Phillips
and Hansen, 1990; Phillips and Moon, 1999; Pedroni, 2000), the integrated modified least squares
estimator (Vogelsang and Wagner, 2014, in which integrated modified least squares estimation is
linked to fixed-b inference) and the dynamic least squares approach. Dynamic least squares estimation
includes time-series leads and lags of the first differences of the regressors to control for the serial
correlation and regressor endogeneity. This kind of estimator has been proposed by Phillips and Loretan
(1991), Saikkonen (1991), and Stock and Watson (1993). It has been applied to panel data, e.g., in
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Kao and Chiang (2000), Mark and Sul (2003) and Mark et al. (2005), in which a seemingly unrelated
regression (SUR) type model is considered (for an overview on panel cointegration, see, e.g., Pesaran,
2015, Chapter 31). A further alternative is provided by the autoregressive distributed lag approach, in
which cointegrating relationships including lagged variables can be investigated (the reader is referred
to Pesaran and Shin, 1995; Binder et al., 2005; Chudik and Pesaran, 2013a,b). Almost recently, spatial
correlation and cointegration have been investigated in Yu et al. (2008) and Sogner and Wagner (2017).
While Yu et al. (2008) considered maximum-likelihood estimation in a spatial dynamic panel model,
Sogner and Wagner (2017) and Sogner et al. (2017) investigate fully modified as well as integrated modified
OLS estimation in a model close to the model presented in this article.

This article develops an econometric tool suitable for investigating situations, in which the long run
outcome for a particular cross-section cannot be assumed to be independent of the outcomes of the
other cross-sections and, at the same time, autocorrelation of the disturbances and regressor endogeneity
are present. To adequately cope with the endogeneity arising from the inclusion of the spatial lags,
we propose using a dynamic two-stage least squares (D2SLS) estimator, which combines dynamic least
squares (DOLS) and two stage least squares (2SLS) estimation. Section 2 describes the model assumptions
and Section 3 obtains the large sample distribution of our estimator and shows how to correctly conduct
inference. The finite sample properties are investigated by a Monte Carlo study in Section 4.

Finally, Section 5 applies our methodology to a financial dataset, in which we construct the economic
space using a “closeness” measure for firms based on input-output matrices. The weights matrix obtained
from input-output data should approximate possible correlation patterns due to technology and demand
shocks working their way through the economy. We find that our particular form of cross-sectional
spillovers is substantial and highly significant.

2. The model and assumptions

Suppose that the data are generated from'

n
Yie=p Z Wiyje + BiXiie + Bexce + BiXui + i+ A+ ul, = pyiy + B'xie + Bixpi + i+ A+ ul,, (1)
=1

where y;; is the scalar response random variable and x;; is a k X 1 column vector of prediction random
variables. The vector x;; is integrated of order one (I(1)) and permitted to consist of individual specific
regressors Xp; of dimension kr > 1, and cross-sectionally common regressors xcy of dimension k¢ > 0.
The regressors xi, of dimension kz, > 0, are time invariant. Hence, § := (ﬂ}, ﬂ/c)/ € R¥, with Br e Rk,
Bc € Rkc and k = k; + kc. In addition, x; = (x}it,x’Ct)/ € RK The time indexist = 1,...,T,
while i = 1,...,nis the cross-sectional index. The individual and time effects, ;, i = 1,...,n, and A,
t =1,...,T,are (as in fixed effects model) allowed to be correlated with x;; and xz;. The term y}, :=
Z]'Ll Wijyjt is referred to as a spatial lag and represents the contemporaneous impact of the neighboring
observations on y;; (see, e.g., Cliff and Ord, 1973; Kelejian and Prucha, 1998, 1999; Kapoor et al., 2007).

'In this article, the following notation will be applied: For vectors and matrices we use boldface. If not otherwise stated, the
vectors considered are column vectors. Given a ry x ¢y matrix M, the term M, . coic,) = M (rger caic,) Stands for “from
row rg to row rp and from column cg to column ¢, of matrix M". The i, j element of M is [M]jy or in shorter notation M;;.
0(axby and 1(gxpy stands for a x b matrix of zeros and ones; 0(q) and is used to abbreviate 0(gx1); lq is the a x a identity
matrix, while I.y stands for an indicator function. Given a vector x € R", diag(x) transforms x into a n x n diagonal matrix,
while forx; € ROk (i =1,...,n), diag(xy, ..., Xp) yields a nf x nk block diagonal matrix. ® denotes the Kronecker product.
2 E-3 stands for2- 103 = 0.002. [Tr] denotes the integer part of Tr, = stands for weak convergence (see, e.g., Klenke, 2008,

Chapter 13), while —P> and &3 denote convergence in probability and almost sure convergence (see, e.g., Klenke, 2008,
Chapter 6). v ~ N (a, A) denotes that v is a normally distributed vector with mean a and covariance A, while X% denotes a
x2 random variable with n degrees of freedom. Variables where the within-transform described in (9), (12), or (14) is applied,
are—if not otherwise stated—denoted by the superscripts 7, *, and ~, respectively. Ax; = X¢ — X;_1 abbreviates the first
difference of x;.
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We collect the weights W; into an n x n spatial weights matrix W and follow the spatial econometrics
literature by maintaining the following assumption regarding the cross-sectional (or spatial) structure
of the model?:

Assumption 1 (Spatial Lag). The spatial weights W;; are nonstochastic and observable with W;; = 0 and
W £ 0(yxn). The parameter p is such that the largest absolute eigenvalue of pW is smaller than one.

The restriction that W;; = 0 is a normalization of the model, which requires that no observation is its
own neighbor. The second part of the assumption guarantees that the matrix (I, — pW) is invertible (see,
e.g., Horn and Johnson, 1985, Corollary 5.6.16). That is, the inverse K := (I,, — oW) ! is well-defined.’
The invertibility of the matrix (I, — pW) is needed to provide a unique solution of the model and rule
out multiple solutions for y;; that would be consistent with the explanatory variables and disturbances.
I

To obtain the prediction variables, let xj; := ((X%t)i:l,..‘,n) € Rhrnand x, := (x}t,x’Ct)/ € Rhintke,
We assume that x; follows a vector random walk process, i.e., X; = X;_1 + Vs, where v}, := Axp, v, =
Axcy and vy = (v}t,v’a)/. In additiOI}, we define vj;, := Axp; and v, := /(v}it,v’Ct)/ e RX, Together with

: T T il T T k+1 T 17
the noise terms uj := (u],,...,u),) € R", we define ny, := (u),v},) € R¥TL ) = (u] ,VIt) €
/

REHD1 and yf := (0], v},,v},) € R&+Dn+ke The (auto-) covariance matrices of 5, abbreviated by
I} e RV mtke)x((kitD)-ntke) for any lag £ € Z, are

r 1! E (uf_,u) E (u]_,v})
' —F "T_ ”T/ =( guu Zuv>=< t—¢ 1{ t—Lt , where
R = ) T e b ) B )
T T
| .—IE( )= dlag( tugur - Lo, uﬂ) e R, (2)
Let AT := "% E (] _,n)) € RUi+Dntke)x((kit1):ntke) Then, the long run covariance matrix ' €

R(ki+D-ntke)x((kit+1)-n+ke) and the half-long run covariance matrix AT € R(kiFD-ntke)x (ki) ntke) of
1] are given by (see, e.g., Phillips and Hansen, 1990)

vy

Z E (") =T§+ AT+ A" and AT := ZIEJ ) =Ti+A". ()
l=—00
Q" contains the submatrices: €, = Y2 E(v] ,v/) e RErntkoxkrntke) 2,, =
Zi—foo ( Vit— ZVJT/) € R(kl+kC)X(kl+kC) and SZT = Z@—foo ( U Zut) dlag( uruy’ anun)

R™", The same notation is applied to AT. In order to fully specify the model, we augment our set of
assumptions by

Assumption 2 (Error Dynamics I). n}it and n;ﬁ are independent for all i,j = 1,...,n with i # j. The

common components vc; € RKC are permitted to be correlated with n}it. The stochastic process (WI)
weakly stationary and obeys a functional central limit theorem. That is,

teZ 1s

[Tr]
i T V2t
—= ) m=>Bm=(&) "W, 4
ﬁ; t ( )
where r € [0,1] and B'(r) is a Brownian motion in R&+Dntke ywhile W (r) is a standard Brownian
motion in RETV"Ke The long run covariance matrix @ € R(ki+Dntke)x (ki D-n+ke) s finite and of

2Throughout the analysis we only consider one spatial lag term. However, the theory considered in this article can also be
applied to a model where yj; = p1 2}721 Waiyje + - -+ pk, 2}721 Wi, i¥jt + B'Xjt +aj + u}; in a straightforward way. The
restriction that only one matrix W is included is used to keep the notation simple.

3The spectral radius is the lower bound for every induced matrix norm (cf. Theorem 5.6.9 in Horn and Johnson, 1985). Our
assumption will, for example, be satisfied when the maximum absolute row or column sums of pW are less than one.
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full rank; 0 < @ < oo in short form. Moreover,

L T
T2

t=2 \ j=

t—

1 1
vi |uf = /0 B,(s)dB!(s) + AT, (5)
1

In addition, for 3in!" a weak law of large numbers holds, i.e. %ZLI ninl’ £ E(ujnj/). To
vtu;rt a central limit theorem can be applied. That is, % Zthl (vtujt —E (Vt”th)) = Yty where

Vouty N <O(k1”+kcx1)’D<vtuth)> and 0 < D( t L) < o0o. Convergence in (4), (5) and
1 T T + L.
Wii i1 (Vt”n —-E (vtuit)) is joint.
The parameter vector B # Ox1) and k > k; > 1. If ki > 0 the time invariant regressors X1; € Rk
are independent oijs as well as ustfor alli,j=1,...,nandallt=1,...,T.

The Brownian motion B (r) € R&+D 4k consists of the pairwise independent Brownian motions
Bﬂi(r), Bvlj(r) e R¥ for i, j=1,...,n, the Brownian motion B (r) € Rkc arising from the common
T
it*

/
Then, B,(r) = (th r,... By (r), Bvc(r)’) € RKkrmtke The same notation is applied to W1 (r).

component v¢;, and the Brownian motions BZ,-(’) € R arising from the common components u

/

In addition, B, (r) := (Bvli(r)/ B,o(r) ) € RK, where, in general, BZ,-(”) and B, (r) as well as B;r,i (r)
and B, (r) are correlated.

Conditions on the stochastic process (n;r)tez, where a functional central limit theorem holds, are
provided in de Jong and Davidson (2000), Davidson (1994), and White (2001), as well as in Mark
and Sul (2003), Mark et al. (2005), and Phillips (2014). In the latter articles (1];) has a moving average
representation 17: = v () e;r, where W' (L) is a lag polynomial and e;r = (ext, o ,s}r/lt,e/a)/ €
R*r+Dn+ke s a noise term. This also allows for heteroscedastic &], which can be important if financial
data sets are analyzed (Section 5).

Weak stationary of (y]), in particular of the components uth, is necessary to obtain a cointegrating
relationship in (1). To see this, by Assumption 2, (x;) follows a vector random walk process and is
therefore integrated of order one. y; arises from a weighted sum of I(1) random variables, the fixed effects
; and Ay, the (stationary) term B} xy; as well as the stationary noise term u:t. To exclude cointegration
relationships between the components of x;; and to guarantee that y;; is I(1), we imposed the assumption
that B8 # Ok and that the long run covariance matrix is of full rank. Hence, by Assumption 2 the rank of
Q,, is k;-n+kc. The regressors xy; are assumed to be independent of 5 and therefore strictly exogenous,
such that ujt and xy; are uncorrelated for all pairsi,j =1,...,nandt =1,...,T.

Remark 1. Byy: := (yie,- .., ym) i = (y’{},...,yflt)/, u =l ul) X = (K. 0x,) €

R™%L A = (Ar,.odr) o= (@1, h0), B =1, ® B e R™™ and B, := 1, ® B € RMX1KL e
obtain the structural form (triangular system)

y: = oy + ﬁxt + ﬁLXL +o+ Al + uI , where X; = X;—1 + V¢ . (6)
Assumption 1 guarantees that I,, — oW has the full rank ». This allows us to obtain the reduced form
ye =T, — ,oW)_1 (th + BLXL +o 4+ Algxr) + uI) , where Xy = X;_1 + v;. (7)

Observe that the system constitutes n cointegrating equations. The cointegrating relationships do not
have the usual linear form in the sense that the solution for y; is a nonlinear function of the parameter
p. When we consider the data generated by (1) we observe that: (i) x; and u:.rt can be correlated, since
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Assumption 2 does not exclude correlation between v; and uth. (i) For p # 0, yj depends on y;; and
vice versa. (iii) uiTt and ujTt are independent by Assumption 2. (iv) Since y;: depends on y;s we know that

Vi = Wiyjr and u}; are correlated in general. (v) By Assumption 2 there is no correlation between u}t

and x;.

3. Estimation procedure and large sample results

The goal of the following analysis is to construct a dynamic two-stage least squares (D2SLS) estimator
and to show that it leads to asymptotically unbiased estimates of the parameters p, 8; and B or B;.
In particular, Section 3.1 applies the methodology of projecting on the leads and lags of the (first
differenced) dependent variables x;; € R¥ or x;, € R¥ introduced in Saikkonen (1991). We shall
observe that these projections eliminate the correlation between x;; and uth but not the y}, and ujt
correlation discussed in Remark 1. To get rid of the latter type of correlation, instrumental variables
will be applied. Since f; as well as B or « as well as A are not separately estimable (see, e.g., Hsiao,
2015, Section 3.6.1), we consider different cases: Section 3.2 considers a model without time effects A
and without longitudinally common regressors xy;, i.e., k. = 0. In this case model (1) becomes

n
Yit = P Z Wiiyje + Bixiit + Bexcr + o + u,-T, = pyh + B'Xit + o + u:-rt , where
j=1

Xt = X1+ Ve Xt = Kooy X X)) € RTRC g — (87, 87) € RF, and k= k; + ke (8)

Motivated by the empirical example discussed in Section 5, model (8) will be considered to be the leading
case in the following. To simplify the algebra, we apply the within-transformation (see, e.g., Baltagi, 2008,
p- 11) and derive the asymptotic distribution of the estimates of the slope coeflicients p and $ using
within-transformed data. That is, the variables in deviations from their individual means (means taken
with respect to the time series dimension) are

T T n T

~ 1 ~ 1 ~ ~ 1

Vit 3= Yit = E Yit > Xit 3= Xit = 7 E Xit , Vi = E Wiy and i), := uy — T E uly, (9)
t=1 * =1 j=1 t=1

such that (8) after applying the within-transformation (9) reads as follows:

n
Fie = p Y Wiy + B + BcXer + 1, = oy + B'%u + i), - (10)
j=1
For this model Section 3.2 obtains the T — oco-limit distribution for the ordinary least squares (OLS), the
dynamic ordinary least squares (DOLS) and the two stage least squares (2SLS) estimator, where second-
order asymptotic bias terms show up. Then, the T — oo-limit distribution of the D2SLS estimator is
provided, where no second-order bias term shows up and the asymptotic limit distribution is a zero mean
Gaussian mixture distribution (for a definition of the Gaussian mixture distribution see, e.g., Johansen,
1995, Chapter 13.1).
In a second step, Section 3.3 will consider the case where “kc = 0, k. > 0, no cross-sectional fixed
effects are present (e = 0, 1)) but time fixed effects are included (i.e., A 7 O(rx1)).” In this case model
(1) becomes

n
Yie=p Z Wiyje + BiXiit + BXri + At + u,Tt = pyh + B'xit + BrX1i + At + u,Tt ,
=1

X; = X¢—1 + V¢, where Xy =X = (X[ ..., Xpp) € R Vi = Ax¢,kf =k, and = B;. (11)
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Another within-transformation can be applied to model (11) to get rid of the time fixed effects A (see,
e.g., Baltagi, 2008). That is,

n n n
N 1 <k . 1 s . 1
Vit = Yit — — E Yits Vi ' =Vip — = E Yie» Xit = Xpit = XJit — — E XJjt »
n 4 n“ n-
i=1 j=1 j=1

n n
1 1
8 <t T
X[ = X[ — — E x;; and U, == u;, — — E u! , such that
g g n = J it it n 5 jt

n
Yie = p Z Wiyje + BiXiit + BXri + i = pyh + B + Bixi + i), (12)
j=1
For this within-transformed model a D2SLS estimator can be developed. However, in this article we shall

consider model (11) jointly with the case where “k;, = kc = 0 and cross-sectional fixed effects as well
as time fixed effects are allowed.” In this case model (1) becomes equal to*

n
Yit = p Z Wiyje + BiXiic + o + he + uly = pyiy + Bixiie + o + A + u)y,
=1
X; = Xi—1 + V¢, where X, = X = (X[ ..., Xp,) € RF, B=B;, k=k;, andv, = Ax,. (13)

To model (13) the within-transformation (see, e.g., Baltagi, 2008)

?u:yu——Z}/zt— Z)’]t _Zzy]t)yzt —Zwt])’]t>

j=1 t=1
. . 1
Xit 1= Xiie += Xjie = o Zxa ijt + — Z Zx]t ;
t=1 ] 1 t=1
1 T 1 1 T
St ot T T . - :
Wiy =ty — Z Ui = Z wy + T Z Z Uy is applied to obtain
t=1 j=1 j=1 t=1
n
Jie = p Y Widje + Biknie + itly = p¥j + Bikne + it} . (14)
J=1

In addition, since X;; := XLi—% Zthl XL,‘—% Z;:l XLj+ﬁ Z;l:l ZtT=l X[j = XLi_%XLi_% Zjnzl XLj+
T_Tn 2}1:1 x1j = O, x1)> applying the within-transform used in (14) to model (11) also results in y;; =
Py + Bt + 112;. This allows for a joint treatment of the models (11) and (13). For model (14) the limit
distribution for the parameters p and B will be obtained when T or (1, T) become large in Section 3.3.
For the model (11), given the estimates of p and B}, an estimate of B; will be derived by means of a
further ordinary least squares regression.

“To distinguish a model where the econometrician decides to include different kinds for fixed effects (given that kc = 0 or
k. = 0), indicator functions of the form I,y and I ;) can be included into model (1). To simplify the notation and to improve
the readability we assume that if kc = 0 and k; = 0, then time fixed effects as well as cross-sectionally fixed effects are
included.
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3.1. Projection facility

Assumption 2 implies that potentially all leads and lags of Axj;; = vy and Axc; = v are correlated with
u;rt. In the next step, we follow DOLS literature and remove the correlation of uiTt and v,, by projecting
on the leads and lags of the prediction variables. This implies that for each i, we project on Axj_s =
(A}, Ax’ths)/ = (V}it—s’V/Ct—s)/ fors = —p,...,0,...,p. The projection of uth on the p leads and

lags of Ax; yields a truncation component Z;P_P

(for s = —p,...,p), a truncation error ep;; := >
that

8, [ Ax;;_s, vectors of projection coeflicients 8, ; € Rk
8; Ax;;—;s plus a new disturbance u;, such

s>p,s<—p
ul, = Q;;ig'p;i[ + epit + it = §;;i§p;it + U and = epe + Ui, where

/
o / / ’ / ’ 2p+Dk
it = (vﬁ)[_p,vc)t_p, Vi Ve ,VIi’t+p,VC’t+p) eR and

!
8= (8 g sBl08p) € ROPFDE (15)

The subscript p denotes that the truncation error ep;; as well as the noise term Uit = psit + Uit depend
on the number of leads and lags p. £ ;; is by construction orthogonal to the new noise term u;, while
the term Upjy = psir + Ujr can still be correlated with Ax;; for some p < co.

A further alternative is to follow the system DOLS approach (see, e.g., Park and Ogaki, 1991) and

/
project on the leads and lags of all cross-sections. That is, &, = &, = (vgfp, ce Ve .VLP) €
. . / .
R@HDKintke) \where in Section 2, we already defined v = Ax; = (v}lt, . ,v}m,v’Ct) € Rrkitke,
Then,
T o_ e _ e/
i = Spiapye + Sapit + Uit = 85538 py + Uy >

!/
_ / ’ ’ 2p+1) (kyn+k,
Copt = (vtfp,...,vt,...,va) e R@HDkintke) |

’
Uyt = Cpsit + uj, and éﬁp;i = ( I/:Ii’*P’ ey j/:Ii,O’ ey I/iinLP) € R(2P+1)(km+kc) . (16)

We shall observe that projecting on the own leads and lags (15) is sufficient to eliminate the correlation
asymptotically between the regressors and the noise term in model (8), while with time fixed effects or
kr > 0, where the within-transform (14) is applied, the projection on all leads and lags (16) is used to
get rid of the correlation between Xj; and ftth.S Now we impose an additional restriction on the error
dynamics that will guarantee that the truncation error ep;; (or e4p.i) converges to zero when T becomes
large:

Assumption 3 (Error Dynamics II; see Saikkonen (1991), Mark et al. (2005)). Suppose that p = p(T).

3
Then p(T) has to fulfill 1@ — 0 and ﬁ2|5|> ) I18isll2 = 0 (or ﬁz\sbp(T) 184isll2 — O when
projecting on the full cross-section of leads and lags) as T — oo, where ||. ||, stands for the Euclidean norm.

Assumption 3 requires that p(T) does not grow too fast, while the second part restricts the depen-
dence between the noise term and the regressors. Based on Assumptions 2-3, for model (10), if T
becomes large then—due to the increase in the number of leads and lags p(T)—the truncation error e,

becomes small. As a result, the difference between Upiy and u;; becomes small, such that Upiy becomes

5By contrast, when skipping the assumption of independent cross-sections, Online Appendix A-4 demonstrates that in this
case a projection on all leads and lags becomes necessary already for model (8). The Online Appendix can be downloaded
from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2256929.
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orthogonal to 8 it as T — o0. For the transformed model (14), Xj; as well as itth contain weighted
elements from the other cross-sections j = 1,...,#n, j # i. The projections on the full cross-section of
leads and lags is applied to the transformed model (14). Then the truncation error e.;; becomes small
such that i, ;, converges to i;, and the Xy, it,,, ;-correlation gets small for large T due to Assumption 3.

After applying the projections (15) for the transformed model (10) as well as (16) with the
transformed model (14), we arrive at the new covariance stationary process (nt) 1ez> Where 1, =
(uv)" € REFVC o= ((fimn) € ROV = (uivy) € REHL oy, =
(v}lt,...,v}m,v’cﬁ)/ e Rrhithke and wy := (uig...,um) € R"). For any £ € Z we get Ty :=
E (n,_¢n;) € RUrFDntkerx((kit)ntke) the new long run covariance matrix € := Y02 E (1,_,7})
and new half long covariance A := Y72 ( E (,_7}) uiTt (16) the projection on all leads and lags is used
to get rid of the correlation between Xj;; and u:.rt (16). By applying the notation introduced in (2) and (3),
we get [py = Ry = Ay = Ogiexcn) as well as Quu; = oy = 0, for i # j by Assumption 2. By the
construction of the noise process ujs, the correlation between u;r and vj;—¢ is zero forallj = 1,...,n
and ¢ € Z.

In addition, while the time index ¢ goes from 1 to T in (1), after the projection facilities are applied
only the observations p + 1, ..., T — p can be used to estimate the model parameters. By defining ¢, :=
t — p + 1 we obtain a new time index which accounts for the projection facility. Then T, = T — 2p and
te=1,..., T,

Given the assumptions on the error dynamics, a functional central limit theorem can be applied, such
that if T, — oo:

[Tur]

— Yy, = B =W . (17)

VT, 2 ‘
W(r) is a standard Brownian motion in R¥"+kc while B(r) = /2W(r). These Brownian motions
contain the components, B,, = (BVL- 1), Byc(r) )/ and W,, := (Wvli(r)/ ,Wie(r) )/. By Assumption 2
and the construction of #,,, By, (r) and B,,(r) as well as B,,(r) and B,(r) are independent for all i =
1,...,n. This also yields By, (r) = /Qu;u, Wy, (r). By Davidson (1994, Theorem 30.2), \/;Tfii[rT*] =
B, (r) — fol By, (s)ds and Tlf Zﬁfﬁ‘ﬂ Xit, X, = [o Bu(9)B,,(s)ds, for T, — oo, where the demeaned
Brownian motion B,,(r) — ]01 By, (s)ds is abbreviated by Bv,- (r). Assumption 2 and some algebra results
in T% Z[t*T;Il Xit, Uit, = /Quu; fol l’;’vi ()dW,y,(s) + A,y (see also Davidson, 1994, Theorem 30.13).
Since, vi;, and uj;, are uncorrelated, A,,,; = O and T% ZLT;]I Xit, Uir, = /Quju; fol l’g'v,. (5)dW,,(s). By
contrast, Ti* ZLT;]1 Xir, 11:&* = /Quu fol B, (s)dW;ri () + Aiiui, where - in general - Almi # 0. In
addition, we derive \/LT,)\"'[’T*] = B,,(r) — % Z;l=1 By, (r) = Bvl.(r), where Bui(r) and B, (r) are defined
. o 1 1 3
in the same way, and \/;fo"[’m = By, (r)— [, By, (s)ds—% 27:1 B,,j(r)+% Z}Ll Jo By;(9)ds =: By, (r),

where éu,- (r) and B, (r) are defined in an equivalent way (for more details see Online Appendix A-2).

3.2. Large sample properties of some parameter estimators for model (8)

This subsection investigates the model defined in (8), where k; = 0 and no time effects are
included. To write down our estimator in a compact way, we define the model in a stacked notation.
/

U
(g — ~ ~ ~ ~ k — % oy 3 K % jod —
Define y := (yu,...,le*,...,ynl,...,ynT*) y o= (J’11)~~>)’1T*’-~-’)’n1’-~’)’nT*)»X =
!

/
(xll, ces XXy ,an*) ;and u, = (Zp;ll’ e U T W ’—p;nT*) , where ¥, ¥,
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and ﬁp are of dimension nT, x 1, while X is an nT, x k matrix. Furthermore, we have

~/
o Oaxeprib  Oaxeptnb
~/
’Ep — Epar,  Oaxeprnh  Oax@ptib | ¢ prTvx@p+Dkn 44
Oax@prvb  Epar 0(1x2p+1)k)
0(1x2p+1k) O1x2p+1)k) ¢ pinT,
ép;l
8= : | erCptOEm, (18)
ép;n

This provides us with model (10) in stacked form:
~ N o ~ N ~ o N N
V=07 +XB+ 8,8, + 8, = (7 X) y + 5,8, +1, =%, (v.8)) +1, =%;0, +5,, (19

/
where y == (p, ')’ € R'"**and 9, := (y’,él’)) € RIFk+Cp+Dkn The right-hand side variables are

collected in )NCP = <')7*5i, I p) € RTxk+14+QptD)kn The transpose of the rows of the matrix ip are

~ - - ~ / .
the column vectors Xy, := (y;.kt*, th*’ 01 x 2p+Dk-(i—1))> & piit,» 0(1x(2p+1)k (n—i— 1))) c RFHI+C@p+1) kn
Including the projection facility (15), model (8) can be written as y;;, = p it, 0,+ up it,- In addition, we
apply the following notation: Let W; € R stand for the ith row of W. The n - (k; + k¢) x nky + k¢
matrix C transforms X; = (i}lt, ... ,i}nt,f(’a)/ € Rkintke jnto (i}lt,i/Ct, .. ,f(}m,i/a)/ € Rkitko)yn,
Note that each row of C contains exactly one element equal to 1, while the other elements are zero. In
addition, C has full column rank nk; + kc. For k¢ = 0, C = I, Moreover, let i, := (&, ., ”m) and

~ . ~/ ~/ . - - ~
Ept = d’“g@p,ln s 8pnt) € R @1y ke, Then, jj, = > Wy > Kii (ﬂxlt + é}’);lfp;lt* + Elt) can
be expressed more compactly by W;K (BCit + Ep,tQP + Qt>. In the same way as (X[, ... ,i;[)’ = Cx;

we proceed with ¥, resulting in Cv; = CAX; the half-long covariance matrix CA,, € Rk"x7 and the
superposition of the components of the demeaned Brownian motion CB, € R¥",

Let us start with the OLS-estimator, where p = 9, i;, = uzt’ T=Tst=t, XOLS = ()’mxzt) and

Pors = ( BoLs, B/o LS) _ <Z ZXOLSXOLS/> Z ZXOLS)?” (20)

i=1 t=1 i=1 t=1

To obtain the T — oo-limit distribution, ii?LS is scaled by 1/T. This yields

Proposition 1. Counsider the fixed effects spatial correlation model (8) and the OLS estimator (20) based
on the within-transformed model (10). Suppose that the Assumptions 1 and 2 hold.

Then, for n fixed and T — oo, it follows that the T — oo limits ofMg)L(ST = % Zthl )’ZgLsigLS/
OLS ._ y™n  pOLS
and Myt =2in MSQ"(,Tni are

' : WiKBCB,(r) -
Mf(f(,ni = L gi(r)gi(i’) di’, gi(f) = < BNVi(r) ) s and MXX,H = Z:Mf(j(,ni’ (21)
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o~
while the T — o0 limits of OLS = % > XiO,LS and mOLS =i m%ini are
W Kf() ﬁCB (r)dBT (1’) W,K I:BCA;E + r() » ] n
Mmgot 0 = n + ! , and mg. = Zm)}m ni *
V@b Jo By (dwy (r) - oo

For the centered and scaled ordinary least squares estimator of y we observe:
. —1
T(Pos—7)= M Mkt - (22)
Proof. See Appendix A.

Note that mg;; , contains the “usual” second-order bias term Y, ALW in the coordinates
2 to k + 1, while in the first component of mg;; , we observe the second-order bias term

Zz 1 W K (ﬁCAvu,
Mark and Sul (2003) as

0 " ) arising from a spatial lag. Next, the panel DOLS estimator, derived in

n ~e N~
booisy = (X,%,) Xy, (23)

results in ODOLSP -0, = (Zl | Zt*_l PZt‘X}’),it’) Y Zt*—l ity tpsir, - To obtain the T — oo-

limit distribution of y oy, (,ODOLS,pa Bpors: p> , the first k + 1 components of ip;it* are scaled by
1/T,, while the remaining components are scaled by 1/+/T,, resulting in the scaling matrix Az, =
diag (T; " - L1, T2 - Tapinynk) € RKH1+@p+Dnkxk+1+Q2p+1nk For the DOLS estimator we obtain:

Proposition 2. Consider the fixed effects spatial correlation model (8) and the DOLS estimator (23) based
on the within-transformed model (10). Suppose that the Assumptions 1 to 3 hold. Let T, = T — 2p(T).
Then, for n fixed and T — oo, it follows that:

(@) Tu(Pporspy — ¥) and ./T*@DOLS’p — 8,) are asymptotically independent.
(b) T, (}A'DOLS;p - y) = M;(}(’”mm,n, where My, ,, follows from (21),

WK [, BCB,(r)dB,, (1) (w,-KroW.) -
m;. .= - ! + ) and my. = msg- ..
Xu,ni < /_Qu,-u,- fol Bv,- (r)qui(r) O(k) Xii,n 1221 Xu,ni

. n T,
My ,» Mg, and mg;, | are the T — oo-limits of [Zi:l DA X

Xp P’t*XP’“*AXP](1:k+1,1:k+1) -
T, 2 ~ n Y ~
M5 ,[ LAy X u] ms;- wznd[ i * AL X u,] =
s | 2o Agp X, i (1k+1,1) Xunli RPN Xppsite T | (k)
mf(ﬂ,nT'

Proof. See Appendix A.

Since ' ,; > 0 projecting on the leads and lags Axj, 15, s = —p(T),...,—1,0,1,...,p(T), is not
sufficient to obtain convergence to a zero mean Gaussian mixture distribution. Comparing the OLS limit

MT} Mg, to the DOLS limit M~ % M7, We observe that by projecting on the leads and lags, the

second order bias terms CAIMZ_ and A:ﬁiul_ are removed, but not the correlation term W;KT'g ,,,,; arising
from the spatial lag.

To obtain convergence to a mean zero Gaussian mixture distribution, we shall estimate the model
using instruments for the endogenous variable 5}, = Z};l Wiiyit = Wy, for which we assume:
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Assumption 4 (Valid Instruments; see Kitamura and Phillips (1997)). The instruments Z;, € R fulfill
the requirements for instrumental variable estimation as stated, e.g., in Ruud (2000, Chapter 20), Phillips
and Hansen (1990) and Kitamura and Phillips (1997). In particular (i) the number of instruments is

larger or equal to the number of parameters (order condition), (ii) = ] Zt*_l i X, ) ((z;)', X}, ) weakly

converges to a matrix of rank k+1 (almost surely) as T, — 00, and (iii) & 72 Zt*_l( i "X ) ((z lt* ! ~:t*)

weakly converges to a matrix of rank k + q, (almost surely) as T, — oo.

By following Kelejian and Prucha (1998), we base the instruments on the spatial lags of the explana-
tory variables. In more detail, our model can be solved asy = [IT ® d, — pW)_l] (’iﬁ + Epép + Ep)

The matrix (I, — pW) ™! can then be expanded as (I, — pW) ™! = Y20 (PW)* (see, e.g., Horn and
Johnson, 1985, Corollary 5.6.16). This implies that variables of the form Z?:l Wij?c'jt*,(, 2}1:1 W;FEJM, ..
are suitable instruments for WY. Xjt, . is the coordinate « of Xj;,, while Wl-; stands for [W7];; and W}
for [W*](;1.n)> where 7 € N.If Xjz,, is a component specific variable, Xj;,. and %, , for i # j, are
independent by Assumption 2, while if Xj,, is a common variable, then asymptotic independence will
be established for the D2SLS estimator when T — o0. Note that these instruments have an intuitive
interpretation: we instrument the Wj; weighted sum of the neighbors/peers yj;, by the W;; weighted sum
of the characteristics of the neighbors (their Xj;, values). The higher-order spatial lags as instruments
then use the characteristics of the neighbors of the neighbors, etc. Hence, we work with the instruments

Zzt*/c = xzt k= Z W,t x]t*/c > (24)
where k € K C {1,...,k}, Kis an index set collecting the indices of the instruments used, and 7, € N.
/
[ S fov-1 fove 3
Let K(j) stand for the Ith element of the set K. Then, z;; = (xit*K(l), . ,xit’K(qp) € R, the exponents
T Are Tk » I=1,...,9,.Bythenxnkselector matrices C(K<j)) (where the coefficients [CK(,-)]@ (—1)ntn)

TK, .
areequal forallt = 1,...,n), we get Z# = WiK(’) C )X, forj=1,...,q,. To keep the

_
ity ]K(]) - xit,{K(")
notation simple, we consider - as already stated at the beginning of Section 2 - a model with one spatial

lag (k, = 1). Hence, with g, > 1 the order condition is met.

~ K - K / )
We collect the variables z;; = (W,- @ CkapXe---» W, (q”)C(K(q ))Xt,> € R% in the

~,

nT. x q, matrix z* = (Z},...,Z} )/ The set of our instruments is then Zp = (z* X, I;p>
RTxxptktCpDkn The rows of Z,, € R %40 Hh+@p+Dkn gre the transpose of the g, +k-+(2p+1)k-n-

dimensional column vectors Zp t, = (z. ,xm 5 0(1x 2p+1)k-(i—1))> I;p ity> 01 x 2p+ k- (n—i— 1))> Next we
consider two-stage least squares (2SLS) estimation. Since no pro]ectlon on leads and lags is applied with
2SLS, we get p = 0, T~: T,and t = t, as well as XZSLS = (yﬂ, lt) = XZ.?LS and Z%[SLS = (il*/,i )
X2SLS 725LS X2SLS
it it

Collecting and results in and ZZSLS. The noise term and the projection operator are

] ~ ~ ~ ~ 1~ -~ . - ..

given by u and Py := Z2LS (225L725LS) ™" 722515’ The term %,, contained in Z25, is still correlated
with & u Th1s correlation does not vanish if T — o0. To see thls con51der the two stage least squares
estlmator

N > > -1y -
Pasts = (XasrsPasisXosrs)  XassPastsy - (25)
By scaling XftSLS and Z%SLS by 1/T we obtain:
Proposition 3. Consider the fixed effects spatial correlation model (8) and the 2SLS estimator (25) based

on the within-transformed model (10). Suppose that the Assumptions 1 to 4 hold. Instruments are based
on (24).
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Then, for n fixed and T — oo, ztfollows that the T — oo-limits ofM;SZLSTl = % Zthl X28LS725LS,
LS .y \2SLS  pNpRSLS . L ZZSLSZZSLS/ M2SLS .y NM2SLS  2SIS L
XZnT 2im1 XZni® " ZZnTi T2 Y ZZnT -~ D ZZni® " ZunTi

1 N~T  28IS ZSLS — N1 2SLS
T 2t=1 L i, and m>> T > my . are provided by

1 n
M}?Z ni T /0 gi(”)hi(f’)/df > Mgz)n = ZMXZ,ni , where

i=1

K ~ TR+ ~ TK, ~ ~ /
hy(r) := (wl. D C ) By1)s W, P C g Bu(1), .., W, (q”>C(K(qp))BV(r),Bw(r)’) e RIHk,

1 n
MZZ,ni = /0 h,‘(?’)h,’(f’)/di’, MZZ,n = ZMZZ,ni and
i=1

®ay 1 3
W,V [ Cry Bo(r)dB] (1) W, O Cgey Al
mZﬂl,ni = TIK( ) rl . ~ + TK . ’
w, C(K(qpﬂBV(r)dBL(r) W, wp)C(K(qm)A
@b [ By (AW (1) A
as well as myy; | = ZmZm)m. . (26)

i=1

The asymptotic limit distributed of the centered and scaled 2SLS estimator of y is provided by:

-1
- - 1
T (}’ZSLS - }’) (MXZ nMZZ nM;N(Z,n> M)?Z,nMZZ’anﬂl,n : 27)
Proof. See Appendix A.

Note that 2SLS eliminates the correlation term Zl L Wi KFO iy in Mg o while the second-order
bias arising from serial correlation is still present. We do not attain convergence to a zero mean Gaussian
mixture distribution.

We now construct a two stage-least square procedure for our panel setting where leads and lags
of AX;; as well as instruments Z}, are included. Let us define the projection operator &y, projecting
on the column space spanned by 21) (see, e.g., Ruud, 2000, Chapter 3). In formal terms Py, :=

~ e~ =l ~
Z, (Z;,Zp) Z,.Since Zy isa Tan X qp + k + (2p + 1)k - n matrix, Zp, has to be a Ton x T,n matrix.
The dynamic two-stage least squares estimator of 8, = (p, B, QE,)’ = (y/, QE,)/ is defined as follows:

~ - o\l o - ~ o N—1 o -
Ooosisy = (X, 20%,) X 2u¥ = 0.8 + (X,20%,) X, 2mi,.  (8)

Let iit*”(lthrl) and 2it,,,,(l:k+q ,) stand for the first k + 1 and k + q,, elements of )N(p;,-t* and 2P;it*‘
For the asymptotic analysis we apply the scaling matrix Az, as well as the scaling matrix Ay, =
diag (T, U Tkgg, T,95 Topt1ymk) € RK+4p+@p+Dnkxktqo+2p+Dnk The matrix Ay, is diagonal with
1/T, in the first k + 1 elements while the matrix AZp is diagonal with 1/T, in the first k + g, elements.

The other scaling factors, i.e. all the further elements on the main diagonals of Az, and A; 7p are .03,

Let My, = Y[ A tt*Xn,A T Mip = Zz 1

i- 7. A
XX nTi XXnT XXnTz XZnT1 Zf —1 AgpXit Ziy,

* = noME. A , M% . = Mx mX =
XZnT Z1=1 XZnTi’ ZZnTz' Zf*—l Zi, If* XZaT * Zl VX2 ZignTi
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T = ~ * o n *
2ot AgpZin, k)W and my, o= my. o as well as
*
Msom = T2 Z( ’t*(lkH)Xm»(l k+1> [M?&’”Ti](lzkﬂ,l:kﬂ) ’

te=1

_ k+1xk+1
MXXnT ZMXXTz €R ’

*
Mz = 12 Z( ot Z, (1k+‘1p)> [MXZ»”Ti](1;k+1,1:k+qp> ’

* =1

n
Mgy g i= D Mgy gy € R,

i—1
VL Y7 7 _ [m

22nTi T T2 ; ( itan(Lik+4p) if*»(hkﬂp)) N [ ZZ,"Tf](l:k+qp,1;k+qp) ’
My = ZMZZ nTi € RE*a ity
1y 5 i) = [m* d

my. = T ;( zt*,(lzk-‘rl)git,,) - [mZﬂ,nTi](1:k+qp,1) o

PO — i = | m* k+qp
M=) Wi I:mZﬁ,nT](l:k D) € R™.
i=1

Next, we summarize the large sample properties of the D2SLS estimator:

Theorem 1 (T — oo limits for D2SLS Estimation). Consider the fixed effects spatial correlation model (8)
and the D2SLS estimator (28) based on the within-transformed model (10). Suppose that Assumptions 1-4
hold. Let T, = T — 2p(T). Then, for n fixed and T — o0, it follows that

L. Tu(P passyy — ¥) and VT*@DzsLs;p — 8,) are asymptotically independent.
2. My ire Mg Mzz e Mzzm Mz Mg i Mz e and m; ,p converge weakly to Mgz .

s Mzz,00 Mzz 0 Mgz 0 Mig » My 0 and my; ., where

1 1 n
my; . ::/0 h;(r)dB,,(r) = ,/Quiuifo hi(r)dW,,(r) and my; = ZmZﬁ,m" (29)
i=1

Msx., and Mgk i are provided in (21), while My .0 Mgz, M5 and My . are provided in (26).

In addition, T, (j;DZSLS;p — y) converges weakly to M, 'm,,, where

n
— M-x M~! M — M me. = M-
M, = Mg; M5 My, and my = ZMXZ’nMZZ’an,]’m = M;y; nMZZ my. . (30)
i=1

3. Suppose that Quu is a consistent estimator of R, = diag(Qu,u;)i=1,....n» then

,,,,,

-1 -1
,_ . -1 - . -1 /
Viur o= [MXZ»"TMZZ,nTMXZ,nT] Dy [MXZ,nTMzz nTMXZ nT]

-1 —1
) 1 - _.
= My ML M | D Mg My M | =iV where
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n
o . —1 A . —1 /
Dur = Mgz, M55 o (Z QufuiMzz,nTz') M; Mz, and
i=1

n

i . —1 . —1 /

Dui=Msz,Mz7. (Z Q“i“fMZZmi> M Mz
i=1

Given an s x (k + 1) restriction matrix R, the Wald type statistic

~ / -1 ~
Wynr = (T*R (}’DzSLs;p - )’)) (RV,rR) (T*R (}’DzsLs;p - }’)) , (31)

converges in distribution to a x* random variable with s degrees of freedom.
Proof. See Appendix A.

Remark 2. Since the signal to noise ratio goes to infinity, we observe that the OLS, the DOLS, the
28LS, and the D2SLS estimator is consistent, when considering T — oo-limits. Sufficient conditions
for consistent estimation of the covariance matrix &, are discussed in Jansson (2002) and in Online
Appendix A-6.

In addition, observe that if 8 = 01y or k = 0, the variable y;; becomes I(0) (see, e.g., Eqs. (1) and
(7)). In this case the signal to noise ratio does not go to infinity and the ordinary least squares estimator
is not consistent (for a proof see Sogner and Wagner, 2017).

Remark 3. Projecting on all leads and lags as proposed in system-DOLS (see Park and Ogaki, 1991)
and the DSUR approach (see Mark et al., 2005) does not eliminate this bias. Based on Mark et al.
(2005), D2SLS can be augmented to a richer correlation structure by projecting on the leads and lags
of all regressors as described in (16). However, by this projection facility the dimension of the nuisance
parameter becomes (2p + 1) - (k;n? + kcn). Due to numerical constraints, this estimator can hardly be
implemented when # is large (see Section A-4 in the Online Appendix and Section 4).

Remark 4. The following subsection also derives limits when both # and T become large. For the

- - 1 n Te o o
model (10), where X¢; and Xj; are used as regressors, we observe that T Zj:l Zﬁ:l XeiXey =

% ZZ "_1 XciXg, such that the T — oo limit as well as the (1, T) — 0o limit remain random variables.
By this fact, the (n, T) — oo limit of the centered and scaled parameter vector is not a mean zero normal

vector if k¢ > 0.°
3.3. Large sample properties of the D2SLS parameter estimator for model (13)

Using the within-transform (14) and the projection facility (16), we get by étip; ;1= (éﬁ o % Z}’:l 3. J>
and some algebra (see Online Appendix A-3)’

v - v o oz v 2y =/ b -
Jit = PV, + BiXiit, + 8 upur, + thyy, = WiK (ﬂth* + (In ®¢ ﬁp;t*) 8., + Ht*) o (32)

5In a former version we obtained (n, T) — oo-limits for model with locally common variables, in which case the joint limit is
a normally distributed zero mean random vector. These results are available on request.
"To simplify the notation we write Qir, and Qt* when the within-transform (14) is applied to Uy and u, (i.e., we skip

the symbol ). In addition, although éﬁp;j — %Z}; ij_j corresponds to the within-transform defined in (12) we use
the abbreviation énp;i to emphasize that this parameter is related to the model based on the within-transform (14). To

obtain (32) note that with ke = O, wehave B = 8,8 = B = In® B; € RN and C = Ink, such that
WK (BCke, + (In ® Eipy, ) + 1y, ) =K (Bike, + (In ® Epy, ) + e, ).
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where X;, = Xp, = (¥,,....%,, ) € R* L@, = (i,...,i, ) € R"™L. The vector
~/ 2 . ~/ 2 . .
8y € R@PHDE and the matrix I, ® & ipit, € R"™X@P+DRIT ollect the projection parame-

ters éﬁp;i and the corresponding leads and lags of AXpy,, while W; is the ith row of the n x n
matrix W, describing the impact by all other n — 1 cross-sections on y;; (as well as )V/it*). In addi-

— 1+kr+Q2p+1kin?
tion, let Xp1t = ()’zt’ Xit,> 0(1><(2P+1)k1 (i=1)> Cnpm’ (Ix 2p+1kp-(N—i— 1))) e RUkHCGPHDRT and

N YT 4 +k+(2p+1)kn? Sk
Zp;it* = (Zzt » X, 0 e R% P , where Zj

(A% 2p+1)ky-(i— 1))’§t1pzt*’ (1 2p+1)kp-(N—i— 1)))
(ZitKays - - - 2 K, ))/ € R%. The suffix~ denotes that the within-transformation - described in
K,

(14) - is applied to the instruments z;’;ﬁ defined in (24). Then, y; = Op + i ity where 0p =

pzt
vy e\ o / v v/ v/ o/ ,
(J//,éﬁp) ,¥ = (p,B}) and 3y = (éjp;,-, o8y ,éﬁp;n) e R@+Dnkr, By collecting Xit* and

Z,, , we obtain the matrices X € R"-x1+k @tk and 7 e RAT-xapthit@ptDntki | Binally, Jet

y o / . y . / SR I RN
y = ()’lp+l> .. ))/nT—p) e R, u, = (Elerl’ .. ,ganp) S R”T‘: and ‘@I:Ip = ZP(Z‘;’ZP) Zp.
From (32) we deduce the dynamic two-stage least squares estimator of 6 ,:
= <7 < ' o/ 5 L / 5
Oposisy = <7D25L5;p’§D25LS;ﬁp) = <Xp‘@ HpXp ) X, Py, ¥ = 0, + (X Py prp> X, P14, -
(33)

To obtain the T — oo asymptotic limit distribution of the estimator 0 DaSLSp>  We
apply the scaling matrices Ay, := diag(T,! - 1 705 . 1 2

pply g Xp * gLy ki+kc+1> Ly @p+1)(n2k+ken)
RErHkc+14+@p+1) (Pk+nke) xki+kc+1+Q@p+1) (nki+nke)  and AZp = diag(T;" - Tyike +qp,TI05

e  Rltketa,+@prD)(rkitnke) xkitketd,+@ptD(nkitkenm); (note that ke = 0

Ko1)ok -+ikc))
in this subsection). That is, the terms arising from the spatial lag and the I(1) components are

scaled by 1/T,, while all projection variables are scaled by 1/4/T,. Given these scaling factors,

_ yvT. ) by Uy : 5
we define My, . .= 3. AXpXP zt,,ZP,zt,(A e Zt*_l AZPZP zt,Zp Az MXZ s
* . -
[M)'(Z,nTi](1:1+k1,1:qp+k1)a MZZ,nTi = [MZZ,nTi](11‘19+k1’1:qp+k1)’ mZﬁ,nTz’ = Zt*—l AZPZP it it and
pp— *
mZEt,nTi ‘_ le),nTi](l:qurkI)) as well as
Vi 7’) V,'(r)
TK o
w; (I)C(K(l))Bv(r)
Bi(i’) = ) : ] R and
w, " ?(K(qp))BV(r)
Bvi(r)/
™®
.fO (©] C(K(l)) |:f0 B (7’) (dBu,(T) 1 Z;lzl dBuJ(T)>:|
i = ) , (34)
fo qap C(K(q ) I:fo B (r) (dBu,(T’) 1 ZJ 1dBuj(1‘)>]

Jy Bo) (B () = L 20, dBuJ.(r))

y y y .\ y
where my; . € R¥*H, B, = (BLI,...,BLIJ.”,B;”) e R™, and B,, = By, — [y By, (ndr —
%Z};l By, + %Z}’:I fol By, (r)dr. Since kc = 0, By, = By, l?v,- = l?vli,uand B, :v B, In
addition, let N; = %l(lxn) ® qu_Hq = R(‘]p-‘rk})X(Qp-i-kl)n’ h(r) = (h1(7’) N TG
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b)) e RO M = Y (A i g ko) G i A% 2 J g, k)
T, 1 —
M%zznn = Zt*—l( P 1[ Zp Pl[*](lquFkk»l))([AZPZP;if,](11‘Ip+kk>1))’ and Mzzzzrm
/
t*_l (Lyr [a - plt*](l q,,+kk,1))(1 ijl [AZPZP;jt*](IZQp+kk)1)) . Then, for the dynamic two stage

least squares estimator 0 D2sLs;p We obtain:

Theorem 2 (T — oo limits for D2SLS Estimation). Consider the fixed effects spatial correlation models
(11) and (13) and the D2SLS estimator (33) based on the within-transformed model (32). Suppose that
Assumptions 1-4 hold. Let T, = T — 2p(T).

Then, for n fixed and T — oo, it follows that
L. T*(;“;DZSLS;I, —y)and VT*@DzsLS;ﬁp — éﬁp) are asymptotically independent.
2. T, (?’\DZSLS;p - )7) converges weakly to I\V/In_llhn, where Mgy ;= limTﬁooM;(ZnTi = fol gi(r)ﬁi(r)’dr,

) 17 % )

My i = M1 0oMyy gy = [o hi(nhi(r)'dr, M 57 = oMy, = Y1 My o My, =

. n Y .

llmT—)ooMZZ,nT = Zi:l Mf(Z ni’ M, = Mg; nMZZ nM;(Z W MZini = ZZmT—’OOmZit,nTi’ Mzin

Y o . 1

Z?:l mZﬁ,m"End my == MXZ nMZZ nm/Zit,n'

3. Suppose that S, is a consistent estimator of 2, = diag(Qy,u;)i=1

n then

,,,,,

V- . -1 / 3 . -1 /
Var = I:MXZ’"TMZZ aMiz, nT] Dr [MXZ,nTMZZ aMiz nT]
-1 3 -1 / Y
= [MXZ%MZZ MXZ ”] D, I:M)“(Z ”MZZ nM)V(Z,niI =:V,, where

< —1 1 g
Dyr == My nTMzz ¥ zizinMyy My

by = b
Pizinr = Z Sy ( ZZ,nTi MZZZ,nTi Mz ZZ,nTi + MZZZZ,nTi) ’

. —_— 1 71 . - —_— - o
D, = My anz Lz, nMZZ ,,MXZ w Prizin = Z Py i > and
i=1

Pz = Quui (/01 by (1)hi(r) dr — /01 h;(r) (Ni,fl(r))/dr - /01 (Ni,fl(r)> hi(r)dr
+ /01 (NEE(’)) (Nill;(r))>/dr> . (35)

Given an s x (k + 1) restriction matrix R, the Wald type test statistic
7 < N\ (o3 -1 o .
Wyt = (T*R (}’DzsLs;p - )’)) (RV,R) (T*R (J’DzsLs;p - )’)) ) (36)

converges in distribution to a x* random variable with s degrees of freedom.
Proof. See Appendix 2.

In the following the joint limit theory developed in Phillips and Moon (1999, 2000) will be applied
to obtain joint limits, i.e., (1, T) — oo-limits.® Consider draws with double index (i, t), where i, i =
1,...,n, stands for the cross-sectional index of the drawand ¢, t = 1, ..., T, for the time-series dimen-
sion of the draw. To derive the joint (1, T) — oo-limit distribution we impose

8The definitions of sequential convergence (“first T — oo, then n — o0”) and joint convergence (“T,n — ") in probability
are provided in Definitions 1 and 2 in Phillips and Moon (2000).
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Assumption 5.

(a) For the stochastic process (17,)
hold.

(b) Ik, > 0alaw oflarge numbers can be applied to XX, .. That is, 1 D S(L,i}_l converges in probability
toE (XLzXL,)fOf n — oo, where the matrix E (xL,xLl) is regular. ForxLlu , ajoint central limit theorem

ez = ("It)tez Assumptions 1-10 stated in Phillips and Moon (1999)

can be applied. That is, JTT Yo Zn:l XLl ;rt = "(kL-a.)fO" (n, T) — 00, where v

J\/(O(kal),D(iUﬂL)) and 0 < D
T, then n — oo”-limit.

~ ~ ~
Gepittly)

Gty < 00 The joint limit v 5 i) is equal to the sequential “first

Part (b) of Assumption 5 will be used to obtain the asymptotic limit distribution of an estimator of
B1. By the last part of Assumption 2 we already get E (XL,-I)L) = O, x1)- Sufficient conditions for a
joint central limit theorem to hold, where the joint limit agrees with the sequential limit are provided in
Phillips and Moon (1999, pp. 1070-1071).

For a panel cointegration model joint limit theory was, e.g., applied Kao and Chiang (2000), Pedroni
(2000), Mark and Sul (2003), Baltagi (2008, Chapter 12.6), and Pesaran (2015, Chapter 31.10). By Assump-
tion 5 Lemma 1(d) of Phillips and Moon (1999) applies, such that for the long run covariances €; =

Ruiu; Lu ,i = 1,...,n, we observe that E (R,) := € = Lo Lug
ﬂv,ul nv,v,-

>. Moreover, let
SZV,‘M,‘ Vivi
ji=ki+ 1,1y =4q, + 1,and l; = q, + kg, then it follows that

(n, 1Tl)rgoo n Z Z AXPXP lt*Zp it A
=1 t,=1 .
(251,l0:h)

lim E E As Z
(n,T)—oo n ZpTpits pzt,
i=1 t,=1 A .
(o:llo:ly)

(/ BV,(r)BV,(r) dr) =

For more details on these limits see Online Appendix A-2. To obtain y7; , the spatial weights matrix Wy
satisfies:

L, . 37)

O\I*-‘

(n,T)—o0 nTy S

Assumption 6 (Spatial Lag II). The requirements of Assumption 1 continue to hold for the n x n matrix
Wiyy. That is, for all n € N as well as for n — oo the spatial weights (W{”}’ﬁ)i,jzl,...,n are nonstochastic
and observable with Wiy ;i = 0 and Wy # Oguxny. For any p € (=1, 1), the largest absolute eigenvalue
of pWyyy is smaller than one and the sequences of the largest absolute eigenvalues of oW ) is bounded
away from one. In addition, |Wi,y ;| < w and |Kjj| = | [(In — pW{n})’l](ij) | <wforali,j=1,...,n

andn € NU oo.

The inverse Ky := (I, — ,OW{,,})71 exists by the assumption on the largest eigenvalue of p Wy, for
each finite #n as well as for n — 0o (see, e.g., Heuser, 1992, Theorem 12.4 on the Neumann Series). By
[Winyil < wand Ky ;] < w, the elements of W) and Ky, are bounded. Since an eigenvalue of oWy,
can be kept small by decreasing p when n becomes large, we postulate p € (—1,1).

To obtain the (1, T) — oo asymptotic limit distribution of the estimator D2SLS estimator (33), we
apply the scaling matrices \}»AXP and \/LEAZP‘ That is, the terms arising from the spatial lag and the I(1)

°0n spatial weights W for a large cross-sectional dimension see, e.g., Kapoor et al. (2007), Kelejian and Prucha (2008), and
Drukker et al. (2013). The subscript {n} is added to express the dependence on n.
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components are scaled by 1/(y/nT,), while all projection variables are scaled by 1 / /1T,. Given these
T, S
scaling factors, we define QXZ o D XZ oTi T Do AXPXP;,&Z Az, Q

ity
1yn x| — lywm . — * »
n Zl=1Mzz,nTi n i1 ZfFIAZPZP’”*ZP it Azp sz nl [QXZ nT](l 1+k11qp+k,) QZZ,nT )

77, nT

* * 1 *
., QL. = =" m?, ,and qy. =
[QZZ)nT] (L:qp+kp,1:qp+kp) qZu,nT Jn Zl—l ZunTi f Z’ 1 Zt*—l Zp P»’t*—P it,> & d qZu,nT

[qtv ] . If the joint limits of these terms exist, the joint limits will be abbreviated by
Zu,nT (1:qp+kp1)

*
In addition, under the premise that all expectations containing a term arising from a spatial lag exist,

we get the expectations E <M}(ZnTi) and E (M%ZnTi)’ where—by the congruence of the joint and the

sequential limits (implied by our model assumptions)—we observe that E (M;{ ZnTi) and E (M%ZnTi)

are block diagonal with E (MXZnTi) and E (M ZZnTi) in the north-west. The south-east blocks of both
matrices are equal and contain expectations of the autocovariance matrices I'p,,,,,. Observe that

) ) _ E ([Miznn]m)) E ([1\:1)?2’”“](1,2:/(4"1/7))
Xt E ([MXZ,nTi](Z:Hm) E (/0 B, (r}l%,(r)'dr)

WED CJK(I)B )

Vx)x

E(M

1 n n n.on 1
E ] S Wi iKim,je BBy, () : dr E(ZZWWKW@/&; / B, (r)Bv,(r)/dr)
0

0 N
j=1 =1 T’ j=1 =1
w(n““’cK(qp)B Q)

) and
Wit Cry B (r)
1
A : 6
= .
Wi Crig) B (1)
(38)
E ( 77, nTt ) E ([MZZ i ] )
Z7nTi - E([| By,®By,@ dr
Mz, "T’ @ k+f1p 151/>) o l
T 5 / 7 3
CK<1)Bv(7) W{}SSI)CK(I)B\/(’) w{ft(}fil)CK(l)Bv(r)
X 1
E / . dr| E / : évi(r)’dr
0 :
( TK( ) o
= CJK(qp)Bv(f) W{ i CK<qp)Bv(r) Wi Citigp) Br)
W( )( CK(l)Bv(V)
1 LY
E /(; Bvi(r) dr gQViVi
TK( ) o

W(n},?p CK(qp)Bv(T)

(39)

Given Assumption 5, we observe from (37) that the expectations as well as the joint limits for the terms
in the south-east are equal to IE (ﬂvlvl) = éSZ v;v;- In addition, the other terms in (38) and (39) contain
sums arising from a spatial lag To guarantee the existence of the expectations in (38) and (39) and to
make a joint weak law of large numbers applicable, we impose:

Assumption 7.
(a) For any n, T as well as (n,T) — oo, the expectations (38) and (39) exist. For any T,n € N as well

as for n — 00 also the second moments o [Mv 5 ] s [M s ] R [Mw ] s
f f XZ nTi a,n XZ.nTi (1,2:k+4,) XZ.nTi @ik+1,1:9)
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l
X

il Dl = BT, s M= W
[ ZZnTi (1:qp.1:4p) ZZ,nTi (Ligprdp+1k+qp) ZZ,nTi @o+1k+qp.liqy) 2 ZZnTi ZYy ZnTi

> .
e s and |msz. . exist.
223 ZnTi ZinTi] (101

(b) If the (T, n) — oo-limits exist, the rank condition and the order condition are met.

By Assumption 5 the limit theory developed in Phillips and Moon (1999) can be applied
immediately to all components of M.,7i and my; .. not containing terms with a spatial

lag. Due to Assumption 7(a) the expected values E(M;(ZHT) as well as E(M}Z T,) exist,
and the joint limits [limgr)—oo = D i, ZZ‘*:I Aj(p)v(p;,t*Zp it ZP](ljl 1wy = Qxz  and
[lim, )00 5 27 ZtT:=1 AZpZP‘lf*Zp ity Zp]<1:11,1:ll) =t Qyy satisty Qg = E(MXZ,nTi) =
E(MXZ,ni) as well as Q;; = E(M;Z T) = ]E(M*zz,m)' By the assumption on the moments of
M; St = M?Z o 7and M; 25" T the jointlimit of Py > .. exists and is equal to the expectation
of Pzt i

Note that the existence of the expectations of the nonsouth-east terms in (38) and (39) is nontrivial.
To see this, the joint limits should be equal (given the existence of the expectations and regularity con-
ditions following from Phillips and Moon, 1999) to the expectations of the T — oo limits of Mg,

and MZZ,nTi obtained in Theorem 2. By considering, e.g., the (1,1) element of E(MXZ,m') we observe
1 o .
IEMgz,0) o) = E(fo 271 Xbet WimiiKon,jeB'Bry (10 371 Wini[Cx )] —1yn10 Br (Ddr)]
- 1 ~ o _
< &n-| Yo Yy IE([O |B'By, (r)[CK(U](“(FI)”H[)BW (r)dr)|, where |W{y ;| and |K{yy 5] < @ by
. 1 prs3
Assumption 6 and E( |, BBy, (r) [CK(I)]_(I)(L_I)H_;'_IL)
B, [CK(I)]U (—Dynt10) weighted sum of %Slv,.v,. (note that the coefficients [CK(I)](L (— Dyt 1) A€ equal for
alle = 1,...,n). Inaddition, suppose that Wy, ;; > @ > Oforalli # jand K{,),; > @ > Oforalli,j, then

1 N N
|[E(M5(Z,m)](1,1)| = |E( Jo 27:1 > t=1 WiniKnyjeB By, (1) 221 Wini [CK(I)](L,(L—I)VI—I—U)BV! (r)dr)|
> win - |IE(/3’BW (r) [CK(I)]Q (1—1)n+1z)B"z (r) dr)|, which becomes large if n becomes large. Hence, in

Bw (r)) = O x1) for j # 1, while forj = titisa

general the (1,1) element of E(MXZ,m') need not be finite. Similar calculations can be performed with

the north-east and the south-west element as well as for E(M, ..). Intuitively, either only a finite subset
of spatial weights is nonzero or the weights decay sufficiently fast such that these expected values exist.
The existence of the second moments of Mg ., My 5, and my; 4., will be used to apply a joint

central limit theory to qy; ;. The variance will be provided by Py . = E (24,0 fol hi(r)h;(r) dr —
Jy () (Nzh() dr — [} (N;h()hi(r) dr + [ (Np(r) (N7h(P) dr)) = Qo B( fy hi(r)hi(r)'dr —
fol h;(r) (N;lh(r))/dr — fol (N,;h(r))h,'(r)’dr + fol (N;lh(r)) (N;lh(r))/dr) (see Online Appendix A-2 and
Theorems 1 and 2 of Phillips and Moon, 1999). This yields:

Theorem 3 (Joint (1, T) — oo-Limits for D2SLS Estimation). Consider the fixed effects spatial correla-
tion model (10) and the D2SLS estimator (33) based on the within-transformed model (14). Suppose that
the Assumptions 1 to 7 hold. Let T, = T — 2p(T), then for (n, T) — oo, where n® /T — 0, it follows that:

P P e g o )
L Qur — Qs Quur — Qxp The asymptotic distribution of\/ﬁT*(}’DZSLS;p — y) is a normal
distribution with mean vector Oy and covariance matrix

-1 1 -1
Vi = [QXZQZZQ;“(Z] [QXZQWQ ] , where Dy = Q7 QP Q5 Qs - (40)
II.  Suppose that a consistent estimator of Py.»., denoted by Py.-. .. is available, such

-1
S ALl -1 -1 , o . -1
that Dgyr = iz, Qs 1P riziir s Uiz @4 Vour = [sz,nTsz,nTsz nT:I
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M -1 . . M .
Dé,nT [QXZ,HTQEZI,nTQ;?Z,nT] are estimators ofD(v2 and Vé. Then, Dé,nT and Vé,nT converge in
probability to EQ as well as \7(2.

Proof. See Section B.

From Theorem 3 it follows that the Wald type test defined in Theorem 1 can still be applied in a
setting where T and n are large. The limit distribution of the Wald statistic is still a y2-distribution
with s degrees of freedom. In addition, we observe that the D2SLS estimator is 4/nT consistent, with
n®/T — 0. Although the OLS, the DOLS, the 2SLS, and the D2SLS estimators are consistent for 7 fixed
and T — 00, the OLS, the DOLS, and the 2SLS are in general (due to the second-order bias terms) not
/nT consistent.

In a final step we investigate model (11), where—in addition to p and §;—the parameter §; has to
be estimated. From (12) we derive the regression model

n
Yit, — P Z Wipie, — BXnie, = BrX1i + ilzrt* , (41)
j=1
and the infeasible estimator

—1
n T, n Ty n

B, = SO x| YD x| i — 0 Y Wi, — Bk,

i=1 t,=1 i=1 t,=1 j=1

T,

n -1 n
(T* Z iLifi/Li) Z XL Z (ﬂ/LiLi + ’:‘th,) . (42)
i=1 i=1

te=1

To obtain a feasible estimator we plug in ;DZSLS into (42), resulting in
-1

n Ty n Ty n
- NNy N N ~ N N
B Z Z XriX]; Z Z xri | yie, — P Z Wiyit, — BrXiit, | » such that

i=1 t=1 i=1 t,=1 j=1

Ty

n =1y

- NN N 1 N = A\ s N /

BL—BL== (Z XLiX/Lz‘) XLiv Z |:uth* + (}’DzsLs - }’) (i Xir,) ] : (43)
i=1 i=1 *

*:1

For the feasible estimator (43) Appendix C shows that the (n,T) — oo-asymptotic limit distribu-

tion'? of \/nT, @ 1 —B L) is a normal distribution with mean vector 0, «1) and covariance matrix

E (iLii/Li)_l D(

Xpill

' )E (XL,-)}/LI.)_I =E(Qf,)E (iLii’Li)_l. In more detail, by Assumption 5.(b) the
term 1 3" | %X}, converges in probability to E (X;;X];) by a weak law of large numbers. In addi-
tion, by Assumption 5(b) a joint central limit theorem applies to ﬁ Y ZZ *_ | Xgiit}, such that

ﬁzyzl ZZ}:] Xz}, converges to a normally distributed vector v where v

Gewittl) Gepitely)

N <0(kLX1))D()\(L‘I\4T )> and D(kL . ) =E (QLM) E (x1iX};). Hence, we observe that lim,, 7— o v/nT%

it T itw

(B, —B;) = E(ux,)”" Vi) Suppose that Qf . = 3L Q! consistently estimates
iUy ili iUi

19For (n,T) = oo and n®/T — 0.



ECONOMETRICREVIEWS (&) 617

Uujl;
ity

Q= E (QLiui) for (T,n) — oo, then the covariance matrix E (XLii/Li)_l D<\ Lt )]E (S(Lii/u)_l =

NI . . . . =
E (QLM) E (xiX};) " can be estimated consistently using the the finite sample analogs QLiul_ as well as

NNy

1 n X
n D i XLiXp;.

4. Monte Carlo simulations

This section investigates the small sample properties of the D2SLS estimator as well as the size and power
of the Wald type test obtained in the Theorems 1 and 2. We generate the data based on an error process
that follows from Assumption 2. Regarding the error dynamics we consider 17};[ and v¢; generated from

n
n}it = \Il}rl (L) e}it , fori=1,...,n and, vo = Z \Ilcﬁn;it +V¥.-D)eg, (44)

i=1
where W ., i = 1,...,n, are k¢ x k; 4+ 1 matrices. To operationalize this, we need to specify the lag
polynomials \Il}: (L) and ¥ (L). In particular, we have to specify the error dynamics of the vectors n;t
and v¢;, where we assume the same error dynamics for all cross-sections i = 1,...,n as well as for
the common regressors. For model (8) we use four explanatory variables, where kf = k¢ = 2 and
Br=Bc=(1,1).Hence,k =4and B = (1,1,1,1)". In this case the number of instruments is g, = 2.
The individual variables xy;; are used to construct the instruments z};. To model the correlation between
n}:-t and vy we use (44), where the k¢ x kf matrix Wy = % ‘1ax3)y fori =1,..., n. For the model (13)
the individual variables are used to construct the instruments as well, such that z}, = x},, k = k = 2,

and q, = 2. In both cases the exponents 7 used to construct these instruments in (24) are set to one.

Regarding the error dynamics we use stationary designs close to Binder et al. (2005) to generate the
data for the vectors 'ﬁiw fori = 1,...,n, and v.. The innovations e}it are generated as independent
draws from e}it ~N (0(k1+1)> X Ie), where NV(,.) stands for a normal distribution. To obtain vy, the
innovations &, are iid normal, where & o, ~ N (0(k), Zce ). In the following Monte Carlo experiments
[Zreliiy = [Ecelii = 1for all diagonal terms and [Xe](;j) = [Zcel(ijy = 0.8 for all off-diagonal
elements.

In the first three designs we generate n}it and v¢; by the first-order vector autoregressive system
(VAR(1)) n}it = Q}in}i)t_l + e};t and v, = Peve, | ek where the 3 x 3 matrix <I>}:. and the 2 x 2
matrix ®¢ come from one of the following designs: Design DGP = 1, stands for stationary VAR(1)
with maximum eigenvalue of 0.6, where [Qli](i)i) = [‘I)C](i,i) = 0.4 and [Qli](i)j) = [‘I’C](i,j) = 0.1 (for
i # j). In design DGP = 2 we consider a stationary VAR(1) with maximum eigenvalue of 0.8, where
[Q:](i’i) = 0.6 and [<I>:](l.’j) = 0.1, while with design DGP = 3, [q)j](l.’i) = 0.75, and [Q:](i’j) = 0.1
yield a largest eigenvalue of 0.95. In addition, we consider a finite-order vector moving average (MA)

o ot q Tt _ q .
processes of the form 9y, = e, + >, W&, ; and vo, = e+ > ¥ €, where we choose:
Design DGP = 4, which is a first-order MA process with parameter \I’LI (presented in (45)) and \I’TCI,
while with DGP = 5 we use an MA(2) model with parameters

0.6 0.1 0.1 0.40.10.1
T T
wvi=|o10601|, wi,=[010401|,
0.10.10.6 0.10.104

0.6 0.1 0.4 0.1
Yor= (0.1 0.6> » and We, = <0.1 0.4) '
Recall that the disturbance in the equation for y; is given by the first element of the vector n}it, while its
remaining elements contain Axy;. The maximum number of leads and lags of the explanatory variables

that are conditionally correlated with the disturbances is equal to one in the Designs 1-3, while for the
Designs 4 and 5 all lags of the explanatory variables are conditionally correlated with the disturbances.
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The remaining parameters of the model are chosen as follows: We generate the individual effects «; from
a; ~ N (0, 1), while if time fixed effects are included then A; ~ A/ (0, 1). For a model where k; > 0, we
work with 8; = (1,1)’ and x; ~ N’ (0(2X1), 12) fori=1,...,n.

The spatial correlation parameter p is chosen from the set {—0.95, —0.5, —0.1,0,0.1,0.5,0.95}. The
choice of W is based on Kapoor et al. (2007). In more details we consider: (i) A “one step ahead-one step
behind circular world” with corresponding entries 1/2, where the last element in each row is subject
to some noise. That is W;;y; = 0.5 — ¢;and Wipy; = 05fori = 1,...,n— 1. Wy, = 05 —
and W,; = 0.5, the other entries are zeros. ¢;, i = 1,...,n, are iid uniformly distributed noise terms
on the interval [0,0.2]. (ii) A “three step ahead-three step behind circular world” with corresponding
entries 1/6. (iii) A “five step ahead-five step behind circular world” with corresponding entries 1/10.
(iv) A “one step ahead-one step behind Rook constellation” with corresponding entries 1/2. This design
is noncircular. Here W; ;41 = 0.5 — ¢jand Wiy ; = 0.5fori = 1,...,n — 1; the other entries are zero.
(v) A “two step ahead-two step behind Queen constellation”. In this noncircular design Wj;; = 0.3,
Wiits =02 — &, Wiy, = 0.3,and Wipp; = 0.2 fori = 1,...,n — 2; the other entries are zero. Thus,
we have in total 175 different data generating processes (5, 7, 5 different settings for the autoregressive
structure of n:t, the spatial correlation parameter p and the spatial correlation matrix W, respectively).
If the noise terms ¢; are zero, we observed that some of the matrices become difficult to invert for model
(13) when the weights W;; are proportional to 1/n for all i # j. In this case also instruments based on
X;; can be used, where we did not observe that problem. The asymptotic limit distribution with these
instruments is obtained in Online Appendix A-5.

Estimates of Q,,,,; are obtained by 2, , = Ti ZtT*_l ST*_I k (%) Ujr, Uis, , where k(.) is a kernel
22 * *= * =

function with bandwidth bt and Em are the residuals.!! For the estimation of the long run covariance
Qu,u; we applied the Bartlett and the truncated kernel.!? The truncated kernel exhibits a better per-

formance than the Bartlett kernel. For the truncated kernel k (lt*b_—s*‘) = 1 for % < 1 and 0 for

> 1. Hence, only/ﬁ\ma& where |t, — s,.| < br are used to estimate €2,,,,,,. In our simulation runs
we use a by < 15, where br depends on the serial correlation of the residuals.

When implementing the D2SLS estimators (28) and (33), the number of leads and lags p included in
the regression has to be chosen. Recent literature proposed to choose p by information criteria (see, e.g.,
Kejriwal and Perron, 2008; Kurozumi and Tuvaandorj, 2010). With small T and # the implementation
of such criteria is straightforward. However, since a dataset with (relatively) large n and T is going to be
considered, working with small p becomes necessary due to computational restrictions. In particular,
we set p = 2 for all components i = 1,.. ., n. For all designs working with p = 2 performed better than
working with p = 1.

Last but not least M is the number of Monte Carlo steps and m is the index of the corresponding
iteration. For n = 5 and 10, M = 2,000 while for » = 50 and n = 100 due to the higher computational
requirements M = 1,000. Although, we know that for OLS, 2SLS, and DOLS we did not obtain weak
convergence to a zero mean Gaussian mixture distribution, the Wald statistic is also calculated for these
estimation methods. For the model (13) we only projected on the own leads an lags £ ;, with the DOLS
and the D2SLS estimator. For OLS and 2SLS we do not project on any leads and lags, e.g., p = @, while
Zp;it* is replaced by )U(p;it* with the OLS and the DOLS estimator of .

We tried to consider the cases where T = 200 and n = 5, 10, 50 and 100. With these n we investigated
the size of the Wald statistic and obtained the percentages of the simulation runs where the true null
hypothesis p = 0 was rejected at o, = {0.01,0.05,0.1} significance levels. To obtain the power of the
Wald type test we choose p = {—0.95, —0.5, —0.1, 0.1, 0.5, 0.95} and investigate how often the false null-
hypothesis of p = 0 is rejected.'

[t =54l
br

""For model (13) we work the the residuals Ujt, .

2For more details in consistent estimation of the covariance see Section A-6.

3Tables A-1 to A-9 in the Online Appendix present summary statistics from these simulation runs for the leading case given
by (8). For model (13) further results are provided in the Tables A-11 to A-13.
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As a first result we observe that projecting on all leads and lags can only be performed for small n due
to numerical constraints. We already observe that for n = 5 the performance of the SD2SLS estimators
is poor (i.e. (A-24) discussed Online Appendix A-4 for model (8) and (33) for model (13)). Although the
projection on all leads and lags is not necessary to obtain a mean zero Gaussian mixture limit distribution
(Theorem1) for model (8), for model (13) where the estimator (33) is applied, theoretically correct
estimates of the parameter  can only be obtained when the cross-sectional dimension is small. For
larger n, i.e. already for n = 20 and larger, the software package was hardly able/was not able to invert
the matrices contained in the estimator (33). Hence, we were not able to perform a Monte Carlo study
for model (13) with n > 10. In addition, for n = 5 and n = 10, Table 2 shows substantial oversizing
for the estimator (33). The columns where (33) is applied are abbreviated by SD2SLS. Regarding the
size of the Wald type test, the (second-order biased) estimators 2SLS, DOLS, and D2SLS (and still OLS)
perform better than the estimator (33). For p # 0,and n = 5 or n = 10, the estimators reject the wrong
null-hypothesis p = 0 in more than 88% of our simulation runs. That is, the power is acceptable. Online
Appendix A-7 demonstrates that the bias and the root mean squared error of the estimator (33) are high.
In addition, given a small #n and k1, > 0, we observed very poor results for the estimator (43). Therefore,
parameter estimation for 8; based on first using (33) to estimate # = B and p and then applying the
estimator (43) does not work in practice. We claim that this effect is caused by the properties of the
estimator (33) and the fact that a small cross-sectional dimension # is available to estimate f;.

Hence, the remaining part of this section investigates the small sample properties of model (8) and
the estimator (28). Regarding power, for p = {—0.95, —0.5, —0.1,0.1, 0.5, 0.95} the false null-hypothesis
of p = 0 has been rejected in almost all of the simulation runs for the above simulation designs. When
considering the 5 x 6 x 5 = 150 different designs, where p # 0, we observe that even with n = 5,
in almost 99% of all simulation runs the false null hypothesis was rejected at a 5% significance level
(see the last rows of Table 1). The smallest rejection rates are observed with p = #0.1 and the moving
average designs DGP = 4 and DGP = 5. For n = 10, n = 50, and n = 100 we observed that the
false null hypothesis has been rejected in almost all cases. To analyze the size of the Wald type test, the
rejection rates of the Wald type test for the true null hypothesis p = 0 are investigated. The comparison of
D2SLS to DOLS is of special interest. With n = 5, the oversizing remains modest for DOLS and D2SLS.
The rejection rates observed are very similar, although D2SLS uses the instrumental variables where
the numerical complexity is increased. With the moving average process stronger oversizing effects are
obtained. The performance of DOLS is very close to the performance of our D2SLS estimator; here in
some settings undersizing is observed. With 2SLS the oversizing observed is large, while substantial
oversizing can be observed when OLS is applied. If the correlation of v; and ujt is decreased (e.g., by
choosing a diagonal X ;. or a VAR model with smaller eigenvalues), the oversizing behavior of OLS
and 2SLS decreases. With small correlations, the performance of OLS and 2SLS is comparable to the
performance of DOLS and D2SLS. There also exist data generating processes where the performance of
the Wald type test for DOLS is much worse than for D2SLS. This takes place if I'g,,;,,; is large compared
to the variance of v;;. This effect can be expected by looking at the asymptotic bias term arising for DOLS
(Proposition 2).

Remark 5. The question also arises whether the oversizing effect observed with the D2SLS estimator
can be attributed to instrumental variable estimation, the choice of the instruments or the inclusion of
common variables. Note that for p = 0 (and Wj; = 0, fori = 1,. .., n), the asymptotic bias of the DOLS
estimator is zero.!* By comparing the rejection rates of the DOLS and the D2SLS estimator, oversizing
with D2SLS is approximately equal to—and some cases even smaller—than oversizing with DOLS (these
effects are present with or without common variables).

To see this, by Proposition 2 the asymptotic bias term is given by WKLoy, fori = 1,...,n.Forp = Owe getK =
(In — OW)~! =1, and W;K = W;l,, = W;. By Assumption 1 W;; = 0, while by Assumption 2 Fo,u/-u; = Ofori # j. This yields
WKLoy, = Zf=1 Wijro,uju,- = 0. The assumption that FO,uju,- # 0, fori # j, is important to obtain an asymptotically
unbiased DOLS estimator for p = 0.
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Summing up, we observe that the estimator (28) exhibits (in most cases) some oversizing behavior
as already observed in the literature where dynamic least squares estimation has been applied (see, e.g.,
Mark and Sul, 2003). However, even with the true null-hypothesis p = 0, where no spatial endogenetiy is
present, the D2SLS estimator in most cases outperforms the DOLS, the OLS as well as the 2SLS estimator.

5. Empirical illustration

In this section, we apply the tools developed in the former sections to credit risk data. To model cor-
porate default swap (CDS) spreads we follow Berndt et al. (2008) and use the distance to default, the
debt to value ratio, interest rates and the VIX volatility index as explanatory variables. By the matrix
W we model a specific form of default risk correlation, where W will be derived from input-output
data obtained the Bureau of Labor Statistics (BLS). The CDS dataset already used in Schneider et al.
(2010), comprises CDS spreads of 278 firms obtained from the Markit Group. We focus on the five
year maturities which are typically the most liquid ones. The observation period is January 2, 2001
to May 30, 2008. In line with a bulk of quantitative finance literature we stick to weekly data, such
that T = 230. The CDS data are matched with firm specific characteristics obtained from Thomson
Datastream and Compustat data. We construct the KMV distance to default, DDy, from firm specific
data by following Crosbie and Bohn (2003). Moreover, we calculate the debt to value ratio, DVR;. DVR;;
is measured in percentage terms. We also include the VIX volatility from the Chicago Board Options
Exchange (http://www.cboe.com/micro/VIX/vixintro.aspx) as an explanatory variable. Additionally, we
include a the year interest rate, denoted by r»; and measured in percentage terms, from the Federal
Reserve (http://federalreserve.gov/releases/h15/data.htm). After matching the firm specific data with the
CDS data and excluding observations where data problems are observed, with work with a cross-section
of n = 148, y; = In CDS;;, the common variables are xc; = (s, VIX;)', while xjy = (DDjr, In DVR;)".1°

Using our data set, we apply model (8) and estimate the parameter vector p by two-stage least squares,
DOLS, OLS, and D2SLS. The results are presented in Table 3. Based on our theoretical results, only the
D2SLS estimator should be used. The results from the other estimation methods are included only for
comparison. When instrumental variables are used in the estimation, the logarithm of the distance to
default and the debt-to-value ratio are used in (24), i.e., g, = 2. All the p-values presented in Table 3 are
obtained by a Wald type test as described in Theorem 1.

For the distance to default and the debt to value ratio the parameters are highly significant and have
the signs expected from finance literature. The impact of the short term interest rate ry; is significant
as well. When the short term interest rate r; increases, the logarithm of the CDS spread decreases. The
VIX volatility index is not significant when D2SLS estimation is performed and default significance levels
(1%, 5%, 10%) are applied. With the dynamic two stage least squares estimator the spatial correlation
parameter p is positive as expected and highly significant.

Table 3. Parameter Estimates for model (8) applied to CDS data. The response variable yj; is the natural logarithm of the CDS spread
on a firm level. The explanatory variables are the distance to default, DDj, the logarithm of the debt to value ratio, In DVRj, a two year
bond yield ry¢ and the VIX volatility index VIX;. T = 230,n = 148, p = 2 leads and lags are used; the number of instrumentsis g, = 2.

b% oLS 25LS DOLS D2SLS

P 0.8023 < 0.001 0.5413 < 0.001 0.7861 < 0.001 0.5021 < 0.001
Bop —0.0434 0.0059 —0.0516 0.0017 —0.0751 < 0.001 —0.0893 < 0.001
BinDvR 0.4233 < 0.001 0.4519 < 0.001 0.4220 < 0.001 0.4509 < 0.001
Br2 —0.1354 < 0.001 —0.1616 < 0.001 —0.1209 < 0.001 —0.1468 < 0.001
Bvix 0.0007 0.3225 0.0009 0.2018 —0.0006 0.2720 —0.0006 0.2726

5For more details on the data see Section A-8 in the Online Appendix.
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6. Conclusions

In this paper, we studied panel data models with a cointegration relationship including a spatial lag. Due
to this spatial lag, standard estimation techniques do not provide us with appropriate tools to estimate the
parameters and to perform inference. Based on this problem we stick to the usual assumptions used in
the dynamic least squares estimation and develop a dynamic two stage least squares estimator. We show
that the parameter vector of interest is asymptotically independent of the nuisance parameters. Moreover,
we derive the asymptotic distribution of the parameters when the time-series dimension becomes large.
Convergence to a zero mean Gaussian mixture is attained, which also allows the application of a Wald
type test. In addition, a limit result, where the time-series and the cross-sectional dimension become
large is obtained. The limit distribution is a Gaussian distribution.

Our estimation methodology is applied to simulated data to investigate the small sample properties,
and to financial data to test for the impact of spatial correlation on credit default swap spreads. Given this
financial data set and a spatial correlation matrix obtained from input-output data, our analysis shows
that spatial correlation is highly significant.

A. Proof of the Propositions 1-3 as well as Theorems 1 and 2

The estimators considered in Section 3 can be expressed by means of

— ~ ~ ~ ~ ~ -1~
(}’/:ép )/(m) _ (J’/>§;)/ _ (X;(m) (@prém)) /(m) <gzl(_};) I()m) i ‘@Hp _ Z}(7m) (Z}/)(m)zl()m)) Z;(m) and

Y ' v 3/ ’ ’ o s srs \ 1y,
(7 ’étp> - (” ’éip> (X ngpo) X, Py 8, s Py =1, (szp) Z,, (45)
wherem = OLS, . .., D2SLS. For OLS and 2SLS, p = ¢, while for OLS and DOLS we have Z;m) = }’Z;,m),
such that ng) is equal to the identity matrix. )Ni}(,m) isa T,n x 1+ k+ (2p+ 1)k - n matrix while Z{,‘” is of
dimension Tyn X q, + k+ (2p + 1)k - n, where il(t": ;)p and Zl(t“j ;)p are the transpose of the it, elements of

i;,m) and 'Z;,‘“). The variables containing the suffix ~ were defined in Section 3.3. Then, with r € [0, 1],
we obtain for DOLS and D2SLS

9> TL : (Wi (BCi[rT + Ep i[rT*]ép +‘~_1ETT),]))
TO 5, 1* Xz[rT ]

Tos Ay X(m) and

i[rTulp = 0(2p+1)k-(i-1)x1)
8 pilrT, ]
0(2p+D)k-(n—i~1)x1)

79> TL . (WiK ((I ® ﬂ)if (rra + Seprrradp + ﬁ[ﬁ,]))
79> . T “ XE[+T,]
O0(2p+1)kny-(i—1)x1)

Sepirts]
O(2p+1)kin-(n—i—1)x1)

T Ay, Xir (46)

By Assumption 2 the components 1 to k+1 provided in (46) weakly converge to g;(r) and g;(r) as T — oo
(defined in (21) as well as (34) in the main text). For the OLS and the 2SLS estimator, (46) implies that

OS5 . A, X(m) ]
[ TrTelie=J 1de41,1)

0.5 . 055 —0.55/ / P / !
LAz (T* L, T Xiper, 1 O ap k-0 x 1y St Tl O(2pt Dk (n—i-1) x 1)) » where the firstk+q,,
components weakly converge to h;(r) as T — oo (Proposition 3). Also for the 2SLS estimator we observe

converges weakly to g;(r). In addition, for D2SLS we get T2 A, pZ‘I‘[‘rT p =
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that the T — oo limit of T SZl([erTLS) is h;(r). For the first g, + k; coordinates of T2 - AZPZ?ErT,(];p we

derive weak convergence to hi(r) defined in (34). Note that for kc = 0, B = B, k = kj, and C = Lyg,.

Step 1 (Asymptotic Limit Distribution): First we consider:

—0.5%5, 05 /
T, I,
1 Ty T 0.5 Xlt,, T*O Xlt*
M3 = ZAXpXIt»pZzt* oA = T Do @tnki-nxn 0(2p+1)k-(i—1)x 1)
te=1 * te=1 cpﬂ‘t* €p§it*

0(2p+Dk-(n—-i—)x1) / \O(@p+Dk-(n—i~1)x1)
(47)
By Theorem 30.2 in Davidson (1994) [limTﬁoo M§Z)”Ti](1:k+1,1;k+qp) — fol gi(Nh;(r)dr = My
In addition, by a law of large numbers (see, e.g., White, 2001, Chapter 3.2), the terms in the south-east
converge in probability to elements of I'y ,,,. Last but not least the terms in the south-west and the terms in
the north-east convergence weakly when scaled by 1/T, that is T% ZZ L Xit Uy, = fol lgvi (r)dBZ]_ (r) +

A:r,iul_ such that T} >/ Z[T::l Xit, Q;rt* converges to zero in probability. The same result is observed for

/
T3/ Ztn—liit*ait . Hence, [M*~~ ] = [ > ] =
*= I XZni | (1:k41,k+qp+1:k+qp+2p+1)nk) 22,1 | (k++q,+(2p+1)nk,1:k41)

1
= [y hi(Hhi(r)'dr =
Z7,nTi ZZnTz](1k+11k+q ) f i(h;(r)
M5 . the south-eastern block contains elements of Iy, while the remaining blocks are zero. M%

O(k+1x(2p+1)nk)- In the same way M7 converges to [M

XX,nTi

* j— . . —_ ~~ -
converges to [MXX i ](1 kbLIEED = fo gi(nNgi(r)dr = Mgz .o the south-eastern block contains
elements of Iy, while the remain blocks are zero. The same steps also apply to MXZ i and M;Z T

In the second step we obtain the limit of the terms containing # git or it;,: For the OLS estimator we
obtain the limit of % ZtT: 1 ii?Lsit,Tt by applying Assumptions 1 and 2 as follows:

mgzi i = T Z (W X (ﬂCXt: . ta - ut) ) ”:rt
it
Wik [} B[CB.ndB o + Al ] + T8,
V@[3 Bu(0dW] (r) + Al

= Mgy -

Vil

Then, my;: , = >_i_) mg;:  and T Fos—7) = M~ % ;M1 > Dy the continuous mapping theo-
rem. This proves Proposition 1(b). For the DOLS estlmator we have to obtain the limit of

1.0, T, WK (BCK, +8,,8, +1,)
1 & L, L T, 'K,
* -—_ . 77 —_— 77
MinTi = 05 Z Oap+vki-x1) | By = Z 0((2p+1)k (i—1)x1) Ut -
*  te=1 C L t,=1
Dsits CP,zt,(
0(2p+1)k-(n—i—1)x1) 0((2p+1)k (n—i—1)x1)

(48)

By Assumptions 1-3, the T — oo-limit of Zt o ;‘p, Wiy = 0((2p+1)nk><1) Moreover, T, Zt Uy Uit
converges to I'¢ ,,, by a law of large numbers and the fact that [, — 1, | goes to zero sufficiently fast by
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Assumption 3. Hence, we observe that

1% =
)y = [ ] g = (WU ACBOED  Tou))
unli | (1:k41) T—o00 u,nTi (1k+1) > Qu,‘ui fo Bvi(r)dwu,' (7’)

To obtain the limit of [limTﬁoo m% a central limit theorem was assumed to hold in

X W'T"] (k+2:(2p+1)nk)
Assumption 2. From (49) we obtain my; = ' my; .. Since Mgy , is a regular matrix, we observe
that T, <7DOLs;p — y) = M;;;(,nmi(a,n' This proves Proposition 2.(b).

For 2SLS we consider the limit of my; 7. = Y1) ¢ S Z.ztSLsit;rt. We observe that

. ") 15
W0 ek W, Cyy) (fy BundBl, () + A},
1 T . .
Ea Z T ’ ajt = T )
T Kigp) = Keap) '3 (rdB
=1 W, C(K(qp))xt w; C(]K(q ) fO B, (r)dB], (7‘) + Ay
Xit fo Bv,(r)dBT (r) + AWI
TK
Wi W C(K(l))Alu
1 .
= / h;(r)dB}, (r) + W =my .. (49)
0 @) o A ’
(K(qm)
v,u,
my = D i my; . Then, the continuous mapping theorem results in TVysis—v) =
-1 - -1 . .
(M}?Z "MZZ,nM;”(Z,n> M)?Z,nMZZ,anﬂT,n’ which proves Proposition 3(b).
Finally, for the D2SLS estimator (28), we derive the T — oo-limit of m*Z =y, m - where
K K 15
W W C(Km)xt* W, @ C(K(l)) f() By(r)dB,,;(r)
T, ™ (gp) - W, K gp) C B,(r)dB,,(r)
o= DA | N e 1) f o SO | 50
Zii,nTi Zp Xit, e fO Bv, (r)dBy,(r)
0((2p+1~)k‘(i—1)>< 1) 0((2p+1)k (i—1x1)
é.p;it* v(Zp;it* iit)
0(2p+1)k-(n—i—1)x 1) 0(2p+1)k-(n—i—1)x1)
Since v;, and u;, are uncorrelated Ay, = O and therefore no correlation terms show up in (50).
To obtain limy_, o T Z ¢ piit, uj, we assumed that a central limit theorem can be applied and con-

vergence to a normally distribution vector v i ) with mean zero takes place. For the first k 4 g,

1
(k+qp) = [, hi(ndBy,(r) = M7z nit

Hence, by the block diagonal structure of M i and M% ST , the invertability of M, =M, an_Zl,nT

components we observe that [ 2 m]

M;”(Z . and the continuous mapping theorem, we observe that T, (?DZSLS;p — y) converges weakly to
1 _ N\
M, 'm,, wherem, =} ", Ms; ”MZZ my; .

related and therefore independent, no second-order bias terms show up. Hence, we observe converge to
zero mean Gaussian mixture distribution. This proves Theorem 1(b).

= My, nM~ 5 M In addition, BB, and B, are uncor-



626 J.MUTL AND L. SOGNER

In a similar way, for the D2SLS estimator (33) we derive the T — oco-limit of m’éa = Y m’éa T
Using (A-8) obtained in Online Appendix A-2, we derive ’ ’
X
W, v C(K(l))xt*
TK(qp) C 0 mZﬁ,ni
W, b'e (i—
Z . Z A i 0 (]K(qp)) ty i, = ((2p‘—’&-1u)kn (i—1)x1) ’ where
wnit Xit* (;ﬁp:t* i’if)
0(2p+1)kn-(i-1)x1) 0(2p+1)kn-(n—i—1)x1)
Cﬁp;t*
0(2p+1)kn-(n—i—1)x1)
1 K o
fO Wi @ C(K(l)) I:BV(T) (dBui(r) - % 2721 dBuj (ﬂ)]
My ni = Kap) (51)
Jw e, [Buo (dBu, n-1yn, dBu].(r))]
/0 By () (B, () — Ly, dBujm)
The term v Eops i) is normally distributed with mean zero. Therefore, by the block diagonal structure of
* : :1: Y _ — 7 . .
MXZ and MZZ o the invertability of M, = M)?Z nMZZ TMXZ and the continuous mapping theorem,

we observe that T, (yDZSLS;p - }7> converges weakly to M, ', where ,, = 1| My nMgzl M

Step 2 (Asymptotic independence): By this block diagonal structure of the limits of

* * =~ (m) _ A(m) _ —
MZZ,nT and MXZ, - We observe that To.(y, y) and /T, 8) are uncorrelated for m = OLS,

DOLS, 2SLS and D2SLS. Due to the properties of Brownian motlon and normal random variables these

terms are independent. In same way we observe that M? %5 s and MZZ i converge to a block diag-

onal matrices, where the block in the south east contains covariance matrices of the leads and lags
of V¢, and V,. By the continuous mapping theorem (see, e.g., Klenke, 2008, p. 257), for the elements

in the north-west we obtain [lim M. = & (rh;(r)dr = My, . as well as
=00 VX7 ni (Lk+1,1k+q)) fo &i(hi(r) XZ,ni

. * — (YO (7Y dr — o
I:llmTaoo MZZ nTi](l KL Lk+gp) = fo h;(r)h;(r) dr = MZZ ni*
The matrices M. .M, and M_ - are matrices of full rank by Assumption 4. In addition, Sec-

tion A-1 in the Onhne Appendlx prov1des sufficient conditions where M M}?}'{,n’ M T and M S

are full rank matrices.

Step 3 (Wald statistic #,,,): We follow Phillips and Hansen (1990), Johansen (1995), and Park
and Phillips (1988) to derive the so called observed Wald-statistic # ,r and its limit %), ,,. Consider the
s X k + 1 restriction matrix R.

For the D2SLS estimator (28), the T — oo-limit of m*~~ = Y, m*Z~ i Was derived

nT
n (50). Conditional on B,(r), r € [0,1], we observe that V(mZun |B (n), r e [0, 1]) =
E (mZu ,m |B (r), re[0,1] ) =y, QuuMz5 . This follows from the cross-sectlonal indepen-

dence 1mposed in Assumption 2 and the result that fol l’;’v(r)dBui(r) is a mean zero Gaussian mixture
distribution where B, (r) and By, (r) are independent (see (A-14) in the Online Appendix).

Endowed with a consistent estimator, ,,, of the long run covariance matrix @,, =
diag(Qy,u,;)i=1,..,n We obtain by the above convergence results and the continuous mapping theorem

— - —1 / . —1 , i 1 ,
VnT == I:MXZ’HTMZZ,ﬂTMf(Z,nT] DnT I:MXZ’”TMZZ nTMXZ nT] = [MXZ TIMZZ . M}”(Zn]
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-1
. - / o _ . no A . -1 /
Dy [MXZ ”MZZ nMXZ n] = Vy, where Dy = MXZMTMZZ nT (Zi=1 Q”f”f'MZZ,nTi> MZZ,nTMXZ,nT

and D, = Mg; M.~ ! (Z?:l Qu,‘u,-MZZ,m-) MngnM;(Zn Then the Wald statistic (31) satisfies

~ / -1 Y
Wyt = Wyn = (T*R (yDZSLS;p - Y)) (RV,R) (T*R (szsLs;p - )’)) : (52)

Due to the fact that we have derived a zero mean normal mixture distribution, under the null hypothesis
the Wald statistic %, , follows a x* distribution with s degrees of freedom. This completes the proof of
Theorem 1.

In a further step we consider the Wald type test obtained in Theorem 2. Assume that a consistent
estimator of R, = diag(L2,,,,)i=1,...» is available. From (A- 17) obtained in the Online Appendix, we

observe that V (mZu nmv 1B, (r) r € [0, 1]) (mZu ,m |B (r), r € [0, 1]) and

E (my;,m, 1B/, 7 € 0, 1])

1 1 o Lo o
= Z Z ujup Qy i ;Qulul + E Z Qujuj / hi(i’)hl(T)/dT
0

i=1 [=1 =1
or using the more compact notation used in (A-18)

= iZ:‘Qu,-u,- (/01 hy(r)hy(r) dr — /01 hi(r) (N;ﬁ(r))l dr — /01 (Nﬁfl(r)) hi(r)'dr
+ /01 (N;,B(r)) (N;,B(r)))'dr> . (53)

X Note that by Assumption 2, Q,, = 0 for any i # [ By the assumption that
Q. consistently estimates Q“f‘i’ Eq. (53) and the contin_ulous mapping theorem we g_elt
Vir = [MXZ ”TM;ZnTMXZ T] Dy [MXZHTMEZ nTMXZnT] = [MXZnM_ _M;“(Z,n]
D, My, M5, HM;(Zn]f1 = V,, where

Dy = MXZ,nTMZ_Zl TPZuZu nTM;ZI nTM;(Z aT’ with

PZﬁZﬁ,nT = Z Z Qu,ul %Q uzul 2 Z Qu]u]

ZAZp ‘Dt plt* Zp and
=1 (1:qp+ky:1:q,+kp)

—1 —1 / .
= My nMZZnPZuZu "MZZ,nMXZ,n , with

:U(

Pyizin = ZPZaZa,m’ where by (53) and (A-18)
i=1

Qu, ( /0 (e dr /0 11”1,<(r) (N;,l;(r))/dr— /0 1 (N;,B(r)) by (r) dr
+ /O 1 (Nih)) (NgRoD ) dr) .

Then the Wald statistic (31) satisfies
7 = A\ (oo -1 o -
Wynr = (T*R (}’DzSLs;p - )’)) (RV,rR’) (T*R (VDzsLs;p - )’)) , (54)

and converges to a x 2-distributed random variable with s degrees of freedom.

P iini
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B. Joint limits: Proof of Theorem 3

By Assumption 5, the process (”L)teZ’ ni; € RM, allows to apply the joint asymptotic limit theory
developed in Phillips and Moon (1999, 2000). Phillips and Moon (1999, Lemma 2) show that for
(n;rt) 1<z @ panel Beveridge-Nelson decomposition exists (see also Johansen, 1995, p. 36), given that their
Assumptions 1 and 2 are met. Hence, we consider a linear process (17};) 17> With Wold representation

M, = Yoo Cl, el where CI, e REFDX®HD for i = 1, ,nand g] = Y2, cl el

where CT = diag (Cs o Cjn ) and e]_, = (8{2,5,...,32275)/. Since uj; can be written as
u, = - 2, VSZ vy = u — Q. 1,lSl Vit (the last equality follows from independence across i),
also for ( it) rez> @ Wold representatlon Ny, = Yoo Cy;p€it,—s as well as a panel Beveridge-Nelson

decomposition exists. After applying the within-transform defined in (32), we obtain

o
Ny, = Cp,(D&it, — Wiy, + Mig,—1> Nig, = Z Con€ity—s,» Comy = Z Cisnps Cpi(1) = Z Comi>
= Kk=s+1

Vit, = Cvi(l)eit* —Vit, +Vir,—1, Vi, := E Csv;€it,—s, » Csp; = E Coyv; and
= k=s+1

uit, = Cy; ()&, — Wi, + iy—1 > Tig, = E Csu;€t,—s, » Csu; = E Cresu; >

Kk=s+1
such that for partial sums we get
[rT4] [rT4] [rT4] [rT4]
Z i, = Cpi(1) Z &it, + Mo, — Nigrr,) and Xippr,) = Xio, + Z Nit, = Xio, + Z Vi
t=1 t=1 t=1 ki) t=1

(55)

The term 1, denotes #;, at t, = 0. C,;, is a matrix polynomial satisfying the conditions of Phillips
and Moon (1999, Assumption 1), while Cg,(1) := Zfio Cs;p; as well as Cg;y, and Cyyy,; are submatrix
polynomials of Cg,,. Note that u;; and v; as well as v;; are uncorrelated by construction. Hence, Cy,(1)
is block diagonal. C;(1) stands for the corresponding row of C;;(1) to obtain u;;. The same notation is
applied to obtain v;;. Using the Beveridge-Nelson decomposition (55) and t, = t — p, we obtain

n n
1 1 _
Quyr = n § :MZZnTi = § :MZZ,nTi § :Rzz n1i» Where Mzz nTi * Tz § : Zit," z,,
i=1 i=1

i=1 * =1

tk
Z ’K(D 3
W {n}.ij C(K(l))](; (j—1D)n+1:jn) cvf(l) Z Ejsa

Sse=1
//Zz,it,, = t e RI»tk | and
Z Wi [c (KW]W_MHM Cy(D) Z_jl ;.
Cy (1) Yo, Eis,
Ry 1 = Myz g — My oy € RUHOGHE (56)
With Kinyje == [K{"}](j,é) we get

i
1
A ;ZMXZnTi Z Xuni T ZRXZnT’ where MXZnTz T2 Z X,it,* ///Z it,
= i=1 i=1 * =1
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n n te

3 WiniKmeB [ Cr Y e,
Mg, =7 . . e RIH
CVi(l) Z €is,
se=1
Ry ,mi = Mgz — My € RIFOHE, (57)

and
1 < 1 N 1 <« R N
it = ZmZﬂ nTi — ZmZﬁ nTi Z ZianTi > WhHere
Vn i=1 Vn i=1 Vn i=1

Tﬁ
- 1 - > = . -
myy, ,1i = F Z //Z,it*///ﬂﬁ* N Q///,;,,-t* =Cy (e, eR, RZﬂ,nTi =My — My o € Rtk
* =1
(58)
Step 1, (T,n) — oo-Limits of Qg .1 Qx5 v and qz;, o In the following steps we adapt Phillips
and Moon (1999, Lemmata 13 and 16) to the requirements of our model. First we show:

Lemma 1. Suppose that the expectations Q;; and Qy;, exist, Assumptions 1-6 hold, and W,y as well as the

2
error structure are such that E <[M5(2,nTi] o

2
forl, = 1""’qP’E([MZZ,nTi](l D <oo,=1,..k+1forl.=1,...,qpandl. =1,....k+q,
forl,=1,...,qp forall T € Nandn € NU {oo}.

Then Qxzur and Qy ,r converge in probability to Qx;, and Q5 as (n, T) — oo with "—; — 0.

) <oo,lr=1,...,k+1forlc=1andl. =1,....k+q,

Proof. For [Q~~ ] and [Qw ] joint convergence in probabilit
f XZNT | k1,40 +k) 22T | (g:qp+hdp:qp+K) J 8 b Y

results already from Phillips and Moon (1999, Lemma 13(a)). That is, [Qyy] kit i =
& k+1.9p:9p

[Qs;] @oar+hdyarth) = %Szv,-v,-- For the remaining components by (56) and a panel Beveridge-Nelson
pdpTKAp:dp
(55) decomposition we obtain:

T,
1 1 o - 1 o - J— ,
Qo =+ 2 Myzup =~ D Mz~ 3 Ryp s where My o= oo 30 ly s M-
i=1 i=1 i=1 * te=1
n -
1) o o o
Z Win.i [C(K(l))](i,(j—l)n+1:jn) (%0, = ¥z, +¥jo.)
j=1
My =My + " : and
> W{f}(‘if ) [C(KW))] » (%o, — Vi, +¥jo,)
o (7 G—1Dn+1:jn)
(%i0, — Vir, + Vo)
Ryo i = Ryzm = Mz — Mz - (59)

For Qy ,,r» we use (57) to obtain:

n n n
1 1 ~ 1 _
Qzpr =~ D Mizum =~ D Mizun + — ) Rizm» where
i=1

i=1 i=1



630 J.MUTL AND L. SOGNER

n n

T, of
1 / . Z Win),iiKny jethy,
MXZ,nTi = T2 %X lf*%z it, %)V(,it,, = %X ity + j=1 £=1 >
* te=1

0k

ot Ty o —al Z
uit,( - C”i(l) i, +uit., zt -1 ll Csu, zt s?

n n
% W{ }:“ [K] ‘,Z B/ &'O* - ‘ol‘t* + ‘0"0*
My, = My + ZZ nhij LN (.0) (J J J )

j=1{=1 >
(%i0, — Vir, + Vio,)
R.)U(Z,nTz MXZ nTi MXZ,nTi and
Riz i = Mizm — Mizm = Rz + Mizm — My - (60)

By following Phillips and Moon (1999, p. 1100), expression (59) decomposes Q. into the term
1 v i1 MZZ 1> consisting of weighted sums containing Cy, (1) Z isand it! ir» and the residual term

’11 YI,R ZoaTie A similar decomposition is obtained for Qxz,r in (60).
The assumptions stated in Lemma 1 on the moments of M3 .. and My . are sufficient for

M)?Z,nTi and MZZ,nTi to be uniformly integrable in T, (see, e.g., Klenke, 2008, Theorem 6.25); (the
assumption of second moments can be made weaker by demanding for moments 1 + €, € > 0 to
exist and then applying Billingsley (1986, p. 348)). For the south-eastern parts of 1\7[5(2) i and MZZ, T
uniform integrability already follows from Phillips and Moon (1999, Assumptions 1 and 2)). Then

by Billingsley (1986, Theorem 25.12), we observe that % Y MZZ,nTi L E (MZZ,nTi) = Q; and
1 . ~ P - —
n izt Mz — E (sz,nn-) = Qyzas (T,n) —~ oo. Note that E (MXZT> = Qg = (sznn)
and E (MZZ,nTi> =Qy; =E (Mzz’m) as defined in (38) as well as (39).

The residual terms Ry, ., and RZ.'Z, 1; decompose into sums to of the remaining terms obtained in

Phillips and Moon (1999, p. 1101, “Ry; 7 in their notation). These remaining terms in Phillips and Moon
(1999) have expectations of the order \/LTO(l) and %O(l). In addition the condition n/T — 0 has to

be met such that weighted sums of these residual terms become small. Since n, n?, and n® summands of
this structure show up in the nonsouth-east terms of R> ; and RXZ 1> and the weights are bounded
- N . 3
by our Assumption 6 (i.e., | Wypy,;il < wand |K{y, ;| < w), we obtain the requirement that % - 0%
6
n

7 — 0 to make the impact of these remaining terms sufficiently small. Then, by Phillips and Moon

(1999, Corollary 1) lim(r,m—o0 Qiz,r = Qiz = E(sz,nn) and im(rn 00 Q7,0 = Qzz =
E (MZZ,nTi>’ given that ”—; — 0.

: o 1 T, N~
Next we consider the limit of TT PRI Bl Zit, (1k+qp) Bir,*

Lemma 2. Suppose that the Assumptions of Lemma 1 hold. In addition, W,y and (n;;),_,, are such that

teZ
2
E <[m2a,m](l 1)) <00l =1,...,qp foralli,T € Naswell as foralln € Nandn — oo. Let
n,T) > o0 andnG/T —> 0.
Then Qziur = Jag Limt Lot Zinikrgoie = Gz~ NOgerg,, B), where & =
Pizi and Py = Sluiu,.E( Jy hi(hi(ry'dr — [ hir)(Nh() dr — [ (Nh(n)hi(r)'dr +
fo (Nhh(r)) (Nyh(n) dr).
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Proof. Equation (58) results in:

1 & 1 & 1 <
Ui = 7 Z my. .5 = NG Z my. .5+ NG Z Ry i
i=1 i=1 i=1

my. . = Z '//[Z ity uzt, + ep zt*] s
L te=1
My, = My, + (—ihit, + tir,—1) and ,
RZ:),nTi =My ari T Mo RZﬂ,nTi = RZﬁ,nTz Z j/Z ity eP ity - (61)

* =1

Since .#; ;, does not depend on i, the difference between Ry; . and I_{ZMTI. can be obtained in
a straightforward way. Equation (61) has two main differences compared to the corresponding term
considered at the beginning of the proof of Lemma 16 in Phillips and Moon (1999):

First, &g, ,t*(— ép;i,* in shorter notation) described in (16) shows up, and second, a sum over #n terms

is included by W, n}(:) C(ky) - - - due to the instruments used in our article. Note that the projection error
terms ey, are of the order op(1) for T, — 00 and each i. The term .#; ;, is bounded in probability
by Assumption 7. By this Ry,
each n € NU {o0}.

Second, we consider the effect caused by the spatial lag: Observe that the first components of q;, .+
can be considered to be n-fold sums over terms considered in Phillips and Moon (1999). By Klenke

inti — Ryp ,p converges to a vector of zeros in probability for T — oo for

(2008, Theorem 6.25) uniform integrability of [‘ﬁZa nTi](l N in T (as well as in T,) follows from the
’ p»
fact that the first two moments of my; ., are finite for all T, as stated in the assumptions of Lemma 2.

For the remaining coordinates of my; ;; uniform integrability already follows from the Assumptions in
Phillips and Moon (1999, see proof of Lemma 13). This allows us to apply a joint central limit theorem, in
particular Phillips and Moon (1999, Theorem 3), where —= ﬁ Yo, ms a7 CONVerges to a normal random
variable q3; with a k; + g,-dimensional mean zero and covariance E = P, > , where (see also Online
Appendix A-2)

_ 1 g o 1 . g ’ 1 . .
Py = @uE ( / by (b (r) dr — f by (r) (N;lh(r)) dr — / (N,;h(r)) b (r)/dr
0

0 0

+ /O 1 (N,;B(r)) (N;ll;(r))/ dr> . (62)

In addition, the components g, +1 to g, +k of RZ&, 1 jointly converge to zero if n/T — 0. This follows

already from Phillips and Moon (1999, Lemma 13 or 16; for g, to g, + k, I_{Zi“m can be decomposed
into “R; 1x” in their notation), where the authors show that the residual terms “Ry ;7 can be decomposed
into components with an expected norm of order O(1/T), O(/n/T) = /n/TO(1) and O(/n/T)
(by this fact Phillips and Moon (1999) added the requirement n/T — 0, which is sufficient to obtain
(n,T) — oo convergence for these coordinates). In our analysis the first g, components of RZb,nTi
contain n-fold sums of the terms investigated in Phillips and Moon (1999, p. 1108). Since n terms of this
structure show up due to a spatial lag, and the elements of W,,; and K,y are bounded by w, the residual

term RZ&,nTi contains terms of the form n - O(1/T), n - \/n/TO(1) and n - O(4/n/T). These residual

terms demand for n3/T — 0. Hence, n®/T — 0 is sufficient to meet this requirement and all the terms
contained in Ry, .. converge to zero in probability, such that for (T,n) — oo, weak convergence of
q3;, v to a normal random vector q;, with mean zero and covariance & = P, >, obtained in (62)
follows (see, e.g., the central limit theorem provided in Phillips and Moon, 1999, Theorem 3). By our
model assumptions P> is equal to the expectation of P; > ..
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Given that the assumptions stated in Theorem 3 hold, we observe joint convergence (in probability) of
Qx5 > Qi t0 Qi Qi for (T, n) — o0, where nG/T — 0. In addition, under the conditions stated
in Theorem 3, q3; ;- weakly converges to qy;. qy; is multivariate normal with mean vector 0k+q, x1)
and covariance matrix £ = P, >..

Step 2, (T,n) — oo-Limits of o/nT, (?DZSLS;}, ) Consider the south-east blocks of QZZ T

and Q}(Z - In both matrices we consider sums of elements Vi, V;;  , scaled by ﬁ. By a joint law of
large numbers convergence (in probability) to elements of I'y,,,,, is obtained. The south-west and the
north-eastern blocks of these matrices converge to zero in probability. To see this, in these blocks of

N L i . .
QZZ,nT and Q)?Z p We meet terms similar to qy; ;- scaled by a higher rate. In partlcular, these terms

o1 1
contain n Zi=1 ZT/,nTi = \/? Zln I%th and Zl lmZv Wi ﬁ Zz 1 unt lvlS Given

Assumptlons 1 and 2 of Phillips and Moon (1999) vi; and v v,t are of the same stochastic order as u and
it;,. Hence, for «/_ Yoy My, Viand —— \/_ > iny My, Vii ajoint central limit theorem holds. Based

on these results, the terms ,11 Y my; o and 1 - i1 my; r; converge to zero in probability.

By Lemma 1 we observe convergence in probability of the matrices Qy , and Qz; - to Qi and
Q. Lemma 2 shows weak convergence to a normal distribution. The requirements of these Lemmata
are met by the assumptions stated in Theorem 3. By a mapping theorem for random variables converging
in probability (see, e.g., White, 2001, Theorem 2.27), we observe that the (n, T) — oo-asymptotic
distribution of \/nT, (y pastsp — ¥) is a normal distribution with mean vector Ok-+1,1) and a covariance

matrix V. Since we have assumed that Py, can be estimated consistently, ]v)é) ,rand VQ 7 converge

in probability to 13() and Vé, respectively.

C. Estimation of §;

This section obtains the limit distributions for the estimator (43). Note that conditional on xp;:

Tli—>ngo V1 (EL —B1)
—1 1 n T, . I
N N < o < < /
i V(S -S| o, (Fasss ) 3 Gk
* =1

t=1 t,=1

N/

N Ty (= .
Z ”jt* + T_Z (J’DZSLS ) Z (7> X5t /

t,=1 * te=1

i () S

n
lim <Z S(Lii(/Li> Z —1/2 Z y + Te ()’DZSLS ) (e Z (it Xpie) /
i=1 i=1

T—o00 i =
n -1 1 = ’ 1
= (Z iLik/Li) Z XLj [ / dBi,r) + |:Tlimoo T, ()7 D2SLS ~ 37)] / gi(rdr }
i=1 i=1 0 - 0
. W,KCB,(r) W.KB,(r) kil
h i(r) == 5 = s R 63
where g;(r) ( By, (r) ) ( B, (1) ) € (63)

Hence, we ob§erve that conditional on xj; the T — oo limit distribution of the centered and scaled
estimator of B; converges to a nonstandard limit containing the limit of the centered parameter p.
C = Iy, since k¢ = 0. The terms in (63) are Oy(1), such that ﬁ@L — ﬂL) is Op(1). Since
the distribution of x7; has not been specified, the (“unconditional”) asymptotic limit distribution of
VT (B, — B) cannot be obtained.
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In the next step, we use the second part of Assumption 5 and apply a joint central limit theorem to

ﬁ Y ZZ*ZI Xp;it}.1° Then for the joint limit we derive
llm RV f’lT (AL ﬁL
(n,T)—00
1 n -1 n Ts
= lim (=Y "xx, | - |n 212 xpiit)
(nT)—00 \ 1 £= LiTLi ;2 Li%it,
n T,
1/2 > - ~1/2,,-1/2 —3/2 NV
+n'/2T, ()’DzsLs - }’) P12 Z Z (V> Xgir)
i=1 t,=1
< -l
= (B (uiXys)) Yo Where v, ~ N (0(ka1)’D( ! )) and
ity
_ T o
D(iLiil:Tt) = E(Quiui)E (XLiXL') . (64)

Note that by the independence of xj; and u;rt postulated in Assumption 2, D(

XLzuL*>
2
E ((u;rt*) 5‘Li5(,Li> + Z‘;O:_oo, st E ((u;rs*uz;*) iLii’Li> = E (QLM) E (iLii’Li). To obtain (64)

o~ / /
we have to show that the term n~!/2 (nl/zT* (j;DZSLS - }7> nol2 3y P (y;‘;,i},t> )

converges in  probability to zero. To  derive this result we show that
/
(nl/ZT* (VDZSLS ) -1/2 —3/2 S Zt*—l (y;“t,x}”> ) is Op(1). Note that xy; is stationary with

o~ /
an expectation equal to zero, (y:‘t, 5(}”) isI(1) and independent of x;; and \/n T, (;7DZSLS - ;“;) = 0p(1)
[for (n,T) — oo and n®/T — 0]. Then,

T
N N /
” T)_)oo T qu ()’DZSLS J’) Z(yﬁ,x}lt)
t*=1
NN fT
= lim T! %y y*,x’ (}’DzsLs y)
(n,T)—00 ;; L \Vit Izt \/_T
= lim w127 3/2ZXL,Z j’zt’XIlt)/ 0,(1). (65)

T
(n,T)—o0 =

For the term n~'2T32%1 S°Iv 5:(5%.%),) we already observed in (63) that
limy_, oo T73/2 Zt{ X (y;“t, i}it), = Xy fol gi(r)dr. Then, the sequential “first T, then n”-limit
of n=12T32%"1 ZtT* (s X}it)/ is a normally distributed random vector with a k -dimensional
mean vector of zeros and and finite covariance. Assumptions 5-7 are sufficient that also the joint limit
of the term n~1/2T=3/23" | ZZ Xy (j/;‘t,i}it)/ is a normal random variable. By this result, the fact

that \/nT, (y pasis — ¥) converges to a normal random variable and the continuous mapping theorem,

16To apply Phillips and Moon (1999, Theorem 3) let Myt = f Zt* 1 xLl“n If the limes inferior of the smallest
eigenvalue of the covariance ome Tni is larger than zero and ||mXu mill21s uniformly integrable in T, this theorem can be

applied. In the notation of Phillips and Moon (1999), Yit, = My Thi where we set G; = I, suchthatY;r, = GQjr, = Qir,.

The joint and the sequential limits are equal if % Z,-:1 Quiu,XL:XL, converges in probability to D(i(u\fr, )
1tx
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we observe that n~1/2(n'/2T, (;DzsLs — }7)/11_1/2 T35 xy ZZ*:I (8 i}it)/) converges to zero in
probability. Hence, by (64) /1T, (ﬁ 1 — B L) converges to a normally distributed random variable with

mean zero and variance E(i{Lii’Li)_lD(\ ' )]E()‘(L,»)‘(’Li)_l = ]E(Qfliui)E()}L,«i’Li)_l [for (n, T) — oo and

XLiil
n®/T — 0].
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