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Essays on Productivity and Innovation

Abstract

This dissertation explores themes surrounding digital innovation and its effects on industries

and firm- and employee-level productivity. Using novel and often proprietary sources of data, I

take an empirical approach to asking how digital technology has transformed entire industries (e.g.

medical devices and medical care), as well as how employees interact with tasks (e.g. technology-

enabled remote work and telemedical care), with a focus on unpacking mechanisms driving each

result. In each of these chapters, I focus on phenomena with large-scale impacts, from the digital

transformation of a $150 billion dollar medical device industry in the US, to increased productivity

at the US Patent and Trademark Office that could lead to $1.3 billion in value as a result of new

patent approvals, to potentially saving 70,000 lives a year as a result of telemedical intervention in

the intensive care sector in the US.
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0
Introduction

This dissertation explores themes surrounding digital innovation and its effects on industries and

firm- and employee-level productivity. Using novel and often proprietary sources of data, I take an

empirical approach to asking how digital technology has transformed entire industries (e.g. medi-

cal devices and medical care), as well as how employees interact with tasks (e.g. technology-enabled

remote work and telemedical care), with a focus on unpacking mechanisms driving each result. In

each of these chapters, I focus on phenomena with large-scale impacts, from the digital transfor-
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mation of a $150 billion dollar medical device industry in the US, to increased productivity at the

US Patent and Trademark Office that could lead to $1.3 billion in value as a result of new patent

approvals, to potentially saving 70,000 lives a year as a result of telemedical intervention in the inten-

sive care sector in the US.

Chapter 1, titled “Who Drives Digital Innovation: Evidence from the U.S. Medical Device In-

dustry” (joint with Ariel D. Stern), asks whether the large-scale technological change that is charac-

teristic of an industry-wide digital transformation entrenches industry leaders or enables the rise of

new entrants? We study the medical device industry, a unique setting in which we observe all new

product commercialization over several years and in which the introduction of software has created

fresh opportunities for new product development. Pioneering a new application of text analysis, we

consider over 35,000 newmedical devices that came to market in the United States from 2002 to

2016 in order to identify digital products. We examine the relative importance of within-firm know-

how, geography, and financial resources in predicting digital new product development. We find

that prior product-area commercialization experience and location in a region of concentrated ex-

pertise reinforce one another as predictors of digital innovation. Access to financing through public

capital markets and venture capital are also positive predictors, but the magnitudes of these effects

are smaller and do not appear to compensate for past product experience or geography. We con-

clude that the digital transformation of the medical device industry is disproportionately driven by

product area and geographic incumbents.

Chapter 2, titled “Work-from-anywhere: The Productivity Effects of Geographic Flexibility”

(joint with Raj Choudhury and Barbara Larson), asks how technology-enabled remote work pro-

grams affect productivity. While traditional “work-from-home (WFH)” programs offer the worker

temporal flexibility, “work-from-anywhere (WFA)” programs offer both temporal and geographic

flexibility. We study the effects of WFA on productivity at the United States Patent and Trademark

Office (USPTO) and exploit a natural experiment in which the implementation of WFA was driven
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by negotiations between managers and the patent examiners’ union, leading to exogeneity in the

timing of individual examiners’ transition toWFA.WFA resulted in a 4.4% increase in output com-

pared to when the worker was onWFH, without affecting the incidence of rework. We employ

micro-data on geographic peers, an exogenous mandate to use IT, and proxies for examiner effort

to shed further light on mechanisms. Finally, we study how flexibility affects the location choice of

WFA, noting that employees move to lower cost-of-living areas, as well as noting correlations be-

tween career stage and advantageous locations (such as the Eastern District of Texas).

Chapter 3, titled “IT and Productivity: Evidence from Telemedicine”, addresses the impact of

IT on skilled-worker productivity by studying the implementation of IT in a non-routine, skill-

intensive setting, the provision of intensive medical care by doctors, and asks whether IT is outcomes-

enhancing and induces workers to shift effort across tasks. Using data from a large hospital network,

I estimate the effects of a network-wide telemedical intervention in which in-person critical care

physicians are almost entirely replaced by software algorithms and remote treatment. Leveraging

detailed patient medical records and clinically-validated health risk measures, I estimate a 16% av-

erage reduction in mortality. This average effect masks substantial heterogeneity associated with

IT usage: the healthiest and absolute sickest patients experience small increases in mortality, while

more moderate patients benefit. Treatment rates appear flat, however, physicians redirect treatment

towards patients that benefit most on the margin, pointing towards a more optimal allocation of

effort with IT. Further analysis points to the importance of software—both the average effects and

heterogeneity appear driven by the use of algorithms in monitoring and directing care. Comple-

mentary assets are also important—improvements associated with automation and technology use

are greatest in technology-focused locations and diminish for community hospitals lacking on-site

resources. Back-of-the-envelope calculations imply that adoption of this technology at scale across

the United States could lead to 70,000 lives saved per year, at a value of $20 to $135 billion annually.

Ultimately, implementation of telemedical technology at this hospital network is labor-substituting,

3



with the network reporting $3 million in annual cost reductions, comprised almost entirely of re-

ductions in physician staffing needs for hospitals that have implemented eICU technology.
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1
WhoDrives Digital Innovation: Evidence

from the U.S. Medical Device Industry

In recent years, major industries ranging frommanufacturing and inventory

management to entertainment to health care have undergone a “digital trans-

formation,” in which key aspects of both day-to-day business and new frontiers of product devel-
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opment have migrated to a primarily digital (i.e., software-driven) context. This scenario raises ques-

tions about how new opportunities for digital product development impact both new entrants and

experienced industry leaders. Does widespread technological change strengthen incumbent power

or does it provide greater opportunity for new entry? The answer is not clear ex ante: incumbent

firms have substantial experiential and resource advantages that could allow them to both weather

and take advantage of large-scale technological change, while younger, leaner firms are not burdened

by existing research and development (R&D) approaches and are often characterized by creativity

and flexibility75.

This study implements our research question in a novel setting: the digital transformation of

the medical device industry. An advantage of this setting is that all product commercialization is

directly observable. The existence of a centralized, national regulatory approval process, combined

with detailed databases that assign all devices to standardized product areas, allows for precise and

comprehensive categorization of new products, which can, in turn, be directly linked to commer-

cializing firms and locations. Using text analysis and document classification techniques, we char-

acterize over 35,000 medical devices brought to market from 2002 to 2016 and identify the digital

products among them. We describe the commercialization of these products across medical spe-

cialty areas, across types of innovator firms, and over time.

We find that within-firm experience and geographic expertise are the strongest predictors of digi-

tal product commercialization. While a firm’s previous experience with digital devices is broadly rel-

evant, experience that is specific to a particular medical specialty area (product class) is additionally

predictive of follow-on innovation (i.e., the commercialization of new versions of already-marketed

digital products). This finding points to likely within-firm spillovers from experience in this con-

text. Geography—in particular, a firm’s location within a cluster—is a universally strong predictor

of digital innovation. Interestingly, this effect is specific to digital experience within a product class,

suggesting that geographic expertise is most relevant for digital innovation when knowledge is spe-
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cialized. Overall, we find that digital innovation is led by generalist firm experts, but is more likely to

occur in specialized clusters.

With respect to financial resources, we find that access to capital is associated with higher rates

of digital innovation, but that these effects are smaller than those associated with experience and

geographic expertise. Public firms are more likely to commercialize digital products, but these firms

are, by definition, already incumbents. Among newer entrants, our estimates suggest that an order-

of-magnitude increase in venture capital (VC) funding would be needed to offset the positive effects

of being in a specialized product cluster. Further, the results imply that a doubling of VC funding

would be necessary to offset just a single-digit percent increase in a firm’s recent experience with

related digital devices.

Finally, we observe that different types of access to capital matter in slightly different ways: pub-

licly listed firms are particularly likely to engage in digital innovation of durable medical devices

(those used multiple times, often based in hospitals; e.g., ultrasound equipment), whereas VC-

funded firms are more likely to pursue digital innovation in single-use devices (those used for only

one patient; e.g., pacemakers and insulin pumps). These findings are consistent with stronger inter-

temporal spillovers from digital innovation among established firms.

Previous studies have highlighted the importance of software and digitization in determining

how firms innovate (Arora et al. 24 ; Branstetter et al. 39) and perform43. Our study builds in many

ways on the literature linking software and networking capabilities to innovative activity; it differs,

however, from previous studies, in that our primary measure of innovation goes beyond patenting

activity to assess the precise and complete set of new products that are ultimately brought to market.

Because new product commercialization in the medical device industry typically occurs well after

patenting, this study characterizes software-driven innovation at the tail end of the innovation pro-

cess, focusing on the final phase of new product development. Furthermore, this study is distinct

in that it models digital innovation as a dependent variable, whereas other studies have frequently
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treated the use of software as an independent variable.

1.1 Background

In the United States, health care spending makes up nearly 18% of the economy9, offering a large

potential market for new technologies and a variety of opportunities for innovators to build and

grow businesses around new products. A growing segment of the health care market is “digital

health,” which is broadly defined to include companies and products at the intersection of health-

care and technology.1 The digital health space includes health care IT and information systems, as

well as a host of companies that build and sell technologies such as wireless sensors, software-enabled

diagnostic and imaging devices, and artificial intelligence software programs with health care ap-

plications. In recent years, there has been dramatic growth in funding for digital health162, with

notable private and public initiatives emerging to fund research and investment.2

Medical technologies—the devices and equipment used in treating and caring for patients—have

become increasingly digitized, as software and networking capabilities have become integrated into

a growing number and share of new products. Common examples include digital blood-glucose

monitors and nearly all contemporary radiology devices, which combine equipment for imaging

with software for image processing and display. Modern medical devices incorporate software for

tasks ranging from simple blood pressure monitoring to the processing and analysis of computed

tomography (CT) data. Today, digital medical technology is commonplace and its use is inescapable

for health care delivery professionals: a recent report found that U.S. hospitals use an average of

1https://rockhealth.com/what-digital-health-is-and-isnt
2For example, Rock Health describes itself as “the first venture fund dedicated to digital health”

(https://rockhealth.com/about) and the state of Massachusetts launched the Massachusetts Dig-
ital Healthcare Initiative in January, 2016 as “a comprehensive public-private partnership that
will advise the administration on the future of the Commonwealth’s digital healthcare industry”
(http://www.mass.gov/governor/press-office/press-releases/fy2017/governor-establishes-mass-digital-
healthcare-council.html).
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10 to 15 “connected”—i.e., networked—digital devices per patient bed132. Yet until the late 20th

century, few software-driven medical devices existed and it wasn’t until the late 1990s that the U.S.

Food and Drug Administration (FDA) first issued guidance on the incorporation of software into

regulated medical devices (FDA 1).

While the 21st century has seen rapid digitization of medical data as a result of the growth of elec-

tronic health records168 and the creation of a multi-billion-dollar digital health investment space161,

the growth of software in medical devices has not yet been characterized across products or firms,

nor is it tracked directly by regulators. The implications of digitization for shaping patterns of inno-

vation and commercial leadership in this sector have therefore not yet been studied at scale.

1.1.1 RegulatedMedical Devices

The FDA is the only regulatory authority with the power to grant marketing approval for med-

ical devices in the United States. An agency within the U.S. Department of Health and Human

Services, it regulates over two trillion dollars’ worth of products annually, including all medical

technologies31. The FDA is organized into centers, each of which focuses on one type of product.

Medical devices, including radiation-emitting products such as X-ray and ultrasound machines, are

regulated by the Center for Devices and Radiological Health (CDRH).3 Within the CDRH, the

Office of Device Evaluation reviews new products.4

Devices are wide-ranging in their complexity and their risk to patients. They range from low-risk

devices such as stethoscopes and tongue depressors to moderate-risk products such as hearing aids

and blood pressure monitors to complex, high-risk products such as cardiac pacemakers and replace-

3Other centers are responsible for other product categories. For example, drugs are regulated by the
Center for Drug Evaluation and Research (CDER) and biologics are regulated by the Center for Biologics
Evaluation and Research (CBER).

4Since 1976, the regulation of newmedical devices has been governed by the Medical Device Amend-
ments (MDA) to the Federal Food, Drug, and Cosmetic Act of 1938.
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ment heart valves. While devices of the lowest risk are subject only to so-called “general controls”

of labeling and of compliance with the FDA’s good manufacturing practices,5 moderate-risk and

high-risk devices must submit applications to the FDA for regulatory clearance or regulatory ap-

proval, respectively.6 The administrative data from these regulatory processes, along with each new

product’s formal description, are made publicly available at the time a device completes regulatory

review. These documents constitute the main source of new product data used in our analyses.

As described in detail below, a growing number and share of devices now contain software. Such

features allow for additional functionality, such as allowing physicians to remotely diagnose and

monitor patients. For example, the CardioMEMS™ HF System allows for remote, wireless heart

failure (HF) monitoring, which has been shown to reduce HF hospital admissions for at-risk pa-

tients.7 Despite recognition of the increasingly digital nature of medical devices,8 the FDA does not

formally track the use of software in medical devices in its product-level regulatory data. As a result,

the prevalence and growth trajectory of digital products and their distribution across medical spe-

cialty areas have not yet been broadly described. The first portion of this paper is therefore dedicated

to using information embedded in the text of medical device summaries to identify digital medical

devices and quantify their growth. Using text analysis and an off-the-shelf natural language process-

ing tool for medical topic identification, we analyze 15 years of medical device product summaries.

We then turn to a set of empirical exercises that model the drivers of digital innovation across firms

in this industry.

5https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpcd/315.cfm
6https://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/Overview
7https://www.sjm.com/en/sjm/cardiomems
8See, for example, the FDA’s growing list of guidance documents related to software in medical devices

(FDA 1 ; FDA 3 ; FDA 6 ; FDA 8 ).
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1.1.2 Moderate-risk Devices and the 510(k) Process

Moderate-risk devices are approved through a process called premarket notification, which is often

referred to as the “510(k) process”—a reference to the section of the law that established this regu-

latory pathway. One important component of the 510(k) application is the 510(k) Summary, a text

document describing the device and published at the time of clearance. The summary includes “a

description of the device such as might be found in the labeling or promotional material for the de-

vice” along with “an explanation of how the device functions [and] the scientific concepts that form

the basis for the device.” The summary also describes “significant physical and performance charac-

teristics of the device, such as device design, material used, and physical properties,” making it a clear

source of information on the product’s key technological characteristics.9 It is these summaries (and

their equivalents for high-risk devices) that are used to construct the text database described below.

A sample 510(k) Summary can be seen in Appendix Exhibit 1. Appendix A provides additional

detail on the 510(k) process.

1.1.3 High-risk Devices and the PMA Process

High-risk (Class III) devices are regulated through a process called Premarket Approval (PMA),

which typically requires data from clinical trials in order to establish a device’s safety and effective-

ness with reasonable certainty.10 Evidence from trials is presented to the FDA as one part of the

PMA package104.11

Like the 510(k) process, the PMA process includes a product-specific summary document, which

9https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=807
10See: http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/HowtoMarketYourDevice/Premarket

Submissions/PremarketNotification510k/
11Additional details of the PMA review process can be found at: http://www.fda.gov/MedicalDevices/DeviceRegulation

andGuidance/HowtoMarketYourDevice/PremarketSubmissions/PremarketApprovalPMA/ucm047991.htm
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is made publicly available at the time the device is approved.12 Much like 510(k) summaries, PMA

summary documents contain information on indications for use and a detailed device description—

“how the device functions, the basic scientific concepts that form the basis for the device, and the

significant physical and performance characteristics of the device”—among other components.13

Appendix B contains additional detail on the PMA process; a sample PMA summary can be seen

in Exhibit 2.

1.1.4 Software inMedical Devices

The integration of software into medical devices is a relatively recent phenomenon. The first traces

of regulatory interest in software in medical devices go back to 1999, when the FDA released its first

guidance document, outlining expectations and standards for software embedded in newmedical

technologies (FDA 1). The FDA’s guidance has been augmented and updated several times since

(e.g. FDA 3 ; FDA 2 ; FDA 2 ; FDA 8) and today, medical devices that not only incorporate software

but also functionally rely on it, are commonplace. Thousands of patients and their physicians have

come to depend on software-enabled medical devices, ranging from imaging devices for radiology to

software-enabled insulin pumps to implantable heart failure monitors capable of wireless transmis-

sion.

1.1.5 Software in theHealth Care Industry

While we are not aware of any studies of the digitization of medical devices, a small but growing

body of literature in management and economics explores topics at the intersection of digitization

and health care. Most prominently, a number of papers have analyzed the use and adoption of elec-

12These summaries are used along with their moderate-risk device equivalents in the analysis below.
13https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?FR=814.20
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tronic health records (EHRs), one of the primary ways in which software and information tech-

nology have impacted health care delivery in the past decade (e.g. Adler-Milstein et al. 18 ; Agha 20 ;

Dranove et al. 63 ; Lee et al. 108 ; Lin et al. 113). These studies have documented the ongoing adop-

tion of EHRs along with the heterogeneous (and typically limited or delayed) impacts on patient

outcomes.

Our study is also related to a small literature on the adoption and use of software and informa-

tion technology elsewhere in health care delivery. For example,25 find that basic digitalization of

emergency services (“911”) increased the short-term survival rate of patients in cardiac distress.

Other researchers have considered subtler regulatory factors in health care, such as data privacy

laws125, in order to understand how new technologies are adopted and used by patients. In the

context of telehealth,62 describe the major trends with a particular focus on home and mobile device

applications. Yet beyond these studies, management and economics research at the intersection of

digitization and health care is scant and the impacts of digitization on health care innovation have

not been rigorously examined.

1.1.6 Determinants of Innovation

Firm experience and incumbency have been shown to drive innovative activity in contexts ranging

from biotechnology95 and pharmaceuticals (Nerkar & Roberts 130 ; Morton 128) to computer and

IT hardware (Bayus & Agarwal 33 ; King & Tucci 98). In various settings and competitive environ-

ments, research has shown that a firm’s experience in an industry is important for predicting when

and how it enters new markets. Explanations for the enduring role of incumbent firms are numer-

ous, but include organizational experience in specific types of markets128, productivity spillovers

in R&D activities95, complementarities among technological and product-market experience33,

and experience with the process of new-market entry itself 98. Using detailed commercialization

histories, we are able to revisit the role of firm experience in the context of an industry undergoing

13



digitization.

A number of studies in management and economics have also highlighted the role of geography

in innovative activity.70 study the competing effects of colocation and coagglomeration of inven-

tion, showing evidence of geographic clustering of patents within the San Francisco Bay Area in

information and communication technologies as well as more generally. Earlier research from96 sug-

gests similar dynamics; namely, local knowledge spillovers leading to geographic clustering of patent

citations. In the related health care context of biotechnology,119 highlights the role of knowledge

spillovers and agglomeration economies in research-intensive sectors.

Finally, firm financial resources are thought to explain firms’ innovation activities.53 reviews the

literature on this topic and concludes that in many—but not all—settings, cash flow is associated

with higher R&D spending, noting that at least for smaller firms, the causality is thought to run

from the former to the latter92. In the medical technology setting specifically, data suggest that

small firms are particularly capital-constrained and rely on capital flows from both larger firms and

venture capitalists to finance costly new product development117. Thus, our set-up also considers

firms’ access to capital (in particular, public markets and VC funding) as specific financial resources

that may drive innovation.

1.2 Conceptual Framework

We outline a simple conceptual framework for predicting how firms make decisions to pursue costly

new product development projects, given heterogeneity in location, prior experience, and financial

resources. In particular, we emphasize that the necessity of a regulatory approval process, along with

the accompanying time, financial investments, and institutional know-how required for successful

new product development, generate differences in the relative costs of commercialization activities

for different types of firms. Our framework focuses solely on the supply-side decision to enter a new
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market.

A typical feature of digital products is low (or zero) marginal cost of provision to additional cus-

tomers81, however the cost of developing the digital technology in the first place may be quite large.

We build on this intuition, noting that in the case of a multi-purpose technology such as software

(for example, for digital data transmission, imaging, or data display), themarginal cost of applying

the technology to subsequent products within a firm’s portfolio will fall as the firm acquires experi-

ence. Further, financial resources are known to shape R&D investments at the firm level (Cohen 53 ;

Hall & Lerner 90 ; Kortum& Lerner 102 ; and many others). In a setting where multiple factors can

influence the cost of new product development, financial resources are another important lever that

would be expected to impact the costs associated with digital innovation.

1.2.1 Framework for firm decision-making

A simple framework for considering firm investments can be seen in the following stylized two-

period model: consider a firm, f, from geography g, facing a decision in period 1 (t = 1) regarding

commercialization of a product in product class s. Commercializing a product involves costs, Cfstg,

which include manufacturing and production costs,Mfstg, and financing costs, Ifst, e.g., for product

design and R&D. That is, Cfstg = c(Mfstg, Ifst).14

Commercialization of a product results in expected revenues in period 2, rfst+1. Firms will invest

in commercializing new products when Cfstg < rfst+1; that is, whenever net expected profits from a

given product are positive:15 rfst+1 − Cfstg = πfstg+1 > 0.

14Financing costs may vary by firm and product class and over time, but should not further vary by geogra-
phy after accounting for other factors.

15Amore detailed model could also account for the relevant discount rate. This stylized 2-period model
does not incorporate the fact that it may take more than one period for an investment to realize positive prof-
its, which could also be included in a more detailed model; however, we note that since the average product
lifecycle is just 1.5–2 years171, it is realistic to assume that products should achieve profitability on a very
short time horizon in order to justify commercialization.
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We consider variation at the firm, product class, time, and geography levels in the empirical mod-

els that follow. In the remainder of this section, we leave off subscripts for simplicity.

1.2.2 Hypotheses

To preview, our conceptual framework predicts that the costs of commercializing a new product

will vary with firm know-how, location, and financial inputs to R&D activities. Cwill therefore

be decreasing in E and increasing in I. As a direct corollary, expected revenues in period 2 for firm

f commercializing a given device in period 1, πt+1, would be increasing in E and decreasing in I,

making firms with more experience, those located in clusters, and/or those with lower financing

costs more likely to pursue innovation. In this setup, four assumptions, which are consistent with

both the theoretical and empirical literature, are required in order to take into account variation

in firm commercialization decisions over time. All cross-partial derivatives of C and π can then be

signed, leading to a set of testable hypotheses.

Assumption 1: Manufacturing costs are a function of a firm’s labor costs, raw material costs, and

prior commercialization experience, such thatMftg = m(Ltg,Rtg,Eft). We assume that all firms

can access the same local labor and raw materials markets such that the remaining variation in the

cost of manufacturing is only related to differences in know-how, E (that is, prior commercialization

experience).

Assumption 2: We can further disaggregate E to allow for both firm- and geography-specific

differences in know-how. More precisely, we allow for firm-level and area-level variation in prior

commercialization experience such that E = e(α, γ), where α is the level of within-firm expertise

and γ is the level of local geographic expertise. The importance of within-firm expertise has been

extensively documented (Bayus & Agarwal 33 ; Henderson & Cockburn 95 ; King & Tucci 98 ; Nerkar
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&Roberts 130 ; Morton 128 ; and many others),16 as has the role of regional expertise and geography

in predicting innovative activity (Delgado et al. 59 ; Forman et al. 70 ; Mariani 119 ; Jaffe et al. 96 ; and

many others).

Additionally, we note that within-firm and local geographic expertise can be categorized as gen-

eral or class-specific, such that general experience considers a firm or location’s commercialization

experience across all software-driven medical devices, while class-specific experience considers only

a firm or location’s software-driven product commercialization experience within a specific FDA

product class, such as digital radiology products. That is, E can be divided into general and class-

specific components: E = e(α, γ, αs, γs).

Assumption 3: We expect that class-specific expertise is more transferrable to new product devel-

opment than expertise outside the focal product class such that class-specific expertise reduces com-

mercialization costs more than general expertise does. Thus, δEδγ <
δE
δγs

and δE
δα <

δE
δαs . Our hypotheses

then can be stated as follows:

• Hypothesis 1: δC
δE

δE
δαs <

δC
δE

δE
δα < 0.

– 1a: Within-firm know-how (previous experience) decreases commercialization costs.

– 1b: It does so in a way that is increasing in the specificity of within-firm experience.

• Hypothesis 2: δC
δE

δE
δγs <

δC
δE

δE
δγ < 0.

– 2a: Local geographic expertise (being located within a cluster) decreases commercial-

ization costs.

– 2b: It does so in a way that is increasing in the specificity of local expertise.

16This is also consistent with the theory of economies of scope as described by133 and as seen in empirical
studies such as95.
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Assumption 4: We assume that a firm’s financing cost, I, is correlated with its access to external

capital, through either public capital markets or venture capital financing. This is consistent with

literature linking firm performance and innovation to access to finance and financial constraints

(Cohen 53 ; Cohen & Klepper 54 ; Hao & Jaffe 92 ; Stern 156). We can therefore write I as a decreasing

function of (a) being publicly listed (having access to public capital markets), φ and (b) being VC-

funded, v. We can then define I as a function i, where I = i(φ, v) and δI
δφ and δI

δv <0.

The next set of hypotheses therefore address the implications of financial resources on expected

patterns of commercialization, in which smaller and more capital-constrained firms will face higher

costs of pursuing digital innovation:

• Hypothesis 3: δC
δI

δI
δφ < 0. The cost of digital new-product development will be lower for

publicly listed companies, making themmore likely to commercialize new products.

• Hypothesis 4: δC
δI

δI
δv < 0. The cost of digital new-product development will be lower for

firms with venture capital funding, making themmore likely to commercialize new prod-

ucts.

Importantly, we expect these dynamics to emerge as novel manifestations of firm advantage in digi-

tal new product commercialization. That is, the digital-product-specific components of firm expe-

rience, geography, and access to financing should matter above and beyond the advantages that these

factors may confer already, when considering firms’ commercialization patterns more broadly. We

test each of these hypotheses in the analyses described below.
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1.3 Data, Classification, and Summary Statistics

1.3.1 Summary

This project draws on four main sources of data. We begin with administrative data on all FDA-

regulated moderate-risk and high-risk medical devices that came to market over 15 recent calendar

years; namely 2002 to 2016, inclusive. For each device, we collect and analyze the text of the accom-

panying product summary or statement.

Using an automated script and two different types of supervised document classification, we

identify and characterize digital (software-driven) devices. First, we document the incidence and

frequency of keywords related to software and networking capabilities in products and track these

keywords over time. Subsequently, we use the National Library of Medicine’s Medical Text Indexer

(MTI)17—a set of document classification algorithms that take free text and provide subject index-

ing recommendations based on the Medical Subject Headings (“MeSH®” vocabulary) established

by the National Institutes of Health (NIH)—to validate the keyword-driven classification exercise.

Using the commercializing firm’s identity along with historical data about the location of a given

product application and firm-level financial data, we characterize commercializing firms at the time

each medical device in our dataset came to market.

1.3.2 Administrative Data onNewMedical Devices

The first dataset for this project comes from combined regulatory clearance documents associated

with all new moderate-risk and high-risk medical devices that came to market in the United States

after 1996. Moderate-risk devices—such as hearing aids, blood pressure monitors and echocardio-

graph devices—are the largest category of devices regulated by the FDA, while high-risk devices—

17https://ii.nlm.nih.gov/MTI

19



such as pacemakers and drug eluting stents—make up a smaller share of new products. Moderate-

risk device clearance happens through a process called “510(k),” while high-risk device approval

occurs through the PMA process. Both processes are described briefly above and in detail in Ap-

pendices A and B, respectively. These processes are the final step of the research and development

process, after which a cleared/approved product can be legally marketed in the United States. The

FDA has historically received approximately 4,000 applications for new 510(k) devices annually,

compared to fewer than 100 PMA applications115.

The FDA’s 510(k) clearance database18 and PMA approval database19 include the full set of de-

vice names, product codes (three-letter classifications that categorize devices according to site of

use and purpose), and submission and FDA decision dates for all products cleared/approved for

marketing. The top eight medical specialty areas (classes) account for over 75% of all new product

approvals and are the focus of this study (Table 1). For each of these classes, there were over 2,000

unique new device approvals between January 1, 2002 and December 31, 2016.20 Due to avail-

ability of product descriptions (as described below) this is our period of analysis. Over this period,

35,794 new regulated devices came to market in the United States. Each class of devices includes

multiple product codes and (typically) multiple unique devices within each product code. Figure 1

presents a simple example of the hierarchy of the classification system.

18https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm
19https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm
20These eight classes are defined using the full set of FDA clearance records available and therefore repre-

sent the universe of newly approved, FDA-regulated devices.
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1.3.3 Rich Text Data

The second data source is a novel database of text files made up of the device summaries (standard-

ized product descriptions). At the time of 510(k) clearance or PMA approval, a “summary” or

“statement” is published for each device. As noted above, the summary must contain “a description

of the device...including an explanation of how the device functions, the scientific concepts that

form the basis for the device, and the significant physical and performance characteristics” (such as
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design and physical properties).21 In less than 10% of cases in our sample years, a related document

called a “statement” was published in lieu of a summary,22 in which case, we used the text from the

statement instead. While somewhat less detailed than summaries, statements also contain relevant

information about the content of products (for example, several included use of the word “soft-

ware”) and therefore provide the type of text information that is relevant for product classification

in this study.23 We hereafter use the term “summary” broadly to refer to both types of document.

Device summaries are published as online PDF documents following a standardized URL-format

and we use an automated script to batch download all posted documents. These documents be-

gan to be digitized inMay 2001 and we begin our study sample in 2002, the first full calendar year

with digitized summaries available. Using Abbyy FineReader optical character recognition (OCR)

software, we convert downloaded documents into machine-readable text files. In total, ninety-

eight percent of the product summaries could be converted to a machine-readable format giving

us 35,794 device-text pairs.24 We have no systematic concerns regarding selection or time trends in

missing text data: the machine-readability of online PDFs is not statistically different across medical

specialties overall, in any year, or over time. For all years, at least 97% of all digital documents were

machine-readable following OCR document processing. Appendix C, Table I presents the number

of machine-readable summaries in our sample by calendar year.

Although the use of text-based data—for example, categorizing phrases to document firm exten-

21https://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/HowtoMarketYourDevice/PremarketSub-
missions/PremarketNotification510k/ucm142651.htm; as noted above, Exhibits 1 and 2 present examples of
510(k) and PMA summaries, respectively.

22https://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/DeviceApprovalsandClearances/
510kClearances/ucm089452.htm

23In theory, the use of statements could lead to under counting digital products if their text files are less
detailed. Therefore, in robustness tests (unreported), we confirm that all results hold when considering the
sample of product summary documents only.

24These include 35,495 510(k) summaries and 299 PMA summaries.
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sions into new products and services, as in87—has a well-established history in empirical analysis,

the automation of these exercises is a relatively nascent phenomenon.76 describe several techniques

for parsing and analyzing text data and highlight the fact that “the information encoded in text is

a rich complement to the more structured kinds of data traditionally used in research.” In recent

years, text data has been used in studies ranging from sentiment analysis of policy uncertainty32 to

labor economics60 and in the analysis of patent data129. Here, we demonstrate the utility of auto-

mated classification of product types at scale for understanding the content and functionality of

new medical devices.

We process text files in two ways, each of which leads to a similar classification of digital medical

devices. Our first approach is a form of supervised document classification in which we identify the

incidence and frequency of keywords related to software and networking capabilities in each device

description. These terms were selected in advance using two online glossaries of computer-related

terms.25 (A list of the 36 most frequently used keywords—each of which were found in over 100

unique product descriptions—can be found in Table II of Appendix C.) Unsurprisingly, the use

of “software” and several related keywords has increased over time (Appendix C, Figure I). Because

“software” is the most common among our search terms and is highly correlated with others, we rely

on its inclusion in a product’s description as our first indicator to identify digital products.

Categorizing products by keyword use is our first application of simple document classification

to identify digital devices. It has the advantage of being simple and highly transparent, but the disad-

vantage of being somewhat ad hoc. However, this method is very successful in identifying products

of interest. In particular, since the product descriptions included in FDA clearance documents are

standardized and parsimonious, there is no reason—and indeed no option—to include extraneous

text related to features that are not included in the device itself. To put it simply, keywords such as

“software” will not appear in the product description if they do not relate to aspects of the device’s

25Composite list from http://www.math.utah.edu/∼wisnia/glossary.html and https://pc.net/glossary
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functionality (see Appendix Exhibits 1 and 2). Nevertheless, we performed several manual inspec-

tions to confirm that incidents of keywords found were indeed references to the technology in the

device: we drew a random sample of 120 devices (eight per calendar year) that had been flagged for

including “software” and manually inspected each of these devices’ summaries. In this sample, 100%

of devices flagged as including “software” were found to be correctly coded (that is, a 0% rate of type

I error in this random subsample).

We validate our ad hoc supervised document classification using the National Library of Medicine’s

MTI algorithm. As noted above, the MTI takes free text as an input to provide subject indexing rec-

ommendations based on the MeSH vocabulary established by the NIH. Since our primary measure

of digitization is the incorporation of software into new products, we classify device descriptions

using the MTI and generate an indicator for whether the algorithm assigned the MeSH code for

software to the product.26 TheMeSH code for “software” broadly covers “sequential operating

programs and data which instruct the functioning of a digital computer,” a slightly higher bar for

classifying digital products than searching for the keyword “software” alone.

TheMTI algorithm has the advantage of having been externally validated by the NIH and by

several years of use by the National Library of Medicine, but has two clear disadvantages. First, as

noted above, we believe that the bar may be higher for flagging product descriptions for software

inclusion (that is, identifying digital devices), since the MTI will require a discussion of software

programs in the text, beyond simply using the keyword “software.” For this reason, our expectation

is that the MTI may identify a more software-intensive subset of products in our sample. Second,

the MTI is non transparent in how it assigns concepts to text, since the algorithm itself has not been

published.27

26In the MeSH tree, “software” takes the tree number L01.224.900. We identify all products that are
classified as being anywhere on the “software” branch of the MeSH tree.

27TheMTI algorithm is not directly observable/open source; we batch-process text files through the
algorithm and record the subject headings that the MTI returns as output.
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Comparing the MTI output to our own keyword-based document classification method, we find

high degree of overlap: 100% of the devices flagged by the MTI as describing software are also identi-

fied by the keyword method as being about software. However, as expected, not all summaries using

the keyword “software” are identified by the MTI. The rightmost column of Table II in Appendix

C presents a cross-tabulation of our ad hoc keyword-based document classification versus the MTI’s

classification. Notably, the actual keyword “software” has the highest degree of overlap with the

MTI-based definition.

Because we care primarily about digitization in the sense of incorporating any software, we focus

on the keyword-based definition for our primary analysis; however, for all regression models, we test

the alternative (MTI-based) definition and present alternative versions of all key tables in Appendix

C. The choice of definition does not appear to change the sign or statistical significance of the main

results below, but magnitudes are attenuated roughly proportionally to the decrease in the number

of software devices included in the MTI-defined sample.

Figure 2 presents the growth of new digital devices over our observation period. Figure 3a shows

the growth in digitized product codes—unique types of devices—over time, while Figure 3b shows

growth in the number of firms pursuing digital innovation. Through these figures, we see that the

growth in digital devices has been a result of the entry of both new products and new firms. Figure

4a shows that the number of digital product codes grew by over 400% over this period, while non-

software product codes grew by only about 150% (albeit off a higher baseline). Figure 4b breaks

down the growth of digital devices across medical specialty classes, revealing interesting hetero-

geneities. Although all classes show growth in digital products, the share of new products that are

digital varies dramatically across medical specialty classes.
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1.3.4 Measuring Firm Experience and Geographic Clusters

We characterize firms’ digital device experience along two dimensions. First we calculate the count

of digital devices the firm commercialized in the three years prior to the year of observation. This

window is consistent with the medical device development period, which may run over two years171.

Second, we calculate the count of digital devices within each class that the firm commercialized over

the same three-year window of time (up to, but not including, the year of observation). We calculate

total (digital and non-digital) devices commercialized by each firm in the same manner to be used as

measures of overall firm experience.28

With respect to geography, we characterize firms as to whether or not they are in a “digital clus-

ter” in three (increasingly specific) ways.29 Each of these definitions requires limiting the sample to

U.S.-based applications in order to operationalize a consistent definition of state-based geographic

clusters. Notably, many of these applications are fromU.S. offices of firms headquartered outside of

the United States, so many large, international firms are in the final sample.

First, we consider local labor market expertise. Using annual data for 2016 from the U.S. Bureau

of Labor Statistics (BLS), we compile data on each state’s share of software engineers in the labor

force30 in order to consider whether there is a relationship between the characteristics of the skilled

IT workforce in a state and the likelihood of digital innovation emerging from that state. Because

each application includes an address, we can see the location of the facility from which a device ap-

plication was submitted. Appendix Figure II presents a set of sample states. While there is some

variation over time within states, the primary source of variation in the share of software engineers is

28in robustness tests, we also consider a two-year and a five-year window of past firm experience
29We also define overall device commercialization clusters in analogous ways to be used as controlls.
30Data were available for 2005 to 2015 inclusive; however, our analysis sample spans 2005 to 2016. In

order to estimate 2016 data, we impute 2016 state employee shares based on a linear projection from the prior
five years, which is similar to the method that BLS uses in its own projections.
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across states.

Next we consider two types of state cluster for digital innovation, as defined by where device

commercialization took place in preceding years. We define digital clusters by identifying the top

20% of states for digital device commercialization, based on a three-year moving average of the num-

ber of digital products brought to market in the period leading up to the year of observation. We

then consider a class-specific version of this definition, in which we define the top 20% of states for

digital device commercialization within each product class. Based on each of these definitions, we

create an indicator variable for whether or not a device originated from a cluster. The sample used in

regression analysis is limited to the years 2005 to 2016 (inclusive), to facilitate a three-year look-back

on regional product expertise. For example, a data point in the year 2005 uses data from the years

2002, 2003, and 2004. Using these two definitions, Appendix Figures III and IV show the share of

digital devices originating from clusters versus those not originating from clusters.

By using a three-year look-back to define clusters and to define firms’ digital device experience,

our analysis sample includes only the set of products that came to market in the years 2005-2016

(although data from the years 2002 to 2004 are used to define important firmmeasures in the early

years of the analysis sample). Further, we limit our analysis sample products commercialized in the

United States (including those commercialized by foreign firms with U.S. regulatory submission ad-

dresses), in order to tractably and consistently define geographic clusters. The final analysis sample

includes 22,291 observations at the product level (Table 1). Table 2 presents summary statistics of

all variables used in regression models.
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1.3.5 Firm Financial Data

Each device is linked by its commercializing entity to detailed firm financing data. We first link com-

mercializing entities to a panel of firm acquisitions created using data from EvaluateMedTech31 in

order to account for subsidiary ownership and introduce the notion of child (acquired) and par-

ent (acquirer) firms. These child and parent firms are then separately linked to data on each firm’s

public listing status and venture capital data. In order to link firm-level datasets, we use the soft-

ware programmatchIT, which performs fuzzy matching of company names (or addresses) between

(or within) datasets and grades the text match quality by score. We used this software because it

is highly flexible, fully parameterized, and deals effectively with foreign names. Firm names were

cleaned using a consistent set of rules to account for suffixes and abbreviations.32

Data on venture capital funding are assembled from EvaluateMedTech and Preqin, with prece-

31Amarket intelligence database that tracks public and private firms in the medical device industry.
32This method is similar in nature to work done for the NBER Patent Data Project by Bessen.
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dence given to the latter.33 We observe deal dates and funding amounts for each linked firm, which

we use in creating (a) lagged binary indicators for whether a firm was ever venture-funded or venture-

funded prior to product commercialization and (b) running totals for dollar values of venture fund-

ing.

Data on firm public listing were collected from EvaluateMedTech and Capital IQ, with prece-

dence given to the former, as it has broad coverage of the medical device industry.34 These data

allow us to create a binary indicator for whether the commercializing firm was publicly listed at the

time a given product came to market. Appendix Figures V and VI show the share of digital devices

that were commercialized by venture-capital–funded firms (in the sample of all privately-held firms)

and by public firms, respectively.

1.4 Estimation and Results

In the estimation exercises that follow, we test the hypotheses outlined earlier. First, we explore ev-

idence for Hypotheses 1 (firm experience) and 2 (geographic clusters) and the likelihood of a firm

engaging in digital device innovation. Next, we explore evidence for Hypotheses 3 and 4 by model-

ing the relationship between firm financial resources (public capital and VC funding, respectively)

and digital innovation. In combined models, we consider all factors simultaneously and explore

mechanisms.

33Preqin is widely considered the best publicly available dataset for venture funding and has been used in a
variety of recent studies (e.g. Harris et al. 93 and Korteweg &Nagel 101 ).

34We validate EvaluateMedTech data using Capital IQ, long considered a primary source for detailed firm
financials. See, for example,16;38;151.
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1.4.1 Overall Estimates

Trends in digital innovation in medical technology and the observed variation across medical spe-

cialty classes can be seen in Figures 2 to 4. Notably, there is significant heterogeneity across classes in

the volume (Figure 2) and share (Figure 4b) of digital innovation. There are also clear time trends,

with the number of new digital products growing over time. Among other things, the descriptive

findings point to the importance of using product class and year controls in empirical models. We

model the likelihood of digital innovation,D, as:

Dfpct = f(βX) + ε,

where the regressors include:

• Indicators of expertise (within-firm experience and geographic), each of which can be general

or class-specific.

• Indicators of firm financial resources, including whether a product emerged from a publicly

listed firm or a VC-funded firm.

• Controls for:

– Clearance year, in order to capture time trends in software inclusion over time.

– Medical specialty class, in order to account for persistent differences in the relative ease

or applicability of software in a given area of medicine and medical technology.

– The firm’s overall level of recent device innovation (that is, all product commercializa-

tion), such that any additional statistical relationships identified represent additional

effects seen for digital devices.
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– The firm’s location in a general device cluster (that is, all devices, not just digital prod-

ucts), such that any additional statistical relationships identified represent additional

effects seen for digital devices.

• An error term, ε.

In the regression models below, all specifications include controls for the focal firm’s volume of

recent commercialization activity, controls for the locations of general medical device clusters, and

year and class fixed effects, with standard errors clustered at the product-code level in acknowledge-

ment of potential differences across product type (for example, as a result of differences in innova-

tion behavior or regulatory burden). All tables report marginal effects from logit models, facilitating

a more direct interpretation of statistical relationships.35

Table 3 presents a full set of controls. As expected, there are statistically significant differences

across classes and over time. For example, all else equal, radiology devices are over 61 percentage

points more likely to be digital than orthopedic devices (the omitted category), while the time trend

indicates that, all else equal, the likelihood of a new device being digital increases by roughly 1.3 per-

centage points with each passing year. Column 1 uses year fixed effects, while Column 2 includes

a time trend. Notably, the coefficients on the class controls are very similar across the two samples.

The pseudo-R-squared values are trivially higher in the models using year fixed effects rather than

a time trend, so we use the full specification in Column 1 as controls in all subsequent regressions

(however, results are stable regardless of the convention chosen for including this set of control vari-

ables).

35A full set of corresponding linear probability models (excluded due to length and redundancy) lead to
the same conclusions as those presented below.
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1.4.2 Geographic andWithin-firm Know-how

Table 4 presents results predicting digital innovation at the product level, specifically evaluating

Hypotheses 1 and 2.
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Columns 1 to 3 consider the role of within-firm experience in predicting digital innovation. Col-

umn 1 shows a strong, statistically significant relationship between general digital device experi-

ence and the current likelihood of digital innovation. Relative to the sample mean, a one-standard-

deviation increase in general firm experience is associated with a 33% increase in the likelihood of

commercializing a digital product.36 Column 2 shows a class-specific relationship between firm

experience and the current likelihood of digital innovation. Relative to the sample mean, a one-

standard-deviation increase in class-specific firm experience is associated with a nearly 37% increase

in the likelihood of commercializing a digital product. Column 3 indicates some attenuation of the

effect sizes seen in Columns 1 and 2 for the obvious reason that class-specific experience is a subset

of general experience; however, the effects are individually and jointly highly significant and suggest

large magnitudes for the relationship between a firm’s recent experience in digital product commer-

cialization and its current likelihood of digital innovation.37

Columns 4 to 7 consider the role of geography in predicting digital innovation. We find that al-

though a state’s share of software engineers (Column 4) is not a statistically significant predictor of

digital innovation (although the coefficient is positive, as expected), other measures of geographic

expertise are associated with a much higher likelihood of digital innovation. Dummy variable in-

dicators for being in either a general digital device cluster (Column 5) or being in a class-specific

digital device cluster (Column 6) are both strongly associated–both individually and jointly–with

higher probabilities of digital innovation in new products (Column 7). In the combined model,

which suffers least from potential omitted-variable bias, we observe that being in a general digital de-

36Natural logarithms of the values presented in Table 2 were used for this and the following calculations.
37These findings are also consistent with the experience of a former medical device industry executive who

was interviewed about these findings ex post. He described a relatively siloed R&D process within the compa-
nies he was most familiar with, where knowledge was likely to spill over first within business units. Medical
device firms’ business units tend to be organized by medical specialty area (e.g., interventional cardiology)
and such specialties largely correspond to the classes used here. The class-specific nature of the spillovers
documented in Table 4 were described by the executive as “unsurprising.”
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vice cluster is associated with a 4.1 percentage point increase in the likelihood of digital innovation,

while being in a class-specific cluster increases that probability by a further 13.3 percentage points.38

Further, these magnitudes are large: devices in the sample were roughly 30% digital in 2016, the final

year of observation. This implies that being located in a general digital device cluster would (conser-

vatively) increase the baseline likelihood of digital innovation by 13.7% while being in a class-specific

cluster would increase it by over 44%.39

Column 8 of Table 4 presents an “all-in” model that combines both experience and geography.

The magnitudes of the coefficients are similar to those in Columns 3 and 7, with the exception of

general digital device clusters becoming an insignificant predictor of digital innovation. Column

8 therefore suggests that after controlling for factors related to firm experience, only location in a

class-specific cluster is additionally predictive of digital innovation. The similarity of the remaining

coefficients across specifications in Table 4 indicates that within-firm experience and class-specific

geographic expertise are mostly independent of one another and have largely orthogonal impacts in

these predictive models. The findings in Table 4 support Hypotheses 1a, 1b, and 2b and partially

support Hypothesis 2a.

1.4.3 Firm Financial Resources

Table 5 presents results from regressions designed to evaluate Hypotheses 3 and 4.

38In this model, the state’s share of software engineers is also predictive of digital innovation.
39Being in a digital device cluster is associated with a 4.1 percentage point increase in the likelihood of

digital innovation off a mean of 30%, for a 13.7% increase. A similar calculation was done to arrive at the 44%
figure for being in a class-specific cluster.
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We first consider whether public firms (Column 1) and VC-funded private firms (Column 2)

are more likely to engage in digital innovation. We find that VC funding is on its own a statisti-

cally significant predictor of digital innovation, with VC-funded firms roughly 3 percentage points

more likely to innovate digitally, all else equal. Column 3 presents results when using the natural

logarithm of the cumulative dollar value of VC funding up to the year of commercialization as a

predictor. These results indicate that a one-standard-deviation increase in a firm’s VC funding is

associated with a 4.1 percentage point higher likelihood of digital innovation. 40 Columns 4 and 5

present results from combined regression models that consider public status and VC funding (or

funding amounts) simultaneously, finding again that only venture-capital–funding indicators (both

as a binary status and as a cumulative funding total) are statistically significant predictors of new

digital commercialization. Column 6 presents the same model as Column 5, but uses the full set of

firm experience and product cluster controls used in Table 4; results are unchanged.

Based on Table 5 alone, only Hypothesis 4 is broadly supported by the data. However, we note

that if either measure of firm financing is correlated with omitted variables, such as geography, the

40This calculation uses the natural logarithms of values presented in Table 2.
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models in Table 5 will suffer from omitted-variable bias. Therefore, in the next set of regressions, we

explore fully specified models.

1.4.4 Further Regression Analysis andMechanisms

Table 6 presents a set of combined models in which Hypotheses 1 to 4 are evaluated simultaneously,

with further post-hoc extensions to consider drivers of novel versus follow-on innovation and to

consider potential differences between durable versus single-use devices.

Column 1 presents an all-in predictive model using the entire regression sample. Differences

between the results presented in Column 1 of Table 6 and those seen in Tables 4 and 5 therefore

indicate the size and direction of any omitted-variable bias that may have been unintentionally in-

troduced by assessing individual hypotheses separately. We find that the main difference in this all-in

analysis is that being a publicly listed firm is now associated with a higher likelihood of digital inno-

vation, thus providing conditional support for Hypothesis 3.

In these specifications, access to capital is associated with more digital innovation; however, these

effects are smaller than those associated with experience and geographic expertise. After control-

ling for other factors, public firms are more likely to commercialize digital products by roughly four

percentage points (Column 1), but these firms are, by definition, already incumbents. Among new

entrants, VC continues to be a positive (albeit less powerful) predictor of digital innovation. Back-

of-the envelope calculations suggest that a firm would need an exponential increase in its VC fund-

ing in order to compensate for the benefit afforded by simply being located in a specialized product

cluster. Alternatively, the results imply that a doubling of VC funding would be necessary in order

to offset just an 8.5% increase in a firm’s recent class-specific experience with other digital products–

the equivalent of roughly one additional digital device’s worth of recent commercialization experi-

ence.
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In additional post-hoc analysis presented here, we split the sample into novel digital devices (first-

of-their-kind) and follow-on digital devices (new versions of already-marketed digital products), as

in Columns 2 and 3. We see only one major difference between these two types of digital product

commercialization: the importance of class-specific experience in the overall analysis appears to be

driven by its role in predicting follow-on innovations. In other words, first-of-their-kind innovations

are less reliant on specialized within-firm experience than follow-on innovations, a result that is

intuitive and, in part, mechanical. The fact that product-class–specific experience predicts follow-

on innovation strongly points to likely within-firm spillovers from experience in this context and is

consistent with notions of information friction163 and asset complementarity164.

In a final post-hoc analysis, we observe that different types of access to capital matter in slightly

different ways for considering durable medical devices (those used multiple times and often based

in hospitals, such as ultrasound equipment) versus single-use medical devices (those used in only

one patient, such as pacemakers or insulin pumps). Columns 5 and 6 indicate that publicly listed

firms are over five percentage points more likely to engage in digital innovation of durable devices,

whereas VC-funded firms are more likely to pursue digital innovation in single-use devices.41 These

findings are consistent with stronger intertemporal spillovers from digital innovation among estab-

lished firms. Class-specific experience is also a stronger predictor of single-use versus durable digital

devices. This may indicate that class-specific learnings and spillovers are less important for durable

medical equipment, where general purpose digital components such as digital monitors or digital

data storage are more likely to be relevant.

41Column 4 presents results from the same statistical model as used in Column 1, but on a limited sam-
ple that excludes “clinical chemistry” devices, which, for technical reasons, could not be easily classified into
durable versus single-use products and were therefore excluded from the analysis in Columns 5 and 6.
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1.4.5 Robustness Tests and Alternative Specifications

We also undertake a series of exercises as robustness tests of our main findings. The primary analysis

presents results using geographic and within-firm expertise variables constructed using three-year

look-backs; this was chosen as a result of the natural 2+ year product development cycle for medi-

cal devices discussed above. However, we also estimate all models using versions of these measures

constructed based on two-year and five-year look-backs. For brevity, we do not report coefficients,

although all of our findings remain highly similar using those alternate constructions of experience.

Second, we consider our alternative form of document classification for the identification of

digital medical devices in order to verify the results generated using our supervised, keyword-based

classification method. As discussed earlier, we use the National Library of Medicine’s Medical Text

Indexer (MTI) algorithm to identify medical devices whose product statements or summaries are

flagged as discussing software. Tables 4, 5, and 6 of Appendix C present MTI-based analogues of

our keyword-based results in Tables 4, 5, and 6 in this paper. We find that all of our main results are

robust to this different classification method, with magnitudes only somewhat attenuated due to

the potentially more conservative nature of the MTI algorithm.

1.5 Discussion and Conclusions

In this study, we describe the digital transformation of the medical device industry and consider how

new opportunities for digital product development have been pursued by both new entrants and

incumbents. In this setting, we observe all new product commercialization over a 15-year period

and document several trends in the digitization of medical technology and their implications for the

industry.

We first characterize the growth of digital products over time and across medical specialties, find-

ing important differences. For example, by 2016, there were over twice as many digitized product
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types and more than three times as many new digital product approvals for cardiovascular devices

than for orthopedic devices. These descriptive findings are novel; to our knowledge, no other studies

have comprehensively characterized the digitization of products in this industry. Further, we de-

velop and validate a method for using supervised document classification to analyze the contents of

product descriptions. We use multiple methods to collect indicators of the use of software in prod-

uct descriptions of new medical devices and cross-validate our findings.

We then turn to unpacking the factors that predict which firms drive digital innovation in this

setting and find several pieces of evidence that point to significant incumbent advantages. We ob-

serve a strong relationship in which both geographic digital product clusters and prior digital prod-

uct commercialization experience–above and beyond existing general clusters and overall new prod-

uct commercialization experience–predict digital innovation. Class-specific firm experience is even

more strongly associated with digital innovation, pointing to the importance of product area experi-

ence when commercializing new digital devices.

The importance of firm experience is evocative of other studies of the medical device industry,

such as49, that emphasize the importance of regulatory knowledge, marketing knowledge, and un-

derstanding of market opportunities in the medical device industry. The results are also similar to

those seen in other settings, where the important role of “complementary know-how” in a chang-

ing industry has been well documented94. More broadly, our findings are consistent with the ev-

idence that acquired know-how has positive spillovers not only within firms, but also across firms

in a local labor market, as summarized by30. Interestingly, within-firm experience and class-specific

geographic expertise are mostly independent of one another and have largely orthogonal impacts in

these predictive models. This suggests that being advantageously located can compensate to some

extent for lack of within-firm know-how (and vice versa).

We also consider how access to capital may support digital innovation and we find positive–but

comparatively small–effects of financial resources on predicting digital innovation. After control-
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ling for other factors, public firms are more likely to commercialize digital products, as are those

with VC funding, however we find that in order to have a comparable likelihood of commercial-

izing a digital device, a firm would need orders of magnitude more VC funding in order to com-

pensate for the benefits of being in a specialized product cluster. Considering differences between

novel versus follow-on innovations, we find that first-of-their-kind digital products appear to be

less reliant on within-firm experience than are follow-on innovations, for which there appear to be

stronger spillovers frommedical-specialty-class–specific activities. Finally, we observe that, in this

setting, publicly listed firms are more likely to commercialize durable medical devices, which are

used over longer periods of time and are often hospital-based, relative to privately-held and/or VC-

funded firms, which are more likely to pursue single-use products. These findings support stronger

intertemporal spillovers from digital innovation among established firms.

Taken together, our results suggest that industry incumbents–by multiple definitions–are driving

digital innovation in the U.S. medical device industry. We observe within-firm and within-cluster

spillovers from past digital innovation into future digital innovation as well as a positive role of large,

publicly listed firms (which are, by definition, established players). Venture capital funding does

appear to play a small role in supporting digital innovation, but this role is dwarfed by that by other

factors. We conclude that in this industry setting, where the costs of entering new product markets

are high, digital innovation favors firms with an incumbent advantage.

An important caveat to this study is that we have characterized just one industry. Our setting is

advantageous because data on all new product commercialization can be observed and databases

are detailed and provide rich product detail. However, it is a setting in which entry barriers shape

the relatively high costs associated with entering new product markets. We therefore expect that

our findings are most likely to be relevant in other settings–whether regulated industries or not–

in which the cost of entering a new product market is non trivial and where supply-side costs are

therefore relevant predictors of new market entry behavior.
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These findings have important managerial and policy implications. For firms considering digital

market entry, our results suggest that in settings with significant entry costs, incumbent firms are

likely to play a more significant role in digital product development than new entrants. More specif-

ically, firms with digital product experience are at an advantage relative to firms with only general

product experience. However, the geographic concentration of digital new product development

in specific product areas points to advantages for both new entrants and incumbent firms located in

these clusters. As noted above, these effects appear to be largely orthogonal: being advantageously

located can to some extent compensate for a lack of digital product experience, and contrariwise.

Thus, new entrants may strategically benefit from co-locating with early digital leaders in their in-

dustry.

For policy-makers, our findings suggest the importance of prior experience when undertaking

digital product commercialization. To the extent that policy-makers want to support new entrants,

clear guidance on best practices for developing digital products may serve as a substitute for prior

experience. As regulators increasingly devote attention to clarifying expectations for digital devices–

for example, through the FDA’s new “digital health software pre-certification” program,42 which al-

lows a small group of technology leaders to commercialize new software products more efficiently–

it will be important to keep such considerations in mind.

42https://www.fda.gov/MedicalDevices/DigitalHealth/DigitalHealthPreCertProgram/default.htm
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Work-from-anywhere: The Productivity

Effects of Geographic Flexibility

2.1 Introduction

Human capital has been documented as a critical source of firm competitive ad-

vantage (Campbell et al. 46 ; Coff & Kryscynski 52 ; Ganco et al. 74 ; Starr et al. 155). Within this

literature, a growing body of work documents the role of nonpecuniary incentives in shaping moti-

vation of workers (Campbell et al. 46 ; Carnahan et al. 47 ; Kryscynski 105 ; Sauermann &Cohen 148).

However, from the perspective of the firm, it is also critical to study the productivity effects of pro-

visioning such incentives. An example of a nonpecuniary incentive that has attracted much debate

is remote work, in which an employee is allowed to work outside of the office, either part or full

time. Despite a few high-profile retreats from remote work by companies like Yahoo! and IBM (Si-

mons 152 ; Swisher 159), many organizations such as Amazon, Apple, American Express, and Glass-

door offer remote work programs to employees (Team 160). Demand for remote work and other

flexible work arrangements is increasing (Gallup10) and the value that employees place on remote

work arrangements is driven in large part by the costs of commuting, childcare, and eldercare faced

by a population increasingly comprised of dual-career families (CEA 4).

To date, research on remote work, including the recent Bloom, Liang, Roberts, & Ying (2015)

study (Bloom et al. 36), has focused largely on the effects of working from home (WFH), in which
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the employee may conceivably still be living within commuting distance of the office. In recent

years, however, another form of remote work—work-from-anywhere (WFA)—has begun to emerge.

Here, workers are no longer required to live in the same geographic location as the firm and have

greater flexibility to choose where to live. Organizations withWFA policies include Gitlab, Aka-

mai, Github, NASA, and DataStax, among others (Fatherly 67 ; Moore 126 ; NASA11; Reynolds 141).

However, to the best of our knowledge, there is no research on the productivity effects of WFA

policies. One of the comprehensive literature reviews on telecommuting states (emphasis added),

“Home was the primary location for telecommuting in nearly all the studies included in this meta-

analysis” (Gajendran &Harrison 72). In other words, the prior telecommuting and remote work lit-

erature focused on studying the effects of moving the worker from one workspace (within the firm’s

office), to an alternative workspace (within the home of the worker, typically in the same geographic

location as the firm office). In contrast, WFA gives the worker the additional choice of deciding to

move to a geography of their choice.

We argue that WFA is fundamentally different fromWFH in how it might affect worker produc-

tivity. Previous research onWFH has identified benefits to employee performance via mechanisms

such as reduced commute times and fewer sick days (Bloom et al. 36), which can be attributed to in-

creased temporal flexibility (Evans et al. 66). WFH also allows workers to control ambient workspace

elements such as clothing, layout, music, ventilation, etc. (Gajendran &Harrison 72). WFA goes

further by eliminating the traditional link between the geography of home and work location, re-

sulting in geographic flexibility, in which a worker can remain employed at a firm without needing

to live within commuting distance of the firm’s office location. In the case of WFA, employers cede

to workers control of the geography in which they choose to live, in addition to ceding the temporal

control afforded byWFH (Evans et al. 66). In this sense, WFA is perhaps better titled “Live Any-

where,” as the benefits that distinguish it fromWFH derive from employees’ ability to choose where

they live. Contingent on the firm not adjusting wages downwards for workers transitioning into a
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WFA program and the worker relocating to a lower cost-of-living location, real income might rise.

This addresses concerns about the rising cost of living for knowledge workers (Moretti 127). In addi-

tion, geographic flexibility might enable the knowledge worker to move to a location affording the

worker greater psychic benefits such as better climate or proximity to family (Greenwood 88).

These differences betweenWFA andWFH, along with the general increase in both worker de-

mand for and employer provision of WFA policies, lead us to our main research question: How

does the geographic flexibility provided byWFA affect individual worker productivity? Bloom et al.

(2015)’s36 research in a Chinese travel agency shows positive causal productivity effects of moving

a worker from an in-office setting to a WFH regime. We ask whether there are causal productivity

effects of moving a worker from aWFH regime to aWFA regime. We also attempt to shed light on

the mechanisms underlying the effects of WFA on knowledge worker productivity.

Our setting, the United States Patent and Trademark Office (USPTO), and in particular, the

job of patent examiner, is in many ways the ideal setting for our research questions. First, our set-

ting allows us to exploit a natural experiment related to the implementation of a WFA policy. The

bureaucratic processes governing the implementation of WFA at the USPTO allow us to mitigate

endogeneity concerns related to worker selection into theWFA policy. More specifically, the imple-

mentation of WFA was driven by negotiations between USPTOmanagers and the union of patent

examiners, leading to a monthly enrollment quota that created exogeneity in the timing of individ-

ual examiners’ transition toWFA. Second, the role of a patent examiner is relatively independent.

Third, examiners in our sample had spent at least two years in the USPTO office and additional

time in a traditional WFH program before taking on aWFA assignment. These conditions help

us in three ways. First, the independent nature of the task performed by patent examiners and the

mandate to spend two years in the office help us (at least partially) control for adverse effects of re-

mote work (e.g., effects of additional coordination costs and reduced learning effects from colocated

peers) that might lead to confounding concerns in a more general setting. Second, given that all

49



WFA employees in our study first transition from being an “in-office worker” to a “WFHworker”

before further transitioning into a “WFA worker”, we are able to isolate a productivity effect of

geographic flexibility awarded byWFA vis-à-vis WFH. Third, the exogenous timing of transition-

ing fromWFH toWFA enables us to estimate a causal comparison of productivity under the two

regimes. These conditions not only present a clean empirical setting, but also serve as important

boundary conditions to our findings and suggest a future research agenda.

To preview, we exploit this bureaucratic policy-induced variation and employ examiner fixed

effects, finding that examiners enjoy an increase in work output of 4.4 percent when in theWFA

program compared to the baseline of when the worker was in the WFH program, with no signifi-

cant increase in the amount of rework. It is important to point out that to the best of our knowl-

edge, with the exception of the Bloom et al. (2015)36 study, there are no other studies in the remote

work/teleworking literature that document causal productivity results. Furthermore, while Bloom

et al. (2015)36 documents causal results related toWFH, this study documents causal results re-

lated to transitioning fromWFH toWFA. Our secondary analysis compares WFH productivity to

in-office productivity, finding an increase in productivity similar to that identified in Bloom et al.

(2015)36. These two analyses give a sense of the stepwise progression that can take place (at least in

some organizational contexts) as employees move from in-office, to WFH, and ultimately toWFA

work.

We also exploit institutional details of our setting to isolate WFAmechanisms. First, our analysis

shows a correlational relationship between examiners relocating to below-median cost-of-living loca-

tions and greater productivity increases, suggesting that one of the motivating benefits of WFA for

workers could be an increase in real income. Second, we present correlational results showing that

workers with greater tenure are more likely to choose Florida, arguably a “retirement-friendly” des-

tination where they might derive additional psychic benefits. Crucially, we also show that the pro-

ductivity effects of WFA cannot be explained by alternative mechanisms such as reduced commute
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time and reduced monitoring. We also document illustrative evidence of how geographic flexibility

affects productivity using field interviews.

In supplementary analyses, we also examine work practices associated with enhanced produc-

tivity for the sample of WFA examiners. In particular, we exploit a bureaucratic mandate requiring

WFA employees to utilize informational technology tools for online coordination and find that

mandating this practice does result in an increase in productivity for WFA employees whose work

needs to be certified by a supervisor. Finally, we test whether measures related to examiner effort and

leniency change when an employee transitions toWFA:We find no evidence of increased leniency or

reduced effort as measured by examiner-added citations.

Our findings make an original contribution to the literature on remote work. While prior litera-

ture has documented robust productivity effects of working from home (Bloom et al. 36), our study

goes a step beyond in documenting the productivity effects of working from anywhere compared to

WFH, and demonstrates that the benefits of WFA derive from additional mechanisms not triggered

byWFH policies alone. Our results also contribute to the literature on the effects of nonpecuniary

incentives (Kryscynski 105 ; Sauermann &Cohen 148 ; Stern 157), demonstrating that the application

of a WFA policy can provide employees both direct economic value, in the form of reduced cost of

living, and intrinsic value, in the form of increased psychic benefits from geographic flexibility, while

also increasing firm productivity and profits.

2.2 Work-from-anywhere and geographic flexibility

In this paper, we examine the productivity effects of moving workers from a traditional WFH

regime to aWFA regime that grants workers geographic flexibility, i.e. the flexibility to choose a

geographic location in which to live, which we theorize as differing from both the temporal flexi-

bility and flexibility to design the workspace granted by aWFH policy. In this section, we situate
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WFAwithin the larger body of research on nonpecuniary incentives and identify mechanisms that

we argue distinguishWFA fromWFH.

Nonpecuniary incentives such as authority, independence, and company reputation have been

linked to employees’ decisions to stay or leave a firm (Agarwal & Ohyama 19 ; Cable & Turban 45 ;

Fehr et al. 69 ; Sauermann & Stephan 149). Kryscynski (2011)105 argues that incentives encompass

any aspects of the employment relationship valued by workers, regardless of whether those aspects

are directly or indirectly bestowed, created, or tied to individual membership, effort, or perfor-

mance. Certain non-pecuniary incentives provided by firms to workers—such as challenge and

autonomy (Sauermann &Cohen 148), information on quality of work (Kolstad 100), and tolerance

of early failure (Azoulay et al. 29 ; Ederer &Manso 64)—have been shown to influence worker pro-

ductivity in ways that are incremental to the effects of pecuniary incentives. Sauermann &Cohen

(2010)148 argue that pecuniary incentives are designed to appeal to employees’ extrinsic motiva-

tions, while non-pecuniary incentives appeal to employees’ intrinsic motivations by enabling them

to gain greater satisfaction from the work itself.

Remote work programs such as WFH andWFA are non-pecuniary incentives designed to of-

fer the worker flexibility. Evans et al. (2004)66 define flexibility in the employment relationship as

“ceding control to workers over the circumstances of their work by enabling them to vary those

circumstances to address personal and family needs and uncertainties”. WFH policies are an in-

creasingly commonmeans of granting temporal flexibility to employees, among other practices that

give employees more control over the hours in which they complete their work (Briscoe 42). The

benefits of granting temporal flexibility (such as flexible work hours) to employees have been well-

documented in the research on family-friendly work policies andWFH policies, with particular em-

phasis on improvements in work-life balance and reductions in work-family conflict. Bloom et al.,

(2015)36 found evidence that WFH led to a 13 percent performance increase (compared to work-

ing from office), of which 9 percent was due to fewer breaks and sick days, and 4 percent was due
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to a “quieter and more convenient” work environment (p.165). Work-life balance is generally seen

to improve when employees are able to work from home (Gajendran &Harrison 72), though some

negative impacts have been noted in the areas of work-life boundary maintenance (Kossek et al. 103)

and family-to-work conflict (Golden et al. 80). Improved work-life balance can increase the intrin-

sic motivation of employees (particularly employees whose identity and motives are tied to family),

helping maintain a balance between work and personal life (Akerlof & Kranton 21 ; Sauermann &

Cohen 148). Research on remote work has previously linked temporal flexibility to increased percep-

tions of job autonomy (Bélanger 34 ; Gajendran &Harrison 72), and autonomy has been related to

increased motivation on the job (Richard &Oldham 142 ; Ryan &Deci 145).

AWFA policy affords employees all of the benefits of a WFH policy, but additionally awards

the worker geographic flexibility. We argue that there are two significant additional advantages of

WFA to workers that are not covered by the provision of WFH. The first of these is the ability to

live in a location with a lower cost of living than the location of the employer, enabling the employee

to enjoy higher real income without an increase in nominal salary. Moretti (2013)moretti2013real

deflates nominal wages using a location-specific cost-of-living index and finds that the difference

between the wage of college graduates and high school graduates in the U.S. is lower in real terms

than in nominal terms; at least 22 percent of the documented increase in college premium is ac-

counted for by spatial differences in the cost of living. Given the opportunity to relocate anywhere

in the U.S., knowledge workers might choose to move to a lower cost-of-living region, thus allowing

the worker to enjoy greater real income, holding nominal income constant—especially when the

employer is based in an urban area with a relatively high cost of living. There is also a literature sum-

marized by Leana &Meuris (2015)107 that documents how income is related to worker satisfaction.

The second benefit is that if allowed geographic flexibility, employees may also choose to move to

a location that awards the worker “psychic benefits,” such as living in a location with a more attrac-

tive climate (Greenwood 88). There is also a nascent literature that looks at revealed preferences of

53



scientists, engineers, and entrepreneurs to choose work that is close to home (Dahl & Sorenson 57 ,

Dahl & Sorenson 58). Using panel data on the Danish population, Dahl & Sorenson (2010a)57 es-

timate a strong revealed preference of scientists and engineers to live close to family and friends. In

another paper, they note that “one commonly cited reason for why people do not move more often

is that they value being near family and friends, or at least the more frequent and more extended in-

teractions that propinquity allows” (Dahl & Sorenson, 2010b)58. A related concept in economics

is the construct of psychic costs of migration (Sjaastad 153 ; Schwartz 150). These studies suggest that

the provision of geographic flexibility should benefit employees in ways that are incremental to the

benefits of temporal flexibility. While temporal flexibility allows employees to spend more time with

immediate family, geographic flexibility enables employees to relocate to a location that has lower

cost of living and/or where the worker experiences psychic benefits. In addition to more attractive

weather and being closer to family and friends, a geographic location of choice could also offer other

psychic benefits to a worker, such as pursuit of a personal interest outside of work (e.g., skiing in

Colorado). As another example, early-career workers wishing to raise families can move to a family-

friendly locale. However, from the perspective of the firm, provisioning policies such as WFH and

WFA could lead to additional costs, including increased coordination costs. The organization of

workers into a firm has been viewed as a system to coordinate effort and communicate knowledge

across multiple intrafirm actors (Grant 86 ; Srikanth & Puranam 154 ; Thompson 165). Altering the

spatial distribution of employees changes the means of coordination, limiting the ability of workers

to rely on tacit coordination mechanisms (Srikanth & Puranam 154), and potentially leading to in-

creased coordination costs via difficulties in knowledge sharing (Cramton 56 ; Gibson &Gibbs 78).

Second, social and professional isolation is a well-documented challenge in the research on remote

workers (Cooper & Kurland 55 ; Golden et al. 79). Managers and organizations can help mitigate

these challenges through the provision of structures that facilitate social interaction among remote

employees, and ground rules for the use of information technology tools, to facilitate communica-
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tion (Makarius & Larson 116).

In summary, prior research on incentives has argued that employers should design incentives to

best attract an ideal employee; WFA is an example of such an incentive that offers workers both ge-

ographic and temporal flexibility. However, given the constraints of coordination and isolation,

an important question remains from the perspective of firms: whether the provisioning of such an

incentive creates value for the firm. The hedonic wage analysis literature predicts a “negative trade-

off between wages and ‘positive’ job attributes, attributes like status or flexibility in hours of work”

(Lazear & Shaw 106). Indeed, empirical research demonstrates at least some willingness to exchange

wages for non-monetary benefits (Stern 157). Mas & Pallais (2017)122 find that on average, workers

are willing to accept 8 percent lower wages in exchange for a remote work option, suggesting that

remote work policies are perceived as a valuable non-pecuniary benefit by employees. However, in

some cases (such as the USPTO), the firm does not decrease wages for employees choosing a WFA

regime. As stated earlier, this raises an interesting question for scholars of strategic human capital,

economists, and practitioners alike: holding wages equal, when workers are moved from aWFH

regime to aWFA regime, does the additional geographic flexibility provided lead to higher produc-

tivity?

2.3 Exploratory Fieldwork and Research Context

Because of the nascent stage of WFA research (Edmondson &McManus 65), we undertook some

exploratory qualitative, inductive work to better understand the research context, and to identify

potential mechanisms underlying the productivity effect of switching to a WFA regime. This ex-

ploratory work included 26 interviews with various USPTOmanagers, patent examiners, and the

Patent Office Professional Association (POPA; labor union) leaders. We also gathered online re-

views posted by current and former patent examiners on the review site Glassdoor.com.
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The USPTO is the federal government agency authorized to evaluate patent and trademark ap-

plications. It is headquartered in Alexandria, VA, and employs about 13,000 people, including

slightly more than 8,000 patent examiners. Patent examination comprises roughly 90 percent of

the USPTO’s work; in 2015, the USPTO received 629,647 patent applications and granted 325,979

patents across many industries and technologies (Choudhury et al. 51).

A patent application specifies a set of “claims” that defines the invention the applicant wishes

to protect. Applications are assigned to examiners based on the required area of technical expertise

(software, chemicals, mechanical, etc.). Examiners are organized into nine “technology centers,”

each made up of smaller “art units.” Within a given art unit, a supervisory patent examiner (SPE)

assigns each new patent application to a patent examiner (Lemley & Sampat 110). The examiner

is then responsible for reviewing the claims and moving the application through the examination

process, with minimal supervisory oversight. Examiners must determine whether patent claims in

applications meet the criteria of “novelty” and “nonobviousness” in order to be patentable. In order

to determine the validity of claims in an application, the patent examiner uses several proprietary

search tools to review the body of publicly available work (called “prior art,” it includes existing

patents, published patent applications, academic and trade journal articles, and other publications).

In order to determine “novelty,” the examiner must determine that the claims within the application

are not already wholly addressed by another single patent or published work.

Once the examiner has (to her knowledge) exhausted the existing prior art, she issues a “first office

action,” (FOA) which can be an “allowance,” accepting all claims as patentable or, more commonly,

a “nonfinal rejection,” which indicates that some or all claims are not patentable, and gives the basis

for rejection. Applicants can respond by withdrawing, narrowing, clarifying, or providing further

evidence to support the rejected claim. The examiner then reviews the response, accepts additional

claims as applicable, and issues another office action. This process continues until the examiner

believes that no further response will change the outcome of an application, at which point she
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issues a “final action.” Upon receiving a final action, the applicant has the choice of abandoning all

remaining rejected claims, appealing the action to a board of appeal, or restarting the application

process by paying an additional $1,200 fee to initiate a “request for continued examination” (RCE).

The RCE restarts the entire examination process, but is carried out by the same examiner and takes

into account all prior communication. There is no limit on the number of RCEs an applicant may

file, and approximately one-third of all applicants file at least one RCE, though few file more than

three.

Patent examiners are typically highly educated, holding undergraduate degrees in science and

engineering, and some holding advanced degrees in technical fields. New employees are hired at

a specific grade level (in line with hiring and employee ranking procedures at all federal agencies)

based on their experience and skills. At the USPTO, examiners are hired at the civil servant “grade

levels” GS-5, GS-7, GS-9, GS-11, GS-12, GS-13, GS-14, or GS-15, with pay and responsibilities in-

creasing with each grade. During labor negotiations, examiners are represented by the USPTO’s

union, POPA. Examiners advance up to GS-13 automatically, based largely on tenure. Upon reach-

ing GS-13, an examiner can enter into a signatory review program in which the examiner’s work

is evaluated. Upon passing this review, the examiner is designated a partial signatory (PS) and can

sign nonfinal office actions. After six months of PS status, examiners are eligible for a second-round

work review. Upon passing this review, the examiner attains full signatory (FS) status, indicating

that the examiner can sign all decisions (including FOAs and final actions).

The USPTOmeasures examiner productivity using the number of actions completed by an

examiner within a given period of time in relation to an expected productivity level, which is de-

termined based on examiner grade level (a proxy for experience) and examiner-specific case mix—

examiners in more nuanced or complex fields are granted more time to examine a given application.

Following the USPTO’s measures, we take the number of actions in a given period as the measure

of examiner output. We consider the number of RCEs in a given period to serve as a measure of
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rework. While we recognize that this is an imperfect measure (an inventor is well within rights to

doggedly pursue a patent claim via an unlimited number of RCEs, regardless of the accuracy and

quality of the examiner’s ruling), an RCEmechanically leads to rework, as the examiner must search

prior art again to write the next decision. Furthermore, our field interviews further support the as-

sumption that, on balance, a greater number of RCEs for a given examiner is likely to indicate a

greater need for rework.

The process of patent examination is largely an individual exercise, but with some supervisory

constraints. At lower grade levels, patent examiners are typically newer and less experienced in their

fields and, therefore, must obtain approval on their actions from either their assigned SPE or a se-

nior patent examiner. However, given the independent nature of the task, even for junior examiners,

there is relatively little coordination that needs to be managed between the examiner and his or her

supervisor (Choudhury et al. 51 ; Lemley & Sampat 110).

To further enrich our understanding of the examiners’ perspective on their jobs, we gathered

qualitative data from 258 online employee reviews at Glassdoor.com. The reviews contained a num-

ber of consistent themes. Temporal and geographic flexibility are both cited as highly valuable as-

pects of the examiner job that enable a desirable level of work-life balance.

Furthermore, there are frequent mentions of the independent nature of the job, giving further

confirmation that our research context is one of pooled interdependence (Thompson, 1967). The

job is also described as highly routine and repetitive, suggesting that routineness is a further scope

condition of our findings. There is extensive discussion of the emphasis placed on meeting perfor-

mance targets for actions. This theme further supports our use of the number of total actions as a

valid measure of employee productivity in this context.
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2.3.1 Remote work programs at the USPTO

Wewill focus on two prominent telework programs at the USPTO:WFA (i.e., the Telework En-

hancement Act Pilot Program or TEAPP program) andWFH (i.e., the Patents Hoteling Program

or PHP program). The USPTO introduced the voluntary PHP in January 2006 with an initial co-

hort of 500 patent examiners. PHP provides eligible employees with equipment and remote access

to systems and allows them toWFH up to four days per week. When they report to the office, they

reserve desk space through an online system. PHP is a classic WFH program that offers temporal

flexibility, but less geographic flexibility thanWFA. In addition, participants must have worked at

the USPTO for at least two years and demonstrated “satisfactory performance.” Eventually, the

PHP program grew to include two subprograms: (1) the “PHP within 50 miles” program (i.e.,

those examiners who lived within the 50-mile radius of the USPTO headquarters in Alexandria

and reported to the USPTO headquarters at least once per week); and (2) the “PHP greater than

50 miles” program (i.e., those examiners who lived at least 50 miles from headquarters but were still

required to report to the USPTO headquarters at least once a week).

In December 2010, President Barack Obama signed the Telework Enhancement Act, which set

standard rules and regulations for remote work at federal government agencies. In early 2011, the

USPTO began planning to pilot a WFA program (i.e., TEAPP), allowing employees to work any-

where in the contiguous U.S. (greater than 50 miles from the USPTO) and travel to headquarters

periodically at their own expense, thus awarding eligible patent examiners geographic flexibility. Im-

portantly for our purposes, the USPTO did not adjust wages for employees opting to participate

in either the WFH orWFA programs; this helps us test the net impact on firm productivity of the

WFA benefit in the absence of any offsetting reduction in wages.

Employees were eligible to participate inWFA if they: (1) were already enrolled in the “PHP > 50

miles” program; (2) had access to the Internet and USPTO systems; (3) agreed to change their “duty
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station” (i.e., home office) to a location greater than 50 miles fromUSTPO headquarters; and (4)

waived their rights to travel reimbursement for required trips back to headquarters. The USPTO

capped the number of trips that teleworking employees would need to make to headquarters at 12

days and/or five trips during a fiscal year. The USPTO also provides WFA workers with online com-

munication tools such as Microsoft Lync, WebEx webinar services, and Cisco Voice over Internet

Protocol (VoIP). On January 30, 2012, the USPTO officially launched theWFA program. On June

24, 2013, the USPTO (in negotiation with POPA) amended theWFA agreement to include the

following: “the above tools (instant messaging, document/desktop sharing, virtual meeting, video

communication, and a presence indicator) would be mandatory for...full-time teleworkers,” noting

that “the purpose of requiring the use of these tools was to encourage collaboration” (Chu, Bergrud,

Lavigna, McGrath, Reeder, 2015, p. 70). Employees who had been located in the Alexandria head-

quarters for at least two years were eligible for the “PHP > 50 miles” program.

2.4 Hypotheses: WFA and Productivity

We first examine the productivity effects of moving a worker from aWFH regime to aWFA regime.

As discussed earlier, in the former regime, the worker experiences temporal flexibility and control of

ambient workspace elements. In the latter regime, the worker additionally experiences geographic

flexibility, which might enable the worker to move to a lower cost-of-living location and raise real

income. Geographic flexibility might also help the worker relocate to a location which affords the

worker higher psychic benefits, such as being in a location with better climate (Greenwood 88 .

Given this, we hypothesize that remote work offering both geographic and temporal flexibility (i.e.,

WFA) has greater productivity benefits compared to remote work offering temporal flexibility alone

(i.e., WFH).

Generally, the provisioning of WFA could lead to increased coordination costs, isolation, and
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fewer opportunities to learn from colocated peers. However, we argue that in our setting neither of

these things are likely to affect rework, especially given that patent examiners were allowed to self-

select into a WFA program only when they had spent at least two years at the USPTO headquarters

and had achieved a baseline level of task-specific human capital. As prior research (Argote &Miron-

Spektor 23 ; Katila & Ahuja 97 ; Rosenkopf &McGrath 144) has shown, learning by doing is accrued

through the experience of performing a task repeatedly.

Given their preexisting tenure of at least two years at the USPTO headquarters and the routine

nature of patent examination, experienced patent examiners are likely to have already developed the

requisite absorptive capacity (Cohen 53) and task-specific human capital (Gibbons &Waldman 77)

to perform tasks such as a prior art search. Second, as described earlier, patent examiners carry out

their tasks (researching, searching for prior art, writing decisions, and communicating with appli-

cants) independently, and there are relatively few requirements to coordinate with peers. In this

pooled-interdependence setting, patent examiners reach out to peers mainly to seek advice on rel-

evant prior art. Experienced examiners could continue to leverage their intraorganizational social

ties even after migrating to a WFA program to mitigate isolation, and our field interviews yielded

examples of experiencedWFA examiners calling peers (based in Alexandria or elsewhere) and sharing

computer screens on the videoconferencing calling tool WebEx to ask: (1) “Do you have a search for

me?” (that is, have you searched this topic previously and, if so, could you share the results?); or (2)

“Can you take a look at my drawings and suggest prior art?” In summary, experienced examiners

have already developed firm- and task-specific human capital and have the technological means to

reach out and seek advice from prior colocated colleagues.

Given this, we anticipate that, on balance, even as the amount of output increases, the amount of

rework will not increase after such employees move to a WFA regime. We hypothesize: Hypothesis

1a. For workers in a pooled interdependence (low coordination) setting with a baseline level of task-

specific human capital, moving the worker from aWFH to aWFA regime leads to an increase in
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output.

Hypothesis 1b For workers in a pooled interdependence (low coordination) setting with a base-

line level of task-specific human capital, moving the worker from aWFH to aWFA regime does not

lead to an increase in rework. As our previous hypotheses focus on the progression fromWFH to

WFA, it is important that we also document the relationship between these workers’ WFH produc-

tivity and their previous in-office productivity in order to eliminate the possibility that productivity

had previously declined when the worker was moved from an “in-office” regime toWFH.We ex-

pect that the benefits identified in Bloom et al. (2015)36 would be mirrored in our context with

an implementation of WFA resulting in increased work output compared to when the worker was

in-office:

Hypothesis 2 For workers in a pooled interdependence (low coordination) setting with a baseline

level of task-specific human capital, WFH is associated with greater productivity than working in

the office.

2.5 Data

This paper draws on multiple sources of data. We begin with a unique administrative dataset ob-

tained from the USPTO for the years 2007–2015 that reports, annually, all patent examiners on the

USPTO payroll, their general schedule (GS) pay level, and a benchmark measure of productivity

used for promotion decisions (as a function of the “United States Patent Classification” or USPC

class of their examined patents). We link this data to a separate administrative dataset, again ob-

tained from the USPTO, that identifies which examiners are enrolled in each remote work program,

their current home office location, and when they began remote work. From here, we link the com-

bined examiner datasets to publicly available USPTO data on applications and transactions (such as

RCEs) to quantify examiner-level output and rework.
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2.5.1 Examiner Personnel Data

The first dataset used for this study is an annual record of all patent examiners active at the USPTO

from 2007–2015, with 9,210 unique examiners over these eight years, inclusive. This data also pro-

vides the GS of every USPTO examiner, data that is otherwise not public. As described earlier, the

GS of an examiner is of particular importance: it serves as a natural hierarchy for promotions, it is

mechanically correlated with tenure and experience, and higher-grade examiners have increasing

levels of autonomy in their workflows. Hence, controlling for GS is important to account for unob-

servable task-specific human capital of examiners (Gibbons Waldman, 2004).

We also utilize a second unique, USPTO-provided, personnel dataset specifically focused on

remote workers. This dataset includes examiner identifiers, as well as the remote work program(s) in

which the examiner enrolled: WFA and PHP (<50 miles and >50 miles combined). Figure 1 shows

the growth in remote working across the three programs from 2007–2015; WFA appears to gain an

increasing share of the teleworking population as examiners substitute away from PHP programs.

The examiner-specific start date for each specific telework program is also available to us, allowing

us to track an examiner across programs. This data also identifies the city and state of a teleworking

examiner (as of August 2016), which is important for spatial analyses (to be described later).
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2.5.2 USPTO Patent Data

Data on patents and patent application-level transactions were collected from a combination of

two publicly available datasets: USPTO’s Public Patent Application Information Retrieval (PAIR)

dataset and PatentsView. Application data collected includes the name of the examiner assigned to

a patent, the examiner’s art unit, and the USPC classification of the application. For each patent,

we then collected data on all transactions executed by an examiner, focusing on two specific metrics

of productivity: total actions (measure of output) and RCEs.5 Total actions is a measure of aggre-

gate output delivered by an examiner, and aligns with the PTO’s internal performance measure of

expectancies. The second measure, RCEs, are a measure of rework.
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2.5.3 Spatial Data

City and state data on the most recent location of teleworking patent examiners was obtained

through the USPTO administrative dataset on teleworkers. This data was then geocoded using

commercially available GIS tools, and measures of the spatial concentration of WFA examiners were

calculated.

2.5.4 Identification Strategy: Natural Experiment

To provide robust econometric estimates related to how the implementation of WFA affected

output and rework, we exploit a natural experiment within the USPTO. As noted earlier, the im-

plementation of WFA was driven by negotiations between the USPTOmanagement and POPA.

Specifically, these negotiations resulted in a monthly quota for eligible examiners transitioning to

WFA in the first 24 months of program implementation. Our field interviews indicated that the

monthly quotas were oversubscribed, and eligible examiners often had to wait for several months to

1 transition into theWFA program. While it is likely that observable and unobservable factors deter-

mine whether or not examiners transition intoWFA, we circumvent these concerns by focusing on

the sample of examiners who selected to transition into theWFA program over the first 24 months

1We assume here that shirking—another possible negative outcome associated with increased
autonomy—is reflected in the productivity measure, given that we are using an objective measure of pro-
ductivity. Concerns about shirking were addressed at the USPTO in a contemporaneous time frame, with
claims of “examiner fraud” and “attendance abuse” made by TheWashington Post (Rein 139 ), based on criti-
cal findings from the U.S. Department of Commerce’s Office of the Inspector General. However, all of these
findings related to either (1) overreporting of hours worked or (2) shifts in the timing of work completed,
such as backloading at the end of a calendar quarter, which raised concerns about the accuracy and quality
of work completed. USPTOOffice Director Michelle K. Lee told lawmakers that she and her team “do not
tolerate any kind of attendance abuse” (Rein 139 ). Our measure of productivity is only output dependent, so
overreporting of time worked would not affect this measure. Second, our measure of rework—while not a
perfect proxy for quality—should capture any substantial degradation in work quality due to backloading or
other timing shifts. In robustness checks (available upon request), we also employ month fixed effects to test
our causal results, and results remain robust.
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and exploit variation in when (i.e., which month) the examiner could transition intoWFA, variation

that is exogenous given the monthly quotas determined by the USPTOmanagement and POPA.

Below we provide further details of how the implementation of the WFA program lends itself to a

natural experiment.

As a result of the negotiations conducted between the USPTOmanagement and POPA, the

USPTO planned to enroll participants in the WFA program in phases. Additionally, and impor-

tantly for the purpose of identification, there was an exogenous quota imposed for eligible exam-

iners enrolling in the WFA program. The number of slots was decided by a committee comprising

management and union members. If a slot was not available, the prospective enrollee was placed on

a waiting list. Our field interviews indicated that all slots allocated for the first several months were

exhausted, implying that even if an examiner was eligible for WFA, he or she would have had to wait

an unknown length of time before transitioning toWFA. As such, the timing of an eligible exam-

iner’s transition toWFAwas relatively exogenous. Our field interviews indicated that prior tenure,

experience, or performance were not considered in allocating slots to eligible examiners.

To validate our natural experiment and the insights generated by the field interviews, we test

whether the variation inWFA transition time was truly exogenous by regressing the time it took an

eligible examiner to transition toWFA on observable measures of past performance. As our main

results analyze productivity (and include a measure of the expected work as a control), we regress

“months toWFA” on measures of total examiner-level output, rework, and expectancy (a measure

of expected output in the previous year). Results from these analyses are reported later in the pa-

per. We find no evidence of selection on prior performance (or other observables), validating our

principal identification strategy.
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2.6 Estimation and Results

We focus on utilizing the natural experiment and limit our sample to examiners who enrolled in

WFA in either 2012 or 2013. Within this sample, we exploit bureaucratic process-induced varia-

tion in enrollment dates to identify the effect of receivingWFA earlier than another examiner. As

both examiners in this exercise must be eligible and have selected into the program, we avoid the

traditional identification issues that arise from self-selection—all examiners in our sample can be

thought of as treated, varying only in the amount of time they have had to wait to be exposed to the

treatment (WFA). Moving forward, we refer to this sample as the “WFA sample.” TheWFA sample

comprises 831 examiners (out of the 9,210 examiners). Table 1 reports summary statistics for the

full sample.
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2.6.1 Causal Estimation: WFA vsWFH

Hypotheses 1a and 1b state that for workers in a pooled-interdependence (low-coordination) set-

ting with a baseline level of task-specific human capital, moving the worker from aWFH to aWFA

regime leads to an increase in output but does not an increase in rework. We utilize the natural ex-

periment described above, employing the following examiner month-level specification to test these

hypotheses:

Outputit = αi + βit ∗WFA+ ξit+ γt + λi + εi

where WFA is a binary indicator that turns on (and stays on) when an examiner enrolls in WFA

during the 2012–2013 timeframe. As described earlier, we use two different measures of individual-

level output: for individual output using total actions and for individual rework using the number

of RCEs. ξit is a vector of controls that includes examiner month-specific grade level and examiner

month-specific expectancy, while γt is a full set of time (month) fixed effects and λi is an optional set

of examiner fixed effects. Standard errors are clustered at the art unit level to account for concerns

regarding intra-art unit correlation of error terms, particularly as they relate to unobserved routines.

Columns 1–4 of Table 2 provide the focal set of results evaluating the effect of WFA on productiv-

ity.
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Columns 1 and 2 report results relevant to output. Specifically, Column 1 identifies the effect of

WFA on the total number of actions completed by each examiner in a given month, with Column

2 including a set of examiner fixed effects to identify the effect not just within the sample of exam-

iners transitioning toWFA in 2012 and 2013, but also within each examiner. There is a positive,

highly significant effect of WFA on overall output of 0.574 actions (p-value = .000), roughly corre-

sponding to a 4.42 percent increase in the total number of actions on a mean of 12.97 per month.

Columns 3 and 4 present results indicating that WFA does not increase the amount of RCEs an ex-

aminer engages in (with or without examiner fixed effects, p-values = .293 and .973, respectively). In

summary, Hypotheses 1a and 1b are both supported. It is important to note that since workers had

to first transition into theWFH program prior to transitioning to theWFA program, the baseline

level of productivity here is productivity of the examiner while onWFH.

2.6.2 Baseline comparison ofWFH productivity and in-office productivity

Hypothesis 2 states that for workers in a pooled-interdependence (low-coordination) setting with a

baseline level of task-specific human capital, WFH is associated with greater productivity than work-
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ing in the office. To recap, the USPTO experimented with a series of remote work programs. There

was a WFA program (i.e., TEAPP) that allowed eligible examiners to live and work at any location

in the U.S., and the USPTO implemented remote work programs such as PHP that offered examin-

ers less autonomy on location choice and were akin toWFH programs. Given that the bureaucratic

assignment to remote work is valid only for WFA, we can no longer rely on the natural experiment

in this setting, and we estimate the specification below within the full sample of existing examiners

across all months (576,267 examiner-months from 2007–2015):

Outputit = αi + β1it ∗WFA+ β2it ∗ PHP<50 + β3it ∗ PHP>50 + ξit + γt + λi + εi

where β1it ∗ WFA, β2it ∗ PHP<50, and β3it ∗ PHP>50 are indicator variables for when an exam-

iner enrolled in either of the three programs, indicators that remain on until the examiner switches

programs. As before, ξit is a vector of controls that includes examiner month-specific grade level and

examiner month-specific expectancy, while γt is a full set of time (year) fixed effects and λi is a set of

examiner fixed effects, which are of particular importance in this exercise as they allow us to track

examiners as they switch from program to program. As before, standard errors are clustered at the

art unit level. Table 3 provides results from this estimation exercise:
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Column 2 reports the most restrictive specification with examiner fixed effects. As this model

includes examiner fixed effects, we note that the coefficients are semi-additive: WFA captures the

effect of remote work above and beyond PHP (>50 miles), as examiners must enroll in the latter be-

fore being eligible for the former. Hence, in this model, all telework programs incrementally increase

productivity compared to working in the office, validating Hypothesis 2. The traditional WFH pro-

gram, titled PHP (>50 miles), having the lowest productivity increase, while the other traditional

WFH program, i.e. PHP (<50 miles), has roughly twice the impact as PHP(>50 miles) (p- value

= .000 and .000 respectively). The impact of WFA, when interpreted additively with PHP (>50

miles), is far beyond theWFH programs (p-value = .000). It is important to note that we interpret

these results in the context of one another rather than as causal estimates; the full sample regressions

illuminate the relative differences between the remote work programs rather than the absolute im-

provements themselves. 23
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2.6.3 Evidence onMechanisms: Fingerprint of Geographic Flexibility

We now turn to establishing a fingerprint for mechanisms through which geographic flexibility can

affect productivity. In doing so, we work within the constraints of available data and acknowledge

that unobservable mechanisms might be in play. Our field interviews indicated that geographic flex-

ibility benefitted individuals in a myriad of ways. To quote one examiner, “I’m a military spouse,

which means I live in a world with frequent moves and personal upheavals that prevent many

spouses from pursuing lasting careers, especially careers of their choice. WFA has been the most

meaningful telework program that I have encountered in the military social sphere, as it allows me

to follow my husband to any state in the U.S. at a moment’s notice, and... pursue my own aspira-

tions to contribute both to my home and to society. ” Another examiner explained the benefit of

geographic flexibility to his family as follows: “I have a daughter with a medical condition that, be-

cause of WFA, my family and I were able to search the northeast looking for the ideal location that

would provide the services and supports for my daughter that we felt were best for her. As a result,

we moved to Pennsylvania a little over two years ago. I cannot fathom what it must be like to uproot

one’s family AND have to find a new job in the process. I feel so lucky that I was able to make the

move... to get the care my daughter needs and be able to keep the job I love doing.” Our field inter-

views also indicated that moving to lower cost-of-living locations was a common benefit awarded

by geographic flexibility. To quote another examiner, “I selected the Patent Office as D.C. seemed

an interesting place to live with the understanding that I would make a lateral move to a private law

firm in the D.C. area to improve my professional experience and to enhance my chances of leaving

the D.C. area when I was ready to start a family. After three years, the Office began offering full-

time telework schedules and I saw some of my colleagues depart D.C. to move to areas that were

considerably more affordable....I have been a TEAPP worker for the last 4 years living in Alabama

with my wife and two children.”
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We next turn to empirical analysis and first examine whether WFA examiners relocate to counties

that lower their cost of living and, in effect, increase their real income. Utilizing previously described

county-level cost-of-living data, we estimate the effects of telework on an examiner’s current home

cost-of-living index relative to Alexandria, VA, within both the full sample and the sample of exam-

iners transitioning toWFA in 2012-2013. We estimate:

Cost_of_Living_Reductionit = αi + β1it ∗WFA+ β2it ∗ PHP<50 + β3it ∗ PHP>50 + ξit + γt + εi

where Cost_of_Living_Reductionit is an examiner-specific measure of the reduction in the county

cost-of-living index relative to Alexandria, VA, while WFA, PHP<50, and PHP>50 are indica-

tor variables defined as before. This model similarly includes controls for year, grade level, and

expectancy, but does not include examiner fixed effects, as those would absorb all time-invariant,

examiner-specific variation in cost-of-living reductions. Table 4, Column 1 reports results from re-

gressions utilizing the full sample of examiners2. We find evidence of substantial cost reductions

associated with PHP (>50 miles) andWFA, on the order of two standard deviations in the dis-

tribution of cost reductions across all teleworking examiners (p-value = .000). As expected, PHP

(<50 miles) does not show evidence of cost reductions, as those examiners must live in and around

Alexandria, VA. The results remain robust in the WFA sample (Column 2, p-value = .000).

2As reported in Table 1, this sample has 576,274 examiner-month-level observations. We dropped a few
observations, corresponding to examiners without worker location data
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Next, we turn to studying whether cost-of-living benefits are correlated with output, given that

wages and wage dispersion are arguably related to satisfaction and productivity of knowledge work-

ers (Leana &Meuris 107 ; Pfeffer & Langton 135). A simple test of this potential mechanism is to

compare the productivity of examiners that relocate to below-median cost-of-living locations with

those that relocate to above-median cost-of-living locations, within the causal sample of WFA em-

ployees. More specifically, we estimate

Outputit = αi + β1it ∗WFA+ β2it ∗WFA ∗ below_median_COLi + ξit + γt + λi + εi

where below_median_COLi is an examiner-specific identifier that equals 1 when the examiner

moves to a below-median cost-of-living location. This model includes controls for year, grade level,

and examiner fixed effects. Table 5, Column 1 shows that examiners relocating to below-median
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cost-of- living locations may experience increased output gains (p < .006)3.

We next studyWFAworkers’ geographic locational choices and their potential effects on pro-

ductivity. As part of our examination of the data onWFA examiner location (Figure 2), we noticed

clusters of examiners in a number of major metropolitan areas, including New York, Chicago, San

Francisco, and Los Angeles, among others. These clusters can be expected given the concentration

of population in these metropolitan areas. However, it also became clear there was a cluster of exam-

iners in Florida, which cannot be explained by population alone.

We posited that a common reason for relocation to the coastal areas of Florida to seek alternate liv-

ing arrangements when workers are close to retirement. We asked whether it was possible that more

senior patent examiners were relocating to Florida at a higher-than-average rate, possibly as a first

step toward retirement. Table 6, Column 2 indicates a positive and statistically significant corre-

3Heteroskedasticity-robust standard errors were used for this estimation exercise as there is little to no
intra-art-unit variation across different geographies
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lation between tenure at the USPTO and the probability of choosing to live in Florida (p-value =

.001).

We now look to see whether examiners relocating to a preferred location (e.g. Florida) perform

equally with their peers. Results from this estimation exercise can be found in Table 5, Column
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2, where we see that examiners relocating to Florida do not experience any statistically significant

reductions (or gains) in productivity relative to their WFA peers (p-value = .361).

We also seek to identify whether the productivity improvements associated with aWFA regime

are driven simply by mechanisms similar to those inWFH regimes, such as reductions in commute

time and/or reduced monitoring. In order to estimate this, we compare examiners residing 50–

75 miles from Alexandria, VA while working on theWFA regime to examiners residing over 75

miles away while working on theWFA regime. Examiners living 50–75 miles away from Alexan-

dria, VA likely did not relocate as a result of moving from aWFH to aWFA regime and have likely

self- selected into the geographic location of choice while being a WFH examiner. However, these

examiners (i.e. living 50–75 miles away from Alexandria, VA) stopped commuting to the USPTO

headquarters once they transitioned from aWFH regime to aWFA regime. To recap, on theWFH

regime (i.e. PHP program), examiners were required to travel back to Alexandria, VA one day a

week, incurring commute time and monitoring costs.

In contrast, examiners living over 75 miles away from Alexandria, VA while working on theWFA

program have likely relocated beyond a reasonable commuting distance as they moved from the

WFH toWFA regimes. These examiners too (like their peers onWFA in the 50–75 mile radius)

experience a reduction in their weekly commute and monitoring. However, it is only when they

move fromWFH toWFA that they presumably experience the benefits of geographic flexibility for

the first time. In other words, when examiners in the 50–75 mile radius move fromWFH toWFA,

they experience lower commute costs and less monitoring, given that they are presumably already in

their geographic location of choice. In contrast, workers in the over 75 mile zone experience lower

commute costs, less monitoring, and additionally experience the benefits of geographic flexibility for

the first time when they move fromWFH toWFA. Table 10 reports results for examiners residing

50–75 miles away from Alexandria, VA in Column 1, and examiners residing over 75 miles away in

Column 2. We find that the WFA effect is driven entirely by examiners residing over 75 miles away,
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pointing to productivity being driven by geographic flexibility, above and beyond the flexibility to

reduce a commute (p-value = .000). We note that results are robust to other cutoffs, most notably

100 miles (rather than 75 miles).

While these results begin to paint a picture of geographic locational choices under a WFA regime,

it is important to note that they do not capture the full range of possible mechanisms at play. For

example, a worker may choose to relocate to a given location due to proximity to family (elderly

parents, for example) or to return to a location where they have more friends and family (Dahl &

Sorenson 57 , dahl2010social). We expect there are a number of mechanisms not captured in the

current analysis that could be highlighted by future research.

2.6.4 Work Practices that Enhance Productivity ofWFAWorkers

We conducted supplementary analyses to study productivity effects of work practices within the

USPTO that might be correlated with work output of examiners in the WFA program. While an

exhaustive examination of all relevant work practices is beyond the scope of this paper, our analysis

is motivated by an observable work practice change where we could measure productivity effects.

A USPTO directive in June 2013 mandated all teleworking patent examiners to utilize USPTO IT

tools (e.g., logging into the USPTO virtual private network (VPN) and using USPTOmessaging

services). This provides us with the ability to measure the impact of IT tool use on productivity for

a sample of WFA examiners. We postulate that the use of IT tools will enhance the productivity of

WFA workers, especially WFA workers with a greater need for coordination (assistant examiners

without signatory authority who had to coordinate with their supervisors). Research on remote

work has indicated that the use of IT tools that foster situational awareness of the task helps in co-

ordinating geographically dispersed workers (Malhotra &Majchrzak 118). IT tools that are directed

toward synchronous communication could arguably aid situational awareness and productivity of

remote workers. Table 7 provides results from this estimation exercise. Column 1 reports results for
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total actions, where the IT mandate improved output by 3 percent (off a mean of 12.9) exclusively

for those examiners without signatory authority, that is, examiners who have to coordinate with

their supervisors to get their work checked (p-value = .000). Column 2 reports results for RCEs,

where we find no significant impact of the IT policy (p-value = .371).

2.6.5 Robustness Checks

To test for concerns around time trends and reversion of performance to the mean post treatment

(due to reciprocity or other unobserved mechanisms), we plot month-specific fixed effect coeffi-

cients in Figure 3 and find no evidence of post-treatment reversion to the mean. This analysis was

repeated for a longer time window, and results remain robust. Given the point estimate of the

month prior to treatment revealed in Figure 3, we additionally drop the two months prior to treat-

ment from our regression analysis, and all results remain robust. Further, in order to validate our

natural experiment, we look for evidence of selection in the time-to-WFA variation for those em-
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ployees enrolling inWFA in 2012 or 2013. We estimate a model to determine whether previous

performance, expected performance (expectancy), or rework is correlated with how soon an exam-

iner receives WFA. In order to do so, we limit our sample to those examiners who obtainedWFA in

2012 or 2013 and estimate variations on the following model:

Monthsi = αi + β1it ∗ Xit,<2012 + ξit + εi

WhereMonthsi is an examiner-specific measure of the number of months (0–23) it took an eli-

gible examiner to actually get in the program. X refers to total actions, total RCEs, or expectancy;

hence, Xit,<2012 refers to an examiner’s annual prior performance, rework, or expected performance.

ξit is a set of controls for an examiner’s GS at the month level. Table 8 presents results showing

no evidence of previous performance, expected performance, or rework being correlated with the

amount of time it took an examiner to transition toWFA, validating our identification strategy (all

p- values > .10). We also conduct a placebo treatment test, explained and reported in Figure 4.
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A potential concern is that examiners, upon transitioning toWFA, may scale back or distort effort

relative to the quality of their work prior to being a WFA worker. For instance, while examiners may

increase overall output, it is ex ante unclear whether leniency and/or effort change. Table 9 reports

results from this exercise. Considering Columns 1 and 2, we find that the increase in first office ac-

tions is matched by a proportional increase in rejections (p-values = .038 and .032, respectively).

We interpret this as evidence that examiners are no more or less lenient upon transitioning toWFA.

Column 3 reports results for examiner-added citations—we are unable to distinguish from the null

here (p-value = .401); there appears to be no reduction in examiner-added citations for those exam-

iners transitioning toWFA.
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11. WELFARE ESTIMATES Using our estimates of a 4.4 percent increase in examiner-level pro-

duction with no increase in the amount of RCEs, we make back-of-the-envelope calculations that

suggest the following welfare gains: an increase in annual fees collected to the tune of $132 million,

a one-time reduction of $0.7 million in hiring costs and a continuing annual cost savings of $2.75

million. In 2013, due in part to the agency’s remote work options, the USPTOwas ranked highest

on the “Best Places to Work in the Federal Government” survey (USPTO5). Environmental ben-

efits also accrue from the program; the agency estimated that in 2015, its remote workers avoided

driving 84 million miles, thereby reducing emissions by more than 44,000 tons. Finally, in 2015, the

USPTO estimated that it saved $38.2 million in real estate avoidance costs due to remote workers

freeing up office space at headquarters (PTO7).

Finally, one particular feature specific to our setting is that the USPTO also helps set the rate of

U.S. innovation, standing as one last bottleneck in the traditional innovation process. A 4.4 percent

increase in patent grants could lead to innovation spillovers that amount to a total of $1.3 billion.

We arrive at this estimate through back-of-the-envelope calculations. Choudhury et al. (2017)51

indicate that the average number of patent grants from 2009–2012 was 211,973 patents per year;
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this figure, taken into consideration with our estimated 4.4 percent increase in production, would

lead to roughly 9,326 more patents being granted every year. Prior literature also indicates that the

mean value for patents granted to U.S. patentees was $78,168 in 1992 dollars (Bessen 35), with a me-

dian value of a patent to a U.S. assignee of $7,175 in 1992 dollars. We convert the mean and median

values of a patent to a U.S. assignee to 2018 dollars and estimate that a 4.4 percent increase in pro-

duction of patents at the USPTO creates $120 million in value for the U.S. economy (considering

the median value of a patent in 2018 dollars) and $1.3 billion in value for the U.S. economy (consid-

ering the mean value of a patent in 2018 dollars).

2.7 Discussion

We study the relationship between geographic flexibility granted through aWFA program and

worker productivity in a highly skilled work context. Our choice of setting presents us with two

important empirical opportunities. First, the presence of a natural experiment originating from a

bureaucratic policy allows us to mitigate the impact of endogeneity of selection into aWFA regime.

Second, the dual mandate—to first spend two years in the office with other coworkers and then

spend time in a traditional WFH program prior to becoming aWFAworker—allows us to control

for the negative effects of remote work and to compare the productivity effects of WFH andWFA.

We find robust productivity effects, with a 4.4 percent increase in work output under WFA in

comparison toWFH, and no effect on additional rework. In examining the increase to productivity

under WFA, we conduct supplementary analyses that rule out WFH-related mechanisms such as

lower commute time and reduced monitoring. These findings are important, as they suggest that

WFA (and geographic flexibility) is a novel construct with unique benefits, not simply an extreme

case of WFH.We provide evidence on mechanisms that could be driving the productivity increase

under WFA.WFA examiners relocate to lower cost-of-living locations and we report a correlation
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between relocating to a below-median cost-of-living location and productivity. We also study the

choice of geographic location made byWFAworkers and find a correlation between tenure at the

USPTO and the likelihood of moving to a “retirement-friendly” location such as Florida. We also

study conditions under whichWFAworker productivity is further enhanced. Mandating IT usage

appears to relax coordination constraints (and, thus, increase productivity) for employees requir-

ing supervisory approval of work. A back-of-the-envelope calculation suggests that the increase in

patents granted due to higher examiner productivity could result in $1.3 billion of added value to

the U.S. economy in the best-case scenario. We also validate the Bloom et al. (2015)36 result that

WFH is related to higher productivity compared to working in office.

This paper makes contributions to research in the areas of remote work and non-pecuniary in-

centives. Our context of work-from-anywhere related to the construct of geographic flexibility dis-

tinguishes our study from prior research on remote work and working from home. WFH offers

the worker temporal flexibility and flexibility in choosing working conditions (Gajendran &Har-

rison 72). In contrast, WFA affords all of the benefits of WFH, plus the flexibility to relocate to a

geographic location different from the location of the firm. As a result, while the WFH literature,

notably Bloom et al. (2015)36, identifies productivity-enhancing mechanisms such as reduced com-

mute time, fewer work breaks, sick days, and the benefits of a quieter work environment, our focus

on geographic flexibility points to additional mechanisms unique toWFA, such as the benefits of

moving to a lower cost-of-living location, and increased psychic benefits to employees. As such,

we argue that WFA needs to be studied as a separate form of remote work, with some underlying

mechanisms similar to those of WFH, but with its own unique set of effects on workers and organi-

zations. We also present a nuanced result related to the degree of geographic flexibility. Specifically,

we find that a “middling” amount of geographic flexibility (i.e., PHP>50) is worse than very little

flexibility (i.e., PHP<50) or a very strong case of geographic flexibility (i.e., WFA), evinced by the

relative comparison of work output reported in Table 4. This finding has practical implications for

86



managers, suggesting that if a company hopes to enjoy the motivational benefits of increased per-

ceived autonomy through the provision of a WFA regime, it must “cut the umbilical cord,” giving

employees true autonomy, rather than a piecemeal granting of autonomy.

We also contribute to the literature on incentives (Gambardella et al. 73 ; Kryscynski 105 ; Sauer-

mann &Cohen 148 ; Stern 157). Our study suggests that the provisioning of an incentive such as

WFA can create value for the firm while keeping wages constant, via an increase in worker produc-

tivity. In particular, we find not only that WFA workers who relocated were more likely to move to

lower cost-of-living locations, but also that the workers who enjoyed higher-than-average cost-of-

living savings (and thus a higher effective increase in real wages) demonstrated higher increases in

productivity than relocating employees enjoying lower-than- average cost-of-living savings. These

two findings taken together suggest a scenario in which a nonpecuniary incentive results in a pe-

cuniary benefit to employees and firms alike. The pecuniary benefit of a reduced cost of living is

equivalent to an increase in real income, which has been linked to increased employee satisfaction

and productivity (Leana &Meuris 107). While this result may not replicate for all types of work-

ers in all organizations, it suggests that WFA could potentially be used as an effective firm-specific

incentive to attract and retain skilled employees (Coff & Kryscynski 52 ; Kryscynski 1054.

Our study has several limitations. Similar to Bloom, et al. (2015)36, our study is focused on a

single organization. Additionally, it is plausible that in other settings where workers have greater

dependence on coworkers and supervisors to accomplish their tasks, increased coordination costs

might offset the gains from higher productivity. Future work should validate our findings in other

settings that exhibit other forms of interdependence (i.e. sequential and reciprocal interdepen-

dence), where the worker might not have relevant prior task-specific human capital, and/or where

the task is more or less routine compared to patent examination. Building on Kryscynski (2011)105,

we posit that nonpecuniary incentives such as WFA can and should be firm specific. For instance,

4Wiedner &Mantere 170 make a similar argument in the context of organizational separation
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a firm could choose to provide a WFA option to experienced employees if the tasks performed

by knowledge workers in the firm exhibit properties of pooled interdependence. However, WFA

may not create value for other firms with stronger (i.e., reciprocal or sequential) interdependence

regimes, and future research could examine this proposition.

Our results showing that differences in tenure at the USPTO are correlated to the worker’s

choice of geographic location open up avenues for future research. Our correlational finding that

higher-tenured workers are more likely to choose a geographic location such as Florida (which is ar-

guably better suited as a preretirement destination) suggests that future work can explore whether

WFA could have career-extending benefits, motivating workers closer to retirement to remain in the

workforce and be productive. Our research contributes to a very active managerial debate on the

effectiveness of WFA. In February 2013, then-CEOMarissa Mayer famously rescinded the remote

work program at Yahoo!, explaining in a company memo, “Some of the best decisions and insights

come from hallway and cafeteria discussions, meeting new people, and impromptu teammeetings.

Speed and quality are often sacrificed when we work from home. We need to be one Yahoo!, and

that starts with physically being together” (Swisher 159). Yet, along with these highly visible retreats

fromWFA regimes, other employers continue (typically with less fanfare) to increase WFA opportu-

nities and more generally support the concept of remote work. Akamai’s “Akamai Anywhere” WFA

policy is one such example (Mayer 1237). In promoting the agency’s WFA policy, NASA’s Chief

Technology Officer noted that, “The potential exists for... an employee’s office to expand from a 12’

by 12’ room to virtually everywhere” (Porterfield 136).

A series of empirical studies aroundWFA could help resolve this debate. It is plausible that the

gains fromWFA are restricted to settings where workers are approaching diminishing returns in

learning from peers and/or are relatively less dependent on coworkers and supervisors to accomplish

their tasks. Hence, it would be interesting to replicate our study in settings with varying degrees of

worker interdependence (e.g., designers, software developers). Future research could also study the
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duration of physical colocation required for new hires to acquire the tacit knowledge needed to per-

form the task with no increase in rework after moving to aWFA program. Similarly, study of the

conditions (if any) under which workers could benefit from learning from other remote workers

and knowledge spillovers amongWFAworkers could be beneficial. For example, it has been sug-

gested that “innovation spaces,” such as coworking spaces and incubators, are becoming a source of

knowledge transfer that promotes innovation and collaboration (Wagner &Watch 169). This argu-

ment suggests that there could be an optimal WFA policy that allows employees to interact to some

degree with professional peers in a physical collaborative setting close to their chosen geography.

These workers may experience increased productivity benefits from knowledge spillovers in their

home geography, though this empirical question requires further exploration.

Thinking beyond the immediate debate aroundWFA and firm productivity, we believe that fu-

ture research onWFA could also help informmanagerial decision-making in the context of newer

structures used to organize knowledge workers. A number of firms, primarily in the software and

technology fields (such as Mozilla and Art Logic), are structured as virtual organizations in which

WFA is the dominant form of work (Reynolds 140). Many of these “all-remote” firms have also

adopted new-generation technology tools; internal social tools such as Slack, Yammer, and Chatter,

or embedded applications such as Microsoft Teams and JIRA are being implemented at a staggering

rate (Leonardi &Neeley 111). With these technologies further enablingWFA, researchers and firms

will likely continue to explore the conditions under which geographic flexibility can contribute pos-

itively to remote worker productivity. Finally, the notion of geographic flexibility introduced in

this study might have career-enhancing and career-extending effects; future research should study

whether and when firms can extend the productivity of aging workers by giving them autonomy to

relocate to “retirement-friendly” destinations.

As technology continues to expand avenues for communication and collaboration among virtual

coworkers, and as major business centers growmore populous and congested, there is a need to
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develop our understanding of how granting geographic flexibility via policies such as WFA affects

productivity. To the best of our knowledge, our study represents the first set of robust econometric

results on the productivity effects of moving workers from aWFH to aWFA regime and makes a

contribution to the literature on remote work, nonstandard work, and nonpecuniary incentives.
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IT and Productivity: Evidence from

Telemedicine

3.1 Introduction

In recent years, there has been vibrant discussion of the ability for software to automate tasks

as well as facilitate non-standard work arrangements, such as remote work. Most analysis has fo-

cused on routine, low-skilled tasks (Acemoglu & Restrepo 14 , Autor & Dorn 26 , Autor et al. 28 ,

Goos &Manning 82), with little empirical understanding about whether and how information

technology interacts with skill-intensive, time-critical, non-routine tasks. And while there is a bur-

geoning literature on the productivity benefits of IT-enabled remote work, much of it focuses on

either routine tasks or workers with little need to coordinate with one another (Bloom et al. 36 ,

Choudhury et al. 50). This study asks whether information technology is productivity enhancing

in a skill-intensive, time-critical setting with high coordination requirements and non-routine tasks.

Contemporary discussion has identified several industries and professions that face potential con-

sequences as a result of the increasing role of technology and automation in skilled domains (e.g.

finance and legal services)–among these, I study the provision of medical care by doctors. (Susskind

& Susskind 158).

In the past decade, spurred by government policy1, digital technology adoption in U.S. health

1The Federal Health Information Technology for Economic and Clinical Health (HITECH) Act (part of
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care has been comprised largely of systems to store and transmit electronic health records (EHRs).

Looking forward, however, evidence points to telemedicine as the next major wave of technology

adoption in healthcare. Defined as the “the remote diagnosis and treatment of patients by means of

telecommunications technology” (Catalyst 48), telemedicine is currently used by 76% of U.S. hos-

pitals and is continuing to grow in share and intensity of use, with a current market size of $38.3

billion (AHA 12). Unlike EHRs, which largely digitize analog records, telemedicine fundamentally

changes the nature of the provider-patient relationship, and is often viewed as a solution to increas-

ing concerns regarding patient access to specialty care and growing p shortages in the United States

(Tuckson et al. 167).

One field of medicine that has suffered from physician shortages for decades is critical (or inten-

sive) care (Halpern et al. 91). Responsible for the most severely ill patients in the hospital, critical

care physicians are tasked with closely monitoring and stabilizing patients with acute risk of death.

Each year, 500,000 people die in intensive care units (ICUs, the hospital departments associated

with critical care) in the United States alone (Angus et al. 22). For context, this amounts to approx-

imately 18% of all deaths in the United States in 2018 (Kochanek et al. 99). Aside from the tremen-

dous mortality associated with ICU admissions2, there are substantial financial costs of intensive

treatment in the hospital as well. Overall spending on ICU care is roughly $260 billion annually,

accounting for 20% of all hospital expenditure in the United States (Feeley 68) and hence over 1% of

national GDP (Martin et al. 121). While ICUmortality has been declining in the past decade (Lilly

2017), the national average still hovers at approximately 15% (Dartmouth Atlas13), and ICU admis-

sion rates are increasing (Lilly et al. 112). Given the enormous stakes at play, both in terms of human

lives and financial cost, any intervention that improves the productivity of critical care could have

staggering implications.

the broader American Recovery and Reinvestment Act of 2009)
2in 2014, the United States national average for ICUmortality was 14.7% (Dartmouth Atlas 2019)
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I study the introduction of labor-augmenting technology in the ICU and its impact on out-

comes. Using patient-level data from a large hospital network in the State of New York from 2013-

2018, I estimate the effect of a sweeping telemedical intervention across 30 intensive care units in

which in-person critical care physicians were almost entirely replaced by a system comprised of soft-

ware algorithms and remote treatment, leaving only a few doctors to care for hundreds of ICU pa-

tients at a time. I control for ex-ante health via detailed, patient-encounter level medical records,

information on the precise method of triage within the ICU, and clinically validated health scoring

algorithms and estimate an average reduction in mortality of roughly 16% across a variety of specifi-

cations.

Importantly, the productivity impacts of IT are heterogenous: I find evidence that both the

healthiest and absolute sickest patients experience a small increase in mortality, while patients near

the center of the severity distribution enjoy the greatest improvements in mortality. While patient

treatment rates don’t appear to change on average, physicians appear to reallocate effort across pa-

tients, expending disproportionate effort near the center of the severity distribution and reducing

effort near the tails.

Features of this setting allow me to disentangle the benefits that stem from the use of software

algorithms and remote treatment—the gains attributable to this telemedical intervention appear

driven by software algorithm use. Finally, complementary assets are critical in this setting—community

hospitals lacking in staff, training, and IT expertise do not benefit from use of the eICU.

Telemedicine is ultimately productivity enhancing in this context, enabling physicians to take

on far more patients while simultaneously improving outcomes. More specifically, the network

was able to reduce physician workforce demand by roughly 70% in hospitals that transitioned to

telemedicine, leading to cost savings of $12 million per year in labor across the entire network ac-

cording to conversations with key stakeholders.

This study contributes to the growing body of literature on the productivity and outcomes ef-
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fects of IT implementation in healthcare (Athey & Stern 25 , Parente &McCullough 134 , Miller &

Tucker 125 , Agha 20). While the vast majority of studies of IT in healthcare focus on the adoption of

electronic medical records (EMRs), which assist in patient data storage and transmission, this study

examines the use of technology that fundamentally alters the provision of medical care itself. Addi-

tionally, unlike studies that use national aggregate data, this study uses detailed medical records for

nearly 100K patient-encounters and precise details of the technology rollout to control for ex ante

patient health and estimate the effect of telemedicine.

This study also contributes to the literature on technology implementation, automation, and

task substitution. While there exists a rich literature on the effects of automation of routine, or low

skilled tasks, there are few studies that empirically estimate the effects of technology on skilled labor.

Those few studies tend to focus economy-level effects of technology on skilled employment (Autor

et al. 28 , Autor et al. 27). And while there is a nascent literature on the effect of automation (namely

AI) on skilled labor, the majority of empirical exercises use a task-based framework to analyze po-

tential occupation-level effects (Acemoglu & Restrepo 14 , Acemoglu & Restrepo 15 , Brynjolfsson

et al. 44). By focusing within a large organization and observing detail on individual tasks (patients),

this study is able to precisely estimate not just average effects, but also heterogeneity and more im-

portantly can unpack drivers of benefits associated with technology and automation.

I proceed as follows: Section 2 provides detailed background on intensive care, telemedicine, and

specific institutional detail regarding the intervention and my research setting. Section 3 presents a

simple conceptual framework to fix ideas regarding the nature of productivity-enhancing techno-

logical change in medical care. Section 4 provides details on the data sample used for analysis, while

Section 5 provides results from various estimation exercises. Section 6 concludes.
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3.2 Background

This study focuses on an IT intervention in a setting characterized by complex, skill-intensive, non-

routine tasks–the provision of intensive medical care. The research setting is a major hospital net-

work in New York State; consisting of roughly 70,000 employees across 23 hospitals, this network is

the largest private employer and healthcare provider in New York State. With geographic coverage

of most of the New York City metropolitan area, the hospital network is responsible for the care of

roughly 4 million unique patients each year, with annual revenues on the order of approximately

$11 billion.

Like many hospital networks at the forefront of technology adoption, this network has invested

substantially in the adoption of telemedicine as a result of patient demand, provider shortages, and

potential cost savings. In 2013, the network began adoption of an electronic ICU system, a major

shift in the modality of intensive care provision in which the work of in-person critical care physi-

cians is largely substituted by investments in advanced hardware, software algorithms, and a few

remote physicians providing coverage for particularly complex cases.

This section describes details regarding intensive care itself, the specifics of the electronic ICU

and its rollout, as well as discussion of relevant background regarding IT and healthcare.

3.2.1 Telemedicine

Health care spending currently comprises 18% of the United States economy, with commensurately

large opportunities for innovation and new technologies (Martin et al. 121). In recent years, digital

health investments at the intersection of technology and healthcare have rapidly grown in size and

share of the overall market (Raphael 138). Digital health has traditionally encompassed health IT,

such as electronic medical records (EMRs), clinical decision support systems (CDSS), and has ex-

panded to connected medical devices and complex software algorithms to monitor, diagnose, and
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treat patients. While electronic medical records have been the focus of health IT investments in the

past decade (Adler-Milstein & Jha 17), telemedicine is now among the fastest growing segments in

this space (AHA 12).

Telemedicine—the remote diagnosis and provision of medical care by means of telecommuni-

cations technology—is a treatment modality in which in-person physicians or other providers are

separated from the locus of medical care, using technology to facilitate advanced monitoring (in

lieu of physical observation) and to direct care remotely. Promising increased efficiency and reach,

telemedicine can provide care to patients that are otherwise too distant from a major healthcare

hub as well as leverage economies of scale to provide care in facilities that cannot otherwise justify

maintaining in-person coverage for certain specialties. Among the more common applications of

telemedicine are telepsychology, telestroke, tele-urgent care, and recently, teleICU, or eICU.

3.2.2 Intensive Care Units

The intensive care unit (ICU) is a specialized department within a hospital that provides care to

critically-ill patients . Staffed by specially trained nurses and physicians that are certified in critical

care, the traditional ICUmodel relies on high staff-to-patient ratios and generally high-touch care in

order to minimize mortality among a particularly risky population (Marshall et al. 120). A traditional

ICU has roughly 8 beds and is staffed by several nurses along with usually one (sometimes two)

critical care physicians.

The principal job of the ICU is to stabilize and monitor patients with rapidly deteriorating health

status, often due to an acute failure of key biological systems (e.g., respiration or circulation). Physi-

cians and nurses coordinate in person to provide treatment and monitoring for these patients.

Treatment within the ICU setting most often refers to the provision of respiratory assistance and

active infusion of therapeutics (e.g. antibiotics, other pharmaceuticals). Monitoring entails the

utilization of real-time data on patient vital signs (“vitals” e.g., heart rate, respiratory rate, oxygen
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saturation levels) along with regular laboratory testing and in-person health status checks in order to

ensure the stability of a given patient’s health.

In my setting, patients enter the ICU from three sources, in the following order of incidence: (1)

the emergency department, (2) post-surgical recovery, and (3) as inpatients. Patients are forwarded

to ICU as a last resort, with the ultimate goal of restabilization for discharge either to the hospital it-

self, a skilled nursing facility, or to the patient’s home. Upon admission to the ICU, detailed patient

health indicators are measured, recorded, and used for triage purposes, including vitals, lab results,

relevant diagnoses, and medical histories. An APACHE (Acute Physiology and Chronic Health

Evaluation) score (an externally validated measure of predicted ex antemortality) is calculated and

used to triage care and attention from ICU staff.

3.2.3 eICU

As a response to rising costs of staffing and shortages of available critical care physicians, several hos-

pital networks, including the one considered in this study, have implemented telemedicine within

their intensive care units. Promising reduced monitoring overhead, more accurate triage, and more

efficient distribution of physician workload (Doyle 2016), the electronic ICU (eICU) debuted

in 2014 for three hospitals within the network, with subsequent rollout continuing through the

present. The eICU is comprised of three major components: (1) an on-site hardware installation,

(2) a series of software algorithms, and (3) a remote facility staffed by a handful of critical care physi-

cians and triage nurses.

The primary goal of the on-site hardware installation is to collect and transmit high-frequency,

real-time patient health data for use by software algorithms and the remote facility. This hardware

suite replaces traditional bedside devices (e.g., pulse oximiters, respirometers, electrocardiograms,

and oscillometers) with versions that provide higher-frequency data collection and integration with

the software algorithms described below. In addition, cameras and video monitors are installed at
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each bed to allow for remote monitoring and communication with the remote facility.

Third-party sourced, externally validated software algorithms available to both on-site and re-

mote staff are the primary method of patient monitoring and triage. These algorithm takes into

account real-time data from six major organ systems, generating a score that measures derangement

(or deviations) from expected norms based on patient medical record inputs. In this iteration of the

eICU, this system is rules based, using fixed parameters provided by the software vendor with no

“learning” or adjustments since the initial rollout. Functionally, the system flags patients with im-

mediate risk of physiological derangement in real-time, and physicians are thus able to make better

informed triage and treatment decisions than would otherwise be possible with human data inter-

pretation.

The dedicated remote eICU facility is staffed by both nurses and physicians, the availability of

both being guaranteed 24/7. Each off-site physician is assigned three or four off-site triage nurses,

who serve as the primary contact with on-site staff and assist in managing their off-site physician’s

“docket” as it fills with consult requests from hospitals all across the network. Under this new

regime, each physician is no longer responsible for 8 beds as in a traditional ICU but rather roughly

60-80 patients remotely distributed at a given time.

3.2.4 eICU Implementation

Beginning in 2014, the hospital network began implementation of the eICU system at several hospi-

tals. From field interviews with key stakeholders (including the Medical Director of Telehealth and

the Chief Medical Informatics Officer), it was explained that the network intended to eventually

study outcomes, and hence rolled out the IT system in a staggered, pseudo-random fashion.

More importantly, several key features of the rollout, and generally ICU care, minimize any con-

cerns regarding selection into treatment in the first place. First, if a patient enters a given hospital,

be it through the ER, via surgery, or as in inpatient, and experiences acute medical distress, the pa-
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tient is almost exclusively sent to the “home” ICU (i.e., the ICU where they are an inpatient)–there

are no common clinical processes by which patients are sent outside the “home” hospital and to an

ICU in a different hospital (e.g., an “untreated” hospital). Second, because all ICU beds in a given

hospital are converted to telemedical care simultaenously, there is no risk of patient sorting across

traditional and electronic ICUs within the “home” hospital–neither the patient nor the physician

have a choice as to where the patient is sent (it depends entirely on whether the patient’s need for

ICU care fell before or after the transition date). I empirically validate the above in Appendix A.

3.2.5 Technology Adoption in Healthcare

Prior Studies

As mentioned in Section 1, telemedicine is an increasingly common approach to healthcare deliv-

ery, although there are currently no large-scale studies in the management or economics literatures

of the productivity or outcomes effects of the implementation of telemedical technology. Dorsey

and Topol (2016)62 provide a broad overview of the state of telemedicine, with a focus on trends

and barriers to growth, but explicitly mention the dearth of empirical research on the benefits of

telemedical care. And while the clinical literature has considered telemedicine at length, the majority

of those studies focus on small sample cases at individual hospitals, if not individual units.

Outside of telemedicine, there is a growing, albeit small, body of literature studying the effects

of IT and digitization on health care. The vast majority of these studies focus on one of the more

salient forms of technology adoption in healthcare in the previous decades–the growing use of

EHRs, a form of technology used for the storage and transmission of patient data. Generally speak-

ing, most of these studies find limited benefits of EHR adoption and strong heterogeneity condi-

tional on pre-existing firm resources. For instance, Miller and Tucker (2011)125 andMcCullough et

al. (2010)124 analyze the introduction of electronic medical records (EMRs) and find little benefit
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when adopted alongside existing complementary resources. Agha (2014)20 looks more broadly at

healthcare IT, including not only EHR but simple CDSS, finding little to no benefits of IT adop-

tion. McCullough et al. (2010)124 finds evidence of heterogeneity such that only the most severe

patients experience benefits. Few papers focus on topics outside the realm of EHR adoption. Most

notably, Athey and Stern (2002)25 observe that basic implementation of technology in emergency

services (e911) leads to improved short-term patient outcomes for patients suffering from acute

myocardial infarctions (AMIs, or heart attacks).

3.2.6 Potential benefits of telemedicine

The benefits of technology adoption, particularly telemedicine, are wide ranging. In addition to the

empirical studies mentioned, there are clear benefits in terms of organizational processes that, while

hard to isolate and estimate on their own, can help inform expectations over potential benefits.

For instance, technology on its own codifies organizational processes and reinforces protocols

(Dewett and Jones 2001)61. Under the assumption that technology and the underlying organiza-

tional structure were designed to maximize outcomes, minimize risk, and improve efficiency, tech-

nology could ensure that employees maintain optimal performance, particularly in complex settings

where task boundaries are uncertain (Roberts & Grabowski 143). Put simply, information technol-

ogy use can help ensure efficiency in complex organizational contexts.

Information technology has also long been discussed as a tool with the potential to improve

physician efficiency, often due to biases surrounding time allocation across patients of varying sever-

ities (France et al. 71). Further, technology that enables remote work physically separates clinicians

from the patients themselves, leading to more reliance on objective measures and potentially more

objective treatment (Lehoux et al. 109). In the clinical literature, a focus on objectivity (particularly

in acute care) has been associated with greater efficiency and better outcomes, and is the cornerstone

of the modern push towards evidence-based medicine (Sackett et al. 146). Therefore, one might ex-
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pect information technology to lead to better outcomes and greater efficiency in case provision.

In addition to the benefits listed above, telemedicine implementation yields additional benefits as

a result of the additional hardware and software used. The combination of real-time vital sign collec-

tion in conjunction with the software algorithms used for queue management (see section 2.3) have

yielded improvements in the speed and accuracy of triage in a multitude of clinical studies across dif-

ferent settings (Görges et al. 84 ; Raikhelkar & Raikhelkar 137 ; Saffle et al. 147 ; Young et al. 172). Triage

is one of the most important tasks undertaken by the ICU, both because of the scarcity of resources

as well as the time-sensitivity of care (Gopalan & Pershad 83), hence quick and accurate triage would

directly contribute to better outcomes for individual patients as well as the ICU as a whole.

3.2.7 IT and Complementarities

There exists a large literature on complementary nature of IT efficacy and existing firm resources.

Complementary assets, organizational adaptations, and changes are important in realizing pro-

ductivity gains associated with IT investments (Bresnahan et al. 40). More specifically, Bresnahan,

Brynjolfsson, and Hitt (2002)41 find that IT adoption is complementary with skilled labor and

investments in work practices, among other resources. Bloom, Sadun, and van Reenan (2012)37

find that firms in the United States enjoy larger gains in productivity stemming from IT than their

global peers largely due to complementary “people management” skills. In healthcare, Dranove et

al (2014)63 finds strong evidence that complementary resources help health IT investments attain

cost-effectiveness. These resources, such as software experience, can be internal to the firm or hospi-

tal, or can be drawn from local labor market expertise.
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3.3 Conceptual Framework

3.3.1 Overview

This section presents a simple model illuminating the benefits of technology adoption in a health-

care setting.

3.3.2 Model

Physicians seek to maximize overall patient welfare subject to two constraints:

1. Minimum health

2. Time

To clarify, the minimum health constraint exists to ensure that physicians do not engage in practices

that would leave the patient worse off than the alternative of no treatment, i.e. “do no harm”. Ad-

ditionally physicians are commonly constrained by time—they must make decisions regarding the

allocation limited resources across patients presenting with varying severity.

Formally,

θ∗ = argmax
θ

n∑
i=1

f(h, θ)i

subject to f(h, θ)i ≥ hi,
n∑
i=1

θ = 1.

(3.1)

where h refers to a patient’s health upon admission to the ICU and θ refers to the level of treat-

ment selected by the physician for a given patient, for which θ∗ is the optimal level chosen for each

patient to maximize overall patient welfare.
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Built into this framework is the notion that patients present with varying levels of observable

ex ante health, which I will henceforth refer to as severity. For simplicity, assume that there is no

within-severity heterogeneity in treatment efficacy (i.e. similar patients respond similarly to identical

treatment). Physicians provide treatment in order to maximize the objective function outlined in

Equation (1).

However, consistent with the medical literature (Gruenberg et al. 89), there is substantial cross-

severity heterogeneity in treatment efficacy, such that f(h, θ) is not uniform, but rather follows an

inverted U pattern. This pattern stems from two details:

1. There are decreasing returns to treatment for increasingly ill patients, as they are often past

the threshold by which medical care can ensure their survival

2. There are low returns to treatment for particularly healthy patients, as they quite simply

don’t need as much treatment.

These patterns, in conjunction with the limited nature of medical resources (i.e., physician time),

imply that accurate (and timely) triage is particularly important, a conclusion supported widely by

the clinical literature (Truog 166 , Gopalan & Pershad 83).

3.3.3 Technology adoption

Technology adoption enters this model by enabling physicians to choose a θ closer to θ∗ through

three mechanisms, discussed in depth in section 3.2.6

1. Technology (telemedicine) removes physicians from the patient setting, mitigating biases in

which physicians misallocate treatment effort (θ) across patients (e.g. spending too much

time on the healthy or the terminally ill)
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2. Technology (telemedicine) facilitates faster and more accurate triage, providing physicians

with real time determination of the relative risk of death across their patients, and better

information to make accurate decisions surrounding their choice of θ

The implications of technology adoption, in conjunction with the cross-severity treatment het-

erogeneity outlined in 3.2.1 are tested in Section 5.

3.4 Data and Summary Statistics

3.4.1 Summary

This project draws on three main sources of data. I begin with administrative data on all 394 ICU

beds within 23 hospitals in the network and observe the date upon which each facility transitions

to telemedicine from 2013 to 2018. I merge this data with detailed patient-encounter level medical

records to identify whether a given patient-encounter was treated with the tele-ICU. These medical

records also precisely identify the health status of each patient upon ICU admission. Finally, I utilize

a third, separate administrative dataset on within-network transfers to identify whether patients

were transferred into or out of a given ICU.

3.4.2 ICU Administrative Data

The first data source is a record of all ICUs from 2013 to 2018, along with dates of transition from

traditional ICU care to eICU care for each facility. This data was linked to patient-encounter level

records to identify whether a given patient-encounter was treated via a traditional ICU or the eICU.

In this six year time span, 99,673 patient-encounters were recorded across 394 beds in 30 facilities.

Separately, data on transfers out of a given ICU/eICU (to other locations) were also collected.
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3.4.3 PatientMedical Records and APACHE scoring

In order to control for ex ante patient health and mitigate concerns of selection, each of the 99,673

patient-encounters above were linked to detailed EHRs provided by the hospital network, allowing

access to the complete snapshot of patient health upon admission to the (e)ICU. This snapshot

includes patient vital signs, relevant diagnoses, chronic conditions, and laboratory results.

In order to risk-adjust cases using detailed patient data (particularly lab results and vital signs)

I closely followed the exact clinical process by which triage and treatment occur at the ICU by us-

ing APACHE scores to precisely control for patient health upon admission to the ICU rather than

including all patient health covariates in an unstructured regression. APACHE takes into account

27 patient health variables and uses a series of predictive equations with predetermined, clinically

validated weights (via extensive clinical trials) to output a score ranging from 0-292 that monotoni-

cally correlates with predicted mortality. These scores were calculated and recorded at the ICU itself

as part of the intake process and were collected as part of the detailed medical records used in this

study.

3.4.4 Outcomes Data

The principle outcome measure in this study is mortality—mortality is the most objective mea-

sure of patient outcomes in this setting for several reasons. First, mortality is not a diagnosis or

treatment-specific outcome measure—for example, use of respiratory function as an outcome of

interest for pneumonia patients would not be appropriate for patients suffering cardiac arrest. Sec-

ond, avoiding mortality (and stabilizing patients on the brink of death) is the primary objective of

ICUs; hence, measurement of mortality is a key internal benchmark that ICUs internally target.

Third, as mortality is high among the intensive care unit patient population this provides substan-

tial variation that can be used for study.
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More specifically, this study focuses on hospital mortality rather than ICUmortality as use of

hospital mortality alleviates concerns that an ICUmight release a still-unstable patient back to the

hospital, only for that patient to expire and not be captured in measures of ICUmortality.

Summary statistics for patient outcomes (mortality), as well as various covariates, including

APACHE, are presented in Table 1, shown here.

3.5 Estimation and Results

3.5.1 Empirical strategy

Using data on treatment via electronic versus traditional ICUs in conjunction with detailed medical

records to control for health and a variety of fixed-effects to account for unobservables, I estimate

the effect of eICU treatment on mortality using the following general specification at the patient-

encounter level:

Mortalityijt = β0 + β1 ∗ eICUit + β2 ∗ APACHEit + χit + γjt + νt + ε
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where eICU is a patient-encounter indicator for treatment by the eICU, APACHE is the patient’s

APACHE health score, χ is a vector of patient controls, including patient age, gender, and diagnosis,

γ is a set of facility fixed-effects, and ν is a set of year and month-of-year fixed effects. Here, β1 is the

coefficient of interest, measuring the outcomes effect of eICU implementation. Standard errors are

clustered at the facility level for all results to follow.

3.5.2 Main results

The main estimation exercise seeks to identify the effect of eICU on patient-level mortality. Results

can be found in Table 2, where column 1 includes controls for unit (i.e., department within a hos-

pital), patient age, patient gender, patient APACHE scores, and diagnosis, while column 2 includes

additional controls for year and month of admission. Focusing on column 2, the preferred specifica-

tion, the coefficient on eICU implies a reduction in mortality of 1.70 percentage points off a mean

of 10.4%, yielding a 16% percent reduction in mortality off of baseline mortality.
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Treatment Effort

The detailed patient medical records indicate whether a patient was actively treated or simply moni-

tored by the eICU, and so I can test whether there are significant differences in treatment rates (i.e.,

whether a physician directed or otherwise provided treatment for a patient versus a baseline of moni-

toring) for eICU patients versus traditional ICU patients using the following specification:

Treatedijt = β0 + β1 ∗ eICUit + β2 ∗ APACHEit + χit + γjt + νt + ε

Again, the coefficient of interest is β1. Table 2 above provides results from this exercise, where

columns three and four provide increasing levels of added controls. The most saturated model, col-

umn 4, indicates that eICU patients don’t receive any more treatment than non-eICU patients on
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average.

3.5.3 Heterogeneity

While physician treatment effort appeared flat on average, this could mask heterogeneity across pa-

tients of varying ex ante health status. To test for this, I estimate a model in which a dummy for

treatment was regressed on deciles of APACHE scores as a proxy for patient severity. Results of

this exercise are visualized in Figure 1, Panel A, where we see that treatment rates differ drastically

by patient health, with the healthiest patients and the sickest upper decile seeing less treatment ef-

fort. These results, in conjunction with the average mortality improvements seen in 5.2, suggest

that physicians are making choices to more optimally allocate time and effort that were not possible

before the eICU implementation.

In order to further test the consequences of these reallocation decisions, I estimate a model simi-

lar to the above, but using interactions of eICUwith deciles of APACHE scores. Estimates from this

exercise are plotted in Figure 1, Panel B, where I observe heterogeneous effects across patient health,

with the healthiest (lowest) few deciles observing increases in mortality improvement in mortality

comes frommoderate patients. The sickest decile also sees a increase in mortality.
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3.5.4 Mechanisms

Disentangling productivity drivers

The main result showed a substantial reduction in mortality for those patients treated by the eICU,

however, it is yet unknown whether those outcomes improvements are a result of the use of soft-

ware algorithms to direct patient care, or rather utilization of the remote physicians. My data in-

cludes information on the availability of on-site physicians during certain hours—depending on the

time-of-day a patient was admitted to the ICU3, initial care would have been directed either by an

on-site physician or off-site physician. As both physician types use software algorithms, differences

in outcomes can be attributed to remote versus on-site treatment. I estimate,

Mortalityijt = β0 + β1 ∗ eICUit + β2 ∗ eICU ∗ Remoteit + β3 ∗ APACHEit + χit + γjt + νt + ε

where eICU is a patient-encounter indicator for treatment by the eICU, APACHE is the patient’s

APACHE health score, and fixed effects are the same as defined in 3.5.1.

Results from this estimation exercise can be found in Table 3, where we find that in the most

saturated model (column 2), the gains from eICU usage are driven entirely by software algorithms,

and not treatment using remote physicians.

3coverage does not follow a regular pattern within or across facilities
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Complementary resources

Section 3.2.6 highlighted the importance of complementary resources in ensuring the productivity

improvements commonly associated with IT interventions. The focal hospital network is comprised

of both teaching hospitals and smaller community hospitals with more limited resources (i.e. lim-

ited staffing and complementary technology). With this in mind, I can test whether the eICU im-

proves outcomes for community hospitals that lack the depth of complementary resources available

to more advanced hospitals by estimating the following model,

Mortalityijt = β0 + β1 ∗ eICUit + β2 ∗ eICU ∗ Communityit + β3 ∗ APACHEit + χit + γjt + νt + ε
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where eICU is a patient-encounter indicator for treatment by the eICU, APACHE is the patient’s

APACHE health score, and fixed effects are the same as defined in 3.5.1.

Results from this estimation exercise can be found in Table 4, where we find that in column 2,

the most saturated model, the gains from the eICU are near zero for community hospitals (the co-

efficients should be interpreted additively, such that the main eICU effect is a reduction in hospital

mortality of 2.4 percentage points, while the eICU effect for community hospitals is 1.9 percentage

points worse than the main effect).
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3.6 Discussion and Conclusions

In this study, I estimate the effects of a large-scale telemedical intervention at a major hospital net-

work in which in-person provision of critical care by doctors is substituted by a combined hard-

ware/software suite as well as a handful of remote workers. In this setting, I focus on critical care—a

type of medical care characterized by high mortality, high costs, and high utilization, where small

improvements in productivity or outcomes could have very large consequences. Further, my focus

on intensive medical care provides me the opportunity to use standardized measures of ex ante and

ex post patient health, APACHE scores and mortality, respectively, allowing for precise estimation.

Telemedicine is strongly outcomes enhancing, providing an overall 16% reduction in mortality

on average. This average effect masks significant heterogeneity in the treatment effect across patients

of varying health status. Both the absolute healthiest and sickest patients experience slight increases

in mortality, while more moderate patients substantial mortality reductions. This heterogeneity

appears driven by physician behavior—physicians respond to technology by reallocating treatment

effort; pulling effort away from the sickest patients and redistributing it to patients that appear to

benefit the most.

These findings have important implications for policy and healthcare. Taking estimates of the

mortality burden associated with ICUs, a back-of-the-envelope extrapolation of the estimated re-

duction in average mortality (16%) would imply the potential for 80,000 lives to be spared annually

in the United States alone. Clinical evaluations of the cost effectiveness of intensive care unites for

the most common admissions (e.g. cardiac arrest and respiratory arrest) point to gains in quality-

adjusted life-years of 5 to 11, respectively (Graf et al. 85 , Linko et al. 114). Using standard estimates

of the value of a quality-adjusted life-year of $50,000 - $150,000 (Neumann &Cohen 131) leads to

anywhere from $20 billion to $135 billion in welfare gains.

This study highlights the importance of software algorithms in driving employee behavior (e.g.
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time allocation) and ultimately, performance—the vast majority of gains attributable to the eICU

stemmed from on-site physician use of software and technology, not remote work. Further, use of

algorithms drove clear heterogeneity in employee time allocation and patient outcomes, and careful

considering of algorithmic bias is needed before use of these technologies at scale.

In addition to the considerations previously mentioned, firms undertaking major investments

in technology (particularly health care organizations) should consider the importance of comple-

mentary assets and the availability of reliable support infrastructure. With respect to those assets,

community hospitals in this hospital network that did not likely maintain the same level of staffing

and training as teaching hospitals did not benefit from eICU adoption. Further, while this hospi-

tal network was able to undertake major investments in ICU-specific infrastructure (e.g. dedicated

broadband internet connections, redundant power systems), this might not be feasible in rural areas

or developing regions—those areas are often the focus of arguments supporting the development

and diffusion of telemedical (or other health care information) technology.

Additionally, telemedicine (or technology that shares the key features of telemedicine) is partic-

ularly beneficial when deployed in firms that face unpredictable or unbalanced service load across

sites—by aggregating demand for services across facilities and responding through one channel (the

remote eICU), the hospital network was able to reduce inefficient allocation of physicians. In fact,

one of the most promising use cases is precisely this—telemedicine (or any remote work aggregation

technology) reduces the need to have idle employees “on call” and allows unpredictable, dynamic

service loads to be handled centrally, leveraging economies of scale and maximizing efficiency.

An important caveat to this study is that this is an analysis of the healthcare setting, which, while

advantageous for a variety reasons mentioned above, is a highly risk-averse setting with continuous

performance monitoring, feedback, and immediate outcomes consequences—providing a multitude

of opportunities for learning and continuous process improvement as technology is implemented

in organizational routines. Whether technology could provide these benefits in settings with slower
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feedback loops is an area of potential continued research.
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A
Chapter 1: The 510(k) Process
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Appendix Exhibit 1: Extract from 510(k) Statement

The information in this appendix is taken directly from the FDA’s official description of the

510(k) (premarket notification) process1

1http://www.fda.gov/MedicalDevices/DeviceRegulation andGuidance/HowtoMarketYourDevice/
PremarketSubmissions/PremarketNotification510k/
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Introduction

Each person who wants to market in the U.S., a Class I, II, and III device intended for human use,

for which a Premarket Approval (PMA) is not required, must submit a 510(k) to FDA unless the

device is exempt from 510(k) requirements of the Federal Food, Drug, and Cosmetic Act (the Act)

and does not exceed the limitations of exemptions in .9 of the device classification regulation chap-

ters (e.g., 21 CFR 862.9, 21 CFR 864.9). There is no 510(k) form, however, 21 CFR 807 Subpart

E describes requirements for a 510(k) submission. Before marketing a device, each submitter must

receive an order, in the form of a letter, from FDAwhich finds the device to be substantially equiv-

alent (SE) and states that the device can be marketed in the U.S. This order “clears” the device for

commercial distribution.

A 510(k) is a premarket submission made to FDA to demonstrate that the device to be marketed

is at least as safe and effective, that is, substantially equivalent, to a legally marketed device (21 CFR

807.92(a)(3)) that is not subject to PMA. Submitters must compare their device to one or more

similar legally marketed devices and make and support their substantial equivalency claims. A legally

marketed device, as described in 21 CFR 807.92(a)(3), is a device that was legally marketed prior

to May 28, 1976 (preamendments device), for which a PMA is not required, or a device which has

been reclassified from Class III to Class II or I, or a device which has been found SE through the

510(k) process. The legally marketed device(s) to which equivalence is drawn is commonly known

as the “predicate.” Although devices recently cleared under 510(k) are often selected as the predicate

to which equivalence is claimed, any legally marketed device may be used as a predicate. Legally

marketed also means that the predicate cannot be one that is in violation of the Act.

Until the submitter receives an order declaring a device SE, the submitter may not proceed to

market the device. Once the device is determined to be SE, it can then be marketed in the U.S. The

SE determination is usually made within 90 days and is made based on the information submitted
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by the submitter.

Please note that FDA does not perform 510(k) pre-clearance facility inspections. The submitter

may market the device immediately after 510(k) clearance is granted. The manufacturer should be

prepared for an FDA quality system (21 CFR 820) inspection at any time after 510(k) clearance.

What is Substantial Equivalence

A 510(k) requires demonstration of substantial equivalence to another legally U.S. marketed device.

Substantial equivalence means that the new device is at least as safe and effective as the predicate. A

device is substantially equivalent if, in comparison to a predicate it:

• has the same intended use as the predicate; and

• has the same technological characteristics as the predicate;

or

• has the same intended use as the predicate; and

• has different technological characteristics and the information submitted to FDA;

– does not raise new questions of safety and effectiveness; and

– demonstrates that the device is at least as safe and effective as the legally marketed de-

vice.

A claim of substantial equivalence does not mean the new and predicate devices must be identi-

cal. Substantial equivalence is established with respect to intended use, design, energy used or deliv-

ered, materials, chemical composition, manufacturing process, performance, safety, effectiveness,

labeling, biocompatibility, standards, and other characteristics, as applicable.
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A device may not be marketed in the U.S. until the submitter receives a letter declaring the de-

vice substantially equivalent. If FDA determines that a device is not substantially equivalent, the

applicant may:

• resubmit another 510(k) with new data,

• request a Class I or II designation through the de novo process

• file a reclassification petition, or

• submit a premarket approval application (PMA).

Who is Required to Submit a 510(k)

The Act and the 510(k) regulation (21 CFR 807) do not specify who must apply for a 510(k). In-

stead, they specify which actions, such as introducing a device to the U.S. market, require a 510(k)

submission.

The following four categories of parties must submit a 510(k) to the FDA:

1. Domestic manufacturers introducing a device to the U.S. market;

Finished device manufacturers must submit a 510(k) if they manufacture a device according to

their own specifications and market it in the U.S. Accessories to finished devices that are sold to the

end user are also considered finished devices. However, manufacturers of device components are

not required to submit a 510(k) unless such components are promoted for sale to an end user as

replacement parts. Contract manufacturers, those firms that manufacture devices under contract

according to someone else’s specifications, are not required to submit a 510(k).

2. Specification developers introducing a device to the U.S. market;

A specification developer develops the specifications for a finished device, but has the device man-

ufactured under contract by another firm or entity. The specification developer submits the 510(k),
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not the contract manufacturer.

3. Repackers or relabelers who make labeling changes or whose operations significantly affect the

device.

Repackagers or relabelers may be required to submit a 510(k) if they significantly change the

labeling or otherwise affect any condition of the device. Significant labeling changes may include

modification of manuals, such as adding a new intended use, deleting or adding warnings, con-

traindications, etc. Operations, such as sterilization, could alter the condition of the device. How-

ever, most repackagers or relabelers are not required to submit a 510(k).

4. Foreign manufacturers/exporters or U.S. representatives of foreign manufacturers/exporters in-

troducing a device to the U.S. market.

Please note that all manufacturers (including specification developers) of Class II and III devices

and select Class I devices are required to follow design controls (21 CFR 820.30) during the devel-

opment of their device. The holder of a 510(k) must have design control documentation available

for FDA review during a site inspection. In addition, any changes to the device specifications or

manufacturing processes must be made in accordance with the Quality System regulation (21 CFR

820) and may be subject to a new 510(k). Please see our guidance, “DecidingWhen to Submit a

510(k) for a Change to an Existing Device.”

When a 510(k) is Required

A 510(k) is required when:

1. Introducing a device into commercial distribution (marketing) for the first time. After May

28, 1976 (effective date of the Medical Device Amendments to the Act), anyone who wants to sell

a device in the U.S. is required to make a 510(k) submission at least 90 days prior to offering the

device for sale, even though it may have been under development or clinical investigation before that

date. If your device was not marketed by your firm before May 28, 1976, a 510(k) is required.
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2. You propose a different intended use for a device which you already have in commercial distri-

bution. The 510(k) regulation (21 CFR 807) specifically requires a 510(k) submission for a major

change or modification in intended use. Intended use is indicated by claims made for a device in la-

beling or advertising. Most, if not all changes in intended use will require a 510(k). Please note that

prescription use to over the counter use is a major change in intended use and requires the submis-

sion of a new 510(k).

3. There is a change or modification of a legally marketed device and that change could signif-

icantly affect its safety or effectiveness. The burden is on the 510(k) holder to decide whether or

not a modification could significantly affect safety or effectiveness of the device. Any modifications

must be made in accordance with the Quality System regulation, 21 CFR 820, and recorded in the

device master record and change control records. It is recommended that the justification for sub-

mitting or not submitting a new 510(k) be recorded in the change control records.

A new 510(k) submission is required for changes or modifications to an existing device, where

the modifications could significantly affect the safety or effectiveness of the device or the device is to

be marketed for a new or different indication for use. See Is a new 510(k) required for a modification

to the device for additional information.

When a 510(k) is Not Required

The following are examples of when a 510(k) is not required.

1. You sell unfinished devices to another firm for further processing or sell components to be

used in the assembling of devices by other firms. However, if your components are to be sold di-

rectly to end users as replacement parts, a 510(k) is required.

2. Your device is not being marketed or commercially distributed. You do not need a 510(k) to

develop, evaluate, or test a device. This includes clinical evaluation. Please note that if you perform

clinical trials with your device, you are subject to the Investigational Device Exemption (IDE) regu-
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lation (21 CFR 812).

3. You distribute another firm’s domestically manufactured device. You may place a label on the

device, “Distributed by ABC Firm” or “Manufactured for ABC Firm,” (21 CFR 801.1) and sell it to

end users without submission of a 510(k).

4. In most cases, if you are a repackager or a relabeler you are not required to submit a 510(k) if

the existing labeling or condition of the device is not significantly changed. The labeling should be

consistent with the labeling submitted in the 510(k) with the same indications for use and warnings

and contraindications.

5. Your device was legally in commercial distribution before May 28, 1976 and you have docu-

mentation to prove this. These devices are “grandfathered” and have Preamendment Status. You

do not have to submit a 510(k) unless the device has been significantly modified or there has been a

change in its intended use.

6. The device is made outside the U.S. and you are an importer of the foreign made medical de-

vice. A 510(k) is not required if a 510(k) has been submitted by the foreign manufacturer and re-

ceived marketing clearance. Once the foreign manufacturer has received 510(k) clearance for the

device, the foreign manufacturer may export his device to any U.S. importer.

7. Your device is exempted from 510(k) by regulation (21 CFR 862-892). That is, certain Class I

or II devices can be marketed for the first time without having to submit a 510(k). A list of the Class

I and II exempted devices can be found onMedical Device Exemptions 510(k) and GMPRequire-

ments. However, if the device exceeds the limitations of exemptions in .9 of the device classification

regulation chapters (e.g., 21 CFR 862.9, 21 CFR 864.9), such as the device has a new intended use

or operates using a different fundamental scientific technology than a legally marketed device in

that generic type of device, or the device is a reprocessed single-use device, then a 510(k) must be

submitted to market the new device.
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Preamendment Devices

The term “preamendments device” refers to devices legally marketed in the U.S. by a firm before

May 28, 1976 and which have not been:

• significantly changed or modified since then; and

• for which a regulation requiring a PMA application has not been published by FDA.

Devices meeting the above criteria are referred to as “grandfathered” devices and do not require

a 510(k). The device must have the same intended use as that marketed before May 28, 1976. If

the device is labeled for a new intended use, then the device is considered a new device and a 510(k)

must be submitted to FDA for marketing clearance.

Please note that you must be the owner of the device on the market before May 28, 1976, for

the device to be grandfathered. If your device is similar to a grandfathered device and marketed af-

ter May 28, 1976, then your device does NOTmeet the requirements of being grandfathered and

you must submit a 510(k). In order for a firm to claim that it has a preamendments device, it must

demonstrate that its device was labeled, promoted, and distributed in interstate commerce for a spe-

cific intended use and that intended use has not changed. See Preamendment Status for information

on documentation requirements.

Third Party Review Program

The Center for Devices and Radiological Health (CDRH) has implemented a Third Party Review

Program. This program provides an option to manufacturers of certain devices of submitting their

510(k) to private parties (Recognized Third Parties) identified by FDA for review instead of submit-

ting directly to CDRH. For more information on the program, eligible devices and a list of Recog-

nized Third Parties go to Third Party Review Program Information page.
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Chapter 1: The PMA Process
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Appendix Exhibit 2: Extract from PMA Statement

The information in this appendix is taken directly from the FDA’s official description of the
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Premarket Approval process1

Overview

Premarket approval (PMA) is the FDA process of scientific and regulatory review to evaluate the

safety and effectiveness of Class III medical devices. Class III devices are those that support or sus-

tain human life, are of substantial importance in preventing impairment of human health, or which

present a potential, unreasonable risk of illness or injury. Due to the level of risk associated with

Class III devices, FDA has determined that general and special controls alone are insufficient to as-

sure the safety and effectiveness of class III devices. Therefore, these devices require a premarket

approval (PMA) application under section 515 of the FD&CAct in order to obtain marketing

clearance. Please note that some Class III preamendment devices may require a Class III 510(k). See

“Historical Background” for additional information.

PMA is the most stringent type of device marketing application required by FDA. The applicant

must receive FDA approval of its PMA application prior to marketing the device. PMA approval

is based on a determination by FDA that the PMA contains sufficient valid scientific evidence to

assure that the device is safe and effective for its intended use(s). An approved PMA is, in effect, a

private license granting the applicant (or owner) permission to market the device. The PMA owner,

however, can authorize use of its data by another.

The PMA applicant is usually the person who owns the rights, or otherwise has authorized ac-

cess, to the data and other information to be submitted in support of FDA approval. This person

may be an individual, partnership, corporation, association, scientific or academic establishment,

government agency or organizational unit, or other legal entity. The applicant is often the inven-

tor/developer and ultimately the manufacturer.

1http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/HowtoMarketYourDevice/
PremarketSubmissions/PremarketApprovalPMA/default.htm
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FDA regulations provide 180 days to review the PMA and make a determination. In reality, the

review time is normally longer. Before approving or denying a PMA, the appropriate FDA advisory

committee may review the PMA at a public meeting and provide FDAwith the committee’s rec-

ommendation on whether FDA should approve the submission. After FDA notifies the applicant

that the PMA has been approved or denied, a notice is published on the Internet (1) announcing the

data on which the decision is based, and (2) providing interested persons an opportunity to petition

FDAwithin 30 days for reconsideration of the decision.

The regulation governing premarket approval is located in Title 21 Code of Federal Regulations

(CFR) Part 814, Premarket Approval. A class III device that fails to meet PMA requirements is

considered to be adulterated under section 501(f) of the FD&CAct and cannot be marketed.

When a PMA is Required

PMA requirements apply to Class III devices, the most stringent regulatory category for medical de-

vices. Device product classifications can be found by searching the Product Classification Database.

The database search provides the name of the device, classification, and a link to the Code of Federal

Regulations (CFR), if any. The CFR provides the device type name, identification of the device,

and classification information.

A regulation number for Class III devices marketed prior to the 1976Medical Device Amend-

ments is provided in the CFR. The CFR for these Class III devices that require a PMA states that

the device is Class III and will provide an effective date of the requirement for PMA. If the regula-

tion in the CFR states that “No effective date has been established of the requirement for premarket

approval,” a Class III 510(k) should be submitted.

Please note that PMA devices often involve new concepts and many are not of a type marketed

prior to the Medical Device Amendments. Therefore, they do not have a classification regulation

in the CFR. In this case, the product classification database will only cite the device type name and
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product code. If it is unclear whether the unclassified device requires a PMA, use the three letter

product code to search the Premarket Approval (PMA) database and the 510(k) Premarket Notifi-

cation database. These databases can also be found by clicking on the hypertext links at the top of

the product classification database web page. Enter only the three letter product code in the prod-

uct code box. If there are 510(k)s cleared by FDA and the new device is substantially equivalent to

any of these cleared devices, then the applicant should submit a 510(k). Furthermore, a new type

of device may not be found in the product classification database. If the device is a high risk device

(supports or sustains human life, is of substantial importance in preventing impairment of human

health, or presents a potential, unreasonable risk of illness or injury) and has been found to be not

substantially equivalent (NSE) to a Class I, II, or III [Class III requiring 510(k)] device, then the

device must have an approved PMA before marketing in the U.S. Some devices that are found to

be not substantially equivalent to a cleared Class I, II, or III (not requiring PMA) device, may be

eligible for the de novo process as a Class I or Class II device. For additional information on the de

novo process, see the guidance “New section 513(f)(2) - Evaluation of Automatic Class III Desig-

nation: Guidance for Industry and CDRH Staff” as well as the Evaluation of Automatic Class III

Designation (De Novo) Summaries webpage.

Devices Used in Blood Establishments

The Center for Biologic, Evaluation, Research (CBER) has expertise in blood, blood products, and

cellular therapies as well as the integral association of certain medical devices with these biological

products. To utilize this expertise marketing and investigational device submissions (Premarket

Notification, Premarket Approval, and Investigational Device Exemption) for medical devices asso-

ciated with the blood collection and processing procedures as well as those associated with cellular

therapies are reviewed by CBER. Although these products are reviewed by CBER, the medical de-

vice laws and regulations still apply. The list of medical devices reviewed by CBER are available on
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the Internet. In addition to CDRH guidance on Premarket Approval, specific medical device guid-

ance for devices reviewed by CBER is available at online or by contacting:

Center for Biologics Evaluation and Research
Office of Communication, Training andManufacturers Assistance (HFM-43)
1401 Rockville Pike, Room 200N
Rockville, MD 20852-1448 U.S.A.
Telephone Number: 301-827-2000 or 800-835-4709
Fax Number: 301-827-3843

Data Requirements

A Premarket Approval (PMA) application is a scientific, regulatory documentation to FDA to

demonstrate the safety and effectiveness of the class III device. There are administrative elements

of a PMA application, but good science and scientific writing is a key to the approval of PMA ap-

plication. If a PMA application lacks elements listed in the administrative checklist, FDA will refuse

to file a PMA application and will not proceed with the in-depth review of scientific and clinical

data. If a PMA application lacks valid clinical information and scientific analysis on sound scientific

reasoning, it could impact FDA’s review and approval. PMA applications that are incomplete, inac-

curate, inconsist, omit critical information, and poorly organized have resulted in delays in approval

or denial of PMA applications. Manufacturers should perform a quality control audit of a PMA

application before sending it to FDA to assure that it is scientifically sound and presented in a well

organized format.

Technical Sections: The technical sections containing data and information should allow FDA

to determine whether to approve or disapprove the application. These sections are usually divided

into non-clinical laboratory studies and clinical investigations.

Non-clinical Laboratory Studies Section: Non-clinical laboratory studies section includes

information on microbiology, toxicology, immunology, biocompatibility, stress, wear, shelf life, and

other laboratory or animal tests. Non-clinical studies for safety evaluation must be conducted in
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compliance with 21 CFR Part 58 (Good Laboratory Practice for Nonclinical Laboratory Studies).

To assist you in determining the appropriate preclinical bench studies for your device, refer to the

applicable guidance documents and standards identified in the Product Classification database for

your device. You may also seek input from the review branch via the Pre-Submission Program.

Clinical Investigations Section: Clinical investigations section includes study protocols, safety

and effectiveness data, adverse reactions and complications, device failures and replacements, patient

information, patient complaints, tabulations of data from all individual subjects, results of statistical

analyses, and any other information from the clinical investigations. Any investigation conducted

under an Investigational Device Exemption (IDE) must be identified as such.

Like other scientific reports, FDA has observed problems with study designs, study conduct, data

analyses, presentations, and conclusions. Investigators should always consult all applicable FDA

guidance documents, industry standards, and recommended practices. Numerous device-specific

FDA guidance documents that describe data requirements are available. Study protocols should

include all applicable elements described in the device-specific guidance documents.
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Appendix Figure I: New digital devices

Appendix Figure II: Variaঞon in state share of so[ware engineers*

*linear imputation for years 2002-2004 and 2016

135



Appendix Figure III: Share of digital devices in general clusters vs. rest

Appendix Figure IV: Share of digital devices in class-specific clusters vs. rest
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Appendix Figure V: Share of digital devices: VC vs. non-VC-funded private firms

Appendix Figure VI: Share of digital devices: publicly-listed vs. private firms
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Appendix Table I: Machine readable documents by sample year

Year Readable Documents Total Products % Readable
2002 2,573 2,587 99.5
2003 2,565 2,579 99.5
2004 2,476 2,505 98.8
2005 2,338 2,364 98.9
2006 2,430 2,450 99.2
2007 2,245 2,318 96.9
2008 2,333 2,382 97.9
2009 2,287 2,333 98.0
2010 2,168 2,242 96.7
2011 2,405 2,452 98.1
2012 2,466 2,502 98.6
2013 2,404 2,428 99.0
2014 2,509 2,552 98.3
2015 2,334 2,408 96.9
2016 2,261 2,328 97.1
Total 35,794 36,496 98.1
Based on 8 most commonmedical specialty areas (classes).

138



Appendix Table II: Keywords and overlap of each with MTI classificaঞon of so[ware devices

Keyword (& acronyms thereof)* Total devices % Flagged byMTI as “software”
data 18,894 20%
internet 9,840 17%
software 6,788 73%
imaging 5,470 49%
display 5,107 50%
interface 3,728 40%
digital 3,249 47%
computer 2,779 58%
screen 2,278 49%
transmission 1,798 41%
platform 1,361 47%
network 1,187 62%
wireless 906 48%
database 757 57%
server 731 70%
programmable 714 48%
microprocessor 593 33%
digitally 464 27%
bit 418 58%
processor 381 48%
analog 359 39%
digitalimage 312 54%
ethernet 291 58%
bluetooth 287 35%
cpu 277 50%
LAN 232 66%
datastorage 223 57%
datacollection 221 45%
informationsyste 193 69%
touchscreen 183 31%
download 180 59%
online 161 48%
IT 133 39%
digitaldata 125 54%
harddisk 116 73%
bandwidth 110 63%
This list includes all keywords found in >100 unique product descriptions.
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Appendix Table III: Control variables: year and product class, MTI

Logit model: digital device commercialization
(1) (2)

Cardiovascular 0.162*** 0.162***
(0.033) (0.033)

Clinical Chemistry 0.099*** 0.099***
(0.028) (0.029)

Dental 0.038* 0.038*
(0.017) (0.017)

Gastroenterology, Urology 0.062*** 0.062***
(0.014) (0.014)

General Hospital 0.050* 0.050*
(0.020) (0.019)

General, Plastic Surgery 0.054*** 0.053***
(0.014) (0.014)

Radiology 0.515*** 0.516***
(0.073) (0.074)

N 22,291 22,291
Pseudo-R2 0.2349 0.2339
* p<0.05, ** p<0.01, *** p<0.001
Logit model results for years 2005-2016, inclusive. Column 1 includes
year fixed effects; Column 2 includes a linear time trend. Omitted class =
Orthopedic Devices; omitted year (Column 1) = 2005, marginal effects
reported. Digital devices defined based onMTI method.

140



Appendix Table IV: Geographic and within-firm experঞse, MTI

Logit model: digital device commercialization
(1) (2) (3) (4) (5) (6) (7) (8)

Ln of digital device experience 0.080*** 0.054*** 0.051***
(0.007) (0.009) (0.008)

Ln of same-class digital device experience 0.081*** 0.033* 0.025*
(0.009) (0.013) (0.011)

Ln of state software employment 0.006 0.009 0.005
(0.004) (0.005) (0.004)

In digital device cluster (general) 0.056*** 0.033*** 0.012
(0.010) (0.007) (0.007)

In digital device cluster (class-specific) 0.091*** 0.085*** 0.067***
(0.009) (0.009) (0.007)

N 22,291 22,291 22,291 22,291 22,291 22,291 22,291 22,291
* p<0.05, ** p<0.01, *** p<0.001
Firm experience and cluster variables are defined based on three most recent calendar years. All models control for
volume of firm commercialization activity in past three years and state-level device clusters (representing all state-level
medical device device commercialization). All models also include a full set of time and product class fixed effects.
Marginal effects reported; standard errors are clustered at the product code level. Digital devices defined based onMTI
method.
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D
Chapter 3: Robustness

As described previously, several key features of this setting mitigate concerns of selection and allow

for robust econometric identification of the causal impact of eICU on patient mortality. In order

to validate those features, this section is dedicated to testing whether some facilities were selected in

receiving technology before others, as well as empirically testing whether selection on patient health

occurs on two margins: sorting of patients across traditional and electronic ICUs upon admission,

and differential rates of patient transfers out across traditional and electronic ICUs.
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Early versus late adoption

While interviews with directors and managers indicated that the timing of the technology rollout

did not take into account hospital or facility characteristics, I am able to test this empirically by

estimating whether patients treated at facilities that received technology early or late experienced

differing outcomes.

More specifically, I estimate

Mortalityijt = β0 + β1 ∗ eICUit + β2 ∗ eICU ∗ Lateit + β3 ∗ APACHEit + χit + γjt + νt + ε

where eICU is a patient-encounter indicator for treatment by the eICU, APACHE is the patient’s

APACHE health score, χ is a vector of patient controls, including patient age, gender, admission

hour, and diagnosis, γ is a set of facility fixed-effects, and ν is a set of year and month-of-year fixed

effects. Here, both β1 and β2 are the coefficients of interest, with the former measuring the outcomes

effects for patients seen in facilities that received technology early hospitals, with the latter capturing

the effect for patients seen at facilities receiving technology later relative to β1. Standard errors are

clustered at the facility level.

Results from this exercise can be found in Table D1, where columns 1 and 2 report hospital mor-

tality outcomes, with column 2 being the more saturated model. The coefficient eicu ∗ Late is in-

significant in both columns, indicating that patients treated at facilities that were late adopters of

technology did not experience different outcomes.
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Transfers out of the eICU

In order to alleviate concerns of selection in which patients are transferred out of eICU facilities

to facilities with traditional ICUs, I undertake a straightforward empirical test using the following

model:

Transferredijt = β0 + β1 ∗ eICUit + β2 ∗ APACHEit + χit + γjt + νt + ε

where controls are similar to those previously defined. Results from this exercise can be found in

Table D2 column 2, where we observe that transfers do not increase for patients in the eICU, vali-
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dating details of the setting described in section 3.2.4. In fact, transfers decrease by 0.63 percentage

points off a mean of 2.16 percentage points, a near 30% reduction, pointing to increased treatment

capacity within the IT-enabled ICUs.

Selection on ex ante health

One area of concern regarding selection is whether healthier or sicker (ex ante) patients are sorted

across traditional and electronic ICUs in a way that would bias the main result. More specifically,

I test whether eICU patients appear healthier upon admission to the ICU compared to traditional

ICU patients. I estimate

APACHEijt = β0 + β1 ∗ eICUit + χit + γjt + νt + ε
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where controls are similar to those previously defined. Column 2 of Table D3 provides results from

this estimation exercise, where we see that, if anything, APACHE scores are slightly higher, hence

patients are marginally sicker, in the eICU versus the traditional ICU. Not only is this in a direction

that might attenuate the main result (rather than bias it upward), it is potentially indicative of a

relief of the ICU capacity constraint–the eICU allows for more patients, particularly sicker patients,

as efficiency improvements have increased capacity.
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E
Chapter 3: Separating Cardiovascular

Events

Although the principal estimation exercises in the study utilize the full set of data and rely on dis-

ease fixed effects, interviews with staff members on site pointed to potential differences in outcomes

for a certain set of patients: those suffering from acute heart failure. Prior to the introduction of

the electronic ICU, heart failure patients were often (although not always) admitted to a specialized
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“cardiac” intensive care unit (CICU) that were staffed with physicians that had particular experience

in treating cardiac cases. Post-eICU, patients suffering from acute heart failure were seen by general-

ist critical care physicians in the eICU, not specialized physicians. This introduces potential bias into

estimates of the true effect of telemedicine—this section is dedicated to separating cardiac cases in an

effort to gain more clarity into those true effects.

Main effect

Using data on treatment via electronic versus traditional ICUs in conjunction with detailed medical

records to control for health and a variety of fixed-effects to account for unobservables, I estimate

the effect of eICU treatment on mortality using the following general specification at the patient-

encounter level:

Mortalityijt = β0 + β1 ∗ eICUit + β2 ∗ APACHEit + χit + γjt + νt + ε

where eICU is a patient-encounter indicator for treatment by the eICU, APACHE is the patient’s

APACHE health score, χ is a vector of patient controls, including patient age, gender, and diagnosis,

γ is a set of facility fixed-effects, and ν is a set of year and month-of-year fixed effects. Here, β1 is the

coefficient of interest, measuring the outcomes effect of eICU implementation. Standard errors

are clustered at the facility level for all results to follow. In this section, cardiac cases are defined as

patients suffering from acute myocardial infarctions or cardiac arrest.

The main estimation exercise seeks to identify the effect of eICU on patient-level mortality, sepa-

rated for cardiac and non-cardiac cases. Results can be found in Appendix E Table 1, where column

1 presents results from a fully specified model for cardiac patients, while column 2 presents results

from a fully specified model for all non-cardiac patients. Column 3 presents results from all patients

(similar to section 3.5.2).
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Focusing on column 1, we see that patients suffering from cardiac conditions appear to receive no

benefit from telemedicine, while non cardiac patients (in column 2) realize greater mortality gains

than the average patient from the full sample, approximately a 20% reduction in mortality.

Treatment Effort

The detailed patient medical records indicate whether a patient was actively treated or simply moni-

tored by the eICU, and so I can test whether there are significant differences in treatment rates (i.e.,

whether a physician directed or otherwise provided treatment for a patient versus a baseline of moni-

toring) for eICU patients versus traditional ICU patients using the following specification:

Treatedijt = β0 + β1 ∗ eICUit + β2 ∗ APACHEit + χit + γjt + νt + ε

Again, the coefficient of interest is β1. Appendix E, Table 2 provides results from this exercise,
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where columns one and two provide results from the most specified model for cardiac and non-

cardiac patients, respectively. Column 3 provides results from the full sample for comparison. Fo-

cusing on Column 1, we see that patients suffering from cardiac conditions appear to receive nearly

7% less treatment on average than their non-cardiac condition peers in column 2.

Heterogeneity

Similar to Section 3.5.3, I seek to uncover potential treatment effect and effort heterogeneity un-

derlying the average effects estimated in the cardiac condition population above. To test for this, I

estimate a model in which a dummy for treatment was regressed on deciles of APACHE scores as a

proxy for patient severity. Results of this exercise are visualized in Appendix E, Figure 1, where we

see that treatment rates differ by patient health for cardiac patient
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In order to further test the consequences of these reallocation decisions, I estimate a model sim-

ilar to the above, but using interactions of eICUwith deciles of APACHE scores. Estimates from

this exercise are plotted in Appendix E, Figure 2 where I observe heterogeneous effects across patient

health, with middle of the severity distribution observing a slight improvement in mortality, while

the upper deciles see much larger increases in mortality compared to non-cardiac patients.
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