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Abstract 

Online advertising continues to evolve at a rapid as the internet and the digital marketing landscape 

mature. Firms face new challenges in acquiring, engaging and retaining customers. Entire new 

markets and technologies have grown out of the race digital marketing dominance. This 

dissertation aims to examine some of these advances and offer practical insights for today’s firms 

that need to navigate this new world. 

In the first essay, I explore the effects of user attention to online display advertising. Using two 

observational studies, I show that attention is highly heterogeneous and predictable during the user 

browsing session. The implications are that publishers should be more selective in ad placement 

and that advertisers should be more selective in ad purchases. 

The second essay examines how programmatic advertising firms should efficiently allocate ads in 

real-time bidding environments on behalf of their client advertisers. I introduce the demand side 

platform problem which is related to both the adwords and publisher problems, but distinct in that 

the supply of ad space assumed unlearnable. I provide a real-time mechanism for efficient ad 

allocation in this setting and demonstrate efficacy using real-time bidding data. 

In the final essay, I examine cross-merchant spillovers in coalition loyalty programs. I examine a 

natural experiment where a large grocery store joined a large loyalty program coalition. Using a 
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quasi-difference-in-difference approach and Bayesian Structural Time Series for causal inference, 

I find that adding a large complementary merchant into a coalition loyalty program increases sales 

and purchase frequency of existing customers at existing merchants.  
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Introduction 

Digital marketing is rapidly evolving and continues to upend the strategic marketing 

landscape. This is primarily due to the shift in consumer habits where people now spend a large 

proportion of their waking hours online. Unlike traditional media channels, digital channels 

provide a wealth of user data, instant feedback, and interactive contact. However, much of the 

digital space is still unsophisticated leading to cluttered websites and poor user engagement. 

Despite the abundance of online ads, richness in targetability data, and opportunity to engage users, 

firms have struggled to improve marketing efficiency in these new channels.  

One area of rapid innovation is the movement of digital advertising to programmatic 

bidding. This has created a new ecosystem of firms that transact, track, and target users at the 

impression level. Advertisers now need to evaluate individual digital ads spaces in under a second 

and optimally place their ads in a wildly unpredictable environment.  

Another area of innovation is experimentation in digital loyalty programs. These loyalty 

programs are also becoming an essential part of mobile advertising and modern sales promotions 

as marketers continue to find new ways to engage customers. These innovations continue to 

advance at a rapid pace despite the lack of evidence to support the formation of digital loyalty 

programs.  

This dissertation adds to the digital advertising and CRM literature through empirical 

analysis of these emerging trends. In the first essay, co-authored with Thales Teixeira, I explore 

the effects of user attention to online display advertising. Much of previous research jumps ahead 

to later funnel activities assuming that all display ads are equally likely to be attended to or that 

attention is randomly distributed throughout time. I show that attention is highly heterogeneous 
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and predictable during the user browsing session. The implications for publishers are that many of 

the ad spaces on their websites are focused in areas where people will not attend to them. It also 

has implications for advertisers targeting practices in that they should not purchase ad space that 

is unlikely to ever be attended to. 

The second essay, co-authored with Sunil Gupta and David Parkes, examines how 

programmatic advertising firms should efficiently allocate ads in real-time bidding environments 

on behalf of their client advertisers. I introduce this as the demand side platform problem which I 

compare to both the adwords and publisher problems. These firms face a highly unstable supply 

of ads that do not follow a stationary distribution and therefore violating the assumptions of the 

adwords and publisher problems. Additionally, these firms also face ad quota constraints from 

their client advertisers. Given the nature of the environment, existing parametric solutions are not 

feasible, and I provide a real-time mechanism for efficient ad allocation.  

In the final essay, co-authored with Sunil Gupta and Donald Ngwe, I turn from acquiring 

customers to retaining them. I examine cross-merchant spillovers in coalition loyalty programs. 

This essay adds to the literature on loyalty program efficacy by examining a natural experiment 

where a large grocery store joined a large loyalty program coalition. I conduct our analysis using 

a quasi-difference-in-difference approach and Bayesian Structural Time Series for causal 

inference. I find that adding a large complementary merchant into a coalition loyalty program 

increases sales and purchase frequency of existing customers at existing merchants. 

  



3 

 

1 Online Task Progression and Display Ad Engagement 

1.1 Introduction 

Display advertising is ubiquitous on the Internet despite limited evidence of its efficacy. 

Not knowing where to place online ads that will garner attention, many marketers resort to 

overusing them. Marketing research has improved our understanding of when online ads work to 

some extent. However, much of the academic research in online advertising has focused on 

measuring user heterogeneity or modeling purchase behavior to better segment and target 

consumers (Manchanda et al. 2006, Rutz and Bucklin 2012, Hoban and Bucklin 2015). Past 

research prior to the advent of the Internet has shown the critical importance of timing in 

influencing consumers through advertising (Strong 1977). However, little has been done on 

understanding what consumers are doing online when exposed to internet advertising and how this 

impacts ad effectiveness. This paper incorporates the role of timing—as it pertains to the 

consumer’s progression through tasks routinely done online—on engagement to online display 

ads.  

A critical factor in display advertising is the availability of attention at the time of exposure. 

We propose that consumer tasks and their progression through these tasks are fundamental to 

explain engagement to display advertisements. We build on current models of attention from 

psychology and marketing to develop a conceptual model of attentional buildup followed by 

attentional release during typical consumer browsing tasks. We hypothesize that consumers are 

more likely to attend to online display ads at the beginning and ending of tasks, as opposed to in 

the middle portion. 
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We test our hypothesis using two datasets. The first contains video ad view-through rates 

from experimental data randomized across users, ad campaigns and time. The second contains 

display ad click rates on a larger and richer observational dataset from a digital advertising 

targeting firm. Both datasets offer impression level measures of user engagement allowing for 

precise and high-powered identification. For each of these datasets, we estimate a logistic 

regression model with random effects to measure the impact of task progression while accounting 

for the standard predictors of display ad engagement. Furthermore, to overcome observational 

biases and endogeneity concerns in our data, we test our hypothesis using a novel application of 

Rubin's (1974) propensity score matching procedure for causal inference. Our implementation of 

this approach exploits website content and hierarchical page structure to predict task progression 

using the random forest algorithm. Our matching procedure utilizes binary search trees which 

enables our analysis to scale to big data. 

Using these models, we find that an individual’s task progression has a substantial effect 

on display ad engagement. We provide strong support for the hypothesis that consumers are more 

likely to attend to online display ads at the beginning and ending of tasks, as compared to in the 

middle. Our findings are conceptually and practically distinct from both the industry belief that 

ads at the top of web pages will have higher attention levels (Brebion 2018), as well as from prior 

research showing that ad engagement is equally likely throughout the browsing session (Chaterjee 

et al. 2003).  

Our findings on ad engagement and task progression have important managerial 

implications for both web publishers and advertisers seeking to optimize online ad placements. 

One such implication is that, akin to how advertisers should understand how people search online 

for products in order to better determine keywords to bid for search engine ads, advertisers should 
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also understand people’s primary tasks and their progression in order to better place display ads. 

Additionally, we conduct an out-of-sample simulation to demonstrate how advertisers can 

incorporate task progression in better targeting digital advertising. 

This paper is organized as follows. We first conduct a brief literature review on display ad 

placement and attention, followed by formalizing our hypothesis of attention as a function of 

display ad location during tasks. We then develop our conceptual model and discuss our design 

and identification strategy to test our hypothesis. This is followed by the empirical estimation using 

two data sets showing support for our hypothesis and a simulation showing the practical benefits. 

In the final section, we conclude and offer recommendations for the placement of online display 

advertising. 

1.2 Literature Review 

The importance of digital media has led to significant research into digital advertising. 

Most early research on digital advertising has focused on understanding the effects of display 

advertising at the awareness stage by measuring changes in brand awareness, brand attitudes and 

purchase intentions (Ilfeld and Winer 2002, Dreze and Hussherr 2003, Cho and Cheon 2004, 

Moore et al. 2005). More recent research has instead focused on actual purchase outcomes from 

display advertising and factors such as privacy or segmentation strategies that affect later funnel 

purchase behavior (HobanBucklin 2015). However, little research has been done examining 

consumer attention to online tasks and how attention to tasks affects engagement with display ads. 

If attention is the bottleneck to downstream effects as those early studies showed, then the impact 

of browsing progression on reducing the attention available for display ads is a possible culprit for 

lack of ad effectiveness. 
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One paper in particular regarding attention to display ads by Huberman et al. (1998) argues 

that online consumers have a lower threshold for uncertainty early on in a web browsing session, 

and thus advertisers should expect more clicks at the beginning of a session. But this result is in 

contrast with later work by Chaterjee et al. (2003) who find clicks to be equally likely throughout 

the browsing session, indicating that timing of ads throughout a browsing session does not matter 

for ad effectiveness. 

In addition, Chaterjee et al. (2003) point out that display ad click-through rates are quite 

low and they have been dropping over time. This claim increases the need for us to better 

understand online advertising engagement. The falling engagement rates of display ads have led 

many advertisers to more obtrusively interrupt consumers with pop-up ads which co-opt consumer 

attention, often against their desires. Moe (2006) studies the effects of pop-up ads on engagement 

and show that they initially improve customer responsiveness to display ads but also stop working 

over time. 

This type of obtrusive interruption of web browsing is illustrative of the conflict between 

the goals of consumers and those of advertisers. Danaher and Mullarkey (2003) investigate more 

thoroughly the goal-directed nature of consumers’ online browsing behavior. They find that the 

more goal-oriented the browsing session, the less display ads will be attended to. Similarly, Cho 

and Cheon (2004) find that consumers avoid attending to display ads because it impedes their 

browsing goals. Collectively, this stream of research points to the idea that, in order for display 

ads to get initial attention, consumers often need to (deliberately or not) momentarily give up the 

attention they allocate to their primary task of choice that led them to browse the internet.  
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1.3 Attention to Tasks 

We now turn to examine attention and how it relates to everyday tasks that are achieved 

through various types of media such as print, television and the Internet. We begin by defining 

three concepts to aid in understanding task behavior. First, we adopt the definition of a task as a 

complex situation capable of eliciting a goal-directed performance from an individual (Fleishman 

and Quaintance 1984). Second, we define task progression as a collection of steps that make up 

the task, all of which need to be completed in order to achieve the task’s goal (Cooper and Shallice 

2000). Task progression allows us to label the first step, any middle steps and the last step in a 

task. Finally, we define task type, which allows us to recognize that within any period of activity 

there may be multiple different tasks, each with its own progression.1 We illustrate the application 

of these constructs in detail in the measurement section to follow. 

With these definitions in mind, we review the growing body of literature in psychology 

around understanding the mechanism of attention, the effects of external stimuli in capturing 

attention and the task engagement mechanism.  

In this literature, attention is often discussed in terms of perceptual load theory, whereby 

individuals are endowed with a fixed capacity for attending to tasks. Each task has an attentional 

cost, and so attention to external stimuli depends on available attentional capacity (Lavie, 1995; 

Lavie and Tsal, 1994). The more an individual focuses on a task, the more attentional resources 

are allocated to that task, and the less likely they are to have excess attentional capacity to attend 

to other stimuli (Forster and Lavie, 2009). 

 
1
 Classification of tasks is particular to the environment being studied and Fleishman and Quaintance (1984) 

discuss in detail the classification of tasks based on four dimensions: (1) task content, (2) task environment, (3) level 

of learning, and (4) discriminable task functions.   
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In this model of attention, even if there is spare attentional capacity, any external stimuli 

will almost always be ignored if it can be easily identified as not relevant to the task at hand (Lamy 

et al., 2004). At first, this process is deliberate. However, eventually, individuals will adopt habits 

to automatically ignore task-irrelevant stimuli (Anderson et al., 2011). 

The fixed-attentional capacity model can help explain online ad engagement, or lack 

thereof. For instance, the banner blindness findings of Benway and Lane (1998), goal-orientation 

findings of Danaher and Mullarkey (2003), and why people ignore ads while engaged in a task are 

predictable outcomes of the fixed-attentional capacity model. Banner blindness is a behavior by 

which consumers who are attending to an online task (e.g., reading text) end up suppressing 

attention to banner ads. Similarly, the goal orientation findings are based on a treatment condition 

of a highly engaging task versus a control condition of no specific task other than casually 

browsing web pages. 

In a closely related paper, Tavassoli et al. (1995) investigate the ability to process 

information contingent upon television program involvement. They find an inverted-U 

relationship between ad recall and program involvement. Their research is similar to ours in that 

they measure how memory and attitude towards TV advertisements varies with primary task (e.g., 

TV viewing) involvement. However, they examine attention across consumers, whereas we 

investigate attention within consumers. 

In the Norman-Shallice model of executive control (Norman and Shallice 1980, 1986), 

action statements (i.e., schemas or tasks) are selected by the individual’s executive control system. 

Once selected, a task remains active until its goal is reached or it is inhibited by a competing task. 

We contend that online tasks such as reading emails, browsing news articles, and watching videos 

are deliberately selected by Internet users that go online. Rarely, if ever, does a person have as 
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their primary task to pay attention to banner ads. These are competing tasks that can temporarily 

inhibit a primary task. 

Attention allocation to primary tasks slowly builds up as consumers engage with them 

(activation in the Norman-Shallice model) and stay high until the primary task is completed, 

abandoned, or attention is co-opted away with competing stimuli (deactivation in the Norman-

Shallice model). Subsequently, Cooper and Shallice applied the Norman-Shallice model to explain 

cognitive resources build up and release in day-to-day tasks such as coffee preparation (Cooper 

and Shallice 2000, p. 319). We contend that the same general pattern applies to online tasks as 

well. If so, a natural question to ask is how does online task progression impact engagement with 

display ads shown in the beginning, middle and end of tasks commonly done online? 

1.4 Conceptual Model 

Given the above findings regarding task and attention, we now propose to relate them to 

online browsing behavior through a simple and generalized conceptual model. Since an online task 

is accomplished via attending to an ordered sequence of web pages (e.g. reading several news 

articles sequentially on CNN.com), the most obvious choice for measuring task step is web page 

visit, where each distinct page view is a unique task step. Task progression measurement entails 

that the first page of the task be labeled a first step, the last page view of the task be labeled a last 

step, and all other page views in-between be labeled as middle steps. 

General attention theory states that until a task is completed, the consumer is invested in 

and attending to that task. Throughout the online task, ad attention is low while the consumer is 

actively engaged in their primary task. Since attentional resources revolve around a task and not 
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the browsing session or the domain, breaks between task steps (such as moving between web pages 

or domains) as part of a single task do not have a significant effect on ad attention, all else equal.  

Eventually, as people complete one task, they either move onto the next task, or they spend 

some (free) time wandering around until they perceive a need to engage in another task. In both 

situations, they are “released” from the task and their attentional resources free up. At this point, 

people disengage from their primary task and top-down processes (i.e., individual-dominated 

attention) will again take-over in choosing the next task. Collectively, these corollaries to the 

theory drive our central hypothesis. We predict that, within a task, attention to ads will be higher 

at the first and last task steps than at any other task step in between. The reasoning is that it is at 

these transition points between tasks where people have not fully assigned their available 

attentional capacity to a primary task of choice, thus leaving unallocated attention for other stimuli, 

ads being only one of them. We note that our hypothesis pertains to relative attention within a task 

and does not speak to levels of attention across tasks. 

In reality, many ads appear when consumers do not have the attentional availability to 

engage with them. By placing ads in the middle of a task, advertisers are attempting to capture a 

consumer’s attention when they are most engaged in another task and thus least likely to attend to 

the ad. This conjecture would help explain the high ad avoidance in browsing sessions described 

by Cho and Cheon (2004) as most ads occur mid-task. A challenge in testing this hypothesis is 

how to classify tasks and determine their beginning and ending points. We will address this 

concern separately for each of our two data sets. 
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1.5 Measurement 

To test our central hypothesis, we operationalize the task progress construct as follows. We 

define a user-session-page observation as the unit of analysis. A session is considered a sequence 

of web page visits where the time between page visits is less than 5 minutes.2 Presumably, people 

will engage in many browsing sessions throughout the day. Within each browsing session, people 

may have multiple tasks. We assume that people engage in and complete one task at a time. We 

acknowledge that many people engage in online multitasking, where they simultaneously view 

pages from different tasks or domains. In our data this is somewhat rare3 and so we exclude them 

from our sample for the sake of parsimony. 

Not being able to ask people about the tasks they are performing online, we determine the 

type of sequential tasks based on the content category of each website. This is directly in line with 

the Cooper and Shallice (2000) model describing the main task as the ‘goal’ that people wish to 

achieve.  For example, a person may choose to read news websites so we assume the task goal to 

be ‘being informed about current events,’ an online gaming site allows accomplishing the task of 

‘entertaining oneself by playing online games,’ a weather site allows ‘knowing the weather.’ 

Similarly, the Cooper and Shallice (2000) model implies that any other page visit within the same 

content category is a subtask and considered a step towards completing the overall task.4  

 
2
 We compared break intervals from 2 to 10 minutes and observed no qualitative differences. 

3
 100% of the sessions in study 1 and 98.7% of sessions in study 2 contain a single task at a time. This is a 

conservative measure of multi-tasking as sessions with serially completed tasks are a part of the 1.3%. 

4 We exclude so-called online portals that let people accomplish multiple different tasks 

due to task identification concerns.  
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To illustrate task progression, we decompose a hypothetical web browsing session 

presented in Figure 1-1. In this example, session 1 shows a user who starts a browsing session with 

the goal of being informed about current events; the resulting task is ‘News.’ They then proceed 

to visit the web domain CNN where step 1 is the first Uniform Resource Locator (URL) page that 

they visit. This step also corresponds with the first step in task progression.  In step 2, the person 

remains on CNN and navigates to a new URL page. Step 2 is still part of the ‘News’ task and a 

middle step in terms of task progression. Next, the user navigates to the BBC domain by loading 

a new URL in step 3. This again remains the task of ‘News’ and step 3 is also a middle step in 

terms of task progression since the task has not changed (even though the domain has changed). 

Step 4 is a new URL page on the BBC domain. Being the final ‘News’ step, it is classified as a 

last step in terms of task progression. Within this same session, the user begins the new goal of 

playing online games. They navigate to puzzles.com and the first URL page loaded is labeled step 

1 of a ‘Games’ task which is again the first step in terms of task progression. From here the labeling 

process carries on. It should be clear that first and last steps in terms of task progression are distinct 

from domains and web session first and last web pages.  

For the case in Figure 1-1, our hypothesis predicts that within each task the shaded cells 

(e.g., Session 1, News at steps 1 and 4) have higher levels of ad attention than the unshaded cells. 

Note that this is distinct from the industry belief that ads at the top and bottom of web pages have 

higher attention levels (Brebion 2018, Work and Hayes 2018) and from prior research showing 

that ad engagement is equally likely throughout the browsing session (Chaterjee et al. 2003).  
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Figure 1-1 Task Progression Conceptualization 

1.6 Design and Identification 

Digital advertising impression logs are a natural data source for this type of investigation. 

First, they allow the researcher to track users across web pages and time. Second, web page content 

provides natural task classifications. And third, digital ads are external stimuli within each step 

designed to grab a user’s attention. With this type of data, we construct the user browsing session, 

classify tasks within that session and identify task steps as defined above to test our hypothesis. 

To measure ad engagement we employ two metrics: clicks and video view-throughs. Clicks 

have been a standard metric in marketing research and have the benefits of being a behavioral 

measure (Chaterjee et al. 2003). More importantly, clicks are a direct measure of engagement with 

each ad. Since our theory makes predictions for ad engagement at each task step, our measure 

needs to be fine enough to capture changes in ad engagement at the granularity of a task step. 

Clicks allow for this. 

Clicks have become more contested lately with the increased focus on purchase attribution 

(Hoban and Bucklin 2015). Given the nature of the web, it is very challenging to attribute a 

purchase to a single ad, and some have argued that purchase events should be attributed to multiple 
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ads (Li et al. 2016). This makes purchases a poor measure for our purposes as our hypothesis 

concerns engagement with individual ads.  

For video ad formats, we propose a second measure, ad view-through. This is a binary 

measure of whether or not a user finished viewing a video ad. It has gained popularity in industry 

as an alternative to clicks for videos (Heine 2014). This measure is also closely related to TV ads 

and fits naturally with the traditional marketing literature. Another advantage of measuring view-

throughs is that they occur more often than clicks and therefore allow better measurement of 

advertising engagement on smaller datasets. Lastly, using two measures allows us to test our 

hypothesis on both an opt-in metric (clicks) and an opt-out metric (auto play view-thoughts). 

We test our hypothesis with two data sets representing different observational designs. The 

details of these datasets are discussed in the subsequent sections, but we briefly mention the design 

intentions. The first data set was collected as part of a separate ad server experiment. Thus, it is 

small, without missing data and the ads were assigned in a controlled and randomized manner. 

However, it is restricted to a single task (news reading) and single domain per session resulting in 

the beginning and endings of the browsing session, task and domain effects being confounded. 

This design represents a simplified situation in a controlled environment, and is represented in 

Figure 1-2.  
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Figure 1-2 Data Set 1 Task Progression Identification 

 

The second data set reverses these strengths and weaknesses. This data set is much larger 

but misses data due to the ad server operating in a real-time bidding (RTB) environment. A larger 

sample size allows us to examine multiple task types and to tease out the differences between the 

beginning and endings of session, task and domain effects. This observational study design is 

represented in Figure 1-3, where the shaded cells represent domain and session step. Doing so 

allows for the identification of the task step effect separately from potential domain and session 

confounds. 

 

Figure 1-3 Data Set 2 Task Progression Identification 

Given that the above design identifies the treatment effects of interest, our next concern to 

address is whether or not the observations in each dataset are truly random. Traditionally, when 

modeling user-level behavior with clickstream data, it is assumed that observations are 
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independent (Chaterjee et al. 2003, HobanBucklin 2015). But this is not necessarily true for all 

online browsing behavior. Web pages and their ads are not randomly assigned during a browsing 

session. Websites often have hierarchical structures beginning with homepages possessing generic 

content and branching out deeper with specialized content. Users tend to enter websites near the 

top of these "tree-like" structures, generally at a homepage.5 Following different routes, users then 

continue deeper before finally leaving the website from one of its branches. Consequently, 

observations pertaining to attention to ads on web pages are not in general independently and 

identically distributed.  

As an example, consider a typical visit to the website dictionary.com (contained in our 

second dataset). A visit to this site often starts at the homepage where a search query is entered, 

then a results page is loaded with a list of possible words. This is typically followed by the user 

navigating to one or several of these word definition pages. From this example, we see that a 

potential confound in modeling engagement to ads is that the types of web pages that are likely to 

be first steps, middle steps, and last steps may be structurally different from each other in terms of 

content and, more importantly, ad type, load, and placement. As a consequence, any constructed 

dummy variable for measuring task progression is also going to unintentionally capture systematic 

page structure effects. 

We address this confound by applying the reasoning put forth by Rubin (1974) in 

propensity score matching. The premise is that we want our dataset to resemble a randomized 

control trial where one can stratify across all control variables for treatment, in our case an ad 

shown during a certain task progression (e.g., beginning) and a control group, in our case that same 

 
5
 This is not true for all websites, but a large proportion of websites tend to be structured in this tree-like 

fashion. 
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ad shown at a different point in the task progression (e.g., middle). This procedure creates a balance 

across all control variables which is the foundation of a random assignment that allows us to 

estimate the causal effect of the treatment. The result is a data set that contains probabilistically 

identical samples between treatment and control groups. Another alternative is to control for 

balancing variables (i.e., page structure) in the model specification directly. However, Dehejia and 

Wahba (1999) illustrate that merely controlling for such variables in the model specification is not 

sufficient to adequately account for the bias in observational samples. 

A final concern is that of endogeneity at the end of a task. Is it, in fact, the ad engagement 

(e.g., view-through or click) that caused the end of the task rather than the end of the task causing 

more engagement? This concern is mitigated by the propensity scoring matching procedure. By 

building a model to predict the beginnings and ends of tasks based on the domain and URL 

structure, and not any measures of ad engagement, we test the effect of ad engagement on task 

progression. Intuitively, if task progression were unimportant, then we would not be able to predict 

which pages would likely be the beginnings and ends of tasks. However, if one can predict task 

progression, then it implies that it is page structure and not ad engagement that predominantly 

drives where consumers enter and exit websites. Additionally, observations where ad engagement 

did cause the end of a task are more likely to be excluded in the matched datasets since they are 

less likely to be predicted first/last steps. 6 

 
6
 The authors would like to thank Donald Rubin for helpful comments and suggestions regarding propensity 

score matching and identification. 
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1.7 Data Set 1 – Single News Tasks 

Our first data set is made up of proprietary video advertising data from Vuble7. This dataset 

provides us with the full browsing history of users for several news websites, described in more 

detail in the following section. While this limits us to a single task, it also allows us to precisely 

map the sequence of distinct URLs requested by each user to task steps and thus fully identify task 

progression for each user in each session. As a limitation of this dataset, an entire URL page view 

(not the top or bottom of a page) is defined as our task step since we do not have tracking data for 

users as they move within a single page.   

Vuble uses a variety of video ad formats, but pertinent to our analysis are the ones where 

a video ad was placed at the top of the page. As users scroll down a web page it pauses and 

disappears. Then, it reappears and restarts once the user scrolls to the bottom of the page. This 

feature allows us to measure how long a user spends at the beginning and end of a web page. Had 

the ad only played at the top of the web page, as is common, we would not be able to measure the 

time spent engaging with an ad at the bottom of the web page.8 

1.7.1 Data Description  

The data was collected over a period of seven days, from April 15 to 21 of 2016. It consists 

of 10 different video ads of various consumer brands ranging in length from 25 to 32 seconds long 

collected from 5 news websites in the USA and France. All of these videos have the same viewable 

 
7
 Previously known as Mediabong.  

8
 In the case of reading the news online, as a user gets to the last step of a task, they scroll down and continue 

to read the article. At the start of the last step, they are still highly engaged in news reading and are expected to scroll 

past the ad which is then paused. By continuing to play the video ad at the bottom of the page the advertiser can re-

engage the user at the time they expect them to leave the task and the ad would have higher attentional capture. If a 

video ad did not continue at the bottom of a web page at the last step, where many people would end a task, then our 

measurement of engagement for the last step would be understated. 
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size of 500 x 280 pixels. The ads were shown in the morning (10 am to 11 am), afternoon (2 pm 

to 3 pm) and evening (6 pm to 7 pm) to control for outside attentional demands. These ads were 

shown across time of day, day of week, country and campaign in a randomized and 

counterbalanced manner to control for content and time of day effects. Users were unaware of any 

specific advertising study as it was implemented on the publisher's web pages and shown to users 

at random. 

We collect all data at the user-ad impression level. In total, we observed 63,402 browsing 

sessions consisting of 71,508 page visits and 55,561 uniquely identified users. Of these sessions, 

33,766 consisted of a single page visit and thus cannot be used. Additionally, 23,688 of the page 

visits were of the type where the video ad restarted at the bottom of the page. Since our analysis 

depends on at least a first, middle and last step as well as engagement measures at the top and 

bottom of the page, we reduce the data set to 4,527 page visits from 3,011 users and 1,246 unique 

news articles. However, we still use the full data set to construct the browsing sessions and identify 

the first and last task steps. As can be seen here, our empirical analysis requires a very large dataset 

size to apply the propensity score matching portion of the model. 

We define an end to a browsing session after five minutes of user inactivity and note that 

the main results of interest are robust to varying choices of inactivity intervals commonly defined 

in the range of 2 and 10 minutes. As our measure of advertising engagement, we consider video 

ad view-through rate (VTR) which is defined as the percentage of video ads that completed playing 

before the user navigated away from the web page. We also compared other ad engagement metrics 

(percentage of video watched, time watched, paused, muted, etc.) and note that the results are 

qualitatively similar. 
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Our hypothesis is that ad engagement should be higher at first and last task steps relative 

to a middle step. In a cursory test of this hypothesis, we classify task progression based on the 

observed sessions and calculate the mean video ad completion rate for the first, middle and last 

task steps. We observe that the video completion rate of the first step is 38%, which drops to 22% 

for the middle step and then climbs again to 34% for the last step. The U-shape of these point 

estimates provide initial support for our hypothesis, but we note that the large standard errors 

(ranging from 41% to 49%) around these estimates result in no statistically significant differences 

between the three groups. Therefore, we require a model to control for other known sources of 

variation such as ad, user and website specific effects.  

For completeness, we note that sessions consisting of a single page visit have a video 

completion rate of 38% with a standard deviation of 48% indicating a similar response to that of a 

first task step. This provides some initial indication that targeting users at the beginning of task 

may be beneficial for an advertiser regardless of session length.  

1.7.2 Empirical Model 

Next, we propose a model to estimate user engagement throughout tasks. We begin by 

recalling our hypothesis that users attention starts low, builds up and is eventually released again 

at task completion. Therefore, we predict that user engagement with ads will behave in a U-shape: 

higher at the beginning and ends of online tasks relative to any step in the middle.  We now proceed 

by specifying an empirical model to test this hypothesis by measuring ad engagement contingent 

upon online task progression. 

We measure online ad engagement at the web page level by following users across 

browsing sessions. Our dependent variable is the binary outcome of whether or not the video ad 

completed playing (VTR). Our unit of analysis is the user-session-webpage combination for a 
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single task. For each user i in browsing session j we have a time-ordered sequence of web page 

views k. We look up the content category for each web page to assign a task type and only consider 

one task at a time (i.e., the no multi-tasking assumption). The first (last) web page viewed in each 

task for each user is defined as the first (last) step in the task. Throughout the paper we use dummy 

variables to code for first and last task steps. Their coefficients in the regression directly relate to 

our hypothesis and are the main parameters of interest.  

We model online user behavior using logistic regression with random effects, which has 

now become standard in the clickstream literature (Hoban and Bucklin 2015). In examining the 

data set for sources of VTR variation, we find notable individual campaign, campaign type, and 

domain effects.  We note minor variation in time of day and day of week effects and control for 

them as well. 

In line with past research and our data exploration, we include the standard fixed effects 

for website domain (e.g., cnn.com), time of day and day of week variables, as well as campaign 

type variables (ad and brand features). We then include random effects components for user ID, 

campaign ID and URL to capture the main individual heterogeneity effects. We model ad 

engagement as: 

𝑃(𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡𝑖𝑗𝑘 = 1) = 𝛼 + 𝛽1𝑊𝑒𝑏𝑠𝑖𝑡𝑒𝑖𝑗𝑘 + 𝛽2𝑇𝑖𝑚𝑒𝑖𝑗𝑘 + 𝛽3𝐶𝑎𝑚𝑝𝑎𝑖𝑔𝑛𝑇𝑦𝑝𝑒𝑖𝑗𝑘

+  𝛾1𝐹𝑖𝑟𝑠𝑡𝑆𝑡𝑒𝑝𝑖𝑗𝑘 +  𝛾2𝐿𝑎𝑠𝑡𝑆𝑡𝑒𝑝𝑖𝑗𝑘 + 𝛿1𝜇𝑖 + 𝛿2𝜇𝐶𝑎𝑚𝑝𝑎𝑖𝑔𝑛 + 𝛿3𝜇𝑈𝑅𝐿 +  𝜀𝑖𝑗𝑘, 

where 𝛼 is the intercept, 𝛽 are fixed effect parameters, 𝛾 are the treatment effects being 

tested, δ are random effects parameters with μ~𝑁(0, 𝛴) and 𝜀 is the standard logistic idiosyncratic 

error term. 
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1.7.3 Results 

The output of various logit models is shown in Table 1-1. We estimated model 1, with 

domain fixed effects only, model 2 with domain, day of week and day-part fixed effects, and model 

3 with domain and campaign type fixed effects. Model 4 is the full random effects model. Model 

4 appears to be the best fit based on the AIC scores, while model 2 has very close AIC scores as 

well. In line with our hypothesis, both first and last step coefficients show significantly higher rates 

of video completion than medium steps. These results are robust to all specifications estimated. 

The results of model 4, in particular, indicate an 82% increase in the probability of completing a 

video ad at the beginning of tasks and 30% increase at the end of a task when compared to a middle 

step. In terms of the covariates used, in support of previous findings (Chaterjee 2003), we report 

no significant time effects. As expected, we do find that some campaign types appear to be more 

effective than others for capturing attention.  

These results provide initial support for our hypothesis that consumers are more likely to 

pay attention at the beginning and ends of the online task when it concerns the task of reading 

news online. These results also appear to be independent of other important variables that are 

known to impact online ad effectiveness. Unfortunately, we cannot claim causality as these 

estimates do not arise from a randomized sample of first, middle and last steps. In the next section, 

we address this limitation by applying propensity score matching to the Vuble dataset. 
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Table 1-1 Data Set 1 Model Output 
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1.7.4 Propensity Score Matching Design 

In our application, we can see task progression as our three treatment categories: first, 

middle and last steps. By setting the middle step to be the baseline (control) we choose first and 

last steps to be two distinct treatment types. Next, we need to create two new balanced data sets, 

one for each treatment. First, we model P(treatment=first) and build a matched dataset of middle 

and first steps. We then repeat this process with P(treatment =last) and build a matched dataset of 

middle and last steps. These two balanced datasets would provide us with a quasi-experimental 

design setup for making causal inferences about the first and last step treatment effects (Rubin 

1974). 

Using the insight that users enter and exit websites according to their structure, we are able 

to partially predict entry and exit using information from web pages' URL string. For example, 

www.dictionary.com is probabilistically more likely to be a first step; whereas 

www.dictionary.com/browse/quandary/page=synonym is more likely to be a last step. We 

construct variables that tend to explain where people are entering and exiting a website.   

We code three variables associated with domain structure characteristics. We begin by 

defining a page depth variable as the count of forward slashes in the URL. A second variable that 

we code are page count indicators. These are string components of the form ‘page=’ or ‘p=’. These 

are also associated with someone moving deeper through a website, which is generally not present 

in a first step URL. Our third constructed variable is the step number of the given session. When 

we identify our browsing session and all the pages it contains, we can then order all the pages as 

discrete page steps navigated across time. By simply numbering these pages in ascending order as 

they occur in a session, we get a step number. We can then use this number as a discrete timestamp 

to predict the likelihood of ending the session. The higher the ordered step number of a web page, 
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the more likely is the user to have exited a website on that page.  This is operationalized by 

including a polynomial of step number in P(treatment=last) such that we get a hazard function over 

time as a session progresses.  

We model the last step as a function of task domain, step number, page depth and page 

count. We omit step number in the first step model as a step count equal to 1 is equivalent to our 

dependent variable in the propensity score model. Since the purpose of propensity score matching 

is maximizing prediction performance (i.e., in-sample fit) and not deriving interpretable 

parameters, we implement a random forest algorithm9. Before creating the final matched datasets 

we linearize the propensity scores using a logit function to make them approximately normally 

distributed. We use these models to predict the probability (propensity) of each observation of 

being a first versus middle step and last versus middle step.  

1.7.5 Results of Propensity Score Matching 

We now turn to building a data set using propensity score matching. As discussed above, 

by building a propensity scoring model, we endeavor to estimate the underlying assignment 

mechanism as it may lead to dissimilar observations between treatment groups. One way to 

validate that the model described above captures this mechanism is to test our prediction accuracy 

out of sample. A model capturing the underlying assignment mechanism should be able to 

correctly classify task progression in a holdout set with a high degree of accuracy. Following 

standard practice, we partition our data into 80% training and 20% holdout sets (Hastie et al. 2009). 

We then fit the random forests algorithm on the first step of the training set using the page features 

 
9
 The random forest algorithm (Breiman 2001) creates an ensemble of decision trees using bagging to 

construct a set of trees with controlled variance. This algorithm samples both observations and features using 

bootstrapping and then averages the prediction results. This method is particularly robust to overfitting and tends to 

perform very well relative to other parametric models at prediction tasks (Segal 2004). 
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discussed previously. The resulting receiver operating characteristic curves for the holdout sets are 

shown in Figure 1-4. Applying this model on the first step test set yielded a 0.73 area under the 

curve (AUC) score10. We do the same for the last step, this time adding step count as an additional 

variable. This yielded an AUC score of 0.78. These high AUC scores provide strong support for 

our assumption that the URL structure variables are strong predictors of task progression. These 

out of sample results also illustrate the ability to predict task progression in practice. 

 

Figure 1-4 Receiver-Operator-Characteristic Curves for Task Progression 

With these appropriately matched data sets, we are now able to repeat our previous 

analysis, and can now more accurately show how task progression influences the attention to 

 
10 The receiver operator characteristic (ROC) curve plots the true positive rate vs. false positive rate for the 

prediction of a random variable. The area under this curve is used a measure of predictive accuracy where the random 

guesses give an expected AUC of 0.5, and perfect prediction gives an AUC of 1. 
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display ads. We again estimate the four model specifications on each data set. The results are 

shown in Tables 1-2 and 1-3 for the first and last steps respectively. 

Table 1-2 shows the results for the first step matched data where middle step is the baseline. 

We can now interpret the first step parameter as the treatment intervention and regard it as the 

effect of targeting consumers at the beginning of a news-reading task on their attention to the ad. 

We first note that this parameter is significant in all four model specifications. The odds of 

completing a video ad in the first step are now 58% higher when compared to the middle step. 

Recall that it was estimated to be 82% higher in the unbalanced results in Table 1-1. This difference 

in magnitude can be attributable to the effect of the web page confound that propensity scoring has 

controlled for, dampening the non-causal estimated impact. There is indeed a strong web page 

level effect on attention to ads for the type of web pages that users are likely to start a task on. 

Table 1-3 shows the analogous results for the last step matched data. We similarly note that 

the last step parameter is significant under all four model specifications. We again see a markedly 

different magnitude of coefficients due to the matched data. The odds of users completing a video 

ad in the last step are now 50% higher when compared to the middle step instead of the 30% higher 

in the unbalanced results in Table 1-1. The Rubin-style causal inference procedure de-biases the 

result in this case by enhancing the magnitude of the non-causal estimation, as opposed to 

dampening it. The reason is that typical last step pages tend to have lower ad engagement rates 

relative to typical middle step pages. When we use propensity score matching, we create a reduced 

data set where each treated observation has a corresponding control observation that has the same 

expected engagement rate given the page structure. This removes the bias of the task progression 

parameter since it is no longer capturing page effects. For both matched data sets, a power test was 

conducted and showed that the power to detect effects of this size exceeds 99%. 
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Substantively, it is also noteworthy that the increased odds of completing online video ads 

are now roughly the same size for both the first and last steps once controlling for page level 

confounds. This suggests that it is not that first or last steps evoke higher attention to ads than 

middle steps but rather the opposite. Middle steps, when a person is deeply engaged with a task, 

are when attention allocated to ads are diminished. As such, this result strictly speaking does not 

help advertisers determine when during a consumer’s task to advertise; but rather it informs when 

they should not advertise. While precisely controlled, the limitations of this finding, as it stands, 

are that it only applies to the task of reading news online in very simple browsing sessions and that 

session and domain effects are confounded with our task effect. In the next section, we address 

these shortcomings by incorporating several of the most common tasks that consumers perform 

online in more complex browsing sessions containing multiple domains, disentangling their 

effects. 
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Table 1-2 Data Set 1 Propensity Score Matching Model Output for First Steps 
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Table 1-3 Data Set 1 Propensity Score Matching Model Output for Last Steps 
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1.8 Data Set 2 – Browsing Sessions with Multiple Tasks 

This second data set comes from MaxPoint, a digital advertising platform that buys online 

ads on real-time bidding (RTB) exchanges on behalf of its client advertisers. The primary benefit 

of data from ad exchanges is that they offer ads from millions of websites which allows us to track 

users across browsing sessions, as they move between websites. The downside is that, unlike data 

set 1, the ad server does not guarantee full transparency into the entire browsing session. We only 

observe those instances in which MaxPoint won the right to place an ad. Since many companies 

compete for each ad opportunity on these exchanges, MaxPoint will only observe ad engagement 

data for ads that it won on the auction. If this data were missing completely at random (MCaR) 

then this would not bias any results, only adding more noise, which can be overcome by increasing 

the sample size (Agresti 2015). If it is not MCaR, then the parameter estimates could be biased. 

We make the argument that this data is missing completely at random for the following 

reason. In talks with senior managers at MaxPoint, they have no reason to believe that their bidding 

algorithms favor more, or less, people at the beginning, middle or ending of user tasks. In fact, 

they claim to not favor any of these ad placement opportunities over others, to the best of their 

knowledge. Neither do they track, measure or decide based on proxies correlated with task 

progression (more on targeting in the next sub-section). 

We also note that missing data cannot result in first or last task steps being misclassified 

as middle steps. This claim is derived from the facts that a task is an ordered sequence of pages 

and that the treatment effects are themselves an ordered sequence. Thus, if we miss a first step in 

a task, it will result in a middle step page to be called a first step page. If a last step page is missed 
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in a task, then it will result in a middle step page to be called a last step page. Finally, if a middle 

step page is missed in a task then the other first, middle, and last step pages are still correctly 

classified. With middle step as the baseline in all our models, any missing observations will only 

lead to the treatment effect estimates to be understated. 

1.8.1 Data description 

The data was collected over a period of fourteen days, from November 22nd through 

December 5th in 2016. The ads were shown across the entire 2-week period across desktops, 

tablets and smartphones, and observed through the regular course of business. The ad sizes are the 

industry standard of 160 x 600, 300 x 250 and 728 x 90 and we observe RTB exchange data 

indicating whether the ad placement was above or below the fold, or unknown.  

Specific to this data set, MaxPoint uses two types of targeting strategies: user targeting, 

which delivers ads contingent upon specific user characteristics, and a more general brand 

awareness targeting strategy that does not rely on user or page characteristics. For modeling 

purposes, we exclude all observations arising from user profile targeting. Additionally, it is often 

the case that multiple ad campaigns desire the same ad placement. In this case, the tie is broken 

using random assignment. We also note that there are no statistically significant price differences 

related to session, task and domain progression. 

For this data set, we use clicks as the variable of interest for measuring ad engagement 

since we have enough observations to reliably estimate click-through rates.11 For this analysis we 

 
11

 We note that a part of MaxPoint’s platform is a proprietary algorithm to detect non-human traffic. We 

used this information to remove non-human observations. 
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selected 20 website categories12 to define our online tasks. We chose these particular tasks so as 

to cover a wide variety of online behaviors (such as browsing dating sites, real estate shopping, 

playing online games, etc.) and verify that our theory generalizes well beyond just news reading. 

We collect all data at the user-ad impression level. In total, we observed 105,846,160 page 

visits from 8,066,795 uniquely identified users and 839 advertising campaigns. We only consider 

display ads collected from 20,928 websites in the USA representing 20 tasks that were judged to 

map content of the websites. We are again only interested in sessions with at least 2 page views 

(which include distinct first and last task steps) and sessions with at least one of our 20 tasks.  

Using the above criteria, we reduce the data set to 34,116,671 page visits. However, we 

again use the full data set to construct the browsing sessions and identify the first and last task 

steps. We again define an end of a browsing session as five minutes of user inactivity.  

Table 1-4 below summarizes the session data for these tasks. We see a substantial amount 

of variation in activity across tasks.  

 
12

 Website category information was provided by Amobee (a digital marketing intelligence company and ad 

server), formerly Turn. 
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Table 1-4 Data Set 2 Summary Statistics 

 

1.8.2 Propensity Score Matching Design 

We employ the same propensity score matching technique as before, but now we create 

treatment groups based on session, task and domain instead of just task. We look across these three 

levels so that we can isolate the effect of each using Rubin’s causal framework and propensity 

score matching. This allows us to test if it is indeed task progression and not session or domain 

effects that is driving ad engagement. Since we stratify on session, task and domain combinations, 

we now have seven treatment groups to compare first (F), middle (M) and last (L) steps, i.e. 

{FFF, MFF, MMF, MMM, MML, MLL, LLL}. For example, MFF represents a middle step in the 

session but the first step of the task and the first step of the domain. We use the MMM observations 

as the control group as it is the middle step for each of the session, task and domain constructs in 

order to create 6 matched data sets for the test groups.  

Task Domains URLs Users Campaigns Impressions clicks

Automotive 906 85,955 112,987 726 817,792 818

Careers 161 18,657 20,262 509 140,299 40

Dating 59 13,248 5,410 340 78,755 44

Education 1,173 138,021 161,747 815 1,204,347 2,580

Entertainment 4,697 655,201 1,138,318 896 8,154,216 17,122

Food 1,618 156,323 258,518 847 1,297,011 5,205

Games 1,100 146,326 89,172 800 947,134 1,687

Health 1,014 81,582 129,300 792 799,174 3,792

Hobbies 778 104,676 205,729 855 2,167,323 2,489

Home & Garden 327 31,552 40,158 597 186,389 43

Music 366 20,916 53,327 705 589,280 699

News 3,752 624,970 1,510,322 896 10,525,330 19,369

Pets 281 15,773 31,028 568 125,360 51

Real Estate 163 143,964 73,830 592 369,326 132

Shopping 800 193,377 225,129 750 1,185,625 1,022

Society 1,374 173,725 350,634 861 2,858,201 3,528

Sports 808 109,524 221,442 788 1,067,233 1,032

Technology 1,284 158,115 230,200 804 1,278,332 1,251

Travel 203 7,355 27,874 559 137,966 868

Weather 64 37,153 59,273 394 187,578 72
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For each test group, we proceed by estimating the propensity score for each observation 

being in the treatment group relative to the control group. Then we again match each observation 

in the treatment group to an observation in the control group based on the linearized propensity 

score. This again creates a balanced set of observations for each treatment group. This gives us six 

balanced data sets for each session-task progression-domain combination.  

Finally, we note that propensity score matching for such a large data set is a 

computationally expensive procedure requiring one to iterate through two lists of scored 

observations until at least one list is empty. We open-sourced13 a binary trees implementation of 

scored list matching which improved the computational performance from O(N!) to O(Nlog(N)) 

where N is the number of observations in the smallest treatment group. 

1.8.3 Results 

We again estimate a logit model with random effects for campaign ID, domain and user 

ID. We additionally control for ad position (above/below the fold or unknown), ad sizes, and 

device type (desktop/phone/tablet) as categorical variables. We omit day of week and time of day 

variables as they are again not statistically significant. 

After fitting this model separately for each of the six treatment groups using the balanced 

datasets we can interpret the task step coefficient as the estimate of the average effect of task 

progression on ad click-through rates. Table 1-5 below shows the logit coefficient values for the 

treatment variables, the corresponding p-values and the odds ratios relative to the middle step by 

treatment group that these coefficient estimates imply.  

 
13 https://github.com/msdels/Matching 
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Table 1-5 Data Set 2 Propensity Score Matching Model Output 

 

Note: Bold numbers stand for significant at the 99% level. 

Table 1-5 allows us to tease out the differential impact of task progression from that of 

pure browsing progression (session or domain) on ad engagement. We begin by looking at the 

middle session and first and last task step effects (MFF and MLL) as these most directly relate to 

our hypothesis. The logit coefficient for the first task step (MFF of 0.761) implies a 114% increased 

chance of clicking on a display ad14. Similarly, the logit coefficient of the last task step (MLL of 

0.107) implies an 11.3% increased chance of clicking on a display ad. These results qualitatively 

replicate the findings in dataset 1 that first and last task steps lead to increased display ad 

engagement relative to middle steps. We also note that our estimates are sufficiently powered with 

all but the MMF case (with power of 0.8) reaching a power of almost 1. 

The FFF coefficient represents the combined effects of first steps in the session, task, and 

domain. The first session step coefficient (FFF of 0.788) implies a 120% increased chance of 

clicking on a display ad, which is almost identical to MFF. To estimate the theoretical effect of 

starting a session (without starting a new task or domain) we take the difference of FFF and MFF. 

This effect size is not significantly different from 0, implying that it is the beginning of the task or 

 
14 We note that these effects can be much larger for static display ad clicks (data set 2) than for video views 

(data set 1) but that might just be due to the average click-through rate being substantially lower than the average 

view-through rate (0.1% vs. 30%). 

Treatment Group 

(Session-Task-Domain) Coefficient p-value

Odds of 

Clicking n power

FFF 0.788 0 2.199 2,338,216 1

MFF 0.761 0 2.140 3,068,146 1

MMF 0.248 0.722 1.281 102,915 0.803

MML 0.286 0.096 1.331 363,489 1

MLL 0.107 0.001 1.113 2,643,893 1

LLL 0.453 0 1.573 1,699,535 1
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the domain and not the session that drives display ad clicks. Similarly, the last session step 

coefficient (LLL of 0.453) implies a 57% increased chance of clicking on a display ad relative to 

a middle step (MMM). By again differencing LLL and MLL we estimate the end of session effect 

as increasing display ad clicks by 41 percentage points above the end of task effect. These 

comparisons are all statistically significant at the 99% level. The first domain step (MMF) is not 

statistically significant, while the last domain step (MML) is marginally significant. Supporting 

results of a comparable model on the unbalanced data is shown in Appendix A.  

Given that MML is marginally significant and both coefficients for MMF and MML are 

positive, we estimate a second model pooling first and last steps together for each of session, task, 

and domain partitions. This model increases the precision of our parameter estimates but it also 

assumes that both first and last step effects are of equal magnitude for each of the partitions. The 

results are shown in Table 1-6 below. Now the domain effect is more significant with a p-value of 

0.056 and a coefficient implying a 36% increase in likelihood to click on an ad when transition 

between domains. The task effect remains significant with a coefficient implying a 69% increase 

in probability of clicking on an ad when transition between tasks. Given that task and domain 

effects are confounded, we can subtract the domain effect and conclude that the task effect alone 

implies a 33 percentage point increase in probability of clicking on an ad when transition between 

tasks above the domain effect. Following a similar logic, we can conclude that the session effect 

alone implies a 28 percentage point increase in probability of clicking on an ad when transition 

between tasks above the task and domain effects. 
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Table 1-6 Grouped Treatment Effects 

 

Note: Bold numbers stand for significant at the 99% level. 

Collectively, these results support our hypothesis that task progression is indeed a 

significant determinant of display ad click rates after controlling for other relevant variables 

associated with ad engagement. 

1.9 Validation Simulation for Advertisers 

We now present a simulation to illustrate how it is possible to predict individuals’ task 

progression in order to incorporate it into to display ad targeting. We assume that advertisers 

measure campaign success using a performance metric such as clicks or views and attempt to 

maximize it for each ad campaign using various strategies. They often operationalize this by 

constructing a predictive model over a set of features, usually some combination of user 

information, domain, time of day and page content. This modeling effort requires vast amounts of 

historical data to which a binary classification model such as logistic regression is calibrated 

(Perlich et al. 2012).  

We take advantage of user navigation variables such as domain, page depth and page 

indicator to evaluate how incorporating the task progression construct compares to other standard 

targeting variables. We compare two logistic regression models using the variables available to us 

which allows us to evaluate the explanatory power of task progression for display ad targeting.  
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For this comparison, we return to data set 1 as we have full view of the domain visits and 

we again use view-throughs as our outcome variable. We partition the data by randomly selecting 

50% of the users to the training set and the remaining to the test set. Using the training set we 

construct the same propensity scoring model as before to predict the probability of a given page 

being a first or last task step for each one of the users. Using this model, we create the task 

progression variables for the test set. They represent the estimated probability of a particular page 

view being a first or last task step for each person tracked. Next, we compare two linear models. 

First, we use the ad engagement model of the previous section with random effects as before to 

estimate the probability of fully viewing a video ad, and include our estimated first and last step 

task progression variables. Second, we estimate a standard logistic regression using only the first 

and last step task progression variables. The results are shown in Table 1-6 below. 
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Table 1-7 Advertiser Performance Comparison 

 

We first examine the full linear regression model with random effects. This model finds 

that both the first and last task step estimates are positive and statistically significant (at p<0.01) 
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and can be interpreted as predicting a 312% and 59% increase in the chance of completing a video 

relatively to predicted middle steps, respectively. Note that the coefficient estimates are also quite 

large.  

Perhaps a more interesting comparison is the simple logistic regression using only the task 

progression variables with no random effects. No video view-through performance data is required 

for these predictions, and this level of performance can be achieved without having served a single 

ad. This model also manages to achieve a higher AIC than the more complex model (12,970 vs 

12,557). Additionally, the out of sample AUC scores for the full model and just a linear 

combination of the task progression variables are both 0.619, indicating the model prediction is 

just as good as the full model. This is a significant step forward in addressing the cold start problem 

in predictive modeling for display advertising whereby practitioners have no historical data to rely 

upon in order to train their targeting models (Pan et al. 2019). Traditionally, this has been addressed 

through A\B testing and multi-armed bandit approaches, which require a substantial number of ads 

be spent on discovering high performing placements (Scott 2010). The number of ads needed for 

discovery increases linearly with the number of websites as well as the number of pages on the 

website and thus quickly becomes intractable. Display ad targeting using task progression provides 

a cost-free means of significantly improving baseline performance for cold start optimizations in 

display advertising.  

To demonstrate the practical role that task progression can play in targeting, we return to 

the news task in the second data set since it is large enough to answer the question: ‘How many 

ads spaces need to be purchased in order for the click-based logit model to outperform the task 

progression model based on only observing web traffic?’ We apply the logit model as described 

earlier in this section and vary the number of ads spaces observed from 5,000 to 1,000,000 ad 
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spaces and then make out of sample predictions on equivalently sized sets of ad spaces. For task 

progression we only observed the opportunities for 5,000 randomly selected ad spaces and no 

performance data. We then repeat this process using 1,000 random samples. 

To measure performance, we calculate the AUC score for the out-of-sample predictions 

adjusted for the cost of achieving such performance. The cost of achieving these performance 

numbers is the amount spent to purchase the ad spaces and the computing resources to store, 

process and predict using the click-based logit models. Since the task progression model only uses 

5,000 random ad space opportunities (not bids, purchases, or clicks), it requires negligible 

computing resources and any modern laptop can easily perform these calculations for thousands 

of advertisers. However, click based data requires a large amount of computing resources. We 

estimate both costs as a percentage of revenue for three public DSPs at the time the data was 

collected. We then divided the observed AUCs by the average cost percentages of these companies 

(see Appendix A for details). The results are shown in Figure 1-5. 
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Figure 1-5 Price Adjusted AUC 

From the simulation analysis we see that if we disregard the cost of computing resources, 

the click-based models will eventually outperform the task progression model after 250,000 

purchased ad spaces. However, once accounting for the computing resources required to run and 

maintain click-based models, it becomes clear that on a cost-basis, the task progression model 

dominates the more data intensive click-based models. 

Additionally, for the two weeks of observed RTB data, only 0.4% of domains had over 

250,000 impressions. These domains accounted for 76% of ads bought and illustrate how skew the 

distribution of internet ad real estate is and shows how difficult it is to accurately score ad space 

in this long tail. This long tail is precisely why the cold-start problem in digital advertising (Pan et 

al 2019). Our simple model of task progression has demonstrated its ability to improve predictive 

accuracy on these less frequently trafficked domains. In particular, many domains do not get 

250,000 total impressions in a month and a click-based logit model will never be able to score 

these ad spaces as well as a task progression model can. 
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Given that the average RTB CPMs range from $0.50 to $2 (Blaustein 2017), these 24% of 

total ads bought in the tail represent between $123,000 and $494,000 of ad purchase costs in two 

weeks. It is also possible that firms may increase their relative purchases of ad spaces in the long 

tail if they can better predict ad performance as this more accurate scoring may provide them with 

a competitive advantage. 

1.10  Conclusion 

Online advertising has come a long way since the popularization of the internet. Search 

advertising has worked incredibly well and has dominated much of digital advertising while 

display advertising, which most closely resembles traditional print media, struggles to perform 

well (Li and Kannan 2014).  

We propose that a critical dimension overlooked in display advertising is knowledge of the 

user’s task progression and their attentional capacity towards achieving their online browsing 

goals. In this paper, we explore consumers’ web browsing tasks. Since many people browse the 

internet deliberately undertaking a task, we use website category information to classify these 

online tasks. Building on the marketing and attention literature, we hypothesize and show evidence 

that engagement with online ads is higher in the beginning and ending of tasks relative to the 

middle. Counter to previous display ad research showing either constant or diminishing attention 

over time, we provide evidence that ad engagement is highest at times when task engagement is 

lowest; i.e., at the task beginning and end points. 

Using two datasets, we develop a novel causal inference application utilizing propensity 

score matching and random forests that exploit the hierarchical structure of websites. This provides 

us with a balanced data set to apply a standard random effects logit model to measure how task 
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progression influences the attention to ads. As hypothesized, we find that significantly higher 

levels of ad engagement occur at these task transition points. Our main result helps to explain that, 

much of display advertising is misaligned with the consumer’s attention to a primary task, leading 

it to being ignored. 

1.10.1 Caveats 

Given the nature of website structures needed for our inference procedure, we are not able 

to generalize our findings to unlimited feed-type sites like Twitter and Facebook. We do note that 

this is a measurement issue and that nothing in our theory suggests the same attentional process 

are not at play. A second important caveat is that we only examine measures of ad attention and 

not purchase behavior driven by display advertising. We encourage future research to build on this 

model by examining deeper funnel activities and other forms of digital advertising, although as 

mentioned earlier, this will require sophisticated attribution models. Finally, we do not investigate 

the potential interaction between task progression and behavioral targeting. Task progression 

predicts when users are likely to attend to an ad while behavioral targeting selects users for whom 

the ad is more relevant. Further research is needed to establish whether or not these two strategies 

are complements or substitutes. 

1.10.2 Implications of Findings 

Methodologically, our paper has implications for empirically modeling of clickstream data. 

After using propensity score matching to create a quasi-experimental design, we are able to show 

the parameter estimation bias arising from regression models estimated with standard 

observational datasets. We argue that page visits are not independent units of analysis since ad 

engagement is affected by task progression and that this should be corrected in any empirical 

modeling of such data. We also note that we provide a relatively unsophisticated model to predict 
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end of task and that it does not exploit any user level information or more complex website 

information (e.g. Trusov et al. 2016). Our modeling effort is sufficient for our purposes, but from 

a practitioner’s standpoint, we provide a framework for targeting using task progression where 

real-world gains could be much higher than we estimated.  

Substantively, our results also have important managerial implications for web publishers 

and digital advertising firms alike as they provide greater insight into the online attention process. 

Our results highlight when not to advertise, thereby allowing web publishers to reduce the ad load 

on their websites in the web pages where consumers are highly attentive to the online task at hand 

without losing much ad engagement. This will both increase the engagement rates to their other 

ads and make it a more pleasant experience for the user by reducing ad clutter. Additionally, 

Janiszewski et al. (2013) have shown that this type of ad reduction leads to a virtuous circle of 

increased ad efficacy over time. This, in turn, should lead to higher prices being paid for the 

publisher's high attention-drawing ad spaces. In regard to advertisers, they should incorporate task 

progression as an input into their ad buying and placement strategies, particular for less trafficked 

domains where direct performance data is scarce. In a world of ever increasing big data, advertisers 

have a growing amount of opportunity to learn and predict task progression. By ignoring the task, 

advertisers are ignoring the attention capacity of their targeted consumers and are potentially 

wasting a large amount of ad dollars.  

In sum, this paper is a first attempt at showing how task progression affects attention to 

and engagement with display advertising. By incorporating this construct into online display 

advertising strategies, advertisers can increase the effectiveness of this important marketing tool. 

If this is done in a rigorous manner, we believe all interested parties, advertisers, publishers and 

consumers will collectively benefit. 
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2 Real-time Digital Ad Allocation: A Fair Streaming Allocation 

Mechanism 

2.1 Introduction 

Digital advertising spending continues to grow as a share of the marketing mix and is 

predicted to reach $129B in 2019, it is also predicted to overtake traditional ad spending (Ha 2019). 

While firms like Google and Facebook enjoy large portions of this growth, new digital channels 

like programmatic advertising have flourished as well. While much research has focused on search 

and social media, little marketing research has studied the new challenges in programmatic 

advertising. 

Programmatic advertising is projected to make up almost half ($57B) of all digital 

advertising spending in 2019 (Fisher 2018). Programmatic advertising is defined as the use of 

automation in the buying, selling, or fulfillment of digital advertising. Programmatic advertising 

takes place on real-time bidding (RTB) exchanges where publishers list ad spaces in real-time as 

users load webpages and then advertisers can bid on these ad spaces. Due to the technical barriers 

to entry of the marketplace, advertisers have outsourced the procurement of ad space to demand-

side platforms (DSPs) who bid on their behalf. 

In previous research, Balseiro et al. (2014) investigate the supply side of the programmatic 

market. From a publisher perspective, the problem is one of profit maximization where they must 

choose whether or not to list their ad space on an RTB exchange or not and at what price. These 

authors provide an optimization strategy where the ad spaces are always listed on the RTB 

exchange with a dynamic reservation price. The reservation price is adjusted based on the 
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publisher’s projected ability to meet their own direct sales contracts. They show how using simple 

greedy allocation fails to allocate ad space efficiently and can lead to losses in yield of up to 70%. 

The demand side of the programmatic market is substantially different from the previously 

studied adwords and publisher problems. Here, agencies and advertisers contract with DSPs to 

procure a set number of ad spaces on their behalf. DSPs, therefore, face a steady stream of ad 

spaces being supplied by the RTB exchanges. At this point, they must in real-time: (1) score these 

ad spaces, (2) decide which of those ad spaces they wish to purchase, (3) which advertiser to 

allocate it to, and (4) how much to spend on the ad space. Additionally, this supply of ad space is 

highly variable making it infeasible to rely on traditional models with stationary distributions that 

attempt to learn optimal strategies based on a training set as common in most similar problems 

In this paper, we investigate the demand side of the programmatic market. We introduce 

the DSP problem and differentiate it from the closely related publisher and adwords problems 

(both well described in Mehta 2012). In brief, the adwords problem is also a real-time allocation 

problem, in the case of adwords for a search engine that receives keywords and bid amounts from 

advertisers along with a monetary budget. The search engine wishes to allocate the ads spaces to 

maximize the sum of budgets spent across all advertisers. Whereas, the publisher problem refers 

to website publishers that presell their ad space to various advertisers based on expected future 

user traffic. Their optimization problem is to allocate incoming ad spaces to their various 

advertisers in such a way that it fills their obligated quotas and maximizes a pre-set performance 

metric (e.g., clicks). 

We show how a DSP should decide, in real-time, which ad spaces to bid on and which 

advertisers to allocate them to. Similar to Balseiro et al. (2014), we show that careful capacity 

management is crucial and provide an online algorithm that performs significantly better than 
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greedy allocation and alternative methods, including benchmark methods for the adwords and 

publisher problems. Through both real-world exchange data and simulated data, we demonstrate 

that our algorithm is superior to comparable algorithms and that it can perform similarly to offline 

methods such as MacAfee’s (1994) Alternating Selection Mechanism. 

This paper is organized as follows. We first conduct a brief literature review from both 

computer science and economics of matching mechanisms in our context. We then describe our 

proposed algorithm before moving onto evaluating our method against several competing 

methods. In the final section, we conclude. 

2.2 Literature Review 

The research problem we examine in this paper is a variant of other well-studied online ad 

allocation problems. It is related to both the adwords problem and the publisher problem. The 

adwords problem is a search engine revenue maximization problem. In this setting, the advertisers 

approach the search engine and provide a daily budget along with a bid price for individual 

keywords. The search engine’s goal is to exhaust as much of the budgets as possible. Most current 

solutions assume that searches arrive in random order but tend not to be too dissimilar from the 

previous days allowing reasonably effective strategies to be learned from historical data. 

More formally, Kalyanasundaram and Pruhs (2000) define the adwords problem through a 

bipartite graph with one set of vertices U to represent advertisers and one set of vertices V to 

represent user searches. Each advertiser u ∈ U has a budget Bu > 0,  and there is a set of edges (u,v) 

∈ E, with an edge to represent a bid by u on search v and annotated with weight biduv > 0, denoting 

the bid amount. When a search query v ∈ V arrives, it needs to be matched to some neighboring 

advertiser u ∈ U who has not yet spent all its budget. Once we match v to u, then u depletes biduv 
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amount of budget. If a vertex u finishes its entire budget, it becomes unavailable. The goal is to 

maximize the total money spent.  

In the publisher (or display advertiser) problem, the publisher has quota-based contracts 

from multiple advertisers for a set number of ads to place every day. The goal of the publisher is 

to primarily satisfy these quotas and then secondly to perform adequately on a key performance 

indicator (KPI) such as clicks; therefore creating more of a covering problem instead of a packing 

problem. Users visit a publisher’s site in random order, and therefore, the ad spaces appear in 

random order as well. These solutions also tend to assume that publisher site visits are unlikely to 

vary greatly from day-to-day, allowing reasonably effective strategies to be learned from historical 

data. 

Dimitrov and Plaxton (2008) more formally defines the publisher problem through a 

bipartite graph where one set of vertices U represent advertisers and one set of vertices V represents 

different publisher sites. The edges of the graph (u,v) ∈ E  have weights wuv, representing a KPI 

score, and the vertices u ∈ U have capacities cu. As before, when a vertex in V arrives, representing 

a user visit to a publisher site, it has to be matched to a neighboring advertiser in U, such that each 

u ∈ U is matched at most cu times. The goal is to maximize the total weight of the matched edges.  

Both problems are discussed at length in the computer science literature (e.g., Devanur and 

Hayes 2009, Manshadi et al. 2010, Gollapudi and Panigrahi 2014, Feldman et al. 2018). These 

algorithms all represent variations of algorithms for online bipartite graph matching. The proposed 

solutions tend to set up and solve the problem using primal-dual linear programming. Most 

treatments of this problem focus on short-term revenue maximization only. Any degree of fairness 

or equality is achieved either through some minimum amount of random assignment or minimum 

coverage targets for quota fulfillment (Gollapudi and Panigrahi 2014). The methods require an 
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offline training period where the assumption is that the distribution of arriving items (keywords or 

ad spaces) remains reasonably stable after that. A more dynamic environment is handled by 

updating the training set more often and repeating the learning procedure. As mentioned earlier, 

the DSP version of this problem is likely to be more variable, and assuming such stability in the 

solution concept is not practical. To evaluate our proposed method, we shall compare our results 

to the Devanur and Hayes (2009) and Feldman et al. (2018) primal-dual formulations of the 

adwords and publisher problems, respectively. 

The economics literature has also provided much insight into this class of problems, and in 

particular, has provided reasonable offline solutions. It is worth noting that much of the economics 

literature is far more concerned about eliciting truthful responses from advertisers; however, they 

also provide valuable design principles and pricing frameworks.  

Early work by McAfee (1992) describes three auction designs to solve this problem for 

two competing agents where the auctioneer does not know the values of the items. The first design 

is the Winner's Bid Auction (WBA) where two agents are each shown an item, they declare their 

bid in private, and the highest bidder receives the item and pays half of their bid amount to the 

loser. The second design is the cake-cutting mechanism (CCM). In this mechanism, one agent 

proposes a price, and the other agent either takes the good or accepts the price. The third design is 

the Alternating Selection Mechanism (ASM). In this design, all the items are presented at once, 

and the two agents alternate in selecting their most valued item until all items are gone. The ASM 

is shown to be remarkably efficient, where under general assumptions, it will have an efficiency 

loss that is at most 
1

2𝑛
 times the highest value item, where n is the number of agents.  
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While these three mechanisms do not directly address any kind of budget or constraint, 

they do assume that each agent has a right to each item and they provide mechanisms for fairly 

allocating these items. Of note is the ASM mechanism, which, unlike CCM and WBA, does not 

rely on monetary transfers and is solving a very similar problem to the second part of our proposed 

solution. The major drawback with ASM is that it is not implementable in an online fashion and 

therefore, cannot directly solve our problem. Despite this drawback, these methods of distributing 

items fairly are insightful. The critical intuition being that fairer allocations can be achieved by 

agents alternating when they get items and by some form of value transfers to compensate agents 

for not getting an item. Additionally, ASM provides a useful benchmark for us in that it is a well-

studied solution to the offline version of our problem. 

Whereas McAfee (1992) looks at allocation rules for a known set of items, Casella (2003) 

investigates voting mechanisms where agents also face an uncertain number of future items that 

they may care about differently. They show that for agents facing an uncertain stream of votes, it 

can be optimal for the agent to forgo voting on a present low valued item in order to be bid more 

on a higher valued future item. Additionally, they show that in general, welfare gains hold for 

markets with more than two agents. This mechanism is useful for voting schemes where all agents 

share the items, for example in a setting with a public good, but it fails to generalize to the case of 

indivisible private goods. However, the intuition of using votes as a scrip currency and passing on 

less desirable items to bid more on more desirable futures is useful in designing mechanisms for 

the present context. 

Instead of looking at an unknown stream of future items, Jackson and Sonnenschein (2005) 

look at a stream of items from a known distribution. They propose a linking mechanism for a 

Bayesian collective decision problem where preferences of agents are private. By applying the law 
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of large numbers, they demonstrate that by linking many equivalent problems over time that the 

mechanism can elicit honest preference reports from the agents. This mechanism can be applied 

to many general social choice functions where the distribution of items is known and effectively 

solved the incentive problem without the need for monetary transfers. However, the problem faced 

by the DSP is the inverse of this, in our setting, there are no incentive problems since the 

preferences are always known, but the distribution of items is not. 

2.3 Fairness 

We briefly digress in this section to make an argument for fair allocations within the DSP. 

While fairness is often a consideration in the computer science literature, it is much less discussed 

in the business literature. Traditionally, business researchers are interested in either profit or 

revenue maximization. However, given the rising distrust in technology companies and greater 

calls for transparency in algorithms (e.g., "Algorithm and blues," 2016), we argue that there is a 

strong case for fair algorithm design in matching markets and that firms' long-term sustainability 

could depend on algorithmic fairness. It is no longer uncommon for executives from large 

technology companies to testify before Congress (e.g., Facebook and Google) regarding 

algorithmic transparency, and it now seems reasonable to assume that many algorithms will one 

day be publicly exposed. It should, therefore, be a strategic consideration for companies to design 

fairer algorithms that would not cause a large backlash from end-consumers or business partners 

should they one day be made public. Fairness can also be seen as a good business practice that will 

keep their various partners happy and build trust, which in turn, will ensure a long term partnership. 

For our purposes, when we discuss "fair," we mean that, relative to each other, advertisers 

are treated fairly within the DSP. However, fairness is an intrinsically relative measure, unlike 

efficiency, which is an additive measure. The DSP faces many ad spaces daily that are each desired 
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by multiple advertisers and they need to choose some mechanism to allocate these ad spaces. The 

problem the DSP faces is that it needs to choose between advertisers immediately and without 

accurate future knowledge of ad spaces. A greedy assignment would maximize only a coarse 

measure of short-term efficiency. We say coarse because the scores themselves are noisy and hard 

to compare across advertisers. We also say they are short term because, as mentioned previously, 

consistently poor performance for some advertisers will result in less future business and therefore 

cannot lead to long-term efficiency. 

The opposite of a greedy assignment is a random assignment. This is synonymous with 

claiming that all advertisers have an equal right to an ad space and that each stands an equal chance 

of receiving a contested ad space. While certainly fair, it is far from efficient. It is not difficult to 

see that on many occasions one advertiser scoring the ad poorly will randomly receive that ad 

space at the expense of another advertiser scoring it highly. 

Fair allocation in these online allocation problems has remained somewhat elusive. 

Devanur and Hayes (2009) acknowledge its importance and difficulty but offer a greedy algorithm 

while deferring fairness to future research. Gollapudi and Panigrahi (2014) propose a Max-min 

fairness algorithm that seeks to first satisfy a minimum baseline for all advertisers before turning 

greedy. While a step in the right direction, this class of methods still imposes binding constraints 

on hard to satisfy advertisers that can come at a considerable cost to overall efficiency.  

We propose that fairness should only be considered for advertisers who demand an item 

and only on an item-by-item basis. Rather than assigning the item to the advertiser with the highest 

value, we borrow from the linking literature and propose assigning it to the advertiser in proportion 

to their demand for it relative to other advertisers’ demand. Unlike in linking where each agent 

gets an integer count for the number of times they can bid a high value, we propose that we assign 
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items using a form of fractional assignment. This will lead to advertisers getting the item a 

proportional fair amount of the time in expectation. Additionally, linking this expectation to a 

scrips budget pushes towards fairer outcomes faster than pure random assignment would. 

2.4 Algorithm Design 

2.4.1 Environment 

Before describing the algorithm, we first discuss the real-time bidding (RTB) advertising 

environment in more detail. This is a marketplace where publishers list ad spaces that are bid on 

by various demand-side platforms (DSPs) who represent advertiser interests. Ad space is listed in 

real-time, that is, as a user loads a publisher's webpage, the publisher sends a request to the RTB 

exchange to list the ad space. These requests are forwarded to the DSPs who are given up to 100ms 

to bid on this ad space using a blind second-price auction with reserve prices. Given the speed and 

resources required to operate in this market, advertisers contract DSPs to purchase ad space on 

their behalf algorithmically.   

While advertiser contracts with DSPs primarily focus on ad impression quotas, they also 

typically include a key performance measure (KPI) that the advertisers are trying to maximize 

(e.g., number of clicks or purchases) over a set number of ads (usually a daily ad impression quota) 

(Zhang et al. 2016). The goal of the DSP is to keep all of its clients, that is, first meet the impression 

quota and then the performance standards. DSPs run a variety of proprietary algorithms that score 

all incoming ad spaces for each advertiser and their prespecified KPI. Since DSPs have many 

contracted advertisers (often thousands), many of the incoming bid requests are desired by multiple 

advertisers (i.e., the various ad campaigns). The DSP can only assign the ad to a single ad 
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campaign. Therefore, there is a tension between assigning an ad to the campaign scoring it highest 

(i.e., greedy allocation) versus a more equitable distribution of ad space. 

The DSP problem is similar to the publisher problem, but with two unusual characteristics: 

(1) the distribution of ad scores and ad volume is highly unpredictable, and (2) there are no 

incentive problems for the advertisers (i.e., the advertiser ad campaigns are internal to the DSP) to 

report untruthful preferences for the ad spaces as these scores are provided by the DSP. 

In general, we cannot learn the distribution of the arriving ad space scores for at least four 

reasons. First, the exchanges themselves route ad requests in opaque ways due to internal load 

balancing. Second, significant fluctuations in scores arise through regular operating issues such as 

server outages, internet connection problems, and software updates. Third, DSPs update their 

scoring algorithms regularly, often separately for each campaign, and sometimes in real-time for 

behavioral targeting. Finally, publishers themselves often sell ad space directly and can suddenly 

change their supply or quality of ads sold on the exchange. Jointly, these factors make the matching 

problem faced by the DSP less predictable than the well-studied publisher-side advertising 

problem or the adwords problem. 

The second unusual market characteristic is that a DSP assigns all the campaign-ad scores 

based on proprietary models. Unlike most other matching problems, these scores are not private 

information of the advertiser but calculated by the DSP itself. It is, therefore, a given that the 

reported scores to any assignment mechanism will always be truthful. 

At first glance, it may seem optimal to assign the incoming ad spaces to the campaigns 

scoring them the highest (i.e., greedy assignment). This is suboptimal for the DSP two reasons. 

First, scoring models are KPI- and campaign- specific, and since internal scoring models can be 
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very different, some campaigns tend to have higher scores than other campaigns. This can lead to 

near stochastic dominance in score distributions of some campaigns over others. This in itself is 

not a problem, but the scores for each ad space are correlated across campaigns. Thus, a greedy 

assignment mechanism would allocate many of the top-scoring ads to the top subset of campaigns. 

Similarly, a bottom subset of campaigns will receive almost entirely low scoring ad spaces leading 

to the eventual loss of business. This could result in some advertisers experiencing extended 

periods of sub-par campaign performance and ultimately the cancellation of their DSP contracts. 

Therefore, the optimal short-run allocation of a greedy algorithm does not lead to the optimal long-

run allocation for a DSP.  

A second concern is that these scoring models are quite narrow in scope. They often only 

concern the direct KPI and historical performance. Advertisers ultimately care about revenue but 

use a click KPI as a proxy for ad engagement and future purchases. Focusing on a single ad space 

with the highest click rates is not necessarily going to lead to the most revenue, especially since 

this creates substantial publisher incentives to game the KPIs or engage in ad fraud. Furthermore, 

the scores are noisy estimates of performance. By increasing the variety of ad spaces purchased, 

the DSP reduces the variance on expected performance, increases their market reach, and reduces 

the risk of ad wearout. Additionally, ad diversification lowers the risk of ad fraud. 

Alternatively, one could assign the contested ad space randomly. This would be closely 

related to a serial dictator assignment (Abdulkadiroglu and Sonmez 1998) and can be seen as most 

'equitable.' However, it is not difficult to imagine circumstances where an ad space goes to a 

campaign with a very low score, and another campaign with a very high score misses it. The 

mechanism proposed in this paper allows a sliding scale between random assignment and greedy 

assignment by allowing a weighting based on relative preferences. 
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2.4.2 Proposed Solution 

In the next section, we proceed with defining an online allocation mechanism to solve the 

DSP problem. The mechanism has two broad components, an agent level thresholding algorithm 

and a market level allocation mechanism. The DSPs need a fast decision rule for deciding which 

items to compete for on behalf of an advertiser (or agent). This is the role of the agent-level 

threshold rule. The market level allocation mechanism is a means of allocating an item to one of 

the competing advertisers in the event that multiple advertisers desire the same item. After a closer 

look, this is not dissimilar from how the previous literature that treats these two problems through 

a single algorithm. For example, in the primal-dual formulations  (e.g., Devanur and Hayes 2009, 

Gollapudi and Panigrahi 2014, and  Feldman et al. 2018)  we effectively also have a thresholding 

rule where the observed ad space score is adjusted by a learned weight and only gets bid on if it is 

above 0. Secondly, these methods assign the ad space to the largest adjusted score above 0. This 

adjustment is based on fairness or capacity criteria, making it different from greedy but also 

comparable to our market-level optimization. Our method handles fairness explicitly in the market 

level step by tracking items won and lost over time. 

2.4.3 Part 1 - Agent level optimization 

We begin with the agent level optimization, and to gain intuition into the solution, we focus 

on a DSP with only a single advertiser (agent). The DSPs are tasked with smoothing over the ad 

supply variability by procuring a fixed number of ads for their clients each day, typically spread 

out across the day in some pre-specified manner. The DSP is incentivized to buy the best ads 

possible for their clients subject to meeting their daily quota requirements. However, since ad 

space availability on the exchanges is so variable, it is hard to come up with a static set of buying 

rules once-off that will both meet the quota and allocate the best ads possible. The problem for the 
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DSP is that they do not know what ads will become available throughout the day and how they 

should be buying optimally throughout the day for even a single advertiser. 

To illustrate the problem, consider Table 2-1 below. Here we see the sequence of ad 

opportunities that appear one-at-a-time with their corresponding scores. A decision must be made 

on Ad1 before Ad2 is revealed. Suppose that this sequence represents three time intervals of 

{(Ad1, Ad2, Ad3), (Ad4, Ad5, Ad6), (Ad7, Ad8, Ad9)} and that the DSP would like to purchase 

one ad in each time period. With perfect hindsight, setting a threshold of T=7 would succeed in 

buying only the single highest scoring ad in each time period. 

Table 2-1 Single Advertiser Ad Sequence 

 
Ad1 Ad2 Ad3 Ad4 Ad5 Ad6 Ad7 Ad8 Ad9 

Score 7 3 2 4 8 1 3 9 6 

 

More formally, we can define the DSP problem through a bipartite graph where one set of 

vertices U represent a single advertiser and one set of vertices V represents different ad spaces 

appearing on an RTB exchange. The edges of the graph (u,v) ∈ E  have weights wuv, representing 

a KPI score, and the vertices ut ∈ U have time period capacities ct. When a vertex in V arrives, 

representing a user visit to a publisher site, in time period t it can be ignored or matched to a 

neighboring capacity slot in ut, such that each ut is matched ct times. The goal is to maximize the 

total weight of the matched edges.  

To make this problem more tractable, we assume that bid prices are external to this 

mechanism and that the buying firm can in real-time provide a scored preference each ad spaces 

for an advertiser. Additionally, we disregard the fact that not all bids are won, we focus only on 

the ad spots won on the exchange. This is not problematic as our proposed solution moves a 
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threshold in order to win enough ad space and does not directly depend on the auction win rate. If 

we win too many ads, the threshold needs to be raised. Conversely, if we win too few ads, then the 

threshold needs to be lowered. It also seems plausible that the buying firms can score ad slots in 

some way as this is precisely the nature of their business and well described in Perlich et al. (2012). 

Finally, we also assume that we are given how the advertiser would like their impressions to be 

spread across the day. It is often the case in practice that the daily distribution is provided by the 

advertiser directly or by another optimization algorithm focused on optimal ad timing. 

In this setting, we wish to have a simple rule of thresholding where the advertiser accepts 

any item with a score above the time-dependent threshold T(t) and rejects any item below it. 

Thresholding is a standard strategy in feedback control loops (Sung 2009), and it also provides a 

simple rule for the DSP to apply in real-time since the ad space auctions happen in under 100ms. 

What remains is to find an efficient way to adjust this threshold value to fulfill advertiser demand 

and adjust to any shocks in the system. 

III.2 Smoothing 

The first problem we encounter in this system is that the supply of ads is highly variable, 

making it difficult to estimate the number of ads available at even a static threshold. To overcome 

this, one cannot target the actual number of ads won but rather a smoothed estimate of the number 

of ad spaces we would expect to win at the current threshold. For this purpose, we propose using 

a Dynamic Linear Model (DLM) (West and Harrison 1997). 

DLMs are fully Bayesian, and if conjugate priors are chosen, then the model is also 

completely online. Additionally, these models can also self-calibrate the noise component, and 
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learn seasonality and higher-order rates of change. For this paper, we use a standard DLM that 

reduces to the Kalman Filter (Kalman 1960). 

 𝑥𝑘 = 𝐹𝑘𝑥𝑘−1 + 𝑤𝑘 

𝑧𝑘 =  𝐻𝑘𝑥𝑘 +  𝑣𝑘 

Here 𝑥𝑘 is the observed number of ads won in a time period k, 𝑤𝑘 is a gaussian error with 

a learned variance term, and 𝐹𝑘 is the transition matrix. 𝑧𝑘 is the true (smoothed) ad rate for period 

k, 𝑣𝑘 is also a Gaussian error with a learned variance term, and 𝐻𝑘 is the observation matrix. 𝐹𝑘 

captures the evolution of the state space from one period to the next. In our case we naïvely expect 

𝑥𝑘 to remain unchanged and set 𝐹𝑘 to the identity, but one could also learn cyclical trends and have 

𝐹𝑘 be time-dependent. Similarly, 𝐻𝑘 captures how the hidden state realizes in the measurement 

𝑧𝑘 . In our case we again expect 𝐻𝑘 to be the identity. 

III.3 Optimal Control 

Now that we have a smoothed ad rate to control, we need a control algorithm to adjust the 

threshold to get to the target ad rate that we desire. A standard tool from control theory is a 

proportional integral derivative (PID) controller Sung (2009). This allows us to adjust the threshold 

T(t) based on the difference between the ad rate we are achieving and the desired ad rate. The 

setpoint (SP) is the desired number of ad spaces an advertiser wishes to win, and the process value 

is the observed number of ad spaces won. A proportional-integral-derivative controller is a control 

loop feedback mechanism that uses only the error term (PV-SP) of each time period to adjust the 

threshold. It uses the following parameterization: 
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Table 2-2 PID Parameters 

Parameter Description 

T(t) Score threshold 

SP SetPoint (target ad rate) 

PV Process Value (smoothed ad rate) 

E(t) Error (PV-SP) 

Kp Proportional Gain 

Ki Integral Gain 

Kd Derivative Gain 

t time period 

𝜏 Variable of integration; takes on 

values from time 0 to the present time 

period 

 

The PID algorithm works in three parts, in the first component, Kp weights the threshold 

adjustment based proportionally on the latest error estimate. This is a first-order adjustment based 

on the most recent error information. Second is the integral component, it keeps track of all 

previous errors and weights the adjustment based on Ki times the accumulated error. This allows 

the adjustment to speed up if it sees a growing total error over time despite the incremental changes. 

The final term is the derivative component, Kd, which adjusts the threshold based on the change 

in the last two errors terms. The derivative component allows basic linear extrapolation of how 

effective the previous threshold adjustment was at reducing the error, and can be effective at 

dampening any potential overshoot in threshold adjustments. 

III.4 Self-calibration 
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Finally, there are two general requirements for a PID controller to function correctly. The 

first is a target for the controller (SP). In this case it is the number of ads desired during a time unit 

interval. We can compare this with the number of ads purchased during the previous time units 

and decide whether or not the threshold needs to be increased or decreased. The second 

requirement is that PID controllers need to be tuned to the system in which they operate. This 

second requirement is non-trivial as these controllers can become highly unstable if tuned 

incorrectly for the system they are controlling. 

For the first requirement, adjusting the threshold to hit a target is very difficult when the 

process value is so noisy. Even if we left T static for the entire day, each time unit would lead to a 

different number of ads being bid on because the number of ads observed with a score above T is 

random. This is precisely why we use a DLM to replace the observed ads with the prediction 

estimate for the state of the underlying ad rate. The DLM is also a model that can tune itself 

according to the noise in the system to provide an accurate estimate of the current state as well as 

an accurate prediction for the next time period. 

For the second requirement, we need a learning strategy to tune the PID controller 

dynamically. PID controllers are very sensitive to calibration and require specific tuning for each 

application (Kim et al. 2008). For the proposed algorithm, we start the controller in a relatively 

sluggish and stable state. Then using particle swarm optimization (PSO) to test out new tuning 

parameters based on whether the size of the previous error was too big, too small or adequate 

(Kennedy and Eberhart 1995). 
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To do this, we use the Ziegler-Nichols (Ziegler and Nichols 1993) transform (see Table 2-

2) of the PID parameters to change the parameter search space from 3 to 2 dimensions15. Thus, the 

parameter tuning now occurs over only Ku and Pu instead of Kp, Ki, and Kd.  

Table 2-3 Ziegler-Nichols Transformation 

 Kp Ki Kd 

PID 0.6Ku 2Kp/Pu KpPu/8 

 

For PSO, at each time step, we create several new particles that represent slight variations 

of Ku and Pu. We perturb one particle at a time by a factor of (1+σ) to create four sets of new 

candidate parameters, where σ is the step size of the perturbation. For each particle, we look at 

what threshold adjustment would have been in the current time step. We then calculate the 

proportional error of the current time step as 𝜖𝑝𝑟𝑜𝑝(𝑡) =
𝑆𝑃−𝑃𝑉

𝑆𝑃
. If 𝜖𝑝𝑟𝑜𝑝(𝑡) <  𝛿 then leave the PID 

parameters unchanged. Otherwise, we change the parameters to particles that would move the 

threshold most in the direction that error indicates. 𝛿 is the error tolerance we deem acceptable for 

not changing the tuning parameters. Both σ and 𝛿 should be learned during an upfront calibration 

period. This algorithm is illustrated below in Figure 2-1. 

 
15 The PSO needs to search across parameter space to find the optimal calibration for the three PID tuning 

parameters. The Ziegler-Nichols transform provides a generally stable link between the three parameters that reduces 

them to two parameters. This simplifies the search process and decreases the compute time needed to execute the 

algorithm. 
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Figure 2-1 Particle Swarm Implementation 

This type of search method has the benefit of leaving the PID controller in a stable state 

once the system has found a parameter set well suited to the current environment. Conversely, 

during a system shock, a static PID may take a long time to adjust, so the PSO will re-calibrate the 

PID to become far more responsive. Then once the PID finds it new steady state, the PSO will 

again re-calibrate the PID to become less responsive. 

2.4.4 Market level allocation 

The agent level solution works well provided that no other advertiser wishes to buy to the 

same ad space. However, many ad spaces will appear where multiple advertisers score it above 

their agent level thresholds. It is only in these circumstances where an ad space is considered 
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contested that the market level allocation algorithm needs to be activated to fairly allocate the ad 

space to one of the competing advertisers.  

To illustrate this problem, consider Table 2-4 below. As in Table 2-1, we observe the 

sequential scores but this time for multiple advertisers. In this scenario, Ad1 has passed the 

threshold for each of the three advertisers and needs to be assigned to one of them before Ad2 is 

revealed. Since the threshold has already accounted for undesired ad opportunities, all three 

advertisers desire the ad space. Therefore, the only concern at the market level is how to pick 

which of the competing advertisers should be assigned the ad opportunity.  

Table 2-4 Multiple Advertiser Allocations 

  Ad1 Ad2 Ad3 Ad4 Ad5 Ad6 Ad7 Ad8 Ad9 

BMW 9 9 4 8 10 9 6 3 10 

Mercedes 8 8 5 6 7 8 4 5 9 

P&G 4 3 8 5 2 3 5 9 4 

 

In this simple example we can see why a few standard solutions may not work. First, 

consider a greedy assignment mechanism where that ad opportunity is always assigned. Since 

BMW allows dominates Mercedes in score, all the contested ad opportunities will be assigned to 

BMW. This could lead to starving Mercedes for quality ad spaces. Additionally, any type of 

sequentially alternating mechanism would be no better than random assignment and lead to 

obvious inefficiencies in allocations. What is desired is a more strategic alternating scheme when 

inefficiencies are small and that only occur if an advertiser bas been starved for a while. This is 

the precisely the intuition behind the proposed solution. 

Next, we proceed to describe the allocation algorithm illustrated in Figure 2-2. Each 

advertiser is provided a score for all items rij ∈ [0, 1] which is provided truthfully at the moment 
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the ad space j arrives. Each new advertiser i begins with an initial scrip budget of Bi = 1. The 

market level allocation is only relevant to advertisers that see an ad spot with a score above their 

PID threshold. We use A to denote the set of all the advertisers that would like to bid on item j. At 

each iteration, a new item j appears. We let bi denote the bid that advertiser i is making for item j. 

bi is only set for advertisers in A (i.e., advertisers that have rij above their PID threshold value), for 

the remaining advertisers it is equivalent to 0 since they abstain.  

bi is defined as a function of how desirable it is (rij) and how much budget they have (Bi). 

This is useful in two ways, first, the advertisers that value the item more spend more on it. Second, 

as we shall see shortly, Bi acts a fairness tracker, the higher its value, the more an advertiser bids 

on an item. The bidding function f(rij) illustrated in Figure 2-3 has a tuning parameter γ where γ=1 

leaves the scores unchanged (i.e., it will return rij). The function leaves the highest score of all the 

advertisers unchanged, but then either moves the other advertisers closer to highest score (γ<1) or 

it moves the other advertisers’ scores closer to 0 (γ>1). As gamma approaches 0, the algorithm 

will assign items randomly as all the scores will become identical. As gamma approaches infinity, 

the algorithm will assign items almost greedily since all but the top score will be pushed to 0. This 

allows for an easy sliding scale for DSPs to use to move between random and greedy assignment. 

We leave γ as a firm-specific tuning parameter to make the fairness/efficiency tradeoff and 

demonstrate in simulations in the next section how it can be used. 

These bids (bi values) are now used as weights to generate categorical probabilities for each 

advertiser’s chance of being assigned item j. By assigning the item probabilistically, we further 

address the fairness concern of the advertiser with the highest rating always getting the item. In a 

single item setting, each advertiser will get the item in the relative proportion that they prefer it. 
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This becomes the discrete and online analog to proportionally fair allocation described by Cole et 

al. (2012), and similar to the ideal fractional allocation from Feldman et al. (2018). 

We then draw the winning advertiser from this categorical distribution and allocate item j 

to them. This kind of probabilistic assignment, spread across multiple items, can be seen as 

practical means of achieving fractional assignment. 

The winner's bid (bwin), is subtracted from their balance Bi. bwin is then redistributed 

between all the advertisers (including the winning advertiser) according to the proportions that 

they scored the item. This keeps the scrip supply constant and increases the losing advertisers' 

chances of winning an item later on. The increase in each advertiser’s scrip is proportional to how 

much they value it relative to other advertisers. This storing of Bi can be seen as similar to a 

continuous version of Casella’s (2003) vote storing idea. The redistribution of scrip is also very 

similar to Cramton et al.'s (1987) trading mechanism when the advertisers ‘own' equal shares of 

an item but have different values. The main difference here is that the item is not always allocated 

to the advertiser with the highest value.  

Lastly, to keep the scrip supply constant per advertiser, we re-normalize B when an 

advertiser leaves. Any new advertiser i entering starts with Bi = 1. 

This mechanism can also represent ordinal preferences. By adjusting the advertisers’ 

ordered preferences using a probability integral transform, as in Santos et al. (2016), we can get 

uniform item preference values to use in the above mechanism.  



69 

 

 

Figure 2-2 Market Level Algorithm 

 

Figure 2-3 Score Normalization 

2.5 Evaluation 

We now turn to evaluating the proposed algorithm. To our knowledge, no other algorithms 

describe the DSP problem that we present in this paper. Therefore, we analyze the proposed 

solutions in two steps to highlight each solution’s part and show how they can be best compared 

to the best strategies available to DSPs. First, we begin by examining the agent level solution and 
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compare it with similar methods used in practice. We do this using a real-world data set obtained 

from a large DSP in the USA. Second, we evaluate the market level allocation algorithm and 

compare it to optimal offline methods and modified methods currently used to solve this class of 

matching problems. We use simulated data for the second evaluation since we do not have access 

to the full range of advertiser scores for each ad space in the DSP data set. 

2.5.1 Single-Advertiser Simulation 

To evaluate the agent level algorithm, we use real-world data from a DSP. We obtained a 

14-hour window of ad space scores for a single campaign totaling 102,320 observations. In Figure 

2-4, we plot the total ad spaces available for an advertiser using stacked score bands. From this 

chart, we can see that the total supply of ads is variable and that the score distribution over time is 

also changing. Figure 2-5 shows the same data in proportions instead to illustrate the non-

stationarity of the series. Additionally, when we think of a thresholding rule for selecting the 

number of ad spaces, we can see the non-linearities in setting such a threshold. For example, we 

can see that adjusting the threshold in the 4-10 range has a much smaller effect on ads won when 

compared to adjusting the threshold in the 1-2 range. This is precisely the type of non-linearities 

that are ignored in many other mechanisms that assume known distributions and why a more 

complex controller like a PID controller is needed. These time series plots show just how variable 

each minute’s supply is and that the underlying ad rate is non-stationary and why a time series 

smoother is necessary. 



71 

 

 

Figure 2-4 Score Distribution by Minute 
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Figure 2-5 Normalized Score Distribution by Minute 

We partition the data into four time periods: from minutes 0-299, 300-499, 500-699, and 

700-840. The first time period is used for calibration purposes, our proposed method does not 

require this, but all competing methods do. In general, we make our evaluation choices in favor of 

the competing methods. Next, we set a constant minute level ad target (quota) for these four time 

periods: 30, 30, 5, and 45 ad spaces respectively. The changes in ad targets are equivalent to 

shocking the system to illustrate the ability of the competing methods to adjust to changing 

circumstance. The ideal outcome is that with perfect hindsight (i.e., an oracle condition) that we 

would select only the highest-scoring ad spaces needed in each time period to satisfy the quota. 

Our measures for success in the context of just a single advertiser are efficiency and delivery. 

Efficiency is calculated as the sum of the total ad scores chosen during that time period and then 

divided by the total sum that an oracle would have achieved. Thus, efficiency can be seen as a 

percentage of the theoretical maximum score possible. Delivery is calculated as the percentage of 

the quota that has been fulfilled based on the set ad target for that time period. 

We consider two benchmark comparisons for the single advertiser version of our problem. 

First, we use the simple rule of buying all the ad space as it arrives until the quota is met (which 

we call First Ads). While trivial, this rule is used in practice given its simplicity and the importance 

of meeting the ad quota. Second, we retroactively look at the training period and pick a threshold 

with perfect hindsight that would yield the number of ad spaces required (which we call Baseline). 

This second approach is precisely what a primal-dual based solution (such as Feldman et al. 2018) 

would reduce to in a single advertiser setting. Our third set of results show the application of the 

proposed agent-level algorithm. We note that the agent-level algorithm is at a disadvantage in this 

simulation as it is the only one attempting to hit a minute-level impression target. 
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Table 2-5 Agent Level Evaluation Results 

 
Minute time interval 

 
300-499 500-699 700-840 

First Ads Efficiency 37% 18% 65% 

First Ads Delivery 100% 100% 100% 

Baseline Efficiency 74% 79% 90% 

Baseline Delivery 178% 212% 201% 

Our Approach Efficiency 97% 90% 95% 

Our Approach Delivery 100% 100% 100% 

 

Looking at the results in Table 2-3, it is unsurprising that the First Ads method always buys 

sufficient ads. Also, it is similarly unsurprising that efficiency is between 18% and 65% of the 

oracle and theoretical maximum. This method makes no effort to pick better ad spaces and focus 

entirely on meeting the quota.  

The Baseline method does significantly better than the First Ad method. It happened to be 

calibrated in a time period where ad supply was lower than the later periods. So even though it 

was more selective with which ad spaces to select, it still selected too many. Hence, it over-

delivered ads without an additional stopping rule once the quota was hit. The more selective 

thresholding improves efficiency, providing between 74% to 90% of the oracle’s performance. 

Finally, our proposed, agent-level method adjusted dynamically in the first period (which 

we do not compare) and is well-calibrated at the start of the first test period. Given that it starts off 

optimally and adjusts quickly to the changing ad volume, it yields a 97% efficiency level relative 

to the oracle in the first test period. In the second and third test periods, it achieves 90% and 95% 
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efficiency respectively, marginally lower because of the time needed to adjust to the new 

requirements. 

In Figures 2-6 and 2-7, we take a closer at the proposed method. Figure 2-6 shows the ad 

supply over time (which is not known by the algorithm), and the target ad quota. We begin with a 

threshold of 10, which quickly drops to 0 since the desired number of ads is initially above the 

supply. We also see the realized and smoothed number of ads obtained for each minute given the 

selected threshold. Once the supply exceeds demand, the threshold quickly rises, illustrating how 

the algorithm becomes rapidly more selective once better options are available. We also see that 

when the ad target suddenly drops and later rises that the threshold similarly rises and then drops 

rapidly to accommodate the new requirements. 

In Figure 2-7, we plot the two tuning parameters of the PID controller to illustrate the 

learning process of the particle swarm optimization. The tuning parameters are initialized at a 

relatively slow-moving and stable point. Also, according to standard practice, the tuning 

parameters are bounded within a stable operating range of 0.005 < Ku < 0.1 and 5 < Pu < 100. At 

the start, the algorithm realizes that it is far from satisfactory and aggressively raises the Ku 

parameter. Once it can supply enough ads, the tuning parameters settle down into a less reactive 

state with low Ku and Pu values. Then later, when the ad targets suddenly change, it realizes that it 

needs to become drastically more reactive and manage much smaller quotas, so it raises both Ku 

and Pu values. This illustrates why a dynamic PID controller is required for the DSP setting.  In 

Appendix B, we show additional results without using the PSO to demonstrate its necessity.  
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Figure 2-6 Simulation Results for Proposed Solution 

 

 

Figure 2-7 PID Parameters for Proposed Solution over Time 

2.5.2 Multiple Advertisers (Market-level evaluation) 

Next, we examine the market level algorithm, which is the mechanism that decides 

amongst all the advertisers that desire an ad spot, which one should get it. Unfortunately, we do 
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not have DSP data that reflects the scores of all advertisers for each ad space that appears on RTB 

exchanges. Therefore, we simulate data to approximate this environment. For each iteration, we 

generate preferences for three advertisers across five items. The item scores are drawn from a 

Uniform(0,1) distribution, then each item is perturbed by independent draws from a Normal(0,1/5) 

for each advertiser to create correlated advertiser preferences. The item frequencies are drawn from 

a Dirichlet(1/5) distribution to represent the high level of imbalance of online ad spots. Using this 

item-advertiser score matrix and item frequencies, we sample 100,000 items and allocate them 

according to the various methods. We then repeat this entire process 100 times to obtain median 

outcomes for competing methods. 

We compare our algorithm to four other methods. First, we compare it to random 

assignment. Although very simple, it is the benchmark of truly fair assignment as each advertiser 

has an equal chance of receiving the desired item regardless of the score. The second method is a 

greedy assignment. Greedy assignment allocates the ad spot to the advertiser scoring it the highest. 

This is akin to assigning an ad spot to its highest value and will lead to the least equal outcomes. 

Both random assignment and greedy assignment are used in the literature and in practice due to 

their simplicity and for their fairness/efficiency arguments (e.g., Devanur and Hayes 2009, 

Manshadi et al. 2010, Gollapudi and Panigrahi 2014, Feldman et al. 2018). However, these 

methods represent the two extremes and can lead to undesirable outcomes that we hope to 

overcome with our method. 

Given that, to our knowledge, no online mechanism exists to fairly allocate a stream of 

items in real-time, we compare our results to the ASM method discussed earlier (McAfee 1992). 

For this method, we wait until the entire set of 100,000 items has appeared. Then we cycle through 

each advertiser in turn and allocate to them their highest rated item of the remaining items. This 
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item is removed from the set and assigned to that advertiser. Then we move on to the next 

advertiser and repeat the process. This continues sequentially through the three advertisers 

allocating 1 item at a time until all the items have been allocated. While impossible for the DSP to 

implement in practice, this provides a good benchmark for both fair and efficient allocation of a 

set of items. 

Next, we apply a primal-dual solution based on the Devanur and Hayes (2009) formulation, 

which we refer to as DH. Since this is a solution to the adwords problem, our implementation is 

slightly modified as we do not have an advertiser budget, we instead create a budget based on the 

observed advertiser ad space scores during the training (see Appendix B for the implementation 

details). We allocate the first 10% of ad spots (i.e., the first 10,000) randomly. Then we use this 

training set and a quadratic solver to solve the primal-dual problem. For future iterations, the 

advertiser weights are multiplied by the advertiser's score for the drawn item. The item is then 

allocated to the advertiser with the largest of the updated scores.  

Finally, we replicate the DualBase solution discussed in Feldman et al. (2018) as the best 

in class solution to the publisher problem. We again allocate the first 10% of ad spots (i.e., the first 

10,000) randomly. Then we use this training set and a quadratic solver to solve the primal-dual 

problem. For future iterations, the advertiser weights are subtracted from the advertisers’ scores 

for the drawn item. The item is then allocated to the advertiser with the largest of the updated 

scores. 

Our simulation setup provides the best-case scenario for both of the primal-dual solutions 

since their primary weakness is that they assume that the learned distribution will remain the same 

over time. This assumption is valid in this simulation, but it is not required by our method and does 

not hold in practice. 



78 

 

We consider two evaluation metrics. First, we again define efficiency as the sum of the 

scores for the advertiser that the item was allocated to. By this definition, the greedy algorithm 

will represent the upper bound of this metric. Second, to measure fairness, we use the multivariate 

Gini distance metric (Koshevoy and Mosler, 1997). This metric is minimized when each advertiser 

receives an equal number of each item and it is representative of the intrinsic fairness notion that 

each advertiser has equal rights to each item. We can use this metric in our simulation because we 

have designed the simulation such that each advertiser desires all items. The Gini equation is 

presented below where n is the number of advertisers, i and j are advertisers, and d is the number 

of items. 

 

We note this is different from the Feldman et al. (2018) fairness measure where they 

assume that item scores are accurate and comparable, this allows them to define a fairness measure 

based on agents’ item scores thereby creating a value-based fairness metric. However, in our 

setting, the scores are not directly comparable, making their measure ill-defined for our purposes. 

Gini distance works well for our purposes as it looks only at the distribution of items and not their 

scores, this makes it a good measure to capture the fairness differences between our competing 

methods. 

In Figure 2-8, we plot the results of the simulation with Gini distance on the y-axis and 

efficiency on the x-axis. We plot the median results for all methods and normalize such that 

random takes on the value of 1 in both dimensions. We first note that, unsurprisingly, Random is 

the least efficient but the most equitable. Similarly, Greedy is the most efficient, being 28.7% more 

efficient than random, and also the least equitable with a Gini distance almost 248 times larger 
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than random. DH is approximately 8.5% more efficient than Random while achieving a Gini 

distance almost 218 times larger than random. The DualBase solution is very close to greedy and 

is 26.3% more efficient than random with a Gini distance 224 times larger than random. ASM is 

7.6% more efficient than Random, with only 16.3 times higher Gini distance when compared to 

random. 

Our proposed method is shown in red in Figure 2-8. The red dots illustrate the median 

outcomes of different choices of γ, namely: 1/10, 1/5, 1/2, 1, 2, 3, 5, 10, 20, and 50. For example, 

the outcome with γ=1 is close to the ASM method, being 6.4% more efficient than random while 

achieving a distance only 35.1 times higher than random. These results illustrate how we can 

achieve a sliding scale from random to greedy and form an efficiency-fairness frontier allowing a 

tradeoff between the two. We are able to achieve greater levels of efficiency than the DH and 

DualBase implementations with more equitable outcomes. We note that we are able to come 

remarkably close to the ASM method, but given that it is the only offline solution, it is also able 

to perform beyond our efficiency-fairness frontier. Additionally, since our method requires linear 

time, it could be a useful approximation to applications of ASM where the offline datasets are too 

large for ASM. 
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Figure 2-8 Simulation Results 

2.6 Conclusion 

Digital advertising continues to evolve rapidly, and the advent of real-time bidding is no 

exception. Now that publishers sell ad spaces from their websites in real-time, advertisers need to 

adapt to these new highspeed platforms. These changes have given rise to demand-side platforms 

who algorithmically purchase ad spots on behalf of advertisers and are tasked with fairly executing 

in the best interest of multiple advertisers simultaneously. 

We present the DSP problem and show how it is different from the adwords and publisher 

problems in that ad supply is far more variable, ad quotas are more important, and fairness plays a 

larger role. This eliminates the possibility of relying heavily on earlier data for model training and 

heightens the need for a streaming algorithm that can adapt rapidly adapt to changing 

environments. 
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In this paper, we present such a streaming algorithm based on previous research in both 

economics and computer science. Through simulations using real-world ad exchange data and 

simulated data, we demonstrate that our proposed method is superior to current state-of-the-art 

methods for both the adwords and publisher problems as well as best-in-class offline methods. 

Our proposed method exposes the explicit tradeoffs that DSPs need to make when 

assigning ad space between multiple advertisers that they represent. We show that there is also a 

firm-level tradeoff between fair ad allocations and efficient ad allocations. Our method provides a 

tuning parameter that allows DSPs to move between an entirely fair random allocation mechanism 

with low efficiency, to a greedy allocation mechanism with high efficiency but also highly unequal 

allocations. The parameter allows the DSP to pick a point on a frontier between these two extremes 

that can meet their business needs and is transparent to advertisers. 

As a caveat, we offer no formal proof of optimality, in particular, we do not show that the 

tradeoff frontier we provide is Pareto optimal. It is challenging to provide such a rigorous proof 

for an algorithm that is dynamic and state-dependent. We leave this as an open question for future 

research. 

We also acknowledge that fairness is a highly subjective issue. We attempt to address this 

by separating our efficiency measure from our fairness measure rather than finding a unified 

measure to assess the methods. We use the well-accepted Gini measure for fairness, which is both 

familiar to many but also treats all items equally in terms of value to fairness. 
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3 Cross-Merchant Spillovers in Coalition Loyalty Programs 

3.1 Introduction 

Loyalty programs have become a fundamental marketing tool for firms seeking to improve 

outcomes ranging from customer retention to data collection. In a typical loyalty program design, 

members collect points (e.g., one point per dollar spent) from purchases at a specific merchant, 

and spend these points on future purchases with the merchant (e.g., at a rate of a dollar per 100 

points earned). Many highly-subscribed programs follow this basic model; well-known examples 

include Starbucks Rewards and CVS ExtraCare. Coalition loyalty programs are groups of firms 

within which consumers can earn and spend points at any merchant. These coalitions promise 

customers greater flexibility in the way they earn and redeem points with the goal of increasing 

overall participation within the network of merchants. Coalition loyalty programs attempt to 

provide greater value by increasing engagement, providing targeted offers using broader user data, 

and including non-competing partners at which to redeem points (Sports Loyalty International, 

2018). 

Well-known examples of coalition loyalty programs have been met with varying levels of 

success over the years. Germany’s Payback coalition program, which began in 2000 and has 

expanded into five other countries, boasts 30 million active card users and six million active app 

users (Payback, 2018). Part of the American Express group, Payback enables its users to earn and 

use points at hundreds of merchants. Payback claims to have “generated” 33.8 billion euros in 

2018, 409 million euros worth of points collected in 2018, and a 95 percent redemption rate of all 

points collected (Payback, 2018). 

Another large coalition is the United Kingdom’s Nectar, which was founded in 2002. As 

of 2016, Nectar had 19 million users and one million app downloads (Hobbs, 2016) and currently 
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has hundreds of participating merchants (Nectar, 2018). Other examples are Air Miles Canada and 

Travel Club in Spain (both reaching 70 percent household penetration), Fly Buys in Australia (60 

percent household penetration; Sports Loyalty International, 2018), and South Korea’s OK 

Cashbag (Yi et al. 2014). 

A recent example of an unsuccessful coalition loyalty program is Plenti, a program in the 

U.S. that closed in July 2018 after three years in operation. Merchants in the Plenti coalition 

included firms with a national presence such as Macy’s, a department store; Exxon and Mobil gas 

stations; Rite Aid, a pharmacy; and Chili’s, a restaurant chain. Owned by American Express, Plenti 

had 36 million users at its peak (Pearson, 2018); however, very few were redeeming points for 

rewards, and those that did rarely made more than two redemptions (Shoulberg, 2018). 

While loyalty program partnerships occur in many forms, we focus on coalition loyalty 

programs where a curated group of merchants share a common loyalty point pool. This is distinct 

from other partnership programs such as credit card points where the points are earned at any of a 

vast number of merchants accepting a payment method such as Visa or MasterCard. Credit card 

reward programs, moreover, are largely funded by credit card companies themselves as a means 

of driving adoption, whereas the coalition loyalty program we study is funded by individual 

merchants. The coalition program we study shares some similarities with airline alliances, in that 

points are easily transferrable between vendors and that vendors in the networks are generally non-

competing. However, whereas airline alliances offer products in a single vertical, the loyalty 

program we study is designed to multi-category, presumably making the nature of spillovers quite 

different between the two cases. 

The underlying thesis of coalition loyalty programs is that, relative to standalone programs, 

coalition programs more effectively enhance customer loyalty by allowing points or rewards to be 
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redeemable across a selection of merchants. Coalition programs also make possible lower 

customer acquisition costs between network merchants by facilitating cross-promotional activity. 

However, joining a coalition also exposes merchants to the risk of losing engagement to other 

network merchants; for instance, point redemption may be more attractive at some merchants than 

others. 

We aim to contribute to the understanding of coalition loyalty programs by studying cross-

vendor benefits from new merchant entry into a coalition loyalty program. Our analysis focuses 

on a coalition loyalty program in a Middle Eastern country that consumers use via a mobile 

application. We employ a novel identification strategy that relies on the entry of merchants into 

the coalition. These merchant entries comprise exogenous shocks that have, to our knowledge, not 

been studied in prior research. We use a dual strategy composed of regressions on matched samples 

and a Bayesian structural time series model to study consumers’ responses to these events. 

In our first approach, we use a regression framework to measure the impact of merchant 

entry on the pre-existing merchants in the network. We define the base group as the set of 

consumers who do not purchase at the new merchant; the relevant group as the set of consumers 

who purchase at the new merchant; and the dependent variables of interest as the outcomes for 

pre-existing merchants. Our key assumption is that merchant entry is irrelevant for users of the 

program who do not purchase at the entrant. We find that merchant entry has several positive 

effects on pre-existing merchants: more frequent transactions, larger basket sizes, and higher 

overall sales. 

 In our second approach, we use a Bayesian structural time series model to estimate the 

spillovers from merchant entry. The model forecasts the counterfactual paths for key outcomes 

had entry not occurred; the difference between the counterfactual and realized paths constitute the 
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treatment effect. The benefit of this approach is that it does not require the necessary assumptions 

required for our matching analysis. Nonetheless, we find convergent evidence of significant 

positive spillovers from merchant entry from our two approaches. In the following sections, we 

discuss the related literature, data and industry setting, our dual empirical strategies, and conclude. 

 

3.2 Related literature 

The bulk of the literature on loyalty programs is focused on standalone programs, i.e. those 

in which points are earned through purchases at one firm and rewards are redeemable at the same 

firm. In this section, we highlight key results from this literature, which range from findings on 

consumer decision-making to program design for firms. We then discuss the emerging literature 

on coalition loyalty programs. 

Research in quantitative marketing has sought to understand how loyalty programs impact 

key consumer outcomes. For example, Lewis (2004) develops a dynamic structural model to study 

customer retention in a grocery loyalty program and finds that the program increases repeat-

purchase rates. Similarly, Jiang, Nevskaya, and Thomadsen (2017) find a 15-17 percent reduction 

in customer attrition from a non-tiered loyalty program at a hair salon. Liu (2007) finds that 

customers who are initially heavy users in a loyalty program are more likely to redeem their 

rewards; however, moderate users tend to become more loyal to the focal store and increase both 

the number and size of their transactions over time. 

In addition to assessing outcomes, related research has also evaluated how loyalty 

programs are structured. Kopalle, Sun, Neslin, Sun, and Swaminathan (2012) study the sales 

impact of a joint frequency and customer-tiered loyalty program and conclude that both 

components have significant effects on incremental sales. Zhang and Breugelmans (2012) find 
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several sources of gains in switching from a discount-based loyalty program to an item-based 

loyalty program. Wei and Xiao (2015) investigate the relative effectiveness of discounts and 

increased rewards points value, and find that unlike discounts, rewards promotions increase the 

number of purchases of other products in similar product categories. Using a dynamic structural 

model and data from an Italian gasoline merchant, Rossi (2017) finds that most consumers prefer 

price discounts instead of receiving rewards points and are insensitive to changing reward 

structures. 

The interaction of promotions and loyalty programs, in particular, has been an emphasis 

on related research. Van Heerde and Bijmolt (2005) study the responsiveness of different customer 

groups using a Bayesian hierarchical framework and conclude that non-targeted price promotions 

are more profitable than techniques that target loyalty program members. Relatedly, Zhang and 

Wedel (2009) develop a model for optimizing campaigns that leads to significant profit bumps, as 

well as evaluating the effectiveness of different types of promotions for a combined online and 

offline retailer. 

Some papers have focused on consumer behaviors that are idiosyncratic to loyalty 

programs. Stourm, Bradlow, and Fader (2015) develop a structural, multi-account model of a linear 

loyalty program and find three distinct causes for stockpiling of points: an economic incentive; a 

cognitive incentive; and a psychological incentive, with the latter two being dominant forces in 

their empirical setting. Orhun and Guo (2018) find that airline loyalty members are more likely to 

sacrifice near-term utility to gain status in tiered programs when they are “behind schedule” in 

their progress. 

Researchers have also studied how loyalty programs interact with consumer psychology to 

influence behavior. Dreze and Nunes (2004) find that consumers prefer to use a combination of 
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cash and rewards points when they do not value cash and rewards points equally and when the 

perceived cost function for one of the currencies is partly convex. Meanwhile, using multiple 

surveys, Kwong, Soman, and Ho (2011) find that consumers are more likely to spend their points 

when the benefits to doing so are easily calculated, e.g. an easy to compute fraction. 

There is a small but growing literature on coalition loyalty programs. Dorotic, Fok, 

Verhoef, and Bijmolt (2011) do not find evidence of cross-vendor spillovers from promotions in 

coalition loyalty programs. Danaher, Sajtos, and Danaher (2017) model the transition of consumers 

between behavior states in the context of a coalition loyalty program. Stourm, Bradlow, and Fader 

(2018) find that store affinity, e.g. similarity of product categories sold or geographic proximity, 

yields positive cross-reward effects, except in situations where partners are similar along both 

these dimensions (i.e. competitors are close to each other). To our knowledge, prior research has 

not examined the impact of network size or composition on the effectiveness of coalition loyalty 

programs. We aim to contribute to the literature by examining the impact on firms in a coalition 

loyalty program of the entry of new merchants into the network. 

 

3.3 Background, data, and preliminary evidence 

The data used in this study was provided by a coalition loyalty program in a Middle Eastern 

country that consumers use via a mobile application. The program operates in an economy that is 

experiencing improving internet connectivity, significant smartphone adoption, and significant 

mobile phone usage for shopping, social media, mobile banking, and activity engagement. 

Furthermore, the country’s retail sector has experienced steadily increasing growth and is projected 

to continue growing for several years. 
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The coalition loyalty program operates by offering promotional campaigns at partnering 

merchants via its mobile applications. The program includes merchants in several industries 

including traditional retail, travel, mobile carrier, electronics, and grocery among others, and offers 

three types of campaigns: campaigns where customers can earn up to a specific number of points, 

campaigns where customers earn points as a percent of their total basket size, and campaigns where 

customers can redeem points at a higher value than the base exchange rate to receive greater 

discounts (hereafter multipliers).16 The loyalty program earns 77 percent of its revenue from 

commission when program members utilize promotional campaigns. The remaining revenue 

comes from point redemption, expiration, and additional advertising. 

The data set provided to us contains detailed information on consumer activity and tracks 

unique users throughout the data set. For example, for each transaction we have the original basket 

size of transactions prior to any rewards points and multipliers being used. We also know the 

rewards points being earned by consumers and can identify the associated campaigns being 

utilized. The centerpiece of our research is an analysis of the entry of a large grocery chain into 

the coalition. We only consider the transaction data for the 3 months preceding the merchant (i.e. 

the beginning of our data set) and 3 months after entry. We constrain data for this analysis to 

maintain a stable set of shoppers, as well as to prevent contamination from further merchant entry. 

More detail for the full and subsample data sets and distributions of relevant variables are provided 

in Tables 3-1 and 3-2, respectively, below.  

  

 
16 Program members also earn points at a rate of 0.1 percent of total basket size of all non-campaign 

transactions. 
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Table 3-1 Data Set Summary Statistics 

 
Entire time period Analysis time period 

Duration 

June 3, 2015 - August 

25, 2016 

August 8, 2015 - February 

4, 2016 

Number of unique 

customers 1,538,638 681,777 

Number of unique 

transactions 8,274,819 2,336,141 

Number of unique 

merchants 73 47 

Number of unique stores 3,532 2,477 

 

Table 3-2 Distribution of Relevant Variables at the Transaction Level 

 
Entire time period Analysis time period 

  Mean Std. dev. Mean Std. dev. 

Original basket sizes 139.57 132.824 168.02 141.77 

Points Earned 32.46 27.25 37.98 29.23 

Points Used/Redeemed 35.2 30.81 40.85 31.95 

Sample means are statistically different from each other at p<0.001 level 

 

In our empirical analysis, we exploit the entry of merchants into the program as a source 

of exogenous shocks to customer behavior at pre-existing merchants. We plot the cumulative entry 

of merchants and their stores over time in Figures 3-1 and 3-2 below. As is evident from Figure 3-

2, the merchant  entry introduced a significant number of stores into the loyalty program, 

accounting for approximately one-half of all stores included in the analysis. In subsequent 

analyses, we also study the impact of smaller merchant entries. 
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Figure 3-1 Cumulative number of merchants in the coalition 

 

 

Figure 3-2 Cumulative number of stores in the coalition 

 

In fact, we can see model-free evidence of positive externalities from more merchants and 

stores entering a coalition loyalty program. The analysis is performed at the store-day level and 
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does not include the large merchant that enters the program. Table 3-3 presents results from 

regressions on our main dependent variables: the total number of transactions across all merchants, 

average basket size for purchases, aggregate sales, rewards points earned, and rewards points 

redeemed. We control for  network size (measured as the cumulative number of merchants in the 

program), distance to the nearest store, and a time trend. We include distance to nearest store as 

an additional measure of network growth; because this is mostly offline retail an in-network store 

that opens nearby potentially provides an additional shock dependent variables. These regressions 

provide exploratory evidence that increasing the size of the network leads to increases in each of 

our dependent variables for every store in the network on a daily basis. However, the distance to 

nearest store and time trends are sometimes negative and sometimes positive indicating that net 

spillovers may also be negative or positive and thus a more careful analysis is needed. 

 

Table 3-3 Preliminary evidence with distance to the nearest store 

 (1) (2) (3) (4) (5) 

VARIABLES Total no. of 

transactions 

Average 

basket size 

Aggregate 

sales (000s) 

Points Earned Points Used 

      

Merchant 

Network 

size 

0.2675*** 17.96*** 0.2158*** 20.32*** 10.31*** 

(0.0372) (1.01) (0.0160) (2.614) (1.620) 

Distance to 

Nearest 

Store 

0.0226*** -1.493*** 0.0046** 3.677*** 4.377*** 

(0.0045) (0.393) (0.0023) (0.285) (0.182) 

Time Trend 
- 0.0094*** 1.594*** 0.0094*** 0.099 1.134*** 

(0.0036) (0.089) (0.0014) (0.269) (0.174) 

      

Observations 172,058 172,058 172,058 172,058 172,058 

R-squared 0.63 0.23 0.75 0.19 0.26 
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Day-of-week 

FE 
YES YES YES YES YES 

Store FE YES YES YES YES YES 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

In the following sections, we describe our approach for detecting the presence of spillovers 

from the entry of merchants into a coalition loyalty program. We adopt a two-pronged 

measurement strategy. The first consists of regressions on matched samples, where groups are 

selected based on eventual activity at the entering merchant. The second consists of counterfactual 

simulations using Bayesian structural time series modeling. These two distinct approaches produce 

convergent evidence of significant positive spillovers from merchant entry in the coalition loyalty 

program. 

 

3.4 Matching Analysis 

To estimate the impact of the entry of the large grocery chain in our sample, we partition our data 

set into two groups: a group of consumers that never shop at the new large merchant and a group 

of consumers that we observe to make at least one purchase at the new merchant. We call these 

two groups our base and relevant groups, respectively.17 To mitigate potential bias in our 

estimation, we restrict our data set to consumers that made at least one purchase (at any store) in 

 
17 Our data set provides very granular geographic detail on stores (i.e. their longitudes and latitudes). Using 

this information, we could, in theory, categorize stores based on their distance to the nearest store of the new merchant 

that entered the coalition loyalty program and use a difference-in-differences approach. However, upon the new 

merchant’s entry, over 1,200 stores enter the coalition program, and more than 95 percent of pre-existing stores are 

within two miles of the new merchant. 
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the 90 days prior to the new merchant entry; doing so allows us to study how active consumers’ 

behavior changes without the results being confounded by new customers that enter the program 

because of the new merchant. 

We balance our base and relevant groups on variables that reflect their activity in the 

program prior to the merchant’s entry. Specifically, we balance the sample of customers based on 

their aggregate sales, average basket size, the number of unique stores they shop at, and the number 

of days on which they transact in the 90 days prior to the grocer’s entry.  

Table 3-4 displays a basic two-sample t-test to highlight the existence of imbalance 

between the two customer groups. Each variable, with the exception of aggregate sales, is 

unbalanced between our treatment and control group, indicating that matching consumers between 

the two groups will allow us to draw more robust conclusions from our ensuing regression analysis. 

Table 3-4 Summary statistics before matching 

      Difference   

Variable   Control Treated C - T P-value 

Aggregate sales 
Mean 1,137.46 1,170.89 -33.43 

0.231 
Std. Error 8.89 24.58 27.92 

Average basket size 
Mean 501.63 430.71 70.92 

0.000 
Std. Error 2.58 6.24 8.03 

Number of stores visited 
Mean 1.57 1.83 -0.26 

0.000 
Std. Error 0.0025 0.0095 0.0081 

Number of days making a transaction 
Mean 1.99 2.44 -0.45 

0.000 
Std. Error 0.0043 0.0164 0.0139 

Number of observations   144,908 16,058     

 

Table 3-5 displays the results of the logistic regression performed to estimate the propensity 

scores. We follow the standard procedure described in Rubin (1974), where the binary independent 

variable in our logistic regression has a value of 1 if a consumer is observed to purchase at the 

grocery store and 0 otherwise, the number of observations represent the number of consumers. By 
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matching our samples, we aim to form two similar groups of consumers for comparison, and to 

mitigate any bias arising from the selection of one group into purchasing at the grocery store. Table 

3-6 presents summary statistics of the matching variables of the propensity score matched sample 

against the unmatched sample. Despite the relatively low pseudo-R2 scores, our propensity score 

matching still manages to achieve significant reductions in imbalance across all variables 

indicating that it does explain a large portion of purchasing behavior. 

Table 3-5 Propensity score logit regression, matching 

Variable Treated Customer 

Aggregate sales 
-0.00003*** 

(0.00001) 

Average basket size 
-0.000101*** 

(0.00002) 

Number of stores visited 
0.14032*** 

(0.00995) 

Number of days making a transaction 
0.09660*** 

(0.00704) 

Constant 
-2.58178*** 

(0.00678) 

  

Observations 160,966 

Log Likelihood -51,597.824 

Pseudo R-squared 0.0123 

 

Table 3-6 Summary statistics after matching 

     Difference   

Variable   Control Treatment C - T P-value 

Aggregate sales Mean 1170.9 1208.8 -37.9 0.277 

Average basket size Mean 430.71 436.5 -5.79 0.507 

Number of stores visited Mean 1.8294 1.8434 -0.014 0.297 

Number of days making a transaction Mean 2.4364 2.4342 0.0022 0.926 

Number of observations   16,058 16,058     
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We focus on outcome variables specific to incumbent merchants, i.e. excluding activity at 

the new merchant. Our outcome variables of interest are: the overall number of transactions; 

average basket sizes (net of all discounts, i.e. points used plus applied multipliers); aggregate sales 

(also net of all discounts); points earned; and points used (see Appendix C for variable definitions). 

We estimate the following program-level model: 

 

         𝑦𝑖,𝑡 = 𝛼 + 𝛽1𝑃𝑜𝑠𝑡 𝐸𝑛𝑡𝑟𝑦 + 𝛽2𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝐺𝑟𝑜𝑢𝑝𝑖 + 𝛽3𝑃𝑜𝑠𝑡 𝐸𝑛𝑡𝑟𝑦 ∗ 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝐺𝑟𝑜𝑢𝑝𝑖

+ 𝜃𝐹𝑖𝑥𝑒𝑑 𝐸𝑓𝑓𝑒𝑐𝑡𝑠 + 𝜀𝑖,𝑡                                                                                                (1) 

 

where 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝐺𝑟𝑜𝑢𝑝𝑖 indicates whether the customer falls into the base group or relevant 

group (i.e. grocery store customers), 𝑃𝑜𝑠𝑡 𝐸𝑛𝑡𝑟𝑦 is an indicator for pre- and post-merchant entry, 

𝑡 is the day in the 181-day period analyzed, and 𝐹𝑖𝑥𝑒𝑑 𝐸𝑓𝑓𝑒𝑐𝑡𝑠 is a matrix of additional controls. 

Our main results, aggregated to the daily level for the program, are presented in Table 3-7. 

The effect under investigation is post-entry impact on grocery customers for existing 

coalition merchants (i.e. the Table 3-7 parameter of Post-entry * Grocery customers). For this 

group we find that the total number of transactions increases by about 153 per day. Next, we note 

that the average basket size of each transaction is 43 units of local currency lower but that the 

aggregate sales is approximately 37,962 units of local currency higher. We also see that this group 

earns and spends approximately 3,454 and 3,090 loyalty points respectively.   

Next, we perform a similar analysis to determine the effect of the new merchant entry at 

the individual store level for all pre-existing and non-grocery store merchants. We add the store 

level analysis to investigate if the aggregate analysis may be masking compositional effects, for 
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instance perhaps only the largest merchants experience positive spillovers. We adapt the model 

above as follows:   

         𝑦𝑠,𝑖,𝑡 = 𝛼 + 𝛽1𝑃𝑜𝑠𝑡 𝐸𝑛𝑡𝑟𝑦 + 𝛽2𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝐺𝑟𝑜𝑢𝑝𝑖 + 𝛽3𝑃𝑜𝑠𝑡 𝐸𝑛𝑡𝑟𝑦 ∗ 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝐺𝑟𝑜𝑢𝑝𝑖

+ 𝜃𝐹𝑖𝑥𝑒𝑑 𝐸𝑓𝑓𝑒𝑐𝑡𝑠 + 𝜀𝑠,𝑖,𝑡                                                                                              (2) 

where i and t are defined as before, and s represents each store. We arrive at the results listed in 

Table 3-8. 
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Table 3-7 Aggregate level 

 (1) (2) (3) (4) (5) 

VARIABLES Total no. of transactions Average basket size Aggregate sales (000s) Points Earned Points Used 

      

Post-Grocery entry -6.37 22.71** 12.07 5,114.04*** 6,767.25*** 

 (17.07) (11.1593) (8.77) (1,267.51) (882.85) 

Grocery customers 1.87 -18.42* -6.75 1,148.70 145.22 

 (20.09) (10.77) (9.06) (1,402.24) (634.62) 

Post-entry * Grocery customers 153.08*** -43.05*** 37.96*** 3,454.37* 3,090.07** 

 (27.70) (15.06) (14.31) (1,942.80) (1,362.73) 

Constant 522.91*** 418.97*** 215.63*** 7,800.40*** 6,796.62*** 

 (13.32) (7.43) (5.75) (917.69) (410.91) 

      

Observations 362 362 362 362 362 

R-squared 0.52 0.13 0.38 0.27 0.41 

Day-of-week FE YES YES YES YES YES 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Table 3-8 Store level 

 (1) (2) (3) (4) (5) 

VARIABLES Total no. of transactions Average basket size Aggregate sales (000s) Points Earned Points Used 

      

Post-Grocery entry -0.04*** -15.60*** 0.014 10.79*** 13.82*** 

 (0.01) (2.56) (0.009) (1.04) (0.91) 

Grocery customers -0.003 -14.75*** -0.030*** 1.54** -0.25 

 (0.01) (2.78) (0.009) (0.71) (0.52) 

Post-entry * Grocery customers 0.25*** 14.84*** 0.063*** 5.67*** 5.67*** 

 (0.02) (3.44) (0.013) (1.55) (1.27) 

Constant 1.34*** 170.84*** 0.519*** 26.17*** 21.40*** 

 (0.02) (2.80) (0.010) (1.39) (1.05) 

      

Observations 168,037 168,037 168,037 168,037 168,037 

R-squared 0.69 0.25 0.57 0.09 0.12 

Day-of-week FE YES YES YES YES YES 

Store FE YES YES YES YES YES 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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We again focus on the post-entry impact on grocery customers (i.e. the parameter of Post-

entry * Grocery customers). Here we see that that average store gets 0.25 more transactions per 

day. The average basket size now increases by 14.8 units of the local currency and the total sales 

increases by 63 units of the local currency. Again, both loyalty points earned and spent increases 

by 26 and 21 points, respectively.  

From Table’s 3-7 and 3-8 we draw our main conclusions, that stores see statistically significant 

increases in the number of transactions and aggregate sales from relevant customers at pre-existing 

coalition stores. Similarly, the relevant customers become more active within the loyalty program 

as can be seen by the statistically significant increases loyalty points earned and spent. The effect 

on baskets size implies that, while basket sizes increase at the store level, the estimated increase 

in the number of transactions accrues disproportionately to stores at which consumers have lower 

basket sizes. 

Next, we seek to show how spillovers vary according to the intensity at which relevant 

customers transact with the entering merchant. We partition the set of relevant customers into 

terciles according to their total spending at the entering merchant. We add interactions to our 

baseline models indicating whether customers are low, medium, or high value customers according 

to this measure. Tables 3-9 and 3-10 contain the corresponding regression results. 

We again focus on the post-grocery entry group interacted with the three tiers of customers. 

Across all tiers of customers we again see that total transactions increases and that the average 

basket size decreases. The pattern seems strongest for the lowest value customers who may 

coincidentally be the most responsive to promotional activity. However, we find no effect on 

aggregate sales, mixed results on points earned, and a decrease in points spent18.  

 
18 This could be due to the lower power from the reduced number of customers in each tercile. 
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Overall, we find that after the grocery merchant joins the coalition loyalty program, the pre-

existing customers who shop at the grocery store increase their number of transactions and money 

spent at other coalition merchant stores. In appendix C, for the sake of robustness, we repeat the 

analysis of this section using the unmatched data and report qualitatively similar results. 
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Table 3-9 Heterogeneous effects: Aggregate level 

  

 (1) (2) (3) (4) (5) 

VARIABLES Total # of 

transactions 

Average basket 

size 

Aggregate sales 

(000s) 

Points Earned Points Used 

      

Post-Grocery entry -6.58 22.72** 12.04 5,110.50*** 6,761.75*** 

 (19.31) (11.25) (9.45) (1,288.80) (906.50) 

Low-value Grocery customers -358.36*** -46.78*** -154.95*** -4,686.80*** -4,573.16*** 

 (15.39) (12.93) (6.48) (1,000.25) (429.19) 

Mid-value Grocery customers -174.40*** -9.07 -73.15*** -2,502.28*** -2,235.12*** 

 (7.81) (6.48) (3.32) (493.53) (213.08) 

High-value Grocery customers -112.42*** 1.42 -45.60*** -1,588.70*** -1,473.07*** 

 (5.26) (3.87) (2.24) (330.89) (147.10) 

Post-Grocery entry * 

       Low-value Grocery customers 

53.11** -48.28*** 1.63 -2,193.85 -3,288.09*** 

(20.74) (17.42) (10.24) (1,429.45) (1,022.07) 

Post-Grocery entry * 

       Mid-value Grocery customers 

25.93** -23.40*** 1.11 -1,404.77** -2,012.53*** 

(10.50) (8.85) (5.18) (685.65) (482.77) 

Post-Grocery entry * 

       High-value Grocery customers 

20.57*** -10.46* 3.35 -585.58 -1,035.69*** 

(7.12) (5.50) (3.55) (466.06) (330.27) 

Constant 523.04*** 418.97*** 215.65*** 7,801.70*** 6,800.20*** 

 (14.42) (7.46) (5.92) (919.72) (381.06) 

      

Observations 724 724 724 724 724 

R-squared 0.784 0.130 0.738 0.333 0.502 

Day-of-week FE YES YES YES YES YES 
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Table 3-10 Heterogeneous effects: Store level 

 (1) (2) (3) (4) (5) 

VARIABLES Total # of transactions Average basket size Aggregate sales (000s) Points Earned Points Used 

      

Post-Grocery entry -0.127*** -20.840*** -0.020** 8.957*** 11.893*** 

 (0.015) (2.598) (0.010) (1.011) (0.888) 

Low-value Grocery customers -0.798*** -90.528*** -0.352*** -10.919*** -10.594*** 

 (0.013) (2.618) (0.007) (0.500) (0.372) 

Mid-value Grocery customers -0.384*** -43.483*** -0.161*** -5.415*** -5.013*** 

 (0.006) (1.329) (0.004) (0.247) (0.196) 

High-value Grocery customers -0.249*** -27.813*** -0.101*** -3.521*** -3.324*** 

 (0.004) (0.880) (0.002) (0.164) (0.136) 

Post-Grocery entry * 

     Low-value Grocery customers 

0.223*** 24.871*** 0.057*** -2.135* -3.940*** 

(0.017) (3.217) (0.011) (1.180) (1.025) 

Post-Grocery entry * 

     Mid-value Grocery customers 

0.110*** 12.896*** 0.028*** -1.877*** -2.827*** 

(0.008) (1.631) (0.005) (0.551) (0.475) 

Post-Grocery entry * 

     High-value Grocery customers 

0.076*** 8.885*** 0.021*** -0.713* -1.350*** 

(0.006) (1.079) (0.003) (0.383) (0.337) 

Constant 1.260*** 167.571*** 0.501*** 21.805*** 18.483*** 

 (0.013) (2.451) (0.008) (0.752) (0.589) 

      

Observations 328,507 328,507 328,507 328,507 328,507 

R-squared 0.590 0.198 0.384 0.063 0.076 

Day-of-week FE YES YES YES YES YES 

Store FE YES YES YES YES YES 
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3.5 Bayesian Structural Time Series 

Our preceding analysis relies on finding a representative base group that is unaffected by the 

market intervention. Although our matching approach mitigates selection bias, the exogenous 

merchant entry was a national event, and we have no general subset of the population unexposed 

to this event. Our approach also uses a linear model to account for other sources of variation in 

each group over time. This ignores the temporal nature of the data set and may incorrectly assume 

that error components are i.i.d. Standard linear models also pose modeling difficulties for variable 

selection and model validation. Our preceding estimators assume that there is a level effect caused 

by the intervention and that the difference between the two groups represents the causal effect of 

the treatment (Bertrand et al. 2004, Hansen 2007). The effect of merchant entry may not constitute 

pure level effects and instead evolve over time. Regression methods are insufficient for providing 

an estimate of the duration effect of the marketing intervention. 

To overcome these limitations, we estimate the effect of the new merchant entry on the 

existing network of stores using a Bayesian Structural Time Series (BSTS) model proposed by 

Scott and Varian (2014). This method generalizes our preceding approach to a time series setting 

by using a state-space model with a regression component. Using this approach, we estimate a 

time series model based on the pre-merchant entry data and predict a counterfactual time series for 

the post-merchant entry series. There are several advantages to this approach. The first is that the 

state-space model accounts for the serial correlation in the data. Second, it provides a fully 

Bayesian framework for variable selection. Third, it can estimate the evolution of the intervention 

effect over time and thereby provides a fuller estimate of the intervention effect’s wear-in and 

wear-out.  
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The primary downside to the BSTS approach is that it assumes that we can adequately 

generate a counterfactual estimate of the dependent variables. This relies first on having enough 

independent variables and observations to adequately model pre-intervention dependent variables. 

Second, we need to assume that the post-intervention environment and the parameter link between 

the independent and dependent variables are unchanged.  

In our setting, we estimate the counterfactual on five months of data with a wide variety of 

independent variables (see Appendix C for variables). After a first estimation, we estimate a final 

model by removing all variables without an inclusion probability of at least 80% to minimize 

multicollinearity concerns. We then extrapolate our counterfactual onto the following three months 

of data. We assume that the aggregate market relationship between promotional, seasonal, and 

other independent variables is unlikely to change substantially within a three-month period. 

Additionally, since the average and median time between consumer purchases are 32 and 10 days, 

respectively, we are still likely to capture any meaningful changes in consumer behavior. As in 

our preceding approach, we consider the subset of users that existed in the data set prior to the 

large grocer’s entry who also eventually shopped there post-entry. 

BSTS Specification 

We specify the model in line with Brodersen et al. (2015) and Scott and Varian (2014) 

where we have a hidden state α linked to the measured time series of our outcome variables {yt} 

as a generalization of the classic constant trend regression model: 

𝑦𝑡 =  𝜇𝑡 +  𝑧𝑡 +  𝑣𝑡                                       𝑣𝑡 ~ 𝑁(0, 𝑉)                                          (3)  

 

Where µt is a local linear trend component: 

𝜇𝑡 =  𝜇𝑡−1 +  𝑏𝑡−1 +  ℎ𝑡 + 𝑤1,𝑡               𝑤1,𝑡 ~ 𝑁(0, 𝑊1)                                     (4) 
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with slope equation: 

𝑏𝑡 =  𝑏𝑡−1 +  𝑤2,𝑡                                        𝑤2,𝑡 ~ 𝑁(0, 𝑊2)                                     (5) 

 

And a weekly seasonal component: 

ℎ𝑡+1 =  − ∑ ℎ𝑡−𝑠

50

𝑠=0

+  𝑤3,𝑡                         𝑤3,𝑡 ~ 𝑁(0, 𝑊3)                                    (6) 

zt is a static regression component: 

𝑧𝑡 =  𝛽𝑇𝑥𝑡                                                                                                                        (7) 

 

All the error terms {vt,w1t,w2t,w3t} are normally distributed with respective covariance 

matrices {V,W1,W2,W3}. 

We use the Bayesian form to specify the model as this is most natural for state-space 

models and it allows for the spike-and-slab prior for variable selection in the regression component 

(George and McCulloch, 1994; Madigan and Raftery, 1994). The spike-and-slab prior is a 

combination of a point mass (the spike) on each parameter being 0 and a diffuse component (the 

slab) giving weight to a wide range of values for each parameter. Here, γ is the binary (spike) 

parameter of whether or not a given β is 0 or 1 and is modeled as a Bernoulli random variable with 

parameter π: 
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𝛾 ~ ∏ 𝜋𝑖
𝛾𝑖

𝑖

(1 − 𝜋𝐼)1−𝛾𝑖                          𝑤3,𝑡 ~ 𝑁(0, 𝑊3)                                         (8) 

 

𝛽|𝛾, 𝜎−2 ~ 𝑁(𝑏𝛾, 𝜎2(Ω𝛾)−1)                   
1

𝜎2
 ~ Γ (

𝑑𝑓

2
,
𝑠𝑠

2
)                                       (9) 

 

Ω𝛾
−1 =  

𝜅(𝑋𝑇𝑋)

𝑛
                                                                                                             (10) 

 

The slab component is normally distributed conditional on γ with the standard conjugate 

Gamma variance component. The regression parameter bγ is conditioned on not being 0. The term 

corresponding to Zellner’s g-prior (Zellner, 1986), 𝜅, is the effective number of observations worth 

of information. The inverse gamma variance is the standard form (Gelman et al., 2002) where df 

is the degrees of freedom and ss is the total sum of squares. For further details on the BSTS 

specification and computation see Brodersen et al. (2015) and Scott and Varian (2014). 

Inference 

We can estimate this model using standard Markov Chain Monte Carlo (MCMC) 

simulations to obtain the posterior distributions for the state vector α and the model parameters 

collectively termed θ. Then we simulate draws from α and θ given the observed data  𝑦1…𝑛. Using 

the simulated parameters, we simulate the counterfactual �̃�𝑛+1…𝑚 observations from the posterior 

predictive distribution 𝑝(�̃�𝑛+1…𝑚|𝑦1…𝑛, 𝑥1…𝑚). We can use the observed 𝑦𝑛+1…𝑚 and simulated 

�̃�𝑛+1…𝑚 data to estimate the point-wise causal effect of the intervention for draw τ as: 
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𝜙𝑡
(𝜏)

∶=  𝑦𝑡 −  �̃�𝑡                                                                                                           (11) 

 

The average daily causal effect is estimated by taking the mean over the n+1 to m point-

wise estimates: 

1

𝑚 − 𝑛
 ∑ 𝜙𝑡′

(𝜏)

𝑡

𝑡′=𝑛+1

                    ∀𝑡 = 𝑛 + 1, … , 𝑚                                                  (12) 

  

Finally, by repeating this sampling process, we can estimate the mean point-wise causal 

effect and our credible intervals for the causal effect. 

Results 

Since we are interested in constructing a predictive model for our measurement variables, 

we are less concerned about the variables included in the zt component and more concerned about 

their predictive ability. As such, we include all other non-measurement variables in the regression 

component and rely on Bayesian variable selection to keep only the relevant variables for 

prediction. For all the variables in this analysis, we again focus on purchase behavior at merchants 

other than the large grocer entering the program. 

We follow the Bayesian variable selection process with model averaging recommended by 

George and McCulloch (1997). Here we fit many potential models using the spike-and-slab prior 

based on random draws from the parameter posterior distributions, then estimate the posterior 

probability that each is the best model, and finally average over those models based on these 

posterior probabilities. We do this by setting the parameters {V,W1,W2,W3} to 1/0.05 as 
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recommended by Brodersen et al. (2015). We then estimate the full model across 1,000 draws 

which allows us to construct 1,000 counterfactuals and estimate the average causal effect and the 

variance of this effect along with the Bayesian credible intervals. 

For the remainder of this section, all of the BSTS graphs can be interpreted in the same 

way. The data is plotted at the daily level and we use a vertical dotted line on November 6th to 

illustrate when the grocery store entered the coalition loyalty program. The results are presented 

in sets of three plots: original, pointwise, and cumulative. The original plot uses a solid time series 

line to represent the observed outcome data and the dotted time series line represents the predicted 

outcome. The BSTS procedure uses only the outcome data observed before November 6th to 

generated the predicted timer series. This plot allows us to see how well the model fits the time 

series before the intervention as well as deviation from the counterfactual prediction after the 

intervention. The pointwise plot shows the daily difference between the observed and 

counterfactual data and is an illustration of how the intervention effect may change over time. The 

cumulative plot shows the running-sum of the pointwise plot illustrating the total effect of the 

intervention for the post-entry period. Finally, the shaded area represents the 95% Bayesian 

credible interval obtained from the 1,000 MCMC samples. 

Our first measure is the average basket size of purchases at pre-existing stores (see Figure 

3-3). We note that this series increases towards the end of the year shopping season, and decreases 

later in the observation period. In spite of the large basket spikes around the holiday and New 

Year’s shopping period, the observed basket size shrinks well below the predictions of the 

counterfactual. We estimate that the average basket size decreases by 5419 with a 95% Bayesian 

 
19 Currency units are in the local currency, omitted for privacy purposes. 
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credible interval of [-175, -2]. The posterior probability of a positive causal effect is 96%. This is 

equivalent to a 12% decrease in the observed basket size with a 95% Bayesian credible interval of 

[-40%, -0.5%]. 

 

Figure 3-3 Comparing observed data to counterfactual data for average basket size 

Our second measure is the total value of purchases at pre-existing stores per day (see Figure 

3-4). We note that this series increases steadily throughout the observation period, peaks in the 

holiday season and dips in January. We estimate that total daily sales for the relevant cohort at pre-

existing stores increase by around 150,000 local currency with a 95% Bayesian credible interval 

of [40,000, 250,000]. The posterior probability of a positive causal effect is 99%. This is equivalent 

to a 9.5% increase in daily sales with a 95% Bayesian credible interval of [7%, 44%]. 
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Figure 3-4 Comparing observed data to counterfactual data for aggregate sales 

 

Our third measure is the total number of purchases at pre-existing stores per day (see Figure 

3-5). We note that this series also increases steadily throughout the observation period, but that it 

increases faster than expected after the grocer enters the loyalty program. This indicates that 

consumers seem to be buying more frequently at pre-existing stores after the entry of the large 

grocer. We estimate that the number of daily purchases increased by 473 transactions on average. 

The posterior probability of a positive causal effect is 98%. The effect has a 95% Bayesian credible 

interval of [82, 776]. This is equivalent to a 34% increase in the observed daily purchases with a 

95% Bayesian credible interval of [6%, 57%].  
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Figure 3-5 Comparing observed data to counterfactual data for total no. of transactions 

Our fourth measure is the total number of points used at pre-existing stores per day (see 

Figure 3-6). We note that this series also increases steadily through the observation period, but that 

it increases faster than expected after the grocer enters the loyalty program. This indicates that 

consumers seem to be using points more actively at pre-existing stores after the grocer’s entry. We 

estimate that the number of points used at pre-existing stores increased by 0.85 points per day with 

a 95% Bayesian credible interval of [0.49, 1.2]. The posterior probability of a positive causal effect 

is 99%. This is equivalent to an 8.7% increase in the number of points used with a 95% Bayesian 

credible interval of [5%, 12%]. 
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Figure 3-6 Comparing observed data to counterfactual data for points used 

Our fifth and final measure is the total number of points earned at pre-existing stores per 

day (see Figure 3-7). We note a steadily increasing amount of points earned throughout the 

observation period. We estimate that the number of points earned at pre-existing stores increased 

by 0.83 points per day with a 95% Bayesian credible interval of [0.28, 1.4]. The posterior 

probability of a positive causal effect is 99%. This is equivalent to an 8.4% increase in the number 

of points earned with a 95% Bayesian credible interval of [2.9%, 14%]. 
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Figure 3-7 Comparing observed data to counterfactual data for points earned 

These results converge with our earlier findings using an analysis of matched samples to 

find multiple sources of positive spillovers for coalition loyalty program merchants from new 

merchant entry. In particular, we see again that for the existing merchants and grocery customers, 

there is a statistically significant increase in aggregate sales and number of transactions. The BSTS 

analysis supports the previous program level studies findings of reduced average basket size and 

increases in both loyalty points used and earned. 

3.6 Extension to other merchants 

To further generalize our findings, we perform equivalent analyses for four of the next most 

significant merchant entries into the program, by number of customers. These entries consist of a 

chain of coffee shops, a group of clothing stores, a home goods vendor, and a shoe brand. These 
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merchant entries are significantly smaller than the grocery merchant studied in the main analysis; 

each retailer is about 10 percent the size of the grocer in terms of the number of stores. Summary 

data is shown in Table 3-11 where we again define our two customer cohorts as before. 

Figure 3-8 plots the cumulative number of stores in the coalition with reference lines for 

each merchant entry. These merchants were chosen for the analysis because they introduce a 

multitude of stores into the coalition and capture at least 1,000 customers within +/- 90 days of 

their entry (+/- 60 in the case of the home goods retailer). 

 

Figure 3-8 Cumulative number of stores in the coalition by merchant entry. Note: Vertical reference lines refer to 

the entry of large grocer, shoes/accessories retailer, café, clothing retailer, and home goods retailer from left to 

right, respectively. 

We again use the matching methodology from section IV and arrive at the abridged results 

displayed in Table 3-12 where we only show the post-entry interaction with the pre-existing 

customers (the full results are shown in Appendix C).  
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Table 3-11 Merchant entry characteristics 

    Total # of stores # of customers within +/- 90 days that 

Merchant Entry date (MM/DD/YYYY) Within +/- 90 days of entry Full sample Never shop Shop at least once 

Grocer  11/6/2015 1,232 1,521 353,827 22,562 

Café 3/8/2016 107 116 544,349 15,559 

Home goods  6/15/2016 65 65 535,966 6,597 

Clothing 3/10/2016 48 49 565,732 1,075 

Shoes 11/12/2015 59 63 379,572 2,973 

Note: The analysis of the entry of the home goods retailer is done using a window of +/- 60 days, since it enters within the last 90 days of our data set. 
 

Table 3-12 Post-merchant entry interactions with relevant customers at the Program-level 

 (1) (2) (3) (4) (5) 

VARIABLES Total no. of transactions Average basket 

size 

Aggregate sales (in 000s) Points Earned Points Used 

      

Café 5,466.18*** 16.21** 1,949.65*** 270,423.28*** 246,874.03*** 

(644.22) (7.85) (181.10) (21,372.74) (17,497.52) 

Home goods 10,691.61*** 9.52 3,011.79*** 243,896.71*** 170,136.62*** 

 (946.70) (6.51) (253.32) (25,573.80) (17,521.26) 

Clothing retailer 5,476.02*** -13.24 2,006.50*** 288,205.09*** 263,716.99*** 

(667.41) (12.20) (188.08) (22,151.59) (18,015.83) 

Shoe retailer 1,887.07*** -62.59*** 1,056.26*** 19,617.77 -16,698.74 

 (421.18) (17.49) (135.50) (24,475.25) (14,413.53) 

      

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 



115 

 

 

We find that, similar to the grocer’s entry, at the program-level these smaller merchants 

lead to an increase in the total number of transactions and aggregate sales at merchants that exist 

prior to their entry. However, we again have mixed results with regard to basket size. For the café 

merchant, average basket size increases, whereas for the shoe retailer it decreases. For both the 

home goods and clothing retailer, the effect on basket size is not statistically significant. Also, at 

the program-level, the café retailer, the home goods retailer, and the clothing retailers all have a 

positive impact on point earning and redemption behavior at other merchants, while the shoes and 

accessories retailer does not. At the store-level, all merchants have similar impacts across all 

outcome variables as the large grocer. 

We find that, like the large grocer, the entries of the other merchants lead to increases in aggregate 

sales for all other stores, both at the program- and the store-level. This supports our finding that 

the introduction of new merchants into a coalition loyalty program benefits pre-existing merchants 

via aggregate sales. Interestingly, we find that point earning and redemption behavior is 

statistically greater for customers that eventually shop at the new smaller merchants entering the 

coalition loyalty program, and at magnitudes that are much greater than the corresponding effect 

from the entry of the large grocer. 

 

3.7 Conclusion, Discussion, and Limitations 

By allowing points to be earned and spent at any partner merchant, coalition loyalty 

programs seek to enhance outcomes for both buyers and sellers. In this paper, we measure the 

benefits to merchants in a coalition loyalty program when a new merchant enters the network. 
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Using multiple approaches, we find that shoppers for whom the entering merchant is relevant tend 

to spend more, and shop more frequently, at pre-existing partner merchants. Our findings show 

that there exist significant positive spillovers among firms in a coalition loyalty program, and that 

firms may do better by joining a coalition than by running a standalone loyalty program. 

 Whereas coalition loyalty programs in markets across the world have increased in 

membership and popularity over the years, little has been established about the effect of network 

composition on the effectiveness of such programs for each merchant’s sales. The data set we use 

allows us to measure this effect off of merchant entries of various magnitudes into the network. 

Because each entering merchant is relevant to only a subset of loyalty program members, we are 

able to use variation in consumption habits to infer spillovers. Moreover, the panel structure of the 

data allows us a second empirical strategy of predicting counterfactual merchant performance had 

these entries not occurred. Despite the dissimilarity between these two approaches, they yield 

consistent findings regarding the spillovers from merchant entry on multiple outcome variables. 

 As with many papers in the loyalty literature, we have access to detailed transaction 

data for activity connected to the loyalty program, but lack data for firms prior to joining the 

program, as well as data for shoppers who do not participate in the program. Our empirical 

approach aims to address these data shortcomings; however, we concede that additional data may 

be helpful in identifying further types of cross-merchant spillovers. 

 We examine and find positive spillovers for coalition merchants from the entry of 

firms of various sizes and product categories. Thus, our results generalize beyond the entry of a 

large grocery or general merchandise firm into a coalition program. Our results may be less 

generalizable for coalition loyalty programs that are structured differently. Certain credit card 

rewards programs, for instance, share many of the same characteristics of the program we study, 
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e.g., the ability to earn and spend points across multiple merchants. However, unlike the program 

we study these programs typically have multiple firms and competitors within the same categories. 

Airline alliances, meanwhile, operate on the other side of the spectrum; typically allowing only 

one carrier in the program from each region. These programs differ from our context in several 

respects, and identifying spillovers from merchant entry for these cases may prove to be fertile 

ground for further research. 

 Many open questions exist pertaining to coalition loyalty programs. The 

composition of product categories in a program may, for instance, have significant implications 

on its performance. Likewise, the “exchange rates” of points between different merchants are 

likely important variables that determine the relative performance of each merchant in the network. 

These are exciting areas for future research. 
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Appendix 

A Online Task Progression and Display Ad Engagement 

A.1 Propensity Score Matching Details 

When performing matching, we make use of an interval around the score being matched to 

prevent us from matching observations that are not similar enough. This is standard practice and 

recommended by Cochran and Rubin (1973).  

The matching algorithm in dataset 1 partitions the dataset into three pieces based on 

whether the observations were first, middle or last steps. We seek to match first to middle and last 

to middle by sampling without replacement. We start by taking all the first step observations and 

randomly picking one and match it to a middle step observation that has the nearest linearized first 

step propensity score that is at most 0.5 away in absolute value. Our linearized propensity scores 

tend to range from -1 to 2. Cochran (1968) has shown than 90% of the variation of most 

distributions can be captured by just five equal partitions. We therefore use intervals of 0.5 to 

ensure the equivalent of at least five such partitions for the propensity score distributions. These 

two matched observations are then removed from their partitions and placed into a first step 

matched dataset. The procedure is then repeated until there are no more first or middle steps 

remaining to create more matched pairs. This entire matching process is repeated with the last and 

middle steps thus yielding our two balanced datasets on which we can estimate the logit model 

previously defined. An identical algorithm is implemented in dataset 2 where the only change is 

that we have more treatment groups. 
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A.2 SEC DSP Cost Estimates 

Below are select operating costs from three DSPs (MaxPoint, Rocket Fuel and Criteo) who 

have public record of spending in 2016 (the year we collected our data). The average media cost 

percentage is 46% of revenue and the average computation running costs (reflected in R&D 

expenditure) is 11% of revenue. 

Table A-1 DSP Cost of Operations 

 2016 Operations Filings (in thousands) 

 MXPT FUEL CRTO 

Revenue $149,109 $456,263 $1,799,146 

Media Cost $51,120 $204,168 $1,068,911 

R&D $26,576 $35,354 $123,649 

       

Media Cost 

percentage 34% 45% 59% 

R&D percentage 18% 8% 7% 

 

B Real-time Digital Ad Allocation: A Fair Streaming Allocation 

Mechanism 

B.1 PID results without PSO 

In this section, we add a massive supply shock to the data set to illustrate the need for the 

particle swarm optimization. From minutes 400 through 600, we increase the ad supply by an order 

of magnitude (10 times). This not highly unusual and certainly something that any real-world 

solution would need to be able to handle. We then compare the algorithm as presented in the paper 

with one where the particle swarm optimization component is removed. For this second model, we 

set the PID parameters to the stable set found in the first simulation of this method. 
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In Figure B-1, we show the output of the algorithm where it rapidly adjusts to the shock, 

raises the threshold, and still provides sufficient ads at high performance values. In Figure B-2, we 

disable the particle swarm optimization and note that the threshold takes substantially longer to 

adjust to changes in the supply environment yielding extended time periods with far too many or 

too few ad spaces being won. 

 

Figure B-1 Agent Level Results of Proposed Method 

 



 

127 

 

 

Figure B-2 Agent Level Results of Proposed Method without Particle Swarm Optimization 

 

B.2 Market level DH formulation 

The adwords solution proposed by Devanur and Hayes (2009) is a close but not perfect 

algorithm for our particular problem and we have adjusted it to be a useful benchmark. We follow 

their implementation directly where we select the first ε (in our case 10%) of the observations as 

a training set. Per their design, these training items are assigned randomly to advertisers. Then we 

learn a set of weights 𝛼∗ ≔ 𝑎𝑟𝑔𝑚𝑖𝑛𝛼{𝐷(𝛼, 𝑆)} for each advertiser i, where S is the set the 

observed items j with preference score 𝑟𝑖𝑗. And 𝐷(𝛼, 𝑆) ≔  ∑ 𝛼𝑖𝜀𝐵𝑖𝑖 +  ∑ 𝑚𝑎𝑥𝑖𝑟𝑖𝑗(1 − 𝛼𝑖)𝑗 . The 

algorithm allocates item j to advertiser i that maximizes 𝑟𝑖𝑗(1 − 𝛼𝑖). 

A direct conversion of the Devanur and Hayes (2009) method would create a new budget 

according to anticipated future items. This would done by summing the observed preference scores 

for each advertiser during the training period and then dividing by the number of advertisers and 
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then adjust for the remaining (1- ε) items. That is, we set 𝐵𝑖 =
∑ 𝑟𝑖𝑗𝑗

# 𝑜𝑓 𝑎𝑔𝑒𝑛𝑡𝑠
×

1−ε

ε
. However, since 

the budget has no practical use we do not enforce it. Intuitively, adding such a budget adds fictional 

constraints which only decrease efficiency. This can easily be confirmed via simulation. 

It is worth mentioning that the Devanur and Hayes (2009) implementation does not 

approach greedy under any non-trivial circumstances. While the allocation problem is similar to 

ours, the search problem is not. The primary objective of a search engine is to exhaust all advertiser 

budgets. The Devanur and Hayes (2009) algorithm will always exhaust advertiser budgets, which 

often requires allocating items to a lower scoring advertiser for the sake of exhausting that 

advertiser’s budget. The goal of their method is to achieve that highest efficiency possible given 

that it must exhaust all budgets. Our implementation is centered on advertiser quota and not 

advertiser budget and so it does not directly have this constraint. We are able to achieve higher 

levels of efficiency because we can simultaneously select more low scoring items and use a 

smoother fairness tradeoff between advertisers competing for higher scoring items. 

C Cross-Merchant Spillovers in Coalition Loyalty Programs 

C.1 Variable Definitions 

Table C-1 Variable definitions for difference-in-differences analysis 

 
Name Definition 

Total no. of transactions 
The total number of transactions that occur on 

a given day 

Average basket size 
A simple average of all basket sizes on a 

given day, net of all discounts applied (i.e. 

points used plus applied multipliers) 

Aggregate sales 

The sum all basket sizes on a given day, net 

of all discounts applied (i.e. points used plus 

applied multipliers) 
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Point earned 

The sum of all points earned from campaign-

related transactions, regardless of campaign 

type (i.e. campaigns that have a fixed amount 

of points that can be earned versus a 

campaign where points are earned as a 

percent of basket size 

Points used 
The sum of all points used for campaign-

related transactions, not including additional 

discounts from applied multipliers 

Post-merchant entry 
An indicator for whether the new merchant 

has entered the program based on that 

merchant's first transaction in the data 

Treated customers 

An indicator for whether the observation 

applies to all customers that eventually shop 

at the new merchant 

Post-merchant entry * Treated customers 
An interaction term of Post-merchant entry 

and Treated customers, i.e. the DD estimator 

 

Table C-2 Variable definitions for propensity score matching analysis 

  
Name Definition 

Aggregate sales 

 

The sum of all basket sizes by customer over 

the 90 day period prior to the large merchant's 

entry. As before, aggregate sales is calculated 

net of all points used and discounts applied. 

  

Average basket size 

A simple average of all basket sizes by 

customer over the 90 day period prior to the 

large merchant's entry, net of all points used and 

discounts applied.  

Number of stores visited 

The number of unique stores visited by each 

customer over the 90 day period prior to the 

large merchant's entry 

Number of days making a transaction 

The number of unique days on which an 

individual makes at least one transaction over 

the 90 day period prior to the large merchant's 

entry. 
 

Table C-3 Variable definitions for Bayesian structural time series 

Variable 

Shortened variable name for 

cross-references Notes 
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Non-grocery customer 

points earned ce_control 

sum of non-grocery store points 

earned by customers that day that 

never make a purchase at a grocery 

store 

Non-grocery customer 

points used cu_control 

sum of non-grocery store points 

used by customers that day that 

never make a purchase at a grocery 

store 

total purchase amount 

control fp_control 

total sales of all transactions at non-

grocery stores (including points 

used) by day for non-grocery store 

shoppers 

Non-Grocery customer 

purchases control n_purch_control 

the total number of non-grocery 

store purchases made by customers 

that day that never make a purchase 

at a grocery store 

Shriver and Bolinger 

price index price_index_sb Shriver and Bolinger price index 

C.2 Matching Analysis 

In this appendix we repeat the analysis of section IV using the entire unmatched sample 

instead of the propensity score-matched sample. We find that these results are generally consistent 

with our main analysis. 

Table C-4 Main results (aggregate) 

 (1) (2) (3) (4) (5) 

VARIABLES Total no. of 

transactions 

Average basket 

size 

Aggregate sales (in 

000s) 

Points earned Points used 

      

Post-Merchant entry -3,667.52*** 60.24*** -1,112.04*** -27,923.41 2,601.66 

 (349.88) (10.27) (107.58) (22,567.46) (13,179.88) 

Treated customers -7,191.37*** -22.06** -2,797.04*** -126360.44*** -107962.22*** 

 (348.88) (9.71) (99.05) (21,584.05) (11,658.37) 

Post * Treated 3,683.41*** -60.46*** 1,123.57*** 34,253.22 5,485.05 

 (370.00) (13.97) (116.85) (22,907.08) (13,523.62) 

Constant 7,848.75*** 402.49*** 3,044.82*** 137,573.53*** 116,711.77*** 

 (338.18) (6.77) (93.38) (21,382.25) (11,441.37) 

      

Observations 362 362 362 362 362 

R-squared 0.76 0.22 0.83 0.25 0.44 

Day-of-week FE YES YES YES YES YES 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table C-5 Main results (store level) 

 (1) (2) (3) (4) (5) 

VARIABLES Total no. of 

transactions 

Average basket 

size 

Aggregate sales (in 

000s) 

Points earned Points used 

      

Post-Merchant entry -6.15*** -105.90*** -1.87*** -50.94*** 17.20*** 

 (0.10) (2.64) (0.05) (8.71) (6.30) 

Treated customers -11.25*** -246.40*** -4.31*** -342.82*** -312.17*** 

 (0.11) (2.57) (0.04) (9.74) (5.98) 

Post * Treated 6.48*** 94.33*** 2.05*** 74.48*** 20.00*** 

 (0.12) (3.20) (0.06) (9.91) (7.69) 

Constant 13.98*** 391.65*** 5.19*** 426.32*** 359.69*** 

 (0.16) (3.23) (0.06) (14.94) (9.05) 

      

Observations 238,819 238,819 238,819 115,797 115,797 

R-squared 0.48 0.25 0.48 0.09 0.16 

Day-of-week FE YES YES YES YES YES 

Store FE YES YES YES YES YES 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 
Table C-6 Heterogeneity (aggregate) 

 (1) (2) (3) (4) (5) 

VARIABLES Total # of 

transactions 

Average 

basket size 

Aggregate sales 

(000s) 

Points Earned Points Used 

      

Post-Merchant entry -3,669.53*** 60.28*** -1,112.48*** -27,951.88 2,556.69 

(377.02) (10.29) (120.12) (22,888.31) (13,577.16) 

Low-value Merchant 

customers 

-7,648.66*** -46.48*** -2,974.32*** -133729.79*** -114028.49*** 

(362.80) (11.84) (103.82) (21,659.14) (11,736.56) 

Mid-value Merchant 

customers 

-3,814.48*** -14.11** -1,481.41*** -67,003.46*** -56,871.66*** 

(181.44) (5.49) (51.92) (10,829.50) (5,868.24) 

High-value Merchant 

customers 

-2,538.43*** 0.95 -983.47*** -44,609.34*** -37,901.46*** 

(120.97) (3.67) (34.62) (7,219.41) (3,912.50) 

Post- Merchant entry * 

Low-value Merchant 

Customers 

3,666.05*** -75.40*** 1,110.06*** 29,627.73 -57.09 

(382.21) (16.32) (122.45) (22,977.48) (13,665.94) 

Post- Merchant entry * 

Mid-value Merchant 

Customers 

1,833.60*** -26.06*** 557.22*** 14,709.45 -265.10 

(191.19) (7.95) (61.25) (11,489.62) (6,833.92) 

Post- Merchant entry * 

High-value Merchant 

Customers 

1,231.08*** -18.42*** 374.96*** 10,389.09 349.63 

(127.45) (5.19) (40.82) (7,659.59) (4,556.94) 

Constant 7,849.77*** 402.47*** 3,045.04*** 137,587.84*** 116,734.38*** 

 (360.04) (6.81) (102.41) (21,607.51) (11,679.45) 

      

Observations 724 724 724 724 724 

R-squared 0.81 0.18 0.86 0.32 0.54 

Day-of-week FE YES YES YES YES YES 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Table C-7 Heterogeneity (store level) 

 (1) (2) (3) (4) (5) 

VARIABLES Total # of Average basket Aggregate Points Earned Points Used 
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transactions size sales (000s) 

      

Post- Merchant entry -4.91*** -115.10*** -1.58*** -50.27*** -15.32*** 

 (0.09) (2.45) (0.05) (4.29) (3.12) 

Low-value Merchant 

customers 

-9.72*** -290.59*** -3.79*** -172.11*** -148.76*** 

(0.09) (2.33) (0.04) (3.70) (2.14) 

Mid-value Merchant 

customers 

-4.86*** -144.38*** -1.89*** -86.61*** -74.50*** 

(0.04) (1.15) (0.02) (1.86) (1.07) 

High-value Merchant 

customers 

-3.26*** -95.82*** -1.26*** -58.09*** -50.05*** 

(0.03) (0.81) (0.01) (1.24) (0.72) 

Post-Merchant entry * Low-

value Merchant Customers 

5.04*** 108.18*** 1.65*** 55.38*** 22.07*** 

(0.10) (2.80) (0.05) (4.32) (3.14) 

Post-Merchant entry *   

Mid-value Merchant 

Customers 

2.53*** 55.21*** 0.83*** 27.81*** 10.96*** 

(0.05) (1.39) (0.02) (2.16) (1.56) 

Post-Merchant entry * 

High-value Merchant 

Customers 

1.70*** 37.94*** 0.56*** 19.32*** 8.0691*** 

(0.03) (0.93) (0.01) (1.44) (1.04) 

Constant 10.52*** 349.96*** 4.02*** 196.01*** 166.05*** 

 (0.11) (2.38) (0.04) (5.02) (2.98) 

      

Observations 588,667 588,667 588,667 588,667 588,667 

R-squared 0.28 0.19 0.26 0.06 0.10 

Day-of-week FE YES YES YES YES YES 

Store FE YES YES YES YES YES 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

C.3 Other merchant entries 

In this appendix, we consider additional merchant entries to examine whether positive 

spillovers experienced from the large grocer’s entry extend to smaller merchants entering the 

coalition. The following tables replicate the matching analysis from section IV for a home goods 

store, café, clothing retailer and a shoe retailer that each joined the coalition loyalty program.   

Table C-8 Café retailer entry, program-level analysis 

 (1) (2) (3) (4) (5) 

VARIABLES Total no. of 

transactions 

Average 

basket size 

Aggregate sales 

(in 000s) 

Points Earned Points Used 

      

Post-merchant entry -5,471.02*** -49.12*** -1,974.71*** -278161.70*** -253684.02*** 

(590.15) (5.71) (165.23) (20,389.60) (16,464.39) 

Café customers -20,432.58*** -11.70 -4,628.37*** -374851.91*** -358237.48*** 

 (584.23) (7.23) (167.00) (20,363.20) (16,602.19) 

Post-merchant entry 

* Café customers 

5,466.18*** 16.21** 1,949.65*** 270,423.28*** 246,874.03*** 

(644.22) (7.85) (181.10) (21,372.74) (17,497.52) 

Constant 21,260.39*** 226.68*** 4,805.03*** 389,099.15*** 371,784.90*** 

 (555.31) (5.46) (158.74) (19,886.20) (16,098.17) 
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Observations 362 362 362 362 362 

R-squared 0.90 0.32 0.85 0.72 0.78 

Day-of-week FE YES YES YES YES YES 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Table C-9 Café retailer entry, store-level analysis 

 (1) (2) (3) (4) (5) 

VARIABLES Total no. of 

transactions 

Average basket 

size  

Aggregate 

sales (in 000s) 

Points Earned Points Used 

      

Post-merchant entry -2.71*** -25.36*** -0.94*** -170.90*** -157.46*** 

(0.06) (0.84) (0.02) (3.77) (3.39) 

Café customers -11.14*** -116.12*** -2.49*** -404.29*** -403.55*** 

 (0.06) (0.81) (0.02) (7.96) (7.34) 

Post-merchant entry 

* Café customers 

2.78*** 20.65*** 0.94*** 192.62*** 179.10*** 

(0.07) (1.08) (0.03) (6.77) (6.45) 

Constant 12.24*** 159.17*** 2.77*** 336.23*** 326.05*** 

 (0.08) (0.89) (0.03) (6.53) (5.91) 

      

Observations 668,592 668,592 668,592 336,204 336,204 

R-squared 0.40 0.29 0.42 0.21 0.24 

Day-of-week FE YES YES YES YES YES 

Store FE YES YES YES YES YES 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

Table C-10 Home goods retailer entry, program-level analysis 

 (1) (2) (3) (4) (5) 

VARIABLES Total no. of 

transactions 

Average 

basket size  

Aggregate sales 

(in 000s) 

Points Earned Points Used 

      

Post-merchant entry -10,731.84*** -53.54*** -3,041.12*** -246755.22*** -170771.07*** 

(884.85) (4.13) (237.87) (24,870.00) (16,823.24) 

Home goods 

customers 

-26,974.80*** -18.91*** -5,455.75*** -332561.33*** -278057.65*** 

(815.56) (3.81) (214.63) (23,591.37) (15,038.03) 

Post-merchant entry 

* Home goods 

customers 

10,691.61*** 9.52 3,011.79*** 243,896.71*** 170,136.62*** 

(946.70) (6.51) (253.32) (25,573.80) (17,521.26) 

Constant 27,431.04*** 199.03*** 5,540.65*** 337,649.53*** 282,312.34*** 

 (779.07) (2.30) (205.54) (23,211.63) (14,628.42) 

      

Observations 242 242 242 242 242 

R-squared 0.91 0.54 0.85 0.67 0.75 

Day-of-week FE YES YES YES YES YES 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 
Table C-11 Home goods retailer entry, store-level analysis 

 (1) (2) (3) (4) (5) 

VARIABLES Total no. of 

transactions 

Average basket 

size 

Aggregate 

sales (in 000s) 

Points Earned Points Used 

      



 

134 

 

Post-merchant entry -4.77*** -38.01*** -1.29*** -121.98*** -83.22*** 

(0.11) (0.84) (0.02) (2.54) (1.91) 

Home goods 

customers 

-13.44*** -123.29*** -2.68*** -349.11*** -309.47*** 

(0.12) (0.81) (0.03) (6.51) (5.10) 

Post-merchant entry 

* Home goods 

customers 

4.85*** 33.78*** 1.30*** 156.92*** 121.51*** 

(0.12) (1.04) (0.03) (6.26) (5.47) 

Constant 13.90*** 146.46*** 2.78*** 233.42*** 199.33*** 

 (0.12) (0.86) (0.03) (4.45) (3.11) 

      

Observations 493,776 493,776 493,776 244,511 244,511 

R-squared 0.25 0.30 0.38 0.22 0.30 

Day-of-week FE YES YES YES YES YES 

Store FE YES YES YES YES YES 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Table C-12 Clothing retailer entry, program-level analysis 

 (1) (2) (3) (4) (5) 

VARIABLES Total no. of 

transactions 

Average 

basket size 

Aggregate sales 

(in 000s) 

Points Earned Points Used 

      

Post-merchant entry -5,464.61*** -48.52*** -2,004.97*** -288263.29*** -263555.69*** 

 (609.78) (5.36) (170.47) (21,062.92) (16,862.33) 

Clothing retailer 

customers 

-22,292.67*** 19.15* -4,968.57*** -403458.73*** -386277.69*** 

(603.03) (10.57) (172.66) (21,113.03) (17,115.77) 

Post-merchant entry 

* Clothing retailer 

customers 

5,476.02*** -13.24 2,006.50*** 288,205.09*** 263,716.99*** 

(667.41) (12.20) (188.08) (22,151.59) (18,015.83) 

Constant 22,328.0211*** 222.94*** 4,976.62*** 404,248.51*** 386,969.35*** 

 (571.44) (5.07) (163.18) (20,543.24) (16,511.07) 

      

Observations 362 362 362 362 362 

R-squared 0.91 0.23 0.85 0.73 0.78 

Day-of-week FE YES YES YES YES YES 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

Table C-13 Clothing retailer entry, store-level analysis 

 (1) (2) (3) (4) (5) 

VARIABLES Total no. of 

transactions 

Average 

basket size 

Aggregate sales 

(in 000s) 

Points Earned Points Used 

      

Post-merchant entry -2.79*** -22.56*** -0.95*** -176.56*** -162.86*** 

 (0.07) (0.85) (0.02) (3.74) (3.33) 

Clothing retailer customers -20.94*** -216.50*** -5.32*** -758.59*** -788.43*** 

 (0.14) (1.06) (0.06) (26.30) (26.06) 

Post-merchant entry * 

Clothing retailer customers 

2.90*** 19.79*** 0.98*** 294.08*** 282.62*** 

(0.13) (1.19) (0.05) (31.77) (32.64) 

Constant 15.19*** 175.59*** 3.58*** 329.07*** 317.45*** 

 (0.11) (1.04) (0.04) (6.4680) (5.70) 

      

Observations 475,081 475,081 475,081 279,879 279,879 

R-squared 0.39 0.31 0.41 0.31 0.36 

Day-of-week FE YES YES YES YES YES 
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Store FE YES YES YES YES YES 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

Table C-14 Shoes and accessories retailer entry, program-level analysis 

 (1) (2) (3) (4) (5) 

VARIABLES Total no. of 

transactions 

Average 

basket size  

Aggregate sales 

(in 000s) 

Points Earned Points Used 

      

Post-merchant entry -1,816.70*** -60.90*** -1,045.14*** -17,472.55 19,756.69 

 (394.58) (9.57) (124.54) (24,041.10) (13,974.40) 

Shoe retailer 

customers 

-8,472.44*** 32.63** -3,318.34*** -151370.46*** -125641.70*** 

(380.18) (14.15) (113.54) (22,851.99) (12,193.97) 

Post-merchant entry * 

Shoe retailer 

customers 

1,887.07*** -62.59*** 1,056.26*** 19,617.77 -16,698.74 

(421.18) (17.49) (135.50) (24,475.25) (14,413.53) 

Constant 8,563.67*** 405.29*** 3,358.53*** 152,960.85*** 126,776.92*** 

 (365.42) (6.54) (106.95) (22,614.76) (11,925.15) 

      

Observations 362 362 362 362 362 

R-squared 0.80 0.28 0.84 0.31 0.52 

Day-of-week FE YES YES YES YES YES 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

 

Table C-15 Clothing and accessories retailer entry, store-level analysis 

 (1) (2) (3) (4) (5) 

VARIABLES Total no. of 

transactions 

Average basket 

size  

Aggregate 

sales (in 000s) 

Points Earned Points Used 

      

Post-merchant entry -6.39*** -113.61*** -2.11*** -34.16*** 43.15*** 

 (0.12) (2.58) (0.06) (9.43) (6.85) 

Shoe retailer 

customers 

-14.86*** -340.07*** -5.78*** -638.70*** -598.55*** 

(0.14) (2.30) (0.06) (19.44) (14.44) 

Post-merchant entry 

* Shoe retailer 

customers 

6.92*** 121.16*** 2.38*** 68.73*** 11.93 

(0.15) (2.97) (0.08) (17.02) (15.48) 

Constant 16.21*** 401.05*** 6.12*** 485.76*** 402.43*** 

 (0.19) (3.04) (0.07) (17.88) (10.90) 

      

Observations 218,770 218,770 218,770 96,780 96,780 

R-squared 0.40 0.27 0.42 0.11 0.18 

Day-of-week FE YES YES YES YES YES 

Store FE YES YES YES YES YES 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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C.4 Market Level Bayesian Structural Time Series 

We replicate the BSTS modeling strategy described in the paper but apply to the full dataset 

excluding only the new merchant’s transaction data. We interpret these findings as the national 

treatment effect on all stores and customers given the new merchant addition to the coalition 

loyalty program. 

Our first measure is the average basket size of purchases at pre-existing stores (Figure C-1 

below). We note that this series increases towards the end of the year shopping season, and 

decreases later in the observation period. In spite of the large basket spikes around the holiday and 

New Year’s shopping period, the observed basket size shrinks well below the predictions of the 

counterfactual. We estimate that there is a posterior probability of 87% that the average basket size 

decreases by 60 of the local currency with a 95% Bayesian credible interval of [-189, 26]. This is 

equivalent to 12% decrease in the observed basket size with a 95% Bayesian credible interval of 

[-39%, 5.4%]. 
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Figure C-1 Comparing observed data to counterfactual data for average basket size at pre-existing stores for the 

full data set 

 

Our second measure is aggregate sales at pre-existing stores per day (Figure C-2 below). 

We note that this series increases steadily throughout the observation period, peaks in the holiday 

season and dips in January. The series moves similarly with the counterfactual indicating that there 

this is no discernible change in aggregate sales for pre-existing stores in the three months following 
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their entry into the network. This is not too surprising as the small effect size from the matched 

sample regression model would be difficult to tease out in the aggregate data. 

 

Figure C-2 Comparing observed data to counterfactual data for aggregate sales at pre-existing stores for the full 

data set 

Our third measure is the total number of purchases at pre-existing stores per day (Figure 

C-3 below). We note that this series also increases steadily through the observation period, but that 

it increases faster than expected after the new merchant enters the loyalty program. This indicates 
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that consumers seem to be buying more frequently at pre-existing stores after the entry. We 

estimate that the number of daily purchases increased by 1,332 transactions on average. The 

posterior probability of a positive causal effect is 86%. The effect has a 95% Bayesian credible 

interval of [-1464, 3,880]. This is equivalent to 18% increase in the observed daily purchases with 

a 95% Bayesian credible interval of [-19%, 51%].  
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Figure C-3 Comparing observed data to counterfactual data for total no. of transactions at pre-existing stores for 

the full data set 

Our fourth measure is the total number of loyalty points used at pre-existing stores per day 

(Figure C-4 below). We note that this series also increases steadily through the observation period, 

but that it increases faster than expected after the new merchant enters the loyalty program. This 

indicates that consumers seem to be using the loyalty points more frequently at pre-existing stores 

after the entry. We estimate that the number of daily points used increased by 92,697 points on 
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average. The posterior probability of a positive causal effect is 99.7%. The effect has a 95% 

Bayesian credible interval of [28,000, 160,000]. This is equivalent to a 67% increase in the 

observed daily purchases with a 95% Bayesian credible interval of [21%, 118%].  

 

Figure C-4 Comparing observed data to counterfactual data for points used at pre-existing stores for the full data 

set 

Our fifth measure is the total number of points earned at pre-existing stores per day (Figure 

C-4 below). We note that this series also increases steadily through the observation period, but not 
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more than expected after the new merchant enters the loyalty program. This indicates that 

consumers seem to be earning the loyalty points at the normal rate at pre-existing stores after the 

entry.  

 

Figure C-5 Comparing observed data to counterfactual data for points earned at pre-existing stores for the full data 

set 

  

 


