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Essays on the Emergence and Diffusion of Breakthroughs 

Abstract 

This dissertation deals with the emergence and diffusion of creative breakthroughs.  

The first two chapters concentrate on breakthrough emergence to assess and expand extant 

theories of sources of breakthroughs, and employ a hybrid methodology.  In particular, I 

study the discovery of RNA interference (RNAi) in the life sciences.  By employing 

regressions, I find that the predictive power of current theories altogether is quite low: 

ranging from less than 1% for the Nobel Prize to 13% for productivity.  These results 

prompted fieldwork and the use of interviews with scientist informants to address the gap 

and gain a deeper understanding of the phenomenon.  My findings show that the seminal 

discovery was missed several times not only due to difficulties in solving a particular 

problem but also due to failures of identifying breakthrough opportunities and proposing 

them.  I suggest a cognitive framework with institutional underpinnings at the basis of this 

failure stemming from three barriers: framing barriers, paradigmatic pressures and 

boundary barriers.  In the problem identification stage, path dependence from established 

technologies and the quest toward normal science blinded scientists from recognizing a 

prospective breakthrough as they framed RNAi as a tool while ignoring its scientific merit 

for inquiry.  In the problem-solving stage, scientists suffered from the socio-cognitive 

barrier of being constrained by current dogma.  Due to reticence in challenging the dogma, 

they hesitated to propose solutions that significantly strayed away from the confines of 

established theory.  Moreover, existing boundary barriers between communities of 
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scientists intensified the effect of barriers in both stages.  It prevented recognition of links 

between several prior instances of odd observations thus heightening the difficulty in 

identifying the breakthrough by misrepresenting the problem’s magnitude.   While solving 

the problem, similar anti-dogmatic results stayed isolated and unsubstantiated which 

diminished confidence in proposing a radically new paradigm.  The third chapter explores 

diffusion of discoveries beyond the boundary of the scientific institution.  It focuses on 

academic-industry collaborations and assesses the effect of a mediated funding scheme on 

innovative performance – quantity, impact and collaborative nature of patents and papers – 

by comparing funded and unfunded firms.   
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I. Introduction 

While a considerable body of work has explored breakthroughs from historical and 

bibliometric standpoints, we still have limited understanding on how they emerge and 

diffuse.  Consequently, this dissertation centers around gaining a deeper appreciation of this 

creative knowledge production process, more specifically, on how individual scientists and 

inventors discover or invent breakthroughs, and also on the counterfactual of what hinders 

discovery.  In the next two chapters, I focus on breakthrough emergence and employ a 

hybrid methodology to assess and expand extant theories on sources of breakthrough in a 

specific scientific discovery in biotechnology, RNA interference.  By employing quantitative 

regressions, I find that the combined predictive power of current theories is quite low.  

These results prompted me to go into the field, to use qualitative interviews of scientists to 

address the gap and gain an inductive understanding on the phenomenon of breakthrough 

emergence.  The final chapter moves away from emergence and explores the diffusion and 

commercialization of scientific discoveries beyond the boundary of the scientific institution 

through a specific mechanism of academic-industry partnerships.  

Chapter II in this dissertation (first paper), co-authored with Lee Fleming, builds on 

a large body of work that has correlated bibliometric measures from papers or patents to 

subsequent success, typically measured as the number of publications or citations, 

following widespread availability of computerized databases.  We ask two simple questions: 

given available bibliometric knowledge at any point in time, how accurately can we predict 

who will discover a future breakthrough?  Moreover, given numerous hypotheses from the 

literature, which factors should one focus on when predicting breakthroughs?  After 

reviewing and synthesizing the (often competing) predictions from the literatures, we 
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collectively test those hypotheses based on available data in the year before RNA 

interference was discovered.  We operationalize breakthrough from the most stringent 

definition of authoring the Nobel winning paper and gradually relax it to an indicator of 

being in the elite (the top ten percent of citations), forward citation counts, and finally 

publication counts.  Predictive power of current theories ranges from less than 1% for the 

Nobel Prize to 13% for productivity.  Including prior publications and citations increases 

the latter number to 49%.  We conclude with an agenda for future progress in the 

bibliometric study of creativity. 

Chapter III (second paper) builds onto the findings in the initial quantitative work 

that there is a significant gap in bibliometric papers identifying sources of breakthrough 

that remains unexplained and answers the questions: Why are some scientists more 

successful than others at discovering breakthroughs?  Why do people on the verge of 

breakthrough miss them?  By interviewing scientists with breakthrough potential in a case 

historical analysis of a groundbreaking discovery in biology, RNA interference (RNAi), my 

findings show that the seminal discovery was missed several times not only due to 

difficulties in solving a particular problem as stipulated in current literature but also due to 

failures to identify breakthrough opportunities.  I propose a cognitive framework with 

institutional underpinnings at the basis of this failure stemming from three barriers: 

framing barriers, boundary barriers and paradigmatic pressures.  In the problem 

identification stage, path dependence from established technologies and the quest toward 

normal science blinded scientists from recognizing a breakthrough potential.  Instead, they 

framed RNAi as a tool while ignoring it as a scientific concept worthy of study.  Existing 

boundary barriers between communities of scientists aggravated this difficulty in 

identifying the breakthrough opportunity by misrepresenting the magnitude of the problem 

as it prevented recognition of links between several isolated prior instances of odd 
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observations.  In the problem-solving stage, scientists suffered from the socio-cognitive 

barrier of being constrained by current dogma.  To avoid being wrong, they hesitated to 

propose solutions that significantly strayed away from the confines of established theory.  

Coupled with boundary barriers, similar anti-dogmatic observations stayed isolated and 

unsubstantiated, thus diminishing the confidence to identify a new revolutionary paradigm.  

Scientists offered remedial practices to circumvent these barriers from which I 

operationalize new sources of breakthrough emergence lacking in traditional measures of 

bibliometrics. 

In chapter IV (third paper), co-authored with Willy Shih, I shift my focus from 

emergence to diffusion of scientific discoveries.  Scientific research and its translation into 

commercialized technology is a driver of wealth creation and economic growth.  

Partnerships between public research organizations, such as universities and hospitals, and 

private firms are an established policy tool to foster the translation of basic science into 

commercial applications that has attracted increased interest.  Yet questions about efficacy 

and the efficiency with which funds are used are subject of frequent debate.  This final 

chapter examines empirical data from the Danish National Advanced Technology 

Foundation (DNATF), an agency that funds partnerships between universities and private 

companies to develop technologies important to Danish industry.  We assess the effect of a 

particular mediated funding scheme which combines project grants with active facilitation 

and conflict management on innovative performance – quantity, impact and collaborative 

nature of patents and papers – by comparing funded and unfunded firms.  Because 

randomization of the sample was not feasible, we address endogeneity around selection 

bias using a sample of qualitatively similar firms based on a funding decision score.  This 

allows us to observe the local effect of samples in which we drop the best recipients and the 

worst non-recipients.   
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Going forward there are several possible extensions that can be built onto each 

chapter of this dissertation.  From the second chapter where the lack of causal identification 

was identified as a major setback in the extant innovations literature, a follow-on project 

exploits the surprising and unexpected award of the 2006 Nobel Prize in Physiology and 

Medicine to the two discoverers of RNA interference as a quasi-natural experiment to study 

the impact of such high-profile awards on the patenting, licensing and commercialization 

trends in that particular technology sector.  Especially with the recent establishment of 

several high-value prizes in physics (Fundamental Physics Prize) and the life sciences 

(Breakthrough Prize in Life Sciences), knowing their effects on subsequent knowledge 

creation is imperative.  Similarly, this opportunity also affords the possibility to understand 

how these prizes change public interest in a field of technology.   

The qualitative chapter on breakthrough emergence also provides many 

opportunities to further my work.  For instance, although the role of conferences is multi-

faceted, very few prior works have investigated the effect of conferences on subsequent 

collaborative behavior of attendees nor explored the impact of the collaborative outputs.  

Thus, we possess limited empirical evidence on how conferences foster collaboration and 

productivity, and know little about who are most likely to collaborate together.  Not only do 

conferences facilitate information diffusion, they are also employed as a validation 

mechanism by scientists to substantiate the soundness of abnormal and unexpected results.  

Moreover, the physically and temporally condensed structure of conferences also facilitates 

rapport and network building amongst attendees, and acts as a platform that fosters new 

collaborative opportunities. 

And finally, the results in the final chapter are the combined effect of mediation and 

funding.  Continued research is needed to tease apart these effects, to pinpoint which 

characteristics and dimensions of these novel actively facilitated programs enhance 
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collaboration across organizational and institutional boundaries, and how they affect the 

project’s final outcome independent of purely monetary provisions. 
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II. Predicting Breakthroughs with Bibliometric Measures 

i. Introduction 

Since Schumpeter’s observation (1942), the creative destruction of scientific and 

technological breakthroughs has held a central and recurrent prominence in the innovation 

literatures.  The topic remains hugely important, as breakthroughs wreck havoc with extant 

industries and regions and at the same time, provide the renewing impetus for new 

industries and whole economies.  Scholars of innovation have put forth several, sometimes 

conflicting, hypotheses identifying the sources of such breakthroughs.  For instance, being 

more productive increases the number of creative trials thereby improving chances for 

breakthrough discovery (Simonton, 1999), whereas being less productive may also improve 

those chances by focusing and pursuing anomalies.  Collaboration might increase the 

chances of breakthroughs (Singh & Fleming, 2010; Wuchty, Jones, & Uzzi, 2007), though 

working individually at some points in the process also appears beneficial (Girotra, 

Terwiesch, & Ulrich, 2010).  Social brokers – those who are the sole connections between 

others – have been argued to be more (Burt, 2004) creative, less creative (Obstfeld, 2005; 

Uzzi, 1997), and more creative in particular circumstances and also hampered in their 

ability to diffuse their idea (Fleming et al. 2007).  Individuals at the core of a community are 

a more likely source because they enjoy enhanced information and resource access from 

social ties (Collins, 1998; Gieryn & Hirsh, 1983); or at the periphery because they are not 

constrained by current approaches (Jeppesen & Lakhani, 2010).  Specialists with deep 

technical knowledge are better equipped to see beyond the frontier, as opposed to 

generalists who can bring together disparate components (Dougherty, 1992; Leonard-

Barton & Swap, 1999).  Individuals realize breakthroughs earlier in their careers, because 
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they are not constrained by the thinking of their field (Simonton, 1989) or later, because 

they must work through the accumulation of knowledge (Jones, 2009).  Better scientists 

might prefer to stay in academia as they value the freedom in choosing their research 

direction (Stern, 2004), yet some corporate labs also do fundamental breakthrough work.  

Affiliation with a prestigious institution should increase breakthrough potential because of 

higher human capital and exposure to better ideas.  And finally, mobility between multiple 

affiliations increases exposure to a greater diversity of ideas, but is associated with high 

setup costs and may also be an indicator of failed tenure attempts (McEvily & Zaheer, 1999). 

Surprisingly little work has applied these ideas to predict future sources of 

creativity.  But predicting such sources for various fields is important not only from a policy 

standpoint to inform public investment in science but also for managers and analysts in 

helping to identify key scientists.  This motivates simple questions: given available 

bibliometric information in one year, along with the combined theories of the innovation 

literatures, how accurately can we predict the sources of breakthroughs in the following 

year?  In particular, who is most likely in a field to publish, publish highly cited work, 

publish a highly cited outlier, even a Nobel prize-winning paper?  Moreover, given the 

numerous hypotheses from the literature elaborated above, which factors should one focus 

on when predicting breakthroughs?  After clarifying the definition of breakthrough used 

herein, we review the literatures on creativity and breakthrough, synthesize predictions 

from these literatures, compile a dataset on the discovery of RNA interference a 

breakthrough in molecular biology, and test the predictive power of our current theories.  

Combining all current bibliometric theories on creativity – lone scientists vs. teams, 

brokerage vs. cohesion, periphery vs. core, specialist vs. generalist, experience vs. youth, 

affiliation type, affiliation prestige and mobility – can explain only 0.2% of the variance in 

predicting the Nobel paper, 5.3% for authoring a paper in the top 10% of citations, 13.1% 
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for citations, and 13.4% for publications.  If prior publications and citations are included in 

the models, these numbers increase to 0.8%, 20%, 37.8%, and 49.6%, respectively.  We 

close with a discussion of how we might increase our rate of progress in understanding the 

sources of scientific and technical breakthroughs. 

ii. Sources of Scientific and Technological Breakthroughs 

Before trying to predict who discovers a breakthrough, one must define the 

breakthrough and those at risk of discovering it.  We adopt Simonton’s (1999) notion of 

impact that encompasses both creative novelty and success and implement the empirical 

convention of citations from future scientific publications.  Our setting to study RNA 

interference (RNAi) fits within this depiction of breakthrough because of its broad research 

impact and therapeutic potential.  The field generated several prestigious awards such as 

the Lasker Award for Basic Medical Research in 2008 and the Nobel Prize in Physiology and 

Medicine in 2006.  Furthermore, small interfering RNA, a critical component involved in the 

RNAi pathway, was also named breakthrough of the year in 2002 by Science (Couzin, 

Enserink, & Service, 2002).  While communities, organizations or scientists might be at risk 

of a breakthrough, we restrict our analysis to individual scientists within a single 

community of scientific researchers.  We defer the very important question of how to define 

such a community to our methods section below, and begin by reviewing and synthesizing 

the literatures.  Our intent is not to generate novel theory but rather comprehensiveness; 

we minimize comment on evidence that supports or refutes these theories in the interest of 

brevity.  

Publication history and eminence – Prior history and eminence are important factors 

in determining sources of breakthroughs.  In a sense, this controls for unobserved 

heterogeneity in the research ability of scientists using prior publications.  While prior 
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prominence is a well-accepted indicator of a scientist’s research capabilities, the 

relationship between quality and quantity is more controversial.  Limited time and 

resources imply a tradeoff between quality versus quantity.  An obsession with quantity can 

cause researchers to miss breakthrough cues as they swiftly plow through their originally 

designed experiments.  Thus the more productive scientists might make incremental rather 

than radical discoveries.  On the other hand, since creative processes usually require many 

attempts to obtain a success, let alone a path-breaking success, the more productive a 

person the more trials they create and consequently the more likely their breakthrough 

potential.  To use a sports analogy, the more at-bat opportunities available the higher the 

probability of hitting a homerun.  We summarize this accordingly as: Greater productivity 

increases the chances of a breakthrough by increasing the number of creative draws, whereas 

less productivity increases the chances by enabling focus and pursuit of anomalies.  

Collaborative vs. Individual researchers – Recent studies show a continuing and 

increasing trend for teams to contribute to the production of knowledge through paper and 

patent publications in all natural and social science domains (Wuchty et al., 2007).  Alluding 

to the burden of knowledge theory, to compensate for an ever increasing body of 

knowledge inventors and scientists have to narrow their expertise (Jones, 2009), which 

translates to reduced individual capabilities and forces innovators to work more 

predominantly in teams.  Furthermore, collaboration fosters breakthrough emergence as 

circling ideas for critique by co-inventors decreases the likelihood of poor outcomes, while 

multiple collaborators permits the recombination of more diverse components (Singh & 

Fleming, 2010). 

Conversely, proponents of the lone superstar have argued that even though teams 

bring greater collective knowledge and effort, there remain significant costs to increased 

teamwork such as coordination losses (McFadyen & Cannella, 2004) and groupthink (Janis, 
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1971).  Therefore a shift to teamwork may be a costly phenomenon that promotes low-

impact science.  Girotra, Terwiesch, & Ulrich (2010) provide a resolution of the controversy 

and demonstrate benefits to alternating between solitary and collaborative work (though 

such alternating is difficult to capture with bibliometric data).  In short, the above 

theoretical arguments can be recapped as: Collaboration increases the chances of 

breakthrough because it increases the diversity of search and efficiency of idea selection, 

whereas solitary work increases chances because it minimizes idea suppression and social 

loafing. 

Brokerage vs. Cohesion – Context and in particular, social structure, has long been 

thought to influence creativity, flow of knowledge and ideas.  The optimal structures, 

however, remain an open theoretical and empirical question.  The notion of brokerage or 

structural holes, implicit in Granovetter’s paper on the strength of weak ties (1973), is a 

structure in which an individual is directly connected to collaborators who are themselves 

not connected.  Brokerage has been argued to enhance innovative creativity and output 

given that brokers occupy a nexus position in which they have first access to diverse 

information.  Assuming recombinant search as the process of innovation (Schumpeter 1939, 

Henderson and Clark 1990) brokers have control over these distinct pieces of information 

and are thus provided the best opportunity to generate new knowledge combinations (Burt, 

2004). 

In contrast, Coleman’s model of social capital (Coleman, 1988) argues for the 

benefits of cohesion, with the increase of trust, redundant information paths that facilitate 

tacit knowledge transfer, shared risk taking, and easier mobilization (Obstfeld, 2005; Uzzi, 

1997).  A cohesive structure facilitates distributed understanding of all components of the 

new knowledge, fosters a greater sense of mutual ownership of the creative product and 

increases the likeliness of the creation from being used again (Fleming, Mingo, & Chen, 
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2007; Reagans & McEvily, 2003).  These conflicting theories can be summarized as: 

Brokerage increases the chances of breakthrough because it enables first access to and control 

of information, whereas cohesion increases the chances because it increases trust which allows 

richer lateral diffusion of information. 

Core vs. Periphery – The sociology of science literature supports a view in which the 

most successful problem-solvers may not necessarily lie at the core of the problem field.  

The main theoretical reasoning behind this line of work is that scientists situated at the 

periphery of their community possess focused naïveté – a useful ignorance of prevailing 

assumptions and theories.  They draw from different knowledge pools than the actors at the 

core which translates into diverging perspectives and ultimately helps them in uncovering 

potentially novel and highly impactful breakthroughs (Jeppesen & Lakhani, 2010).   These 

arguments are echoed in the organizational literature on innovation, which argues that 

breakthroughs come from outside an extant industry (Tushman and Anderson, 1986).   

An opposing viewpoint believes that individuals situated at the core are social elites 

who benefit from better availability of resources and established relationships (Collins, 

1998; Gieryn & Hirsh, 1983; Merton, 1949).  Viewing knowledge creation as a recombinant 

search process, core scientists have better access to relevant information, more resources, 

and are less isolated, which in turn increases their likelihood of creating breakthrough 

work.  Consequently, a core position increases the chances of breakthrough because it 

provides better access to information and resources, and a peripheral position increases the 

chances because of useful ignorance of prevailing assumptions and theories. 

Specialist vs. Generalist – People that focus become specialists in their area of 

expertise, at the expense of breadth.  Whether specialization enables breakthrough remains 

an open question.  Specialists may be better positioned to solve a breakthrough because 

their deep knowledge in a field enables them to optimally evaluate and combine 
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components at their disposal.  They can predict outcomes better, due to their deep reservoir 

of experience.   

According to advocates of marginality, however, specialists are deeply rooted in 

their respective scientific domains and may suffer from a curse of knowledge that limits 

exploration beyond their immediate knowledge neighborhoods.  Generalists are not bound 

to the current thinking in the focal field and can therefore offer different perspectives and 

heuristics that enables them to sample a larger search space thus drastically increasing the 

probability of discovering a new and fruitful combination (Dougherty, 1992; Leonard-

Barton & Swap, 1999).  To summarize, being a generalist increases the chances of 

breakthrough because a broader variety of components can be recombined, whereas being a 

specialist increases the chances because deeper understanding of the components enables 

more accurate prediction (and more effective winnowing of probably useless combinations). 

Lifecycle – On the one hand, the burden of knowledge literature (Jones, 2009; 

Wuchty et al., 2007) is based on the observation that innovators are not born at the cutting 

edge frontier of knowledge and must undertake significant education.  Furthermore, 

significant increases in the total stock of knowledge over the past few centuries imply that 

the amount of education innovators must accumulate also increases proportionally.  The 

implication of more learning is a delayed contribution to the stock of knowledge thus 

pushing back the average age of contribution (Jones, 2009). 

On the other hand from a cognitive viewpoint, Simonton has studied the 

relationship between age and creativity in numerous artistic and scientific fields (Simonton, 

1989).  Although fields differ significantly across optimal creative age, younger scientists 

were found not to be afraid to tackle hard problems, and are not encultured with 

conventional wisdom.  They have had less time to socialize into the norms of established 

institutions and can therefore freely think outside the box thereby increasing their 
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propensity of generating breakthroughs.  Consequently, youth increases the chances of a 

breakthrough because it is not weighed down by established beliefs, whereas experience 

increases the chances because it enables contributions at the frontier of science.  Taking both 

sides of the argument into consideration, we can also posit a curvilinear inverted-U 

relationship where relatively junior scientists with some experience but not completely 

newcomers are more likely to discover breakthroughs.  They have had enough time to 

surmount the burden of knowledge and but are still relatively new to the field. 

Organizational affiliation – Whether a researcher works in academia or corporations 

affects the impact of scientific publications differently.  Due to the institutional priority-

based rewards system in science, higher-quality researchers may be willing to tradeoff 

more income in private firms to earn the higher expected prestige rewards in academia 

(Stern, 2004), especially when they are given the freedom and authority to direct their own 

research agendas into areas that they perceive as high-risk breakthrough areas.  Because 

researchers in academia are allowed more flexibility in pursuing their individual research 

agendas than in for-profit organizations, higher-quality scientists tend to choose academia 

over private corporations.  Consequently, academic affiliation increases the chances of a 

breakthrough because of sorting of higher quality human capital. 

Prestige – Similarly, the ranking of institutions in which scientists have been 

affiliated with is also an indicator of the breakthrough potential of an individual.  Most 

university rankings are based on several criteria, one of which being the quality of research 

publications it produces.  More prestigious institutions have stricter selection processes for 

faculty and students, and are also better positioned to learn about recent research results, 

through seminars and other modes of scientific communication.  Affiliation with a 

prestigious institution increases the chances of a breakthrough because of higher human 

capital and exposure to better ideas. 
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Mobility – Compared to those with low organizational mobility, as individuals move 

from one institution to the next they are exposed to more heterogeneous ideas, 

perspectives, assumptions, problem-solving techniques and thought processes (McEvily & 

Zaheer, 1999).  However, there are significant setup costs associated with each move, and 

specifically in our academic setting moves may be an indication of failed attempts at 

obtaining tenure.  Mobility increases the chances of a breakthrough because of exposure to a 

greater diversity of ideas, whereas staying put increases the chances because it minimizes 

setup costs and indicates successful tenure application. 

iii. Methodology and Data 

Setting 

Our setting is a breakthrough in the biological sciences, RNA interference.  It is a 

naturally occurring endogenous mechanism activated by double-stranded RNA (dsRNA) 

precursors that induce the silencing of specific genes.  The phenomenon was initially 

observed by plant biologists in the early 1990s where an attempt to transgenically alter 

color pigmentation in petunia plants yielded unexpected outcomes.  The trigger mechanism 

to this phenomenon was discovered in 1998 by Andrew Fire and Craig C. Mello (1998) for 

which the two scientists were awarded the Nobel Prize in Physiology and Medicine in 2006.  

 RNAi is not only valuable as a research tool; it also opened the possibility for a 

whole new class of drugs in biotechnology.  For instance in research, the selective and 

robust effect of RNAi can induce suppression of specific genes of interest both in vitro and 

in vivo that can be applied to large-scale screenings that systematically shut down each 

gene in the cell to identify components necessary for a particular cellular process or event.  

In drug development, the RNA interference pathway can be conceivably used to treat 
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genetically based diseases by turning off, for example, Huntington’s disease or certain 

genetically based cancers.   

Sampling and Identifying a Community of Scientists 

We must first define a scientific community, in other words identify the risk set of 

scientists, before answering whom in that community is most likely to discover a 

breakthrough.  How a community is defined is crucial to understanding how scientific 

breakthroughs arise within it.  Despite a fairly advanced literature on community detection, 

spearheaded by network physicists and applied mathematicians as evidenced by the 

extensiveness of reviews available in the literature (Fortunato, 2010), several unique and 

defining characteristics of our data and study still make it difficult to detect communities in 

a straight-forward fashion and, consequently, expose the limitations of current available 

methods.  Indeed, one important drawback of these structurally detected communities, 

which follows from the starting definition of a community consisting of cohesive group of 

nodes or links, is that all members of a given community must be connected to one another.  

“Sub” communities can be identified within a larger connected component, however, the 

analysis begins with – and assumes – a connected component.  Thus, these methods 

inherently preclude communities that share similar functional attributes yet have members 

who are unconnected.  For instance, in the case of RNAi scientists, given our depiction of 

scientific collaboration in which individual scientists are connected by their co-authorship 

relationships, even though two scientists do not necessarily have a collaborative 

relationship reflected through co-authored publishing both take part in the same 

community that work in advancing understanding of RNAi.  Consequently, we envision the 

community of RNAi scientists to be depicted as a collaborative network with several 

unconnected components.  At this point, unfortunately, most theoretical research into 
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community detection techniques have solely focused on structurally identifying 

communities, promptly ignoring nodal characteristics that define functional communities.  

To incorporate functional characteristics in our definition of the RNAi community, 

we include content search of titles, abstracts and Medical Subject Headings (MeSH) 

keywords.  Since our study looks to predict a future discovery event it is centered on the 

period prior to the breakthrough where a defined community of RNAi researchers has yet 

to emerge.  It is, therefore, not surprising that MeSH keywords such as “RNA, Interference”, 

and the same phenomenon in plants and fungi – respectively named “co-suppression” and 

“quelling” – did not enter the MeSH lexicon until 2002.  To circumvent this issue, we review 

archival documents on the history of RNAi including the Nobel lectures, and find that 

scientists were attempting to explain gene expression regulation or gene silencing by 

experimenting with both dsRNA and antisense RNA as causal agents.  Furthermore, they 

believed in the hypothesis that RNA plays a central role in gene silencing mechanisms which 

rests on the premise that RNA molecules are not only restricted to the passive role of 

carrying genetic information but also possess catalytic functions.  Consequently, we define 

the community of researchers at risk of discovering a breakthrough from their published 

peer-reviewed articles using the MeSH search terms1 “RNA, Double-Stranded”, “RNA, 

Antisense”, “RNA, Catalytic”, “Gene Silencing” and “Gene Expression Regulation” in PubMed.  

We primarily make use of MeSH keywords to search for published papers since MeSH 

                                                             

1 The exact search string used in PubMed query extracted on October 26, 2011: ((((gene silencing[MeSH 

Terms] OR gene expression regulation[MeSH Terms]) AND (RNA, double-stranded[MeSH Terms] OR 

rna, antisense[MeSH Terms] OR rna, catalytic[MeSH Terms])) AND "1980"[Publication Date] : 

"1999"[Publication Date]) AND English[Language]) NOT interferon[MeSH Terms]. We also found that 

dsRNA generated a lot of noise as it was heavily used by immunologists studying interferon responses. To 

minimize the noise from interferon we include in our MeSH search the “NOT interferon[MeSH Terms]” 

term.  
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keywords are believed to be a relatively objective classification scheme.2  We augment the 

MeSH keyword searches with a title and abstract search so as to include scientists who 

initially observed the RNAi phenomenon in plants and fungi3.  We include in this community 

papers that were published until 1999, as we believe that those who quickly published 

following the 1998 breakthrough paper are also in the risk set for breakthrough discovery.  

By extracting unique authors from the set of papers obtained above, we effectively identify 

a community of RNAi scientists topically based on their publication focus.  This sample of 

scientists defining the pre-breakthrough RNAi community yields 1,551 papers and 3,959 

unique authors.  However, we are missing affiliation data for 49 of these individuals, so the 

majority of our regressions are run with a sample of 3,910 authors. 

Out of the 3,959 unique authors present in our sample, 144 authors are completely 

new to the defined field of RNAi in 1998.  These scientists do not have any prior 

publications either within our RNAi community or any other tangential field within the life 

sciences, in other words they only appear in the MedLine dataset we draw from after 1997.  

Only one author from these 144 newcomers was affiliated with a non-academic institution.  

Furthermore, only one newcomer published solely in 1998 while all others collaborated 

either as first author (n = 57), last author (n = 10) or appeared as a middle author (n = 93).  

These collaboration structures reflect the apprenticeship model for graduate studies in the 

life sciences.  Because most of the publications in which new scientists partake are co-

authored with the principal investigator and other members of a laboratory, the number of 

                                                             

2 Instead of being assigned by authors themselves, MeSH is a comprehensive controlled vocabulary for the 

purpose of indexing journal articles and books in the life sciences and also serves as a thesaurus that 

facilitates searching.  It is created and updated by the United States National Library of Medicine (NLM) 

and used by the MEDLINE/PubMed article database and by NLM's catalog of book holdings 
3 The exact search string used in augmented PubMed query extracted on October 26, 2011: 

((((cosuppression[title/abstract] OR co-suppression[title/abstract] OR quelling[title/abstract] OR 

RNAi[title/abstract] OR RNA interference[title/abstract]) ) NOT interferons[MeSH Terms]) AND 

"1980"[Publication Date] : "1999"[Publication Date]) AND English[Language]. 
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new authors getting cited at least once is relatively high (n = 127).  Including these 

newcomers in our sample illustrates the true dynamic nature and evolution of such 

scientific communities.  However, it complicates data collection since we have no historical 

information on these newcomers prior to 1998 therefore leaving several explanatory 

variables, such as brokerage and specialist, undefined.  Undefined variables for newcomers 

are set to the mean. 

Given the scientists’ bibliometric attributes before 1998, we predict who would 

have a fruitful year in 1998 thereby identifying individual sources of breakthrough.  We 

restrict the dataset used in the empirical analysis to the PubMed Author-ity database 

(Torvik & Smalheiser, 2009) due to the biological nature of the breakthrough, and organize 

each data point as unique author records.  Moreover, as our quantitative analysis focuses on 

observing publication performance in 1998, the explanatory variables consist of measures 

calculated using each author’s prior bibliometric data up to 1997 inclusively encompassing 

all papers available in the PubMed database, while publication data in 1998 are used to 

calculate outcome variables.   

Regression Models 

We first attempt to predict the breakthrough itself using rare events logistic 

(relogit) models on all authors of the Nobel paper because publishing such a paper is an 

extremely rare event with only six successes out of the entire sample of nearly four 

thousand scientists.  The relogit procedure estimates the same model as a standard logistic 

regression but estimates are corrected for the bias that occurs when observed events are 

rare.  We then predict using logistic models with cluster robust standard errors scientists 

who are at the top ten percent of the citation distribution.  Finally we use count models with 

either the forward citation counts of 1998 papers or the number of publications in 1998 as 
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outcome variables to operationalize respectively impact in another way and productivity.  

The count models are quasi-maximum likelihood Poisson (QML Poisson) with robust 

standard errors since publications and citations are non-negative counts and over-

dispersed which prevents the use of standard Poisson models where it is assumed that the 

mean and variance of the variable distribution are equal.  We also run OLS regression 

models so as to evaluate the predictive power of our measures of sources of breakthrough.  

Dependent Variables 

Nobel paper dummy – nobeldum is an indicator that equals one for the six authors 

on the Nobel winning RNAi paper in 1998. 

Top 10% citations dummy – Measures of publication impact based on citations rest 

on a social definition of creative success, where scientists are only thought to be creative if 

they receive recognition from their community or society as a whole, and their work is used 

as a foundation for further advancements (Simonton, 1999).  We therefore relax our 

definition of breakthrough from the Nobel paper to scientists with citations in the top ten 

percent of the citation distribution with the indicator top10cite. Top10cite_fl is an indicator 

for the robustness check, where only the scientist’s citation count for their first or last 

author papers in 1998 is in the top ten percent of its distribution (as are all variables with a 

suffix of _fl).  Dependent variables for the top 5% returned similar results. 

Number of forward citations for 1998 publications – We further relax our 

operationalization of breakthrough using forward citation counts garnered until 2010 of 

1998 publications (ncite98), which rests on the same premise of social construction of 

success.  For the OLS models we take the natural logarithm plus 1 (lncite98) to match count 

explanatory variables that underwent the same transformation due to the Poisson models.   
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Number of 1998 publications – The final dependent variable is a measure of 

productivity (npub98) depicted by the number of 1998 publications.  Similarly, we also take 

the natural logarithm plus 1 (lnpub98) for the OLS regressions. 

Explanatory Variables 

Publication history and eminence – Publication history is the count of one’s total 

number of publications since first publishing until the year prior to the 1998 breakthrough 

(npub97) while publication eminence is the number of aggregated forward citations to 

these publications (ncite97).  When npub97 is zero the scientist does not have any prior 

publications and is a newcomer.  When ncite97 is zero the scientist could either be a 

newcomer with no prior publications hence no prior citations or could have produced prior 

publications that have not been subsequently cited.  Since we employ the quasi-maximum 

likelihood Poisson count model in our regressions and both variables are counts, we take 

their natural logarithm and denote them respectively as lnpub97 and lncite97. 

Collaborative vs. Individual researchers – We capture the number of co-authors 

(ncoauthor) each scientist has collaborated with for all publications prior to 1998 by 

calculating the degree network measure of each author node – number of directly linked 

neighboring nodes to a focal node.  The network is portrayed by collaborative co-authorship 

ties for all publications prior to 1998 for researchers within the RNAi community as defined 

in the prior section.  Lone scientists who do not collaborate and newcomers have no co-

authors in the period prior to 1998. 

Brokerage vs. Cohesion – Using the same network depiction, we measure cohesion 

(constraint) by calculating Burt’s constraint (Burt, 2004).  To calculate the constraint, 

    ∑      where     (    ∑        )
 

 and     is the fraction of i’s relation invested in 

contact j.      translates to the degree of i if there is no prior weight to the social networks 
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or, in other words, all connections are considered to be equal strength.  Since cohesion is 

undefined for newcomers, we set newcomers’ cohesion at the average cohesion value 

without taking into account newcomers. 

Periphery vs. Core – We create two measures of core mirroring the topical and 

collaborative community.  The first measure depicts collaborative core of the scientific 

community, where core is structurally operationalized by the indicator variable collabcore.  

We consider scientists situated in the largest connected component of the network of RNAi 

scientists with the most number of interlinked collaborations to be in the core and hence 

assign a value of one, while all other scientists including newcomers are considered to be in 

the periphery of the community and take on the value of zero. 

The second measure depicts core versus periphery from a technical standpoint 

(techcore).  Following our topical construction using MeSH keywords of the scientific 

community working on suppressing gene expression, technical core is calculated by 

tabulating the frequency of MeSH keywords used in our definition of community “RNA, 

Double-Stranded”, “RNA, Antisense”, “Gene Expression Regulation” and “Gene Silencing”, 

“RNA, catalytic” and all previous variants4 in a scientist’s publication history and 

normalizing by the total frequency of all her MeSH keywords, i.e. 

                                                                                            

∑               
.   

The more a scientist’s work is focused in the key antecedent fields to RNA 

interference as reflected by the frequency in which their published works are classified, the 

more they are embedded in the technical core of the community.  Our dataset provides the 

top 20 most frequent MeSH keywords per author and so for many scientists in our sample 

                                                             

4 Prior MeSH keywords for “Gene Expression Regulation” include “Gene Expression”, “Genes” and 

“Phenotype”. When tabulating frequency for “Gene Expression Regulation” we also incorporated counts of 

its prior keywords. 
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the majority of their work is not in precursor fields to RNAi.  Hence those who’s top 20 most 

frequent MeSH keywords do not match none the above five MeSH keywords take on the 

value of zero for techcore.  We tested for the second order effect of core and periphery for 

evidence of the middle status conformity theory but found not substantiation.  Moreover, as 

55% of the values of this variable are zero, representing a non-core position, we 

dichotomize this variable.  Any non-zero value of this variable takes on the indicator value. 

Specialist vs. Generalist – It can be difficult to disentangle the notions of periphery 

and core with those of specialist and generalist.  Some may even argue for the homology 

between periphery and generalist, as well as core and specialist.  These concepts can be 

quite different, however.  A researcher can be specialist in one field in which they possess 

deep expertise while simultaneously be at the periphery another.  Similarly nothing 

prevents a generalist to be situated at the core of a given community.  

We capture the degree of expertise of each individual scientist using a publication 

breadth measure implemented based on the breadth of MeSH keywords in a scientist’s 

publications.  This metric is a measure of the prominence of high-frequency peaks in the 

unique list of MeSH keyword distribution associated with every publishing author.  We first 

identity the top most frequent number of MeSH terms for each scientist, k5.  Again in our 

case since we have the top 20 MeSH keywords for each author, k=5, and we calculate 

publication depth as the ratio of the frequency sum of the top 2 to 6 most frequent MeSH 

keywords, i.e. the high frequency peaks, to the sum of the frequency of all MeSH keywords 

from range 2 to 20,           
                                  

(                                  )                           
 

(Swanson, Smalheiser, & Torvik, 2006).  According to the measure (pubdepth), a specialist 

                                                             

5 k =int(1.7ln(u)+0.5) where u=number of unique MeSH for individual i = 20, so k = 5. 
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with a narrow range of high frequency MeSH keywords has a high value in the numerator, 

and consequently has higher depth values; whereas a generalist tends to be characterized 

by a more uniform set of MeSH keyword frequency distribution with higher variance and 

less defined high-frequency peaks which translates into lower numerator and depth values.  

Since specialist is undefined for newcomers, we set newcomers’ pubdepth at the average 

value without taking into account newcomers. 

Lifecycle – Scientists’ experience is proxied by the number of years since one’s first 

publication.  Newcomers have zero years of experience while seasoned scientists may have 

several decades under their belts.  Due to the model specification and the count nature of 

our variable, we take the natural logarithm and denote as lexp.  Non-parametric modeling of 

this variable supports use of the more parsimonious first degree logarithmic of the variable 

(its effect is increasingly and monotonically negative). 

Organizational Affiliation – The proportion of a scientist’s academic affiliations is 

stored in variable academic.  Academic equals one for a pure academic scientist and zero for 

a scientist working strictly in industry.  Therefore if a scientist has a total of 3 affiliations, 2 

in academia and 1 in industry, their value for academic would be set to 2/3.   

Prestige – The prestige (prestige) of a scientist’s affiliated institution is a weighted 

average score with weights assigned according to the top 50 overall research universities as 

ranked by U.S. News in 1998.  The best university is assigned a weighted score of 50, the 

second best a score of 49 decreasing to a score of 1 for the 50th ranked university, while 

institutions beyond 50 receive a score of 0.  Prestige is calculated as follows 

∑                                  
 
   

                    
 where n is the total number of unique affiliations.  For 

example, if a scientist has a total of 10 publications, 3 of which was published when 

affiliated with the second best research university as per the US News ranking, 2 of which 
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was published when affiliated with a university ranked 30th and the remaining 5 was 

published with unranked institutions; her prestige score would amount to 

                                                                                     

                    
 
             

  
 

    .  Furthermore, we add an indicator of being affiliated with a top 50 ranked institution 

at least once  (prestiged) so as to correct the skewed distribution with the above weighted 

measure of prestige.  For newcomer both measures of prestige are set to zero. 

Mobility – An indicator measures mobility between organizations or institutions 

where the total number of one’s affiliation is greater than one (affil1p).  We also include a 

dummy variable for newcomer (newcomer) equal to one if a scientist appears in our sample 

only starting in 1998 and zero otherwise. 

iv. Results 

Table II-1 shows the summary statistics and correlation matrix for all dependent 

and exploratory variables used throughout the regression analyses.  Table II-2 reports 

results for the four models we evaluate that predict authors of the Nobel winning paper, 

scientists in the top 10% of the citation distribution, citation count for 1998 papers and 

publication count in 1998.  The rare events logit (King & Zeng, 1999a) provides an estimate 

that a particular scientist is most likely to discover the Nobel winning breakthrough.  Thus 

in the case for the discovery of RNA interference’s trigger our results show that specialized 

brokers with prior eminence but less publication history prevailed.  The model drops 

academic since it is a perfect predictor of authoring in the Nobel paper.  It also drops 

collabcore, prestige dummy and affil1p because these three variables are perfectly 

multicollinear to newcomer for the six authors of the Nobel paper.  Figure II-1 illustrates 

effects sizes for all models.   
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The logit model in Table II-2 assesses the probability of a scientist publishing 

impactful papers with total citation counts in the top tenth of the distribution.  As expected 

a top ten percent citation scientist is positively and significantly associated with their prior 

publications’ impact as depicted in the form of the number of forward citations for pre-1998 

papers.  We also find evidence that increased prior productivity and brokerage significantly 

increase the likelihood of attaining this top tier in citation.  We find no significant 

correlation between the number of co-authors, structural or social core, specialization, or 

multiple affiliations and the odds of being highly cited.  With regard to the lifecycle theme, 

we observe a linear relationship where younger scientists correlate significantly with high 

citation likelihood.  While the proportion of academic affiliations shows no significant 

relationship, the prestige of the affiliation is positively but weakly significant.  Newcomers 

positively affect the likelihood of being on top of the citation distribution.  Calculating the 

effect size for variables that are significant, we find that a one standard deviation increase 

from the mean yield increases of 95.1%6 for the natural log of prior publication count, 338% 

for the natural log of prior citation count, and 72.7% for newcomer; and decreases of 24.9% 

for constraint and 83.1% for natural log of experience to the probability of being in the top 

10% of citations.  At the ten percent significance level, a one standard deviation increase in 

prestige increases the probability of being in the top tenth of the citation distribution by 

16.4%.  In sum, we find that younger scientists with more prior history and eminence, and 

situated in brokerage positions of their field have a higher probability to be in top tenth of 

the citation distribution.  We also find that being a newcomer contributes positively.  

 

                                                             

6 Effect size = 
    (       )

    (     (     ))
   

   
 (                   )

   
 (           (                 ))
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Table II-1 (following two pages) – Summary statistics and correlation matrix of dependent 

and explanatory variables 
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Variable N. Obs Mean Std. Dev. Min Max 

nobeldum 3959 0.002 0.039 0 1 

top10cite 3959 0.1 0.3 0 1 

lncite98 3959 1.761 1.756 0 8.009 

lnpub98 3959 0.888 0.822 0 4.477 

lnpub97 3959 2.585 1.371 0 7.073 

lncite97 3959 4.178 2.058 0 9.692 

lnpub97_fl 3959 1.934 1.426 0 6.836 

lncite97_fl 3959 3.193 2.3 0 9.533 

constraint 3959 0.657 0.315 0 1.932 

lncoauthor 3959 2.279 1.15 0 5.855 

collabcore 3959 0.821 0.383 0 1 

techcore 3959 0.45 0.498 0 1 

pubdepth 3959 0.281 0.058 0 1 

lexp 3959 2.354 0.883 0 4.174 

academic 3959 0.996 0.044 0 1 

prestige 3910 5.889 10.683 0 50 

prestiged 3910 0.347 0.476 0 1 

newcomer 3959 0.036 0.187 0 1 

affil1p 3910 0.591 0.492 0 1 

 

 
nobeldum top10cite lncite98 lnpub98 

nobeldum 1 

   top10cite 0.1167 1 

  lncite98 0.1169 0.6044 1 

 lnpub98 0.0168 0.4711 0.815 1 
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lnpub97 lncite97 lnpub97_fl lncite97_fl constraint lncoauthor collabcore 

lnpub97 1 

      lncite97 0.815 1 

     lnpub97_fl 0.939 0.771 1 

    lncite97_fl 0.788 0.888 0.861 1 

   constraint -0.21 -0.225 -0.202 -0.216 1 

  lncoauthor 0.649 0.568 0.529 0.455 -0.089 1 

 collabcore 0.214 0.325 0.151 0.222 -0.361 0.263 1 

techcore -0.219 -0.076 -0.218 -0.104 0.033 0.017 0.063 

pubdepth 0.318 0.165 0.302 0.202 -0.069 0.178 -0.005 

lexp 0.847 0.724 0.784 0.674 -0.158 0.551 0.252 

academic -0.004 0.02 0.017 0.005 0.001 -0.003 0.008 

prestige -0.058 0.094 -0.044 0.065 -0.014 -0.059 0.066 

prestiged 0.1 0.231 0.11 0.206 -0.062 0.016 0.087 

newcomer -0.371 -0.401 -0.268 -0.274 -0.001 -0.392 -0.42 

affil1p 0.677 0.599 0.627 0.568 -0.173 0.394 0.166 

 

 techcore pubdepth lexp academic prestige prestiged newcomer affil1p 

lnpub97 

        lncite97 

        lnpub97_fl 

        lncite97_fl 

        constraint 

        lncoauthor 

        collabcore 

        techcore 1 

       pubdepth -0.122 1 

      lexp -0.12 0.234 1 

     academic 0.011 -0.001 -0.006 1 

    prestige 0.084 -0.063 -0.048 -0.027 1 

   prestiged 0.024 0 0.108 -0.019 0.755 1 

  newcomer -0.178 0.001 -0.519 0.017 -0.108 -0.143 1 

 affil1p -0.165 0.188 0.698 0.002 -0.056 0.122 -0.235 1 
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Table II-2 (following page) – Predictive models of the Nobel winning paper with rare events 

logit, top 10% of citations with logit, number of forward citations of 98 papers and number 

of 98 papers both with quasi-maximum likelihood Poisson. 
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Relogit 

Nobel 

Logit 

Top10c 
QML impact QML prod 

DV nobeldum top10cite ncite98 npub98 

  b/se b/se b/se b/se 

lnpub97 -1.569** 0.800** 0.316** 1.134** 

 
(0.32) (0.12) (0.07) (0.04) 

lncite97 1.450** 1.153** 0.671** -0.054** 

 
(0.27) (0.08) (0.04) (0.02) 

lncoauthor 0.536+ -0.094 -0.052 -0.015 

 
(0.30) (0.08) (0.04) (0.02) 

constraint -4.073* -0.910** -0.530** -0.230** 

 
(1.86) (0.30) (0.15) (0.08) 

collabcore 

 

0.012 0.135 0.084 

 
 

(0.29) (0.12) (0.07) 

techcore -1.714 -0.036 -0.133 0.014 

 
(1.57) (0.14) (0.10) (0.04) 

pubdepth 12.731** -0.149 2.075+ 0.285 

 
(4.70) (1.59) (1.23) (0.39) 

lexp -1.788+ -2.015** -1.136** -0.962** 

 
(0.95) (0.21) (0.15) (0.05) 

prestige 0.036+ 0.014+ 0.008+ 0.001 

 
(0.02) (0.01) (0.00) (0.00) 

prestiged 

 

-0.057 -0.116 -0.078 

 
 

(0.19) (0.11) (0.06) 

academic 

 

1.734 0.277 0.979** 

 
 

(2.18) (0.74) (0.38) 

newcomer 3.019 2.922** 1.932** 0.321** 

 
(2.62) (0.63) (0.44) (0.12) 

affil1p 

 

0.26 0.315+ 0.071 

  

(0.24) (0.19) (0.08) 

constant -7.932* -6.991** 0.919 -0.921* 

 

(3.29) (2.28) (0.81) (0.41) 

N.Obs 3910 3910 3910 3910 

Log-Likelihood -829.552 -94554.127 -7611.202 

+ p<0.10, * p<0.05, ** p<0.01 
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The third model in Table II-2 shows results for the first QML Poisson regression 

with forward citation count as the outcome variable.  Predictably, the results of this model 

are similar to those found from the logistic model, as both dependent variables depict a 

similar concept of impact.  We further interpret the effect size of these results.  A one 

standard deviation increase in the natural log of prior publication citations increases 

citation count by 198%7, while a one standard deviation increase in the natural log of prior 

publication increases citation count by 54.3%.  Similarly, the coefficients on constraint and 

log experience indicate that a one standard deviation increase in each of the two variables 

decreases citations by 15.4% and 63.3% respectively.  Furthermore, a one standard 

deviation increase in newcomer increases citation count by 43.6%.  At the ten percent 

significance level, a one standard deviation increase in publication depth, prestige and 

multiple affiliations increase citation count respectively by 12.8%, 8.6% and 16.8%.  In 

summary, we find that younger scientists with more prior eminence and history, situated in 

brokerage positions are more likely to discover breakthroughs. 

The fourth model in Table II-2 presents a regression with the measure of 

productivity proxied by the number of papers published in 1998 as our dependent variable.  

Interpreting the results of the model we find that prior publication quantity is positively 

and significantly associated with productivity, whereas contrary to the prior two models 

that depict impact prior publication quality contributes negatively to productivity.  This 

result illustrates that scientists who prioritize quality over quantity may be less productive 

in order to ensure the quality of their work.  Similar to impact models, we also find that 

brokers with their nexus positions are not only more likely to discover breakthroughs but 

also tend to be more productive, whereas the number of co-authors is still insignificant.  

                                                             

7 Effect size = 
    (     )

    (  )
   

           (                   )

           (         )
   



 

 

 

 

32 

Again we observe no evidence of periphery or core nor specialization or generalization.  We 

also find that younger scientists write higher impact papers and more papers, possibly 

because they are incentivized by the tenure system in place at most academic institutions.  

Expectedly, scientists in academic institutions are more productive.  Finally, newcomer also 

positively affects publication count.  Effect sizes are computed and shown in Figure II-1 for 

all four models. 

 

 

Figure II-1 – Effect size of each regression model by explanatory variable. The effect size is 

computed by increasing the variable under study by one standard deviation from the mean 

while holding all other explanatory variables at the mean.  

 

Aware that ordinary least square models yield biased coefficient estimators for 

logistic and count models, we employ OLS primarily to shed light on the predictive power of 

our theoretical models while making sure to apply the natural logarithm to the two count 

dependent variables for this set of regressions.  Figure II-2 shows the percent contribution 

to the variance of each explored theory for all four models.  In these models we only 
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interpret R2 and delta R2 measures even though coefficients are directionally consistent 

with the more appropriate non-linear models.  Unsurprisingly, predicting who will discover 

the breakthrough per se is extremely hard due to the rare nature of such events.  Any model 

trying to predict 6 successful events out of 4,000 would be challenged, and this is illustrated 

by the total R2 of 0.8% when predicting authors of the Nobel winning paper (see Table II-3).  

However, the picture is less gloomy if we relax the predictive requirements and concede 

that any scientists who attain the top ten percent of the citation distribution has similar 

chances of discovering the breakthrough – still, anything beyond that point is mostly driven 

by chance and circumstance.  Although the total explained variance jumps to almost 20%, 

we still only have one out of five chances of predicting the correct top 10% citation scientist.  

Furthermore, without prior publication and eminence, prediction using the theoretical 

themes only provides 5.6% explained variance.  Further relaxing predictive requirements to 

the number of citations yield increased total explained variance to 37.8%, where together 

measures of prior eminence and productivity account for 24.7% of the variance and the 

remaining theoretical themes add another 13.1%.  Finally when productivity becomes the 

dependent variable, explained variance increases further given that productivity is more 

consistent than extremely rare breakthrough events.  Indeed with all exploratory variables 

included, the R2 raises to 49.6%.  

Robustness Checks  

We run several sets of robustness checks to ensure stability of our results.  We first 

run a split sample analysis whereby we randomly divide the initial sample in half.  We then 

perform the same regressions on each of the two split samples and obtain very similar 

results between the split samples as well as compared to the initial full sample (available 

upon request from the authors).  Similarly, we run a set of regressions while excluding the 
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144 newcomers for whom we did not possess any information on the explanatory variables.  

Again the results are very stable and comparable to those obtained from the initial full 

sample. 

We run another set of similar regressions that reflects the publishing convention in 

our biological setting using the number of first or last author publications prior to 1998 

(lnpub97_fl) and their forward citations (lncite97_fl) as explanatory variables to predict 

first or last authored 1998 papers (npub98_fl), their citations (ncite98_fl) and their citation 

distribution (top10cite_fl).  The authorship order in biological publications stipulates that 

first authors are usually the scientists who perform most of the work and experiments, 

while the last author is typically the principal investigator who is the head of the laboratory 

in which the research is done.  The role that middle authors play in a publication is more 

heterogeneous.  While the contribution of some middle authors may be just as substantial 

as the first or last authors, others may have merely weighed in by providing a sample or an 

extract required for experiments or perhaps are technicians who are less involved in the 

intellectual process.  Thus limiting to papers where the scientists are either first or last 

authors enable us to include researchers who arguably contributed intellectually the most 

to a given publication.  The analysis format is comparable to the main results as we run the 

same analyses with similar models and corresponding dependent variables (Table II-4). 
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Figure II-2 (following page) – Explained variance for each model and source of 

breakthrough explored
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Table II-3 (following two pages) – Predictive OLS model for the Nobel winning paper, top 

10% of citations, number of forward citations of 98 papers and number of 98 papers  



 

 

 

 

38 

 
  OLS Nobel OLS Nobel OLS Top10c OLS Top10c 

DV nobeldum nobeldum top10cite top10cite 

  b/se b/se b/se b/se 

lnpub97 -0.002* -0.002* 0.012* 0.079** 

 

(0.00) (0.00) (0.01) (0.01) 

lncite97 0.001 0.001* 0.049** 0.054** 

 

(0.00) (0.00) (0.00) (0.00) 

lncoauthor 

 

0.001+ 

 

-0.010+ 

  

(0.00) 

 

(0.01) 

constraint 

 

-0.002 

 

-0.095** 

  

(0.00) 

 

(0.01) 

collabcore 

   

-0.017 

    

(0.01) 

techcore 

 

-0.002 

 

0.003 

  

(0.00) 

 

(0.01) 

pubdepth 

 

0.012 

 

-0.139* 

  

(0.01) 

 

(0.07) 

lexp 

 

-0.002 

 

-0.110** 

  

(0.00) 

 

(0.01) 

prestige 

 

0 

 

0.001 

  

(0.00) 

 

(0.00) 

prestiged 

 

0.002 

 

0.001 

  

(0.00) 

 

(0.02) 

academic 

   

0.124 

    

(0.09) 

newcomer 

 

0.011 

 

0.083** 

  

(0.01) 

 

(0.03) 

affil1p 

   

-0.02 

    

(0.01) 

constant 0.003 0.001 -0.135** -0.057 

 

(0.00) (0.00) (0.01) (0.09) 

N.Obs 3959 3910 3959 3910 

R2 0.002 0.008 0.144 0.2 

+ p<0.10, * p<0.05, ** p<0.01 
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  OLS impact OLS impact OLS prod OLS prod 

DV lncite98 lncite98 lnpub98 lnpub98 

  b/se b/se b/se b/se 

lnpub97 0.245** 0.798** 0.413** 0.718** 

 

(0.03) (0.04) (0.01) (0.02) 

lncite97 0.281** 0.356** -0.044** -0.017+ 

 

(0.02) (0.02) (0.01) (0.01) 

lncoauthor 

 

-0.150** 

 

-0.056** 

  

(0.03) 

 

(0.01) 

constraint 

 

-0.441** 

 

-0.121** 

  

(0.08) 

 

(0.03) 

collabcore 

 

0.062 

 

0.069* 

  

(0.07) 

 

(0.03) 

techcore 

 

-0.117* 

 

-0.037+ 

  

(0.05) 

 

(0.02) 

pubdepth 

 

0.487 

 

-0.032 

  

(0.45) 

 

(0.18) 

lexp 

 

-1.024** 

 

-0.547** 

  

(0.05) 

 

(0.02) 

prestige 

 

0.006+ 

 

0.003+ 

  

(0.00) 

 

(0.00) 

prestiged 

 

-0.091 

 

-0.073* 

  

(0.08) 

 

(0.03) 

academic 

 

0.296 

 

0.342+ 

  

(0.55) 

 

(0.20) 

newcomer 

 

1.114** 

 

0.343** 

  

(0.17) 

 

(0.05) 

affil1p 

 

0.071 

 

0.001 

  

(0.07) 

 

(0.03) 

constant -0.043 0.734 0.006 0.224 

 

(0.06) (0.58) (0.02) (0.21) 

N.Obs 3959 3910 3959 3910 

R2 0.247 0.378 0.362 0.496 

+ p<0.10, * p<0.05, ** p<0.01 
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Due to lack of variance for the rare event logit when restricting the dependent 

variable to first or last authors of the Nobel paper, the model does not converge and 

therefore cannot be interpreted.  However, all remaining three models in the robustness 

results are very similar, in terms of significance levels and directionality of beta coefficients, 

to their corresponding models that use papers with all authors.  Similar to the base models, 

the consistent themes throughout the two robustness impact models remain that more 

prior publication and eminence, brokerage, younger scientists and newcomer tend to 

produce more impactful first or last author works.  Moreover, for scientists in the top 10% 

of citations collaboration, technical periphery, prestige and multiple affiliations also have 

significant positive effects.  For the productivity model, we find that similar to its baseline 

model prior productivity, brokerage, younger and scientists in academia tends to increase 

publication of first or last authored works.  Moreover, specialization and multiple 

affiliations also have a positive effect on publication while newcomer exhibits a negative 

effect.  The OLS results (available upon request from the authors) show less explained 

variance because we withhold information on middle-authored papers and restrict prior 

history and eminence to a sub sample.
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Table II-4 (following page) – Robustness check where the dependent variables are derived 

from papers published as first or last author in 1998. 
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Logit 

Top10c 
QML impact QML prod 

DV  top10cite ncite98 npub98 

   b/se b/se b/se 

lnpub97_fl  0.365** 0.217+ 1.047** 

 

 (0.12) (0.12) (0.05) 

lncite97_fl  0.863** 0.716** -0.021 

 

 (0.07) (0.05) (0.02) 

lncoauthor  0.199* -0.045 0.004 

 

 (0.08) (0.06) (0.03) 

constraint  -1.064** -0.583* -0.257** 

 

 (0.29) (0.24) (0.10) 

collabcore  0.107 0.19 0.031 

 

 (0.27) (0.16) (0.10) 

techcore  -0.276* 0.024 0.027 

 

 (0.14) (0.11) (0.05) 

pubdepth  0.555 0.6 1.000* 

 

 (1.43) (1.12) (0.50) 

lexp  -1.565** -0.987** -0.885** 

 

 (0.20) (0.16) (0.07) 

prestige  0.013+ 0.008 0.003 

 

 (0.01) (0.01) (0.00) 

prestiged  -0.011 -0.083 -0.149* 

 

 (0.17) (0.11) (0.06) 

academic  0.893 1.624 1.429* 

 

 (1.98) (1.00) (0.72) 

newcomer  1.104+ 0.852* -0.354+ 

 

 (0.59) (0.39) (0.18) 

affil1p  0.518* 0.174 0.181+ 

 

 (0.24) (0.20) (0.10) 

constant  -4.428* -0.438 -1.840* 

 

 (2.08) (1.10) (0.75) 

N.Obs  3910 3910 3910 

Log-Likelihood -884.014 -53243.556 -5313.814 

+ p<0.10, * p<0.05, ** p<0.01 
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Weaknesses and Limitations  

These above findings should be interpreted with caution for a number of reasons.  

First, the processes of scientific discovery are cognitive and remain extremely difficult to 

capture with purely bibliometric measures.  Most of the bibliometric innovations literature 

has ignored this cognitive aspect though some have recently attempted to implement such 

measures (Kaplan & Vakili, 2012).  Second, our variables that attempt to capture 

interactions between scientists only partially seize these exchanges.  Formal co-authorship 

collaborative links are captured through our network measures while all other social 

interactions such as seminars, conferences, and hallway chats are inevitably left out.   

Third, any study that attempts to predict the source of an innovation will be 

sensitive to the definition of those at risk of innovating.  Our definition of the community of 

scientists attempting to solve the puzzling mechanism of gene silencing is mainly functional, 

but because the same phenomenon was named differently by plant, fungi and animal 

scientists our definition is by force of association also organism-based.  This definition, 

however, is noisy given that the MeSH keywords we use are also assigned to other fields 

studying various biological phenomena, such as the interferon community.  Other 

definitions of the community could have taken a purely model organism view rather than 

our phenomenon-based angle, whereby scientists in the plant, fungi and worm fields – the 

three communities that initially observed gene silencing – would make up the sample.  

However, this alternative would result in an even noisier set with the combination of three 

large organism-based communities regardless of the biological phenomenon each scientist 

focuses on.    

Finally, despite a sample of nearly four thousand scientists this paper is a case study 

of one particular breakthrough.  For more generalizability, we would have to replicate this 

study across many communities, essentially moving up the level of analysis.  This is now 
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possible given increasing computing and analytical power and we expect to see this 

research direction.  A related and interesting question would be to ask which communities 

are more likely – or perhaps more ripe – to discover breakthroughs.  The analysis at the 

community level would entail aggregating individual scientists into systematically parsed 

communities, perhaps using techniques developed by applied physicists (Fortunato, 2010), 

and exploring research questions that assess the probability of a given field in making a 

revolutionary discovery. 

v. Discussion  

Aside from assessing the ability of current theories to predict future breakthroughs, 

the present work also identifies where such significant discoveries or inventions arise from 

within a community and what characteristics make a particular scientist more likely to 

discover them.  Our data also sheds light on the number of researchers that came from 

within the field of RNAi and those who are completely new.  Thus this work informs the 

micro-foundations of the innovations literature by bringing individual level data to a 

question typically focused on the publication, patent or organization as the unit of analysis, 

or remained mainly theoretical.  Furthermore, to the best of our knowledge this work is the 

first to bring together several theories of creativity into one single predictive study thereby 

taking a comprehensive look at the phenomenon and the research field.  Referring back to 

the deliberations within the extant literature, our results show that prior productivity, prior 

eminence, brokerage, youth and newcomer consistently contribute to a researcher’s 

subsequent impact (measured using the top tenth cites and citation count) and, 

consequently, add weight to the scale of evidence on particular sides of each debate.   

Looking across the four baseline models in Table II-2, brokerage consistently affects 

both impact and productivity of future publications.  Brokers with their nexus position are 
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able to seize and control the information that flows to them and recombine in such a way to 

produce highly impactful research (Burt, 2004).  Since our study concentrates on 

determining the production of revolutionary discoveries rather than describing diffusion 

mechanisms of such discoveries, which the opposing cohesiveness camp lends more 

evidence to, the prevalence of brokerage in this setting is expected.   

We also find consistency throughout the baseline models that younger researchers 

are more prone to breakthrough, lending empirical evidence to Simonton’s (1989) 

argument that younger scientists are not weighed down by the conventional thinking of a 

given field enabling them to take bigger intellectual leaps.  They are also more productive; a 

manifestation of the academic tenure process that demands higher productivity from 

younger scientists while after tenure is granted the incentive for heightened productivity 

diminishes.  Furthermore, we also observe a constant and positive newcomer effect except 

for the Nobel author model. 

Both models depicting impact (logit predicting scientist top 10% of citation and 

QML Poisson predicting citation count) show that breakthroughs require many prior 

attempts and trials before hitting one that becomes a great success.  These results 

corroborates Mowery and Ziedonis’s (2002) finding with patents showing that 

inexperienced academic patenters tend to have less significant patents than those with 

more experience.  This suggests that the road to breakthrough discovery involves a sizeable 

learning process and many trials.  The productivity model, however, illustrates a 

fundamental tradeoff between publication productivity and quality where better 

productivity is positively associated with the quantity of prior works and negatively 

correlated with prior eminence.  In sum, scientists who produce highly impactful works 

tend to produce fewer publications.  Given that scientists are constrained with limited time, 
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attention and resources, producing better work on the quality dimension takes away from 

one’s ability to generate a greater amount of work.  

Bibliometric empirical evidence for the collaborative teams vs. individual 

researchers debate is plentiful, but our main regression results remain insignificant.  This 

lack of significance may be explained by the exceeding number of theories we test in our 

models compared the papers that we draw from.  For instance, using patents Singh and 

Fleming (2010) only control for the number of claims, while Wuchty, Jones and Uzzi (2007) 

show correlational plots between teams or average team size and relative team impact.  

Specifically, the measures of prior publication and eminence implicitly contain information 

on collaboration as they include all prior works no matter the number and order of author 

publishing.  Additionally, these studies are performed at the patent or paper level, whereas 

our study is centered at the individual level and aggregates all prior co-author into a single 

measure.  

Position in the core versus periphery demonstrates no significance.  Jeppesen and 

Lakhani (2010) specifically explore social and technical marginality without controlling for 

the numerous number of theories we include in the models of this work.  More broadly, 

these problems also suggest that the literature needs to go beyond existing correlational 

studies and establish causality between sources of breakthroughs and subsequent impact. 

With regard to the debate between generalist vs. specialist and their effect on 

impact, we are also unable to find consistent evidence in our results which may be 

explained by the fact that compared to prior literature our study is either at a different level 

of analysis or in a different setting.  While numerous studies have studied diversity and 

specialization on innovative outcome at the team (Dougherty, 1992; Leonard-Barton & 

Swap, 1999), firm or industry levels (Brusoni, Prencipe, & Pavitt, 2001; Romer, 1987), 

exploration of the effect of specialization at the individual level, not to mention using 
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bibliometric data, is surprisingly thin.  An exception lies in the medical literature where 

many studies have considered physician specialization on patient outcomes in various 

diseases.  However, even though both scientists and clinicians are called upon to solve a 

particular problem, the underlying process and the outcome measure of success are 

undoubtedly different. 

One noteworthy (though frustrating) result is the weak predictive power of current 

theories of breakthrough emergence from OLS regressions, thus illustrating the difficulty of 

forecasting such rare events.  While the predictive power for future citation counts is 

relatively high (a little less than 40%), that for being in the top 10% of the citation 

distribution is only at half (~20%), not to mention the less than 1% explained variance for 

predicting the actual breakthrough.  Ignoring prior history and eminence, the combination 

of all theoretical themes shrink significantly and explain only 13.2% of the variance for 

future citation count and 5.3% for top 10% citation.  In other words, it is still very hard to 

predict the impact of a scientist’s work without data on their prior publication history and 

eminence.  We fully acknowledge that the rare nature of breakthroughs make them 

particularly hard to predict as there are significant elements of chance and serendipity.  

However, we believe that the rate of progress in understanding the sources of scientific and 

technical breakthroughs can be further increased if we could get around issues of 

convenience sampling associated with historical accounts and the lack of causal 

identification in correlational bibliometric studies. 

Lack of causal inference, especially in the network literature, remains a major 

critique of the breakthrough and bibliometric literature.   Not only are most network 

measures endogenous, such as brokerage and collaborative core; it is also hard to 

disentangle the effect of experience with many of the explanatory variables we employ.  

Consequently, one should be cautious in not over interpreting and over relying on results 
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from purely correlational bibliometric papers.  Several techniques that construct clean 

treatment and control groups can be employed to address this issue besides the simple use 

of instrumental variables.  Identifying exogenous shocks builds the treatment group, while 

econometric techniques such as matching on covariates (Furman & Stern, 2011) or 

regression discontinuity (Kerr, Lerner, & Schoar, 2011) are used to create the control group.  

For instance, Azoulay et al. (2010) explore the role that superstar scientists play in the 

generation of knowledge by exploiting the sudden exogenous death of such scientists.  

Similarly, the role of institutions on cumulative research and knowledge diffusion is 

investigated by using exogenous shifts of biomaterials across institutional settings (Furman 

& Stern, 2011).  Identifying exogenous shocks, such as unforeseen policy changes, sudden 

closures of institutions or major firms etc., requires in-depth understanding of the 

phenomenon under study.  Qualitative fieldwork, such as interviews with informant 

stakeholders and observations, is usually the necessary precursor to pinpoint such natural 

experiments and subsequently isolate causal mechanisms.  Moreover, innovation contests 

(Terwiesch & Ulrich, 2009), such as TopCoder, enable researchers to design experiments in 

which to test various causal mechanisms that affect creativity and innovative capability 

using designated control and treatment groups.  

With qualitative fieldwork, one needs to be cautious that it does not suffer from the 

known shortcomings of the method.  For instance in historical accounts, the number of 

participants included is usually limited to those in the immediate proximity of the winners, 

such as their mentors, collaborators and eminent fellow scientists racing for the same 

discovery.  Consequently, these individual case studies tend to sample ex post by 

convenience and, therefore, it remains hard to ensure the extensiveness of the study.  They 

lack the macro view enabled by large archival quantitative methods.  Moreover, qualitative 

research does not always control for confounding factors in their narratives (King, Keohane, 
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& Verba, 1994), which increases the difficulty of identifying the sources that causally 

enhance breakthrough discovery and synthesizing individual findings from each work.  

Comprehensive datasets should be leveraged to ensure exhaustiveness of historical studies.  

For instance, qualitative papers could build on regression models and sample scientists who 

were incorrectly predicted from the error terms, thus systematically identifying scientists 

who discovered a particular breakthrough but also those at risk.  Moreover, with the 

increased availability of electronic contents of large corpuses, historical accounts can 

comprehensively analyze the content of entire bodies of knowledge (El Ghaoui et al., 2011) 

not only ensuring completeness in sampling but also finding all subsequent occurrence of 

concurrent ideas with their topic of interest. 

vi. Conclusion 

Using a sample of scientists at risk of discovering RNA interference in 1998, a 

collection of predictions from the bibliometric creativity literature, and all available 

bibliometric data from PubMed up to 1997, we attempted to predict the breakthrough 

creativity and productivity of those scientists in 1998.  Most theoretical predictions came up 

insignificant, including past collaboration, core position in technological or social space, 

specialist versus generalist or mobility across institutions.  A few theoretical predictions 

provided limited explanatory power: prior publication made a scientist more likely to 

publish many papers, though at the expense of quality; prior publication of highly cited 

papers made a scientist more likely to discover breakthroughs, at the expense of 

productivity; social brokerage in past publications made a scientist much more likely to 

discover a breakthrough.  Age surprisingly, once all control variables were included, had a 

monotonic negative correlation with subsequent productivity and breakthrough discovery.  
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The results are sobering, especially in attempting to predict the authorship of the 

actual Nobel Prize winning paper, as a collection of current theories of creativity, and 

scientists’ prior productivity and quality, together can explain less than 1% of the model 

variance.  Less stringent definitions of breakthrough were more successful, with almost 

50% of the variance being explained.  Such results can be seen pessimistically – we have 

made essentially no bibliometric progress in predicting breakthroughs – or optimistically – 

we can predict half the variance in simple publishing productivity within a given field, given 

the history of the field. 

From a policy standpoint, this work should give pause to the current efforts to use 

big data and computation to understand, justify, and optimize public investment in science.  

Policy makers and corporate lab managers should absolutely not apply bibliometric results 

blindly, given the large unexplained variance in our predictive regressions.  Automated 

tools could certainly support a process run by domain experts.  For example, as part of the 

peer review of grant applications, the predictive number could be calculated, but hopefully 

not over-interpreted, lest we kill (what still appears by all accounts to be the) golden goose 

of science.  The current and typical peer-reviewed grant process may be inefficient and 

frustrating, but it is probably the least-worst method; it would be foolish to abandon it in 

favor of purely bibliometric criteria. 
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III. Moving Beyond Bibliometrics 

i. Introduction 

Starting with Schumpeter’s notion of creative destruction (1942), breakthroughs 

have intrigued scholars and practitioners alike.  The literature is rife with works that 

attempt to identify, quantify and describe sources of breakthroughs, especially when radical 

discoveries and inventions have shown to be an important foundation of scientific and 

technological advancement, and have been at least weakly linked to wealth creation and 

economic growth (Mueller, 2006).  However, despite widespread scholarship on factors and 

circumstances that enhance breakthrough discovery, our ability to predict from whom 

breakthroughs are most likely to emerge is still relatively weak (Chai & Fleming, 2012).  

Aside from the evident explanation that breakthroughs are inherently rare and 

serendipitous events, several characteristics of the current literature contribute to this 

limited predictability.   

Not only has extant literature emphasized the positive outcome of breakthroughs 

emerging without exploring as much why breakthroughs are missed and delayed, but 

because of this lapse in understanding, it has also concentrated most of its efforts on 

enhancing the problem solving process without taking into account that failures also exist at 

the problem identification stage.  Furthermore, bibliometric and archival methods have 

limited the researcher’s ability to make inferences beyond those from observable and 

measurable proxies.  I address these shortcomings, and take a different approach from the 

usual outcome driven studies by digging deeper into the counterfactual process of why and 

how breakthroughs are missed and delayed.  I draw a clear distinction between barriers 

that hinder breakthroughs from being discovered at the problem identification phase 
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versus the problem solving stage.  Moreover, by employing a case historical analysis of RNA 

interference (RNAi), a seminal finding in molecular biology, and interviewing scientists with 

the potential to make groundbreaking discoveries, I shed light on the phenomenon of 

breakthrough using a cognitive lens with institutional underpinnings.  

I find that scientists on the verge of breakthrough missed the seminal discovery not 

only due to difficulties with solving a particular problem but also because of failures to 

identify the breakthrough opportunity before and while solving for the problem.  My 

findings suggest that at the basis of this failure underlies a cognitive mechanism stemming 

from three barriers with institutional underpinnings: framing barriers, boundary barriers 

and paradigmatic pressures.  In the problem identification stage, paths dependence from 

established technologies and the quest toward normal science blinded scientists from 

recognizing a breakthrough potential.  Instead they framed RNAi as a tool useful in 

uncovering answers to their initial experiments while ignoring it as a scientific concept 

worthy of study in and of itself.  Furthermore, existing boundary barriers between 

communities of scientists prevented recognition of links between several instances of odd 

observations in prior works, and, in turn, aggravated this difficulty in identifying the 

breakthrough opportunity by misrepresenting the magnitude of the problem.  In the 

problem-solving stage, scientists also suffered from socio-cognitive paradigmatic pressures 

of being constrained by current dogma.  To avoid being wrong, they hesitated to propose 

solutions that significantly strayed away from the confines of established theory.  Again 

coupled with the boundary barrier that prevented connecting the dots, similar anti-

dogmatic observations and results stayed isolated and diminished scientists’ confidence in 

identifying and proposing a new revolutionary paradigm.   

Breakthroughs can be depicted by various measures but their definition is 

ultimately linked to the notion of impact (Simonton, 1999), defined herein as encompassing 
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dimensions of both creative novelty and success.  As opposed to some discoveries or 

inventions that become technological dead ends, breakthroughs are advances that disturb 

the previous understanding of a particular phenomenon in a fundamental manner and are 

foundationally at the basis of further enhancements.  RNA interference fits the above 

definition.  Not only did it disturb the previous conceptualization of the central dogma of 

life, it also gave rise to a new research technique of knocking down genes.  Furthermore, it 

has had major commercial implications through the introduction of new molecular 

modalities in therapeutics by moving away from the traditional small molecular 

formulations based on chemistry.  Several prestigious awards also recognized the field, 

most notably the Nobel Prize in Physiology and Medicine in 2006 and the Lasker Award for 

Basic Medical Research in 2008.  Additionally, the naming of small interfering RNA (siRNA), 

a class of double-stranded RNA (dsRNA) involved in the RNAi pathway, as breakthrough of 

the year in 2002 by Science (Couzin, Enserink, & Service, 2002) also supports my decision to 

research RNA interference as a creative breakthrough. 

The organization of this work is as follows: After reviewing the literature on sources 

and processes of breakthrough emergence, I place the RNAi discovery in historical and 

scientific contexts and describe the methods I employed to gather and analyze the data.  I 

elaborate on the themes from my findings and propose a cognitive framework with 

institutional hinges that describes why breakthroughs are missed at various stages of the 

discovery process.  I, then, move away from the inductive front end to deductively propose 

additional sources that enhance the likelihood for scientists to find a revolutionary 

discovery, by operationalizing using traditional bibliometric measures remedial practices 

that scientists offered as ways to circumvent the barriers.  Finally, I conclude with a 

discussion on the implications of my results to extant literature.   
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ii. Literature Review 

Sources of Creativity and Breakthrough 

Scholars of innovation have put forth many hypotheses identifying sources of 

creativity employing diverse research designs at multiple levels of analyses in various 

settings.  Despite constant attention, consensus is still relatively scarce.  Evidence 

identifying sources of creativity at the organizational level starts with the age-long debate 

between whether small entrepreneurial entrants (Schumpeter, 1934) or major incumbents 

(Schumpeter, 1942) are the basis of creative inventions.  And, expands into identifying 

capabilities that are required of firms to stay inventive, such as absorptive capacity (Cohen 

& Levinthal, 1990), dynamic capabilities (Teece, Pisano, & Shuen, 1997), experimenting 

early and often (Thomke, 2003) and sampling a large landscape for multiple trials (Rivkin & 

Siggelkow, 2002) and recombination (Fleming, 2001).  Although seminal and having 

spawned off entire streams of literatures, these works have mainly concentrated on the 

firm’s ability to build problem-solving skills as a way to sustain creativity, and have largely 

ignored the significance of problem identification in creating breakthroughs that I stress 

herein.  Moreover, these studies cannot be readily applied to the current context because 

the locus of decision-making in scientific research is centered at the principal investigator 

level where heads of labs are responsible for providing funding, hiring personnel, deciding 

the research direction of their laboratory, etc.  This predominant structure in science, thus, 

prevents analysis at the organizational level and requires studies to be performed either at 

the team/laboratory or individual level.  At the laboratory level, the dynamic nature of the 

boundaries of these groups also complicates analysis.  PhD students or postdoctoral fellows 

initially working under a single principal investigator in the same lab eventually take on 
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professorship positions and start their own individual labs.  Consequently, I perform the 

analysis herein at the individual scientist level. 

At the individual level, the literature has mainly focused on factors or characteristics 

that contribute to breakthrough discovery.  Despite a wide body of work, very little 

consensus has emerged.  From a network analysis perspective, brokers (Burt, 2004) versus 

those situated in more cohesive positions (Obstfeld, 2005; Uzzi, 1997) have both shown to 

be more creative, although studies have also identified particular circumstances to tease 

apart their conflicting effects (Fleming et al. 2007).  Similarly, whether individuals at the 

core of a community (Collins, 1998; Gieryn & Hirsh, 1983) or those sitting at its periphery 

are more creative (Jeppesen & Lakhani, 2010) is still debated.  Specialists with deep 

technical knowledge are better equipped to predict outcomes beyond the frontier, as 

opposed to generalists who can bring diverse components together to recombine 

(Dougherty, 1992; Leonard-Barton & Swap, 1999).  Arguments for both younger individuals 

to realize breakthroughs, because they are less entrenched in established beliefs (Simonton, 

1989), or more experienced individuals, because they must work through the accumulation 

of knowledge (Jones, 2009) also exist.  Finally, mobility between multiple affiliations affords 

exposure to diverse ideas, but is also associated with high transition and setup costs 

(McEvily & Zaheer, 1999).  At the team level, agreement has emerged that collaboration 

increases chances of breakthrough (Singh & Fleming, 2010; Wuchty, Jones, & Uzzi, 2007) 

though collaboration effects are not homogeneous throughout the entire process (Girotra, 

Terwiesch, & Ulrich, 2010).   

Despite the topic’s perpetual allure, breakthroughs are difficult to study because 

creativity involves cognitive mechanisms extremely difficult to capture using purely 

archival and bibliometric data.  Although some scholars have recently attempted to create 

cognitive measures using semantic analysis (Kaplan & Vakili, 2012), these newer techniques 
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have yet to be widely tested.  Using qualitative methods such as field interviews, however, 

offers the researcher a rare glimpse into the informant’s train of thought and sense making 

throughout the process of discovery; thus, unfolding a richer and more complete picture of 

the process of breakthrough beyond those captured by purely archival methods that mainly 

focus on how various factors impact breakthrough outcomes.  Coupled with the rarity of 

breakthroughs, many empirical challenges arise as most statistical tools available to social 

scientists find the average effect while ignoring or even dropping the exact outliers that 

breakthroughs consist of.  For instance, even though preceding works have determined 

various structures and qualities that enhance creativity, they fail to explicitly address the 

rare nature of breakthroughs (though exceptions do exist such as (Singh & Fleming, 2010)).   

Emergence of Scientific and Technological Breakthroughs 

Rather than focusing on factors that improve discovery, the literature that explores 

how breakthroughs emerge has described the process by which both technological and 

scientific inventions or discoveries are made.  In the technological realm, many works have 

investigated the evolution of technologies and the emergence of a standardized 

technological form from multiple paths.  Works on the social construction of technology 

emphasize that the use and development of technologies are heavily ingrained within a 

social context (Bijker, Hughes, & Pinch, 1987).  While a tangential stream is the socio-

cognitive model of technological evolution that stresses the interaction between the social 

construction of technology and the cognitive aspect of belief (Garud & Rappa, 1994).  

Although both explore how technologies emerge, they primarily deal with the issue of 

achieving standardization amongst multiple prospective technological forms whereas in my 

scientific setting the process of breakthrough emergence is a process where scientists strive 

to find a single truth.   
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Within the scientific institution, Thomas Kuhn introduced the notion of paradigm 

shifts as the underlying structure for scientific revolutions through accumulated anomalies 

that amount to crisis (1962).  Although seminal and highly influential, Kuhn’s book is mainly 

theoretical and describes the process by which scientific revolutions emerge rather than 

focusing on what barriers impede them.  Thus, I build onto this work by delving into the 

counterfactuals and providing detailed mechanisms of failures that cause delayed and 

missed scientific revolutions, complementing the thin existing articles that study missed 

breakthroughs (Berson, 1992; Dyson, 1972).   

Science vs. Technology 

To gain a full understanding of how scientific breakthroughs emerge, a clear 

distinction must first be drawn between science and technology.  Although works have 

either theoretically discussed differences between knowledge created in the scientific 

versus technological realms (Dosi, 1982; Merton, 1957), independently studied how 

technological inventions (Fleming, 2002) and scientific discoveries (McFadyen & Cannella, 

2004; McFadyen, Semadeni, & Cannella, 2009) arise, or described how they co-evolve 

(Cockburn & Henderson, 1998; Murray, 2002), to the best of my knowledge very few have 

explored how this difference is manifested throughout the knowledge production process. 

Science and technology have been defined following two main streams in extant 

literature.  One stream, classified under the new economics of science, takes an institutional 

stance (Dasgupta & David, 1994; Merton, 1957) while the other gets to the nature of 

knowledge generated.  Under the institutional view, science is a distinctive incentive system 

from technology.  Science is primarily characterized by openly sharing knowledge through 

academic publications produced mainly from research universities and institutes, and 

supported by a priority-based reward system (Merton, 1957).  The technology institution, 
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in contrast, aims at protecting their inventions using patents and trademarks, amongst 

other methods, for economic ends in order to facilitate extraction of rents through 

appropriation and commercialization (Dasgupta & David, 1994).  The second stream depicts 

the relationship between science and technology by the nature of knowledge each creates.  

Science concentrates on demonstrating the why through a process of posing hypotheses 

that are empirically tested so as to refine theory, while technology searches for recipes of 

how by developing practical and useful techniques.  In other words, science is preoccupied 

by the search for truth and mastering the underlying mechanism of action; whereas in 

technology, as long as an invention works, why and what happens within the black box 

between input and output is not always relevant.   

Looking back at the literature, not only is the predictive power of extant theories of 

sources of creativity and breakthrough limited, many studies have also confounded their 

effect between scientific discoveries and technological inventions.  Moreover, most of these 

studies focus on the outcome of attaining revolutions through problem solving rather than 

the counterfactual of missing breakthroughs.  Consequently, I address these gaps herein 

using qualitative methods by understanding why revolutions are missed or delayed through 

the exploration of barriers to breakthrough using a cognitive lens with institutional 

underpinnings, and suggest a framework that encompasses both problem identification and 

problem-solving failures of identifying and proposing breakthrough opportunities.  I also 

explore how differences in science and technology are exhibited throughout the knowledge 

production process.   

iii. Methods 

It is perhaps not surprising that many theories identifying sources of breakthroughs 

are conflicting and limited because various characteristics of breakthrough make them 
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inherently difficult to study.  These include, and are not limited to, the cognitive nature of 

path breaking discoveries coupled with their scarcity where only successes are easily 

observed.  Yet following prevailing assumptions in the innovation literature that highly 

uncertain creativity is a path dependent process of recombinant search rather than a single 

radical event (Fleming, 2001; Henderson & Clark, 1990), I conceptualize breakthrough as 

marked by multiple failures before eventual success.  Therefore using a case history method 

to study breakthrough emergence is appropriate as it unearths the nuances of multiple 

trials along the path of discovery irrespective of whether these were failures or successes 

(Corbin & Strauss, 2008; Miles & Huberman, 1984).  Since I study the breakthrough ex post, 

understanding the circumstances scientists faced ex ante is critical.  Although interviews 

potentially suffer from hindsight bias, they are useful in inquiring about cause of failures 

that are not always easy to obtain using purely archival methods.  To minimize such 

retrospective sense making, I triangulate my findings from the interview data with archival 

sources such as the Nobel lectures, transcriptions of the Nobel interviews, and RNAi paper 

publications from each identified interviewee (Golden, 1992).  

Many historical case studies of breakthroughs exist.  Although extremely rich and 

incredibly descriptive when characterizing the invention or discovery, the number of 

stakeholders included in such historical accounts is usually limited to those in the 

immediate proximity of the winners, such as their mentors, collaborators, and eminent 

fellow scientists racing for the same discovery.  Consequently, these individual historical 

accounts may suffer from convenience sampling and lack the macro and systematic view 

enabled by large archival quantitative methods.  To ensure exhaustiveness of my case 

history and avoid the same pitfall, I first identified a community of scientists prior to the 

discovery of RNAi who were working in precursor fields to RNAi using the comprehensive 

Author-ity database of disambiguated authors derived from MedLine (Torvik & Smalheiser, 
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2009).  Correctly defining this community of scientists was crucial to understand how 

scientific breakthroughs arose within it.  I, then, developed a selection method through 

residual analysis to systematically determine not only the researchers who emerged but 

also ones with the highest potential.  I concentrated my interviews on those who did not 

ultimately discover the breakthrough – the counterfactuals – to gain a different and 

understudied perspective on the phenomenon.  

Historical, Scientific and Technological Context of RNA Interference 

This work inducts sources of scientific breakthroughs based on the discovery of 

RNA interference in molecular biology.  RNA interference is a naturally occurring 

endogenous mechanism triggered by dsRNA precursors.  These long strands of dsRNA are 

processed into small interfering RNAs or microRNAs that bind to other types of RNAs which 

in turn increase or decrease their activity thereby turning genes on and off (Meister & 

Tuschl, 2004).  RNA interference is valuable as a research tool as well as in biotechnology 

therapeutic development.  For instance, in research, synthetic dsRNA introduced into cells 

can induce suppression of specific genes of interest both in vitro and in vivo, thus enabling 

scientists to understand gene function.  It can also be applied to large-scale screenings that 

systematically shut down each gene in the cell and helps in identifying components 

necessary for a particular cellular process or event.  In biotechnology and medicine, turning 

off maladies, such as Huntington’s or certain cancers, can conceivably use exploitation of the 

RNAi pathway to treat genetic diseases.  

RNA interference is a gene silencing mechanism that strays away from the central 

dogma of molecular biology, which dictates how genetic information encoded in double-

stranded DNA unzips, transcribes into RNA and subsequently translates into protein.  The 

history of RNAi is a story of how several seemingly unconnected and unexpected 
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phenomena observed in various organisms across kingdoms were finally linked together 

after discoveries to the trigger and underlying mechanism were made.  As it turns out, RNAi 

is a fundamental mechanism that dates back millions of years where single-celled 

organisms cleverly employed it to defend themselves against the invasion of foreign viruses.  

Its modern day discovery started in the late 1980s and early 1990s in plants.  At that time 

plant biologists were attempting to transgenically alter color in petunias by introducing an 

enzyme that encodes pigmentation in flowers.  When the experiment was initially designed 

the expectation was to see gene overexpression manifested through darker colors (Krol, 

Leon, Beld, Mol, & Stuitje, 1990; Napoli, Lemieux, & Jorgensen, 1990).  Instead to everyone’s 

surprise, the petunias became less pigmented than their natural form producing fully or 

partially white flowers.  This indicated that as opposed to the intended gene 

overexpression, activity of the enzyme had significantly decreased expression to the point 

of deactivating the gene responsible for regulating color pigmentation.  However, both the 

underlying mechanism and trigger were unknown.  

The story then moves to the fungal community where independently a similar 

phenomenon of transient inactivation of gene expression was also observed by scientists 

studying neurospora crassa fungi (Romano & Macino, 1992) and was separately named 

quelling.  History repeats itself again a few years later in the c. elegan worm community 

where an analogous abnormal phenomenon was also documented.  When scientists were 

attempting to understand the purpose of a particular gene that controls asymmetry in the 

polarity of embryo cells in the worm, they found much like co-suppression in plants that not 

only did the single-stranded RNA antisense silence the gene under study so did the 

corresponding sense RNA strand that was designed as negative control (Guo & Kemphues, 

1995).  Not long after, plant virologists also found a similar unexpected phenomenon when 
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attempting to improve plant resistance from viral infections that they labeled virus-induced 

gene silencing (Ratcliff, Harrison, & Baulcombe, 1997).   

Although all of these odd observations were not immediately recognized as related 

to one another, each community, plant and animal scientists, were all independently aware 

of the phenomenon prior to discovery of its trigger in 1998 by Andrew Fire and Craig Mello 

(Fire et al., 1998).  In fact according to one respondent, the European plant community at 

the beginning of the 1990s had already started their own network of laboratories working 

on different plant systems with the aim of joining together and applying for funding to study 

the phenomenon.  In the animal community, more specifically the c. elegan worm 

community, many had come across the phenomenon in their own experiments while being 

unaware of the intricacies of the underlying mechanism.  Others although not always 

getting consistent, reproducible and potent results used the precursor technology to RNAi, 

antisense oligonucleotides, as a tool to inhibit and study the function of specific genes.  It 

was also the topic of discussion at several conferences around that time as illustrated by a 

respondent who attended a seminar session where Craig Mello was the speaker at a Pew 

Scholar workshop. 

“Craig [Mello] shared with us in that workshop in 97, RNAi. I had never heard of it 
until then and it wasn’t about dsRNA it was just a phenomenology that people in c. 
elegans used as a tool for. It was discovered by Ken Kemphues at Cornell and you make 
this RNA in vitro, and you inject either the sense strand or the antisense strand into the 
worm and it would silence gene expression so you could use to basically knock out 
genes without having to mutate.” (respondent 6)   

 
Fire and Mello’s breakthrough insight, notable for bringing the first identification of 

the causal agent for the phenomenon was recognized by the Nobel Prize in Physiology and 

Medicine in 2006.  It found that double-stranded RNA (Fire et al., 1998), which resulted 

from contaminated preparations of single-stranded sense and antisense RNA in test tubes 

as elucidated in the Nobel lecture (Fire, 2007), was the potent trigger to specific genetic 
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interference mechanisms documented several times throughout prior literature.  RNA 

interference was also coined as a consequence of this work.   

The story of RNA interference complicates even further with what seemed for a long 

time to be a completely tangential finding with the discovery of the first small RNA, later 

labeled as microRNA (Lee, Feinbaum, & Ambros, 1993).  Fire and Mello’s discovery 

stipulated that long strands of duplex RNA would trigger the RNA interference gene 

silencing pathway in worms.  However, in more complex organisms, notably in humans, the 

introduction of foreign dsRNA would instead trigger the self-defense immune mechanism of 

interferon.  Initially when Ambros found the first small RNA, those who should have picked 

up on the finding did not because they thought of it as just a cute discovery since the specific 

sequence of microRNA was unique and idiosyncratic to worms and not present in other 

organisms.  But when a second small RNA was discovered and also found to be present in 

humans (Reinhart et al., 2000) along with the discovery in plants that short sequences of 

antisense RNA 25-nucleotide in length would silence genes post-transcriptionally (Hamilton 

& Baulcombe, 1999) the link between microRNA and RNAi was finally made.  These findings 

along with subsequent research in drosophila (Zamore, Tuschl, Sharp, & Bartel, 2000) and 

eventually in mammals (Elbashir et al., 2001) quickly helped solidify the belief that indeed 

the gene silencing phenomenon scientists were witnessing was not just a strange 

occurrence in worms but rather a fundamentally conserved mechanism in many organisms 

across kingdoms.  Moreover, the feared interferon response could be evaded through the 

use of shorter dsRNA. 

Data Collection   

The interview process consisted of two stages.  I first interviewed two individuals, a 

board member of a leading RNAi technology based company and a scientist familiar and 
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knowledgeable about RNAi and its history without necessarily doing research in that area.  

These two interviews better informed me on the community of researchers beyond what 

was available from archival records and allowed formulation of questions in preparation for 

the main round with the actual actors partaking in its discovery.  The interviews in this first 

stage lasted 30 minutes on average.  They were semi-structured and discussions centered 

on how to define the community of scientists focusing on RNAi as well as the trajectory of 

discovery.  For instance, one interviewee pointed out that rapid development in the field of 

molecular biology and genetic engineering, such as DNA sequencing, recombinant DNA, the 

human genome project, and the hypothesis that life originated from RNA (Gilbert, 1986) 

were precursors to the discovery of RNAi.  Furthermore, they both brought my attention to 

the fact that most historical expositions of RNAi tend to include observations in plants and 

fungi that happened beforehand.  However, it is not clear whether researchers working with 

animal models at the time were aware of or even associated their work to these prior 

anomalous results found in the plant systems.  These conversations hence fine-tuned 

existing interview questions and triggered new ones for the subsequent set.  

The second stage consisted of 18 interviews targeting scientists at the heart of the 

RNAi breakthrough.  Respondents spanned model organisms from plants, worms, fruit flies, 

all the way to humans and included geneticists, molecular biologists and biochemists that 

contributed to RNAi research conceptually and technologically.  They also included one 

Nobel Prize winner and three Lasker award winners.  Each interview lasted between 60 to 

120 minutes, averaging about 75 minutes.   

The interview questions were semi-structured such that open-ended questions 

were asked first, followed by more specific and probing ones.  I started by inquiring about 

the line of research each informant was undertaking during the period shortly before the 

breakthrough was made and covered several other topics from understanding 
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circumstances around and factors leading to breakthrough discovery, to defining and 

characterizing the community of scientists prior to emergence of the RNAi field, to 

discussing diffusion of scientific output.  The interview question guide is shown in the 

Appendix. 

The community of RNAi scientists was defined functionality by incorporating 

content search of titles, abstracts and Medical Subject Headings (MeSH) keywords.  Because 

of my need to identify the set of scientists with discovery potential before a well delineated 

community of RNAi researchers had yet to emerge, it was not surprising that MeSH 

keywords such as “RNA, Interference”, and the same phenomenon of “co-suppression” in 

plants and “quelling” in fungi did not enter the MeSH lexicon until 2002.  To circumvent this 

issue, I found from extensive archival searches that scientists were attempting to study gene 

expression regulation or gene silencing by experimenting with both dsRNA and antisense 

RNA as causal agents.  The usage of RNA rests on the assumption that these molecules play 

a central role in gene silencing mechanisms rather than being restricted to the passive role 

of carrying genetic information.  Consequently, the majority of the community of 

researchers with RNAi discovery potential was found by searching MeSH keyword terms1 

“RNA, Double-Stranded”, “RNA, Antisense”, “RNA, Catalytic”, “Gene Silencing” and “Gene 

Expression Regulation” from published peer-review articles in MedLine.  I augmented the 

MeSH search with title and abstract searches so as to include scientists who initially 

                                                             

1 The exact search string used in PubMed query extracted on October 26, 2011: ((((gene silencing[MeSH 

Terms] OR gene expression regulation[MeSH Terms]) AND (RNA, double-stranded[MeSH Terms] OR 

rna, antisense[MeSH Terms] OR rna, catalytic[MeSH Terms])) AND "1980"[Publication Date] : 

"1999"[Publication Date]) AND English[Language]) NOT interferon[MeSH Terms]. We also found that 

dsRNA generated a lot of noise as it was heavily used by immunologists studying interferon responses. To 

minimize the noise from interferon we include in our MeSH search the “NOT interferon[MeSH Terms]” 

term.  
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observed the RNAi phenomenon in plants and fungi2.  I included in this community papers 

that were published until 1999, since those who quickly published following the 1998 

breakthrough paper had similar prospective of breakthrough discovery and were thus 

included in the sample set.  By extracting unique authors from the set of papers obtained 

above, I isolated a community of RNAi scientists topically based on their publication focus.  I 

obtained a total of 1,551 papers and 3,959 unique authors. 

My method of selection for interviewees built on a regression model that attempted 

to predict the citation count of 1998 publications given prior bibliometric characteristics of 

each scientist in the sample from a prior quantitative paper.  I ran residual analysis to 

identify scientists who were incorrectly predicted.  Specifically, the predictive model 

employed quasi-maximum likelihood Poisson with cluster robust standard errors to regress 

citation count of 1998 publications on prior measures of publication history, eminence, 

brokerage, collaboration, core, specialization, lifecycle, affiliation type (academic or 

corporate), affiliation prestige and mobility computed from the beginning of each scientist’s 

career until 1997.  For the residual analysis, I calculated the error term by taking the 

difference between the predicted publication impact, E(Y), and the actual number of 

forward citations for 1998 publications, Yi, as depicted graphically in Figure III-1.  The 

group of interviewees consisted of both the top and bottom one percent of the error terms, 

thus elite scientists who the model severely failed to predict accurately.  Furthermore, no 

interviewee was part of the Nobel winning team for RNA interference.  This sampling 

provided me with unusual accounts by those who had the potential to make the 

groundbreaking discovery but ultimately missed it. 

                                                             

2 The exact search string used in augmented PubMed query extracted on October 26, 2011: 

((((cosuppression[title/abstract] OR co-suppression[title/abstract] OR quelling[title/abstract] OR 

RNAi[title/abstract] OR RNA interference[title/abstract]) ) NOT interferons[MeSH Terms]) AND 

"1980"[Publication Date] : "1999"[Publication Date]) AND English[Language]. 
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The above method identified a total of 19 scientists with research focus in RNAi.  

The reason for such a low number of interviewees from the initial large sample of authors 

used in the regression models is three-fold.  First, my technique of selection using top 

residuals cut out a vast majority of the initial sample.  Second, because I am studying a 

nascent field that significantly grew in size only after the breakthrough occurred the 

number of scientists at the beginning was extremely limited.  As a respondent explained, it 

took many years from the mid-1990s for the community of RNAi scientists to become 

significant in size. 

“It’s not that many actually, if you actually get into the number of people who jumped 
into the field, it’s still rather small, I mean the number that worked on the mechanism 
of it. It took fifteen years to become a field of 500 people or so.” (respondent 12) 

 
Third, because the period of interest is prior to the breakthrough no defined RNAi 

community existed.  Therefore, in order to insure comprehensiveness in the sample of 

researchers with breakthrough potential a substantial amount of noise was picked up when 

building that set using existing MeSH keywords heavily employed by scientists working on 

peripheral fields such as interferon.  As a respondent who had worked with the precursor 

technology to RNAi but later diverted into studying interferon shared the same frustration 

of filtering through noisy search results prior to RNAi entering the MeSH lexicon in 2002 

described, 

“I think you may have used […] a search term that’s been hijacked by the [RNAi] 
community. Because exactly like you, sometime in around 2000 and 2002 every time I 
tried to see what was new in my field, I would type in dsRNA and would get all these 
RNAi stuff. And you have to sit there going, no that one, yes this one.” (respondent 7) 

 
I augmented this set of interviewees with scientists who attended RNAi related 

conferences – Keystone Symposia and Gordon Conferences – at the beginning of the field, 

which increased the number of interviewees to 27.  Of these 27 scientists I reached out to 

with interview requests 18 responded positively.  During the interviews, I inquired about 
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other potential individuals within the RNAi community at its birth stage that my 

interviewee would recommend I meet to validate my selection technique.  Their suggestions 

were all amongst the sample of 27 interviewees I identified with the selection methods 

described above. 

 
 

Figure III-1 – Network plot of RNAi community with nodes representing each scientist, link 

as co-authorship relationships.  Blue represents actual impact and pink represents 

predicted impact. 

 

Data Analysis  

Analysis of each interview once transcribed verbatim was conducted in line with 

coding principles set out by qualitative researchers (Miles & Huberman, 1984).  I first open 
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coded all interviews by describing each excerpt, such as ‘attended conference’, ‘ignored 

mechanism’, ‘used RNAi as tool’, ‘double-checked in another organism’, ‘described 

antecedent to RNAi’, ‘explored at the fringe’, etc.  When new data did not fit a previously 

identified code category I created a new category.  Once I finalized the open code for all 

primary interviews, I proceeded to axial code the open code categories.  Two salient classes 

emerged: barriers to breakthrough and actions scientists took to circumvent barriers.  A 

third category included all other breakthrough related narratives such as the historical 

context.  The two salient classes were further divided into three barriers (as well as 

instances where the barriers interacted with each other) that correspond to the three 

themes that finally emerged: being blinded by conventional science from framing barriers, 

being constrained by current dogma from paradigmatic pressures, and being unable to 

connect the dots due to boundary barriers.  Also for each theme, I obtained a collection of 

practices that scientists put in place to circumvent barriers to breakthrough. 

iv. Findings 

Although my interview questions were mainly probing on circumstances that led to 

breakthrough discovery, the salient themes that emerged centered on how a number of 

scientists were on the verge of breakthrough several times but missed the seminal 

discovery.  In other words, these results center on uncovering explanations behind the 

counterfactual of missing breakthroughs.  My novel finding is that this delay in discovery 

was not only due to struggles in solving a particular problem but also because of difficulties 

in identifying the problem, in assessing the potential impact of the problem as well as 

proposing a drastically different theory than stipulated by current paradigm.  Thus, 

throughout the discovery process that I divided into problem identification and problem-

solving stages, those on the verge of discovery suffered from failures to identify and 
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propose breakthrough opportunities.  The results suggest that at the basis of this failure 

underlies a cognitive mechanism hinged on institutional underpinnings stemming from 

three barriers and their interactions.  During problem identification, scientists who missed 

the opportunity suffered from being blinded by the pursuit of normal science by framing 

anomalous observations along established technologies.  During problem solving, they were 

held back by paradigmatic pressures of being constrained by current dogma by interpreting 

abnormal results according to established paradigms.  Established boundary barriers 

between communities of scientists compounded both effects as they prevented similar 

anomalous patterns in various fields from being connected together, thus, respectively, 

hindering pattern recognition and pattern labeling.  Table III-1 contains quotations 

illustrating each barrier from all 18 respondents that I interviewed.  

Problem Identification Failures 

Framing Barriers 

Because most scientists came in contact with the phenomenon of RNAi as a 

technique to silence genes in their pursuit of hypothesis driven science prior to 

understanding the actual biological mechanism that underlies the concept, their views of 

the phenomenon were biased toward a useful technology rather than a topic of inquiry 

worthy of scientific merit.  Path dependence from prior technologies reinforced the belief 

that the phenomenon of gene silencing is a technique, which cognitively biased and 

ultimately delayed discovery of its trigger.  Underlying institutional logics in science where 

researchers were blinded by the pursuit of normal science triggered this cognitive bias.  

Being able to use the technique to accomplish the end goal of inhibiting specific genes 

mattered more than understanding why the technique worked.  Thus, before even attaining 

the problem-solving stage, researchers were unable to identify the interesting and 
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potentially groundbreaking problem to be solved, and subsequently passed on the 

breakthrough opportunity.  As described by a respondent below,  

 “My sense from [others] was that they just looked at this like a bizarre tool, they 
couldn’t explain it but it was fabulous for what they wanted to do. They could silence 
genes. […] They were focused on the thing at hand and kind of ignoring this elephant in 
the room, which was far more important and interesting.” (respondent 6) 

 
Most researchers valued the phenomenon’s ability to inhibit specific genes without 

having to rely on mutations.  It was a means to an end rather than the end itself.  This 

behavior is in line with Kuhn’s (1962) prediction that scientific research is extremely 

productive at expanding the central paradigm but also self-reinforcing during periods of 

normal science.  Case in point, the two scientists, Guo and Kemphues, who first observed the 

phenomenon in 1995 in worms explicitly chose not to study why it worked.  One of the two 

scientists explained following their observation of the anomalous gene silencing 

phenomenon, “once we knew it was a gene specific effect we didn’t really care how it 

worked. All we cared about was that we could use it.” (respondent 10)  They reported the 

strangeness that the control in the experimental design, sense RNA, had a similar potent 

effect as the treatment, antisense RNA, in silencing a gene they were studying, but decided 

that it was not worth following up.   

This cognitive bias of focusing on the tool application of the phenomenon rather 

than understanding conceptually how it worked was path dependent and stemmed from 

the historical context of precursor technologies.  In the late 1980s, large groups cornered 

the market in being able to produce knockout mice.  They controlled the technology of 

making mutated knockouts in genes, all subsequent downstream phenotypes as well as the 

distribution of mice.  This made it very hard and expensive for small laboratories to obtain 

such knockout samples for research purposes.  Therefore, there was a large culture of 

people that were praying for antisense oligonucleotide technology to be the answer because 
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it meant they could do things much faster and much more quickly than by mutation.  The 

demand for such a gene silencing technology in the research community was very high 

because researchers would be liberated, as they would “no longer [be] restricted to mice 

and would not have to collaborate or beg for the mice to do things.” (respondent 7) 

This bias also explains why, despite many observations of the bizarre phenomenon 

by various groups of scientists, surprisingly little racing was present in the community to 

solve the puzzling mechanism.  Because the nature of knowledge RNAi embodied was 

perceived as a technique of how rather than a demonstration of why, scientists did not 

consider solving the intrigue around the RNAi phenomenon as a priority-based incentive 

(Merton, 1957) and were therefore preoccupied with other scientific endeavors that met 

this criteria more explicitly.  Besides Fire and Mello’s groups working with c. elegan worms 

and actively attempting to solve this puzzling gene silencing phenomenon, only plant 

scientists were working on explaining the same mechanism (Waterhouse, Graham, & Wang, 

1998).  Competition, instead, intensified after the pathway’s trigger was found as described 

by the two respondents below, the first working on animal models and the second working 

on plant models.  

“For the actual initial discovery that you can introduce duplex RNA into cells to 
specifically inactivate genes, Fire and Mello were ahead of the game in that case. But 
once that discovery was made and the transition made to studying the mechanism and 
the factors involved, that’s when the real competition came in.” (respondent 5) 

 
“At the end of the 90s and beginning of 2000 it was really difficult, because all the 
things that could be found simply were found at the same time, in a range of a few 
months.” (respondent 14) 

 
Following Fire and Mello’s discovery of its trigger, RNAi was now established to be 

an open and interesting scientific question to research, as assessed by a respondent, which 

is in line with the norms of the scientific institution rather than a mere bizarre phenomenon 

used as a tool (Dasgupta & David, 1994; Merton, 1957).   
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“What Fire and Mello did is that they discovered that RNAi was real biology. Because, 
first of all, most people thought that the silencing phenomenon back then reported in 
plants and in worms, were weird things that would probably turn out to be artifacts 
later and they have the feeling of homeopathy.” (respondent 16) 

 
When unexpected results appear in tangential elements not affecting core 

hypotheses of the research project, whether manifested in the tool or the experimental 

results, the decision of whether to follow and inquire deeper into a weird but interesting 

observation or to stay with the experiment at hand is very difficult.  In particular, time and 

resource constraints together with the low probability that the oddity will eventually turn 

out to be something influential make it an especially hard decision, as often times they turn 

out to be mere artifacts.  Consequently, blinded by the institutional barrier of pursuing 

normal science most ignored the weird observations and carried on.  However, whenever 

such abnormal observations occur it is often precisely under these circumstances where 

breakthroughs are most likely to be discovered.  As the Nobel laureate I interviewed 

described,  

“When you have a well-defined system and it’s telling you something you don’t 
understand, it isn’t consistent with the way you’ve designed the system then something 
is new in the system. It’s paying attention to that [bizarre phenomenon] and not 
pushing it out of the way as you went towards your more conventional hypothesis 
driven science. There is a new science there. To ignore that, to do conventional science 
is what most people will do. […] That meant the difference between the genius and 
good science” (respondent 13) 

 

Boundary Barriers  

Also present in the problem identification stage is the boundary barrier between 

disparate scientific communities.  The history of RNAi’s discovery is punctuated by several 

documented observations of the bizarre phenomenon first in plants (Napoli et al., 1990), 

then in fungi (Romano & Macino, 1992), worms (Guo & Kemphues, 1995) and plant viruses 

(Ratcliff et al., 1997), and perhaps even more instances of undocumented observations 

before the underlying trigger agent was finally found.  Tracing through citations that the 
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latter three papers refer to, I found a clear dichotomy between the plant/fungus scientists 

and the worm scientists.  Both the 1992 fungus and the 1997 plant virus papers cited the 

initial 1990 plant paper, whereas the 1995 worm paper only cited works in the worm 

community and did not cite neither the 1990 plant nor 1992 fungus papers.  Similarly, the 

1997 plant virus article did not cite the 1995 worm paper (see Figure III-2 for a graphical 

depiction). 

 

Figure III-2 – Citation pattern of major gene silencing papers prior to Fire and Mello 

discovery of the trigger mechanism to RNAi in 1998. 

 

These citation patterns and the independent results stemming from the plant and 

animal communities suggest that within the boundary of each community information 

flowed easily, but between communities diffusion was sticky.  Although several 

observations of a similar anomaly were made in various organisms and fields, they were 

brushed away as a weird phenomenon that happened in the particular model organism 

employed.  Thus, these boundary barriers lead to two levels of discontinuity, either 

scientists just did not know about the prior works from different communities, or for the 
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few that did know they did not see the connection between anomalies from others 

beforehand.  The following quote illustrates this latter discontinuity. 

“Rich Jorgenson and Carolyn Napoli, they were telling me stories about silencing they 
put in. They had these flower color things trying to get purple it would turn white, it 
was all screwed up. But I missed it entirely. I did not see the connection.” (respondent 
12) 
 

As a consequence, scientists were unable to connect the dots and identify a repeated pattern 

of weird results that would provoke crisis and revolutionary changes to the established 

scientific paradigm (Kuhn, 1962).  Had scientists made the link between similar 

observations in different organisms the likelihood of dismissing their one odd observation 

would have been lower.  Two boundary barriers – disciplinary and/or organismic 

boundaries between scientific communities act as natural barriers to information flow, and 

partial opacity in academic publications – were at the basis of this inability to connect the 

dots. 

Just like membranes in biology, organizational boundaries form natural barriers to 

the diffusion of information (Kogut & Zander, 1992).  Similarly, for the open community of 

science, the flow of knowledge is deterred by the boundaries of various scientific 

communities, which in turn hindered scientists’ ability to connect the dots.  For instance, 

aside from citation evidence presented above, most informants I interviewed working with 

animal model organisms were unaware of the research done by plant and fungal scientists, 

and vice versa.  Prior to Fire and Mello’s discovery in 1998, collaboration and 

communication between plant and animals scientists working on gene expression and 

inhibition were little to none.  Most researchers from the disparate model organism 

communities did not meet until after the links between their works became obvious.  Two 

animal scientists describe how they perceived the plant community.  

“The plant world tends to have its own group of people, and they don’t tend to intermix 
too much with the non-plant people.” (respondent 11)   
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“I am on the virus division for the society of microbiology so our job is to organize 
annual meetings in virology for Europe, and we have a plant virus section. But they 
might as well be lectured in Latin; they don’t really integrate with other people. […] 
RNAi is an absolute classic, they had stuff going on they probably thought it was very 
interesting but they probably didn’t think others would want to know. They didn’t 
think animals did the same thing.” (respondent 7) 

 
Analogously from the perspective of a plant scientist, the divide between the two 

communities was described in a similar fashion.  In fact, the plant community working on 

solving gene silencing was surprised that Fire and Mello’s paper was published in Nature, 

illustrating how disparate the two communities studying the same gene silencing 

phenomenon were prior to the 1998 RNAi breakthrough. 

“But for the animal people, I understand that it was really a breakthrough to consider 
that long dsRNA could trigger something because they were not anticipating this. In 
plants it was not really a breakthrough it was completely expected. That’s why the 
discovery in the same year, in 1998, by two groups [studying plants] that dsRNA could 
induce very efficiently silencing and actually much more efficiently than sense and 
antisense directly was just the next step of something that was going on for ten years. 
[…] In plants it was more continuous.” (respondent 14) 

 
Furthermore, scientific literature is often blamed to some degree with a lack of 

transparency in published work as negative results are usually omitted.  Instead of 

codifying knowledge, some know-how especially negative results remain tacit and 

significantly slow the pace of diffusion.  This also hinders scientists’ ability to connect the 

dots.  Due to the priority-based reward system, scientists are afraid to get scooped or lose a 

race to first discovery because negative results are often sources of crucial information that 

may aid competitors by providing a map to success (Fleming & Sorenson, 2004).  It prevents 

others from wasting time and resources going down unsuccessful paths and increases their 

research effectiveness and discovery potential.  An informant scientist using an imagery of 

science solving a giant puzzle piece vividly describes this problem:  

“It’s almost like each of us has a little piece of the puzzle but by the time we are ready 
to show the puzzle piece to the audience we’ve filed off some of the pieces we don’t like 
about it and now of course it doesn’t fit.  The other guy has got the other piece of the 
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puzzle but of course it doesn’t fit cause we have changed the shape of it.” (respondent 
16)   

Interplay between Framing and Boundary Barriers 

During problem identification, not only were both barriers present but the 

interaction between the two also exaggerated the effect of misidentifying the problem.  

Being blinded by normal science prevented scientists from pursuing the underlying science 

behind gene silencing.  Prior established antisense technologies, which was used as a tool to 

knockout genes, influenced most scientists to frame the phenomenon as a technique and led 

them to ignore it as an interesting subject of scientific inquiry.  Instead, they were more 

interested in it as a means for other research topics and thereby failed to identify the 

interesting problem to solve.  This failure in detecting the right problem to study was 

further compounded by boundary barriers between scientific communities that prevented 

anomalous observations from various fields to be linked together.  Scientists were unable to 

recognize a repeated pattern of anomalies.  Without such a critical mass and skeptical that 

one single anomalous instance is unique to their specific research setting contributed to 

inaccurate assessments of the scale of the potential breakthrough problem.   

The top portion of Figure III-3 graphically summarizes the pattern recognition 

failure in the problem identification stage.  As one respondent from the plant community 

described an encounter where she discussed the gene silencing mechanism with an animal 

scientist in the mid-1990s, 

“I remember talking to a guy in Vienna who was one of the first big people making 
transgenic mice and he just scoffed at the whole idea that you’d see something like 
that. But even at the time […] there still wasn’t a lot of people coming together and 
thinking that might all lead to a single mechanism.” (respondent 18) 

 
In fact, most of the animal community up until the Fire and Mello discovery was 

stuck at this stage, 
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“When people tried it and it worked, it was like ok let’s work with it. Very few people 
thought it was worth studying, but everybody wanted to use it. So then you’d go to the 
worm meetings and everybody was using it.” (respondent 12) 

 

 
 
Figure III-3 – Framework of Missed Breakthrough 

 

Problem-Solving Failures 

Paradigmatic Pressures 

For those who saw the phenomenon of gene silencing as a scientific endeavor 

worthy of pursuit, another barrier to breakthrough discovery from pursuing normal science 

is that scientists were constrained by current dogma when called upon to interpret 

unexpected results that often did not fit within the confines of current theories.  Since 

science is preoccupied with truth seeking, scientists take great pains in ensuring that the 

results they present are correct (at least within the state of current knowledge and 

experimental techniques available at the time), instead of risking the publication of artifacts 

that would eventually be disproven.  To avoid being wrong when faced with weird results 

and lacking psychological safety (Edmondson, 1999), they often chose to ignore anomalies 
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and dismissed them as artifacts so as to avoid challenging established dogma, and, in turn, 

throwing away valuable opportunities for breakthrough discovery.   

Scientists were confined by social and institutional factors of science that 

underpinned and triggered cognitive barriers.  For RNAi, the difficulty in explaining the 

observed silencing phenomenon and identifying the causal agent stemmed from a disparity 

in causal pathways between the RNAi mechanism and the central dogma of molecular 

biology.  In the central dogma, both double-stranded DNA and single stranded RNA had 

salient roles for long and short term information storage respectively, while most biologists 

at that time were brought up to believe that dsRNA was inert.  There was no place left for 

double-stranded RNA as Fire stated in his Nobel lecture (2007).  No one believed that 

dsRNA should work better than antisense because if you had injected an antisense provided 

it did not degrade, it would have found its target and taken it out.  The conventional thought 

when inserting pre-annealed dsRNA was that it had to unzip, which was a weakness 

because nobody realized that there was actually machinery that accomplished that.  

However, it turned out that dsRNA was indeed the trigger agent in the RNAi mechanism.  

Thus, scientists had to get over a socio-cognitive barrier from being encultured (Simonton, 

1989) in the molecular biology community with a dogma that contradicted the ability for 

both sense and antisense RNA strands as well as dsRNA to perform equally well in silencing 

gene expression.  This belief reinforced the established paradigm from the central dogma, 

which in turn constrained scientists from interpreting their results using a revolutionary 

framework even when a weird and interesting problem had been identified and pursued as 

a path of inquiry.  Given the state of knowledge at the time, two informants illustrated how 

implausible dsRNA was seen as a trigger to the RNAi mechanism. 

“Nobody would ever inject the sense strand cause psychologically you could imagine 
how the antisense strand could work with the base pairing but the sense didn’t make 
sense even though they showed they both worked equally well. No one ever did the 
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sense strand cause they just thought that just can’t be right. They just kind of ignored 
it and thought it’s antisense.” (respondent 1) 
  
“It’s weird and not expected because basically we all knew that we make dsRNA and 
that’s a dead end, it’s an inhibition of the other RNA, you can’t use that to make 
something.” (respondent 15) 

 

Boundary Barriers and Interplay with Paradigmatic Pressures 

Similar to the problem identification stage, boundary barriers were present during 

the problem-solving phase.  This boundary barrier is driven by scientists’ belief of how 

fundamental the phenomenon of gene silencing traces back to a common ancestor between 

animals and plants.  As an informant explained,  

“We know that plants evolved as a multicellular life forms independently from animals, 
so the last common ancestor of plants and animals was a single cell organism. And so 
when you’re talking about how the cells are organized and develop, that happened 
independently. […] So when you’re talking about very fundamental processes that were 
there in the last ancestor, last single cell ancestor, those operate across kingdom.  So in 
general it just depends on whether you think it’s an ancestral process or whether you 
think it’s more derived.” (respondent 3) 

 
For those who saw the scientific merit of pursuing research on gene silencing, 

boundary barriers also aggravated the institutional pressures from the current paradigm as 

illustrated in the bottom half of Figure III-3.  Paradigmatic pressures coupled with boundary 

barriers reinforced each other in contributing to the failure of identifying and proposing a 

breakthrough opportunity.  If one is faced with unexpected results in one single research 

setting and is unable to gain more confidence from similar results in other settings due to 

boundary barriers, her ability to think in a revolutionary manner is compromised and she 

stays locked within the same mindset.  Analogously, if one is constrained by current dogma 

and does not consider the possibility of a groundbreaking perspective, substantiation in 

other organisms and fields will not be sought out.  In both cases, crisis will be missed and 

breakthroughs overlooked or delayed.  An informant describes this reticence that if one is 
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alone in finding a contrarian result it is very hard to muster the courage to submit it for 

publication without having substantiated it somewhere else.  

“Cause if you think about it if you were sitting in a lab in the middle of nowhere 
injecting dsRNA into c. elegans, and seeing it having an effect, a really good effect, a 
really strong effect on gene expression and it doesn’t work with single-stranded RNA, 
and no one has ever seen this before, you can’t write this up. You must have put out a 
few fingers to see, whether anyone have heard of anything before.” (respondent 7) 

 
Unlike the animal community that was caught in the problem identification phase, 

most of the plant community was trapped in this problem-solving stage, 

“Why didn’t the plant people get to where Fire & Mello did? My main insight is that we 
were so focused on transgenes to manipulate DNA expression. We never got to 
introducing RNA, it was regarded as unstable, that was never going to work. […] So 
there are these different mindsets that are so ingrained that you don’t even appreciate 
that there is another way to look at this. And I think that’s why we were really locked 
into that. It traced back to the discovery of DNA and the genetic material and the 
structure of DNA.” (respondent 17)
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Table III-1 (following nine pages) – Informant quotations respectively illustrating framing 

barriers, paradigmatic pressures and boundary barriers that contributed to the delay of the 

RNAi breakthrough discovery.



 

 

 

 

83 

Resp # 

Model 

Organism Framing Barriers 

Paradigmatic 

Pressures Boundary Barriers 

1 c. elegans It’s really puzzling, 

people had just filed this 

away and just thought 

this doesn’t make sense 

but didn’t think about it. 

They just kind of 

ignored it and just 

thought it’s antisense, 

people used to call it 

antisense even though it 

wasn’t.  

 

It was funny because the 

sense and the antisense 

strand both worked. 

Nobody would ever 

inject the sense strand 

cause psychologically 

you could imagine how 

the antisense strand 

could work with the 

base-pairing but the 

sense didn’t make sense 

even though they 

showed they both 

worked equally well. No 

one ever did the sense 

strand cause they just 

thought that just cant be 

right and dsRNA hadn’t 

been shown to have any 

effect.  

People talk themselves 

out of doing experiments 

all the time. They’ll say 

I won’t try that because 

it will probably look like 

this. Maybe. Maybe not! 

If you don’t do it you 

never will know.  

No one at that time, no 

one I had talked to was 

even thinking that it was 

related to the plant 

things. No one before 98 

I had ever heard anyone 

mention anything to do 

with plants.  

2 c. elegans We were obviously 

intrigued by it, but we 

could use to probe some 

biology that we were 

interested in it. And you 

want to do in science, 

it’s almost like you see 

something and you want 

to harvest it. So we 

could harvest RNAi in a 

way by using it as a 

novel method, it allows 

you to leverage some 

biology. You didn’t 

have to get mutations 

and you could get some 

information and learn 

something about it.  The 

community started to 

adopt it as a method, 

because they knew it 

was specific.  

It’s hard to do these 

breakthroughs where 

you really have to step 

beyond your comfort 

zone. 

We were trying to 

penetrate what we 

thought what we thought 

was a novel 

phenomenon. We didn’t 

believe that it really 

represented anything 

general. 

If you have, if your 

suspicion let’s say the 

weight of your 

suspicions is that it’s 

probably kind of worm 

specific, what’s the 

point of devoting a lot of 

resources to it. Because 

we are trying to figure 

out things that are 

general and broad right. 

So the fact that the 

worm could do this and 

that other things 

couldn’t do it. I mean 

flies don’t do it, and it’s 
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inconceivable that 

mammals would do it. 

So you’re thinking it’s a 

worm thing. 

3 drosophila Scientifically you know 

that this is working and 

these people were just 

using this as a tool. Then 

you have to decide ok. 

On the one hand, this is 

just a tool and the reason 

you’re using this tool is 

because you want to 

study the biology of 

these genes and you’re 

really focused on that 

biology and so you’re 

convinced that using this 

antisense method is 

teaching about the 

function of those genes 

and you go on and you 

focus on the function of 

those genes. And, you 

don’t get distracted by 

this oddity that the sense 

is also working. 

  I didn’t know that the 

plant phenomenon 

would be related to the 

worm phenomenon. 

Obviously the people 

working in plants, were 

in fact trying to explain 

the same phenomenon 

but we didn’t know any 

of those details. 

So when you’re talking 

about very fundamental 

processes that were there 

in the last ancestor, last 

single cell ancestor, 

those operate across 

kingdom. So in general 

it just depends on 

whether you think it’s an 

ancestral process or 

whether you think it’s 

more derived.  

4 plants I mean a lot of people 

have been doing the 

sorts of experiments, 

putting genes in viruses 

into plants. A lot of 

people had been seeing 

exactly the same thing, 

they had seen that the 

transgene that conferred 

resistance was not 

expressed that it was 

silenced. And they just 

ignored it. So people 

sometimes ignore data 

when it stares them in 

the face.  

[In plants] it was largely 

phenomenology, there 

wasn’t a lot do to with 

the mechanism. 

However we had done 

some experiments that 

implicated dsRNA. We 

had done 2 experiments 

one set of which never 

got published. We did 

submit them for 

publication and then 

they came back and the 

editor said they were of 

insufficient general 

interest. And so the 

reviewers were not 

convinced that, they 

thought that it’s an 

interesting illustration of 

how a field can get 

preconceptions. 

We were aware of the 

worm story to some very 

small extent, partly 

because what we knew 

was Ken Kemphues’ 

original micro injection 

experiments. So we 

knew about those and 

those looked like some 

sort of co-suppression 

phenomenon and also I 

knew about Ruvkun and 

Ambros’ work. We 

missed the link between 

that work and our work, 

so the small temporal 

RNA, the Ruvkun and 

Ambros work so that 

looked as if it were a 

translational regulation 

thing.  

I don’t think there were 

really conferences that 

brought the animal and 

plant fields together 

until probably as late as 

2001. 
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5 c. elegans People who were using 

antisense were using it 

to inhibit genes so they 

could show in vivo or 

address inactivity in a 

gene in vivo. 

  I think the effects of 

antisense were not that 

satisfactory cause they 

were not that potent and 

hard to control for. So 

again it gets back to this 

question, yeah if you 

have a control that 

doesn’t make a lot of 

sense, you are not going 

to report it. Cause there 

are probably a lot of 

observations that were 

not, experiments that 

were not actually 

included in papers. You 

know one of the 

problems with science is 

that negative results 

often do not go reported. 

And they are left un-

described. 

6 drosophila They just looked at this 

like a bizarre tool, they 

couldn’t explain it but it 

was fabulous for what 

they wanted to do. They 

could silence genes, so it 

was kind of like this. 

They were focused on 

the thing at hand and 

kind of ignoring this 

elephant in the room, 

which was far more 

important and 

interesting. 

Craig got up to share 

with us that workshop in 

97 RNAi. We thought 

this was really bizarre. I 

remember being there; 

everyone in the room 

was bedazzled, because 

I was so bizarre. I ran 

counterintuitive to 

everything we’ve been 

taught. 

We knew [the 

experiment] had worked. 

It’s like holy shit, 

although you’re really 

scared that you’re over 

interpreting it or 

something. 

The quelling people 

were kind of off on their 

own; they didn’t interact 

very much with us.  

There is this really 

bizarre phenomenon but 

it never occurred to me 

at that point that it 

would be applied to 

other organisms. So it 

never occurred to me at 

that time that I should 

try RNAi in drosophila. 
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7 c. elegans Everybody was wanting 

a way to knock a gene 

down. So it was a 

receptive community, 

when people saw that 

they thought that’s very 

interesting. And I don’t 

think it was long before 

everyone was trying it 

out. Everyone could see 

the application of it, 

everyone was already 

primed to apply it. 

And you know, a lot of 

people had described 

similar things or talked 

about it certain things. 

But nobody took it 

terribly seriously. Why 

should dsRNA work 

better than antisense. 

Because if you had 

sticked in an antisense 

providing it doesn’t get 

degraded, it should find 

it’s target and take it out. 

When you put in pre-

annealed dsRNA we 

thought it had to unzip, 

it’s actually a weakness, 

because nobody realized 

that there is a machinery 

that does that.  

[The plant section] 

might as well be 

lectured in Latin, they 

don’t really integrate 

with other people. They 

didn’t think animals did 

the same thing. So there 

you will find that there 

is a subculture of plant 

people that are just 

doing stuff. 

If you were sitting in a 

lab in the middle of 

nowhere injecting 

dsRNA into C. Elegans, 

and seeing it having a 

really strong effect on 

gene expression, it 

doesn’t work with 

single-stranded RNA 

and no one has ever seen 

this before, I can’t write 

this up. You must have 

put out a few fingers to 

see, whether anyone 

have heard of anything 

before. 

8 c. elegans So I was also able to 

also use the technique to 

inhibit that gene activity 

and see. 

  We didn’t even know 

that, it would become 

such a general 

phenomenon. No one 

knows because we 

thought that it is 

something peculiar with 

worm. 

Actually I was going to 

discuss some of these 

[plant results] in my 

original paper but my 

advisor felt it was a little 

too premature to make 

that kind of link. 
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9 mammals So we used gene 

inhibition technologies 

in order to understand 

the pathways. But at the 

same time we also 

worked on developing 

this type of 

technologies, so I think I 

was more or less among 

the first, the ten first, to 

use antisense 

oligonucleotides which 

were very popular, but 

much less efficient than 

RNAi. 

Who is going to think 

let’s put a double-

stranded short RNA, if 

you don’t know the 

system, who is going to 

say let’s put a short 

double-stranded RNA in 

a cell by chance and it 

could be something. It’s 

impossible.  

It was so anti-dogmatic, 

because there was DNA, 

RNA and protein. I 

guess it took time also 

and very bright and 

inventive people to 

really go against the 

dogma. And say ok, 

maybe something is 

wrong. It is always very 

difficult. 

At this time, I had never 

followed what was 

going on in plants. 

Preconception that 

whatever perhaps 

happens in plants is 

different in animals even 

in mammals, that there 

wasn’t much attention 

paid to them, even 

within the community. 

The same thing 

happened with c. 

elegans in a way. 

Because at the beginning 

everybody thought, ok 

this thing is interesting 

but most of them 

thought just in c. 

elegans. 

10 c. elegans And so we never asked 

the question in a serious 

way other than talking 

out of this work. So that 

we then continued to use 

the technique because it 

was clear that one of the 

key control experiment 

was to show that it 

wasn’t any old RNA that 

did this effect so it was a 

very gene specific effect 

and so once we knew it 

was a gene specific 

effect we didn’t really 

care how it worked. All 

we cared about was that 

we could use it. 

Everybody was very 

excited about it because 

of the potential for its 

use to target specific 

genes without going 

through the trouble of 

making mutations. 

People were intrigued 

but that’s different from 

going after it. 

Because I didn’t have 

that information, that 

knowledge. I wouldn’t 

have made that 

connection it never 

occurred to me that there 

was both strands in our 

reaction.  

As far we knew at the 

time, it was a very 

specific phenomenon for 

c. elegans. It was pretty 

much just thought of as 

a c. elegans 

phenomenon at the time. 
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11 mammals Fire and Mello were 

trying to do an antisense. 

So people were using 

antisense 

oligonucleotides for a 

long time to try to do 

what RNAi does.  

dsRNA molecules were 

not typically viewed as 

being naturally 

occurring molecules. 

They were typically 

viewed as being part of 

virus or whatever. 

The paper by Jorgenson 

on petunias in plant cell, 

the name of the journal 

was Plant Sciences, 

Plant Cell or something. 

That really nobody 

followed, nobody. It’s 

interesting the plant 

world tends to have its 

own group of people. 

And they don’t tend to 

intermix too much with 

the non-plant people. 

12 c. elegans Cause it’s a tool that 

everybody wants to use 

like recombinant DNA, 

many people who 

wanted to use it don’t 

care how it works it just 

becomes a tool that they 

use. When people tried it 

and it worked it was like 

ok, let’s work with it. 

very few people thought 

it was worth studying.  

But everybody wanted 

to use it. So then you’d 

go to the worm meetings 

and everybody was 

using it. 

First reaction was: it 

can’t be right, it’s too 

weird.  

Rich Jorgenson and 

Carolyn Napoli, they 

were telling me stories 

about silencing they put 

in. They had these 

flower color things, 

trying to get purple it 

would turn white, it was 

all screwed up. But I 

missed it entirely. I did 

not see the connection. 

 

  

13 drosophila But they were so 

focused upon the 

objective they were 

studying – was this gene 

required for this mutant 

phenotype. It confirmed 

the issue they designed 

the experiment for that 

was their objective. So 

they went and published 

the results, saying this is 

the function of this gene. 

But what they didn’t do 

it that they didn’t say 

that this control that 

didn’t work is likely to 

be more important than 

this paper. And we 

should put aside the 

results of this paper and 

pursue that control. 

Yes, and there was 

DNA, RNA and protein. 

And then we started to 

get information from 

RNA to DNA. It started 

to be a big change that 

RNA also could be 

considered as an 

information and not just 

as an intermediary. 
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14 plants You could silence genes, 

which was a tool that 

could be valuable. 

We are not really 

discovering a new thing, 

in fact what we are 

discovering are things 

that already existed but 

that we are simply 

ignoring or that we 

underestimated. 

Also you discover it was 

something really 

different than the dogma 

that dsRNA played a 

role in animals.  

Here we are too isolated; 

we don’t have enough 

interaction with people 

because we are only 

working on plants. We 

are experts on plants but 

we are only working on 

plants.  

There was not that many 

meetings that mixed 

organisms. 

So we extended this 

from plant to fungus, but 

still in 1996 there was 

nothing published on 

animals, at all. 

15 e. coli Even though nobody 

knew really how it 

worked, the success rate 

was enormous. You 

could use it. And there 

were all these patents in 

the early. Because you 

could try sense or 

antisense, or you use a 

sense gene or antisense 

gene generally speaking 

it worked.  

Almost none of us 

thought it would be the 

discovery that dsRNA is 

the trigger, that is 

something we did not 

expect. It's weird, not 

expected because 

basically all we knew 

that we make dsRNA 

and that’s a dead end, 

it’s an inhibition of the 

other RNA, you can’t 

use that to make 

something. 

They didn’t really know 

what to do with it cause 

dsRNA doesn’t do 

anything. 

The people who should 

have picked up on this 

and Victor [Ambros]’ 

discovery in the 

beginning they didn’t 

because it was a worm 

thing, worms are doing 

strange things. 

16 c. elegans Somebody took me 

aside and said whatever 

you do don’t just work 

on RNAi, because it’s 

not biology it’s just a 

technique. 

The hypothesis that were 

successful for you in 

explaining phenomenon 

A, kind of get recycled 

as the first choice in 

explaining phenomenon 

B. Because it’s what 

you’re most comfortable 

with and you know how 

to test it and if it’s 

wrong you now have 

this set of experiments 

that helps point you in 

the right direction.  

So I was just fascinated 

with the idea that 

dsRNA could do 

anything, I had been 

brought up to believe it 

was inert. 

Because I have always 

thought that the real 

barrier to productivity in 

science was people not 

communicating 

immediately when they 

see the common thread. 

Once you wait until your 

discovery is polished 

and presented then 

you’ve already filtered 

out some of the things 

you don’t understand 

that the right person can 

explain to you because 

they have the other piece 

of the puzzle. 
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17 plants  You have a particular 

objective you want to 

understand X you want 

to solve that you’re 

using hypothesis testing, 

I think that turns out to 

be kind of a trap.  

So there are these 

different mindsets that 

are so ingrained that you 

don’t even appreciate 

that there is another way 

to look at this. And I 

think that’s why we 

were really locked into 

that. It traced back to the 

discovery of DNA and 

the genetic material and 

the structure of DNA. 

We were introducing 

constructs that it turns 

out in retrospect did 

make dsRNA. We were 

thinking in terms of 

RNA being produced 

and then what happens 

to it well it get degraded, 

and I always thought 

well it gets turned over 

so who cares what the 

degradation products 

look like. We were 

manipulation DNA not 

RNA. That was the one 

missing piece, had we 

gone into introducing 

RNA directly we could 

have done things like 

Fire & Mello did and we 

could have done it years 

before them. 

We were publishing in 

different journals then a 

lot of the animal folks 

that yeast folks wouldn’t 

see if they were at the 

wrong kind of 

institution, and that 

created an artificial 

barrier that doesn’t exist 

now but was an 

important one then.  
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18 plants So I would say that in 

that case we were trying 

to do something 

different, this gene 

replacement, but in the 

process of doing those 

experiments we 

stumbled upon this gene 

silencing and at that 

point it was so 

interesting, it seemed so 

new and not explainable 

by anything that we had 

known before that we 

had started focusing on 

that phenomenon. 

Everybody wanted to 

use this technology first 

as a technology for 

research for knocking 

down a gene. 

We were subconsciously 

ignoring a lot of science. 

We were also testing 

with what kind of thing 

do you need to trigger 

this gene silencing and 

we had already setup 

this experiment to test 

this that there would be 

some kind of RNA 

signal involved, and 

results at the time also 

suggested that it was 

likely to be dsRNA.  

There wasn't a lot of 

dialogue then between 

the plant and animal 

community. […] And at 

the time I don’t think we 

were thinking too much 

about necessarily the 

animal work. But during 

the initial years when we 

were working on it I 

think we weren’t talking 

with animal people very 

much, it was more just a 

small group of plant 

scientists who were first 

trying to figure out what 

was going on.  

Plant scientists find that 

a lot of animal scientists 

don’t take you very 

seriously. But there are 

so many fundamental 

biological findings made 

in plant systems 

beginning with Mendel 

and his peas and the 

genetics. But we sort of 

felt like we were on the 

side, the animal people 

would always listen to 

animal people.  
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Success in the Discovery of the First RNAi Causal Trigger 

The above analysis begs the question of why did Fire and Mello discover the 

revolutionary mechanism to RNA interference and why not someone else?  In short, Fire 

and Mello were able to surmount all barriers that incite failures to identify the opportunity 

for potential breakthroughs. 

First, although Fire and Mello also first came in contact with the phenomenon from a 

tools development perspective while trying to inactivate genes using antisense 

oligonucleotide technology, they quickly realized that the phenomenon itself was 

interesting, important and worth studying.  Instead of dismissing it as just a useful tool or a 

mere worm oddity they believed that it was a fundamental process conserved in other 

organisms.  They were not blinded by the pursuit of conventional science, and were able to 

explore the phenomenon.  The following quotes exemplify both Andy Fire and Craig Mello’s 

motivation to study the phenomenon from the point of view of their colleagues. 

“[Andy Fire] has always […] said look I think I can figure this out, and sometimes it’s 
boring stuff, but he just latches on and keeps going.” (respondent 12) 

 
“Craig [Mello] was very excited about it and he just wanted to figure it out. He thought 
it was fundamental, and he was right. He believed […] that if he figured it out, he 
would have done something good.” (respondent 10) 

 
“Craig [Mello] believed that it’s something. When you think about it, you say why 
would somebody entertain the possibility that what they are seeing is something 
broadly conserved. You have to have a deep, a serious amount of faith that there are 
uncovered phenomena in the life sciences.” (respondent 2) 

 
Second, the fact that Fire and Mello were able to see passed the inertness of dsRNA 

they were taught to believe throughout their academic careers up to that point was an 

indication that they circumvented the constraints established by current dogma to propose 

their theory of RNA interference, and were less encultured in the current thinking of their 

fields.   
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And finally throughout their discovery process, Fire and Mello were well aware of 

the work done by plant scientists and were able to connect the dots between these works, 

those from the c. elegans community and the results that they observed from their own 

experiments.  From the Nobel paper citations which made reference to several related 

articles in plants, Fire and Mello were not only aware of phenomenon in plants they also 

believed that it was similar to what they had discovered in worms.   

Fire and Mello’s success which hinged on surmounting all three barriers as 

necessary conditions to breakthrough discovery provides further evidence that these 

barriers cannot be viewed independently, but are rather interconnected and interact with 

one another.   

v. Implications to Bibliometric Literature from Remedial Practices 

In this section, I move away from the above inductive framework on mechanisms of 

breakdown throughout the breakthrough process towards a set of deductive propositions 

from remedial practices that scientists employed to circumvent the barriers.  Although 

these propositions are extracted directly from my data and have theoretical foundations 

from prior research, they require more empirical validation as they have yet been 

operationalized as sources of breakthrough in traditional measures of bibliometrics.  

Further, it is important to stress that all scientists did not perform these practices.  Instead 

they reflect probabilistic central tendencies that are necessary but not sufficient for 

breakthrough discovery.  

Circumventing Framing Barriers 

While some scientists pursued their initial path of research and maintained narrow 

research agendas when something intriguing and new manifested from experiments, others 

would encourage side project as the primary method to avoid being blinded by 
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conventional science and potentially missing precious opportunities where new 

revolutionary science may be hidden.  Those who took side projects explored at the fringe 

while carrying their regular research program, in order to balance the two.  They 

maintained their principal lines of research so as to keep a steady stream of publications, to 

hedge away the heightened risk of side projects and satisfy grant evaluations.  At the same 

time, they increased the number of radical attempts (Fleming, 2002) by actively seeking out 

the more unconventional results at the periphery so as to increase the likelihood of 

discovering a breakthrough.  A respondent describes having taken on various high-risk 

projects with potential of yielding high impact results, 

“I think there is quite a core of people who are prepared to do a few risky things on the 
side that may influence. I have done a lot of stuff like that.” (respondent 7)  

 
This behavior is reminiscent of the extensively studied topic of exploration and exploitation 

that firms undertake in their innovative quest (March, 1991) and provides empirical 

evidence at the individual or laboratory level for ambidexterity despite the inherent 

discordancy shown in the literature of simultaneously exploring and exploiting (Burgelman, 

1983; March, 1991)  

Circumventing Boundary Barriers 

Scientists hinted to the fact that those with broader exposure to and awareness of 

work produced within disparate but related scientific communities were less likely to be 

isolated and had higher chances of linking disparate sources of knowledge.  This 

diversification of exposure to various sources of information acts as a way to break down 

boundary barriers and enhance the likelihood of breakthrough.  For instance, cross-

disciplinary and cross-organismic conference attendance affords exposure to research done 

outside the immediate area of focus or model organism as illustrated by this informal 
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interaction that happened while one respondent was on the way to a conference with a 

colleague. 

“The most important thing at conferences is what you hear in the halls and in the 
coffee breaks. For example, I have heard about microRNAs way in advance before 
there were publications in a train station on my way to a conference.” (respondent 9) 

 
Similarly, changing and mixing conferences that one attends also enables 

diversification in awareness as illustrated by another respondent. 

“Changing the conferences that you go to. You have a new discovery in a field it’s not 
part of your field then you have to go to conferences to tell people what you’ve learned 
and also to learn what’s there in the field.” (respondent 1) 

 
Conferences not only provide opportunities for scientists to hear about odd negative 

results that may have been shelved, they also enable attendees to sample current research 

topics at the forefront of related fields as they expose scientists to a variety of opinions 

fostering divergent thinking (Nemeth, 1986) and spurring creativity.  This diversity in 

contexts cultivate brokering of ideas and finding analogies between seemingly disconnected 

and unrelated fields (Hargadon & Sutton, 1997), thereby enabling intriguing new avenues 

to be pursued. 

Additionally, teaching cross-disciplinary courses can also force scientists to go 

beyond the comfort zone of their immediate research area and become familiarized with 

tangential topics and organisms.  Aside from expanding scope of knowledge through 

thorough literature search, teaching also leads scientists to reach out to colleagues they 

would otherwise not connect with outside their fields, as discussed by two respondents 

below.   

“Because when you teach you need to read about things which you are not directly 
involved in […] For example, I have one paper which has been cited more than six 
hundred times, and this paper actually came from the fact that I was teaching in a 
university.” (respondent 9) 

 
“Our most highly cited paper was a consequence of [teaching]. Although that wasn’t 
why we did the research but it was clear that we could make half the problem go away 
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overnight. So that was really very much influenced by my having to teach that course.” 
(respondent 16) 

 

Circumventing Paradigmatic Pressures 

In many instances bizarre experimental observations were shelved because 

scientists were reticent to challenge established truth in existing theory that constrained 

them to think within the confines of current dogma.  They failed to identify and propose 

solutions with breakthrough potential outside of socio-cognitively delimited borders.  To 

avoid being locked in, many informants stressed the importance to be open-minded and not 

be bogged down by the confines of current dogma or existing models (Simonton, 1989), 

which forces one to think about the implications of a set of experiments more 

comprehensively and heightens creativity.  As illustrated in the following quotes,  

“We as scientists want to be doing something that’s different. You want to be following 
things that aren’t the same as what had been looked at before.” (respondent 4) 

 
“For further advancements to be made and more breakthroughs to be discovered one 
cannot believe that theories that are proven are there forever.  Moreover, one needs to 
be open-minded and be ready to admit being wrong sometimes.” (respondent 14) 

 
“So I think that there may not be a lot of mystery to why people find these 
breakthroughs it’s a matter of considering the possibility of something in that 
biological system that we have no clue about and if you’re setting aside this allusion 
that we have all the pieces […] Breakthroughs also get leveraged by the culture 
shifting towards acceptance of the idea that there are things that we don’t 
understand.” (respondent 2) 

 
Another way to decrease the amount of outliers from being discarded and improve 

research effectiveness is by substantiating results against other organisms instead of 

quickly ruling them out as artifacts.  Viewing these practices from a social network 

perspective, scientists are building informal ties or inter and intra-laboratory collaborative 

ties to validate results.  Thus, social ties not only act as conduits of information 

(Granovetter, 1973) in the production of knowledge but also as a mechanism of 

substantiation.  This creates social validation (Cialdini & Trost, 1998).  When scientists want 
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to propose a new theory that would nullify existing ones it is easier to be contrary if many 

people are on board.  

Multiple levels of validation are used in the substantiation of work: first, ensuring 

that results are internally consistent using well-controlled experiments, then evoking 

evolutionary conservatism as a mechanism of validating results by seeking parallels.  These 

mechanisms enable scientists to develop enough confidence in obtained results to break 

away from the socio-cognitive confines established by the field and realize that theories are 

not always valid forever.  Evolutionary conservatism is a double-checking mechanism, 

where observing the same artifact in multiple organisms or settings hints that the 

anomalous result is not an artifact but rather something real and substantial.  To achieve 

evolutionary conservatism several practices are available: attending conferences, setting a 

laboratory in close proximity to other labs and facilitating collaboration, and finally running 

a laboratory that studies multiple organisms instead of one single organism. 

Conferences are used as one of the mechanisms to confirm the soundness of 

abnormal results through informal social ties, as illustrated by two informants, 

“And it only requires you going along to one seminar. We’ve been clearly influenced. 
We had a theory, we didn’t have any confidence in it, and this guy from Harvard shows 
up and talked about something utterly different, and you think that’s worth doing a 
few experiments.” (respondent 7) 

 
“Both of you will hear a talk you can discuss what you think are the reasons, what’s 
really happening there, to what extent you think it’s going to be reproducible, to what 
extent is this really going to change the way people think, are there other explanations. 
All these things you can do between sessions, and also talk to people about some 
surprising thing that you’re finding and get input and be able to test ideas with.” 
(respondent 3)  

 
Collaborating with other proximate labs is another way to confirm evolutionary 

conservatism.  Instead of relying on other laboratories to report findings in the literature or 

share results at conferences to ensure evolutionary conservatism, researchers can perform 

the necessary experiments with collaborators.  Geographically proximate colleagues ease 
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the collaboration even further as proximity to other labs that focus on other model 

organisms bolsters spillover (Jaffe, Trajtenberg, & Henderson, 1993; Thompson & Fox-Kean, 

2005).  It increases the chances of running into someone in an unplanned manner and the 

development of non-professional relationships that may lead to conversations that advance 

the exchange of ideas or validate results that one may be doubtful of.  For instance, 

“If you’re at a place like MIT where there are labs that have the expertise in each of 
these systems, usually in the same building or across the street, it’s very easy for 
students and post-docs to start a project in these systems and get help from their 
friends in those labs.” (respondent 3) 

 
“If I think of a question, for example, if we had made some discoveries in fish that we 
would like to know if it’s conserved, I would approach it by collaboration rather than 
having to re-invent the wheel.” (respondent 8) 

 
Finally established scientists who have large enough research groups can also opt to 

study multiple model organisms in their own lab and avoid coordination costs associated 

with collaboration.  A respondent described his experience working as a research fellow in a 

multi-organism laboratory of another respondent, 

“What I really liked is that even in a single lab we were working on ten different 
organisms. We were a few people working on plants but there were people working on 
mice, on c. elegans, on drosophila, on zebra fish, on chicken… and this diversity of 
material that we were studying was really providing an exciting discussion. We could 
not only go and find the details of silencing we were studying in each organism, we 
could also make the parallel and trying to find what was common between these 
different mechanisms, how did it start, how did it evolve.” (respondent 14) 

 

Bibliometric Operationalization 

Although operationalizing cognitive constructs is still undeniably difficult, several 

new bibliometric measures can be derived from these practices, and as future work tested 

and generalized empirically using large datasets.  For instance, exploring at the fringe to 

circumvent framing barriers can be proxied from the frequency distribution of scientist’s 

MeSH keywords, where individuals who have a tendency to try high-risk explorative 

projects on the fringe are characterized by having a set of high frequency MeSH keywords 
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representing the core of their research while at the same time having many one-off MeSH 

keywords mimicking the explorative nature of side projects.  Similarly, exploiting intra and 

inter laboratory collaborative ties as a substantiation mechanism to avoid being confined 

paradigmatically can also be captured by animal model specific MeSH keyword of papers 

written by a single author.  If a single scientist is associated with multiple animal models 

from their published works’ MeSH keywords, they have either worked with other labs that 

use different model organisms or run a lab that supports research in multiple organisms.  

To broaden one’s awareness in related research, scientists also resort to attending 

conferences and teaching besides turning to the literature.  The role of conferences has been 

understudied in the literature but findings in this paper suggest that the number of 

conferences and the breadth of conferences, whether interdisciplinary or cross-organism an 

individual attends is important to take into account as a source of breakthrough.  

Conferences are important not only as a perturbation to boundaries between communities 

of science to gain diversity of opinions and knowledge, but also act as a mechanism for 

result validation and provide a glimpse of informal scientific networks not captured 

through purely co-author collaborations.  The number of cross-disciplinary courses a 

scientist teaches can also serve as a proxy for a source of breakthrough.  Although these two 

measures are not readily available in archival data, they can be obtained by running 

surveys, and for the former by combing through conference attendance lists. 

Furthermore, another measure that proxies the scope of awareness of related 

research communities is the breadth of backward citations that scientists reference in their 

own publications.  This measure is also one of few bibliometric measures that can capture 

cognitive processes, as scientists only cite papers that they are aware of.  I implement this 

measure and test it on the predictive regression models in the previous chapter.  I construct 

a distribution of MeSH keywords for all publications that scientists cite prior to the 1998 
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RNAi breakthrough discovery.  And exactly like the publication depth measure introduced 

in the previous chapter, I calculate a citation depth measure using all MeSH keywords that 

characterizes the backward citations each scientist in the RNAi community referenced.  

Adding this new measure to the extensive list of explanatory variables yield significant 

results.  As this current chapter specifically focuses on better understanding through 

counterfactuals the process of breakthrough, I expect this new measure of citation depth to 

be negatively significant for strict operationalizations of breakthrough especially for the 

case of elites situated in the top 10 percent of citations.  Surprisingly for the sample that 

includes all papers whether first, middle or last authored, results are not significant for 

citation depth, however the results are significant for the sample of first and last authored 

papers.  These results can be interpreted such that citation breadth is only significantly 

associated to breakthroughs when scientists are the first or last author on a paper – author 

positions in a publication where most of the writing and thus the referencing decisions are 

made.  The effect size is calculated by increasing the citation depth measure by one 

standard deviation, and yields a decrease of 20.1% to the dependent variable.  Thus, 

broader citations are correlated with increased probability of being in the elite of the top 

10% of citations.  Table III-2 shows the regression result similar to those in Table II-4 with 

the added explanatory variable for citation depth.  The sample in Table III-2 is smaller 

because of missing values for the newly introduced variable.
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Table III-2 (following page) – Predictive models of the top 10% of citations with logit, 

number of forward citations of 98 papers and number of 98 papers both with quasi-

maximum likelihood Poisson where the dependent variables are derived from papers 

published as first or last author in 1998.
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  Logit Top10c QML impact QML prod 

DV top10cite ncite98 npub98 

  b/se b/se b/se 

lnpub97_fl 0.359** 0.202 1.052** 

 

(0.13) (0.15) (0.06) 

lncite97_fl 0.990** 0.748** -0.027 

 

(0.09) (0.06) (0.03) 

constraint -0.823* -0.570* -0.290* 

 

(0.32) (0.29) (0.11) 

lncoauthor 0.169* -0.036 0.014 

 

(0.08) (0.07) (0.03) 

pubdepth 0.401 0.293 0.779 

 

(1.74) (1.44) (0.65) 

lexp -1.718** -1.053** -0.931** 

 

(0.24) (0.19) (0.08) 

prestige 0.006 0.007 0.003 

 

(0.01) 0.00  0.00  

collabcore 0.506 0.205 -0.015 

 

(0.32) (0.18) (0.12) 

techcore -0.202 0.058 0.093+ 

 

(0.15) (0.13) (0.05) 

academic 2.843 1.780* 1.238+ 

 

(2.35) (0.87) (0.75) 

prestiged -0.033 -0.109 -0.144* 

 

(0.18) (0.12) (0.07) 

citdepth -4.859** -0.424 -0.511 

 

(1.77) (1.50) (0.56) 

affil1p 0.175 0.082 0.158 

 

(0.25) (0.22) (0.11) 

constant -5.495* -0.278 -1.251 

 

(2.42) (1.00) (0.79) 

N.Obs 2504 2504 2504 

Log-Likelihood -697.377 -42836.565 -3868.446 

+ p<0.10, * p<0.05, ** p<0.01 
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vi. Discussion 

The unifying theme that emanates from the above discussion is that at different 

stages of the discovery process scientists on the verge of discovery failed to identify or 

propose the breakthrough opportunity.  This failure is based on a cognitive process 

triggered by institutional factors stemming from various interacting barriers at both the 

problem identification and solving stages of the creative process.  Besides contributing to 

the literature by showing and proposing a framework by which the seminal discovery was 

missed several times, this work also provides a collection of practices that scientists use to 

remedy the barriers discussed above and increase the likelihood of breakthrough.  These 

practices can be operationalized as testable sources of breakthrough, although it is 

important to note, however, that many of them are necessary but not sufficient.    

Additionally, this work adds to the micro-foundations of innovation.  The literature 

in innovation has thus far mostly assumed constant input to innovation.  My results suggest, 

instead, that individual inputs are quite heterogeneous and should be accounted for.  

Indeed, scientists behave differently with regard to conference attendance, teaching, taste 

for exploitation versus exploration, collaborative preference and willingness to take closer 

or further leaps.  

My findings also shed light on how the institutional differences and divergent nature 

of knowledge produced between science and technology are manifested in the discovery of 

scientific breakthroughs.  The understanding of the RNA interference phenomenon is 

puzzling in that several documented observations were witnessed before discovery was 

made.  Contrary to technological innovations where a breakthrough invention happens at 

first successful occurrence, a number of scientists were on the verge of breakthrough but 

missed it.  In these cases, the novelty component is not in the observation but rather in the 
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explanation of why a particular abnormal result occurs.  In other words, the definition of 

success in science is different from that in technology.  Hence what would have been a 

success in the technology realm is not considered as one in science because mere 

observations or descriptions of a phenomenon are insufficient, they also need to be 

explained.  Scientists are preoccupied by understanding real mechanisms in nature and are, 

consequently, worried about the validity and correctness of their findings.  Moreover, truth 

seeking cultivates a requirement of being right and a fear of being wrong, which translates 

into being constrained by the limits of current theory.  Technologists, on the other hand, 

mainly care about whether their inventions function as intended without necessarily 

needing to comprehend why it works.   

The other conundrum around RNAi centers on the fact that its initial use and 

perception as a tool did not facilitate discovery of its trigger mechanism but rather delayed 

it.  RNAi is a perfect illustration of the tension between concepts and tools because it 

effectively embodies both.  Historians of science have extensively explored the two, and 

described how scientific revolutions arise from each.  Thomas Kuhn (1962) perceived 

science from the point of view of a theoretical physicist, thereby emphasizing the great 

leaps of theoretical and conceptual insight that give rise to scientific revolutions for 

understanding nature while taking for granted experimental data.  Whereas thirty years 

later, Peter Galison’s (1997) argument that new tools drive the process of scientific 

discovery stems from an experimental physics viewpoint where he described great leaps of 

practical ingenuity for observing nature enabled by the acquisition of new data.  

RNAi, however, is a hybrid that does not fit squarely in one camp or another.  

Instead, it is a tool based on an underlying biological concept.  The case of RNAi suggests 

that the nature of the underlying knowledge should be a continuum rather than simply 

having two distinct categories – concepts and tools.  RNAi debuted as a tool that arose from 
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observations in plants, fungi and worms, but not understanding the causal mechanism to 

the phenomenon impeded its stability as a technique and consequently its initial 

widespread use and diffusion.  It was not until the trigger agent was identified that the 

community of scientists started to study the intricacies of its mechanism in all organisms 

including complex ones and RNAi became truly revolutionary.  However, although in the 

beginning its perception as a tool delayed understanding of the concept, it promoted 

diffusion once the trigger mechanism was understood and the technique was stabilized.  

Familiarity brought about by its use eased acceptance of the underlying concepts.   

One weakness of this work is its sole focus on cognitive barriers driven by 

institutional factors to breakthrough.  Without doubt, the above discussions on constrained 

resources and taking on side projects allude to the role that incentives play in discovering 

breakthroughs, which have been extensively studied in the innovation literature.  The 

institution of science is based on the priority-reward system where one is recognized for 

being first to discovery thus pushing scientists to take on high risk and high rewards 

projects.  But scientists also face the realistic pressure of producing a steady stream of 

papers for funding purposes unless they benefit from sources that tolerate early failure, 

reward long-term success, and give its appointees great freedom to experiment (Azoulay, 

Graff Zivin, & Manso, 2011).  Thus, intermixed with the barrier of framing the puzzling 

phenomenon as a tool is an incentive pressure of consistently producing publications.   

The funding of research grants and the evaluation process within academia all play 

significant roles in determining the research path that scientists take.  For instance, strict 

funding schemes with frequent short-term deadlines and deliverables will most likely force 

scientists to stay closely on track with the proposed grant project, whereas more flexible 

grant structures would afford the scientist to experiment more.  The tight timeframes of an 

academic scientist’s tenure evaluation can be another incentive barrier which may lead 
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young scholars to pursue more incremental and less uncertain projects to guarantee 

publishing.  Compared to cognitive barriers these economic barriers, however, are more 

deliberate.  

The main limitation of this work is the generalizability of findings from one single 

case study especially when studying idiosyncratic rare events like breakthroughs.  

Therefore, these above findings should be interpreted with caution.  However, if 

breakthroughs are conceptualized as a process of multiple attempts mainly characterized 

by failure with eventual success, then that process can be studied and characterized.  

Moreover, the goal of this work is to generate theory and extend current understanding of 

sources that enhance breakthrough potential, which can then be operationalized and more 

broadly tested quantitatively so as to show generalizability.  These include expanding 

research scope through exploration at the fringe to avoid being blinded by conventional 

science, exploiting social ties as a mechanism of substantiation to overcome being 

constrained by current dogma, and broadening exposure and awareness of work across 

multiple scientific communities to mitigate the inability of connecting the dots.   

Furthermore, RNAi being a discovery that occurred fifteen years ago, one must also 

be mindful of how findings in this work should be applied given the changing processes in 

which science is done and published today.  New processes for innovation such as open 

innovation, as well as alternate venues of publication outside of the conventional peer-

reviewed articles such as web blogs, chat groups, preprints have emerged.  In the case of the 

former, given that problems to be solved are open to anyone who can plausibly provide a 

solution, framing the problem in the correct way is crucial.  With changes in the latter where 

steps to publishing have seemingly been simplified, anomalies should surface earlier, more 

easily and be readily accessible to everyone.  However, although these structural changes 

may have simplified the publication process, it is not obvious whether scientists, especially 
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untenured scientists, will freely post their expected or unexpected results on websites 

without changes to the institutional priority-based reward system of science.   

vii. Conclusion 

Moving beyond bibliometric measures by using qualitative interviews, I proposed a 

cognitive framework driven by institutional factors on the emergence of breakthroughs 

through failures and found that the seminal discovery was missed several times because of 

failures to identify and propose the breakthrough opportunity.  At the basis of this failure 

are three barriers.  In the problem identification stage, path dependence from established 

technologies and the quest toward normal science blinded scientists from recognizing a 

prospective breakthrough.  Instead, they framed RNAi as a tool while ignoring it as a 

scientific concept worthy of study.  Existing boundary barriers between communities of 

scientists aggravated this difficulty in identifying the breakthrough opportunity by 

misrepresenting the magnitude of the problem as it prevented recognition of links between 

several prior instances of odd observations.  In the problem-solving stage, scientists 

suffered from the socio-cognitive barrier of being constrained by current dogma.  Due to 

fear of being wrong, they hesitated to propose solutions that significantly strayed away 

from the confines of established theory.  Coupled with boundary barriers, similar anti-

dogmatic results stayed isolated and diminished confidence to propose a new revolutionary 

paradigm.   

This work has implications in the design of organizations and institutions that 

partake in scientific discovery.  Understanding the barriers to scientific knowledge creation 

is vital not only for academic administrators but also from both managerial and policy 

standpoints.  It illustrates the fundamental differences inherent in the production of 

scientific and technological knowledge, and directly speaks to the organizational design of 
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science-based firms (where the literature has mainly focused on technological innovation 

and remains thin) by providing structural characteristics and policies that foster the 

production of groundbreaking discoveries.  These include facilitating interdisciplinary 

research teams, encouraging cross-organism and cross-field conference attendance, and 

providing incentives that enable the flexibility to take on side projects on the fringe.  From a 

policy vantage point, this work characterizes which scientists have the highest potential of 

breakthrough.  This is a first step in eventually moving up levels of analysis to locating 

communities of scientists more likely to discover breakthroughs and, thus, enabling more 

targeted governmental subsidies and private investments into them (Lane, 2009). 

A natural extension to the current work is to further quantitative 

operationalizations and test sources that enhance breakthroughs uncovered herein.  

Keeping in mind tradeoffs in the practices scientists employ to circumvent barriers to 

breakthrough opportunity identification and dynamics between each theme, quantitatively 

testing these new sources of breakthroughs can shed light on equilibrium points as well as 

interaction effects.  Another extension follows from the conventional wisdom of ‘having 

smart people at the right place at the right time’ when eliciting about breakthroughs.  

Therefore, in future work the question of when is the right time for breakthroughs to 

emerge can be studied.  For instance, at what point in the maturity of a field are 

breakthroughs most likely to be made, what role do complementary discoveries – for 

instance microRNA and genome projects in the case of RNAi – play in spurring or stunting 

revolutionary discoveries, how much of an installed base is required within a community 

for breakthroughs to emerge are all intriguing questions to further explore. 
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IV. Fostering Translational Research 

i. Introduction 

A frequent question in the innovation and entrepreneurial finance literature is the 

impact of different funding schemes on firm performance and innovative output.  The 

interest in understanding how ideas are produced and the means by which idea production 

is enhanced have been driven by the belief that knowledge from scientific research and its 

subsequent translation into technological inventions is a driver for wealth creation and 

stimulates economic growth.  In scientific research, studies have investigated the effect of 

various research grant designs (Azoulay, Graff Zivin, & Manso, 2011).  Similarly in the 

technology sector, the effect of angel investments (Kerr, Lerner, & Schoar, 2011), venture 

capital (Kortum & Lerner, 2000; Samila & Sorenson, 2011), banks (Black & Strahan, 2002) 

and initial public offerings (Bernstein, 2012) on innovation and entrepreneurship is another 

area of great interest.  These studies mainly investigate the impact of various funding 

schemes on innovation within the well-defined boundaries of the scientific and 

technological institutions.  Therefore, implicit in these works is a dichotomy between the 

knowledge created in science and that produced for technological and commercial purposes, 

as well as the assumption that knowledge created in the scientific and technological realms 

are produced independently.   

Alongside these prevalent funding structures that separately focus on science and 

technology, many countries have invested in academic-industry partnership grant schemes 

that target translational research at the intersection of science and technology.  In the 

United States, National Science Foundation (NSF) shared resources centers often require 

some form of partnership with private firms to accelerate product development, while the 
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National Institutes of Health (NIH) academic-industry partnership program seeks to 

identify the most compelling opportunities for cross-boundary research that would link 

biomedical research to commercial opportunities.  In Germany, the Fraunhofer-

Gessellschaft is a partially state-supported application-oriented research organization that 

undertakes applied research of direct utility to private and public enterprises.  The 

Technology Strategy Board in the United Kingdom supports a range of research 

collaborations and runs programs such as its Knowledge Transfer Partnerships, which 

support UK businesses wanting to improve their competitiveness and performance by 

accessing the knowledge and expertise available within UK universities and colleges.  

Though there are many such programs globally, little research has been performed to 

assess the impact of these approaches on the quantity, impact and collaborative nature of 

knowledge produced especially from the perspective of the firms that receive them. 

We examine academic-industry partnerships sponsored by the Danish National 

Advanced Technology Foundation (Højteknologifonden), an agency of the Danish 

government.  In its unique mediated funding model, DNATF awards grants for projects that 

encompass cooperation between at least one academic institution and one firm.  DNATF 

kindly provided us with a novel dataset for this study that enabled us to determine the 

efficacy of their academic-industry funding model in terms of the quantity, impact and 

collaborative nature of innovative outputs of the firms. 

This work bridges the literature between innovation funding and the coevolution of 

science and technology by lending empirical evidence on the impact of academic-industry 

partnership grants on knowledge creation.  This study differs from other works in the 

innovation funding literature in that instead of focusing on traditional sources of funding 

such as venture capital, debt, initial public offerings, or basic research grants it investigates 

a setting that blurs institutional boundaries of science and technology.  It also takes a 
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distinctive perspective from the literature stream that investigates the effect of academic 

scientists crossing scientific and technological boundaries on knowledge production, by 

centering on the firm as the level of analysis and investigating the impact of cross academic-

industry projects on firm behavior and performance.  Specifically, we assess how this novel 

combination of funding and mediation with public research institutions is effective in 

helping firms survive, and partake in riskier and wider explorative activities that spur 

innovation.  We contrast a sample of funded firms with those that applied for DNATF 

funding but did not ultimately receive a grant.  Since all proposal applications to DNATF are 

ranked, we develop several sample specifications to ensure that we do not suffer from 

selection bias by including qualitatively similar funded and unfunded firms. 

Our results show that with subsamples of qualitatively similar small and medium 

enterprises and younger firms, the receipt of funds helps alleviate capital constraints by 

decreasing the likelihood of going bankrupt for funded firms.  Moreover, it also has 

consistent positive effects on both filed and granted patents for funded firms.  With regard 

to peer-reviewed publications, we only observe that forward citations to papers published 

by funded firms are significantly higher than those of unfunded firms, but surprisingly find 

no significant result for the quantity of publications nor for the cross-institutional 

collaborative nature of publications for funded firms. 

The structure of this work is as follows.  We begin by presenting the theoretical 

framework from the literature and develop testable hypotheses.  We then elaborate on the 

setting from which we compiled our data, detail the estimation methodology employed to 

run our analyses, and interpret our results.  Finally we discuss the contributions this work 

brings to the extant literatures and consider the implications for policymakers and 

managers.   
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ii. Theoretical Framework and Hypotheses 

Literature on the financing of innovation has extensively explored the effect of 

funding on organizational performance and innovative output in the form of grants for 

academic research (Azoulay et al., 2011), of early-stage funding such as angel investments 

(Kerr et al., 2011) and venture capital (Kortum & Lerner, 2000), and of more mature 

financing outlets such as initial public offerings (Bernstein, 2012).  Scholars in 

entrepreneurial finance have theoretically and empirically studied consequences of early-

stage funding.  Theoretical works suggested that the role of entrepreneurial financiers is not 

only to provide funding that relieves capital constraints but also alleviates agency problems 

between entrepreneurs and investors through monitoring and improved governance 

(Admati & Pfleiderer, 1994; Hellmann, 1998).  Empirical researchers have also causally 

tested these theoretical propositions.  For instance, Kerr, Lerner and Schoar (2011) showed 

that angel funding benefits ventures in improving subsequent survival, exit, employment, 

patenting and financing using regression discontinuity estimation.  Exploiting exogenous 

shocks, venture capital funding has been shown to causally lead to higher patenting rates 

(Kortum & Lerner, 2000) and positive impacts on employment and aggregate income 

(Samila & Sorenson, 2011). 

Although firms in our setting are not necessarily in early entrepreneurial stages, 

they still suffer from the same capital constraints that prevent them from undertaking risky 

innovative projects.  Therefore, we posit that firms successful in obtaining academic-

industry partnerships funding are less likely to file for bankruptcy, and more likely to take 

on R&D projects with resulting inventions encoded in patents.  

Hypothesis 1:  Firms that receive funded, mediated academic-industry partnerships 

are less likely to go bankrupt compared to non-funded firms 
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Hypothesis 2:  Firms that receive funded, mediated academic-industry partnerships 

produce more patents relative to non-funded firms 

Before continuing further, it is important to first elaborate the institutional 

differences between science and technology assumed throughout this study, where science 

is seen as a distinctive incentive system compared to technology.  The scientific institution 

is primarily embodied in research universities based on a priority-based reward system 

where outputs are mainly in the form of peer-reviewed publications.  The technology 

institution, in contrast, encodes ideas in protected modes, using for example patents, 

trademarks or copyrights, to facilitate commercialization and appropriation of economic 

rewards (Dasgupta & David, 1994).  Moreover, the two institutions differ in the nature of 

the goals accepted as legitimate and the norms of behavior, especially with regard to the 

disclosure of knowledge.  Science is concerned with additions to the stock of public 

knowledge, whereas technology is concerned with additions to the stream of rents that may 

be derived from possession of private knowledge.  Given this distinction between science 

and technology, the prior two hypotheses were derived for the technology institution that 

firms are part of.  However, given the cross institutional nature of academic-industry 

partnerships, we posit that obtaining such funding grants also alters firms’ behavior in 

partaking in basic research activities more deeply rooted within science.   

Firms have little incentive to undertake basic research because of the difficulty in 

protecting and patenting resulting knowledge since natural laws and facts are not 

patentable.  Very few firms are broad and diverse enough to directly benefit from all the 

new technological possibilities opened up by successful basic research.  Moreover, they are 

also confronted with the free rider problem that enhances use by others (Nelson, 1959). 

Thus, the high uncertainties and risks associated with basic research combined with the 
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difficult appropriability problem diminish incentives for firms to pursue basic research and 

may prompt those with limited funding to completely avoid it.   

With the help of governmental funding for academic-industry partnerships, we 

postulate that it provides firms with the motivation and the risk mitigation mechanism to 

assume more basic research, as encoded in peer-reviewed publications, that they otherwise 

would not have undertaken.  Thus, as suggested by Rosenberg (1990), firms with basic 

research capabilities can make more effective decisions about applied activities, build the 

capability to monitor and evaluate research being conducted elsewhere (such as in 

universities), and evaluate the outcome of applied research to recognize possible 

implications.  Moreover, since academic-industry partnership projects condense 

interactions between scientists and technologists and blur their institutional boundaries, 

spillover effects stimulate firms to take on more basic research.  

Hypothesis 3:  Firms that receive funded, mediated academic-industry partnerships 

produce more peer-reviewed publications compared to non-funded 

firms 

One stream of literature examining the interplay of science and technology has 

investigated the effect of patenting on scientists’ efforts to engage in subsequent scientific 

research.  These works take the perspective of academic researchers originating in the 

scientific institution who also take on patenting activities.  Thus the question of interest 

axes on understanding the effect of intellectual property rights on scientific research.  

Findings show that both the flow and the stock of scientists’ university patenting are 

positively related to subsequent publication rates (Azoulay, Ding, & Stuart, 2009), and even 

though patent volume does not predict publication volume, it positively affects paper 

citations, providing insight on the research impact of patents (Agrawal & Henderson, 2002).  

These results imply that patenting is a complementary activity to fundamental research 



 

 

 

 

115 

rather than a substitute.  Even though our setting differs from these studies in that we are 

studying firms that originated in the technological institution but partake in basic research 

activities in science, we can still postulate from these findings that firms granted academic-

industry funding are more effective at applying basic science results and therefore their 

peer-reviewed publications will receive more forward citations.  

Hypothesis 4: Firms that receive in funded, mediated academic-industry partnerships 

produce more frequently cited peer-reviewed publications relative to 

non-funded firms 

Only a few articles have empirically assessed the extent of overlap between science 

and technology (Murray, 2002, 2004).  Cockburn and Henderson (1998) provided empirical 

evidence that spillover effects between science and technology were not a simple waterfall 

model in which the public sector produced knowledge that spilled over costlessly to 

downstream researchers.  They showed that in order to take advantage of public sector 

research, firms must do more than simply hire the best scientists and invest in in-house 

basic research with appropriate pro-publication incentive systems.  Industry researchers 

must also actively collaborate with their academic colleagues, which improves access to 

public sector research and quality of research conducted within the firm.  Thus we postulate 

that given the close interactions between scientists and technologists when working on 

academic-industry partnership projects, collaboration and co-authoring across institutions 

increases. 

Hypothesis 5:  Firms that receive in funded, mediated academic-industry partnerships 

produce more cross-institutional collaborative outputs relative to non-

funded firms 

iii. Methodology 
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Setting 

Our setting is the Danish National Advanced Technology Foundation (DNATF) 

founded in 2005 by the Danish government, whose broad objective is to enhance growth 

and strengthen employment by supporting strategic and advanced technological priorities.  

It was created with the aim of making Denmark one of the world’s leading advanced-

technological societies.  DNATF provides governmental funding for academic-industry 

partnership collaborations, facilitating bridge building between Danish public research 

institutions and Danish companies in order to generate growth and technologies that 

benefit Danish society as a whole. 

DNATF is the only Danish governmental funding source that exclusively supports 

academic-industry research collaborations.  Funding for such collaborations, however, can 

also be obtained from other Danish governmental sources.1  DNATF uses a bottom-up 

approach in the application process.  It seeks to fund the best ideas within the broad realm 

of advanced technology.  The investment portfolio covers sectors ranging from robotics, 

agriculture, livestock, biotechnology and medicine, all the way to telecommunications.  

Based on all funded projects since DNATF’s inception in 2005 to 2011, the largest sector in 

DNATF’s portfolio is biomedical sciences, making up 30% of all investments, while 26% are 

in energy and environment, 20% in IT and communication, 14% in production, 5% in 

agricultural produce and food, and 5% in the construction sector.  Applications must 

include at least one academic scientist and one firm.  In choosing the best ideas, DNATF 

screens on three criteria: obvious business potential, internationally recognized high 

                                                             

1 The largest alternative state funding sources in Denmark are the Energy Technology Development and 

Demonstration Programme (EUDP), Green Development and Demonstration Programme (GDDP), The 

Danish Counsil for Strategic Research, the Business Innovation Fund, The Danish Counsil for Technology 

and Innovation, and finally, The Danish Public Welfare Technology Fund. 
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quality research and innovation, and entreneurship.  Applications are screened in two 

stages by the board of DNATF, which consists of nine leaders from Danish industry and 

science who have extensive and unique knowledge in their respective fields.  

The first application stage is the submission of a short expression of interest which 

identifies the core idea of the proposed project.  Each expression of interest is read and 

scored A, B, or C by each board member before a board meeting.  Individual board members 

form their own opinion a priori.  At the meeting, the aggregate scores by all board members 

are tallied at the starting point of the discussion on deciding whether to approve the 

particular expression of interest for the second round.  About 30% of the first round 

applications are approved and move into the second round, in which applicants prepare a 

more comprehensive proposal that explains the project idea in detail.  These applications 

are then subjected to a peer review process by two independent reviewers, and armed with 

these peer reviews DNATF’s board members again score each application with an A, B or C.  

Based on the aggregate scores and discussion, the board reaches a consensus on whether to 

fund each application.  From the applications that proceed to the second stage, about 40% 

ultimately receive funding.  During the final board meeting every year, a fixed pool of 

funding is awarded until fully exhausted,  thus eliminating the potential endogeneity issue 

of reverse causality where innovation drives funding.   

DNATF’s mediated facilitation model entails active follow-up on each investment 

throughout the project period.  A Single Point of Contact (SPOC), an individual who is part of 

the small DNATF staff, is assigned to each investment to act as a gatekeeper and link 

between the project and DNATF for the project duration.  The SPOC practices active follow-

up by participating as an observer in steering-group meetings, engaging in day-to-day 

dialogue with project participants, reporting quarterly to the board, and challenging the 

project participants on progress and issues throughout the project period.  The SPOC 
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focuses on facilitating effective collaboration between projects participants, maximizing the 

collaborative gains in the project.  

By the end of 2012, DNATF had made 238 investments with a total project budget of 

DKK 5,3202 million of which DNATF invested half in accordance with its 1-2-3 investment 

model where public research institution(s) fund 1/6 of the total budget, private firm(s) 2/6 

while DNATF funds 3/6.  Neither participating firms nor academic institutions are required 

to pay back the awarded funding, therefore using the self-financing scheme ensures that all 

parties have something at stake.  Full requested amounts are committed at the time of 

award, but progress payments are contingent on performance.  A project has a typical 

duration of 4 years and on average receives DKK 12 million from DNATF.  Figure IV-1 shows 

the distribution of funded amounts DNATF has awarded by project.  

DNATF project awards typically go to a team of one or two public research 

institutions teamed with an average of two companies.  In 2012, 84% of all investments had 

one or more universities as the participating public research institution.  The remaining 16% 

were either hospitals or universities and hospitals in cooperation.  Foreign companies are 

allowed to participate but cannot receive funding.  Of the unique companies in DNATF’s 

portfolio (duplicates not included), 59% have 49 or fewer employees,  17% have 50-249 

employees, 12% have 250-999 employees, and 12% have more than 1000 employees.3  The 

age distribution for DNATF funded firms is skewed towards younger firms with 38% of 

firms aged 5-years and younger, 22% between 6 and 10 years old, 8% from 11 to 15 years 

old, and 36% being 15 years and older. 

 

                                                             

2 DKK5,320 million is the equivalent of USD925 million at the October 2012 exchange rate of 

5.75DKK/USD 
3 Additional numbers are provided by DNATF’s yearbook. 
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Figure IV-1 – Frequency distribution of amount funded by DNATF (in DKK) 

 

Empirical Approach and Identification Strategy 

Full Sample from Second Stage of Selection Process 

The two-stage application process that projects undergo enables us to eliminate 

projects that failed to advance to the second stage of selection and concentrate only on 

those that did.  These projects are more similar in quality and partially resolve our problem 

of unobserved heterogeneity stemming from selection bias where the funded projects are 

more promising and have higher potential of success.  Thus, our first specification is the 

entire sample of firms that proceed to the second round of the evaluation process.   

At the end of 2011, a total of 49 investments had been finalized.  These finalized 

investments were all funded between 2005 and 2008.  Out of the projects that DNATF chose 

to invest in, 47 were finalized as usual and two were stopped before nominal project 

completion by DNATF.  Since there was no upper limit on the number of firms per project, 
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the 49 invested projects corresponded to 102 participating companies.  Among these 102 

companies, 16 were duplicates, i.e. companies which participated in more than one of the 

49 investments.  Thus, in total there were 86 unique companies which have been part of 

finalized DNATF investments and these make up our funded group.  For the matched 

control group, which consists of 105 companies we used firms that applied for DNATF 

funding from 2005 to 2008 and selected into the second round of review, but did not 

ultimately receive funding.  All firms in the control group were part of applications that 

would have been finalized by the end of 2011 or before.  Among the 105 companies 8 were 

duplicates, which amounted to a total of 97 unique companies in the control group. 

Qualitatively Similar Small and Medium Enterprises Sample 

A more detailed look at the sample of firms that received funding shows that it 

encompasses an extremely heterogeneous set along the dimension of firm size.  While most 

of the firms that received funding are small and medium size enterprises (SME) defined as 

companies with 250 employees or less, some funding recipients boasted headcounts into 

the thousands of employees.  Given the limited range (DKK 2,550,000 to DKK 62,400,000) in 

the amount of funding provided by DNATF, its impact would be more substantially felt in 

small and medium enterprises where the amount of funding comprises a sizable portion of 

the firm’s R&D budget.  Although larger companies still benefit from the influx of capital 

brought by funding, its impact would be likely less evident, as the funded amount only 

represents a small fraction of the firm’s R&D budget. 

Despite dropping firms whose projects did not advance to the second round of the 

application process as well as those with more than 250 employees, the reader may still 

argue that the difference between the best firms in the funded sample and the worst firms 

among the unfunded ones is still significant and that the sample specification still suffers 
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from selection bias and unobserved heterogeneity.  To address this issue, our second 

sample comprises of qualitatively similar ex ante projects except in their probability of 

funding.  We exploit scores given by DNATF board members in their assessment for each 

application proposal as a quasi-ranking system, and drop from the sample the best funded 

firms and the worst unfunded firms.  Interviews with DNATF staff revealed that an 

assessment of A for a project indicates that a board member believes that the project is 

highly worthy of support, B indicates that the project is worthy of support, whereas a C 

indicates not worthy of support.  We translate this evaluation into a normalized score as 

dictated by Equation IV-1 for firm i, where A, B and C are binary variables equal to 1 based 

on the assessment of board member k.  Moreover an A assessment is assigned a score of 10, 

B a score of 0 and C a score of -10. 

Equation IV-1          
   (∑    ∑   )

∑ (     ) 
 

For each tranche of the normalized score, we identify the fraction of firms that are 

funded.  In column 2 of Table IV-1, we observe that the fraction of funded firms increases 

monotonically as the normalized score increases.  We see that at the lower end no 

applications with a normalized score of less than -2.5 were funded, and are therefore 

dropped from the sample.  We also drop the top 5% of firms with normalized scores of 

above 8.5.  Consequently, we define our narrow band of qualitatively firms to be those with 

normalized score in the range [-2.5, 8.5], effectively creating a matched sample of funded 

and unfunded firms. 

Several characteristics of the data led us to believe that observable heterogeneity 

from sample selection can be eliminated.  First, since DNATF does not have explicit funding 

rules that lead to systematic funding decisions as the selection process hinges on board 



 

 

 

 

122 

member assessment and votes, the cutoff score for funding is not known in advance to 

applicants and therefore cannot be gamed or manipulated. 

 

Normalized 

score 
Funded (%) 

Number of 

applications 

Applications 

(%) 

Cumulative 

applications 

(%) 

[-7.5,-5) 0.0%  9  7.3% 7.3% 

[-5, -2.5) 0.0%  17  13.8% 21.1% 

[-2.5, 0) 15.4%  13  10.6% 31.7% 

[0,2.5) 37.1%  35  28.5% 60.2% 

[2.5, 5) 42.1%  19  15.4% 75.6% 

[5, 7.5] 86.7%  15  12.2% 87.8% 

[7.5, 10] 100.0%  15  12.2% 100.0% 
 

Table IV-1 – DNATF funding selection by normalized score 

 

Second, if we were to use unfunded firms as a matched sample to the funded ones, 

there should be no significant difference in the observables for unfunded and funded firms 

within of narrow range of normalized scores.  We test this criterion using two-sided t-tests.  

Table IV-2 shows that firms situated within this narrow bandwidth were not significantly 

different on all observable dimensions at the time of application.  These results are critical 

in order to draw causal inferences on the effect of the funding on firm performance and 

innovative performance.  Moreover, a predictive logit regression model of the probability of 

funding – regressing a dummy funded variable on all observable explanatory variables listed 

in Table IV-2 – yields no significant result on any variable.  

Consequently, our second sample specification consists of the region in which firms 

are most comparable – those with normalized scores in the range of [-2.5, 8.5] – dropping 

from the sample firms at the lowest and highest ends of the normalized score distribution, 

which amounts to 39 funded and 43 unfunded firms.  
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Characteristic Unfunded Funded 

 Two tailed 

t-test 

age of firm 8.16 7.79 0.84 

proposed duration  3.00 3.00 1.00 

funding amount  12700000 12400000 0.85 

number of parties 5.12 5.56 0.54 

patents filed 3.29 1.16 0.29 

patents granted 2.66 0.84 0.35 

publications 4.02 6.44 0.46 

forward citations 119.19 136.79 0.85 

cross-institutions 2.28 3.28 0.62 

n 43 39   

 

Table IV-2 – Comparison of funded and unfunded firm observables for SMEs 

 

Qualitatively Similar Younger Firm Sample 

 

Characteristic Unfunded Funded 

 Two tailed 

t-test 

age of firm 5.16 5.26 0.89 

proposed duration  3.09 3.00 0.63 

funding amount  14800000 13200000 0.46 

number of parties 5.13 5.37 0.73 

patents filed 3.70 1.85 0.40 

patents granted 2.98 1.34 0.43 

publications 7.84 6.71 0.83 

forward citations 147.13 141.80 0.96 

cross-institutions 4.09 3.97 0.97 

n 45 38   

 
Table IV-3 – Comparison of funded and unfunded firm observables for young firms 

 
Instead of small and medium enterprises, we take another cut at the data using age.  

From the skewed age distribution of firms, we first define a subsample of firms that are 15 

years and younger, which yields 55 funded and 74 unfunded firms.  Then, following the 

same method described above, we determine qualitatively similar younger firms.  We find 

the same normalized score range of [-2.5, 8.5], which amounts to 38 funded and 45 
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unfunded firms.  Similar to Table IV-2, Table IV-3 shows that observable measures of 

younger firms are not significantly different for the funded and unfunded samples at the 

time of project application. 

Outcome Variables 

Hypothesis 1 explores whether receiving DNATF mediated funding decreases the 

likelihood of bankruptcy for firms.  We obtain data on whether a firm in our sample is 

bankrupt up to four years subsequent to funding application.  The outcome variable is an 

indicator (bankrupt) that takes on the value of 1 if the firm is bankrupt four years after 

funding application and 0 if it is still operating.  We stopped tracking this outcome variable 

and all other outcome variables four years after application to maintain consistency 

throughout our dataset, since our sample includes firms that applied for funding in 2008 

where only four years have elapsed at time of data gathering in October 2012.   

Hypothesis 2 investigates the relationship between academic-industry funding and 

the quantity of knowledge produced measured by the number of patents.  We use the 

number of granted patents (patents granted) assigned to the firm as filed for each year up to 

four years after the year of application as well as the number of unissued patents filed 

(patents filed) for each year up to four years after the year of application.  All outcome 

variables for hypothesis 2 onward are in long panel form by firm-year. 

Similarly in hypothesis 3 for peer-reviewed academic papers, we count the number 

of peer-review papers (publications) researchers of the firm have published for each year 

up to four years after the year of application. 

Hypothesis 4 focuses on the impact of knowledge produced from mediated 

academic-industry partnership projects.  We operationalize the impact of publications using 

the commonly employed measure of forward citations.  Consequently, we count the number 
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of citations (forward citations) garnered in all peer-reviewed publications for each year up 

to four years after the year of application. 

Finally, hypothesis 5 explores the co-evolutionary nature of science and technology 

in mediated academic-industry partnership projects.  To see the effect of the academic-

industry partnership funding, we count the number of instances (cross-institutions) where 

peer-review publications by a firm are published in collaboration with at least one co-

author affiliated with an academic institution for each year up to four years after the year of 

application.  We planned to develop a similar measure for patents, but affiliation data for 

inventors do not include the institution for which they work and therefore we could not 

make any rigorous inferences as to their professional affiliation.  

Datasets 

As described earlier, our dependent variables fell within three categories – 

bankruptcy data, patent variables and publication variables – each of which required a 

different data source.  

Bankruptcy data was collected using BiQ Erhvervsinformation (BiQ), a database that 

includes all registered Danish firms and provides yearly information on each firm from 20-

30 years ago onwards.  The company data we used from BiQ is updated daily from the 

Danish Business Authority, a governmental database that keeps comprehensive information 

on all Danish firms.4   

Data for patent variables was collected at the firm level using Google patents.  Firm 

name was used to match for patent assignees, with some minor adjustments due to Danish 

letters not found in the English alphabet.  The dataset for both filed and granted patents is 

                                                             

4 Other Danish alternatives to BiQ include Statistics Denmark (Danmarks Statistik), which is the main data 

source for census type data.  Statistics Denmark also keeps information on firms, however this information 

is only available on an aggregated level in contrast to the more nuanced yearly firm level data from BiQ.   
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in long panel form from time t-4 to time t4, for fours years before and after the application 

year amounting to a total of nine years of data (four years prior to funding, four years after 

funding and t0).  

Publication variables were collected from the Web of Science.  Again, we used firm 

name to search for publications with relevant organizational affiliation, where we extracted 

the quantity and impact of publications per firm using respectively the number of 

publications and the number of citations garnered by these publications as proxies.  One 

additional variable on cross-institutional co-authorship, papers published in cooperation 

between firm(s) and universities, was also constructed.  Similar to patents all publication 

variables were collected annually for four years before and after the year of funding 

application as well as the year of funding itself. 

Finally, a number of basic variables were obtained from DNATF’s database and 

integrated into the dataset.  These consisted mainly of information on the specific project or 

application each firm has been part of, such as the year of application used to derive the post 

indicator as well as whether a project was funded or not.  Variables such as industry sector, 

project duration and amount of funding were all included as comparable ex ante 

observables in the analyses. 

Regression Model Estimation 

In hypothesis 1 because the bankrupt outcome variable is not in panel form but 

rather an indicator of whether a firm is bankrupt 4 years after funding application, we used 

probit models with cluster robust standard error on all three sample specifications 

described above. 

To test for hypotheses 2 to 5 on each sample specification described above, we 

employed for our estimation a diffence-in differences (DiD) model, specified as follows: 
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Equation IV-2                             (                )  

  (                )    (                )    (                )  
              

The outcome variable is        for firm i at time t for funded state s.  Since we are assessing 

the effect of academic-industry partnership funding, the first difference is that between 

funded and unfunded firms, and the second difference is that between the pre and post 

funding periods.  Thus funded is an indicator of whether a firm i has received funding at 

time t0, while post is an indicator of being after the funding event.  The difference-in-

differences is captured by the interaction effects of         and      , and since we are 

interested in effect trends, we also interact the DiD with a time indicator of    to    for each 

year after funding.  Thus coefficients    to    are our coefficients of interest.  For each firm i 

in the vector       of length j, we also control for observables by including application year 

fixed effects and industry fixed effects. 

Since all variables for patents and papers (number of patents and papers, number of 

citations and number of cross-institutional papers) are non-negative and over-dispersed 

counts, we used quasi-maximum likelihood Poisson models with cluster-robust standard 

errors to circumvent the assumption of equal mean and variance distribution for Poisson 

models and minimize estimation bias. 

iv. Results 

This section shows results for the hypotheses we proposed earlier in an effort to 

empirically bring evidence to the research questions of how does academic-industry 

partnership funding affect firm innovative performance.  Table IV-4 shows the summary 

statistics including the mean, standard deviation, minimum and maximum for each 

dependent variable as well as the funded and post indicator variables. 
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Variable 
Observation 

number 
Mean Std. Dev. Min Max 

normalized score 1629 2.0196 4.564143 -7.5 10 

proposed duration 1845 3.063415 0.7333031 1 5 

amount funded by DNATF 1728 1.35E+07 9756608 2550000 6.24E+07 

number of parties 1845 5.663415 3.674086 2 19 

funded 1845 0.4926829 0.500082 0 1 

post 1845 0.4444444 0.4970387 0 1 

SME 1737 0.6839378 0.4650714 0 1 

young firm 1845 0.6292683 0.4831317 0 1 

bankrupt 202 0.0445545 0.206836 0 1 

patents filed 1827 3.217843 11.19599 0 178 

patents granted 1827 1.383142 4.961285 0 49 

publications 1782 2.070707 18.09965 0 337 

forward citations 1773 15.40835 80.91633 0 1553 

cross-institutions 1773 0.6739989 2.536591 0 41 

 
Table IV-4 – Summary statistics  

Placebo Test on Period Prior to Funding Event 

Before showing our main results for the period after the funding event, we ran 

placebo tests to ensure that trends in the outcome variables prior to the funding event were 

not significantly different between the would-be funded and unfunded firms.  Figure IV-2 

graphically depicts one such trend for granted patents in the qualitatively similar younger 

firm sample with pre and post funding periods.  Thus for all outcome variables except 

bankrupt (since all firms at time of application t0 were all operating), we ran DiD 

regressions using the same estimation model as in Error! Reference source not found. 

with data for time t-4 to time t0 as if the funding event occurred at time t-4 and include four 

subsequent years of data after funding from time t-3 to t0.  For all outcome variables of 

innovative quantity, impact and collaborative nature, we found no significance in the DiD 

coefficients, which implies that no significant difference in our outcome variables of interest 

existed between funded and unfunded firms prior to the actual funding event at t0.  The 
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placebo test regression tables are not included herein, but can be obtained from the author 

upon request.   

 

  

Figure IV-2 – Graphical depiction of the number of granted patents for both funded and 

unfunded firms for periods before and after funding at t0 using the qualitatively similar 

sample of younger firms. 

 

Effects on Firm Survival 

Table IV-5 reports results for the firm’s likelihood of going bankrupt for all three 

sample specifications, controlling for industry and application year fixed effects.  We find for 

all three sample specifications that funded firms are significantly less likely to go bankrupt 

four years after applying for funding.  The first model in Table IV-5 shows that firms 

successful in obtaining funding are 1.34 times more likely to survive up to 4 years after 

receiving funding compared to non-funded firms that went through the same application 

process while employing the full sample of firms in the second round of selection.  Similarly 

restricting the sample to qualitatively similar SMEs, the second model shows that funded 

firms are 2.48 times more likely to survive.  And finally, for the sample of qualitatively 

similar younger firms, we find analogous effects where funded firms are 2.31 times more 
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likely to survive than non-funded ones.  Specifically, hypothesis 1 is confirmed.  Therefore 

our results provide empirical evidence on the hypothesis that mediated funding for 

academic-industry partnerships alleviates capital constraints for firms and increases the 

likelihood for a firm to remain in business. 

 

 

Full QS SME QS Young 

Probit Models b/se b/se b/se 

 Model 1 Model 2 Model 3 

funded -1.343** -2.480** -2.306** 

 

(0.39) (0.79) (0.81) 

constant -4.682** -4.094** -4.087** 

 

(0.54) (1.01) (1.03) 

N.Obs 179 63 67 

Log-Likelihood -29.849 -12.269 -12.808 

+ p<0.10, * p<0.05, ** p<0.01 

   

Table IV-5 – Bankruptcy data.  Probit regression models with bankruptcy as indicator 

outcome variable four years after receiving funding, run on all three sample specifications: 

full sample in second round selection, qualitatively similar SMEs, and qualitatively similar 

young firms. 

 

Effects on Quantity of Firm Innovations 

We now shift to explore the effect of receiving funding on firm innovative 

performance, including productivity in patents and publications.  We measure the effect of 

receiving funding on a firm’s innovative productivity by counting the number of filed and 

issued patents after application, as well as the number of peer-reviewed publications.  Table 

IV-6 shows our findings for the number of filed and granted patents, while Table IV-7 

displays results for publication count. 

In Table IV-6, we find that especially for the two qualitatively similar sample 

specifications the number of filed patents after funding application is significantly higher for 

funded firms than for non-funded ones.  Specifically, in models 2 and 5 for the narrowly 
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defined qualitatively similar SMEs, we find that funded firms file between 3.6 times (e1.282) 

and 4.7 times (e1.557) more patents than unfunded firms in the four years after funding 

application, and funded firms receive between 4.0 times (e1.376) and 6.9 times (e1.928) more 

granted patents when filed up to three years after funding application.  Comparable strong 

significant results are also observed for qualitatively similar younger firms.  Models 3 and 6 

respectively show that funded firms file between 2.1 times (e0.723) and 2.3 times (e0.812) 

more patents up to four years after funding application, and receive between 3.4 times 

(e1.218) and 5.5 times (e1.701) more granted patents when filed up to four years after funding 

application.  Thus, we find strong empirical evidence that confirms hypothesis 2. 

 
  Patents filed Patents granted 

Poisson Full QS SME QS Young Full QS SME QS Young 

Models b/se b/se b/se b/se b/se b/se 

 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

post -0.012 -0.820** -0.421 -0.997* -1.386** -1.265** 

 
(0.35) (0.16) (0.27) (0.43) (0.50) (0.24) 

funded 2.504** 1.162+ 1.684** 2.583** 1.464 1.602 

 
(0.42) (0.65) (0.48) (0.70) (1.00) (1.08) 

post*funded*t1 0.086 1.557** 0.723* 1.013* 1.928** 1.677** 

 
(0.37) (0.33) (0.29) (0.48) (0.65) (0.28) 

post*funded*t2 0.334 1.282** 0.792** 1.032* 1.376* 1.701** 

 
(0.42) (0.32) (0.28) (0.45) (0.64) (0.31) 

post*funded*t3 0.416 1.319** 0.744* 0.995* 1.427* 1.576** 

 
(0.36) (0.48) (0.30) (0.43) (0.63) (0.24) 

post*funded*t4 0.251 1.423** 0.812** 0.427 0.629 1.218* 

 
(0.38) (0.37) (0.31) (0.49) (5.92) (0.55) 

constant -1.513+ -2.145 -0.152 -2.114+ -2.124 -0.211 

 
(0.79) (11.19) (1.15) (1.15) (11.18) (1.65) 

lnalpha constant 1.727** 1.250** 1.297** 1.998** 1.516** 1.524** 

  (0.14) (0.26) (0.19) (0.14) (0.22) (0.33) 

N.Obs 1818 729 738 1818 729 738 

Log-Likelihood -2720.374 -826.474 -1077.889 -1387.208 -338.517 -525.375 

+ p<0.10, * p<0.05, ** p<0.01 

     
Table IV-6 – Patent data. DiD QML Poisson count regression models with cluster robust 

standard errors for filed and granted patents filed up to four years after funding, run on all 

three sample specifications: full sample in second round selection, qualitatively similar 

SMEs, and qualitatively similar young firms.  
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Similarly we show results for the effect of mediated academic-industry partnership 

funding on the count of peer-reviewed publications in Table IV-7.  Surprisingly, we find no 

consistent significant results for the three sample specifications; although for the 

qualitatively similar sample of SMEs, results are weakly significant for one and three years 

after funding and significant four years after funding (funded firms publish 3.0 times (e1.091) 

more peer-reviewed papers).  Overall the results are such that even though funded firms 

participate in cross-institutional projects that are arguably based on more basic science, 

they do not publish their findings in peer-reviewed papers more than unfunded firms.  Thus 

hypothesis 3 is only weakly supported for the qualitatively similar SME sample. 

 
  Publications 

Poisson Full QS SME QS Young 

Models b/se b/se b/se 

 
Model 1 Model 2 Model 3 

post 0.343 0.441 0.41 

 
(0.21) (0.36) (0.30) 

funded 1.447** -0.507 0.214 

 
(0.55) (1.12) (1.13) 

post*funded*t1 -0.003 0.771+ 0.422 

 
(0.29) (0.47) (0.47) 

post*funded*t2 0.08 0.653 0.141 

 
(0.28) (0.52) (0.56) 

post*funded*t3 0.148 0.896+ 0.457 

 
(0.30) (0.49) (0.45) 

post*funded*t4 0.275 1.091* 0.656 

 
(0.30) (0.45) (0.48) 

constant -0.904 -1.404 -0.119 

 
(0.96) (5.57) (1.21) 

lnalpha constant 1.957** 1.666** 1.477** 

  (0.14) (0.31) (0.26) 

N.Obs 1773 729 702 

Log-Likelihood -1190.805 -392.433 -465.262 

+ p<0.10, * p<0.05, ** p<0.01 

  
Table IV-7 – Publication data. DiD QML Poisson count regression models with cluster robust 

standard errors for the number of peer-reviewed papers up to four years after funding, run 

on all three sample specifications: full sample in second round selection, qualitatively 

similar SMEs, and qualitatively similar young firms.  
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Effects on Impact of Firm Innovations 

Beyond assessing the quantity of innovative productivity, we also explore their 

impact.  We employ the commonly used measure of citations to operationalize impact for 

peer-reviewed papers.  These results are shown in an analogous setup in Table IV-8 for all 

three sample specifications.  We find positive results for the effect of mediated funding on 

innovative impact.  For qualitatively similar SMEs in model 2, we find the most consistent 

significant results with funded firms being cited between 3.3 times (e1.196) and 9.6 times 

(e2.261) more than unfunded firms.  For qualitatively similar younger firms in model 3, even 

though the coefficients of interest are sometimes only weakly significant, publications from 

funded firms are still directionally more cited than those from unfunded ones.  Thus, we 

find evidence for hypothesis 4. 

Effects on Collaborative Nature of Firm Innovations 

The last set of analyses investigates the collaborative nature of the academic-

industry partnership.  Table IV-8 shows whether participation in such cross-institutional 

projects changed the collaborative nature of the innovation produced.  Our outcome 

variable is defined as the number of papers published up to four years after application in 

which co-authors are affiliated with different institutions.  For a publication to count as 

cross-institutional at least one author has to be from academia while another one from a 

firm.  Surprisingly again, all three sample specifications yield no significant results which 

implies that researchers in funded firms do not collaborate more with their peers in 

academic institutions than those in unfunded firms, thus hypothesis 6 is not verified.   
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  Forward Citations Cross-Institutions 

Poisson Full QS SME QS Young Full QS SME QS Young 

Models b/se b/se b/se b/se b/se b/se 

 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

post -0.177 -0.415 -0.42 0.526* 0.673 0.598 

 
(0.35) (0.31) (0.42) (0.23) (2.83) (0.56) 

funded 0.861 -1.117 -0.233 1.296** -0.46 0.364 

 
(0.70) (1.75) (2.04) (0.41) (3.27) (1.48) 

post*funded*t1 0.518 2.023* 1.589+ -0.182 0.618 0.182 

 
(0.62) (0.82) (0.82) (0.27) (4.02) (0.74) 

post*funded*t2 0.3 1.483** 0.995 -0.105 0.707 0.079 

 
(0.44) (0.43) (0.73) (0.28) (2.77) (0.79) 

post*funded*t3 0.633 2.261* 1.784+ 0.069 0.789 0.275 

 
(0.65) (0.93) (1.06) (0.30) (2.81) (0.72) 

post*funded*t4 0.08 1.196+ 0.783 0.336 1.159 0.643 

 
(0.51) (0.69) (0.69) (0.33) (2.77) (0.74) 

constant 2.422 1.772 3.129 -0.624 -1.626 -0.303 

 
(1.81) (4.09) (2.34) (1.02) (4.89) (1.85) 

lnalpha constant 2.713** 2.446** 2.338** 1.871** 1.604** 1.409** 

  (0.14) (0.21) (0.19) (0.14) (0.39) (0.37) 

N.Obs 1764 729 702 1764 729 702 

Log-Likelihood -14605.259 -5094.846 -6299.557 -1043.267 -352.015 -422.861 

+ p<0.10, * p<0.05, ** p<0.01 

     
Table IV-8 – Publication data. DiD QML Poisson count regression models with cluster robust 

standard errors for the number of forward citations and cross-institutional collaborations 

of peer-reviewed papers filed up to four years after funding, run on all three sample 

specifications: full sample in second round selection, qualitatively similar SMEs, and 

qualitatively similar young firms. 

 

v. Discussion and Conclusion 

Implications for Literature 

This work provides empirical evidence on the effect of a novel source of 

governmental funding using mediated academic-industry partnerships on firm innovative 

performance, by bridging the entrepreneurial finance literature with that studying the 

interplay between institutions of science and technology.  To the best of our knowledge this 

work is the first to show the effect of such funding sources using a setup that eliminates 

observable selection bias at the level of the firm.   
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To summarize our results, we observe compelling evidence that mediated academic-

industry partnership funding alleviates capital constraints and increases the financial 

viability of a firm, thereby decreasing the likelihood of bankruptcy four years after funding.  

Moreover, academic-industry partnership funding also increases the number of patents 

firms file and are granted.  Thus when provided with more funding, firms are able to take 

advantage of the extra capital to increase their stock of knowledge and encode them in the 

familiar method of patents.   

Unexpectedly, obtaining academic-industry partnership funding does not increase 

the number of peer-reviewed papers published by funded firms.  Despite the extra capital 

from funding that should incentivize firms to take on more basic research and higher risk 

projects as well as spillover effects during the projects while working alongside academic 

partners, funded firms do not significantly encode more knowledge in peer-reviewed 

papers compared to unfunded firms.  This may be explained by the lack of increased cross-

institutional collaborations in peer-reviewed publications despite the cross-institutional 

composition of partners in the projects.  Thus partners are siloed and ingrained within their 

initial institutional logics, while institutional norms are still prevalent despite participation 

in a setup conducive to enhanced spillovers.  However, the significant positive result for the 

impact of peer-reviewed publications in funded firms is an indication that even though the 

amount of basic research encoded in publications is not significantly higher for funded firms, 

the scientific knowledge that does get published garners more applications and is more 

easily diffused. 

Implications for Practitioners and Policymakers 

From these above results, one must be careful in making policy prescriptions.  As 

evidenced by our results when implementing such funding programs, governments are able 
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to incentivize firms in undertaking more R&D projects translated into patents and that 

become more widely applied as evidenced by increased forward citations of peer-reviewed 

publications.  As a way to help companies remain competitive, governments can view this 

approach as a potential policy tool for faster application and commercialization.   

However, whether firms take on more basic science R&D projects that enable faster 

and more efficient recognition of spillover opportunities between science and technology is 

uncertain.  Considering peer-reviewed publications as a method primarily used by the 

scientific institution to encode basic scientific knowledge, the absence of a significant 

positive result for peer-reviewed publications in funded firms reflects the lack of success in 

incentivizing for more basic research.  The partnership structure of requiring academics to 

work in collaboration with researchers in private firms suggests that both science and 

technology develop concurrently instead of via the waterfall model proposed in earlier 

works (Freeman, 1992; Mansfield, 1995).  However, the lack of increased collaboration 

between scientists from different institutions in funded firms may be an indication that 

institutional partners are still isolated within the project and that a division of labor 

between academic scientists and industry scientists is still customary.   

This partnership structure creates the potential for a novel model of interaction 

between the realms of science and technology that strays away from the conventional belief 

of dedicated gatekeepers that straddle both institutions (Cockburn & Henderson, 1998; 

Murray, 2004).  Instead of having single actors transfer knowledge back and forth between 

independent silos of science and technology, our setting temporally breaks down the 

boundaries between the two institutions and enables teams of individuals from both sides 

to work together alongside one another.  However, it is difficult to assess the effectiveness 

of such a spillover setup from our results. 
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Limits and Weaknesses 

Despite showing interesting outcomes of mediated academic-industry partnership 

funding on firm innovative performance, this work still suffers from several limitations and 

weaknesses.  Thus, the interpretation of our results should be made with care.  We are 

unable to address an important question for practitioners: how partnerships in which team 

members come from very different institutional roots can be effectively managed.  In effect, 

we show the relationship between input – mediated funding and output – firm performance 

– without delving inside what remains a black box.  Preliminary qualitative interviews (n 

=12) with project managers of these academic-industry partnership projects indicated that 

some big challenges they faced were getting individuals from different institutions to align 

their goals, understand each other and collaborate effectively.   

From a policy standpoint, this work has difficulty teasing apart the effect of 

providing funding from the novel mediated intervention model specific to DNATF since our 

sample of firms does not provide us with any source of variation on this intervention 

dimension.  As explained in the Setting section, DNATF’s mediated intervention model 

implies active follow-up on each project throughout the project period where a DNATF staff 

member is assigned and acts as the single point of contact throughout the funded project’s 

lifetime.  Compared to more conventional funding schemes where funded projects are left 

more or less on their own to meet pre-established deliverable deadlines, DNATF stays much 

closer to each project, frequently mediating conflicts that arise among funded parties.  

Finally, since we have studied one specific funding scheme in one specific country, 

the generalizability of our results may have limitations.  However, as we have not 

concentrated on the intricacies and idiosyncrasies specific to our setting, and instead 

attempted to explore more largely the effect of funding, we strongly believe that the 

implications of our results can be interpreted more broadly.   
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Future Research 

Despite these limitations and weaknesses, we have exposed several interesting 

future research topics beyond the research question explored herein of how mediated 

academic-industry funding affects firm innovative performance.  From a management 

perspective, understanding the challenges of managing conflict inside partnerships that are 

“virtual companies” with multiple cross-institutional stakeholders is vital.  Research can 

explore how such projects can be effectively managed and what factors make these projects 

more successful.  For policymakers designing effective funding programs, understanding 

DNATF’s mediated funding and intervention model can offer powerful insights into cross-

discipline and cross-boundary project management.  Finally, from the perspective of the 

literature on the micro-foundations of innovation we can lower our level of analysis to 

understand the effect of such partnerships on individual level productivity and subsequent 

impact.
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VI. Appendix 

i. Interview Questions for Chapter III 

Open-Ended Questions 

- Describe your work leading to 1997, in 1998 and after 1998. 

Probing Questions 

Breakthrough 

- In the period of 1997-1998 were you and your peers aware that a breakthrough was 

about to be discovered?  Was there excitement due to a potential impactful 

discovery? 

- Were scientists trying to solve a specific puzzling mechanism or did they just 

happen to stumble on the RNAi mechanism by chance while looking for something 

else? 

- Were there many teams working towards solving the same problem? Was there 

racing?   

- Do you feel like the breakthrough could have been made earlier? Why? What was 

the missing link that prevented it?  

- Was the discovery and its results a surprise? In terms of simplicity or complexity of 

the solution, in terms of who made the discovery? 

- Before you chose your research direction, how do you evaluate the potential impact 

of your research?  How?   
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- What papers or findings spurred your interest in RNAi research?  What works had a 

decisive influence on your research interests?  

- What experiments, field or prior breakthroughs do you believe paved the road to 

the discovery? What inventions (tools), environment fostered the discovery? 

- Were you aware of the similar co-suppression and quelling results obtained in 

plants and fungi? / As a plant scientist did you think that co-suppression and 

quelling would be present in animals? 

 

Community 

- Was there a defined community of RNAi scientists prior to breakthrough?  

- How would you define the community of RNAi scientists prior to breakthrough?  

Which subfields of biology came together to form such a community? 

- How would you characterize this community? Social, open or collective?  

- How open was the community of scientists working towards solving this discovery? 

Was there an informal group established that frequently communicated and shared 

their ideas? Or were results withheld? 

- What kind of conference/research seminars did you attend at the time, was it 

phenomenon-based, organism-based or something else? 

- How do you think about conferences? What role do conferences play in your 

research? 

- In your opinion, did the breakthrough come from within the community or from 

outside? 

- In your opinion, who were the big contenders in the community to discover the 

mechanism to RNAi?  Why? 
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