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Abstract 
 

When one body slips on another, heat is generated at the slipping interface. 

We call this phenomenon slip heating and apply slip heating theory to cohesive 

and adhesive slip in extrusion dies. Adhesive slip, which is linked to melt fracture, 

is a breakdown of the no slip boundary condition at the die wall, where the fluid 

moves with respect to the wall. Die drool, the accumulation of plastic on the open 

die face, has been attributed to cohesive melt failure, which results in the 

formation of a bulk layer that slips on a drool layer. The corresponding isothermal 

analysis of cohesive slip led to an analytical solution for the drool rate 

[Schmalzer and Giacomin, J. Pol. Eng., 33, 1 (2013)]. We account for slip heating 

during adhesive and cohesive slip and develop analytical solutions for 

temperature rise with and without viscous dissipation. We focus on slit flow, 

used in film casting, sheet extrusion and curtain coating, and when curvature can 

be neglected, slit flow is easily extended to pipe extrusion and film blowing. In 

slit flow, the heat flux from the slipping interface is the product of the shear 

stress and the slip speed. We present the solutions for the temperature rise in 

pressure-driven and simple shearing flows, each subject to constant heat 

generation at the slipping interface. We find expressions for drool rate by 

modeling viscosity as an Arrhenius function of temperature, and we show how 

to correct wall slip data for the slip heating temperature rise. We conclude with 

worked examples showing the importance of slip heating in die drool and wall 

slip, and we find that slip heating suppresses drool. We also arrive at a necessary 

dimensionless condition for the accurate use of our results:   Pé≪1 . 
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Table 1: Dimensional Variables 
 

Name Symbol Dimensions Range 
Absolute pressure  p    ML−1t−2   ≥ 0  
Absolute temperature  T   T   ≥ 0  
Absolute temperature, bulk 
fluid  Tb   T   ≥ 0  
Absolute temperature, drool 
layer  Td   T   ≥ 0  
Absolute temperature, fluid  Tf   T   ≥ 0  
Absolute temperature, initial   T0   T   ≥ 0  
Absolute temperature, 
interface at steady state  Ti,∞   T   ≥ 0  
Absolute Temperature, melt 
degradation  TD   T   ≥ 0  
Absolute temperature, 
reference  Tr   T   ≥ 0  
Absolute temperature, slip 
interface  Ti   T   ≥ 0  
Absolute temperature, wall  Tm   T   ≥ 0  
Absolute temperature, wall 
exterior  Tw   T   ≥ 0  
Acceleration of gravity  g    Lt−2

  ≥ 0  
Area (normal vector)   

!
A    L2

  ≥ 0  
Arrhenius exponential 
constant  B   T   ≥ 0  
Bulk fluid thickness   2b   L   ≥ 0  
Characteristic length [see 
Eq. (124)]  

Ξ ≡
τ cL
Δp   L   ≤ 0  

Cohesive/Critical fracture 
strength  τ c    ML−1t−2   ≥ 0  
Density ρ    ML−3   ≥ 0  
Density: fluid, wall  ρ f ,ρm    ML−3   ≥ 0  
Die gap (cohesive)/ 
Total die thickness: gap + 
walls (adhesive) 

 h   L   ≥ 0  

Displacement (vector)   
!
d   L    !3  

Distance from die entrance or 
end of sample  y   L   ≥ 0  
Distance from slip interface  x   L   −d ≤ x ≤ b  
Drool layer (Cohesive)/ 
Wall thickness (Adhesive)  d   L   ≥ 0  



 ix 

Extra stress tensor1  τ    ML−1t−2    !3  
Force (vector)   

!
F    MLt−2    !3  

Heat capacity, isobaric  Ĉp    L2t−2T−1   ≥ 0  
Heat capacity, isobaric: fluid, 
wall  Ĉp, f ,Ĉp,m    L2t−2T−1   ≥ 0  
Heat flux vector   

!q    Mt−3   !  
Interfacial heat flux   qi ≡ qx x=0

= usτ c    Mt−3   ≥ 0  
Interfacial slip speed  us    Lt−1   ≥ 0  
Power   !Q    ML2t−3   !  
Sample or slit length  L   L   ≥ 0  
Shear stress1  τ ij    ML−1t−2   ≥ 0  
Slip activation energy  Es   T   !  
Slit pressure drop  ΔP    ML−1t−2   ≤ 0  
Slit width  w   L   ≥ 0  
Temperature change, slip 
heating  ΔTSH   T   ≥ 0  
Temperature change, slip 
heating + viscous dissipation  ΔTSHVD   T   ≥ 0  
Thermal conductivity  k    MLt−3T−1   ≥ 0  
Thermal conductivity: fluid, 
wall  k f , km    MLt−3T−1   ≥ 0  
Thermal diffusivity α    L2t−1   ≥ 0  
Thermal diffusivity: fluid, 
wall  α f ,αm    L2t−1   ≥ 0  
Time  t    t   ≥ 0   
Velocity gradient tensor  ∇v    t−1

   !3  
Velocity, along die length  vy    Lt−1   ≥ 0  
Velocity, bulk  vb    Lt−1   ≥ 0  
Velocity, drool  vd    Lt−1   ≥ 0  
Velocity, fluid  v f    Lt−1   ≥ 0  
Velocity, maximum  vmax    Lt−1   ≥ 0  
Velocity, wall  vw    Lt−1   ≥ 0  
Viscosity µ    ML−1t−1   ≥ 0  
Viscosity at Wall temperature  µw    ML−1t−1   ≥ 0  
Volumetric flow rate, bulk   

!Vb    L3t−1   ≥ 0  
 
1 Where  τ ij  is the force exerted in the jth direction on a unit area of fluid surface 
of constant  xi  by fluid in the region lesser  xi  on fluid in the region greater  xi  
[24]. 
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Volumetric flow rate, drool   
!Vd    L3t−1   ≥ 0  

Work by wall on fluid   !W    ML2t−2   !  
 

Legend: mass; length; time; temperature 
  

 M ≡  L ≡  t ≡  T ≡



 xi 

Table 2: Dimensionless Variables 
 

Name Symbol Range 

Absolute temperature 
  
Θ =

T −T0

T0  
 ≥ 0  

Absolute temperature, bulk fluid 
  
Θb =

Tb −T0

T0
  ≥ 0  

Absolute temperature, drool layer 
  
Θd =

Td −T0

T0
  ≥ 0  

Absolute temperature, fluid 
  
Θ f =

Tf −T0

T0
  ≥ 0  

Absolute temperature, interface 
  
Θi =

Ti −T0

T0   ≥ 0  

Absolute temperature, interface at 
steady state   

Θi ,∞ =
Ti,∞ −T0

T0   ≥ 0  

Absolute temperature, maximum 
  
Θmax =

Tmax −T0

T0
  ≥ 0  

Absolute Temperature, melt 
degradation   

ΘD =
TD −T0

T0  
 ≥ 0  

Absolute temperature, wall exterior 
  
Θw =

Tw −T0

T0
  ≥ 0  

Absolute temperature, wall layer 
  
Θm =

Tm −T0

T0
  ≥ 0  

Arrhenius exponential constant, 
thermal sensitivity  

β =
B

Ti,∞   ≥ 0  

Arrhenius shift factor  aT ,s
  ≥ 0  

Brinkman Number, pressure-driven 
flow 

  
Br ≡ µ

kT0

b2ΔP
Lµ

#

$
%

&

'
(

2

 
 ≥ 0  

Brinkman Number, simple shear flow 
  
Br ≡ µvw

2

kT0  
 ≥ 0  

Buildup ratio 
 
BR ≡

Qd

Qb   ≥ 0  

Cohesive/ Critical fracture strength 
 
σ c = −

τ cL
bΔP  

 ≥ 0  

Distance from end of sample or die 
 
ς =

y
L  

 ≥ 0  
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Distance from slip interface 
 
ζ =

x
b    −a ≤ζ ≤1  

Drool layer (cohesive)/  
wall thickness (adhesive)  

a = d
b  

 ≥ 0  

Drool to bulk thermal conductivity 
ratio  

K' ≡ kd

kb   ≥ 0  

Interfacial heat flux 
  
F = qib

kT0
  ≥ 0  

Péclet number, ratio of convective to 
conductive heat transfer, pressure-
driven flow   

Pé ≡
vmaxb2

α f L
  ≥ 0  

Péclet number, ratio of convective to 
conductive heat transfer, simple shear 
flow   

Pé ≡ vwb2

α f L
  ≥ 0  

Ratio of temperature rise from slip 
heating to temperature rise from slip 
heating + viscous dissipation  

Φ≡
ΔTSH

ΔTSHVD  
 ≥ 0  

Ratio of viscous dissipation to slip 
heating 

  
Gi ≡ µh

2usτ c

∂vy

∂x

$

%
&

'

(
)

2

 
 ≥ 0  

Shear stress 
 
σ ≡ −

τL
bΔP   ≥ 0  

Slip velocity, pressure-driven flow 
  
ϕ s ≡ −

vsµwL
b2ΔP  

 ≥ 0  

Slip velocity, simple shear 
 
φs ≡

us

vw
   0 ≤φs ≤1  

Slit width 
 
W ≡

w
b  

 ≥ 0  

Time 
  
ψ =

tα
b2    ≥ 0   

Unit normal vector to slip plane 
  

!n =
!
A
!
A      

!n =1  

Velocity, bulk 
  
ϕ b ≡ −

vbµwΔP
τ c

2L   ≥ 0  

Velocity, drool 
  
ϕd ≡ −

vdµwΔP
τ c

2L   ≥ 0  

Velocity, maximum normalized 
 
φ ≡

v
vmax   0 ≤φ ≤1  

Velocity, pressure-driven flow 
  
ϕ ≡ −

v fµL
b2ΔP  

 ≥ 0  



 xiii 

Velocity, simple shear 
 
φ ≡

vy

vw
  0 ≤φ ≤1  

Viscosity 
 
η ≡

µ
µw

  ≥ 0  

Volumetric flow rate, bulk 
   
Qb ≡ −

!VbµwL
b4ΔP  

 ≥ 0  

Volumetric flow rate, drool 
   
Qd ≡ −

!VdµwL
b4ΔP   ≥ 0  

Wall to fluid thermal conductivity 
ratio  

K ≡
km

k f   ≥ 0  
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Chapter 1. Introduction 

When one body slips on another, heat is generated at the slipping interface. 

We call this slip heating and develop slip heating theory as it applies to cohesive 

and adhesive slip in extrusion dies. Although we focus on slip in polymer 

processing, the boundary conditions and theory developed for slip heating apply 

to any slipping system. 

We first consider the relevant slip boundary conditions. For slit flow (see 

Figure 1), the product of the slip speed,  us , and the shear stress, 
 
τ yx , at the 

slipping interface is the heat flux,  qx , from the slip boundary (see Table 1 for 

variable definitions): 

  
qx = usτ yx x=0

 (1) 

which applies to frictional heating at a slipping interface (see Sections 2.9. (i) and 

10.7. VI-VII. [2]; see also Example 12., p. 240 of [3]). More generally, the slip 

speed is the magnitude of the velocity difference between slipping bodies at the 

slipping interface (e.g. an extruded fluid and the die wall): 

  
us =

!v f −
!vw  (2) 

The work done by the wall on a slipping fluid is given by: 

  !W =
"
FT ⋅
"
d  (3) 

where   
!
F  is the force exerted by the wall on the fluid, and   

!
d  is the fluid 

displacement with respect to the wall. So, the power is: 

  
d !W
dt

=
"
FT ⋅

d
"
d

dt
 (4) 

and thus, the corresponding heat liberated by slip at the wall is given by: 
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!Q =
"
AT ⋅τT ⋅

"us  (5) 

so that the resulting heat flux magnitude is: 

   qi =
!nT ⋅τT ⋅

!us  (6) 

and, the associated heat flux vector for a slipping interface is given by: 

   
!q = qi

!n = !n ⋅ !nT ⋅τT ⋅
!us  (7) 

where  τ  is the extra stress tensor and   
!n  is a unit vector normal to the slipping 

interface (see Section 9-1 of [4]). 

We solve the heat transfer problem using the coordinate system outlined in 

Figure 2. These coordinates are easily rotated into the flow problem presented in 

Figure 1. Since the heat transfer problem was solved before considering the flow 

problem, we use non-traditional coordinates where  x  is transverse to the flow 

(but in the direction of heat flux) and  y  is in the die flow direction. In the 

subsequent chapters, we examine the effect of slip heating in die drool, or 

cohesive slip, (Chapter 2) and wall slip (Chapter 3), and we provide worked 

examples showing the use of our slip heating theory in extrusion calculations. 

Additionally, this work resulted in three publications cited as [5], [6] and [7]. 
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Figure 1:  Velocity profiles and concomitant steady temperature profiles. Slip 
heating between the bulk and the drool layer diminishes drool. 
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Figure 2: Rotated axis coordinate system, where  x  as the direction of heat 
transfer for several temperature profiles in red. The  y  coordinate (into 
the page) represents the direction of fluid flow. Compare to Figure 1 
showing the flowing system. 
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Chapter 2. Cohesive Slip Heating 

When molten plastic is extruded from a die, it can collect on the open die face 

(see Figure 3). This accumulation can then interfere with the extrusion, scratching 

imperfections into the extrudate surfaces called die lines [8]. This die face buildup, 

called die drool, costs plastics manufacturers by requiring chemical engineers to 

shutdown the operation for die cleaning ([9,10,11,12,13]; see Section 8.3.3.3 of 

[14]). No single governing dimensional parameter has been identified to control 

die drool, and since changing a system property, such as increasing melt 

temperature, can result in either an increase or decrease in die drool rate, solving 

die drool problems is clearly a complex matter (see Result column in TABLE 1. of 

[15], which we include as Figure 4). This problem can resemble the encrustation 

of a showerhead with minerals from hard water. For iconic time-lapse 

videography of die drool, see Video S1 of [16], which we provide images from in 

Figure 5. Die drool has been attributed to cohesive failure within the fluid at an 

internal surface where the fluid slips on itself (see Figure 1 and Figure 3); the 

corresponding isothermal analysis of this drool layer led to an analytical solution 

for the drool rate [15]. The fluid within the drool layer creeps along the die wall 

and accumulates on the die face as drool [15,17]. Cohesive melt failure has also 

been observed in conjunction with melt fracture (see Figure 6. and EPAPS on-line 

video for Figure 5 in [18], Figure 5.17 of [19], and section 2.3 of [20]). Additives 

are often used to suppress die drool and to alleviate other processing problems 

[21]. These processing aids can intervene at the wall, but may also intervene at 

the cohesive slip interface.  In this paper, we account for the frictional heating at 

the cohesive slip interface, which we call slip heating.   
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Schmalzer and Giacomin [15,17] allow for the drool composition to differ 

from that of the bulk, and so do we in Section 2.1.6 below. Both our analysis, and 

the analysis of Schmalzer and Giacomin [15,17] upon which our analysis relies, 

are silent on the mass flux at the cohesive slip interface (which may or may not 

[16] be zero). We further suppose that the entanglement concentration at the 

cohesive slip interface is zero or nearly so, though this does not enter into our 

analysis below. 

Although cohesive slip can happen with or without wall slip (compare 

Section 4.5 with 4.4 of [15]; [22]), we do not consider the more complex case 

where wall slip intervenes. Each fluid has a characteristic cohesive fracture 

strength that determines not only the cohesive slip velocity, but also the drool 

layer thickness, and thus the velocity profile within the drool layer [15]. Accurate 

drool rate prediction can help chemical engineers design dies with minimal 

down time for cleaning. Specifically, we derive an analytical solution for the 

developing temperature profiles in the drool layer and in the bulk fluid (see 

Figure 4), and we then investigate how slip heating affects drool rate. 

By applying an Arrhenius model for temperature-dependent viscosity in the 

drool layer [23,24], an analytical expression for drool rate is obtained that 

accounts for heating at the slip interface. This analytical solution couples the 

energy equation and the fluid flow. 

We focus on slit flow, which is used for film casting, sheet extrusion, curtain 

coating, and in many other chemical engineering unit operations. Specifically, we 

present the solution for heat transfer in pressure-driven slit flow subject to 

constant heat generation at the cohesive slip interface.  
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2.1. Slip Heating in Die Drool Without Viscous Dissipation 

We solve the energy equation in Cartesian coordinates for both the transient 

and steady temperature profiles, in both the drool layer and in the bulk polymer. 

For this simplest relevant non-isothermal problem, we neglect viscous 

dissipation and convective heating in the melt and we model viscosity as an 

Arrhenius function of temperature. This temperature dependence of viscosity 

causes the coupling between the fluid flow and the temperature rise.  We 

conclude by providing three worked examples showing the relevance of slip 

heating in determining die drool flow rates.  

2.1.1. Method 

Figure 1 and Table 1 define the Cartesian coordinates for pressure-driven slit 

flow, where  d  is the drool layer thickness, and is given by (see Eq. (9) of [15]): 

  
d = h

2
+
τ cL
ΔP

 (8) 

which implies the necessary condition for drool: 

  d > 0  (9) 

which, in turn, implies a minimum gap for drool: 

  
h > − 2τ cL

ΔP
 (10) 

In Eq. (8), we assume  d  to be constant, which we expect for fully developed 

flow. Eq. (10) is consistent with nine of the  Qd Q( )  entries in TABLE 1. of [15], 

where increasing  Q  is found to increase  Qd . 

We begin with the  y− component of the dimensional equation of motion in 

terms of the extra stress (Eq. (B.5-2) of [24]): 



 8 

 
ρ
∂vy

∂t
+ vx

∂vy

∂x
+ vy

∂vy

∂y
+ vz

∂vy

∂z

#

$
%

&

'
(= −

∂p
∂y

−
∂τ xy

∂x
+
∂τ yy

∂y
+
∂τ zy

∂z

+

,
-

.

/
0+ ρgy  (11) 

which, for 
   
!u = 0,uy ,0( ) , reduces to: 

  
0 = − dp

dy
−

dτ xy

dx
 (12) 

for steady flow. Substituting Newton’s law of viscosity: 

 
τ xy = −µ

dvy

dx
 (13) 

into Eq. (12), we obtain the velocity dependent expression: 

  
0 = − dp

dy
+

d
dx

µ T( )
dvy

dx

"

#
$

%

&
'  (14) 

For polymers, when the molecular weight falls below the critical value for 

entanglement, the fluid behavior is nearly Newtonian. This often applies to 

commercial grades of condensation polymers such as polyamides, polyesters, 

and polycarbonates. It may also apply to the drool layer in many higher 

molecular weight polymeric liquids, since the drool may sometimes result from 

polymer degradation.  Integrating Eq. (14) over  y  yields: 

 

Δp
L
=

d
dx

µ T( )
dvy

dx

"

#
$

%

&
'  (15) 

Inserting the dimensionless quantities from Table 2 into Eq. (15) produces the 

dimensionless velocity profile: 

  
1= d

dζ
−η Θ( ) dϕ

dζ
&

'
(

)

*
+  (16) 

The dimensional equation of energy in terms of heat flux is (Eq. B.8-1 [24]): 
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ρĈp

∂T
∂t
+ vx

∂T
∂x

+ vy
∂T
∂y

+ vz
∂T
∂z

#

$
%

&

'
(= −

∂qx

∂x
+
∂qy

∂y
+
∂qz

∂z

*

+
,

-

.
/−

∂lnρ
∂lnT
#

$
%

&

'
(

p

Dp
Dt

− τ :∇v( )  (17) 

where the viscous heating term reduces to (using Eq. A.7-1 (C) of [24]): 

   
− τ :∇v( ) = −τ yx

∂vy

∂x
 (18) 

Inserting Eq. (18) and Fourier’s law of heat conduction: 

 
qx = −k ∂T

∂x
 (19) 

into Eq. (17), we obtain:  

  
ρĈp

∂T
∂t
+ vx

∂T
∂x

+ vy
∂T
∂y

+ vz
∂T
∂z

#

$
%

&

'
(= k ∂2T

∂x2 +
∂2T
∂y2 +

∂2T
∂z2

)

*
+

,

-
.−

∂lnρ
∂lnT
#

$
%

&

'
(

p

Dp
Dt

−τ yx

∂vy

∂x
 (20) 

Evaluating Eq. (20) for constant ρ  and inserting Eq. (13), we find: 

  
ρĈp

∂T
∂t
+ vx

∂T
∂x

+ vy
∂T
∂y

+ vz
∂T
∂z

#

$
%

&

'
(= k ∂2T

∂x2 +
∂2T
∂y2 +

∂2T
∂z2

)

*
+

,

-
.+µ

∂vy

∂x

∂vy

∂x
 (21) 

Eq. (21) reduces to: 

  
ρĈp

∂T
∂t
+ vy

∂T
∂y

#

$
%

&

'
(= k ∂

2T
∂x2 +µ

∂vy

∂x

∂vy

∂x
 (22) 

Inserting the dimensionless groups from Table 2 into Eq. (22), we obtain: 

  
∂Θ
∂ψ

+φ
vmaxb2

αL
∂Θ
∂ς

=
∂2Θ
∂ζ 2 +Br ∂ϕ

∂ζ
∂ϕ
∂ζ

 (23) 

where: 

  
Br ≡ µ

kT0

b2ΔP
Lµw

#

$
%

&

'
(

2

=
τ c

4L2

kT0µw ΔP( )2  (24) 

The convective heating can be neglected when the magnitude of the second term 

on the left of Eq. (23) is much smaller than either the transient or the conductive 
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terms. This provides a pair of sufficient conditions for neglecting convective 

heating in the drool layer: 

   

∂Θd ∂ς
∂Θd ∂ψ

≪
αL

vd ,maxb2  (25) 

   

∂Θd ∂ς
∂2Θd ∂ζ 2 ≪

αL
vd ,maxb2  (26) 

and another pair of sufficient conditions for neglecting convective heating in the 

bulk layer: 

   

∂Θb ∂ς
∂Θb ∂ψ

≪
αL

vb ,maxb2  (27) 

   

∂Θb ∂ς
∂2Θb ∂ζ 2 ≪

αL
vb ,maxb2  (28) 

When at least one condition in each pairing is met, neglecting convective heating 

will not introduce inaccuracy in the solutions presented in this paper. In this 

paper,  t  is thus the operation time, and  t  is not to be confused with the melt die 

residence time.   

From Eq. (23) we learn that: 

  Br≪1  (29) 

is a sufficient condition for accurately neglecting viscous dissipation for the slit 

flow of Newtonian fluids. For non-Newtonian fluids, Eq. (24) can be 

reformulated following the method outlined in Table 4.4-1 of [25].  Typically 

  d≪ b , so that    b ≈ h 2 , which allows  Br  to be estimated a priori.  

For slip heating, we arrive at a second sufficient condition by comparing the 

heat flux from the slipping interface to the viscous heating. This yields the 

dimensionless group: 
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Gi ≡ µh

2usτ yx x=0

∂vy

∂x

$

%
&

'

(
)

2

=
µh

2usτ c

∂vy

∂x

$

%
&

'

(
)

2

= −
h2ΔP

4usτ cL
 (30) 

where, by definition, the fluid cohesive fracture strength,  τ c , is equal to the shear 

stress at the slipping interface. Eq. (30) implies that   Gi≪1  is a second sufficient 

condition for accurately neglecting viscous dissipation, and thus for the accurate 

use of our results for Newtonian fluids. For non-Newtonian fluids, Eq. (30) must 

be reformulated.  For pressure-driven capillary flow, an interesting recent study 

includes adhesive slip and viscous heating, but neglects slip heating (see Eqs. (2)-

(6) of [26]). 

 

2.1.2. Transient Temperature Rise 

Figure 1 illustrates the velocity profiles in the drool layer and in the bulk 

fluid, and also, the corresponding temperature profiles that develop when the 

bulk fluid slips against the drool. The temperature profiles neglecting viscous 

dissipation are obtained by solving the one-dimensional boundary value 

problem: 

 
∂Θ
∂ψ

=
∂2Θ
∂ζ 2  (31) 

where the exterior wall,  ζ = −a ≡ −d b , is isothermal and where there is a heat flux 

from the slipping interface,  ζ = 0 , given by Eq. (1). The solution is presented for 

the case where the melt enters and starts at a uniform temperature,   T0 , and the 

wall is maintained at this same temperature,   Tw =T0 . Using the dimensionless 
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variables defined in Table 2, the equation of energy (written in terms of 

temperature) in Cartesian coordinates (see Eq. B.9-1 [24]) reduces to: 

  

∂Θd ζ ,ψ( )
∂ψ

=
∂2Θd ζ ,ψ( )

∂ζ 2 ; − a ≤ζ ≤ 0  (32) 

for the drool layer, and for the bulk fluid: 

  

∂Θb ζ ,ψ( )
∂ψ

=
∂2Θb ζ ,ψ( )

∂ζ 2 ; 0 ≤ζ ≤1  (33) 

with the initial condition: 

  Θd ζ ,0( ) =Θb ζ ,0( ) = 0  (34) 

and with the following boundary conditions. For the isothermal wall, we impose: 

  Θd −a,ψ( ) = 0  (35) 

and at the cohesive slip interface, we have both temperature continuity: 

  Θd 0,ψ( ) =Θb 0,ψ( )  (36) 

and the heat flux caused by sliding friction: 

  

∂Θd

∂ζ ζ=0

−
∂Θb

∂ζ ζ=0

= F  (37) 

and finally, the adiabatic mid-plane: 

  

∂Θb

∂ζ ζ=1

= 0  (38) 

Carslaw solved the special case of two solids where  d = b  (see Example 12., p. 240 

of [3]), but for die drool   d≪ b . The Laplace transform of Eq. (32) yields: 

  
sΘd(ζ ,s) =

∂2Θd ζ ,s( )
∂ζ 2  (39) 

Solving Eq. (39) for  Θd ζ , s( ) , we find: 
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Θd ζ ,s( ) = F

2s3/2

sinh s 1+ a+ζ( )+ sinh s a−1+ζ( )
cosh s 1+ a( )

$

%
&
&

'

(
)
)
 (40) 

which is the solution in the Laplace domain. Eq. (40) is then inverted to find the 

time domain solution (see Appendix I for a detailed derivation of Eqs. (41) and 

(43)): 

  
Θd(ζ ,ψ) = F

1+ a
−1( )n

λ 2 sinλ 1+ a+ζ( )+ sinλ a−1+ζ( )&' ()
n=0

∞

∑ 1− e−λ2ψ( ) ;− a ≤ζ ≤ 0  (41) 

where: 

  
λ ≡

2n+1
2 1+ a( )

π  (42) 

This solution applies in the drool layer, between the die wall,  ζ = −a , and the 

slipping interface,  ζ = 0 . Figure 7 illustrates the drool layer temperature profile 

predicted by Eq. (41). Solving for the bulk fluid temperature profile by the same 

method, we obtain: 

  
Θb(ζ ,ψ) = F

1+ a
−1( )n

λ 2 sinλ 1+ a−ζ( )+ sinλ a−1+ζ( )&' ()
n=0

∞

∑ 1− e−λ2ψ( ) ;0 ≤ζ ≤1  (43) 

This solution for the bulk fluid applies between the slip interface and the fluid 

mid-plane,  0 ≤ζ ≤1 , and Figure 8 shows this temperature profile. In their limits 

as  b,d→∞ , Eqs. (41) and (43) match the solution forms of Yevtushenko and 

Kuciej [27] for frictional heating between semi-infinite solid blocks, as they 

should.  

By setting  ζ = 0  in either temperature profile, we obtain the time dependent 

expression for the interface temperature, which is presented in Figure 9 for 

different values of dimensionless time, ψ : 
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Θi ≡Θd(0,ψ) = F

1+ a
−1( )n

λ 2 sinλ 1+ a( )+ sinλ a−1( )&' ()
n=0

∞

∑ 1− e−λ2ψ( )  (44) 

As expected, a steady state is reached soon after  ψ =1 . The sigmoidal shape of 

this curve indicates a period of rapid heating until   ψ ≈ 0.1 , which signals the 

transition from a linear interfacial heating period to an exponential decaying 

temperature rise. 

Since  Θi  corresponds to the hottest point in the flow field, practitioners 

will seek to at least keep  Θi  below the dimensionless melt degradation point: 

  
ΘD ≡

TD −T0

T0

 (45) 

In other words, we do not want to degrade the material near the extrudate 

surface. Because the drool layer interface is the hottest point in the flow field, 

collected die drool is normally severely degraded polymer. Eq. (44) is thus a 

main result of this work. 

 

2.1.3. Steady Temperature Rise 

If the limits are taken of Eqs. (41) and (43) as ψ→∞ , we obtain: 

  Θd ,∞(ζ ) = F ζ + a( ) ; − a ≤ζ ≤ 0  (46) 

  Θb ,∞(ζ ) = Fa; 0 ≤ζ ≤1  (47) 

which are the steady state drool layer and bulk fluid temperature profiles. More 

general steady state profiles can be acquired for the case of an isothermal wall of 

arbitrary temperature,  Θw : 

  Θd ,∞(ζ ) = F ζ + a( )+Θw ; − a ≤ζ ≤ 0  (48) 
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  Θb ,∞(ζ ) = Fa+Θw ; 0 ≤ζ ≤1  (49) 

but, for the transient case, this lies beyond the scope of this work. At steady state, 

the heat generated at the interface is removed entirely by the isothermal wall. 

This in turn prevents thermal runaway, since the bulk fluid temperature is 

maintained at the interface temperature. 

 

2.1.4. Die Drool Flow Rate 

Since the predicted temperature rise lowers the drool viscosity, the 

temperature rise affects the drool rate.  The steady state drool layer velocity 

profile for pressure-driven flow through a slit is found by solving the equation of 

motion for a temperature dependent viscosity following a method outlined in 

Example 11.4-3 of [24]. Using the dimensionless variables defined in Table 2, the 

equation of motion (written in terms of velocity) in Cartesian coordinates (see Eq. 

B.6-2 [24]) reduces to: 

  
1= d

dζ
−η Θd( ) dϕ

dζ
&

'
(

)

*
+  (50) 

where the temperature-dependence of the viscosity is given by: 

  
η T( ) ≡

µ T( )
µw

= exp B 1
T
−

1
Tw

$

%
&

'

(
)

*

+
,

-

.
/≅ exp −B T −Tw

Ti ,∞Tw

$

%
&&

'

(
))

*

+
,
,

-

.
/
/
 (51) 

where  B  is its temperature-sensitivity, and where  Tw  is the wall temperature. 

The approximation in Eq. (51) is reasonable for small differences between  Tw  and 

the slipping interface temperature,  Ti,∞  [24]. By inserting the dimensionless 

quantities from Table 2 and solving for the viscosity at the interface, we obtain:  
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ηi ,∞ = exp −β

Θi ,∞ −Θw

Θw +1

&

'
(

)

*
+

,

-
.

/

0
1; β ≡B/Ti ,∞  (52) 

Combining Eq. (51) and Eq. (52), we find: 

  η Θd( ) =ηi ,∞

Θd−Θw
Θi ,∞−Θw =ηi ,∞

1+ζ a  (53) 

Inserting Eq. (53) into Eq. (50) and solving subject to the boundary conditions: 

  

dϕ
dζ ζ=0

=
σ c

ηi ,∞

 (54) 

for the slipping interface, and: 

  ϕ −a( ) = 0  (55) 

for the wall, we obtain the steady state drool layer velocity profile (see Figure 10): 

  
ϕd ζ( ) = a

lnηi ,∞( )2 ηi ,∞
− 1+ζ a( )a+ηi ,∞

− 1+ζ a( ) lnηi ,∞ ζ −σ c( )− a+ lnηi ,∞ σ c + a( )'
(

)
*;− a ≤ζ ≤ 0  (56) 

In Eq. (54),  σ c  is the dimensionless cohesive fracture strength defined in Table 2. 

Interestingly,  σ c  is always unity regardless of the values of  τ c ,  ΔP , and  L . This 

is a result of the countering effect of  b , which changes proportionally with  τ c , 

 ΔP , and  L  to always maintain   σ c =1 .  

Integrating Eq. (56) over the drool layer cross section gives the dimensionless 

volumetric drool flow rate: 

  
Qd =

a2W
ηi ,∞ lnηi ,∞( )2 ηi ,∞ a+σ c( ) lnηi ,∞ − 2aηi ,∞ + 1−ηi ,∞( )σ c +

2a ηi ,∞ −1( )
lnηi ,∞

%

&
'
'

(

)
*
*
;− a ≤ζ ≤ 0  (57) 

Similarly, we obtain the bulk melt velocity profile shown in Figure 11: 

  
ϕ b ζ( ) = − 1

2ηb

ζ 2 +
1
ηb

ζ +
a

lnηi ,∞( )2
a−σ c lnηi ,∞

ηi ,∞

− a+ lnηi ,∞ σ c + a( )
'

(
)
)

*

+
,
,
+ϕ s ;0 ≤ζ ≤1  (58) 
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and the corresponding bulk melt volumetric flow rate is: 

  
Qb =W 1

3ηb

+
a

lnηi ,∞( )2
a+σ c lnηi ,∞

ηi ,∞

− a+ lnηi ,∞ σ c + a( )
%

&
'
'

(

)
*
*
+ϕ s

,

-

.

.

/

0

1
1
;0 ≤ζ ≤1  (59) 

Following Gander [28], we normalize the drool flow rate with bulk flow rate to 

obtain the buildup ratio: 

 
BR ≡

Qd

Qb

 (60) 

which the plastics engineer will use, and is thus a main result of this paper.  

Figure 12 shows the dependence of buildup ratio,  BR , on cohesive fracture 

strength,  τ c , and thermal sensitivity, β . As  τ c  decreases,  BR  increases rapidly 

because the fluid fractures more easily into drool and bulk layers. Increasing 

thermal sensitivity delays the effect of decreasing  τ c  by making viscosity more 

temperature-dependent, which creates a greater difference in bulk and drool 

layer viscosities. Remarkably, in temperature-sensitive systems (where  β > 35 ), 

the buildup ratio is not monotonic with the cohesive strength. This result of our 

slip heating theory would appear to explain why buildup problems are 

sometimes difficult to troubleshoot (see Result column in TABLE 1 of [15]). When 

 β ≤1 , melt thermal sensitivities do not affect  BR , and thus,  β =1  is a reasonable 

choice for many melts and is used in the following worked examples. 

 

2.1.5. Worked Example 1: Sheet extrusion drool rate without degradation 

A plastic sheet manufacturer aims to estimate the steady drool rate for a new 

material to be considered for her extrusion operation. For this, she knows that 
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  T0 =Tw = 423 K ,   h = 6 mm ,   τ c = 0.18 MPa ,   us = 300mm/s ,   k = 0.1 W/m-K , 

   
!Cp = 2.0 J/g-K ,   ρ = 0.90 g/mL ,   µw = 600 Pa-s ,   L = 50 mm ,   ΔP = −31 MPa , and 

  w =1.0 m , which are reasonable values for a PP sheet extrusion process (see 

Table 25-18 [29]). She assumes that the drool is hardly degraded and thus has it 

to have the same rheology as the bulk melt.  

Using Eq. (30), she first calculates   Gi = 0.320 , and Eq. (24),  Br = 0.106 , which 

satisfies the sufficient condition given by Eq. (29). She then determines the drool 

layer thickness using Eq. (18) of [15]: 

  
d = h

2
+
τ cL
ΔP

= 9.7 µm  (61) 

Thus, the bulk fluid thickness is:  

  
b = h

2
−d = 0.29 mm  (62) 

Applying these values and the values provided, she calculates the heat 

generation at the interface: 

  qi = usτ c = 54.0 kW m2  (63) 

and then its dimensionless value: 

  
F = qib

kT0

= 0.371  (64) 

 and the dimensionless drool thickness: 

  
a = d

b
= 0.033  (65) 

The dimensionless temperature profiles for the drool and bulk layers become: 

  Θd ,∞(ζ ) = 0.371 ζ +0.033( ) ; − a ≤ζ ≤ 0  (66) 
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  Θb ,∞(ζ ) =Θi ,∞ =1.24×10−2 ; 0 ≤ζ ≤1  (67) 

The latter corresponds to a   ΔT = 5.23K . Inserting Eq. (67) into Eq. (52)  ηi ,∞  and 

setting  β =1 , she finds: 

  ηi ,∞ =ηb = exp −Θi ,∞( ) = 0.988  (68) 

Additionally, she finds the dimensionless fracture strength and slip velocity to 

be: 

  
σ c = −

τ cL
bΔP

=1  (69) 

  
ϕ s = −

vsµwΔP
τ c

2L
= 3.44  (70) 

Substituting Eqs. (69), (68) and (65) into Eq. (57), she obtains the dimensionless 

volumetric drool flow rate: 

  Qd =1.96;− a ≤ζ ≤ 0  (71) 

Similarly, inserting Eqs. (69), (68) and (65) into Eq. (59) yields the dimensionless 

volumetric bulk flow rate: 

  Qb =1.31×104 ; 0 ≤ζ ≤1  (72) 

Taking the ratio of Eq. (71) and Eq. (72), she finally obtains the buildup ratio: 

  
BR =

Qd

Qb

=1.49×10−4  (73) 

Lastly, she finds the time it takes to reach the steady buildup ratio: 

   
t = ψb2

α
≫ 1.52s  (74) 

and thus, she expects the buildup ratio of Eq. (73) to be obtained in about 1 

minute. The goal of a plastics engineer is to reduce the buildup ratio to some 
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critical value governed by the shutdown interval. This critical value is typically 

between  10−6  (for shorter extrusion runs) and  10−9  (for the longest runs). The 

buildup ratio can be decreased by increasing the die length, decreasing the 

applied pressure gradient (and thus the throughput), or if possible, by thinning 

the gap.   

 

2.1.6. Worked Example 2: Sheet extrusion drool rate with drool degradation 

The same plastics engineer wants to explore the influence of polymer 

degradation on the drool rate of Example 1. From experience, she expects the 

degraded drool viscosity to be about 83% of the bulk polymer viscosity. Using 

the quantities provided in Example 1, including all of the given information, and 

also the quantities calculated in Eqs. (61) through (67) along with (69) and (70), 

she calculates the steady buildup ratio for the sheet extrusion (Eq. (74) applies 

equally to Example 2). Applying the 17% viscosity reduction specifically to Eqs. 

(57) and (59), she obtains the volumetric drool and bulk flow rates: 

  Qd = 2.08; − a ≤ζ ≤ 0  (75) 

  Qb =1.32×104 ; 0 ≤ζ ≤1  (76) 

Using Eqs. (75) and (76) yields: 

  
BR =

Qd

Qb

=1.58×10−4  (77) 

Hence, the drool rate increases when the drool is degraded, because the drool 

viscosity decreases. It is thus important for plastics engineers to avoid 

temperatures at the slip interface that could damage the polymer.  
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2.1.7. Worked Example 3: Sheet extrusion buildup ratio evolution without drool 

degradation 

Another plastics engineer wants to determine the dependence of drool rate on 

the operation time for the system from Example 1. To ease calculation, he uses a 

pseudo-steady state approximation, Θ∞ =Θ ψ( ) , in which he inserts a 

temperature-dependent viscosity using Eqs. (41) and (43) into the steady velocity 

profiles (Eqs. (56) and(58)). Figure 13 is the result of his work. 

From inspection of Eq. (56), he spots a singularity arising at  ψ = 0  because 

  ηi ψ = 0( ) =1 . Since BR  is negative when  ψ <10−4 , the pseudo-steady state 

approximation is invalid at short times. Therefore, Figure 13 can only be used 

when ψ is not   ≪1 , which is a sufficient condition for accurate use of his results. 

As time progresses, the drool layer temperature increases faster than the bulk 

fluid temperature, and thus, the drool flow rate increases more rapidly than the 

bulk flow rate. A maximum is reached when the drool layer nearly reaches 

steady state. For this case, the maximum occurs at   ψ =1.44×10−3 , and after this 

point, continued bulk layer heating causes its viscosity to decrease to a steady 

state value at   ψ ≫ 1 . Since   BR =BR a,ϕ s ,β ,F ,ψ( ) , this buildup ratio curve is not 

universal and only applies to a specific set of physical parameters outlined in 

Example 1, for which   BR a,ϕ s ,β ,F ,ψ( ) =BR 0.0333,0.0344,1.00,0.371,ψ( ) . Though 

this solution is particular to this example, the qualitative behavior of  BR  with ψ  

is thought to be similar regardless of system properties. 
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2.2. Slip Heating in Die Drool With Viscous Dissipation 

In Section 2.1, we develop the transient and steady temperature profiles in die 

drool and analyze their effect on the build-up ratio without accounting for 

viscous dissipation. Here, we revisit our steady temperature analysis, but for 

when viscous dissipation matters. We also present a worked example 

investigating the role of slip heating and viscous dissipation in die drool. 

2.2.1. Steady Velocity Profiles in Drool and Bulk Layers 

The  y− component of the equation of motion in terms of shear stress for 

Cartesian coordinates (Eq. (B.5-2) of [24]) reduces to: 

 

dp
dy

= −
dτ xy

dx
 (78) 

for pressure-driven flow between closely spaced parallel plates (see Figure 14). 

For a Newtonian melt with temperature independent viscosity, Eq. (78) becomes: 

  

dp
dy

= µ
d2vy

dx2  (79) 

When Eq. (79) is integrated over the length of the die,  L , we obtain: 

  

d2vy

dx2 =
Δp
Lµ

 (80) 

Substituting the dimensionless groups: 

  
ϕ ≡

−vyµL
Δpb2  (81) 

and: 

 
ζ ≡

x
b

 (82) 

into Eq. (80) yields: 
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d2ϕ
dζ 2 = −1  (83) 

which applies for both the bulk and drool layers. 

For the drool layer velocity, Eq. (83) is subject to the no slip boundary 

condition at the wall: 

  ϕd −d b( ) ≡ϕd −a( ) = 0  (84) 

and to the slipping interface condition: 

  

dϕd

dζ ζ=0

=σ c ≡
−τ cL
bΔp

 (85) 

We find the drool velocity profile: 

  
ϕd ζ( ) = a2 −ζ 2

2
+σ c ζ + a( )  (86) 

Using the other boundary condition at the slipping interface: 

  
ϕ b 0( ) =ϕd 0( )+ϕ s =

a2

2
+σ ca+ϕ s  (87) 

and the mid-plane condition: 

  

dϕ b

dζ ζ=1

= 0  (88) 

we find the bulk layer velocity profile: 

  
ϕ b ζ( ) = a2 −ζ 2

2
+ζ +σ ca+ϕ s  (89) 

that will be used in Eq. (100) to determine the impact of viscous dissipation on 

the melt temperature rise. 
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2.2.2. Results: Steady Temperature Rise from Viscous Dissipation and Slip 

Heating 

The dimensional equation of energy in terms of heat flux in Cartesian 

coordinates (see Eq. B.8-1 [24]) reduces to: 

 
ρĈpvy

∂T
∂y

= −
∂qx

∂x
− τ :∇v( )  (90) 

for time-steady temperature rise where conductive heating in the flow direction 

is negligible. Using Eq. A.7-1 (C) of [24] to replace  τ :∇v( )  in Eq. (90) yields: 

 
ρĈpvy

∂T
∂y

= −
∂qx

∂x
−τ yx

∂vy

∂x
 (91) 

and for a Newtonian fluid, Eq. (91) becomes: 

  
ρĈpvy

∂T
∂y

= k ∂
2T
∂x2 +µ

∂vy

∂x

#

$
%

&

'
(

2

 (92) 

Eq. (92) can be rewritten in dimensionless form: 

 
−Péϕ ∂Θ

∂ς
=
∂2Θ
∂ζ 2 +Br ∂ϕ

∂ζ

'

(
)

*

+
,

2

 (93) 

where: 

  
Θ≡

T −T0

T0

 (94) 

 
ς ≡

y
L

 (95) 

  
Br ≡ b4

µkT0

Δp
L

#

$
%

&

'
(

2

 (96) 

and: 
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Pé ≡ b4Δp

αL2µ
 (97) 

Convective heating can be neglected when: 

  Pé≪1  (98) 

which is a sufficient condition for the accurate use of our results. A second 

sufficient condition is satisfied when the temperature gradient along the die falls 

well below the second derivative of the temperature through the melt: 

  
∂Θ
∂ς
≪
∂2Θ
∂ζ 2  (99) 

When convective heating is small, Eq. (93) reduces to: 

  

d2Θ
dζ 2 = −Br ∂ϕ

∂ζ

&

'
(

)

*
+

2

 (100) 

which is used below to develop the temperature profiles for the drool and bulk 

layers. 

We solve for the drool and bulk temperature profiles subject to an isothermal 

die wall: 

 Θd −a( ) =Θw  (101) 

an adiabatic mid-plane: 

  

dΘb

dζ ζ=1

= 0  (102) 

temperature continuity at the slipping interface: 

  Θd 0( ) =Θb 0( )  (103) 

and constant heat generation at the slipping interface: 

  
K' dΘd

dζ ζ=0

−
dΘb

dζ ζ=0

= F  (104) 
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where the dimensionless interfacial heat flux is: 

  
F ≡ qib

kbT0

 (105) 

and the thermal conductivity ratio is: 

 
K' ≡ kd

kb

 (106) 

The latter allows for different thermal properties of the drool and bulk layers, as 

in the case of thermal degradation. When there is no degradation or the thermal 

properties of the drool and bulk layers do not differ,   K =1 . By integrating Eq. 

(100) and then applying the above boundary conditions, we find the drool 

temperature profile: 
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and the bulk temperature profile: 
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These can be used to determine the true temperature of the polymer melt in 

systems with cohesive slip. Because σ c  is always unity (see section V of [5,30]), 

we get: 
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and: 
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The maximum melt temperature occurs at the mid-plane,  ζ =1 : 
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12
+

a3

3
+

a2

2
#

$
%

&

'
(+

F
K'

+
Br

3K'
#

$
%

&

'
(a+Θw  (111) 

It is the goal of the plastics engineer to prevent the maximum temperature rise 

from exceeding the polymer degradation point. Eq. (110) is a main result of this 

work, and the following worked example demonstrates its usefulness. 

 

2.2.3. Worked Example: Roles of Slip Heating and Viscous Dissipation in Die 

Drool 

A plastics engineer must determine the role of temperature rise in die drool of 

her sheet extrusion die. Her system specifications are:   T0 =Tw = 423 K , 

  h = 0.3 mm  ,    
!Vb = 209 L/h ,   kd = kb = 0.1 W/m-K , 

   
!Cp =1.6 J/g-K ,   ρ = 0.90 g/mL , 

 µ = 600 Pa-s ,   L = 40 mm ,   ΔP = −35 MPa ,   w =1.0 m , and   τ c = 0.12 MPa , which are 

reasonable values for a PP sheet extrusion process (see Table 25-18 [29]). She has 

determined the latter value of  τ c  from previous die drool measurements 

(following Sections 8 and 9 of [15]).  

She first determines the drool layer thickness (see Eq. 18 of [15]): 

  
d ≡ h

2
+
τ cL
Δp

=12.9 µm  (112) 

which corresponds to a bulk layer thickness: 

  
b ≡ h

2
−d = 0.137 mm  (113) 

Integrating Eq. (89) over the bulk layer cross-section, she finds the slip speed to 

be: 
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us =

!Vb

2bw
+
Δp
µL

b2

3
+db+ d2

2
"

#
$

%

&
'= 200 mm/s  (114) 

She calculates the heat generation at the interface from slip heating to be: 

  qi = usτ c = 24.0 kW m2  (115) 

and then its dimensionless value: 

  
F ≡ qib

kT0

= 7.78×10−2  (116) 

 and the dimensionless drool thickness: 

  
a ≡ d

b
= 9.38×10−2  (117) 

She then determines the maximum melt temperature in the presence of both slip 

heating and viscous dissipation, using Eq. (111), to be: 

 Θmax = 8.56×10−3  (118) 

which corresponds to a temperature rise from both slip heating  SH( )  and 

viscous dissipation  VD( )  of: 

  ΔTSHVD = 3.62 K  (119) 

By setting  Br = 0  in Eq. (111), she obtains an expression for temperature rise from 

slip heating alone: 

  Θmax = aF  (120) 

which matches Eq. (44) of [5]. Using Eq. (120) she gets:  

  Θmax = aF = 7.29×10−3  (121) 

which corresponds to a temperature rise of: 

  ΔTSH = 3.09 K  (122) 
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Using Eqs. (122) and (119), she next constructs the ratio: 

  

ΔTSH

ΔTSHVD

= 0.851  (123) 

from which she learns that slip heating is the primary contribution to overall 

heating. 

Because her system may require adjustment, she decides to investigate the 

relative role of slip heating and viscous dissipation for other system 

specifications. She thus sets   Θw = 0  and divides Eq. (111) by the expression in Eq. 

(120) to develop the ratio of temperature rise from slip heating to the 

temperature rise from both slip heating and viscous dissipation: 
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 (124) 

where: 

 
Ξ ≡

τ cL
Δp

 (125) 

is a characteristic length. Eq. (124) is a main result of this work. Using Eq. (124) 

with  K =1  she generates Figure 15 showing the fraction of total heating from slip 

heating as a function of slit width for different die pressure drops. Asymptotes 

arise at small gaps where the drool layer disappears and slip heating no longer 

occurs. When the drool layer exists, small die gaps,   h ≤ 0.1 mm , have negligible 

amounts of viscous heating, and as the gap increases viscous heating becomes 

the primary heating source. The plastics engineer should consider both slip 

heating and viscous dissipation in thermal analyses of drooling dies except for 
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very large die gaps,   h ≥ 5 mm , where slip heating can be neglected, and very 

small die gaps,   h ≤ 0.1 mm , where viscous dissipation can be neglected. 

She notes that increasing viscosity or slip speed amplifies the contribution of 

slip heating to total melt heating. Increasing die length or polymer cohesive 

fracture strength increases the importance of viscous dissipation for small gaps 

but expands the region of slip heating dominance to larger gaps. In other words, 

increasing these parameters shifts the curves in Figure 15 down and right. As die 

pressure drop increases, slip heating matters more at low gaps but the threshold 

where viscous dissipation becomes the major contributor is reduced to smaller 

gaps.  
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Figure 3: Die drool formed within the die, in a drool layer, flowing onto the die 
lip. Bulk fluid slips against the drool layer, without wall slip. 
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Figure 4: Table 1 taken from [15], where the references also correspond to those 

of [15]. 
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Figure 5: Images of die drool on a cylindrical die at shear rates of  1060 s−1 , 

 1130 s−1 , and  1240 s−1  taken from Video S1 of [16]. 
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Figure 6: Evolving temperature profiles along die length.  
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Figure 7: Dimensionless temperature rise in the drool layer calculated from 

Eq. (41). 
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Figure 8: Dimensionless temperature rise in the bulk from Eq. (43). 
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Figure 9: Dimensionless temperature rise at the slipping interface calculated from 

Eq. (44) showing knee in curve at   ψ ≈ 0.01 . 
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Figure 10: Dimensionless velocity profile in the drool layer for temperature-

dependent Newtonian viscosity from Eq. (56). 
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Figure 11: Dimensionless velocity profile in the bulk for temperature-dependent 

Newtonian viscosity from Eq. (58).  
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Figure 12: Semi-log plot showing non-monotonicity of buildup ratio versus 

dimensionless cohesive fracture strength arising in curves of high 
temperature-sensitivity,   β ≥ 3.5 , where 

  BR a,ϕ s ,β ,F ,ψ( ) =BR a,0.0344,1.00,F ,ψ( ) . 
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Figure 13: Semi-log plot showing buildup ratio versus dimensionless time for 

Worked Example 3, where 

  BR a,ϕ s ,β ,F ,ψ( ) =BR 0.0333,0.0344,1.00,0.371,ψ( ) .  
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Figure 14: Velocity profiles and concomitant steady temperature profiles for the 

drool and bulk layers, where  us ≡ uy
− −uy

+ . 
  

uy x
uy

uy

d

p pf
p p0

x

L

b
y

T x 

h



 43 

 
 
 
 

 
 
 

 
Figure 15: Slip heating to total heating ratio, Φ , as a function gap at three 

pressure drops, where all other properties are held constant, 

  Φ Δp,h,µ ,us ,L,τ c( ) =Φ Δp,h,600 Pa-s,200 mm/s,40 mm,0.12 MPa( ) . 
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Chapter 3. Adhesive Slip Heating 

When plastic is extruded, the upper limiting throughput is often dictated by 

fine irregular distortions of the extrudate surface. Called sharkskin melt fracture, 

plastics engineers spike plastics formulations with processing aids to suppress 

these distortions. Sharkskin melt fracture is not to be confused with gross melt 

fracture, a larger scale distortion arising at throughputs higher than the critical 

throughput for sharkskin melt fracture ([19,31,32]; see Section 2.3.1 of [20]). 

Sharkskin melt fracture has been attributed to a breakdown of the no slip 

boundary condition in the extrusion die, that is, adhesive failure at the die walls, 

where the fluid moves with respect to the wall and is called stick-slip ([19], see 

Section 6.2.1 of [33];[23]).  

Wall slip, or adhesive slip, occurs when a critical shear stress is exceeded at 

the extruder wall (see Figure 16) [23]. The slip speed is a function of wall shear 

stress and melt temperature, where a master curve of slip speed versus shear 

stress can be developed using Arrhenius shift factors. An analysis of the 

Arrhenius shift resulted in a master curve that neglected any heating caused by 

the slip or the viscous nature of the polymer [34,35,36,22]. For an analysis of the 

role of cohesive slip heating in die drool see [5,30].  By die drool, we mean the 

accumulation of unwanted material on the open faces of a plastics extrusion die.  

In this paper, we account for the frictional heating at the adhesive slip interface, 

which we call slip heating. Accurate slip speed prediction can help chemical 

engineers design dies that minimize undesirable slip related phenomena, such as 

melt fracture. 

We derive an analytical solution for the steady temperature profiles in the 

extruder wall and in the bulk melt (see Figure 16), and we then investigate how 
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slip heating affects slip speed shift factors. 

We focus on slit flow, which is used for film casting, sheet extrusion, curtain 

coating, and in many other unit operations. Specifically, we present the solutions 

for heat transfer in simple shear and pressure-driven slit flows subject to constant 

heat generation at the adhesive slip interface. We solve the energy equation in 

Cartesian coordinates for steady temperature profiles in the metal plate and 

polymer melt, when viscous dissipation is negligible, and when viscous heating 

is important. For this simplest relevant non-isothermal problem, we neglect 

convective heating in the melt and we model viscosity as a constant. We 

conclude by providing two worked examples showing the relevance of slip 

heating in flows with adhesive slip. 

 

3.1. Method 

For pressure-driven slit flow, we begin with the  y− component of the 

dimensional equation of motion written in terms of the extra stress tensor (Eq. 

(B.5-2) of [24]): 

 
ρ
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∂vy

∂x
+ vy

∂vy

∂y
+ vz

∂vy

∂z

#

$
%

&

'
(= −

∂p
∂y

−
∂τ xy

∂x
+
∂τ yy

∂y
+
∂τ zy

∂z

+

,
-

.

/
0+ ρgy  (126) 

which reduces to: 

  
0 = − dp

dy
−

dτ xy

dx
 (127) 

for steady flow. Substituting Newton’s law of viscosity: 

 
τ xy = −µ

dvy

dx
 (128) 
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into Eq. (12), we obtain the velocity dependent expression: 

  
0 = − dp

dy
+µ

d2vy

dx2  (129) 

For polymers, when the molecular weight falls below the critical value for 

entanglement, the fluid behavior is nearly Newtonian. This often applies to 

commercial grades of condensation polymers such as polyamides, polyesters, 

and polycarbonates. Integrating Eq. (14) over  y  yields: 

  
Δp
L
= µ

d2vy

dx2  (130) 

Inserting the dimensionless quantities from Table 2 into Eq. (15) produces the 

dimensionless velocity profile: 

  
1= − d2ϕ

dζ 2  (131) 

For simple shear between sliding plates, the  y− component of the 

dimensional equation of motion [Eq. (11)] reduces to: 

  
dτ xy

dx
= 0  (132) 

Substituting Eq. (13) into Eq. (132), we find: 

  
d2vy

dx2 = 0  (133) 

from which, using the dimensionless quantities from Table 2, we obtain: 

  
d2φ
dζ 2 = 0  (134) 

The dimensional equation of energy, in terms of heat flux, is (Eq. B.8-1 [24]): 
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where the viscous heating term reduces to (using Eq. A.7-1 (C) of [24]): 

   
− τ :∇v( ) = −τ yx

∂vy

∂x
 (136) 

The only source of heat within the fluid is that of viscous dissipation, which 

decreases with wall slip. Of course, slip heating at the interface also contributes 

to the fluid temperature rise. Inserting Eq. (18) and the  x−component of 

Fourier’s law of heat conduction: 

 
qx = −k ∂T

∂x
 (137) 

into Eq. (17), we get:  
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Evaluating Eq. (20) for constant ρ  and inserting Eq. (13), we find: 
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At steady state, Eq. (21) reduces to: 

  
ρ f Ĉp , f vy

∂Tf

∂y
= k f

∂2Tf
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∂vy
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∂vy
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 (140) 

Inserting the dimensionless groups from Table 2 into Eq. (22), we obtain: 

 
φPé∂Θ

∂ς
=
∂2Θ
∂ζ 2 +Br ∂ϕ
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∂ϕ
∂ζ

 (141) 

where: 
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vmaxb2

α f L
 (142) 

and: 

  
Br ≡ µ
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4L2
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for pressure-driven flow. We develop a similar differential equation for flow in 

simple shear: 

 
φPé∂Θ

∂ς
=
∂2Θ
∂ζ 2 +Br ∂φ

∂ζ
∂φ
∂ζ

 (144) 

where: 

  
Pé ≡ vwb2

α f L
 (145) 

and: 

  
Br = µvw

2

T0k f

 (146) 

The convective heating terms in Eqs. (23) and (144) can be neglected when: 

  Pé≪1  (147) 

Additionally, from Eqs. (23) and (144), we learn that: 

  Br≪1  (148) 

is a sufficient condition for accurately neglecting viscous dissipation for the slit 

flow of Newtonian fluids. For non-Newtonian fluids, Eq. (24) can be 

reformulated following the method outlined in Table 4.4-1 of [25].  

For slip heating, we can arrive at a second sufficient condition by comparing 

the heat flux from the slipping interface to the viscous heating. This yields the 

dimensionless group: 
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where, by definition, the fluid cohesive fracture strength,  τ c , is equal to the shear 

stress at the slipping interface. Eq. (30) implies that   Gi≪1  is a second sufficient 

condition for accurately neglecting viscous dissipation. For non-Newtonian 

fluids, Eq. (30) must be reformulated. For pressure-driven capillary flow, an 

interesting recent study includes adhesive slip and viscous heating, but neglects 

slip heating (see Eqs. (2)-(6) of [26]. 

 

3.2. Results: Steady Temperature Rise Without Viscous Dissipation 

When viscous dissipation and convective heating can be neglected, Eq. (23) 

reduces to: 

  

∂2Θ f

∂ζ 2 = 0  (150) 

for pressure driven flow in the polymer melt. We find a similar expression for 

the metal wall: 

  
∂2Θm

∂ζ 2 = 0  (151) 

Eqs. (150) and (151) are solved subject to the following boundary conditions at 

the adiabatic mid-plane: 

  

dΘ f

dζ
ζ=1

= 0  (152) 

at the slipping interface: 
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  Θm 0( ) =Θ f 0( )  (153) 

  
K dΘm

dζ ζ=0

−
dΘ f

dζ
ζ=0

= F  (154) 

where: 

 
K =

km

k f
 (155)  

and at the isothermal plate exterior: 

 Θm −a( ) =Θw  (156) 

where the plate is normally immersed in a bath. We find the dimensionless 

temperature profile for the polymer melt: 

 
Θ f =

Fa
K
+Θw  (157) 

where  Θw  is the plate exterior temperature. We also obtain the plate temperature 

profile: 

 
Θm =

F
K
ζ + a( )+Θw  (158) 

Substituting the dimensional expressions from Table 1 into Eqs. (157) and (158), 

we recover the dimensional temperature profiles for the polymer melt and plate: 

 
Tf =

τ cusd
km

+Tw  (159) 

 
Tm =

τ cus

km

x+d( )+Tw  (160) 

which the plastics engineer can use to adjust observed temperatures for slip 

heating effects during rheometry experiments. Eqs. (159) and (160) are accurate 

when both convection and viscous dissipation may be neglected, and they are 
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applicable to pressure-driven and simple shear flows. Eq. (159) is one of two 

main results of this paper. 

 

3.3. Results: Steady Temperature Rise With Viscous Dissipation 

For many polymers, viscous dissipation is an important contribution to 

heating during extrusion and other processes. We evaluate the contribution of 

viscous dissipation in addition to slip heating for pressure-driven and simple 

shear flows. 

3.3.1. Pressure-Driven Flow 

When convective heating is neglected, Eq. (23) reduces to: 
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for the polymer melt subjected to pressure-driven flow, where viscous 

dissipation is important. Evaluation of Eq. (131) subject to the boundary 

conditions at the slipping metal-polymer interface: 

  ϕ 0( ) =ϕ s  (162) 

and the polymer mid-plane: 

  

dϕ
dζ ζ=1

= 0  (163) 

yields: 

  
ϕ ζ( ) =ζ − ζ

2

2
+ϕ s  (164) 

which is the velocity profile for a polymer having constant viscosity under 

pressure-driven flow between two plates. 
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Taking the derivative of Eq. (164): 

  
dϕ
dζ

=1−ζ  (165) 

and inserting into Eq. (161), we find:  

  

d2Θ f
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= −Br ζ 2 − 2ζ +1( )  (166) 

We evaluate Eq. (166) using the boundary conditions in Eqs. (152) - (156) and 

obtain: 
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the dimensionless polymer melt temperature profile. Similarly, we find: 
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( ζ + a( )+Θw  (168) 

which is the dimensionless plate temperature profile. When   Br≪1 , we recover 

Eqs. (157) and (158) from Eqs. (167) and (168). Eqs. (167) and (168) can be used to 

correct rheological measurements for slip heating with viscous dissipation 

during pressure-driven flow between two plates. 

3.3.2. Simple Shearing Flow 

Eq. (144) reduces to: 
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 (169) 

when convective heating in the polymer melt is neglected,  Pé≪1 , and viscous 

dissipation is included. We develop the melt velocity profile by evaluating 

Eq. (134) subject to the boundary conditions at the slipping plate-melt interfaces: 
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  φ 0( ) =1−φs  (170) 

  φ 2( ) = φs  (171) 

where  ζ = 0  corresponds to the interface between the melt and the moving plate 

and  φs  is the slip speed. We find the velocity profile: 

  
φ ζ( ) = 2φs −1

2
ζ +1−φs  (172) 

for the polymer melt and substitute the derivative of Eq. (172): 
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2
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into Eq. (169) to obtain: 
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which is the differential temperature profile in terms of slip velocity. Integrating 

this ordinary differential equation using the boundary conditions in Eqs. (152) - 

(156), we find: 
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which is the dimensionless melt temperature profile in simple shear with viscous 

dissipation. Similarly, we solve for the dimensionless plate temperature profile: 
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The interfacial temperature at the moving plate is obtained by setting  ζ = 0  in 

Eq. (176): 
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which the rheologist can use to correct observed temperature at the slipping 

interface for slip heating and viscous dissipation during simple shearing flow. 

Since polymer viscosity often has an Arrhenius temperature dependence, our 

solutions could be improved by including this in our calculation. However, 

complexity of this level is outside the scope of discussion presented here. Eqs. 

(177) along with (159) are the main results of this paper. The following worked 

examples demonstrate the usefulness of these results. 

 

3.4. Worked Example 1: Correcting wall slip data for slip heating 

A rheologist would like to adjust slip speed versus shear stress data collected 

using a sliding plate rheometer. The data, provided by [34], were recorded for 

four different temperatures using magnetic 420 stainless steel plates and HDPE 

56B\3830 resin and are presented in Figure 17. He would also like to create a 

master curve of slip speed versus shear stress for all temperatures using 

Arrhenius shift factors. A master curve for the data is available in [35] without 

consideration of slip heating effects (see Figure 8). 

He first calculates the temperature adjustment for each slip speed and shear 

rate using Eq. (159). Correction increases the melt temperature by up to 5 K in the 

presence of slip heating which may contribute to thermal degradation (see Table 

3). By inputting these corrected temperatures into the Arrhenius shift factor 

expression: 
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for   Tr = 473K  and   Es = 4500.7K , he obtains a set of shift factors for each data 

point (see Table 3). Using these shift factors, he creates the master curve shown 

in Figure 9. He notices that the data at high shear rates,   τ > 0.12 , collapse more 

effectively than those at low shear rates,   τ < 0.12 . The data for the lowest 

temperature,   T =145°C , has a different slope from data at other temperatures 

both before and after adjustment which reduces the master curve fit. 

Additionally, the goodness of fit to a power-law function is unchanged for 

adjusted shift factors compared to the original shift factors presented in [35]. 

 

3.5. Worked Example 2: Correcting wall slip data for both slip heating and viscous 

dissipation 

The rheologist examines the same system as before, but he would like to 

consider viscous dissipation in his analysis. He calculates the temperature 

adjustments for each data point using Eq. (177). Inclusion of viscous dissipation 

in conjunction with slip heating increases the temperature even further. 

However, the magnitude of temperature increase from viscous dissipation 

relative to temperature rise from slip heating varies with slip speed and wall 

shear stress. Figure 20 shows the fraction of total temperature rise attributed to 

slip heating versus wall shear stress and parameterized by exterior surface 

temperature. The temperature rise increases with exterior temperature, which 

increases wall slip. This increases the importance of slip heating at high 
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temperature and wall shear stress. Viscous dissipation contributes to 

temperature rise most at low temperature and wall shear stress. However, at any 

point between these to extremes, it is necessary to consider both viscous 

dissipation and slip heating. 

The rheologist determines the shift factors from Eq. (178) (see Table 3) and 

produces the master curve shown in Figure 11. He also develops Figure 22, 

which compares the three different master curves on a single plot. Despite the 

difference in approach, the master curves collapse similarly with the same minor 

deviations from the Arrhenius form at low temperature, or low slip speed, 

measurements. The power-law curves for the slip heating temperature rise, with 

and without viscous dissipation, have similar values for the front factor and 

exponents, which is unexpected since there is a large difference in temperature 

rise when viscous dissipation is included.  
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Figure 16:  Velocity profiles and concomitant steady temperature profiles for 
pressure-driven flow with slip heating between the melt and the wall. 

  

 

uy x

 us

 d  

 p pf  p p0

 x

 L

 b
y

T x
 
h



 58 

 
 
 
 
 
 
 
 
 

 
Figure 17: Slip speed versus wall shear stress measured at four temperatures (see 

FIG. 4 of [34]). 
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Figure 18: Shifted slip speed versus wall shear stress (see FIG. 17 of [35]) with 

power-law fit,   aT ,sus = 80.72τ w
4.14 . 
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Figure 19: Shifted slip speed versus wall shear stress with temperature 

adjustment for slip heating having power law fit   aT ,sus = 53.96τ w
3.96

(compare with   aT ,sus = 80.72τ w
4.14  from uncorrected Figure 18). 
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Figure 20: Temperature rise from slip heating as a fraction of total temperature 

rise from viscous dissipation plus slip heating versus wall shear stress. 
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Figure 21: Shifted slip speed versus wall shear stress with temperature adjusted 

for slip heating and viscous dissipation having power law fit 

  aT ,sus = 53.51τ w
3.98 (which closely matches   aT ,sus = 53.96τ w

3.96  of Figure 19). 
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Figure 22: Shifted unadjusted (blue), slip heating adjusted (magenta, solid), and 

viscous dissipation adjusted (red, dashed) slip speed versus wall shear 
stress data and corresponding power-law fits. 
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Table 3: Temperature rises during slip heating with and without viscous 
dissipation and corresponding shift factors for slip data at different temperatures 
and wall shear stresses 

  Tmeas =145°C    Tmeas =160°C  

 τ w  
(MPa) 

 ΔTSH  
(°C)   aT ,SH   ΔTSHVD  

(°C)   aT ,SHVD   τ w  
(MPa) 

 ΔTSH  
(°C)   aT ,SH   ΔTSHVD  

(°C)   aT ,SHVD  

0.102 0.13 3.49 2.41 3.29 0.110 0.53 2.38 2.52 2.27 
0.110 0.21 3.48 2.75 3.26 0.120 0.82 2.36 2.91 2.25 
0.115 0.30 3.47 2.95 3.24 0.130 1.13 2.34 3.31 2.23 
0.125 0.57 3.45 3.32 3.21 0.140 1.67 2.31 3.70 2.21 
0.131 0.70 3.43 3.59 3.19 0.150 2.26 2.28 4.17 2.18 
0.140 0.98 3.41 4.01 3.16 0.159 2.95 2.25 4.64 2.16 
0.150 1.30 3.38 4.50 3.12 0.171 4.15 2.18 5.39 2.12 
0.155 1.61 3.36 4.70 3.10 0.180 5.10 2.13 6.11 2.08 
0.160 1.84 3.34 4.97 3.08      
0.173 2.84 3.25 5.54 3.04      

  Tmeas =180°C    Tmeas = 200°C  

 τ w  
(MPa) 

 ΔTSH  
(°C)   aT ,SH   ΔTSHVD  

(°C)   aT ,SHVD   τ w  
(MPa) 

 ΔTSH  
(°C)   aT ,SH   ΔTSHVD  

(°C)   aT ,SHVD  

0.100 0.43 1.51 2.08 1.45 0.110 1.07 0.98 2.27 0.96 
0.110 0.70 1.50 2.41 1.44 0.118 1.82 0.96 2.56 0.95 
0.120 1.20 1.48 2.73 1.43 0.125 2.25 0.96 2.89 0.94 
0.130 1.75 1.47 3.13 1.42 0.131 2.67 0.95 3.20 0.94 
0.140 2.55 1.44 3.60 1.41 0.135 3.24 0.94 3.58 0.93 
0.150 3.42 1.41 4.20 1.39 0.142 3.85 0.93 4.07 0.92 
0.161 4.62 1.38 5.07 1.36 0.150 4.83 0.91 4.91 0.91 
0.170 6.05 1.34 6.18 1.33      
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Chapter 4. Conclusion 

We arrive at an expression for the die drool flow rate [Eq. (57)]. We also 

develop an expression for the highest temperature in the flow field [Eq. (44)], 

where the drool touches the bulk fluid. Since our temperature rise analysis at the 

cohesive slip interface neglects the effect of viscous heating, our temperature rise 

predictions from Eqs. (41), (43), (48) and (49) are conservative. The temperature 

dependent steady velocity profiles for slit flow were presented and used to 

determine the steady buildup ratio, which can be used by the plastics engineer to 

quantify drool. Thus, Eqs. (57), (59), and (60) are main results of this work. We 

expect these results to be accurate when   Gi≪1 ,   Br≪1 , and at least one 

condition is satisfied in each pair of Eqs. (25)-(26) and Eqs. (27)-(28). 

Buildup ratio increases with decreasing fluid fracture strength, as expected, 

since the bulk and drool layers can separate at lower shear stresses. Greater fluid 

thermal sensitivity can mitigate increasing buildup ratios in fluids with low 

cohesive fracture strengths by increasing the viscosity difference between the 

two layers. When a material is highly sensitive to temperature ( β > 35 ), the 

buildup ratio monotonicity is lost, which may explain the difficulty in 

troubleshooting flows with large buildup ratios. Figure 13 shows that long 

operation times also reduce die lip buildup and is an important result of this 

work. These results are accurate for the sufficient condition where ψ is not   ≪1 . 

Many attribute drool to the shear-induced mass transfer of low molecular 

weight species toward the wall [9,10,12,28]. Our work includes this possibility as 

a special case. For instance, when the die drool is found to have a lower 

molecular weight than the bulk [13], we think this is probably caused by polymer 
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thermal degradation through scission (such as is common for polypropylene), 

and specifically, when the temperature given by Eq. (44) exceeds the degradation 

point for the polymer.  

Slip heating and viscous dissipation must both be considered in temperature 

analysis of drooling systems. Eq. (124) is a main result of this work and should be 

used to determine when one or the other can be neglected. When  Φ ≈ 0 , slip 

heating may be excluded. When Φ ≈ 1 , viscous dissipation should be neglected, 

and Eqs. (43) and (44) of [5] become appropriate choices for thermal analysis. 

However, when   0≪Φ≪1 , neither heating source may be neglected, and 

Eqs. (109) and (110) of this work should be used. Eq. (111) is the other main 

result, and it is used to determine the maximum temperature rise in the polymer. 

Plastics processors must ensure that this temperature rise falls below the 

degradation point of the polymer melt. 

We develop expressions for correcting melt temperatures in flows with wall 

slip where viscous dissipation is negligible [Eq. (159)] and where viscous 

dissipation matters [Eqs. (167) and (175)]. We also find expressions for the 

temperature at the slipping melt-plate interface in simple shear [Eqs. (157) and 

(177)]. The plastics engineer can then use these expressions to characterize 

temperature distributions in slipping flows, which could aid in explaining melt 

fracture. We expect these results to be accurate when   Pé≪1 . 

When slip heating and viscous dissipation are considered together, they do 

not contribute equally or consistently to the temperature rise experienced by the 

melt during simple shear or pressure-driven flows. The relative contributions 

depend on the wall slip speed and shear stress. Temperature rise is attributed to 
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viscous dissipation when the interfacial shear stress is low or when the exterior 

surface temperature is low. Slip heating provides most of the heating at high 

exterior surface temperatures and wall shear stresses. Because both sources of 

temperature rise are of similar magnitude, neither should be neglected when 

correcting temperature data in flows where viscous dissipation matters. 

Additionally, this finding supports slip heating theory by showing its relative 

importance to viscous dissipation, a common source of temperature rise in 

polymer melts. 

Sections 2.1.5 - 2.1.7, 2.2.3, 3.4 and 3.5 illustrate the usefulness of this work. To 

test the main results of this work, including the logical consequences of cohesive 

slip theory, we would undertake a series of die drool measurements (see Sections 

7-9 of [15]). We thus propose that the best way to determine the cohesive fracture 

strength,  τ c , and its possible temperature dependence, is by fitting die drool 

experimental data. 
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Appendix I: Derivation of Bulk and Drool Temperature Profiles 

We begin with the dimensionless time-dependent differential equation for the 

drool and bulk layers: 

  

∂Θ ζ ,ψ( )
∂ψ

=
∂2Θ ζ ,ψ( )

∂ζ 2  (179) 

and perform the Laplace transform with respect to time: 

  
sΘ ζ , s( ) =

∂2Θ ζ , s( )
∂ζ 2  (180) 

Rearranging Eq. (180), we get: 

  

∂2Θ ζ , s( )
∂ζ 2 − sΘ ζ , s( ) = 0  (181) 

which is easily integrated to find: 

  Θd ζ ,s( ) =C1 coshζ s +C2 sinhζ s  (182) 

for the drool layer, and for the bulk layer: 

  Θb ζ ,s( ) =C3 coshζ s +C4 sinhζ s  (183) 

We introduce the Laplace transformed dimensionless boundary conditions 

for the adiabatic mid-plane: 

  

dΘb

dζ
ζ=1

= 0  (184) 

for the heat flux at the slipping interface: 

  

dΘd

dζ
ζ=0

−
dΘb

dζ
ζ=0

=
F
s

 (185) 

for temperature continuity at the slipping interface: 

  Θd 0, s( ) =Θb 0, s( )  (186) 
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and for the isothermal die wall: 

  Θd −a,s( ) = 0  (187) 

Applying Eqs. (184)-(187) to Eqs. (182) and (183), we find the constants   C1 ,   C2

,   C3 , and   C4 . We first apply Eq. (187) to Eq. (182) to get: 

  
Θd −a,s( ) = 0 =C1 cosh −a s( )+C2 sinh −a s( )  (188) 

and rearrange for   C1 : 

  
C1 = −C2 tanh −a s( )  (189) 

We then combine Eq. (184) with Eq. (183) to get: 

  

∂Θb

∂ζ
ζ=1

= 0 =C4 s cosh s +C3 s sinh s  (190) 

where the rightmost expression is the derivative of Eq. (183). Rearranging 

Eq. (190) yields: 

  C4 = −C3 tanh s  (191) 

Inserting the derivatives of Eqs. (182) and (183) into Eq. (185), we find: 

  

∂Θd

∂ζ
ζ=0

−
∂Θb

∂ζ
ζ=0

=
F
s
=C2 s −C4 s  (192) 

  
F

s3 2 =C2 −C4  (193) 

Inserting the derivatives of Eqs. (182) and (183) into Eq. (186), we find: 

  Θb 0,s( ) =C3 =Θd 0,s( ) =C1  (194) 

  C3 =C1  (195) 

Substituting Eq. (189) into Eq. (191) yields: 
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C4 =C2 tanh −a s( )tanh s  (196) 

which we insert into Eq. (193) to get: 

  
F

s3 2 =C2 +C2 tanh a s( )tanh s  (197) 

  

C2 =
F

s3 2 1+ tanh a s( )tanh s( )
 (198) 

which is used to determine the remaining constants: 

  

C4 =
F tanh −a s( )tanh s

s3 2 1+ tanh a s( )tanh s( )
 (199) 

  

C1 =C3 = −
F tanh −a s( )

s3 2 1+ tanh a s( )tanh s( )
 (200) 

Substituting constants for the drool layer temperature profile: 

  

Θd ζ ,s( ) =
F tanh a s( )coshζ s +Fsinhζ s

s3 2 1+ tanh a s( )tanh s( )
 (201) 

where the identity for the hyperbolic tangent is: 

  
tanh a s( ) = ea s − e−a s

ea s + e−a s
 (202) 

Simplifying Eq. (201), we get: 

  

Θd ζ ,s( ) =
F ea s − e−a s

ea s + e−a s

$

%
&&

'

(
))

eζ s + e−ζ s

2
$

%
&&

'

(
))+F eζ s − e−ζ s

2

s3 2 1+ ea s − e−a s

ea s + e−a s

$

%
&&

'

(
))

e s − e− s

e s + e− s

$

%
&&

'

(
))

$

%
&&

'

(
))

 (203) 
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Θd ζ ,s( ) = F
2s3 2

ea s − e−a s( ) eζ s + e−ζ s( ) e s + e− s( )
+ eζ s − e−ζ s( ) ea s + e−a s( ) e s + e− s( )

ea s + e−a s( ) e s + e− s( )
+ ea s − e−a s( ) e s − e− s( )

$

%

&
&
&
&
&
&
&

'

(

)
)
)
)
)
)
)

 (204) 

  
Θd ζ ,s( ) = F

2s3 2
e a+ζ+1( ) s − e− a+ζ+1( ) s + e a+ζ−1( ) s − e− a+ζ−1( ) s

e a+1( ) s + e− 1+a( ) s

$

%
&
&

'

(
)
)

 (205) 

  
Θd ζ ,s( ) = F

2s3 2

sinh a+ζ +1( ) s + sinh a+ζ −1( ) s
cosh a+1( ) s

$

%
&
&

'

(
)
)

 (206) 

  
sΘd ζ ,s( ) = F

2s1 2

sinh a+ζ +1( ) s + sinh a+ζ −1( ) s
cosh a+1( ) s

$

%
&
&

'

(
)
)

 (207) 

for the drool layer. Inverting using Heaviside expansion theorem, we obtain: 

  

dΘd ζ ,ψ( )
dψ

= L−1 F
2s1 2

sinh a+ζ +1( ) s + sinh a+ζ −1( ) s
cosh a+1( ) s

%

&
'
'

(

)
*
*

+

,

-
-

.

/

0
0

 (208) 

  Q s( ) = s cosh a+1( ) s  (209) 

The roots of Eq. (209) are: 

  Ai = 0  (210) 

  
Ai = si =

2n+1( )π i
2 a+1( )

"

#
$$

%

&
''  (211) 

Applying the theorem and the roots of the denominator reveals: 

  2P A( ) = sinh a+ζ +1( )A+ sinh a+ζ −1( )A  (212) 

  

P A( )
Q ' A( )

=
sinh a+ζ +1( )A+ sinh a+ζ −1( )A

a+1( )sinh a+1( )A+
cosh a+1( )A

A
#

$
%%

&

'
((

 (213) 
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P A( )
Q ' A( )

=

sinh a+ζ +1( )
2n+1( )π i
2 a+1( )

#

$
%%

&

'
((+ sinh a+ζ −1( )

2n+1( )π i
2 a+1( )

#

$
%%

&

'
((

a+1( )sinh a+1( )
2n+1( )π i
2 a+1( )

#

$
%%

&

'
((+

cosh a+1( )
2n+1( )π i
2 a+1( )
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 (214) 

The identity for converting hyperbolic functions to trigonometric functions is: 

  sinh x( ) = −isin ix( )  (215) 

Apply this identity to Eq. (214) and simplifying yields: 

  

P A( )
Q ' A( )

=

sin a+ζ +1( )
2n+1( )π
2 a+1( )

#

$
%%

&

'
((+ sin a+ζ −1( )

2n+1( )π
2 a+1( )

#

$
%%

&

'
((

a+1( )sin a+1( )
2n+1( )π
2 a+1( )
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%%
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#
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%
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'
(
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 (216) 

  

P A( )
Q ' A( )

=

sin a+ζ +1( )
2n+1( )π
2 a+1( )

#

$
%%

&

'
((+ sin a+ζ −1( )

2n+1( )π
2 a+1( )

#

$
%%

&

'
((

a+1( ) −1( )n( )
 (217) 

The general solution form is: 

  

dΘd ζ ,ψ( )
dψ

= F
P A( )
Q ' A( )

eA2ψ

n=0
∑  (218) 

Substituting Eqs. (217) and (211) into Eq. (218), we find: 

  

dΘd ζ ,ψ( )
dψ

= F
sin a+ζ +1( )

2n+1( )π
2 a+1( )

%

&
''

(

)
**+ sin a+ζ −1( )

2n+1( )π
2 a+1( )

%

&
''

(

)
**

a+1( ) −1( )n( )
e
−

2n+1( )π
2 a+1( )

%

&
''

(

)
**

2

ψ

n=0
∑  (219) 

  

dΘd ζ ,ψ( )
dψ

=
F

a+1( )
−1( )n sin a+ζ +1( )λ + sin a+ζ −1( )λ( )e−λ2ψ

n=0
∑  (220) 

where: 
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λ =

2n+1( )π
2 a+1( )

 (221) 

Integrating Eq. (220) produces: 

  
Θd ζ ,ψ( ) = F

a+1( )
−1( )n

λ 2 sin a+ζ +1( )λ + sin a+ζ −1( )λ( ) 1− e−λ2ψ( )
n=0
∑  (222) 

which is the drool layer temperature profile. 

Solving for the bulk temperature profile: 

  Θb ζ ,s( ) =C3 coshζ s +C4 sinhζ s  (223) 

Substitute constants: 

  

Θb ζ ,s( ) = −
F tanh −a s( )coshζ s +F tanh −a s( )tanh s sinhζ s

s3 2 1+ tanh a s( )tanh s( )
 (224) 

which simplifies to: 

  

sΘb ζ ,s( ) = F
2s1 2

ea s − e−a s( ) eζ s + e−ζ s( ) e s + e− s( )
+ e−a s − ea s( ) e s − e− s( ) eζ s − e−ζ s( )

e a+1( ) s + e− 1+a( ) s

$

%

&
&
&
&

'

(

)
)
)
)

 (225) 

  

sΘb ζ ,s( ) = F
2s1 2

e a+ζ+1( ) s − e ζ−a+1( ) s + e a−ζ+1( ) s − e− ζ+a+1( ) s

+e a+ζ−1( ) s − e ζ−a−1( ) s + e a−ζ−1( ) s − e− ζ+a−1( ) s

$

%

&
&

'

(

)
)

+
e ζ−a+1( ) s − e a+ζ+1( ) s + e− ζ+a+1( ) s + e a−ζ+1( ) s

−e ζ−a−1( ) s + e a+ζ−1( ) s − e− ζ+a−1( ) s − e a−ζ−1( ) s

$

%

&
&

'

(

)
)

e a+1( ) s + e− 1+a( ) s

*

+

,
,
,
,
,
,
,

-

.

/
/
/
/
/
/
/

 (226) 

  
sΘb ζ ,s( ) = F

2s1 2

sinh a−ζ +1( ) s + sinh a+ζ −1( ) s
cosh a+1( ) s

$

%
&
&

'

(
)
)

 (227) 

Inverting Eq. (227), we find: 
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dΘb ζ ,ψ( )
dψ

= L−1 F
2s1 2

sinh a−ζ +1( ) s + sinh a+ζ −1( ) s
cosh a+1( ) s

%

&
'
'

(

)
*
*

+

,

-
-

.

/

0
0

 (228) 

with solution form of: 

  

dΘb ζ ,ψ( )
dψ

= F
P A( )
Q ' A( )

eA2ψ

n=0
∑  (229) 

where: 

  2P A( ) = sinh a−ζ +1( )A+ sinh a+ζ −1( )A  (230) 

and: 

  Q A2( ) = Acosh a+1( )A  (231) 

The roots of Eq. (231) are: 

  Ai = 0  (232) 

  
Ai = si =

2n+1( )π i
2 a+1( )

"

#
$$

%

&
''  (233) 

The ratio of P to Q’ is: 

  

P A( )
Q ' A( )

=
sinh a−ζ +1( )A+ sinh a+ζ −1( )A

a+1( )sinh a+1( )A+
cosh a+1( )A

A
#

$
%%

&

'
((

 (234) 

Substituting the zeros and converting to trigonometric functions, we obtain: 

  

P A( )
Q ' A( )

=

sin a−ζ +1( )
2n+1( )π
2 a+1( )

$

%
&&

'

(
))+ sin a+ζ −1( )

2n+1( )π
2 a+1( )

$

%
&&

'

(
))

a+1( )sin a+1( )
2n+1( )π
2 a+1( )

$

%
&&

'

(
))

$

%
&
&

'

(
)
)

 (235) 

Further simplification yields: 
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P A( )
Q ' A( )

=
sin a−ζ +1( )λ + sin a+ζ −1( )λ

a+1( ) −1( )n  (236) 

Substituting into Eq. (229), we find: 

  

dΘb ζ ,ψ( )
dψ

= F
sin a−ζ +1( )λ + sin a+ζ −1( )λ

a+1( ) −1( )n e
−

2n+1( )π
2 a+1( )

'

(
))

*

+
,,

2

ψ

n=0
∑  (237) 

Integrating with respect to ψ  yields: 

  
Θb ζ ,ψ( ) = F

a+1
−1( )n

λ 2 sin a−ζ +1( )λ + sin a+ζ −1( )λ( ) 1− e−λ2ψ( )
n=0
∑  (238) 

which is the dimensionless bulk layer temperature profile. 

 


