
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=rajs20

African Journal of Science, Technology, Innovation and
Development

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/rajs20

The adoption of Software Engineering practices in
a Scrum environment

Oluwaseun Alexander Dada & Ismaila Temitayo Sanusi

To cite this article: Oluwaseun Alexander Dada & Ismaila Temitayo Sanusi (2021): The adoption
of Software Engineering practices in a Scrum environment, African Journal of Science, Technology,
Innovation and Development, DOI: 10.1080/20421338.2021.1955431

To link to this article: https://doi.org/10.1080/20421338.2021.1955431

© 2021 The Author(s). Co-published by NISC
Pty (Ltd) and Informa UK Limited, trading as
Taylor & Francis Group

Published online: 21 Aug 2021.

Submit your article to this journal

Article views: 68

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=rajs20
https://www.tandfonline.com/loi/rajs20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/20421338.2021.1955431
https://doi.org/10.1080/20421338.2021.1955431
https://www.tandfonline.com/action/authorSubmission?journalCode=rajs20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=rajs20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/20421338.2021.1955431
https://www.tandfonline.com/doi/mlt/10.1080/20421338.2021.1955431
http://crossmark.crossref.org/dialog/?doi=10.1080/20421338.2021.1955431&domain=pdf&date_stamp=2021-08-21
http://crossmark.crossref.org/dialog/?doi=10.1080/20421338.2021.1955431&domain=pdf&date_stamp=2021-08-21

The adoption of Software Engineering practices in a Scrum environment

Oluwaseun Alexander Dada1,2* and Ismaila Temitayo Sanusi 3

1Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
2The School of Software, Lekki-Lagos, Nigeria
3School of Computing, University of Eastern Finland, Joensuu, Finland
*Corresponding author. Email: alexander.dada@helsinki.fi, alexander.dada@schoolofsoftware.net

The competition in the software market demands that the time required for any software product to reach the market be
reduced if the product is to survive competition from other developers. The pursuit of this goal has led to the adoption of
agile software development methodologies. While other agile methodologies provide guidelines as to the software
engineering (SE) practices to be used during the development lifecycle, Scrum does not. The purpose of this study is
twofold: first, to identify the usage and level of importance of software engineering practices in the Scrum
development environment; and second, to investigate how Scrum teams adopt an appropriate set of SE techniques and
whether a hybrid Scrum/Extreme Programming (XP) methodology is an appropriate approach to take. This research
was conducted by examining sample data from five organizations using the Scrum methodology. The sample included
a range of industries including communications and embedded systems, financial asset management, software
development houses and consulting firms in South Africa. The study employed a mixed method approach. A key
finding was that, regardless of the fact that Scrum does not explicitly recommend engineering practices, there was
extensive use of these practices by all of the participating organizations. The study also found that the lack of software
engineering practices in Scrum does not constitute a barrier to a successful adoption of Scrum, provided the ‘inspect
and adapt’ principle inherent in Scrum is properly followed. The study discusses the findings, explains the implications
and suggests future research.

Keywords: Scrum, extreme programming, software engineering, agile management

Introduction
Agile software development has moved from the fringes
of the software development community to the main-
stream. This movement is driven by the need to produce
better software faster, which is integral to developing
competitive advantage in the global software community.
From North America to Asia and everywhere in between,
the ability to deliver software that delights the customer
has become a critical success factor (Eckstein 2013).
There are a number of agile methodologies, but the fol-
lowing are the more important ones: Extreme Program-
ming (XP), Adaptive Software Development (ASP),
Dynamic Systems Development Method (DSDM),
Scrum, Crystal, Feature Driven Development, and Agile
Modeling. They all follow the core values and principles
defined in the agile manifesto (Lei et al. 2017; Srivastava,
Bhardwaj, and Saraswat 2017).

Agile methodologies usually contain practices that
focus on both dimensions of software development:
Project Management and Software Engineering (SE)
(Jyothi and Rao 2011). ProjectManagement practices con-
centrate on planning, organizing, securing and managing
resources to bring about the successful completion of the
system development project and the realization of its
objectives. On the other hand, Software Engineering prac-
tices focus on the technical side of the development prac-
tice like coding, refactoring, pair programming and other
tools and techniques used in the analysis, design, construc-
tion and testing phases of the project (Jyothi and Rao 2011;
Brhel et al. 2015). While most of the agile methodologies
focus on both software engineering and project

management, Scrum is predominantly a project manage-
ment methodology (Jyothi and Rao 2011). Consequently,
while other agile methodologies provide guidelines as to
the software engineering practices to use during the devel-
opment lifecycle, Scrum does not (Abrahamsson and Salo
2008; Jyothi and Rao 2011).

The purpose of this empirical research study is two-
fold. Firstly, the study will attempt to identify the level
of usage and importance of software engineering tools
and techniques used by Scrum teams. The second objec-
tive is to investigate how Scrum teams adopt an appropri-
ate set of SE techniques and whether a hybrid Scrum/
Extreme Programming (XP) methodology is an appropri-
ate approach to take. This study is of relevance consider-
ing the rate at which the Scrum methodology is being
adopted globally. According to Pudusserry (2009), 37%
of all agile implementations are in Scrum while a
further 23% use a combination of Scrum and Extreme
Programming. For instance, another study shows that
Scrum was the most utilized approach in a systematic
review conducted from 2010 to 2016 (Vallon et al.
2018). In addition, the study findings should provide gui-
dance in the selection of appropriate software engineering
tools and techniques for a software development team
migrating from the traditional methodologies to a Scrum
setting.

Based on the objectives, this study seeks to provide
answers to the following research questions:

RQ1. What is the level of usage and importance of soft-
ware engineering practices in the Scrum development
environment?

African Journal of Science, Technology, Innovation and Development is co-published by NISC Pty (Ltd) and Informa Limited (trading as Taylor & Francis Group)

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not
altered, transformed, or built upon in any way.

African Journal of Science, Technology, Innovation and Development, 2021
https://doi.org/10.1080/20421338.2021.1955431
© 2021 The Authors

mailto:alexander.dada@helsinki.fi
mailto:alexander.dada@schoolofsoftware.net
http://orcid.org/0000-0002-5705-6684
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/20421338.2021.1955431&domain=pdf&date_stamp=2021-08-12

RQ2. How do Scrum teams adopt an appropriate set of SE
techniques (trial and error, via coaching support or other
means)?
RQ3. Is the adoption of a hybrid Scrum/Extreme Pro-
gramming methodology an appropriate approach to take?

The next section reports related research, while the
section following that reports the methodological
process adopted. The section thereafter presents the analy-
sis and findings of the study followed by the section that
discusses the results and implications while the final
section presents the conclusion, the limitations that
arose during the study and offers suggestion for future
research.

Literature review
Software has been part of modern society for more than
50 years (Awad 2005). There are various types of software
development methodologies in use today, but according to
Kanwal, Junaid, and Fahiem (2010), the most popular
kinds of methodologies are the traditional software devel-
opment methods and a group of iterative methods, includ-
ing the family of agile methodologies (Figure 1).

Traditional software development methodology
The traditional method of software development, often
referred to as the waterfall approach, assumes that the
process of building a software system follows a series
of sequential steps. Each of the phases consists of a
fixed set of practices and deliverables that must be accom-
plished before the following phase can begin. The phases
may be named differently (Awad 2005), but the logic is
that the first phase involves planning and capturing of
the system’s requirements and the second phase deter-
mines how the system should be designed to meet these
requirements. The third stage is where the developers
write the code and implement the system, followed by
the verification phase to ensure that the system performs
as specified. Finally, the maintenance phase focuses on
issues related to the system that arise after deployment
(Awad 2005; Pressman 2005).

Agile approach
The agile approach refers to a family of development
techniques designed to deliver products on time, on
budget, with high quality and customer satisfaction
(Jyothi and Rao 2011). The agile methods attempt to
focus on the primary goals of the software development
process, that is, the creation of working (defect-free) soft-
ware (Hunt 2006). One of the ways in which agile meth-
odologies effectively manage change is through dynamic
prioritization, meaning ‘at the end of every iteration, the
customer can reprioritize the features desired in the next
cycle, discarding originally planned features and adding
new ones’ (Highsmith and Cockburn 2007, 3). XP uses
story cards; Scrum uses the term ‘backlog’; Agile Soft-
ware Development (ASD) and Feature-Driven Develop-
ment refer to features (Pressman 2005; Highsmith and
Cockburn 2007).

The agile methodologies are all based on iterative
development. In addition, Pressman (2005) reasons that
agility can be applied to any software process provided
that the development team is allowed to streamline tasks
and conduct planning in a way that eliminates non-essen-
tial work products. It is also interesting to note that most
agile methodologies cover both software engineering and
project management aspects of the software development
process. In contrast, the Scrum methodology is predomi-
nantly a project management technique which gives no
guidance on how the software engineering practices are
to be implemented (Srivastava, Bhardwaj, and Saraswat
2017). This is perhaps the reason why Appelo (2008)
says Scrum by itself is never enough, and that develop-
ment teams must adopt additional practices (usually XP).

The various tools and techniques that form part of a
typical software development process may be classified
into two groups: project management (PM) and software
engineering (SE) practices (Appelo 2008). While PM
focuses on the planning and guiding of the project pro-
cesses and resources from start to finish, SE deals with
the various practices used in the building of the system
(Kerzner 2009). The traditional PM approach is often
referred to as ‘plan based’ or ‘predictive’ while the
agile approach is referred to as ‘empirical’ or ‘adaptive’
(Keshta and Morgan 2017). Lynema (2010) and High-
smith and Highsmith (2009) highlight some of the
common principles and practices encapsulated in the tra-
ditional project management approach in contrast to those
followed in agile project management (Table 1).

The Scrum methodology
Scrum can simply be defined as an agile software devel-
opment methodology that is based on multiple small
teams working in an intensive and interdependent
manner. The term ‘Scrum’ is named after the scrum (or
scrummage) formation in rugby, which is used to restart
the game after an event that causes play to stop, such as
an infringement (Stafford et al. 2011).

As illustrated by Figure 2, a Scrum project usually
starts with a vision of the system to be developed.
Then a list of all the user requirements (that are cur-
rently known) is developed. This list is referred to as
the Product Backlog (PB). The PB is prioritized andFigure 1: Waterfall methodology (FreeTutes 2011).

2 Dada and Sanusi

divided into proposed releases. All work is done in
Sprints (each Sprint is an iteration, of between 2 and
4 weeks). Every Sprint starts with a Sprint planning
meeting, where the Product Owner (user representative)
and the team meet to discuss what must be done for the
next Sprint. This translates into the next Sprint Backlog
(a list of tasks that must be performed to deliver a com-
pleted increment of potentially shippable product func-
tionality by the end of the Sprint). The Team holds
Scrum meetings on a regular basis (usually daily) for
15-minutes. The purpose of the meeting is to synchro-
nize the work of all team members and to schedule
any meetings that the team needs to progress. At the
end of the Sprint, the team gets together for a Sprint
review meeting in which the team demonstrates to the
Product Owner what was developed during the Sprint.
After the Sprint review the Scrum Master (team facilita-
tor, coach and mentor) calls for a Sprint retrospective in
order to encourage the team to reflect on their current
development process and practices and, where appropri-
ate, to adapt these to make the team more effective and
efficient for the next Sprint (Drnovscek and Mahnic
2005; Pressman 2005).

From the above description it is clear that Scrum ulti-
mately focuses on project management issues – such as
promotion of self-directed teams, and daily teammeasure-
ment. However, Scrum does not prescribe any software
engineering practices (Larman 2004; Pudusserry 2009).
While Appelo (2008) observes that Scrum is fast becom-
ing a de facto standard for managing agile software devel-
opment projects, he concludes that Scrum must be
augmented by another methodology that can supply the

engineering practices critical to developing quality
software.

Scrum and extreme programming (XP)
Sahota (2011) argues that Scrum contains a set of prac-
tices (such as self-organizing and cross functional
teams, retrospective, and many others) that can enhance
project management practices of the Extreme Program-
ming (XP) methodology. Sahota (2011) and Appelo
(2008) note that relevant Scrum practices need to be
added to XP to ensure a successful software project,
although there are practices that overlap between the
two agile methods (the idea is illustrated in Figure 3). In
agreement with Sahota’s (2011) argument; Appelo
(2008) claims that the Scrum framework is intentionally
incomplete and also stresses that Scrum is originally
aimed at providing project management techniques for
other agile methods such as XP, ASP, DSDM.

While Scrum is focused on project management, there
is little argument concerning the requirement that team
members must adopt appropriate software engineering
practices to ensure they build quality systems (Fowler
et al. 2002). Cohn (2011) states that a good Scrum team
will find appropriate technical practices to ensure that
they produce high quality software, while a bad Scrum
team (if they can be said to be doing Scrum) will use
Scrum as an excuse to do low quality work. Cho
(2009), Kim (2007) and Pudusserry (2009) also observe
that Scrum does not recommend any particular practices,
as different development environments require different
tools and techniques. Schwaber and Beedle (2002) rec-
ommend the use of XP practices such as pair

Figure 2. Detailed Scrum flow (Schwaber 2004).

African Journal of Science, Technology, Innovation and Development 3

programming, collective code ownership and minimal
documentation. On the other hand, Cho (2009) suggests
that the engineering techniques of the Rational Unified
Process (RUP) be adopted in Scrum and Sutherland
(2007) endorses the use of Lean tools and techniques to
complement the project management processes of Scrum.

Shore and Warden (2008) cross reference agile prac-
tices that are similar (not identical) in both Scrum and
XP ranging across the following five categories: Think-
ing, Collaborating, Releasing, Planning, and Developing.
The outcome shows that Scrum covers 53% of the defined
practices compared to XP’s 90% coverage. This finding
supports Appelo’s (2008) and Sahota’s (2011) observation
that XP is almost complete in itself while Scrum is not. In
terms of implementation and testing, XP catered for 89%
of the practices investigated against Scrum’s 11%, thus
confirming the lack of engineering techniques in Scrum.
In a similar survey conducted by Pudusserry (2009), the

results indicated that 37% of the respondents were
Scrum users, 12% used XP, while 23% used a Scrum/
hybrid approach. The author concludes by recommending
that the best way to successfully implement Scrum ‘is to
start with Scrum (that is, focus on the management prac-
tices) and then adopt the engineering practices from XP’
(Pudusserry 2009, 8). In the context of this discussion,
it is appropriate to reverse the argument put forward by
Sahota (2011) on how Scrum can enhance XP, and
rather ask the question, how can XP enhance Scrum?

Figure 4 illustrates how many of the popular SE prac-
tices that are recommended in XP and other agile method-
ologies can be used to enhance the Scrum development
environment.

Summary of the literature
The pressures of a truly global economy cause today’s
businesses to increasingly rely on their ability to

Figure 3: Scrum contains valuable practices that lie outside XP (Sahota 2011).

Figure 4: Enhancing Scrum with XP Software Engineering Practices (Pressman 2005; Appelo 2008; Cho 2009; Sahota 2011).

4 Dada and Sanusi

produce quality software to remain competitive, whether
it be software for managing manufacturing and customer
delivery processes or software for improving the effi-
ciency of day-to-day activities. As a result, various devel-
opment methodologies have been explored, ranging from
the so-called Waterfall methodology to the agile
approach. While the Waterfall approach serves as an
improvement over previous development methods, its
inability to easily respond to changes (among other limit-
ations) has led to the emergence of the agile software
development methodologies (Bang 2007; Dyba and Ding-
soyr 2008).

According to the literature reviewed, the Scrum meth-
odology is arguably the most adopted agile approach.
Scrum focuses on the effective management of the soft-
ware project by promoting better communication
channels between the development team and the stake-
holders. The Scrum method also makes it easy for the
owners of the system to reprioritize their desired features
without interrupting the development process. The short
sprints that Scrum advocates make it easy to get quick
feedback from the project owners, and at the same time
it is easy for the development team to cope with
changes. Scrum also makes it possible for management
to easily track the productivity of each of the team
members. The most important benefit of the Scrum meth-
odology is that it increases team productivity, software
quality, and user satisfaction (Bjeirmi and Munns 1996).
However, Scrum is a project management framework
and lacks guidance on appropriate software engineering
practices (Cao and Ramesh 2008).

As a result, various authors Appelo (2008), Kanwal,
Junaid, and Fahiem (2010) as well as Pudusserry (2009)
and practitioners (Sutherland (2004), Cohn (2011), and
Cockburn (2001)) suggest that Scrum management prac-
tices should be complemented by software engineering
tools and techniques from other agile methodologies.
According to Pudusserry (2009), it is up to the team to
decide which ones to use. Considering the fact that very
little empirical research has been conducted regarding
the usage and adoption of software engineer practices
within the Scrum environment a number of questions
are posed.

Given the lack of formal guidance from the Scrum
methodology:

. What software engineering practices are commonly
adopted by Scrum developers?

. How do Scrum teams identify and implement an appro-
priate set of SE practices – by prescription or discovery?

These two questions encapsulate the main research
objectives of this study.

Methodology
Very few research studies have been conducted specifi-
cally to identify the software engineering tools and tech-
niques that are used by software development teams that
have migrated from a traditional development approach
to Scrum. As a result, a mixed methodology research
approach was adopted for comprehensive investigation
into these research objectives. The empirical research

conducted was exploratory in nature. The quantitative
approach was used to identify which software engineering
practices are currently used in the Scrum development
environment. The instrument used to achieve this objec-
tive was a questionnaire which was directed at Scrum
team members and Scrum Masters (team facilitators) in
the sample companies. On the other hand, the qualitative
aspect of the research was targeted at experienced prac-
titioners in the Scrum community and took the form of
semi structured interviews. The purpose of the interviews
was to elicit expert opinion on how software engineering
practices are adopted.

Research sample
The data for the research was collected from software
development teams that have changed from a traditional
software development methodology to Scrum. Mixed
methodology approach was utilized in this study to under-
stand how the software engineering practices are adopted.
This involves the use of quantitative and qualitative data
derived from a questionnaire and interview schedule.
Scrum community is the targeted population of the
study. Purposeful sampling technique was employed to
recruit Scrum team members, Scrum Masters and experi-
enced practitioners in the sample companies. Before
adopting purposeful sampling technique, the researcher
decides what needs to be known and sets out to find
people who can and are willing to provide the information
by virtue of knowledge or experience (Etikan, Musa, and
Alkassim 2016). In all, thirty-five participants responded
to the questionnaire and nine participants were inter-
viewed. The main participants in this research were the
companies and individuals in the Cape Town and Stellen-
bosch Scrum community in South Africa. These compa-
nies can be categorized into the following industries:
communications and embedded systems, financial asset
management, software development and IT consulting.

Data collection
Questionnaires
The purpose of the questionnaire was to identify the usage
and importance of software engineering practices in the
Scrum community. The questionnaire begins with a
brief introduction to the research team and to the
purpose of the study. It then asks for demographic infor-
mation including the respondent’s last role in a traditional
methodology team, their role(s) in the Scrum team, and
number of years of experience in both teams. Participants
were requested to tick only the practices that they have
used, while others were left blank. If the respondent had
used certain techniques other than the ones mentioned
in the questionnaire, they were encouraged to enter such
practices in the extra columns provided. Finally, the par-
ticipants were asked to state any problem(s) they might
have experienced while migrating from the traditional
approach to the Scrum environment in relation to the
selection and adoption of software engineering tools and
techniques. The authors were able to restrict the question-
naire to two pages in the hope and anticipation that this
would encourage participants to complete it timeously.

African Journal of Science, Technology, Innovation and Development 5

The items in the questionnaire were derived from the
various practices (see Tables 1 and 2) put forward by
various authors and ‘agilists’ such as Schwaber and
Beedle (2002), Sutherland (2007), Fowler et al. (2002),
Cohn (2011) as well as Sahota (2011). A five-point
Likert-type scale was used in the questionnaire ranging
from (1) ‘Very Unimportant’ to (5) ‘Very Important’.
This allowed users a range of possible answers, enabling
them to rate each practice by its level of importance to the
development process.

Semi structured interviews
The purpose of the interviews was to ask questions around
the second research objective. This helped the authors to
understand how the Scrum team identified and adopted
the engineering tools and techniques they were currently
using and if there were any issues relating to the selection
of the appropriate practices. To achieve these goals, six
questions were prepared. Nine suitable interviewees
(experienced Scrum professionals) were identified, and

emails were sent to solicit their support. Interviews were
set up and individual members of the team visited the par-
ticipants in their respective organizations. The interviews
took between 30 and 60 min. One long distance interview
was conducted by telephone. In each of the interview ses-
sions, the research team explicitly sought the consent of
the interviewees to be recorded.

As the interviewee’s role in the Scrum process could
influence their opinions on and attitudes to issues raised
in the interview, they were categorized as Managers
(M), Scrum Masters (SM), Developers (D) and
Coaches (C). The code was followed by a number to
identify a particular respondent while keeping their
anonymity; the four managers interviewed are rep-
resented as M1, M2, M3 and M4 while the three
Scrum Masters are denoted as SM1, SM2 and SM3.
Since there was only one developer and one coach,
they are represented as D1 and C1, respectively. Table
3 describes the roles and responsibilities of these
experts at their respective organizations.

Table 2: Interview respondents.

Code Role and responsibility
Managers (M1 to 4) System development or operation managers with responsibility for a number of Scrum teams
Developers (D1) Team member in a Scrum team
Scrum masters (SM1 to 3) Team manager, facilitator and coach. Looks after Scrum team(s) and shields them from external

disturbance
Coaches (C1) Gives training to Scrum team(s) in areas where they need coaching and assistance

Table 1: Comparison of principles and practices in traditional and agile project management (Highsmith and Highsmith 2009; Lynema
2010).

Items Traditional project management Agile project management
Planning Plan all in advance Plan as you go
Artefact Work breakdown structure Feature breakdown structure
Requirements gathering Functional specification User story
Project schedule Gantt chart Release plan
Communication tool Status reports Story boards
Development model Deliver at the end Deliver as you go
Continuous learning Learn at the end Learn every iteration
Adaptability Follow the plan Adapt everything
Management Manage tasks Manage team

Table 3: The most important software engineering tools and techniques used in Scrum.

Ranking Important engineering practices Average level of importance (LOI) SDLC phases
1 User stories 4.5 Analysis
2 Integration testing 4.45 Construction
3 Unit testing 4.43 Construction
4 Continuous integration 4.42 Construction
5 Version control 4.39 Quality Ass
6 Test cases 4.39 Construction
7 Systems testing 4.38 Construction
8 Product backlog 4.35 Analysis
9 Self-documenting code 4.32 Construction
10 Retrospective/reflection 4.26 Quality Ass
11 Walkthroughs/ Reviews 4.16 Quality Ass
12 Secure coding standards 4.14 Construction
13 User acceptance testing 4.13 Construction
14 Refactoring 4.1 Quality Ass
15 Test Driven Development (TDD) 4.08 Construction
16 Test automation 4.08 Construction

6 Dada and Sanusi

Data analysis
This section presents the analysis performed in this study.
In the quantitative section, the reliability and construct
validity of the measuring items were tested. The values
of composite reliability and average variance extracted
(AVE) were greater than 0.7 and 0.5, respectively for con-
vergent validity which is tandem with Olaleye et al.
(2020a) and Olaleye, Sanusi, and Salo (2020b). Both
descriptive and inferential statistics were utilized which
include frequency, percentages, mean, standard deviation
(SD) and t-test. For the qualitative aspect of the study, the-
matic analysis and deductive coding technique were
adopted for the study. Thematic analysis was described
by Braun and Clarke (2006) as a method for identifying,
analyzing and reporting patterns within data.

Result
Quantitative results
Respondent demographics
The following demographics provide a profile of the
survey sample that participated in this empirical research.
The questionnaire was completed by 35 respondents. Of
these, one questionnaire was found to be incorrectly com-
pleted and excluded from the study.

Roles in Scrum and years of experience: The majority
of the respondents (see Figure 5) were either Scrum
Masters (n = 10, 31% of sample) or team members (n =
22, 66% of sample). These roles are appropriate to the
study as both are heavily involved in the selection and
implementation of the team’s SE practices. There was
one Coach in the sample who was also included.
However, two of the respondents were product owners
and their questionnaires were excluded from the sample
as their roles are related more to the business than soft-
ware development. As a result, 32 questionnaires were
used in the study.

Figure 6 illustrates the number of years of working
experience that the respondents have had in the Scrum

development environment. Twenty-eight (88%) of the
respondents have been working in the Scrum environ-
ment for between 1 and 4 years. Only 5 (13%) of the
respondents are relatively new to the Scrum environ-
ment, and the remaining 4 (13%) have over 5 years’
experience in Scrum methodology. The average years
of Scrum experience is just over 2 years, which is a
source of concern as this means that, on average,
knowledge on issues relating to Scrum is limited.
This is not a surprise; given that Scrum is a relatively
new methodology. With that said, it is important to
mention that the respondents have been in the software
development (SD) industry for an average of 8 years
which implies that there is a fair amount of SD experi-
ence in the group.

One of the key objectives of the study was to investi-
gate the level of usage of SE practices within the Scrum
environment. In an attempt to put the level of usage in
context, it was compared to the level of usage of SE prac-
tices in the traditional environment. Usage statistics for
traditional and Scrum practices were identified from the
questionnaire in the following way:

. Where respondents gave a level of importance to a prac-
tice, this indicated that they had used the practice. This
assumption was based on the instructions clearly given
in the questionnaire:

Please indicate (with a X) if you used any of the following
tools and techniques as part of your previous traditional
development environment and/or current Scrum environ-
ment and put a cross in the appropriate box that depicts its
level of importance. Leave the row blank if you did not
use that tool or technique. If you have only been involved
in Scrum development, leave the traditional usage section
blank.

. According to the data collected, five of the questionnaire
respondents had only worked in a Scrum environment,
making the total number of respondents for the traditional
approach (n = 27), against the number for Scrum (n = 32).

. A count was made of all respondents using SE practices
in the two development environments and these counts

Figure 5: Role of the respondents in Scrum. Figure 6: Years of Scrum experience.

African Journal of Science, Technology, Innovation and Development 7

were converted to a percentage usage figure given that
the number of responses differed across the two
environments.

Figure 7 compares the average-usage of each practice,
while Figure 8 shows differences in the usage of the SE
practices in both Scrum and traditional environments.
The following details some of the important findings
derived from the charts:

. Both charts suggest there is more usage of SE practices in
Scrum than in traditional methodologies. This is con-
firmedby the overall average level of usageofSEpractices
in Scrum (74%) against 69% in the traditional approach.

. Most of the SE practices in Scrum with high levels of
usage (percentage usage more than 80%) are construc-
tion, testing and quality assurance practices. Given the
complexity of the iterative approach and the emphasis
of agility on quality, this finding was expected.

. Two practices from the requirements phase (user stories
(100% usage) and the product backlog (97% usage))
were among the most used SE Scrum practices. This
again was expected as they are key artifacts in the
Scrum methodology.

. At the other end of the scale, SE practices with the
lowest usage were mostly diagramming and documen-
tation techniques associated with high ceremony devel-
opment approaches. Given that Scrum is a low
ceremony, agile methodology; this finding is supported
by the literature.

. As would be expected, SE practices with the highest
usage in the traditional approach were the functional,
non-functional and design specifications together with
use case narratives (all high ceremony, document
driven practices).

Evaluating the usage of engineering practices
. The practice providing the greatest difference in usage
between the Scrum and the traditional approaches was
the retrospective/ review practice (Scrum 100% usage,
Traditional 52% usage, 48% difference). While both
approaches allow the development team to reflect on
their progress and performance and so improve their
ability to deliver quality software, the iterative approach
provides a much richer environment to inspect and
adapt. This finding is therefore in line with the literature
(Cockburn 2001).

. In summary, although Scrum does not prescribe the use
of SE practices, they are used extensively. As expected,
they reflect the low ceremony, iterative nature of the
Scrum environment.

Importance of software engineering practices
The previous section showed clearly that there is a wide
spread of SE practices in organizations using the Scrum
methodology. This section focuses on the level of impor-
tance given to each of these practices in the software
development process.

The authors began by analyzing the importance of the
various software engineering practices in each phase of

Figure 7: Comparing usage of SE practices in Scrum and traditional methods.

Figure 8: Difference in usage of SE practices in Scrum and traditional method.

8 Dada and Sanusi

the software development lifecycle. Means for the level of
importance (LOI) of each SE practice in the traditional
methodology and Scrum environments were calculated
and averaged to obtain an overall mean for each phase
in the SDLC. Figure 9 illustrates the following:

. Analysis Phase: The literature suggests that by adopting
agile methodologies like Scrum, software development
teams are likely to reduce the level of ceremony,
especially in the analysis phase of the development
process. Against such expectations, Figure 11 illustrates
the fact that Scrum development teams still consider
most tools and techniques in this phase to be fairly
important with an average level of importance (LOI)
of 3.44, This is almost the same level of importance as
in the traditional approach (3.33). Detailed analysis of
the various practices within the Analysis phase may
help to explain this observation and are dealt with
later in the paper.

. Design Phase: The average level of importance of
design practices appears to agree with the literature, in
that most of the design practices used in the traditional
methods are still relevant in Scrum. Hence, LOI of
3.14 compared to 3.27 for the traditional method.

. Construction Phase Figure 9 shows that Scrum develop-
ment teams rate these practices high in importance (4.1),
even more important than in the traditional setting which
is rated 3.39. Given the increased complexity of coding
and testing in an iterative environment, the finding is
appropriate.

. Quality Assurance: Respondents consider the QA prac-
tices in Scrum to be very important, given its LOI of
4.11. This was again expected from the literature,
given that quality is heavily emphasized in agile devel-
opment environments (Pudusserry 2009).

To summarize, the analysis of software engineering
practices by life cycle phase highlights two important
aspects:

. Firstly, the overall average level of importance of these
practices in Scrum is 3.70 and 3.33 for the traditional
methodology.

. Secondly, their importance seems to be more focused on
the Construction and Quality Assurance phases of the

life cycle rather than on Analysis and Design. This
finding was expected as the ‘build’ phase in an agile,
iterative environment is more challenging than the tra-
ditional waterfall approach and requires rigorous
coding and testing practices.

Analysis phase: In a more detailed investigation of the
importance of specific SE practices in the analysis phase
of the life cycle (see Figure 10), the following was
observed:

. As expected, the popular agile requirement elicitation
and specification practices are rated as the most impor-
tant in Scrum. These included User stories (LOI score
of 4.5) and the Product Backlog (4.35).

. In addition, more traditional analysis practices including
the Functional Specification (LOI 4.0), Process model-
ling (LOI 3.5), and Use cases (LOI 3.3) were less impor-
tant in Scrum (3.13, 3.11, and 3.0 respectively).

. Also as expected from the literature, the Functional Spe-
cification (FS) document was identified as the most
important practice in the traditional approach. However,
the Scrum methodology is a low ceremony approach
where the formal FS is often replaced by User stories
and face to face communication. A low level of impor-
tance was expected and yet this practice was rated (LOI
3.13) in Scrum. This finding will be investigated further.

. The balance of the Engineering tools and techniques
such as Data modelling, Non-functional specifications,
and Prototyping are considered equally important in
both Scrum and traditional software development set-
tings. This finding is also expected as the techniques
are important development practices and should be fol-
lowed in all SD approaches.

. One anomaly in the chart of analysis practices is the low
level of importance given to Class Diagrams in the
Scrum methodology (LOI 2.65) as opposed to the tra-
ditional approach (LOI 3.40). Possible explanations
for this could lie in the fact that in more recent agile
and iterative development literature, the Analysis
Class Diagram is referred to as a Concept Diagram
(Larman 2004), or Domain diagram (Evans 2004).

Design phase: Following on from the analysis phase,
a more detailed review of the importance of specific SE

Figure 9: Importance of software engineering practices by life cycle phase.

African Journal of Science, Technology, Innovation and Development 9

practices in the design phase of the life cycle (see Figure
11) was completed:

. Given that design is a critical aspect of software develop-
ment; the literature believes that design practices are as
important in Scrum as they are in the traditional method-
ologies (Capitalhead 2006; Pudusserry 2009). In
additional, none of the design practices identified are
uniquely related to the traditional or agile approaches.
Figure 11 illustrates little difference in the importance
of the design tools and techniques between the two
approaches with the majority of practices rated slightly
higher in the traditional approach. For instance, Database
design (LOI 3.9 in the traditional is 3.69 in Scrum),
Architectural patterns (LOI 3.8 in the traditional is
ranked 3.58 in Scrum), and Design patterns (LOI 3.7 in
traditional is 3.44 in Scrum). The design practices of
least importance to Scrum were all diagramming prac-
tices and this can be expected given Scrum’s ‘just
enough’, low ceremony approach to documentation.

. One other interesting observation is the importance level
given to the Design specification, LOI 3.3 in traditional

and 3.15 in Scrum. Like the functional specification,
both documents are the backbone of the traditional
waterfall approach and were expected to be very unim-
portant in Scrum. This finding is discussed further in the
next section.

Construction phase:As shown in Figure 12, a detailed
review of the SE practices in the Construction phase high-
lighted the following:

. All the practices listed in this phase have average level of
importance well above 3.0. This implies that they are con-
sidered relevant and important in software development
irrespective of which methodology is being used.

. Each of the practices in the construction phase is con-
sidered to be more important in Scrum than in the tra-
ditional methodologies.

. The literature stresses the significance of managing and
controlling coding and testing in an iterative environ-
ment (Balsamo et al. 2004), and this is supported by
the 10 highest ranking Scrum Construction engineering
practices, all with a LOI of above 4. This list includes

Figure 11: The design phase – average level of importance of software engineering practices (sequenced by Scrum level of importance).

Figure 10: The analysis phase – average level of importance of software engineering practices (sequenced by Scrum level of
importance).

10 Dada and Sanusi

Integration testing (4.45), Unit testing (4.43), Continu-
ous integration (4.42), Systems Testing (4.38), Test
Cases (4.39), Self-documenting code (4.32), Secure
coding standards (4.14), User acceptance testing
(4.13), Test driven development (4.08) and Test auto-
mation (4.08). As explained by one of the Scrum
experts interviewed during the study:

Although Scrum does not mandate any engineering prac-
tices… by the nature of the small iterative approaches, it
actually demands higher level engineering practices than
required in the traditional approach, because without
doing things like proper continuous integration, fairly
robust testing, version control and those kinds of things,
it will be difficult to deliver a quality product

Quality assurance phase: Finally, practices followed
in the Quality Assurance (QA) phase of the lifecycle
(see Figure 13) were reviewed:

. Similar to the pattern observed in the construction
phase, all the engineering tools and techniques listed
are considered important (with their LOIs’ well above
3.0).

. Also of interest is the fact that each of the practices is
ranked as relatively more important in Scrum than the
traditional approach, including even the tools and tech-
niques (such as Version Control, and Walkthroughs) that
originated in the traditional environment.

. The large gap between the importance ratings of the Ret-
rospective practice in Scrum as opposed to the tra-
ditional environment is to be expected as this practice
is an integral part of the iterative and agile approach.
Moreover reflection (project reviews) is usually com-
pleted once at the end of a waterfall project as
opposed to the frequent retrospective sessions held in
Scrum. However, it is interesting to observe that the
iterative practice of Refactoring is ranked important
(LOI 3.7) in the traditional environment.

Based on the average level of importance of the
various technical practices in the SDLC stages, the
respondents consider the practices listed in Table 3 as
the most important (LOI above 4.0) software engineering
tools and techniques while Table 4 shows the least impor-
tant ones (LOI below 3.0). It is essential to note that the

Figure 13: The quality assurance phase – average level of importance (sequenced by Scrum level of importance).

Figure 12: The construction phase – average level of importance of software engineering practices (sequenced by Scrum level of
importance).

African Journal of Science, Technology, Innovation and Development 11

majority of the most important SE tools and techniques
belong to the Construction and QA phases of the
SDLC, while 80% of the least important tools and tech-
niques belong to the Design phase. This observation
shows that an iterative software development approach,
such as Scrum, considers the practices in the Construc-
tion phase and Quality Assurance to be the most impor-
tant and those in the Design phase to be the least
important, in the development process. It is also inter-
esting to see two low ceremony but critical agile analy-
sis practices rank first (1st) and eighth (8th) in Table 3
as expected from the literature (Scaffidi and Shaw
2007; Pudusserry 2009). Further, as predicted by
Fowler (2005), 80% of the QA practices are also
regarded as important (ranked 4th, 10th, 11th and
14th in Table 3).

Most of the SE practices with LOI below 3.0 are dia-
gramming techniques (as shown in Table 4). Given the
low ceremony approach of agile, this finding is supported
by Balsamo et al. (2004) in the literature.

Given the low sample size (n = 32) and the variation in
respondent roles, a difference of means test was con-
ducted to determine the significance of differences
between the importance of practices in the Scrum and Tra-
ditional development environments. The test showed p
values of less than .05 for a number of practices (see
Table 5) indicating the level of importance of these prac-
tices was significantly different between the two develop-
ment environments. The tests show that the practices that
are specifically Scrum/agile/iterative practices or are high
ceremony tend to have significant differences (p-value of

less than .05). This was expected and supported by the
literature.

A set of the t-test was conducted on the importance of
software engineering practices in Scrum and Traditional.
At p-level 0.05, the result was statistically insignificant
at the phase level. This shows that at the phase level soft-
ware engineering practices are important both in Tra-
ditional and Scrum. Table 5 shows the means at the
phase level and the p-value. This confirms the findings
of the literature regarding the importance of SE practices
in Scrum as well as in Traditional.

Qualitative results
Interviews
The interview schedule attempts to identify what practices
are currently being adopted by Scrum teams. The purpose
of the interviews goes beyond identifying Scrum SE prac-
tices and tries to understand how Scrum teams identify
and adopt SE practices.

Question 1: Given there are no prescribed software
engineering (SE) within Scrum, how do your teams
adopt appropriate practices?

The responses to this question can be categorized into
three cases:

In the first case, the development team with the
support and trust of top management are allowed to use
any engineering practices whatsoever that work for
them as long as they deliver on time and within budget.
In this scenario, most teams continue using the engineer-
ing tools and techniques brought along from the old tra-
ditional development environment but allow flexibility

Table 4: The least important software engineering tools and techniques used in Scrum.

Ranking Non-important engineering practices Average level of importance (LOI) SDLC phases
1 State machine diagrams 2.45 Design
2 Sequence/Communication diag. 2.58 Design
3 Class diagram 2.65 Analysis
4 Design class diagrams 2.77 Design
5 UI navigation diagram 2.88 Design

Table 5: Difference of means test (T-Test) – Significance of level of importance test.

Practice Approach Mean Std Dev P Value
Functional specification document Traditional 3.92857 1.33135 0.03802

Scrum 3.23077 1.06987
User Stories Traditional 2.73684 1.32674 0.00004

Scrum 4.41176 1.01854
Product Backlog Traditional 3.16667 1.33945 0.00641

Scrum 4.27273 1.20605
Self-documenting code Traditional 3.50000 1.27321 0.03111

Scrum 4.34783 0.90738
Continuous integration Traditional 3.36842 1.11056 0.00159

Scrum 4.38462 0.95119
Test cases Traditional 3.53846 1.36325 0.02566

Scrum 4.30303 1.13150
Test driven development Traditional 3.10000 1.16701 0.00729

Scrum 4.03704 0.94000
Test automation Traditional 3.11765 1.20428 0.02226

Scrum 4.11538 0.95192
Unit Testing Traditional 3.04762 1.34693 0.00072

Scrum 4.36667 0.87471
Retrospective/reflection Traditional 2.46154 1.34164 0.00056

Scrum 4.23529 0.81868

12 Dada and Sanusi

in their use in that they keep the practices that work for
them and discontinue those that do not.

One of the ways they adopt new engineering practices
is through the retrospective, which is where they ask
themselves how to solve problems they seem to be
facing…‘and they say well we should try this thing’(D1).

Scrum is inspecting and adopting, and it allows us to
have these discussions in retrospectives. (SM2)

In the second case, the development teams are mandated
to use a specified set of tools and techniques by the
management.

I am a ‘benign dictator’, and I absolutely believe being
prescriptive. I impose the engineering practices and the
team have to adhere to them. What really happens is
that they gauge what they can do based on what require-
ments I put in place; for instance, I require that we have
unit test, TDD, and write test cases at certain level, and
I also require that we don’t write new software until we
fix all the bugs… these are just part of the engineering
practices. (M1)
So, until such time that you have a Scrum which
is matured and can make decisions based on knowledge
of the Scrum process… and do it by the book (have
your stand-up meetings, task board, retrospective and so
on), because you need to first understand the mechanics.
(M1)

This expert believes that engineering practices must
be imposed on the development team right from the
beginning. The expert says that ‘in engineering practice
one needs to be very steadfast, and be very disciplined’,
for instance, considering the fact the team has a short
time (in the case of this expert, a sprint period of fifteen
working days) to deliver a product. There must be some
prescriptions such as the level of test code, regression
testing and code review required in the development
process.

In the third case, however; some experts argue that it
should be a mix of the two cases discussed above. For
instance:

There are two aspects: there is a role at the organiz-
ational level that can be played, but largely Scrum pro-
motes self-organization, and self-reliance; whereas at
the management level, many levels away from the soft-
ware development engine, they should trust the develop-
ment team to do what is right and it’s the responsibility of
the development team as professional software develo-
pers to do what is necessary to get the job well done. Man-
agement’s role is really more of a guidance and not
prescriptive. (C1)

Another expert says:

I think it’s quite okay for the company to impose some
practices, because we don’t want to start from the first
principle every time; however, the teams should also be
given opportunity to explore and adopt new engineering
practices based on what causes them pain… I don’t
think that we should pretend as if we have not done soft-
ware development project before… [sic] rather we
should make use of some of the knowledge and experi-
ence we have from the previous projects. So, we [man-
agement] try not to be too prescriptive, but also by
default don’t want to reinvent the wheel each time. For
instance, without having some robust testing and
without having good sort of version control, you just
don’t have the time to cope without them. (M3)

In the last statement, the respondent suggests that the
teams adopt practices that offer answers to their unan-
swered questions. The following quote summarizes:

There are things that we, as the company mandate, then
the teams will often extend that [the engineering prac-
tices] based on where they, in retrospective, come up
with pain points. (M3)

In the words of another respondent:

Generally, what happens is that people [development
teams] start looking for the ‘better’ engineering practices
to adopt, because already something is broken and if the
team find themselves lacking on how to implement such
techniques(s), that’s when the role of a coach or
someone with experience can nudge them along and
push in the right direction. (C1)

Having said that, the assistance of competent Coaches, or
Scrum Masters are often advised as this helps to acceler-
ate the teams’ productivity and learning process. As men-
tioned by one of the experts:

I can explain Test Driven Development to you in five
minutes, but it may take three years to fully understand
the practice and its values. (C1)

In view of the above arguments, experts stress that it is
very important that the team be willing to adopt these
practices. While management may tell development
teams to start adopting some XP practices, such teams
will only adopt the practices in order to keep management
happy without much value to the team development.

Question 2: Is there governance at the organizational level
over documentation (artefacts and level of ceremony)?

Given that the agile approach values working software
over documentation, a vast majority of the respondents
claim that they use just enough documentation for their
development projects.

We need as much documentation as is necessary to
communicate clearly what’s needed, and that’s very
much going to depend on the type of project, the com-
plexity of things… If you have a system with complex
business rules, you’ll be crazy to not document! (That
is, it is mandatory that you have a detailed documen-
tation) It’s really what is the level of communication
that is needed for the team… in traditional waterfall
approach, the documentation is often there for contractual
purposes, and also there because of… the time between
when something (system) was last design and when it’s
going to be coded, whereas if you’re doing just-in-time
documentation and just-in-time communication, the
level of the documentation can be different. (M3)

Another says that:

It depends on what the needs of the companies are. If you
are working in an environment that requires you to have
specific documents for legal requirements, then you
need detailed documentation. (M4)

In essence, most of the respondents claim that agile gives
you the opportunity to build your ceremony to best suit
your situation.

Our documentation is not heavy in any way, rather it is
sufficient to promote quality software…My honest
belief is that if any practice adds overhead without
adding any values they should die lonely death, because

African Journal of Science, Technology, Innovation and Development 13

If I cannot justify (to any of my developers) why we are
doing something then we shouldn’t be doing it. So, our
specifications are our stories, and our test cases come
out of it. (M1)
Question 3a: Do you think the lack of SE practice can
impact on the quality of the developed system?

The majority of the respondents argue that Scrum might
be a management methodology, but it does mandate the
development team to make use of engineering practices,
even though it does not prescribe which to use.

Although Scrum doesn’t mandate SE practices, it
demands it! (M3)

The expert emphasizes the fact that without engineering
practices, there is no way quality can be guaranteed; as
such It is critical that the teams adopt various practices
in order to succeed.

It was argued that the fact that a team is developing
software means that they have engineering practices in
existence:

By default, if you write software, you have engineering
practices, these practices may not be efficient, but at
least they do they exist [sic]. (M4)
Question 3b: Do you think the lack of SE practice is a
barrier to Scrum adoption?

The lack of software engineering practices in Scrum
(according to the respondents) does not cause confusion
in the team.

On the contrary, many respondents believe that Scrum
helps to expose the main issues in the development
process. It does so by facilitating better communication
and transparency and in particular, the retrospective
meeting helps the team to identify what is missing and
how it can be best fixed. As explained by one of the
respondents, it is through the retrospective that the team
decides which engineering practices are the best for
them. Some experts argue that the fact that Scrum does
not prescribe any engineering practices is the methodol-
ogy’s strength, since different projects may require differ-
ent practices; and these practices are often evolved
through small iterations and in retrospect.

The thing about Scrum is that it exposes problems really
quickly. (SM2; D1)

In summary; in spite the fact that Scrum does not rec-
ommend SE practices, the practices do exist nevertheless
(although they might be inefficient). By the use of the
‘inspect and adapt mechanism’ of Scrum, the develop-
ment team can ensure that the quality of their products
is high. With this understanding in a team, the lack of pre-
scribed SE practices in Scrum does not constitute a barrier
to its adoption.

Question 4: Do you think the combination of Scrum and
XP is an appropriate approach to take?

Some of the interviewees explained that the Scrum teams
must focus on any technical skills that help them solve the
particular problems they are experiencing, even if it is a
mixture of practices across different methodologies.

We adopted a hybrid system (Scrum and XP) to cater for
the problem that we had. I think every organization faces

different difficulties and should adopt the appropriate
engineering practices based on their needs. (M1)

In support of M1’s explanation,

Scrum and XP is pretty normal and XP in terms of its
engineering practices were seen as the ideal set of prac-
tices for Scrum. Also given that XP is more of an engin-
eering framework whereas Scrum is seen as Project
Management framework, the two will really work well
together… FDD can also exists very well in the context
of Scrum. (M3)

Respondents such as M4 suggest that a Scrum team has to
learn to use any practices that will help them build their
desired product. For instance, if the team has XP tech-
niques in place already, then the members have to learn
how to use them, but if the team has never implemented
XP before, then the team members have to do inspect
and adapt to identify technical practices that will solve
their problems. However, as the team keeps on inspecting
and adapting their development process, they might throw
away some practices that do not work for them and pick
up others which do.

Then there is an argument that they will maybe eventually
invent XP, because the team might say what is the
problem… ok we need to do code review, or we need
to share knowledge and ownership, or let’s do continuous
integration… you build these practices in because they
solve your problem although they might not be exactly
the same as XP, but you still pick up those ideas relating
to XP’s… . (M4)

That said, C1 advised that it is better

to adopt the engineering tools and techniques a little bit at
a time as opposed to the whole framework or manage-
ment methodology. (C1)

As mentioned in the literature, Scrum’s and XP’s practices
can complement each other (Schwaber and Beedle 2002).
The appropriate application of the ‘inspect and adapt’ of
Scrum will enable a team to properly analyze problems
and identify the engineering tools and techniques that
will solve them, and they will also be able to decide
how much of any technique to adopt at a given time.

Discussion and implication
As already outlined in the literature; Scrum is a light-
weight project management approach to software devel-
opment. The first important finding of the study was
that while Scrum does not prescribe SE practices, these
SE practices are extensively used and rated as more
important in Scrum than in the traditional software devel-
opment methods. As one of the interviewees said, ‘if a
team writes software, then the team has engineering prac-
tices, the practices may be a mess, but they do they exist
nonetheless.’ Many Scrum teams have experienced
success by pairing the management practices (of Scrum)
with engineering practices from other methodologies
(such as XP). Surprisingly, a majority of the respondents
in the study consider the engineering tools and techniques
to more important in Scrum than in the traditional
environment. The overall average level of importance of
various technical practices in Scrum was found to be
3.70 while that of the traditional methodologies was

14 Dada and Sanusi

3.33; this reflects how important these practices are in any
software development process. In another relevant obser-
vation (see Figure 11), the various engineering tools and
techniques in the construction and quality assurance
phases of the SDLC are considered to be more important
than those in the analysis and design phases of the life
cycle. This outcome is in line with the literature’s view
that iterative software development processes such as
Scrum place emphasis on Construction and QA.

The subject of agile methodologies (such as Scrum)
and software documentation continues to be controver-
sial. This may be attributed to the different interpretations
given to the following value of the agile development,
‘working software over comprehensive documentation’.

This manifesto value is one of the fundamental criteria
often used to distinguish between an agile process and a
traditional software development approach (Highsmith
and Cockburn 2007). As explained in the literature
review section of this study, authors such as Larman
(2004) and Kruchten and Kroll (2003) equate agility
with lightness in documentation; and as such, less impor-
tance being assigned to the practice of documentation in
Scrum. This suggests that less importance would be
assigned to documents such as the functional specifica-
tion. However, the result of the questionnaire coupled
with the comments of the experts suggest that documen-
tation is considered valuable in the Scrum environment.
For instance, the LOI of the functional specification,
and design specification were expected to be below the
3.0 threshold. Detailed explanations were given by the
respondents to support this ‘anomaly’. According to
most of the experts, the above agile value does not necess-
arily translate into fewer documents or lack of documen-
tation. The manifesto value simply means that working
software should be the team’s goal, and if producing
detailed documentation will inhibit the development
process, then it should be adjusted. This is why, one of
the interviewees said:

If anything adds overhead without adding value it should
die a lonely death.

Does the lack of engineering practices serve as a barrier to
scrum adoption? The literature was clear on this issue.

When teams adopt the Scrum process, they go faster,
show progress, things look good… and then the quality
becomes a problem. Now the team are fighting through
quicksand… the code quality is poor and developers
are expected to continue to make progress… the team
is heading for burn-out. (Kelly 2010)

This is what happens when a software development team
adopts Scrum without software engineering practices such
as Test Driven Development, continuous integration and
refactoring (Pudusserry 2009; Allan Kelly Associates
2010). In view of Allan Kelly Associates’ (2010)
comment, the lack of engineering practices in Scrum
can constitute a barrier to a successful implementation
of the Scrum practices. However, according to one of
the interviewees; although Scrum may lack engineering
practices (this is what Schwaber (2010) refers to as
‘holes’), Scrum does make provision for finding

methods to fill in these holes: it’s the ‘inspect and
adapt’ principle. According to the respondent:

In planning phase, the team inspect and adapt their plan-
ning process; during code review the Scrum team is able
to inspect and adapt their software products; in retrospec-
tive, the team inspect and adapt their development
process

Another interviewee claimed that Scrum helps to expose
problems really quickly and by the use of the ‘inspect
and adapt’ approach, team communication will improve,
and this will eventually lead to better software quality.

That said, in the words of Cohn (2011):

The fact that Scrum is silent on many things (such as
which engineering practices to adopt) is both its strength
and weakness. Scrum, for example, does not say a team
should use version control system. Yet, all the good
Scrum teams I’ve seen do”. A good Scrum team will
find appropriate technical practices to ensure high
quality. A bad Scrum (if they can be said to be doing
Scrum) will use Scrum as an excuse to do low quality
work

If the options are either to adopt Scrum with a set of pre-
scribed SE practices or to find these practices overtime;
the latter approach seemed to be favoured by all the
Scrum Masters interviewed. Given this strategy, the lack
of SE practices was not seen as a barrier to adoption of
Scrum. In view of the above arguments, it can be con-
cluded that the lack of engineering practices in Scrum is
not a barrier to the adoption process, so long as the
team follow the Scrum’s basic philosophy of inspect
and adapt.

Software development depends considerably on team
performance, as does any process that involves human
interaction (Moe, Dingsøyr, and Dybå 2009). As seen in
both the literature and interviews, software development
teams adopt relevant engineering practices in any of the
following ways:

(i) Command-and-control approach
(ii) Self-Managed Team approach
(iii) Combination of command-and-control and Self-

Managed Team approaches

The command-and-control approach follows the tra-
ditional perspective on software development, which
promotes a plan driven product-line strategy to software
development using a standardized, controllable and
compulsory software engineering process (Moe, Dinso-
dyr, and Dyba 2010). The use of a command- and-
control approach in a Scrum environment implies that
the management will impose engineering practices on
the team; the team has no say in the selection of technical
tools nor about which techniques are to be implemented.
Two of the respondents agreed with the implementation
of the command-and-control approach. According to
M1, the Scrum teams require a certain amount of time
to properly understand and become familiar with the
development process as well as the engineering practices
being used. Given that there are industry-best practices
for software engineering tools and techniques, as well
as that management cannot afford to wait while the

African Journal of Science, Technology, Innovation and Development 15

development team ‘experiments’ with engineering prac-
tices, it is considered normal to impose ‘best’ practices
on the team.

In contrast, the rest of the respondents argue that teams
perform better, and value their practices, if they are given
enough time to find and fit the software engineering prac-
tices that match their development style, as opposed to
being forced to use particular ones. This may be referred
to as the ‘Self-Managed Team’. According to Highsmith
and Cockburn (2007), a self-organizing team is able to
make decisions themselves and continuously adapt to chan-
ging situations. According to one of the interviewees, SM2,
such teams effectively make use of the ‘inspect and adapt’
mechanism of Scrum. As these teams inspect and adapt
different situations and learn new skills such as TDD,
and Continuous Integration, they pass through various
stages of learning as described in the literature review.
The Shu-Ha-Ri model, Dreyfus model and the Road to
Mastery were discussed. Interviewees also highlighted
the principles underpinning the Shu-Ha-Ri and following
the Road to Mastery methods. For instance, using the
Shu-Ha-Ri model, according to Cockburn (2001) in the
phase of Shu (following), the team follows the teachings
of a coach or any other specialist precisely. At this stage,
the team concentrates on how to complete their tasks
(such as regression testing and continuous integration),
without worrying too much about the underlying theory. If
there are multiple variations on how to solve a problem,
the team focuses on just the one procedure the coach
teaches them. For instance, the team may only focus on
using continuous integration (Cockburn 2001; Kim 2007).

In the phase of Ha (detaching), the Scrum team
appreciates the limitations of the single procedure and
looks for rules about when the procedure breaks down.
The team also learn to adapt the single procedure to
various cases. The team is now willing to learn the other
procedures in an attempt to discover which procedures
are most applicable and the circumstances that make each
procedure break down (Cockburn 2001; Kim 2006). In
the phase of Ri (fluent), the team’s knowledge has
become integrated through a thousand thoughts and
actions. It can now improvise around one procedure or
make up new procedures because the team members now
understand the desired end result and simply make their
way towards that end (Cockburn 2001; Kim 2006). To sum-
marize; at the end of Shu, what the team sees is nothing but
the rules – everything looks like the rules. At the end of Ha,
what the team sees is nothing like the rules. At the end of Ri,
the team apply their minds (Kim 2006). Nevertheless, many
of the respondents believed that an appropriate combination
of the command-and-control and Self-Managed Team
approaches will work best. They argued that in order to
explore the benefits of both methods, the management
should mandate a base set of practices, while at the same
time allowing the team to augment them with technical
practices of their (team’s) choice.

The most commonly used agile methodologies are
Scrum and XP (Digital.ai Software Inc. 2020). Scrum
(37%), Scrum/XP hybrid (23%), and XP (12%) together
represent almost 80% of agile software development.
The interviewees all agreed that Scrum is a management

practice and XP is focused on engineering practices. As
explained by respondent C1, the use of Scrum will help
a development team enhance communication in the
team and develop many other soft skills. According to
Singh (2009, 8), ‘Both XP and Scrum promote better col-
laboration, communication, iterative/incremental devel-
opment and frequent releases. Or in short take baby
steps!!! [sic]’ However, these achievements derived
from the use of Scrum will not necessarily translate into
quality software, unless the technical practices are fine-
tuned. According SM2 (one of the interviewees), Scrum
provides the platform for the team to get together (via ret-
rospective sessions) and discuss how they can improve
and solve the problems that the team is facing. As
explained by another respondent, M3; by inspecting and
adapting, Scrum teams are able to select the XP practices
that suit them the most or evolve their own technical prac-
tices; which may come from any existing methodology
such as XP, FDD, Lean or other methodologies. This is
why Cohn (2010, 1) usually says to Scrum teams ‘start
with Scrum and then invent your own version of XP’.
Having said that, almost all the interviewees support the
idea that the adoption of engineering practices alongside
Scrum practices, must be done bit by bit, given that engin-
eering techniques are relatively harder to implement than
Scrum practices. Pudusserry (2009) also agrees with the
idea of incremental adoption of the relevant engineering
practices.

Conclusion
The objectives of this research were to identify the impor-
tance of software engineering practices in the Scrum devel-
opment environment, and how Scrum teams adopt an
appropriate set of SE tools and techniques. Further, the
study sought to understand whether a Scrum team should
start Scrum alongside all the engineering practices of XP
or whether the practices should be adopted incrementally.
This research was conducted by examining the sample
data from various industries such as communications and
embedded systems, financial asset management, software
development houses and consulting. The study had both
quantitative and qualitative aspects. Regardless of the
fact that Scrum does not explicitly recommend engineering
practices, the respondents ranked the engineering practices
as more important in Scrum than in the traditional method-
ologies. Another significant observation from the study
was that the various engineering tools and techniques in
the construction and quality assurance phases of the
SDLC were considered as more important than those in
the analysis and design phases of the life cycle. The
study also found that the lack of software engineering prac-
tices does not constitute a barrier to a successful adoption
of Scrum, provided the ‘inspect and adapt’ principle is
properly followed. That is, as the Scrum team inspect
and adapt their planning stage, the planning process will
be improved, as the team inspect and adapt code review,
better quality software will be produced and as the
Scrum team inspect and adapt the development process,
SE practices will be made more efficient. Regarding how
the Scrum teams adopt the appropriate set of SE tools
and techniques, the paper identified three possibilities.

16 Dada and Sanusi

The first is referred to as the command-and-control
approach. In such a case, the management of the business
imposes the engineering practices, to which the Scrum
teams must adhere. The second possibility is called the
Self-Managed Team approach. This is where the Scrum
team is left to experiment with various engineering tools
and techniques, and eventually come up with the practices
that best suit them. This approach is considered to be more
favourable to the team than the top down one, given the fact
that team members in the former environment will grow to
better understand and appreciate the practices as they
follow the various learning models such as Shu-Ha-Ri,
Dreyfus and Road to Mastery. The third possibility is
simply the combination of the command-and-control and
the Self-Managed Team approaches. In this situation,
certain engineering practices are mandated by the manage-
ment while the Scrum teams are given freedom to evolve
additional technical practices that suit them. With that
said, from the interviews it was apparent that the majority
of the organizations implement the Self-Managed Team
approach. Nevertheless, in any of these possibilities, the
assistance of coaches, Scrum Masters, consultants and
other specialists may be requested to help the teams.
Given that it is easier to adopt the management-oriented
Scrum practices than the XP technical practices (Pudus-
serry 2009), and based on the data analysis and findings,
this research found that it is often better for a development
team to start with Scrum, and then later introduce the suit-
able technical practices of XP to the team.

The outcomes of this empirical research will give gui-
dance to software development teams that have recently
adopted (or are about to adopt) Scrum in their selection
of the appropriate engineering practices. It will also
raise the awareness of managers regarding the three
ways in which SE practices can be adopted in an organiz-
ation, that is: the top down, bottom up or a combination of
the two. Furthermore, it will educate and raise the aware-
ness of development teams and decision-makers regard-
ing the various learning processes that development
teams follow to adopt new practices in Scrum. Finally,
it will give guidance to both organizations and the
teams on whether the Scrum teams should adopt XP
engineering practices incrementally or follow a ‘big
bang’ approach. As regards limitation of the study, there
are respondents that ranked some unused SE practices,
making it difficult to justify the integrity and validity of
the average / percentage usage of each SE practice.
Thus, the calculation of average / percentage usage was
discouraged. Given the limitations in scope and time, it
was not possible to address all key areas outside, but
related to, the main focus of this research. The research
team recommend that future empirical studies should be
conducted on how a development team that has recently
migrated to Scrum progress along the various maturity
models such as the Shu-Ha-Ri, Road to Mastery and
Dreyfus.

Disclosure statement
No potential conflict of interest was reported by the
authors.

ORCID iD
Ismaila Temitayo Sanusi http://orcid.org/0000-0002-
5705-6684

References
Abrahamsson, P., and O. Salo. 2008. “Use and Usefulness of

Extreme Programming and Scrum.” IEEE Xplore Journal
2 (1): 1–7.

Allan Kelly Associates. 2010. “The Scrum Wall (Another Agile
Failure Mode).” Accessed 20 September 2020. https://www.
allankellyassociates.co.uk/archives/869/scrum-wall-
another-agile-failure-mode/.

Appelo, J. 2008. Management 3.0, Leading Agile Developers,
Developing Agile Leaders. Berlin: Springer Verlag
Publishers.

Awad, M. A. 2005. A Comparison Between Agile and
Traditional Software Development Methodologies.
Western Australia: School of Computer Science and soft-
ware Engineering, The University of Western Australia.

Balsamo, S., A. Di Marco, P. Inverardi, and M. Simeoni. 2004.
“Model-Based Performance Prediction in Software
Development: A Survey.” IEEE Transactions on Software
Engineering 30 (5): 295–310.

Bang, T. J. 2007. “An Agile Approach to Requirement
Specification.” 8th International Conference on Agile
Processes in Software Engineering and Extreme
Programming, 193–197. Berlin: Springer-Verlag.

Bjeirmi, B. F., and A. K. Munns. 1996. “The Role of Project
Management in Achieving Project Success.” International
Journal of Project Management 14 (2): 81–87.

Braun, V., and V. Clarke. 2006. “Using Thematic Analysis in
Psychology.” Qualitative Research in Psychology 3 (2):
77–101.

Brhel, M., H. Meth, A. Maedche, and K. Werder. 2015.
“Exploring Principles of User-Centered Agile Software
Development: A Literature Review.” Information and
Software Technology 61: 163–181.

Cao, L., and B. Ramesh. 2008. “Agile Requirements
Engineering Practices: An Empirical Study.” IEEE
Software 25 (1): 60–67.

Capitalhead. 2006. “Software Development.” (June 11).
Accessed August 12, 2011. http://capitalhead.com/
solutions/software-development.aspx.

Cho, J. 2009. “AHybrid Software DevelopmentMethod for Large
-Scale Projects: Rational Unified Process with Scrum.” Issues
in Information Systems Journal 10 (2): 338–347.

Cockburn, A. 2001. Agile Software Development. Boston:
Addison-Wesley Professional.

Cohn, M. 2007. “Differences Between Scrum and Extreme
Programming.” Accessed August 11, 2011. Mountain
GoatSoftware:http://blog.mountaingoatsoftware.com/
differences-between-scrum-and-extreme-programming/
comment-page-1.

Digital.ai Software, Inc. 2020. "14th Annual State of Agile Report."
Texas, United States: Digital.ai Software, Inc. https://digital.ai/
catalyst-blog/the-14th-annual-state-of-agile-report.

Drnovscek, S., and V. Mahnic. 2005. Agile Software Project
Management with Scrum. Ljubljana: University of
Ljubljana, Faculty of Computer and Information Science.

Dyba, T., and T. Dingsoyr. 2008. “Empirical Studies of Agile
Software Development: A Systematic Review.”
Information and Software Technology 50 (9-10): 833–859.

Eckstein, J. 2013. Agile Software Development with Distributed
Teams: Staying Agile in a Global World. Boston: Addison-
Wesley.

Etikan, Ilker, Sulaiman Abubakar Musa, and Rukayya Sunusi
Alkassim. 2016. “Comparison of Convenience Sampling
and Purposive Sampling.” American Journal of
Theoretical and Applied Statistics 5 (1): 1–4. doi:10.
11648/j.ajtas.20160501.11.

African Journal of Science, Technology, Innovation and Development 17

http://orcid.org/0000-0002-5705-6684
http://orcid.org/0000-0002-5705-6684
https://www.allankellyassociates.co.uk/archives/869/scrum-wall-another-agile-failure-mode/
https://www.allankellyassociates.co.uk/archives/869/scrum-wall-another-agile-failure-mode/
https://www.allankellyassociates.co.uk/archives/869/scrum-wall-another-agile-failure-mode/
http://capitalhead.com/solutions/software-development.aspx
http://capitalhead.com/solutions/software-development.aspx
http://blog.mountaingoatsoftware.com/differences-between-scrum-and-extreme-programming/comment-page-1
http://blog.mountaingoatsoftware.com/differences-between-scrum-and-extreme-programming/comment-page-1
http://blog.mountaingoatsoftware.com/differences-between-scrum-and-extreme-programming/comment-page-1
https://digital.ai/catalyst-blog/the-14th-annual-state-of-agile-report
https://digital.ai/catalyst-blog/the-14th-annual-state-of-agile-report
https://doi.org/10.11648/j.ajtas.20160501.11
https://doi.org/10.11648/j.ajtas.20160501.11

Evans, E. 2004. Domain-Driven Design Tackling Complexity in
the Heart of Software. New York: Addison-Wesley
Publishers.

FreeTutes.com. 2011. "Waterfall Software Development
Life Cycle Model." June 26. Accessed at http://www.
freetutes.com/systemanalysis/sa2-waterfall-software-life-
cycle.html.

Fowler, M. 2005. The New Methodology, December 13.
Accessed April 11, 2011. Martinfowler.com: http://www.
martinfowler.com/articles/newMethodology.html#From
NothingToMonumentalToAgile.

Fowler, M., K. Beck, J. Brant, W. Opdyke, and D. Roberts. 2002.
Refactoring: Improving the Design of Existing Code 1999.
Boston: Addison-Wesley.

Highsmith, J., and A. Cockburn. 2007. “Agile Software
Development: The Business of Innovation.” IEEE Xplore
Journal 3 (5): 1–3.

Highsmith, J., and J. Highsmith. 2009. Agile Project
Management: Creating Innovative Products. Chicago:
Addison-Wesley Publishers.

Hunt, J. 2006. Agile Software Construction. London: Springer -
Verlag Publishers.

Jyothi, V. E., and N. K. Rao. 2011. “Effective Implementation of
Agile Practices Ingenious and Organized Theoretical
Framework.” (IJACSA) International Journal of Advanced
Computer Science and Applications 2 (3): 1–8.

Kanwal, F., K. Junaid, and M. A. Fahiem. 2010. “A Hybrid
Software Architecture Evaluation Method for FDD – An
Agile Process Model.” The Institute of Electrical and
Electronics Engineers.

Kerzner, H. 2009. Project Management: A Systems Approach to
Planning, Scheduling and Controlling. New Jersey: John
Wiley and Sons.

Keshta, N., and Y. Morgan. 2017. “Comparison Between
Traditional Plan-Based and Agile Software Processes
According to Team Size & Project Domain (A
Systematic Literature Review).” In 2017 8th IEEE
Annual Information Technology, Electronics and
Mobile Communication Conference (IEMCON), 567–575.
IEEE.

Kim, Y. 2007. “Analyzing Scrum Agile Software Development
with Development Process, Social Factor, and Project
Management Lenses.” Americas Conference on
Information Systems (AMCIS), 1–10. California: Americas
Conference on Information Systems.

Kruchten, P., and P. Kroll. 2003. The Rational Unified Process
Made Easy: A Practitioner’s Guide to the RUP. Boston:
Pearson Education, Inc.

Larman, C. 2004. Agile and Iterative Development: A
Manager’s Guide. Boston: Pearson Education, Inc.

Lei, H., F. Ganjeizadeh, P. K. Jayachandran, and P. Ozcan.
2017. “A Statistical Analysis of the Effects of Scrum and
Kanban on Software Development Projects.” Robotics and
Computer-Integrated Manufacturing 43: 59–67.

Lynema, E. 2010. Agile Project Management and the Real
World. New York City: NCSU Libraries.

Moe, N., T. Dingsøyr, and T. Dybå. 2009. "Overcoming Barriers
to Self-Management in Software Teams." IEEE Software 26
(6): 20–26.

Olaleye, S. A., I. T. Sanusi, F. S. Mark, and J. Salo. 2020a.
“Customers’ Loyalty to Tablet Commerce in Nigeria.”
African Journal of Science, Technology, Innovation and
Development 12 (2): 217–229.

Olaleye, S. A., I. T. Sanusi, and J. Salo. 2020b. “Mobile
Customers’ Experience and Loyalty: A Study of Tablet
Gender Divergence in Finland.” International Journal of
Internet Marketing and Advertising 14 (3): 275–298.

Pudusserry, A. 2009. Agile Project Management Implementation
Approach. Bangalore: ProjectManagementResearch Institute.

Sahota, M. 2011. 5 Ways Scrum Creates Safety: Why One CSC
Uses Scrum and XP Together to Avoid XP Risks, February
22. Accessed April 8, 2011. Scrum Alliance transforming
the world of work: http://www.scrumalliance.org/articles/
180–ways-scrum-creates-safety-why-one-csc-uses-scrum-
and-xp-together-to-avoid-xp-risks.

Scaffidi, C., and M. Shaw. 2007. “Developing Confidence in
Software Through Credentials and Low-Ceremony
Evidence.” In Institute for Software Research, 1–3.
Pittsburgh: School of Computer Science Carnegie Mellon
University.

Schwaber K. 2004. Agile Project Management With Scrum.
Redmond: Microsoft Press.

Schwaber, K. 2010. “Waterfall, Lean/Kanban, and Scrum.” July
3. Accessed August 11, 2011. fromkenschwaber.wordpress.
com:http://kenschwaber.wordpress.com/2010/06/10/water
fall-leankanban-and-scrum-2/.

Schwaber, K., and M. Beedle. 2002. Agile Software Development
with Scrum. Upper Saddle River, NJ: Prentice Hall.

Shore, J., and S. Warden. 2008. The Art of Agile Development.
California: O’Reilly Media Inc.

Singh, V. 2009. “Differences Between Scrum and Extreme
Programming.” Accessed August 11, 2011. Mountain
GoatSoftware:http://blog.mountaingoatsoftware.com/
differences-between-scrum-and-extreme-programming/
comment-page-1.

Srivastava, A., S. Bhardwaj, and S. Saraswat. 2017, May.
“SCRUM Model for Agile Methodology.” In 2017
International Conference on Computing, Communication
and Automation (ICCCA), 864–869. IEEE.

Stafford, J., Y. Francino, B. Matturro, and M. Webb. 2011.
Definition Scrum. Accessed August 12, 2011.
SearchSoftwareQuality.com: http://searchsoftwarequality.
techtarget.com/definition/Scrum.

Sutherland, J. 2004. “Agile Development: Lessons Learnt from
the First Scrum.” Cutter Agile Project Management
Advisory Service Journal 5 (20): 1–6.

Sutherland, J. 2007. Deep Lean. Boston: Massachusetts Institute
of Technologypublishers.

Vallon, R., B. J. da Silva Estacio, R. Prikladnicki, and T.
Grechenig. 2018. “Systematic Literature Review on Agile
Practices in Global Software Development.” Information
and Software Technology 96: 161–180.

18 Dada and Sanusi

http://www.freetutes.com/systemanalysis/sa2-waterfall-software-life-cycle.html
http://www.freetutes.com/systemanalysis/sa2-waterfall-software-life-cycle.html
http://www.freetutes.com/systemanalysis/sa2-waterfall-software-life-cycle.html
http://www.martinfowler.com/articles/newMethodology.html#FromNothingToMonumentalToAgile
http://www.martinfowler.com/articles/newMethodology.html#FromNothingToMonumentalToAgile
http://www.martinfowler.com/articles/newMethodology.html#FromNothingToMonumentalToAgile
http://www.scrumalliance.org/articles/180%E2%80%93ways-scrum-creates-safety-why-one-csc-uses-scrum-and-xp-together-to-avoid-xp-risks
http://www.scrumalliance.org/articles/180%E2%80%93ways-scrum-creates-safety-why-one-csc-uses-scrum-and-xp-together-to-avoid-xp-risks
http://www.scrumalliance.org/articles/180%E2%80%93ways-scrum-creates-safety-why-one-csc-uses-scrum-and-xp-together-to-avoid-xp-risks
http://kenschwaber.wordpress.com/2010/06/10/waterfall-leankanban-and-scrum-2/
http://kenschwaber.wordpress.com/2010/06/10/waterfall-leankanban-and-scrum-2/
http://blog.mountaingoatsoftware.com/differences-between-scrum-and-extreme-programming/comment-page-1
http://blog.mountaingoatsoftware.com/differences-between-scrum-and-extreme-programming/comment-page-1
http://blog.mountaingoatsoftware.com/differences-between-scrum-and-extreme-programming/comment-page-1
http://searchsoftwarequality.techtarget.com/definition/Scrum
http://searchsoftwarequality.techtarget.com/definition/Scrum

	Abstract
	Introduction
	Literature review
	Traditional software development methodology
	Agile approach
	The Scrum methodology
	Scrum and extreme programming (XP)
	Summary of the literature

	Methodology
	Research sample
	Data collection
	Questionnaires
	Semi structured interviews
	Data analysis

	Result
	Quantitative results
	Respondent demographics
	Roles in Scrum and years of experience

	Evaluating the usage of engineering practices
	Importance of software engineering practices
	Analysis phase
	Design phase
	Construction phase
	Quality assurance phase

	Qualitative results
	Interviews

	Discussion and implication
	Conclusion
	Disclosure statement
	ORCID iD
	References

