
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Plan B and other Reports Graduate Studies 

5-2020 

Implementing Option Pricing Model Implementing Option Pricing Model 

Zhao Ming 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports 

 Part of the Finance and Financial Management Commons 

Recommended Citation Recommended Citation 
Ming, Zhao, "Implementing Option Pricing Model" (2020). All Graduate Plan B and other Reports. 1430. 
https://digitalcommons.usu.edu/gradreports/1430 

This Report is brought to you for free and open access by 
the Graduate Studies at DigitalCommons@USU. It has 
been accepted for inclusion in All Graduate Plan B and 
other Reports by an authorized administrator of 
DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/gradreports
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/gradreports?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1430&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/631?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1430&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/gradreports/1430?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1430&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


Implementing Option Pricing Model
Zhao Ming Utah State University

In this paper I replicate Clewlow and Strickland’s control variates methods based on Greek letters
method to test if it can improve the simulation efficiency. First, I use Black Scholes Merton formula
for option pricing as a benchmark, to compare with the Euorpean call option price from Monte
Carlo methods. Then I use Greek letters as control variates to reduce sample standard deviation
and improve the efficiency of the Monte Carlo simulation. The whole process is programming
in C++. C++ is a compiled language which can generate machine code from source code and
provide a shorter running time. This paper is based on ideas from Implementing Derivatives Models
by Clewlow and Strickland, On The Simulation of Contingent Claims by Clewlow and Carverhill,
Chapter 4, and Derivatives Markets by McDonald, Chapter 12, 13, 19.

Keywords: Monte Carlo, control variates, option pricing

Introduction

Black-Scholes Merton formula is used to compute the theoretical price of the European call op-

tion for a stock under certain assumptions. Monte Carlo method is based on random sampling to

generate the numerical results. We chose to use Black-Scholes Merton formula as a benchmark to

find the option price, then simulate the option price using Monte Carlo method, comparing with

the two results to evaluate if Monte Carlo method could provide a correct option price. Next, we

combine Greek letters with Monte Carlo method, calculate the standard errors from both Delta-

hedging Monte Carlo, Delta-Gamma hedging Monte Carlo and naive Monte Carlo to test how

control variates reduce the standard deviation and improve the efficiency of Monte Carlo simula-

tion. At the end, we switch from Black-Scholes Merton’s world to Jump world which imitates the

real world and test control variates method.

Section 1 Control Variates

The control variates method is a variance reduction technique that is used in the Monte Carlo

simulation algorithms. It can help to reduce the standard error of an estimate of an unknown

quantity, and improve the efficiency of the simulation.

1



Clewlow and Carverhill (1995) mention in their paper, “the control variate is a known value

that is closely related to the unknown quantity to be simulated. A good control variate for an op-

tion problem might be the price of a similar type of option for which an analytic valuation equation

exists. The simulation will estimate the difference between the unknown value and the control

variate, and this gives a greater accuracy than the unknown value itself. The control variates

are intimately related to the hedging of the option. The control Variates are not only improving

efficiency but can also providing insights into the hedging of the option” (ClewlowStrickland).

McDonald (2013) presents an example of pricing an arithmetic Asian call option. He suggests

using a geometric Asian option as the control variate. There is a convenient closed-form solution

that is a special case of the Black-Scholes Merton formula for options with a geometric mean payoff

function. He combines this with a Monte Carlo estimate of the known geometric Asian option, and

thereby can compute an estimated sampling error along each path. McDonald reports significant

variance reduction in the Monte Carlo sampling routine for the arithmetic Asian option.

The underlying method is to estimate the error of each trial by using the price of a related

option that does have a pricing formula. The error estimate obtain from this control price can be

used to improve the accuracy of the Monte Carlo price on each trial.

Because we are using the same random numbers to estimate the option, the errors in the esti-

mated arithmetic and geometric prices are correlated. When the estimated price for the geometric

option is high, it should have a high arithmetic price as well. We can use information on the error

in the geometric price to adjust our estimate of the arithmetic price.

A∗ = Ā + β(G− Ḡ)

In formula above, we estimate both arithmetic price, Ā and geometric price, Ḡ. And “A” and

“G” represent the true arithmetic and geometric prices. The error term from the Monte Carlo

estimates the geometric price is (G− Ḡ). We want to use this error to improve our estimate of the

arithmetic price.

We could find an optimized β to help better estimate A∗

As Clewlow and Strickland (1998) point out, looking to hedging instruments that reduce the

variance of overall portfolio cash-flow variance turns out to be an excellent strategy for identifying

2



Figure 1: This is the result by comparing Blach-Schoels Merton option price with Monte Carlo
methods.

valid control variates. As such, they employ the Delta and Gamma from the well-known Black-

Scholes Merton model. Considering when they sold a call option, when the stock price increases,

they would lose lots of money, because the customer would execute the call option. The Market-

maker will have a large standard deviation in their whole portfolio. Instead, Market-makers could

buy Delta shares when they sold a call option, if the stock price went up, they could sell those

shares to customers when they bought at a lower price. If the stock price decreases, the customers

would not execute the option, so Market-makers could keep the premium. When the Market-

makers applied Delta and Gamma for control variates, they will reduce their portfolio’s sample

variance.

Section 2 Black-Scholes Merton model

This is Black-Scholes Merton formula for a European call option.

C(S, K, σ, r, T, δ) = Se−δT N(d1)− Ke−rT N(d2)

3



d1 =
ln (S/K) + (r− δ + 1

2 σ2)T

σ
√

T

d2 = d1 − σ
√

T

In Black-Scholes Merton formula, we can interpret Delta as a share-equivalent. Black-Scholes

Merton formula tells us both option price and what position in the stock is equivalent to the

option.

McDonald (2013) points out “Black-Scholes Merton formula is constrained by certain economic

environment, the risk-free rate is known and constant, there are no transaction costs, and it is

possible to short-sell costlessly and to borrow at the risk-free rate” (McDonald).

Monte Carlo simulation is to obtain the option price for models that do not have analytical

formulas; it can also simulate asset path with stochastic volatility.

double blackScholesCall(const double& spot, const double& strike, const double& vol

, const double& rate,const double& expiry, const double& div)

{

auto d1 = (std::log(spot / strike) + (rate - div + 0.5 * vol * vol) * expiry)

/ (vol * std::sqrt(expiry));

auto d2 = d1 - (vol * std::sqrt(expiry));

auto callPrc = (spot * std::exp(-div * expiry) * normalCDF(d1))

- (strike * std::exp(-rate * expiry) * normalCDF(d2));

return callPrc;

}

In the code above, we define a function named “blackScholesCall”, and we pass information

as parameters. Parameters are specified inside the parentheses, and you can add as many as you

want, like here, we include all the variables from the Black-Scholes Merton formula, and specify

variables’ types before using them.

N(d1) and N(d2) are matching with normalCDF(d1) and normalCDF(d2), which stands the

cumulative normal distribution function, showing the probability that a number randomly drawn

from a standard normal distribution will be less than d1 and d2.

4



From the “blackScholesCall” function, we could change the values of parameters that are pass-

ing to the function and generate different prices of call option.

Section 3 Greeks with purposes of heding Versus Greeks for control variates

Before talking about the Greeks, we want to mention what are market-makers. Market-makers

are the people or agents that are trading with the customers. Market-makers maintain inventories

to satisfy the customers immediately. Market-makers make profits from bid-ask spread. Also,

market-makers could short-sell by borrowing other people’s shares and then selling those shares

to generate inventory as needed.

Under unhedged situation, Market-makers will face the risk from the adverse price movement.

At the worst situation, unhedged position will lead to bankruptcy.

Market-makers could use Delta-hedging to control risk. Market-makers could compute the

Delta value and buy Delta number of shares to offset risk, market-makers need to invest capital to

maintain a Delta-hedging position because the cost of option is different from the cost of stock.

Delta measures the option price changes when stock price changes, also Delta represents num-

ber of shares in the portfolio that replicates the option.

CallDelta =
∂C(S, K, σ, r, T − t, δ)

∂S
= e−δ(T−t)N(d1)

double BlackScholesDelta(const double& spot, const double& t, const double& strike,

const double& expiry, const double& vol, const double& rate, const double& div)

{

auto tau = expiry - t;

auto d1 = (std::log(spot / strike) + (rate - div + 0.5 * vol * vol) * tau)

/ (vol * std::sqrt(tau));

auto delta = std::exp(-div * tau) * normalCDF(d1);

return delta;

}

5



For a call option, Delta is positive. When the stock price increases, the call option price will

increase. The Delta will approach 1 when the stock price is deep in the money. It shows the

share-equivalent of the option is 1.

Gamma shows the rate change of Delta when stock price changes by 1 dolloar.

CallGamma =
∂2C(S, K, σ, r, T − t, δ)

∂S2 =
e−δ(T−t)N′(d1)

Sσ
√

T − t

double BlackScholesGamma(const double& spot, const double& t, const double& strike,

const double& expiry, const double& vol, const double& rate, const double& div)

{

auto tau = expiry - t;

auto d1 = (std::log(spot / strike) + (rate - div + 0.5 * vol * vol) * tau)

/ (vol * std::sqrt(tau));

auto gamma = (std::exp(-div * tau) * normpdf(d1) / (spot * vol * std::sqrt(tau)));

return gamma;

}

Delta alone is not predating the option price accurately because Delta changes with the stock

price. Delta will underestimate the actual change when underlying asset price increases and over-

estimate the decline when the stock price decreases. We add Gamma to improve it.

“The changes in the Delta and Gamma as the stock price evolves randomly exactly offset the

changes in the option value due to the random changes in the stock price” (ClewlowStrickland),

delta and gamma provide good results for hedging purposes, this is the reason why authors

choose Delta and Gamma for control variates in a numerical way.

C(St+h) = C(St) + ε∆(St) +
1
2

ε2Γ(St))

The Delta approximation is a straight-line tangent to the option price curve and is always

below the option price curve. The Delta-Gamma approximation uses the squared stock price

6



Figure 2: This is the call payoff from Monte Carlo simulation, used 252 time steps, and 100 simu-
lations.

change, which generates a curve more closely approximating the option price curve. Using hedges

as control variates was first described by Clewlow and Carverhill. When pricing a European call

option, the distribution of the pay-off has a large standard deviation. If we want to estimate the

call value as the mean of a number of Monte Carlo simulations then standard error of the mean

will be large. When using Delta control variate, the pay-off of the hedged portfolio has a much

smaller standard deviation.

Ct0 er(T−t0) = CT − [
N−1

∑
i=0

∂Cti

∂S
(Sti+1 − E[Sti ])e

r(T−ti+1)] + η

Section 4 Variance Reduction

The main purpose for the Delta-hedging is to help market-makers to maintain a Delta-neutral

position, market-makers sell one call option and hedges the position with shares.

And now from Clewlow and Carverhill, we are going to see how they using Greeks as control

variates to reduce the standard deviation and improve the efficiency.

From the graph above, we could easily find after using Delta as control variate, the result of

call payoff has an obvious improvement. The sample has a smaller standard deviation, and after

using Delta-Gamma as control variates, the standard deviation even gets smaller. If you only

7



Figure 3: This is the call payoff from Delta-Hedged Monte Carlo simulation, used 252 time steps,
and 100 simulations.

Figure 4: This is the call payoff from Delta-Hedged Monte Carlo simulation, used 252 time steps,
and 100 simulations.

8



using Monte Carlo simulation without control variates, you will need a 100 times larger sample

size to get the standard deviation as same as the Delta-hedging Monte Carlo.

We use the Monte Carlo method to simulate the discrete time asset paths for the underlying

asset.

St+h = Ste{(r−δ− 1
2 σ2)h+σ

√
hz}

std::vector<double> simulateNvPath(const double& spot, const double& rate, const double& vol,

const double& div, const double& expiry, const size_t& numSteps)

{

auto dt = expiry / numSteps;

auto nudt = (rate - div - 0.5 * vol * vol) * dt;

auto sigdt = vol * std::sqrt(dt);

auto z = std::vector<double>(numSteps, 0.0);

auto path = std::vector<double>(numSteps, spot);

RandomNormals(z);

for (auto i = 1; i < numSteps; ++i)

{

path[i] = path[i - 1] * std::exp(nudt + sigdt * z[i]);

}

return path;

}

In our code, we used “dt” to represent each time steps instead of “h” in the formula to repre-

sent the discrete intervals; “z” is represented the generated random numbers which are normally

distributed, and help with simulating the random stock price for each time step. And we used

“path” to indicate the spot price. After that, we called the call payoff function to get the payoff for

each simulation.

9



auto callPayoff(const double& spot, const double& strike)

{

return std::max(spot - strike, 0.0);

}

Ĉ0 = exp(−rT)
1
M

M

∑
j=1

max(0, ST,j − K)

We sum the pay-offs of each simulation, average them, then discounted the average back to

the present value. This is similar to the Law of large numbers theory; the expected option price of

some random payoff can be approximated by taking the average of the random variables.

Subsection A Delta control variate

cv1 =
N−1

∑
i=0

∂Cti

∂S
(Sti+1 − E[Sti ])e

r(T−ti+1)

for (auto i = 1; i < numSteps; ++i)

{

path[i] = path[i - 1] * std::exp(nudt + sigdt * z[i]);

auto t = i * dt;

delta[i] = BlackScholesDelta(path[i - 1], t, strike, expiry, vol, rate, div);

cv1 += delta[i] * (path[i] - path[i - 1] * erddt);

}

for (auto i = 0; i < numReps; ++i)

{

auto result = simulateDeltaHedgedPath(spot, rate, vol, div, expiry, numSteps, strike);

auto spotT = std::get<0>(result);

auto cv1 = std::get<1>(result);

callPrice += callPayoff(spotT, strike) + beta1 * cv1;

10



}

From the first “for loop” in the code above, we calculate the Delta for each time step from the

Black-Scholes Delta formula. Delta will rebalance discretely for each step for every simulation. We

will get a Delta for each time step. And then using the Delta to get the value of control variates.

The authors choose the beta1 = -1 which is the appropriate value for this example where they have

the exact Delta. The variable “erddt” allow us to compute E[Sti+1 ] efficiently.

Subsection B Delta-Gamma control variates

cv2 =
N−1

∑
i=0

∂2Cti

∂S2 ((∆Sti)
2 − E[(∆Sti)

2])er(T−ti+1)

for (auto i = 1; i < numSteps; ++i)

{

path[i] = path[i - 1] * std::exp(nudt + sigdt * z[i]);

auto t = i * dt;

delta[i] = BlackScholesDelta(path[i - 1], t, strike, expiry, vol, rate, div);

gamma[i] = BlackScholesGamma(path[i - 1], t, strike, expiry, vol, rate, div);

cv1 += delta[i] * (path[i] - path[i - 1] * errdt);

cv2 += gamma[i] * ((path[i] - path[i - 1]) * (path[i] - path[i - 1])

- path[i - 1] * path[i - 1] * egamma);

}

for (auto i = 0; i < numReps; ++i)

{

auto result = simulateDeltaGammaHedgedPath(spot, rate, vol, div, expiry, numSteps, strike);

auto spotT = std::get<0>(result);

auto cv1 = std::get<1>(result);

auto cv2 = std::get<2>(result);

callPrice += callPayoff(spotT, strike) + beta1 * cv1 + beta2 * cv2;

11



Figure 5: This is the call payoff from the Jump world, used 252 time steps, and 100 simulations.

}

The code above is for Delta-Gamma control variates, and we add cv2 for the control variate of

Gamma.

Section 5 Jump World

Because the unpredictable future, sometimes the stock markets will move more than we expected.

Therefore, we add the Poisson distribution to simulate the Jump world which is closer to realistic.

The Poisson distribution is a discrete probability distribution that counts the number of events

- such as large stock price moves - that occur over a period of time. The Poisson distribution is

summarized by the parameter λ, where λh is the probability that one event occurs over the short

interval “h”.

Ŝt+h = Ŝte(α−δ−λk−0.5σ2)h+σ
√

hZem(αj−0.5σ2
j )+σj ∑m

i=0 Wi

Those pictures are the results from the Jump world, and we could see control variates did a great

job to reduce the variance of the sample.

12



Figure 6: This is the call payoff from Jump world with Delta-hedging, used 252 time steps, and
100 simulations.

Figure 7: This is the call payoff from Jump world with Delta-Gamma-hedging, used 252 time
steps, and 100 simulations.

13



Conclusion

Clewlow and Carverhill bring out the idea that using control variates to reduce the standard error,

also improved the efficiency of Monte Carlo simulation, combined both perspectives from Finance

and Computer Science. My project is only replicated the process for European call option, but

control variates also good for more complicated path dependent options, like Asian option, look-

back option. In the future, I am going to combine stochastic volatility to test the real market data.

14



References

Clewlow and Carverhill. 1995. “On the Simulation of Contingent Claims.” The Journal of Derivatives
2(2):66–74.

Clewlow and Strickland. 1998. Implementing Derivatives Models. Wiley.

McDonald, Robert L. 2013. Derivatives Markets. Pearson.

15


	Implementing Option Pricing Model
	Recommended Citation

	Introduction
	Section 1 Control Variates
	Section 2 Black-Scholes Merton model
	Section 3 Greeks with purposes of heding Versus Greeks for control variates
	Section 4 Variance Reduction
	Subsection A Delta control variate
	Subsection B Delta-Gamma control variates

	Section 5 Jump World
	Conclusion

