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Predictive Distributions via Filtered Historical Simulation
for Financial Risk Management
Tyson Clark Utah State University

Filtered historical simulation with an underlying GARCH process can be used as a valuable tool
in VaR analysis, as it derives risk estimates that are sensitive to the distributional properties of the
historical data of the produced predictive density. I examine the applications to risk analysis that
filtered historical simulation can provide, as well as an interpretation of the predictive density as
a poor man’s Bayesian posterior distribution. The predictive density allows us to make associated
probabilistic statements regarding the results for VaR analysis, giving greater measurement of risk
and the ability to maintain the optimal level of risk per tolerance in portfolios to remain compliant
with regulations.

Keywords: Filtered Historical Simulation, Predictive Density, Value at Risk, VaR, GARCH

Introduction

Investors often fail to account for risks included in their portfolios when things are going well.

This was a major issue prior to the 2008 global financial crisis, and the crisis reminded many of

the importance of evaluating risk. This was most apparent for investment banks that experienced

large losses as a result of some risky assets in their portfolios for which they didn’t properly ac-

count. Because of the importance of banks in our economy, there are regulations in place that

require banks to stress-test their portfolios to evaluate the risk exposure.

Since financial data is not i.i.d. normal, it can be difficult to account for the periods of volatility

when something such as the 2008 financial crisis occurs. In this paper, I show that a symmetric

GARCH model when bootstrapped in a filtered historical simulation allows for this volatility clus-

tering pattern and will provide more accurate VaR metrics for banks that are seeking to remain

compliant with the 10-day, 1% significance VaR levels set by regulations established in Basel II.

In this paper I will show a model that banks have begun to use to meet Basel II requirements.

Basel II requires banks using internal VaR models to evaluate their risk at the 99% significance

level. It also requires banks to measure potential losses for a 10-day risk horizon. Filtered historical

simulation is a semi-parametric approach that combines Monte Carlo simulation based on volatily

clustering patterns with the empirical non-normal return distributions from historical data. This
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overcomes many issues of basic historical simulation by allowing it to find an h-day VaR where h

is more than just a few days. As it is a non-parametric model, it will not account for the volatility

currently prevailing in the market (Alexander (2009)). Filtered historical simulation becomes this

semi-parametric model by combining an estimated GARCH model with the i.i.d. bootstrap. This

allows the model to account for value correlations without restricting them over time.

The GARCH process underlying this filtered historical simulation started as a less complex

autoregressive conditional heteroskedasticity (ARCH) model invented by Robert Engle (Engle

(1995)). This model, as well as the GARCH model I will be using to further discuss filtered his-

torical simulation are explained in detail by Enders (2008). The model was made to account for

volatility clustering patterns as is often seen with financial data that will experience market shocks

such as bubbles, where a model assuming constant variance is inappropriate. For comparison to

the later shown GARCH model, the simplest form of the ARCH model is the ARCH(1) model

denoted by:

yt = x
′
tβ + εt

where:

εt = ut

√
α0 + α1ε2

t−1

and ut ~ N(0,1). This εt term is what is allowing for the conditional heteroskedasticity.

This ARCH model has some notable weaknesses. It assumes that positive and negative shocks

have the same effects on volatility because it depends on the square of the previous shocks. α2
t

must remain in certain intervals which limits the ability of an ARCH model to allow for excess

kurtosis. It also is likely to overpredict the volatility because the model responds slowly to large

isolated shocks to the series.

Due to some of these limitations, the generalized autoregressive conditional heteroskedasticity

(GARCH) model was introduced by Bollerslev (1986). The GARCH model extends Engle’s ARCH

model by allowing the conditional variance to be an autoregressive moving average (ARMA) pro-

cess. This allows for both autoregressive and moving average components in the heteroskedastic
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variance. The basic GARCH(1,1) model can be denoted as:

σ2
t = ω + αε2

t−1 + βσ2
t−1

We can see that if this βσ2
t−1 term in the equation is dropped out, we are left with our ARCH model

from before.

There is much literature surrounding GARCH models and there exists an alphabet soup of

extensions to the original GARCH model. Because of the leverage effect, there are many models

that beat a GARCH(1,1) model (Hansen and Lunde (2003)). The leverage effect means the impact

of bad news will have more of a volatility shock than good news. The simple GARCH(1,1) model

doesn’t take this into account, however it is still remarkable how well the model does at predicting

volatility patterns, and is the model I will use throughout this paper. I do include some models

of both the S&P 500 and IBM using the GJR-GARCH which includes an additional variable to ac-

count for this leverage effect, however in my sample data there is no significant difference between

the simple GARCH(1,1) and a GJR-GARCH(1,1,1) model, showing the power of the GARCH(1,1)

model.

It is easy to see here in the introduction to filtered historical simulation that all of these models

and computational techniques are all from the classical frequentist perspective, but there is a very

Bayesian feel to the overall method, especially concerning the results that are produced. Through

the statistical bootstrap of the GARCH process, we produce a predictive distribution that shows a

distribution of the VaR for an h-day horizon. As these are all classical techniques, filtered historical

simulation is rarely, if ever, looked at from a Bayesian perspective.

VaR Overview and Models

Since the 1990s, almost all financial institutions have used some sort of VaR measure. Alexander

(2009) outlines some important advantages of a VaR measure, including: VaR calculates an amount

that could be lost with some predetermined probability, VaR measures the risk factors as well as

their sensitivities, its scalability, and others. Risk management is important for banks because

they need to know what their level of risk tolerance is to determine if certain risks will be held or

hedged away. Before this can be determined, banks need a way to measure this risk.
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As mentioned previously, VaR is a very important metric for banks to consider. As such, many

different methods of calculating VaR have appeared. I will highlight three methods mentioned

by Alexander (2009) in her book ‘Market Risk Analysis: Volume IV’: normal linear VaR, historical

simulation, and Monte Carlo simulation. Again, as stated previously, filtered historical simula-

tion uses aspects of historical simulation and Monte Carlo simulation that allow it to be a semi-

parametric model, making it the optimal model for banks to calculate their h-day VaR models.

I will only briefly mention normal linear VaR, as it is only appropriate when a portfolio P&L is

a linear function of its risk factors or asset returns. As such, it is not ideal for almost any financial

asset.

Historical simulation is the method that is the easiest to conceptualize. Most, if not all, in-

vestors have looked at previous return data when looking at their future investment decisions. In

fact, I would assume that most novice investors believe this is the best method of estimating future

returns. Historical simulation’s biggest issue is that it assumes that all possible future variations

have occurred in the past. Looking back at each individual financial crisis, we can see that these

models will vastly under-predict the possibility of some new market failure because of some issue

that has not previously occurred.

The third method for modeling VaR is Monte Carlo simulation. Monte Carlo is useful since it

can be applied to non-linear portfolios. Monte Carlo doesn’t look back at historical data; however,

and may not be the most useful tool for looking at risk estimates based off of historical volatility

clustering patterns.

Filtered Historical Simulation

Filtered historical simulation was first introduced by Barone-Adesi, Giannopoulos and Vosper

(1999). It is a great method for determining VaR for portfolios, as it uses both nonlinear econo-

metric models and historical returns to build the predictive density that the portfolio could take

for multiple days looking forward. Rather than most models, which suffer the problem of under-

estimating the risk of extreme outcomes, filtered historical simulation risk estimated are derived

directly from the tails of the distribution.

In filtered historical simulation, price series are not forced to conform to a probability distribu-
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tion, but the data are allowed to speak for themselves. Historical data is still considered. This is an

important aspect to filtered historical simulation since a basic Monte Carlo simulation only draws

from a theoretical distribution, which smooths the empirical distribution and may underestimate

the risk of catastrophe. It generates thousands of scenarios for the mean and variance of each

risk factor in a multi-period horizon. This allows filtered historical simulation to provide a more

accurate depiction of the tail structure in future prices. These features make filtered historical

simulation very easy to implement in risk analysis and stress-testing.

Filtered historical simulation works by using a parametric model of return volatility, such as a

GARCH model, to simulate log returns over some predefined risk horizon. Using the estimated

GARCH model

σ̂2
t+1 = ω̂ + α̂r2

t + β̂σ̂2
t

, filtered historical simulation will assume that GARCH draws from the standardized empirical

distribution, so therefore the standardized innovations are εt = rt/σ̂t. rt represents the historical

daily log return and σ̂2
t represents the GARCH daily standard deviation.

The simulation process begins by setting initial conditions σ̃0 and r̃0. r̃0 will be set equal to the

log return from the previous day, but there are at least two different options for setting σ̃0.

The first of the two options is setting σ̃0 equal to the last estimated daily conditional volatility

from the GARCH model. The second option is to set σ̃0 equal to the long run unconditional

volatility:

ω̂/(1− α̂− β̂)

. In my model, I will use the latter. This will give a return on the forecasted day 1 of r1 = ε1σ̂1. The

value εt will be drawn independently via the i.i.d. bootstrap. I can now simply iterate through:

σ̂2
t+1 = ω̂ + α̂r2

t + β̂σ̂2
t

. Since I have used log returns, the h-day return is simply Σh
t rt.

Repeating this through simulation will produce a predictive density that can be used for VaR

estimation. The h-day return will be displayed in the distribution to show the probability distribu-

tion of the h-day returns. To demonstrate this, I have coded filtered historical simulation models
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with corresponding bootstraps of the underlying GARCH processes for both the S&P 500 from

December 1, 1994 to March 31, 2008 and IBM from the beginning of 1999 to the end of 2003. The

S&P data was chosen to show the volatility clustering patterns even for the overall market, and

the extreme shocks shown in 2008 that occurred because of the financial crisis. IBM is a relatively

‘safe’ stock that has not had any major issues in the past, but will work well for my purposes in

showing the effectiveness of filtered historical simulation.

When looking at the volatility of the S&P 500 from January 2, 1995 to March 31, 2008 below,

it is easy to notice the volatility clustering patterns that make GARCH an excellent candidate

for determining the volatility in the underlying. With just a simple volatility calculation, these

patterns will not be taken into account, and the VaR will be underestimated, potentially leading

to greater than expected losses in a portfolio.

To calculate the VaR through filtered historical simulation, first I need to estimate a GARCH

model to account for volatility clustering patterns as seen above. I used the optimizer ‘rugarch’

from R to optimize the GARCH parameters ω̂, α̂, and β̂. These are the estimated parameters that

were used in the i.i.d. bootstrap process for filtered historical simulation. The full S&P 500 and

IBM code can be found in the linked Github Repository (Clark, Tyson (2019)). As is shown by Mc-

Donald (2009), there are jumps in the return data for IBM surrounding earnings announcements
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that the GARCH model has difficulty explaining, so those 5 particular dates have been omitted

from the optimization process.

After the optimizer has found the values of ω̂, α̂, and β̂, they can be used in the i.i.d. bootstrap

process of filtered historical simulation. I will first find the scaled volatility adjusted VaR using

the GARCH process to compare my results in filtered historical simulation.

Quantile Unadjusted GARCH

0.10% 4.84% 7.47%

1% 2.83% 4.19%

5% 1.78% 2.69%

10% 1.27% 2.10%

The table above shows the 1-day VaR for the S&P 500 on March 31, 2008, the last day of

my sample. We can see here that unadjusted volatility will severely underestimate a VaR. Using

GARCH to correctly adjust for volatility clustering shows a much higher VaR in each respective

quantile. This is a very important finding, especially for banks that have a limit on VaR they are

allowed to have in their respective portfolios. A simple volatility model will allow banks to take

on substantial risk, which can be catastrophic in the event of a tail event, as we saw within this

sample in 2008.

This simple GARCH volatility estimate can now be bootstrapped to allow for an h-day VaR to

be calculated. This filtered historical simulation process will allow the GARCH volatility to revert

to the long-run mean.

Quantile GARCH_scaled FHS

0.10% 23.61% 19.90%

1% 13.24% 10.96%

5% 8.52% 6.68%

10% 6.66% 4.72%

As is shown in this table, the adjusted GARCH model overestimates risk when compared
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to filtered historical simulation. This is because the square root scaling of a daily VaR model

estimated through GARCH doesn’t allow for mean reversion, and will subsequently overestimate

the VaR when taken on a day with a higher than usual variance. This is why it is important to

use the statistical bootstrap, and why filtered historical simulation is better than a simple square

root adjustment to a single day GARCH estimation. This will hold in almost all of the 10,000

simulations carried out. We can see this distribution in the produced predictive density. My

simulated predictive density is shown below.

I also want to point out the comparison of the FHS percentile returns with the VaR estimates

that are unadjusted for volatility clustering. The table is shown below.

Quantile Unadjusted FHS

0.10% 4.84% 19.90%

1% 2.83% 10.96%

5% 1.78% 6.68%

10% 1.27% 4.72%
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When returns are unadjusted for volatility clustering patterns, risk estimates will severely un-

derperform when compared to a filtered historical simulation VaR model. Banks should use fil-

tered historical simulation to account for these risks, and when they use these models to remain

compliant with Basel II standards, they will be much less likely to become insolvent as we saw

with many banks during the 2008 financial crisis.

This method of filtered historical simulation has been an incredible innovation in risk esti-

mation. In fact, it has been extended to apply to more complex VaR models for portfolios with

changing weights that may even include derivative securities (Barone-Adesi, Giannopoulos and

Vosper (1999)). The same method I have applied is used in this paper, by simulating asset volatil-

ities to depend on the most recent portfolio returns. The combination of GARCH modeling and

historical returns creates this same semi-parametric model to find the VaR, and is shown to work

quite remarkably.

Predictive Density

This produced predictive density helps us see the distribution of returns through a bootstrap of

10,000 simulations. This distribution can be quite useful when a bank or investment manager is

looking at the VaR for his or her respective portfolio. The density is computed using frequentist

methods, but can be looked at as a poor-man’s Bayesian posterior distribution when there is an

uninformed prior, as is most likely the case with a VaR model (Murphy (2012)). In fact, the way

filtered historical simulation is modeled, it is very similar to a Bayesian model. Without getting

too involved in the Bayesian perspective, Bayes’ rule can be defined as:

P(θ|x) ∝ P(x|θ)P(θ)

, where P(θ) is the prior applied to the Bayesian model. It can be seen that when this prior is

uninformed, it will drop out, leaving just P(x|θ), which will be informed by the model just as

filtered historical simulation.

It is shown here that the actual VaR model is being computed using frequentist methods, but

this produced density is the frequentist approach to a Bayesian posterior. I would like to quote

Terry Speed about how ‘We don’t need to be Bayesian; we just need to be approximately so. We
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don’t need theory to tell us our method works; we just need to simulate and see’ (Speed (2011)).

This Bayesian interpretation can be important. In ‘Computer Age Statistical Inference’, Efron and

Hastie provide some comparisons between frequentist methods and Bayesian methods (Efron and

Hastie (2016)). An important note they make is that a Bayesian places a large bet on his or her prior

being correct, or at least not harmful, but a frequentist will take a more defensive approach, that

by statistical methods he or she can produce a useful distribution, regardless of the true µ.

In the perspective of filtered historical simulation for VaR, this is an important point since there

can be no prior belief regarding the distribution of returns if one wants to properly account for risk,

especially in the tails. Though calculated using frequentist method, the distribution shown above

is very close to a Bayesian posterior distribution.

When a risk manager or trader is thinking about risk, they can’t think about these frequentist

models. Though the models may do a good job of summarizing data, the true uncertainty must

be thought of from a subjective sense. Filtered historical simulation produces a predictive density

that allows traders and risk managers to do just that. Though filtered historical simulation is a fre-

quentist method, rarely, if ever, is the produced distribution thought of from a Bayesian subjective

sense, though that is exactly what the model is producing. This way of thinking about uncertainty

incorporates the theory that prices reflect information, or tacit knowledge, rather than just being

something that is calculated through a model (Hayek (1945)). This way of thinking will help risk

managers and traders more properly account for risk in their models, and is a great way to look

at filtered historical simulation.

Conclusion

It can be shown in the VaR estimates generated from filtered historical simulation compared to

the estimates based off the unadjusted volatility that the probability of extreme loss is severely

underestimated. This has been an issue with banks in the past, as many have modeled VaR using

only historical returns, which assumes that all future shocks to their portfolios have occurred in

the past. Just in the last couple of decades we can see that this is not a correct assumption, as new

market failures send asset prices sharply downward, such as the financial crisis of 2008. Though

outside of the scope of my current research, if bank managers had applied this semi-parametric
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filtered historical simulation process to portfolios of mortgage-backed securities or collateralized

debt obligations that were the recipient of extreme losses, there is a decent probability that the

exposure to these assets would have been reduced and the severity of the crisis would have been

reduced.

The method of VaR estimates produced in the paper can be generalized to many different

assets or portfolios of assets to produce valuable distributions for risk managers of banks and

investment portfolios alike. It has been shown that these methods can even be used to model VaR

estimates of derivative securities (Barone-Adesi, Giannopoulos and Vosper (1999)). To maintain

Basel II requirements, a 99% significance level must be used, but for agencies seeking AA ratings

or above, they must use significance levels above 99.7%, which as seen in the tables above will be

vastly underestimated if one doesn’t account for volatility clustering patterns that assets clearly

possess.

The produced predictive density allows risk managers and traders alike to think about the

uncertainty in their portfolios from a subjective sense, rather than simply the result of a model. It

allows them to take into account all of the information incorporated into markets and how it will

be reflected in their VaR analysis. Filtered historical simulation is very valuable in this way, and

has a wide variety of useful applications.
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