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OVERVIEW	

During	the	curriculum	of	Master	of	Medical	Sciences	Program	at	Harvard	Medical	School,	I	

have	been	focusing	on	two	inferential	goals	through	respiratory	disease	research—1)	

prediction	and	2)	causal	inference—which	are	central	pillars	of	research	questions	as	

clinical	investigators.(1)	Bronchiolitis	in	infants	and	asthma	in	adults	are	two	of	the	major	

respiratory	diseases	in	industrialized	nations.	Indeed,	bronchiolitis	is	the	leading	cause	of	

infant	hospitalization	in	the	US,	accounting	for	107,000	infant	hospitalizations	each	

year.(2)	Besides,	previous	literature	suggests	that	bronchiolitis	during	infancy	is	one	of	the	

major	risk	factors	for	subsequent	asthma.(3)	Likewise,	approximately	26	million	

Americans	have	asthma.(4)	Asthma	exacerbations	account	for	a	substantial	proportion	of	

the	personal	and	societal	burden,	leading	to	approximately	340,000	hospitalizations	

annually.(5)	

Paper	1:	The	literature	has	demonstrated	a	high	variability	in	bronchiolitis	management	

across	the	nation,	which	is,	at	least	partially,	attributable	to	the	variable	clinical	course	in	

this	population.(6)	Despite	the	development	of	prediction	scoring	models	(e.g.,	logistic	

regression	models),(1,4–6)	identifying	the	subgroup	of	infants	with	bronchiolitis	who	

require	higher	acuity	care	(e.g.,	positive	pressure	ventilation,	intensive	care	unit	[ICU]	

admission)	remains	an	important	challenge.	The	difficulty	and	uncertainty	of	predicting	

acute	severity—and,	consequently,	the	appropriate	level	of	care	for	infants	with	

bronchiolitis—are	reflected	by	the	well-documented	variability	in	inpatient	management	

across	the	nation.(3,7–9)	Recently,	machine	learning	models	have	gained	increasing	

attention	because	of	their	advantages,	such	as	the	ability	to	incorporate	high-order,	

nonlinear	interactions	between	predictors	and	to	yield	more	accurate	and	stable	
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predictions.	While	machine	learning	approaches	may	enhance	the	predictive	ability,(10–

12)	little	is	known	about	their	utility	to	predict	acute	severity	outcomes	in	infants	with	

bronchiolitis.	We	developed	advanced	machine	learning	models	using	the	data	from	a	well-

characterized	prospective	cohort	study.	

Paper	2:	Previous	research	has	demonstrated	that	patients	with	chronic	asthma	have	a	

high	incidence	of	cardiovascular	events.(13–15)	Besides,	the	emerging	evidence	suggests	

that	acute	inflammatory	processes	(e.g.,	bacteremia,(16)	pneumonia,(17)		influenza	virus	

infection,(18)	Streptococcal	infection,(19)		and	acute	exacerbation	of	COPD(20))	have	been	

linked	to	acute	cardiovascular	outcomes.	However,	despite	the	clinical	and	research	

importance	of	asthma	exacerbations,	little	is	known	about	its	acute	effect	on	cardiovascular	

outcomes.	Herein,	using	large	population-based	data	of	four	diverse	states	in	the	US,	I	

conducted	a	self-controlled	case	series	study	to	investigate	the	acute	causal	effect	of	

asthma	exacerbation	on	cardiovascular	events.	 	
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ABSTRACT		

BACKGROUND:	We	aimed	to	develop	machine	learning	models	to	accurately	predict	

bronchiolitis	severity,	and	to	compare	their	predictive	performance	with	a	conventional	

scoring	(reference)	model.		

METHODS:	In	a	17-center	prospective	study	of	infants	(aged	<1	year)	hospitalized	for	

bronchiolitis,	by	using	routinely-available	pre-hospitalization	data	as	predictors,	we	

developed	four	machine	learning	models:	Lasso	regression,	elastic	net	regression,	random	

forest,	and	gradient	boosted	decision	tree.	We	compared	their	predictive	performance—

e.g.,	area-under-the-curve	(AUC),	sensitivity,	specificity,	and	net	benefit	(decision	curves)—

using	a	cross-validation	method,	with	that	of	the	reference	model.	The	outcomes	were	

positive	pressure	ventilation	use	and	intensive	treatment	(admission	to	intensive	care	unit	

and/or	positive	pressure	ventilation	use).		

RESULTS:	Of	1,016	infants,	5.4%	underwent	positive	pressure	ventilation	and	16.0%	had	

intensive	treatment.	For	the	positive	pressure	ventilation	outcome,	machine	learning	

models	outperformed	reference	model	(e.g.,	AUC	0.88	[95%CI	0.84-0.93]	in	gradient	

boosted	decision	tree	vs	0.62	[95%CI	0.53-0.70]	in	reference	model),	with	higher	

sensitivity	(0.89	[95%CI	0.80-0.96]	vs.	0.62	[95%CI	0.49-0.75])	and	specificity	(0.77	

[95%CI	0.75-0.80]	vs.	0.57	[95%CI	0.54-0.60]).	The	machine	learning	models	also	achieved	

a	greater	net	benefit	over	ranges	of	clinical	thresholds.		

CONCLUSIONS:	Machine	learning	models	consistently	demonstrated	a	superior	ability	to	

predict	acute	severity	and	achieved	greater	net	benefit.	
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ABBREVIATIONS	

MARC-35,	the	35th	Multicenter	Airway	Research	Collaboration	study;	AUC,	area-under-the-

curve;	CI,	confidential	interval;	ICU,	intensive	care	unit;	ED,	emergency	department;	EMNet,	

Emergency	Medicine	Network;	RSV,	respiratory	syncytial	virus;	IQR,	interquartile	range;	

NRI,	net	reclassification	improvement;	PPV,	positive	predictive	value;	NPV,	negative	

predictive	value	
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INTRODUCTION	

	 Bronchiolitis	is	the	leading	cause	of	infant	hospitalization	in	the	US,	accounting	for	

107,000	infant	hospitalizations	each	year	with	direct	cost	of	734	million	US	dollars.(2)	

Even	among	hospitalized	infants,	the	severity	of	bronchiolitis	can	range	from	moderate	

severity	(which	requires	observation	and	supportive	therapies,	such	as	supplemental	

oxygen,	fluid,	and	nutrition)	to	near-fatal	and	fatal	infections.	Previous	studies	have	

identified	individual	risk	factors	for	higher	severity	of	bronchiolitis	(e.g.,	young	age,	

prematurity,	viral	etiology)(24–27)	and	developed	prediction	scoring	models	(e.g.,	logistic	

regression	models).(7–10)	However,	identifying	the	subgroup	of	infants	with	bronchiolitis	

who	require	higher	acuity	care	(e.g.,	positive	pressure	ventilation,	intensive	care	unit	[ICU]	

admission)	remains	an	important	challenge.	The	difficulty	and	uncertainty	of	predicting	

acute	severity—and,	consequently,	the	appropriate	level	of	care	for	infants	with	

bronchiolitis—are	reflected	by	the	well-documented	variability	in	inpatient	management	

across	the	nation.(2,6,11,12)	

Machine	learning	models	have	gained	increasing	attention	because	of	their	

advantages,	such	as	the	ability	to	incorporate	high-order,	nonlinear	interactions	between	

predictors	and	to	yield	more	accurate	and	stable	predictions.	Indeed,	recent	studies	have	

reported	that	the	use	of	machine	learning	models	provide	a	high	predictive	ability	in	

various	conditions	and	settings—e.g.,	sepsis,(28,29)	asthma	exacerbation,(14)	emergency	

department	(ED)	triage,(13,30)	and	unplanned	transfers	to	ICU.(15)	Despite	the	clinical	

and	research	promise,	no	study	has	yet	examined	the	utility	of	modern	machine	learning	

models	in	predicting	outcomes	in	infants	hospitalized	for	bronchiolitis—a	large	population	

with	high	morbidity	and	health	resource	use.	
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In	this	context,	we	aimed	to	develop	machine	learning	models	that	accurately	

predict	acute	severity	in	infants	hospitalized	with	bronchiolitis,	and	compare	their	

predictive	performance	with	that	of	conventional	scoring	approaches.(7)	 	
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METHODS	

Study	Design,	Setting	and	Participants	

	 The	current	study	aimed	to	develop	machine	learning	models	that	accurately	

predict	acute	severity	in	infants	with	bronchiolitis,	by	using	the	data	from	a	multicenter	

prospective	cohort	study	of	1,016	infants	hospitalized	for	bronchiolitis—the	35th	

Multicenter	Airway	Research	Collaboration	(MARC-35)	study.(31,32)	MARC-35	is	

coordinated	by	the	Emergency	Medicine	Network	(EMNet,	www.emnet-usa.org),(33)	an	

international	research	collaboration	with	246	participating	hospitals.	Briefly,	at	17	sites	

across	14	U.S.	states	(Table	E1	in	Additional	file	1),	MARC-35	enrolled	infants	(aged	<1	

year)	who	were	hospitalized	with	an	attending	physician	diagnosis	of	bronchiolitis	during	

three	consecutive	bronchiolitis	seasons	(November	1	to	April	30)	during	2011	to	2014.	The	

diagnosis	of	bronchiolitis	was	made	according	to	the	American	Academy	of	Pediatrics	

bronchiolitis	guidelines,(24)	defined	as	acute	respiratory	illness	with	a	combination	of	

rhinitis,	cough,	tachypnea,	wheezing,	crackles,	and	retractions.	We	excluded	infants	who	

were	transferred	to	a	participating	hospital	>24	hours	after	initial	hospitalization	or	with	a	

preexisting	heart	and	lung	disease,	immunodeficiency,	immunosuppression	or	gestational	

age	of	<32	weeks.		

We	followed	the	Standards	for	Reporting	Diagnostic	Accuracy	statement	guideline	

for	the	reporting	of	prediction	models.(34)	The	institutional	review	board	of	the	17	

participating	hospitals	(Alfred	I.	duPont	Hospital	for	Children,	Arnold	Palmer	Hospital	for	

Children,	Boston	Children's	Hospital,	Children's	Hospital	of	Los	Angeles,	Children's	Hospital	

of	Philadelphia,	Children's	Hospital	of	Pittsburgh,	The	Children's	Hospital	at	St.	Francis,	The	

Children's	Mercy	Hospital	&	Clinics,	Children's	National	Medical	Center,	Cincinnati	
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Children's	Hospital	and	Medical	Center,	Connecticut	Children's	Medical	Center,	Dell	

Children's	Medical	Center	of	Central	Texas,	Norton	Children's	Hospital,	Massachusetts	

General	Hospital,	Phoenix	Children's	Hospital,	Seattle	Children's	Hospital,	Texas	Children's	

Hospital)	approved	the	study.	Written	informed	consent	was	obtained	from	the	parent	or	

guardian.	

	

Predictors	

For	predictors	in	the	machine	learning	models,	we	selected	variables	based	on	

clinical	plausibility	and	a	priori	knowledge.(7–10,25,35–37)	These	predictors—which	are	

available	in	most	prehospitalization	settings—included	demographics	(age,	sex,	and	

race/ethnicity),	medical	history	(prenatal	maternal	smoking,	gestational	age,	birth	weight,	

postnatal	ICU	admission,	history	of	hospital	and	ICU	admission,	history	of	breathing	

problems,	and	history	of	eczema),	parent-reporting	symptoms	(poor	feeding,	cyanosis,	

apnea,	and	duration	of	symptoms),	ED	presentation	(vital	signs	[temperature,	pulse	rate,	

respiratory	rate,	oxygen	saturation],	interaction	between	oxygen	saturation	and	

supplemental	oxygen	use,	wheezing,	retractions,	apnea,	and	dehydration),	and	detection	of	

respiratory	syncytial	virus	(RSV)	by	PCR.(31)	These	clinical	data	were	obtained	through	a	

structured	interview	and	medical	record	review	by	trained	physicians	and	investigators	

using	a	standardized	protocol.(32)	All	data	were	reviewed	at	the	EMNet	Coordinating	

Center	at	Massachusetts	General	Hospital	(Boston,	MA),	and	site	investigators	were	

queried	about	missing	data	and	discrepancies	identified	by	manual	data	checks.		

	

Outcomes	
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	 The	primary	outcome	was	the	use	of	positive	pressure	ventilation	–	continuous	

positive	airway	pressure	ventilation	and/or	intubation	during	inpatient	stay.(38)	The	

secondary	outcome	was	intensive	treatment	defined	as	a	composite	of	ICU	admission	

and/or	the	use	of		positive	pressure	ventilation	during	the	inpatient	stay.(25,37)	In	this	

observational	study,	patients	were	managed	at	the	discretion	of	treating	physicians.	These	

two	outcomes	have	been	employed	for	outcomes	in	the	MARC-35	study.	

	

Statistical	Analysis	

In	the	training	sets	(80%	randomly-selected	samples)	in	5-fold	cross-validation,	we	

developed	five	models:	the	reference	model(7)	and	four	machine	learning	models	for	each	

outcome.	As	the	reference	model,(7)(22)(17)	we	fit	logistic	regression	models	using	the	

predictors	of	a	previously-established	clinical	prediction	score	that	was	derived	using	an	

ED	sample	(Table	E2).(7)	We	selected	this	prediction	score	as	the	reference	model	since	it	

was	recently	developed	in	a	large	sample	and	focused	on	similar	clinical	outcomes	

reflecting	acute	severity	of	bronchiolitis.(7,39)	The	predictors	included	age,	poor	feeding,	

oxygen	saturation,	retractions,	apnea,	and	dehydration,	excluding	nasal	flaring/grunting,	

based	on	the	availability	of	data	in	the	current	study.	

Next,	using	the	prehospitalization	predictors,	we	developed	four	machine	learning	

models:	1)	logistic	regression	with	Lasso	regularization	(Lasso	regression),	2)	logistic	

regression	with	elastic	net	regularization	(elastic	net	regression),	3)	random	forest,	and	4)	

gradient	boosted	decision	tree	models.	First,	Lasso	regression	is	an	extension	of	

regression-based	models	that	has	an	ability	to	shrink	(or	regularize)	the	predictor	

coefficients	toward	zero,	thereby	effectively	selecting	important	predictors	and	improving	
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interpretability	of	the	model.(40)	Lasso	regression	computes	the	optimal	regularization	

parameter	(lambda)	that	minimizes	the	sum	of	least	square	plus	L1-shrinkage	penalty	

using	a	cross-validation	method.(41)	Second,	elastic	net	regression	is	another	regression-

based	model	incorporating	both	Lasso-regularization	and	Ridge-regularization.(40,42)	

Elastic	net	regression	calculates	the	optimal	regularization	parameter	that	minimizes	the	

sum	of	least	square	plus	weighted	L1-shrinkage	penalty	and	weighted	L2-shrinkage	

penalty.	We	used	R	glmnet	and	caret	packages	for	Lasso	regression	and	elastic	net	

regression	models.(43,44)	Third,	random	forest	is	an	ensemble	of	decision	trees	generated	

by	bootstrapped	training	samples	with	random	predictor	selection	in	tree	

induction.(40,45)	We	created	a	hyperparameter	tuning	grid	to	identify	the	best	set	of	

parameters	using	cross-validation	methods.	We	used	randomForest	and	caret	packages	to	

construct	random	forest	models.(44,46)	Lastly,	gradient	boosted	decision	tree	is	another	

ensemble	method	which	constructs	new	simple	tree	models	predicting	the	errors	and	

residuals	of	the	previous	model.	When	adding	a	new	tree,	this	model	uses	a	gradient	

descent	algorithm	minimizes	a	loss	function.(47)	We	performed	hyperparameter	tuning	

sequentially	using	a	5-fold	cross-validation	method.	We	used	R	xgboost	and	caret	packages	

to	construct	gradient	boosted	decision	tree.(44,48)	To	minimize	potential	overfitting,	we	

utilized	several	methods	–	e.g.,	regularizations	(or	penalizations)	in	Lasso	and	elastic	net	

regression	models,	out-of-bag	estimation	in	random	forest	models,	and	cross-validation	in	

all	models.		

As	for	the	predictor	engineering	methods	of	the	machine	learning	models,	we	

preprocessed	predictors	sequentially.	First,	we	investigated	non-linear	relationships	

between	the	continuous	predictors	and	outcomes	and	created	quadric	terms	of	age,	
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respiratory	rate,	and	temperature.	These	quadratic	terms	were	used	only	for	regression-

based	machine	learning	models	(i.e.,	logistic	regression	models	with	Lasso	regularization	

and	those	with	elastic	net	regularization).	Second,	we	also	chose	either	of	highly-correlated	

predictors	(e.g.,	age	and	weight	at	hospitalization).	Third,	we	imputed	predictors	with	

missing	values	(Table	E3)	using	bagged	tree	imputation.	Fourth,	we	converted	continuous	

predictors	into	normalized	scales	using	Yeo-Johnson	transformation.	Categorical	predictors	

were	coded	as	dummy	variables	while	birth	weight,	gestational	age,	previous	breathing	

problem,	and	degree	of	retraction	were	coded	as	ordinal	variables.	Fifth,	to	incorporate	

clinically	evident	interaction	between	oxygen	saturation	level	and	use	of	supplemental	

oxygen,	we	created	an	interaction	term	between	oxygen	saturation	and	use	of	

supplemental	oxygen.	Lastly,	we	removed	predictors	that	are	highly	sparse	in	the	dataset.	

We	applied	these	preprocessing	methods	independently	to	the	training	sets	and	the	test	

sets	to	avoid	carrying	the	information	from	the	training	sets	to	the	test	sets.	We	used	R	

recipe	package	for	these	predictor	preprocessing.(49)	

To	examine	the	variable	importance	in	the	random	forest,	we	used	permutation-

based	variable	importance	–	normalized	average	values	of	difference	between	the	

prediction	accuracy	of	out-of-bag	estimation	and	that	of	the	same	measure	after	

permutating	each	predictor.	In	the	gradient	boosted	model,	we	also	computed	the	variable	

importance	that	is	summed	over	iterations.(45)	We	graphically	presented	the	rank	of	

variable	importance	using	unscaled	values.		

To	measure	the	test	performance	of	each	model,	we	computed	the	overall	cross-validation	

performance	from	the	test	sets	(the	remaining	randomly-selected	20%	samples).	As	the	

predictive	performance,	we	used	1)	the	area	under	the	receiver-operating-characteristic	
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curve	(AUC),	2)	net	reclassification	improvement,	3)	confusion	matrix	results	(i.e.,	

sensitivity,	specificity,	positive	predictive	value,	and	negative	predictive	value),	and	4)	net	

benefit	from	decision	curve	analysis.	To	compare	the	AUC	between	the	models,	we	used	

Delong’s	test.(50)	To	compute	AUC	and	its	confidential	interval,	we	used	pROC	

package.(51)	We	also	used	the	net	reclassification	improvement	to	quantify	whether	a	new	

model	provides	clinically	relevant	improvements	in	prediction	when	compared	to	the	

reference	model.(52)	To	compute	the	net	reclassification	improvement,	we	used	

PredictABEL	package.(53)	To	address	the	class	imbalance	in	the	both	outcomes,	we	

employed	the	value	with	the	shortest	distance	to	the	top-left	part	of	the	AUC	plot	as	the	

threshold	for	the	confusion	matrix.(45)	The	decision	curve	analysis	incorporates	the	

information	on	both	the	benefit	of	correctly	predicting	the	outcome	(true-positives)	and	

the	relative	harm	of	incorrectly	labelling	patients	as	if	they	would	have	the	outcome	(false-

positives)	–	i.e.,	the	net	benefit.(54–58)	We	made	a	graphical	presentation	of	the	net	benefit	

for	each	model	over	a	range	of	threshold	probabilities	(or	clinical	preferences)	of	the	

outcome	as	decision	curves.	We	used	decision	curve	analysis	R	source	code	from	Memorial	

Sloan	Kettering	Cancer	Center(59)	and	plotted	the	graphs	using	ggplot2	package.(60)	We	

performed	all	analysis	with	R	version	3.5.1	(R	Foundation	for	Statistical	Computing,	Vienna,	

Austria).(61)	 	
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RESULTS	

	 During	2011-2014,	1,016	infants	with	bronchiolitis	were	enrolled	into	a	17-center	

prospective	cohort	study.	The	median	age	at	the	enrolment	was	3.2	months	(IQR	1.6-6.0),	

40%	were	female,	and	42%	were	non-Hispanic	white.	The	length-of-hospital	stay	varied	

widely	from	0	day	to	60	days	(median,	2	days;	IQR	1-3	days)	(Table	1).	Clinical	data	had	a	

small	proportion	of	missingness;	most	had	<1%	missingness	(e.g.,	missingness	on	oxygen	

saturation	with	the	use	of	supplemental	oxygen,	0.1%)	while	the	maximum	proportion	of	

missing	was	4.8%	(Table	E3	in	Additional	file	1).	Overall,	55	infants	(5.4%)	underwent	

positive	pressure	ventilation	and	163	infants	(16.0%)	had	intensive	treatment	outcome.	

	

Predicting	Positive	Pressure	Ventilation	Outcome	

	 In	the	prediction	of	positive	pressure	ventilation	outcome,	the	discriminatory	

abilities	of	all	models	are	summarized	in	Figure	1A	and	Table	2.	All	four	machine	learning	

models	demonstrated	significantly	superior	AUCs	(all	P<0.001).	For	example,	compared	

with	the	reference	model	(AUC	0.62	[95%CI	0.53-0.70]),	the	AUC	was	higher	in	the	elastic	

net	regression	(AUC	0.89	[95%CI	0.85-0.92])	and	gradient	boosted	decision	tree	(AUC	0.88	

[95%CI	0.84-0.93])	models.	Similarly,	compared	with	the	reference	model,	all	machine	

learning	models	also	achieved	a	significant	net	reclassification	improvement	(all	P<0.001).		

	 Additionally,	compared	with	the	reference	model,	all	machine	learning	models	also	

demonstrated	a	higher	sensitivity	(e.g.,	0.62	[95%CI	0.49-0.75]	in	the	reference	model	vs.	

0.89	[95%CI	0.80-0.96]	in	the	elastic	net	regression;	Table	2)	and	specificity	(e.g.,	0.57	

[95%CI	0.54-0.60]	in	the	reference	model	vs.	0.79	[95%CI	0.77-0.82]	in	the	Lasso	

regression	model).	More	specifically,	all	machine	learning	models	correctly	predicted	a	
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larger	number	of	infants	who	underwent	positive	pressure	ventilation	(true-positives)	with	

a	fewer	number	of	predicted	outcomes	(Table	3).	For	example,	the	reference	scoring	

system	categorized	most	infants	(n=629,	62%)	into	the	prediction	score	groups	of	2-3.	The	

reference	model	correctly	identified	16	out	of	25	infants	who	underwent	positive	pressure	

ventilation,	while	predicting	that	265	infants	would	have	undergone	positive	pressure	

ventilation.	In	contrast,	the	gradient	boosted	decision	tree	model	correctly	identified	23	(of	

25)	patients,	while	predicting	that	135	infants	would	have	undergone	positive	pressure	

ventilation	in	the	same	patient	groups.	Considering	the	low	prevalence	of	the	positive	

pressure	ventilation	outcome,	all	models	had	a	high	negative	predictive	value	(e.g.,	0.96	

[95%CI	0.95-0.97]	in	the	reference	model	vs.	0.99	[95%CI	0.99-0.99]	in	the	Lasso	

regression	model;	Table	2).		

	 Likewise,	in	the	decision	curve	analysis	(Figure	1B),	all	four	machine	learning	

models	outperformed	the	reference	model,	demonstrating	a	greater	net	benefit	throughout	

the	range	of	clinical	thresholds,	indicating	that	the	machine	learning	prediction	would	

more	accurately	identify	high-risk	infants	(true-positives)	while	taking	the	trade-off	with	

false-positives	into	consideration.	

	

Predicting	Intensive	Treatment	Outcome	

In	the	prediction	of	intensive	treatment	outcome,	the	discriminatory	abilities	of	all	

models	are	shown	in	Figure	2A	and	Table	2.	All	four	machine	learning	models	

demonstrated	a	significantly	higher	AUC	(all	P<0.001).	For	example,	compared	with	the	

reference	model	(AUC	0.62	[95%CI	0.57-0.67]),	the	AUC	was	higher	in	the	elastic	net	

regression	(AUC	0.80	[95%CI	0.76-0.83])	and	random	forest	(AUC	0.79	[95%CI	0.75-0.84])	
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models.	Similarly,	compared	with	the	reference	model,	all	machine	learning	models	also	

achieved	significant	net	reclassification	improvement	(all	P<0.001).		

	 Additionally,	all	machine	learning	models	demonstrated	a	higher	sensitivity	(e.g.,	

0.58	[95%CI	0.49-0.75]	in	the	reference	model	vs.	0.75	[95%CI	0.69-0.82]	in	the	Lasso	

regression;	Table	2)	and	specificity	(e.g.,	0.58	[95%CI	0.50-0.66]	in	the	reference	model	vs.	

0.78	[95%CI	0.76-0.81]	in	the	random	forest	model).	For	example,	among	the	infants	

categorized	into	the	reference	score	groups	of	2-3	(62%	of	cohort	infants),	the	reference	

model	correctly	identified	39	out	of	80	infants	who	had	intensive	treatment,	while	

predicting	that	275	infants	would	have	had	intensive	treatment	(Table	3).	In	contrast,	the	

gradient	boosted	decision	tree	correctly	identified	52	(out	of	80)	infants	with	the	outcome,	

while	predicting	that	162	infants	would	have	had	intensive	treatment.	Likewise,	in	the	

decision	curve	analysis	(Figure	2B),	all	four	machine	learning	models	outperformed	the	

reference	model,	demonstrating	a	greater	net	benefit	throughout	the	range	of	clinical	

thresholds.		

	

Variable	Importance	

	 To	yield	insights	into	the	relevance	of	each	predictor,	Figures	1E	and	2	(Additional	

file	1)	summarized	the	15	most	important	predictors	of	random	forest	and	gradient	

boosted	decision	tree	models	for	each	outcome.	In	the	prediction	of	positive	pressure	

ventilation	outcome,	age,	oxygen	saturation	level	with	the	use	of	supplemental	oxygen,	and	

other	vital	signs	[at	the	presentation]	were	the	most	important	predictors	in	both	models	

(Figures	1EA	and	2EA).	Likewise,	in	the	prediction	of	intensive	treatment	outcome,	similar	

predictors	were	considered	important	in	the	both	models	(Figures	1EB	and	2EB).		 	
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DISCUSSION	

In	this	analysis	of	multicenter	prospective	cohort	data	from	1,016	infants,	we	applied	

four	modern	machine	learning	approaches	(i.e.,	Lasso	regression,	elastic	net	regression,	

random	forest,	and	gradient	boosted	decision	tree)	to	the	prediction	of	acute	severity	

outcomes	of	bronchiolitis.	Compared	to	the	reference	model	that	was	derived	in	an	ED	

sample,(7)	these	machine	learning	models	consistently	demonstrated	a	superior	

performance	in	predicting	positive	pressure	ventilation	and	intensive	treatment	outcomes,	

including	AUC	and	net	reclassification.	Additionally,	the	machine	learning	models	achieved	

a	higher	sensitivity	and	specificity	for	the	two	outcomes,	in	both	the	overall	cohort	and	the	

majority	of	cohort	infants	that	were	categorized	into	the	reference	score	groups	of	2-3.	

Furthermore,	the	decision	curve	analysis	also	demonstrated	the	net	benefit	of	machine	

learning	models	was	also	greater—i.e.,	a	larger	number	of	true-positives	considering	a	

trade-off	with	false-positives—across	a	range	of	clinical	thresholds.	To	the	best	of	our	

knowledge,	this	is	the	first	study	that	has	investigated	the	performance	of	modern	machine	

learning	models	in	predicting	severity	in	infants	with	bronchiolitis.	

One	of	the	main	objectives	in	the	risk	stratification	of	infants	with	bronchiolitis	is	to	

promptly	identify	infants	at	risk	for	higher	severity	and	efficiently	utilize	finite	healthcare	

resources.	The	American	Academy	of	Pediatrics	bronchiolitis	guideline(24)	highlights	the	

importance	of	assessing	the	risk	in	infants	with	bronchiolitis.	However,	optimal	risk	

stratification	and	prediction	remains	a	challenge	as	the	clinical	course	in	this	population	

(even	in	infants	hospitalized	for	bronchiolitis)	is	highly	variable.(6,11,12)	Previous	studies,	

by	using	conventional	modeling	(e.g.,	logistic	regression	models),	have	reported	a	

moderate	ability	to	predict	severity	outcomes	(e.g.,	ED-to-hospital	admission,	hospital	
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length-of-stay,	ICU	admission,	positive	pressure	ventilation	use)	of	infants	with	

bronchiolitis.(7–10,62)	Although	the	use	of	an	expanded	set	of	predictors—e.g.,	repeated	

examinations	and	invasive	monitoring	during	hospital	course—may	yield	better	predictive	

performance,	it	is	often	impractical	in	the	real-world	acute	care	settings	with	an	aim	to	

promptly	risk-stratify	these	infants.	Alternatively,	the	use	of	advanced	machine	learning	

models	may	improve	the	clinician’s	decision-making	ability.	Indeed,	machine	learning	

models	have	recently	been	applied	to	the	prediction	of	various	disease	conditions	and	

clinical	settings,	such	as	early	identification	of	mortality	risk	in	patients	with	sepsis,(28)	

rehospitalization	in	patients	with	heart	failure,(63)	intensive	treatment	outcomes	in	

patients	with	asthma	exacerbation,(14)	unplanned	transfer	to	ICU,(15)	and	escalated	care	

at	pediatric	ED	triage.(30)	Our	multicenter	study	builds	on	these	earlier	reports,	and	

extends	them	by	demonstrating	that	the	modern	machine	learning	models	outperform	

conventional	approaches	in	predicting	higher	severity	of	infants	with	bronchiolitis.	While	

external	validation	is	warranted,	these	machine	learning	models	using	routinely-available	

predictors	can	be	implemented	to	clinical	practice	(e.g.,	online	risk	calculators	or	build-in	

risk	assessment	systems)—similar	to	existent	clinical	scoring	rules.	

Clinical	prediction	systems	strive	for	an	appropriate	balance	between	sensitivity	and	

specificity	because	of	the	trade-off	relationship	between	these	two	factors	in	the	context	of	

prevalence	of	clinical	outcomes.	In	the	present	study,	we	observed	that	the	reference	score	

model	did	not	effectively	categorize	most	infants	(i.e.,	62%	of	cohort	were	categorized	into	

the	two	score	groups)	or	appropriately	predicted	infants	who	developed	the	outcomes.	By	

contrast,	the	machine	learning	models	correctly	identified	a	larger	number	of	true-

positives	(i.e.,	higher	sensitivity).	This	finding	supports	the	utility	of	these	models	in	the	
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target	population,	for	which	the	one	of	the	major	priorities	is	to	reduce	“missed”	high-risk	

cases.	Additionally,	the	machine	learning	models	also	had	a	fewer	number	of	false-positives	

(i.e.,	higher	specificity)	in	predicting	both	outcomes	while	they	were	imperfect	in	the	

setting	of	relatively-smaller	prevalence	of	outcome	(5.4%	for	positive	pressure	ventilation	

use).	This	may	mitigate	excessive	resource	use	in	this	large	population.	These	findings	are	

further	supported	by	the	decision	curve	analysis	that	demonstrated	a	greater	net	benefit	of	

the	machine	learning	models	incorporating	the	trade-offs	between	true-positives	and	false-

positives	across	the	wide	ranges	of	clinical	thresholds.	

There	are	several	potential	explanations	for	the	observed	gains	in	the	predictive	

abilities	of	machine	learning	models.	For	example,	machine	learning	models	incorporate	

high-order	interactions	between	predictors	and	nonlinear	relationships	with	outcomes.	

Additionally,	machine	learning	models	are	able	to	mitigate	potential	overfitting	by	adopting	

several	methods,	such	as	regularization,	out-of-bagging	estimation,	and	cross-validation.	

Furthermore,	the	use	of	large	multicenter	data	with	rigorous	quality	assurance	might	have	

contributed	to	low	bias	and	variance	in	the	machine	models.	Although	the	machine	learning	

models	achieved	superior	predictive	ability,	their	performance	remained	imperfect.	This	

may	be	explained,	at	least	partially,	by	the	limited	set	of	predictors,	subjectivity	of	some	

data	elements	(e.g.,	parent-reported	symptoms	at	home),	variable	clinical	factors	after	

prehospitalization	assessment	(e.g.,	ED	management	and	patient	responses),	difference	in	

clinician’s	practice	patterns,	and	availability	of	intensive	care	resources.	Notwithstanding	

the	complexity	and	challenges	of	clinical	prediction	in	infants	with	bronchiolitis,	machine	

learning	models	have	scalable	advantages	in	the	era	of	health	information	technology,	such	

as	automated	sophistication	of	models	through	the	sequential	extraction	of	electronic	
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health	records,	continuous	non-invasive	physiological	monitoring,	natural	language	

processing,	and	reinforcement	learning.(64–67)	In	the	past,	this	scalability	had	not	been	

attainable	with	the	use	of	conventional	approaches.	Taken	together,	our	findings	and	

recent	developments	support	cautious	optimism	that	modern	machine	learning	may	

enhance	the	clinician’s	ability	as	an	assistive	technology.	

Our	study	has	several	potential	limitations.	First,	the	data	may	be	subject	to	

measurement	bias	and	missingness.	However,	the	study	was	conducted	by	trained	

investigators	using	a	standardized	protocol,	which	led	to	the	low	proportion	of	missingness	

in	the	predictors	(Table	E3	in	Additional	file	1).	Second,	the	clinical	thresholds	for	these	

outcomes	may	depend	on	local	resources	and	vary	between	clinicians	and	hospitals	(e.g.,	

different	criteria	for	admission	to	the	ICU).	Yet,	the	decision	curve	analysis	demonstrated	

the	greater	benefit	of	the	machine	learning	models	across	the	wide	range	of	clinical	

thresholds.	Third,	we	used	the	reference	model	with	a	limited	number	of	predictors	(i.e.,	six	

predictors).	However,	the	reference	model	was	recently	developed	in	a	large	sample	and	

focused	on	similar	clinical	outcomes	reflecting	acute	severity	of	bronchiolitis.	Besides,	

considering	the	number	of	the	positive	ventilation	outcomes	(n=55),	the	number	of	

predictors	used	for	the	conventional	logistic	regression	model	(reference	model)	is	

statistically	justified.	Lastly,	the	study	cohort	consisted	of	a	racially/ethnically-	and	

geographically-diverse	US	sample	of	infants	hospitalized	with	bronchiolitis.	While	the	

severity	of	this	population	was	highly	variable	and	the	model	used	pre-hospitalization	data,	

our	models	might	not	be	generalizable	to	infants	in	ambulatory	settings.	External	

validation	of	the	models	in	different	populations	and	settings	is	necessary.	Nonetheless,	our	

data	remain	highly	relevant	for	the	107,000	infants	hospitalized	yearly	in	the	US.(2)
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FIGURES	

Figure	1.	Prediction	ability	of	the	reference	and	machine	learning	models	for	

positive	pressure	ventilation	outcome	in	the	overall	cross-validation	dataset		

A)	Receiver-operating-characteristics	(ROC)	curves.	The	corresponding	value	of	the	area	

under	the	receiver-operating-characteristics	curve	(AUC)	for	each	model	are	presented	in	

Table	2.	

	

B)	Decision	curve	analysis.	X-axis	indicates	the	threshold	probability	for	positive	pressure	

ventilation	outcome;	Y-axis	indicates	the	net	benefit.	Compared	to	the	reference	model,	the	

net	benefit	of	all	machine	learning	models	was	larger	over	the	range	of	clinical	threshold.	
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Figure	2.	Prediction	ability	of	the	reference	and	machine	learning	models	for	

intensive	treatment	outcome	in	the	overall	cross-validated	dataset.		

A) Receiver-operating-characteristics	(ROC)	curves.	The	corresponding	values	of	the	area	

under	the	receiver-operating-characteristics	curve	(AUC)	for	each	model	are	presented	

in	Table	2.		

	

B)	Decision	curve	analysis.	X-axis	indicates	the	threshold	probability	for	intensive	

treatment	outcome;	Y-axis	indicates	the	net	benefit.	Compared	to	the	reference	model,	the	

net	benefit	of	all	machine	learning	models	was	larger	over	the	range	of	clinical	threshold.		
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TABLES	
Table	1.	Patient	characteristics	and	clinical	outcomes	in	1,016	infants	hospitalized	for	
bronchiolitis	

Variables	 n=1,016	
Demographics:	

	 	

Age	(month),	median	(IQR)	 3.2	 (1.6-6.0)	
Female	sex	 406	 (40.0)	
Race/ethnicity	

	 	

Non-Hispanic	white	 430	 (42.0)	
Non-Hispanic	black	 239	 (23.5)	
Others	 347	 (34.2)	

Medical	history:	 	 	
Prenatal	maternal	smoking	

	
147	 (14.7)	

Gestational	age	(week)	
	 	

32-33	 35	 (3.4)	
34-36	 151	 (14.9)	
37-39	 417	 (41.0)	
40-41	 391	 (38.5)	
≥42		 22	 (2.2)	

Birth	weight	(kg)	 	 	
0-1.3		 3	 (0.3)	
1.4-2.2	 61	 (6.0)	
2.3-3.1	 343	 (33.9)	
≥3.2	 604	 (59.7)	

Postnatal	ICU	admission	 167	 (16.4)	
Previous	hospital	admission	 162	 (16.0)	
Previous	ICU	admission	 17	 (1.7)	
Previous	breathing	problems	(count)	 32	 (3.2)	
0	 810	 (79.7)	
1	 160	 (15.7)	
2	 46	 (4.5)	

History	of	eczema	 149	 (14.7)	
Parent-reported	symptoms	at	home	

	 	

Poor	feeding	 32	 (3.2)	
Cyanosis	within	24	hours	 92	 (9.1)	
Apnea		 131	 (12.9)	
Apnea	within	24	hours	 86	 (8.5)	
Duration	of	symptom	(≤24	hours)	 53	 (5.2)	

Signs	and	symptom	at	ED	
		

	 	

Vital	signs	at	presentation	 	 	
Temperature	(F),	median	(IQR)	 99.4	 (98.8-100)	
Pulse	rate	(bpm),	median	(IQR)	 162	 (150-176)	
Respiratory	rate	(per	min),	median	(IQR)	 48	 (40-60)	
Use	of	supplemental	oxygen	(%)	 51	 (5)	
Oxygen	saturation	level	(%)	at	room	air	(IQR)	 96	 (94-98)	
Oxygen	 saturation	 level	 (%)	with	 the	 use	 of	 supplemental	 oxygen	

(IQR)	
98	 (95-100)	

Wheeze	 602	 (62.3)	
Severity	of	retraction	 	 	
None	 192	 (19.6)	
Mild		 431	 (43.9)	
Moderate/severe	 358	 (36.5)	

Apnea	 56	 (5.5)	
Dehydration	 392	 (39.5)	

Virology	 	 	
RSV	 821	 (80.8)	

Length	of	hospital	stay	(days),	range	 0-60	 	
Clinical	outcomes	 	 	

Positive	pressure	ventilation	usea	 55	 (5.4)	
Intensive	treatment	useb	 163	 (16.0)	

Abbreviations:	bpm,	beats	per	minute;	IQR,	interquartile	range;	ICU,	intensive	care	unit;	RSV,	
respiratory	syncytial	virus	Data	are	no.	(%)	of	infants	unless	otherwise	indicated.	Percentages	may	not	equal	100,	because	of	
rounding	and	missingness.		
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a	Infants	with	bronchiolitis	who	underwent	continuous	positive	airway	ventilation	and/or	
mechanical	ventilation.	b	Infants	with	bronchiolitis	who	were	admitted	to	ICU	and/or	who	underwent	positive	pressure	
ventilation.	
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Table	2.	Prediction	performance	of	the	reference,	and	machine	learning	models	in	infants	hospitalized	for	bronchiolitis		
Outcomes	and	models	 AUC	 P-valuea	 NRIb	 P-valueb	 Sensitivity	 Specificity	 PPV	 NPV	
Positive	pressure	ventilation	outcome	 	 	 	 	 	 	 	

	 Reference	model	
0.62		

(0.53-0.70)	
Reference	 Reference	 Reference	

0.62		
(0.49-0.75)	

0.57	
	(0.54-0.60)	

0.075	
	(0.054-0.097)	

0.96		
(0.95-0.97)	

	
Logistic	regression		
			with	Lasso		
			regularization	

0.88		
(0.84-0.93)	

<0.001	
	1.09	

	(0.87	-	1.32)		
<0.001	

0.84	
	(0.73-0.93)	

0.79	
	(0.77-0.82)	

0.19		
(0.14-0.24)	

0.99		
(0.99-0.99)	

	
Logistic	regression		
			with	elastic	net		
			regularization	

0.89		
(0.85-0.92)	

<0.001	
	1.05		

(0.82	-	1.28)	
<0.001	

0.89	
	(0.80-0.96)	

0.73	
	(0.70-0.75)	

0.15		
(0.11-0.18)	

0.99		
(0.99-0.99)	

	 Random	forest	
0.89		

(0.85-0.92)	
<0.001	

	1.17		
	(0.96	-	1.38)	

<0.001	
0.85	

	(0.75-0.95)	
0.74		

(0.71-0.76)	
0.15	

	(0.12-0.21)	
0.99	

	(0.99-0.99)	
	 Gradient	boosted		
			decision	tree	

0.88	
	(0.84-0.93)	

<0.001	
1.08	

	(0.84	-	1.33)	
<0.001	

0.89	
	(0.80-0.96)	

0.77		
(0.75-0.80)	

0.17		
(0.08-0.21)	

0.99		
(0.99-0.99)	

	 	 	 	 	 	 	 	 	 	
Intensive	treatment	outcome	 	 	 	 	 	 	 	

	 Reference	model	
0.62		

(0.57-0.67)	
Reference	 Reference	 Reference	

0.58	
	(0.55-0.62)	

0.58	
	(0.50-0.66)	

0.21		
(0.18-0.24)	

0.88		
(0.86-0.89)	

	
Logistic	regression		
			with	Lasso		
			regularization	

0.79		
(0.76-0.83)	

<0.001	
	0.68		

(0.52	-	0.84)		
<0.001	

0.75		
(0.69-0.82)	

0.70		
(0.66-0.73)	

0.31		
(0.26-0.38)	

0.94		
(0.93-0.94)	

	
Logistic	regression		
			with	elastic	net		
			regularization	

	0.80		
(0.76-0.83)	

<0.001	
	0.58		

(0.42-	0.74)			
<0.001	

0.72		
(0.64-0.79)	

0.74		
(0.71-0.77)	

0.33	
	(0.28-0.41)	

0.93		
(0.92-0.94)	

	 Random	forest	
0.79		

(0.75-0.84)	
<0.001	

0.70		
(0.55	-	0.86)		

<0.001	
0.70	

	(0.63-0.77)	
0.78		

(0.76-0.81)	
0.37	

	(0.29-0.45)	
0.93		

(0.92-0.94)	
	 Gradient	boosted		
			decision	tree	

0.79		
(0.75-0.84)	

<0.001	
	0.72		

(0.57	-	0.87)		
<0.001	

	0.74		
(0.67-0.80)	

0.74		
(0.71-0.77)	

0.33	
	(0.26-0.42)	

0.93		
(0.92-0.94)	

	 Abbreviations:	AUC,	area	under	the	receiver-operating-characteristic	curve;	NRI,	net	reclassification	improvement;	PPV,	positive	predictive	value;	NPV,	
negative	predictive	value;	

	 a	P-value	was	calculated	to	compare	area-under-the-curve	of	the	reference	model	with	that	of	each	machine	
model	

	 	 	

	 b	We	used	continuous	NRI	and	its	P-value	 	 	 	 	 	
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Table	3.	The	number	of	actual	and	predicted	outcomes	of	prediction	models,	according	to	the	score	of	the	reference	model	
	

	 	 Reference	model	 Lasso	regression	 Elastic	net	regression	 Random	forest	 Gradient	boosted	tree	
Reference	
model	
(score)	

Positive	
pressure	

ventilation	use	
n	(%)	

Correctly	
identified	
outcome	
n	(%)	

Predicted	
outcome	

	
n	

Correctly	
identified	
outcome	
n	(%)	

Predicted	
outcome	

	
n	

Correctly	
identified	
outcome	
n	(%)	

Predicted	
outcome	

	
n	

Correctly	
identified	
outcome	
n	(%)	

Predicted	
outcome	

	
n	

Correctly	
identified	
outcome	
n	(%)	

Predicted	
outcome	

	
n	

0:	(n=41)	 1	 (2.4)	 0	 6	 0	 7	 0	 8	 1	 9	 0	 8	
1:	(n=64)	 3	 (4.7)	 1	 15	 3	 11	 2	 14	 2	 11	 2	 11	
2:	(n=359)	 13	 (3.6)	 9	 156	 12	 80	 11	 106	 11	 78	 12	 79	
3:	(n=270)	 12	 (4.4)	 7	 109	 10	 52	 12	 65	 10	 58	 11	 56	
4:	(n=122)	 3	 (0.8)	 2	 46	 1	 20	 1	 30	 2	 41	 1	 24	
5:	(n=58)	 8	 (13.8)	 3	 22	 7	 21	 8	 24	 7	 31	 8	 24	
6:	(n=15)	 0	 (0.0)	 0	 3	 0	 6	 0	 6	 0	 8	 0	 6	
7:	(n=41)	 5	 (12.5)	 3	 22	 3	 22	 5	 30	 4	 28	 5	 29	
8:	(n=24)	 4	 (16.7)	 2	 8	 4	 12	 4	 14	 4	 17	 4	 15	
9:	(n=11)	 0	 (0.0)	 0	 2	 0	 4	 0	 4	 0	 7	 0	 5	
10:	(n=8)	 5	 (62.5)	 3	 3	 5	 7	 5	 7	 5	 8	 5	 7	
11:	(n=3)	 1	 (33.3)	 0	 2	 1	 2	 1	 3	 1	 3	 1	 2	
12:	(n=0)	 0	 (0)	 	 	 	 	 	 	 	 	 	 	
Overall	
(n=1,016)	 55	 5.4	 30	(55)	 394	 46	(84)	 244	 49	(89)	 311	 47	(85)	 299	 49	(89)	 266	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 Reference	model	 Lasso	regression	 Elastic	net	regression	 Random	forest	 Gradient	boosted	tree	

Reference	
model	
(Score)	

Intensive	
treatment	
n	(%)	
		

Correctly	
identified	
outcome	
n	(%)	

Predicted	
outcome	

	
n	

Correctly	
identified	
outcome	
n	(%)	

Predicted	
	outcome	

	
n	

Correctly	
identified	
outcome	
n	(%)	

Predicted	
	outcome	

	
n	

Correctly	
identified	
outcome	
n	(%)	

Predicted	
	outcome	

	
n	

Correctly	
identified	
outcome	
n	(%)	

Predicted	
	outcome	

	
n	

0:	(n=41)	 2	 (4.9)	 1	 10	 1	 8	 0	 5	 0	 4	 0	 4	
1:	(n=64)	 8	 (12.5)	 1	 11	 5	 17	 5	 11	 5	 12	 5	 9	
2:	(n=359)	 44	 (12.2)	 21	 157	 27	 133	 23	 111	 26	 77	 24	 87	
3:	(n=270)	 36	 (13.3)	 18	 118	 28	 75	 28	 71	 23	 64	 28	 75	
4:	(n=122)	 17	 (13.8)	 8	 53	 9	 36	 9	 33	 7	 40	 10	 53	
5:	(n=58)	 17	 (29.3)	 6	 26	 14	 30	 14	 30	 15	 28	 15	 29	
6:	(n=15)	 3	 (20.0)	 0	 3	 3	 7	 2	 7	 3	 9	 3	 12	
7:	(n=41)	 19	 (47.5)	 15	 28	 19	 38	 19	 36	 18	 32	 18	 35	
8:	(n=24)	 7	 (29.2)	 4	 8	 7	 18	 7	 17	 7	 16	 7	 17	
9:	(n=11)	 1	 (9.1)	 0	 3	 1	 10	 1	 9	 1	 6	 1	 7	
10:	(n=8)	 7	 (87.5)	 3	 4	 7	 7	 7	 7	 7	 8	 7	 8	
11:	(n=3)	 2	 (66.7)	 0	 1	 2	 3	 2	 3	 2	 3	 2	 3	
12:	(n=0)	 0	 (0)	 	 	 	 	 	 	 	 	 	 	
Overall	
(n=1,016)	 163	 16.0	 77	(47)	 422	 123	(75)	 382	 117	(72)	 340	 114	(70)	 299	 120	(74)	 339	
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Table	E1.	Principal	investigators	at	the	17	participating	sites	in	MARC-35	
	
Amy	D.	Thompson,	MD	 Alfred	I.	duPont	Hospital	for	Children,	Wilmington,	DE	

Federico	R.	Laham,	MD,	MS	 Arnold	Palmer	Hospital	for	Children,	Orlando,	FL	

Jonathan	M.	Mansbach,	MD,	MPH	 Boston	Children's	Hospital,	Boston,	MA	

Vincent	J.	Wang,	MD,	MHA	and	Susan		
			Wu,	MD	

Children's	Hospital	of	Los	Angeles,	Los	Angeles,	CA	

Michelle	B.	Dunn,	MD	and	Jonathan	M.		
			Spergel,	MD,	PhD	

Children's	Hospital	of	Philadelphia,	Philadelphia,	PA	

Juan	C.	Celedón,	MD,	DrPH	 Children's	Hospital	of	Pittsburgh,	Pittsburgh,	PA	

Michael	R.	Gomez,	MD,	MS-HCA	and		
			Nancy	Inhofe,	MD	

The	Children's	Hospital	at	St.	Francis,	Tulsa,	OK	

Brian	M.	Pate,	MD	and	Henry	T.	Puls,	MD	 The	Children's	Mercy	Hospital	&	Clinics,	Kansas	City,	MO	

Stephen	J.	Teach,	MD,	MPH	 Children's	National	Medical	Center,	Washington,	D.C.	

Richard	T.	Strait,	MD	and	Stephen	C.		
			Porter,	MD,	MSc,	MPH	

Cincinnati	Children's	Hospital	and	Medical	Center,	
Cincinnati,	OH	

Ilana	Y.	Waynik,	MD	 Connecticut	Children's	Medical	Center,	Hartford,	CT	

Sujit	Iyer,	MD	 Dell	Children's	Medical	Center	of	Central	Texas,	Austin,	
TX	

Michelle	D.	Stevenson,	MD,	MS	 Norton	Children's	Hospital,	Louisville,	KY	

Wayne	G.	Shreffler,	MD,	PhD	and	Ari	R.				
			Cohen,	MD	

Massachusetts	General	Hospital,	Boston,	MA	

Anne	K.	Beasley,	MD	and	Cindy	S.	Bauer,		
			MD	

Phoenix	Children's	Hospital,	Phoenix,	AZ	

Thida	Ong,	MD	and	Markus	Boos,	MD,		
			PhD	

Seattle	Children's	Hospital,	Seattle,	WA	

Charles	G.	Macias,	MD,	MPH	 Texas	Children's	Hospital,	Houston,	TX	
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Table	E2.	Predictors	and	scores	of	the	reference	models	in	1,016	infants	hospitalized	
for	bronchiolitis	

Scores	and	predictors	 Overall	
n=1,016	

Reference	modela	 Overall	score,	median(IQR)	 3	 (2-4)	
	 Age	≤2	month			 311	 (30.6)	
	 Poor	feeding	(reported	on	history)	 32	 (3.2)	
	 Oxygen	saturation	<90%	 85	 (9.0)	
	 Apnea	(history	or	observed	in	the	ED)	 153	 (15.1)	
	 Dehydration	(observed	in	ED)	 392	 (39.5)	
	 Retraction		 789	 (80.4)	
Abbreviations:	ED,	emergency	department;	IQR,	interquartile	range	
Data	are	no.	(%)	of	infants	unless	otherwise	indicated.	Percentages	may	not	equal	100,	
because	of	rounding	and	missingness.	
a	Original	model	developed	by	Freire	et	al.1	includes	nasal	flaring	and/or	grunting	variable	that	
is	not	available	in	the	MARC-35	data.	
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Table	E3.	Proportion	of	missing	data	in	1,016	infants	hospitalized	for	bronchiolitis	
Variables	 Missing	

n	(%)	
Demographics:	

	 	

Age	 0	 (0)	
Female	sex	 0	 (0)	
Race/ethnicity	 0	 (0)	

Medical	history:	 	 	
Prenatal	maternal	smoking	

	
18	 (1.8)	

Gestational	age	 0	 (0)	
Birth	weight	 5	 (0.5)	
Postnatal	ICU	admission	 0	 (0)	
Previous	hospital	admission	 2	 (0.2)	
Previous	ICU	admission	 0	 (0)	
Previous	breathing	problems		 0	 (0)	
History	of	eczema	 1	 (0.1)	

Parent-reporting	symptoms	at	home		
	 	

Poor	feeding	 1	 (0.1)	
Cyanosis	within	24	hours	 0	 (0)	
Apnea		 0	 (0)	
Apnea	within	24	hours	 0	 (0)	
Duration	of	symptom		 0	 (0)	

Signs	and	symptom	at	ED	
		

	 	

Vital	signs	at	presentation	 	 	
Temperature		 17	 (1.7)	
Pulse	rate		 19	 (1.9)	
Respiratory	rate		 19	 (1.9)	
Use	of	supplemental	oxygen	 16	 (1.6)	
Oxygen	saturation		 21	 (2.1)	
Oxygen	saturation	with	use	of	supplemental	oxygen	 1	 (0.1)	

Wheeze	 49	 (4.8)	
Severity	of	retraction	 35	 (3.4)	
Apnea	 0	 (0)	
Dehydration	 23	 (2.3)	

Virology	 0	 (0)	
Clinical	outcomes	

	 	

Positive	pressure	ventilation	usea	 0	 (0)	
Intensive	treatment	useb	 0	 (0)	

Abbreviations:	 ED,	 emergency	 department;	 ICU,	 intensive	 care	 unit;	 RSV,	 respiratory	
syncytial	virus	

	 	
a	Infants	with	bronchiolitis	who	underwent	continuous	positive	airway	ventilation	and/or	mechanical	ventilation.	
b	Infants	with	bronchiolitis	who	were	admitted	to	ICU	and/or	who	underwent	positive	pressure	ventilation.	
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Figure	E1.	Variable	importance	plot	of	random	forest	model		
A)	Positive	pressure	ventilation	outcome	
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B)	Intensive	treatment	outcome	
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Figure	E2.	Variable	importance	plot	of	gradient	boosted	decision	tree	model		
A)	Positive	pressure	ventilation	outcome	
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B)	Intensive	treatment	outcome	

	
	



�

�

� ���

REFERENCES		

1.		 Hernán	MA,	Hsu	J,	Healy	B.	A	second	chance	to	get	causal	inference	right:	A	

classification	of	data	science	tasks.	CHANCE.	2019	Jan	2;32(1):42–9.		

2.		 Fujiogi	M,	Goto	T,	Yasunaga	H,	Fujishiro	J,	Mansbach	JM,	Camargo	CA,	et	al.	Trends	in	

bronchiolitis	hospitalizations	in	the	United	States:	2000-2016.	Pediatrics.	

2019;144(6).		

3.		 Abreo	A,	Gebretsadik	T,	Stone	CA,	Hartert	TV.	The	impact	of	modifiable	risk	factor	

reduction	on	childhood	asthma	development.	Clin	Transl	Med.	2018	Jun	11;7(1):15.		

4.		 Most	Recent	National	Asthma	Data	|	CDC	[Internet].	2019	[cited	2019	Apr	20].	

Available	from:	

https://www.cdc.gov/asthma/most_recent_national_asthma_data.htm	

5.		 HCUPnet	[Internet].	HCUPnet.	[cited	2018	Nov	27].	Available	from:	

https://hcupnet.ahrq.gov	

6.		 Christakis	DA,	Cowan	CA,	Garrison	MM,	Molteni	R,	Marcuse	E,	Zerr	DM.	Variation	in	

inpatient	diagnostic	testing	and	management	of	bronchiolitis.	Pediatrics.	2005	

Apr;115(4):878–84.		

7.		 Freire	G,	Kuppermann	N,	Zemek	R,	Plint	AC,	Babl	FE,	Dalziel	SR,	et	al.	Predicting	

escalated	care	in	infants	with	bronchiolitis.	Pediatrics.	2018	Sep;142(3).		

8.		 Walsh	P,	Rothenberg	SJ,	O’Doherty	S,	Hoey	H,	Healy	R.	A	validated	clinical	model	to	

predict	the	need	for	admission	and	length	of	stay	in	children	with	acute	bronchiolitis.	

Eur	J	Emerg	Med	Off	J	Eur	Soc	Emerg	Med.	2004	Oct;11(5):265–72.		

9.		 Voets	S,	van	Berlaer	G,	Hachimi-Idrissi	S.	Clinical	predictors	of	the	severity	of	

bronchiolitis.	Eur	J	Emerg	Med	Off	J	Eur	Soc	Emerg	Med.	2006	Jun;13(3):134–8.		



�

�

� ���

10.		 Damore	D,	Mansbach	JM,	Clark	S,	Ramundo	M,	Camargo	CA.	Prospective	multicenter	

bronchiolitis	study:	predicting	intensive	care	unit	admissions.	Acad	Emerg	Med	Off	J	

Soc	Acad	Emerg	Med.	2008	Oct;15(10):887–94.		

11.		 Macias	CG,	Mansbach	JM,	Fisher	ES,	Riederer	M,	Piedra	PA,	Sullivan	AF,	et	al.	

Variability	in	inpatient	management	of	children	hospitalized	with	bronchiolitis.	Acad	

Pediatr.	2015	Feb;15(1):69–76.		

12.		 Mansbach	JM,	Clark	S,	Piedra	PA,	Macias	CG,	Schroeder	AR,	Pate	BM,	et	al.	Hospital	

course	and	discharge	criteria	for	children	hospitalized	with	bronchiolitis.	J	Hosp	Med.	

2015	Apr;10(4):205–11.		

13.		 Raita	Y,	Goto	T,	Faridi	MK,	Brown	DFM,	Camargo	CA,	Hasegawa	K.	Emergency	

department	triage	prediction	of	clinical	outcomes	using	machine	learning	models.	Crit	

Care	Lond	Engl.	2019	Feb	22;23(1):64.		

14.		 Goto	T,	Camargo	CAJ,	Faridi	MK,	Yun	BJ,	Hasegawa	K.	Machine	learning	approaches	

for	predicting	disposition	of	asthma	and	COPD	exacerbations	in	the	ED.	Am	J	Emerg	

Med.	2018	Sep;36(9):1650–4.		

15.		 Wellner	B,	Grand	J,	Canzone	E,	Coarr	M,	Brady	PW,	Simmons	J,	et	al.	Predicting	

unplanned	transfers	to	the	intensive	care	unit:	A	machine	learning	approach	

leveraging	diverse	clinical	elements.	JMIR	Med	Inform.	2017	Nov	22;5(4):e45.		

16.		 Schanen	J,	Iribarren	C,	Shahar	E,	Punjabi	N,	Rich	S,	Sorlie	P,	et	al.	Asthma	and	incident	

cardiovascular	disease:	the	Atherosclerosis	Risk	in	Communities	Study.	Thorax.	2005	

Aug;60(8):633–8.		



�

�

� ���

17.		 Onufrak	SJ,	Abramson	JL,	Austin	HD,	Holguin	F,	McClellan	WM,	Vaccarino	LV.	Relation	

of	adult-onset	asthma	to	coronary	heart	disease	and	stroke.	Am	J	Cardiol.	2008	May	

1;101(9):1247–52.		

18.		 Tattersall	MC,	Guo	M,	Korcarz	CE,	Gepner	AD,	Kaufman	JD,	Liu	KJ,	et	al.	Asthma	

predicts	cardiovascular	disease	events:	the	multi-ethnic	study	of	atherosclerosis.	

Arterioscler	Thromb	Vasc	Biol.	2015	Jun;35(6):1520–5.		

19.		 Dalager-Pedersen	M,	Søgaard	M,	Schønheyder	HC,	Nielsen	H,	Thomsen	RW.	Risk	for	

myocardial	infarction	and	stroke	after	community-acquired	bacteremia:	a	20-year	

population-based	cohort	study.	Circulation.	2014	Apr	1;129(13):1387–96.		

20.		 Musher	DM,	Abers	MS,	Corrales-Medina	VF.	Acute	infection	and	myocardial	infarction.	

N	Engl	J	Med.	2019	10;380(2):171–6.		

21.		 Kwong	JC,	Schwartz	KL,	Campitelli	MA,	Chung	H,	Crowcroft	NS,	Karnauchow	T,	et	al.	

Acute	myocardial	infarction	after	laboratory-confirmed	influenza	infection.	N	Engl	J	

Med.	2018	Jan	25;378(4):345–53.		

22.		 Warren-Gash	C,	Blackburn	R,	Whitaker	H,	McMenamin	J,	Hayward	AC.	Laboratory-

confirmed	respiratory	infections	as	triggers	for	acute	myocardial	infarction	and	

stroke:	a	self-controlled	case	series	analysis	of	national	linked	datasets	from	Scotland.	

Eur	Respir	J.	2018;51(3).		

23.		 Goto	T,	Shimada	YJ,	Faridi	MK,	Camargo	CA,	Hasegawa	K.	Incidence	of	acute	

cardiovascular	event	after	acute	exacerbation	of	COPD.	J	Gen	Intern	Med.	2018	

Sep;33(9):1461–8.		



�

�

� ���

24.		 Ralston	SL,	Lieberthal	AS,	Meissner	HC,	Alverson	BK,	Baley	JE,	Gadomski	AM,	et	al.	

Clinical	practice	guideline:	the	diagnosis,	management,	and	prevention	of	

bronchiolitis.	Pediatrics.	2014	Nov;134(5):e1474-1502.		

25.		 Mansbach	JM,	Piedra	PA,	Stevenson	MD,	Sullivan	AF,	Forgey	TF,	Clark	S,	et	al.	

Prospective	multicenter	study	of	children	with	bronchiolitis	requiring	mechanical	

ventilation.	Pediatrics.	2012	Sep;130(3):e492-500.		

26.		 Hasegawa	K,	Mansbach	JM,	Camargo	CA.	Infectious	pathogens	and	bronchiolitis	

outcomes.	Expert	Rev	Anti	Infect	Ther.	2014	Jul;12(7):817–28.		

27.		 Mansbach	JM,	Piedra	PA,	Teach	SJ,	Sullivan	AF,	Forgey	T,	Clark	S,	et	al.	Prospective	

multicenter	study	of	viral	etiology	and	hospital	length	of	stay	in	children	with	severe	

bronchiolitis.	Arch	Pediatr	Adolesc	Med.	2012	Aug;166(8):700–6.		

28.		 Taylor	RA,	Pare	JR,	Venkatesh	AK,	Mowafi	H,	Melnick	ER,	Fleischman	W,	et	al.	

Prediction	of	in-hospital	mortality	in	emergency	department	patients	with	sepsis:	A	

local	big	data-driven,	machine	learning	approach.	Acad	Emerg	Med	Off	J	Soc	Acad	

Emerg	Med.	2016	Mar;23(3):269–78.		

29.		 Nemati	S,	Holder	A,	Razmi	F,	Stanley	MD,	Clifford	GD,	Buchman	TG.	An	interpretable	

machine	learning	model	for	accurate	prediction	of	sepsis	in	the	ICU.	Crit	Care	Med.	

2018	Apr;46(4):547–53.		

30.		 Goto	T,	Camargo	CA,	Faridi	MK,	Freishtat	RJ,	Hasegawa	K.	Machine	learning-based	

prediction	of	clinical	outcomes	for	children	during	emergency	department	triage.	

JAMA	Netw	Open.	2019	Jan	4;2(1):e186937.		

31.		 Mansbach	JM,	Hasegawa	K,	Henke	DM,	Ajami	NJ,	Petrosino	JF,	Shaw	CA,	et	al.	

Respiratory	syncytial	virus	and	rhinovirus	severe	bronchiolitis	are	associated	with	



�

�

� �	�

distinct	nasopharyngeal	microbiota.	J	Allergy	Clin	Immunol.	2016	Jun;137(6):1909-

1913.e4.		

32.		 Hasegawa	K,	Mansbach	JM,	Ajami	NJ,	Espinola	JA,	Henke	DM,	Petrosino	JF,	et	al.	

Association	of	nasopharyngeal	microbiota	profiles	with	bronchiolitis	severity	in	

infants	hospitalised	for	bronchiolitis.	Eur	Respir	J.	2016;48(5):1329–39.		

33.		 Emergency	Medicine	Network	[Internet].	[cited	2019	Feb	3].	Available	from:	

http://www.emnet-usa.org/	

34.		 Bossuyt	PM,	Reitsma	JB,	Bruns	DE,	Gatsonis	CA,	Glasziou	PP,	Irwig	L,	et	al.	STARD	

2015:	an	updated	list	of	essential	items	for	reporting	diagnostic	accuracy	studies.	

BMJ.	2015	Oct	28;351:h5527.		

35.		 Corneli	HM,	Zorc	JJ,	Holubkov	R,	Bregstein	JS,	Brown	KM,	Mahajan	P,	et	al.	

Bronchiolitis:	clinical	characteristics	associated	with	hospitalization	and	length	of	

stay.	Pediatr	Emerg	Care.	2012	Feb;28(2):99–103.		

36.		 Yusuf	S,	Caviness	AC,	Adekunle-Ojo	AO.	Risk	factors	for	admission	in	children	with	

bronchiolitis	from	pediatric	emergency	department	observation	unit.	Pediatr	Emerg	

Care.	2012	Nov;28(11):1132–5.		

37.		 Hasegawa	K,	Pate	BM,	Mansbach	JM,	Macias	CG,	Fisher	ES,	Piedra	PA,	et	al.	Risk	

factors	for	requiring	intensive	care	among	children	admitted	to	ward	with	

bronchiolitis.	Acad	Pediatr.	2015	Feb;15(1):77–81.		

38.		 Stewart	CJ,	Mansbach	JM,	Wong	MC,	Ajami	NJ,	Petrosino	JF,	Camargo	CA,	et	al.	

Associations	of	nasopharyngeal	metabolome	and	microbiome	with	severity	among	

infants	with	bronchiolitis.	A	multiomic	analysis.	Am	J	Respir	Crit	Care	Med.	2017	

01;196(7):882–91.		



�

�

� �
�

39.		 Luo	G,	Nkoy	FL,	Gesteland	PH,	Glasgow	TS,	Stone	BL.	A	systematic	review	of	

predictive	modeling	for	bronchiolitis.	Int	J	Med	Inf.	2014	Oct;83(10):691–714.		

40.		 James	G,	Witten	D,	Hastie	T,	Tibshirani	R.	An	Introduction	to	Statistical	Learning:	with	

Applications	in	R	[Internet].	New	York:	Springer-Verlag;	2013	[cited	2018	Dec	1].	

(Springer	Texts	in	Statistics).	Available	from:	

//www.springer.com/la/book/9781461471370	

41.		 Tibshirani	R.	Regression	Shrinkage	and	Selection	via	the	Lasso.	J	R	Stat	Soc	Ser	B	

Methodol.	1996;58(1):267–88.		

42.		 Zou	H,	Hastie	T.	Regularization	and	variable	selection	via	the	elastic	net.	J	R	Stat	Soc	

Ser	B	Stat	Methodol.	2005	Apr;67(2):301–20.		

43.		 Friedman	J,	Hastie	T,	Tibshirani	R,	Simon	N,	Narasimhan	B,	Qian	J.	glmnet:	Lasso	and	

Elastic-Net	Regularized	Generalized	Linear	Models	[Internet].	2018	[cited	2018	Dec	

1].	Available	from:	https://CRAN.R-project.org/package=glmnet	

44.		 Kuhn	M.	The	caret	Package	[Internet].	[cited	2018	Dec	1].	Available	from:	

http://topepo.github.io/caret/index.html	

45.		 Kuhn	M,	Johnson	K.	Applied	Predictive	Modeling	[Internet].	New	York:	Springer-

Verlag;	2013	[cited	2018	Dec	1].	Available	from:	

//www.springer.com/us/book/9781461468486	

46.		 Cutler	F	original	by	LB	and	A,	Wiener	R	port	by	AL	and	M.	randomForest:	Breiman	

and	Cutler’s	Random	Forests	for	Classification	and	Regression	[Internet].	2018	[cited	

2019	Feb	3].	Available	from:	https://CRAN.R-project.org/package=randomForest	



�

�

� ���

47.		 Natekin	A,	Knoll	A.	Gradient	boosting	machines,	a	tutorial.	Front	Neurorobotics	

[Internet].	2013	Dec	4	[cited	2018	Dec	1];7.	Available	from:	

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3885826/	

48.		 Chen	T,	He	T,	Benesty	M,	Khotilovich	V,	Tang	Y,	Cho	H,	et	al.	xgboost:	Extreme	

Gradient	Boosting	[Internet].	2018	[cited	2018	Dec	1].	Available	from:	

https://CRAN.R-project.org/package=xgboost	

49.		 Kuhn	M,	Wickham	H,	RStudio.	recipes:	Preprocessing	Tools	to	Create	Design	Matrices	

[Internet].	2018	[cited	2019	Jan	19].	Available	from:	https://CRAN.R-

project.org/package=recipes	

50.		 DeLong	ER,	DeLong	DM,	Clarke-Pearson	DL.	Comparing	the	areas	under	two	or	more	

correlated	receiver	operating	characteristic	curves:	a	nonparametric	approach.	

Biometrics.	1988	Sep;44(3):837–45.		

51.		 Robin	X,	Turck	N,	Hainard	A,	Tiberti	N,	Lisacek	F,	Sanchez	J-C,	et	al.	pROC:	Display	and	

Analyze	ROC	Curves	[Internet].	2020	[cited	2020	Feb	29].	Available	from:	

https://CRAN.R-project.org/package=pROC	

52.		 Kerr	KF,	Wang	Z,	Janes	H,	McClelland	RL,	Psaty	BM,	Pepe	MS.	Net	reclassification	

indices	for	evaluating	risk-prediction	instruments:	A	critical	review.	Epidemiol	Camb	

Mass.	2014	Jan;25(1):114–21.		

53.		 Kundu	S,	Aulchenko	YS,	Janssens	ACJW.	PredictABEL:	Assessment	of	Risk	Prediction	

Models	[Internet].	2020	[cited	2020	Feb	29].	Available	from:	https://CRAN.R-

project.org/package=PredictABEL	

54.		 Vickers	AJ,	Elkin	EB.	Decision	curve	analysis:	a	novel	method	for	evaluating	prediction	

models.	Med	Decis	Making.	2006;26(6):565–574.		



�

�

� ���

55.		 Fitzgerald	M,	Saville	BR,	Lewis	RJ.	Decision	curve	analysis.	JAMA.	2015;313(4):409–

10.		

56.		 Rousson	V,	Zumbrunn	T.	Decision	curve	analysis	revisited:	overall	net	benefit,	

relationships	to	ROC	curve	analysis,	and	application	to	case-control	studies.	BMC	Med	

Inform	Decis	Mak.	2011	Jun	22;11:45.		

57.		 Van	Calster	B,	Wynants	L,	Verbeek	JFM,	Verbakel	JY,	Christodoulou	E,	Vickers	AJ,	et	al.	

Reporting	and	interpreting	decision	curve	analysis:	A	guide	for	investigators.	Eur	

Urol.	2018	Dec;74(6):796–804.		

58.		 Vickers	AJ,	Van	Calster	B,	Steyerberg	EW.	Net	benefit	approaches	to	the	evaluation	of	

prediction	models,	molecular	markers,	and	diagnostic	tests.	BMJ.	2016	Jan	25;352:i6.		

59.		 Biostatistics:	Decision	Curve	Analysis	|	Memorial	Sloan	Kettering	Cancer	Center	

[Internet].	[cited	2020	Feb	29].	Available	from:	

https://www.mskcc.org/departments/epidemiology-

biostatistics/biostatistics/decision-curve-analysis	

60.		 Wickham	H,	Chang	W,	Henry	L,	Pedersen	TL,	Takahashi	K,	Wilke	C,	et	al.	ggplot2:	

Create	Elegant	Data	Visualisations	Using	the	Grammar	of	Graphics	[Internet].	2019	

[cited	2020	Feb	29].	Available	from:	https://CRAN.R-project.org/package=ggplot2	

61.		 R:	The	R	Project	for	Statistical	Computing	[Internet].	[cited	2020	Mar	2].	Available	

from:	https://www.r-project.org/	

62.		 Mansbach	JM,	Clark	S,	Christopher	NC,	LoVecchio	F,	Kunz	S,	Acholonu	U,	et	al.	

Prospective	multicenter	study	of	bronchiolitis:	predicting	safe	discharges	from	the	

emergency	department.	Pediatrics.	2008	Apr;121(4):680–8.		



�

�

� ���

63.		 Mortazavi	BJ,	Downing	NS,	Bucholz	EM,	Dharmarajan	K,	Manhapra	A,	Li	S-X,	et	al.	

Analysis	of	machine	learning	techniques	for	heart	failure	readmissions.	Circ	

Cardiovasc	Qual	Outcomes.	2016;9(6):629–40.		

64.		 Priesol	AJ,	Cao	M,	Brodley	CE,	Lewis	RF.	Clinical	vestibular	testing	assessed	with	

machine-learning	algorithms.	JAMA	Otolaryngol--	Head	Neck	Surg.	2015	

Apr;141(4):364–72.		

65.		 Bacchi	S,	Oakden-Rayner	L,	Zerner	T,	Kleinig	T,	Patel	S,	Jannes	J.	Deep	learning	natural	

language	processing	successfully	predicts	the	cerebrovascular	cause	of	transient	

ischemic	attack-like	presentations.	Stroke.	2019	Jan	17;STROKEAHA118024124.		

66.		 Zhang	X,	Kim	J,	Patzer	RE,	Pitts	SR,	Patzer	A,	Schrager	JD.	Prediction	of	emergency	

department	hospital	admission	based	on	natural	language	processing	and	neural	

networks.	Methods	Inf	Med.	2017	Oct	26;56(5):377–89.		

67.		 Kolachalama	VB,	Singh	P,	Lin	CQ,	Mun	D,	Belghasem	ME,	Henderson	JM,	et	al.	

Association	of	pathological	fibrosis	with	renal	survival	using	deep	neural	networks.	

Kidney	Int	Rep.	2018	Mar;3(2):464–75.		

	

.  



�

�

� ���

Paper	2 
Risk	of	acute	myocardial	infarction	and	ischemic	stroke	in	patients	with	asthma	

exacerbation:	A	population-based,	self-controlled	case	series	study	

	

Authors:	Yoshihiko	Raita,	MD,	MPH1;	Carlos	A.	Camargo,	Jr.	MD,	DrPH1;	Mohammad	Kamal	

Faridi,	MPH1;	David	F.	M.	Brown,	MD1;	Yuichi	J.	Shimada,	MD,	MPH2;	and	Kohei	Hasegawa,	

MD,	MPH1		

	

Affiliations:		

8. Department	of	Emergency	Medicine,	Massachusetts	General	Hospital,	Harvard	Medical	

School,	Boston,	MA,	USA	

9. Division	of	Cardiology,	Department	of	Medicine,	Columbia	University	Medical	Center�

New	York,	NY,	USA	

	

Corresponding	Author:	Dr.	Yoshihiko	Raita,	Department	of	Emergency	Medicine,	

Massachusetts	General	Hospital,	Harvard	Medical	School,	125	Nashua	Street,	Suite	920,	

Boston,	MA	02114-1101.	Tel:	617-726-5276		E-mail:				

	

Author	contributions:	Y.R.	takes	responsibility	for	the	paper	as	a	whole.	Y.R.,	C.A.C.,	and	

K.H.	conceived	the	study.	C.A.C.	obtained	research	funding.	K.H.	and	D.F.M.B.	supervised	the	

conduct	of	the	study.	K.	H.	and	Y.J.S.	provided	statistical	advice.	Y.R.	and	M.K.F.	analyzed	the	

data.	Y.R.	drafted	the	manuscript,	and	all	authors	contributed	substantially	to	its	revision.		



�

�

� ���

Financial/non-financial	disclosures:	Dr.	Hasegawa	has	received	grants	for	asthma-

related	research	from	Novartis	and	Teva.	Dr.	Camargo	has	provided	asthma-related	

consulting	services	to	AstraZeneca	and	GlaxoSmithKline.	The	other	authors	have	no	

financial	relationships	relevant	to	this	article	to	disclose.	

A	declaration	of	all	sources	of	funding:	None	

	



�

�

� ���

ABSTRACT			

BACKGROUND:	Patients	with	asthma	have	a	high	incidence	of	acute	myocardial	infarction	

and	ischemic	stroke.	

OBJECTIVE:	We	aim	to	investigate	the	acute	effect	of	asthma	exacerbation	on	these	

cardiovascular	events.	

METHODS:	Using	population-based	inpatient	data	of	three	geographically-diverse	U.S.	

states	(Florida,	Nebraska,	and	New	York)	during	2011-2014,	we	conducted	a	self-

controlled	case	series	study	of	adults	(aged	≥40	years)	hospitalized	with	asthma	

exacerbation.	The	primary	outcome	was	a	composite	of	acute	myocardial	infarction	and	

ischemic	stroke.	We	used	conditional	Poisson	regression	to	compare	each	patient’s	

incidence	rate	of	the	outcome	during	three	sequential	risk	periods	(1-7,	8-14,	and	15-28	

days	after	asthma	exacerbation)	with	that	of	reference	period	(i.e.,	summed	period	before	

and	after	the	three	risk	periods).	

RESULTS:	We	identified	4,607	adults	hospitalized	for	asthma	exacerbation	who	had	a	first	

	episode	of	acute	myocardial	infarction	or	ischemic	stroke.	During	the	reference	period,	the	

incidence	rate	of	acute	myocardial	infarction	or	ischemic	stroke	was	25.0/100	person-

years.	Compared	with	the	reference	period,	the	incidence	rate	significantly	increased	

during	the	first	risk	period	(129.1/100	person-years),	with	a	corresponding	adjusted	

incidence	rate	ratio	(aIRR)	of	5.04	(95%CI,	4.29-5.88;	P<0.001).	In	the	two	subsequent	risk	

periods,	the	incidence	rate	declined	but	remained	high—50.1/100	person-years	(aIRR	

1.96;	95%CI,	1.51-2.48;	P<0.001)	and	38.0/100	person-years	(aIRR,	1.48;	95%CI,	1.20-

1.81;	P<0.001),	respectively.	The	findings	were	similar	when	the	two	outcomes	were	

examined	separately.		
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CONCLUSIONS:	In	this	population-based	study	of	adults	with	asthma,	the	risk	of	acute	

myocardial	infarction	and	ischemic	stroke	increased	significantly	after	asthma	

exacerbation.		

	

KEY	WORDS	

Asthma	exacerbation;	myocardial	infarction;	ischemic	stroke;	self-controlled	case	series	

design	

	

ABBREVIATIONS	

aIRR,	adjusted	incidence	rate	ratio;	COPD,	chronic	obstructive	pulmonary	disease;	HCUP,	

the	Healthcare	Cost	and	Utilization	Project;	SID,	State	Inpatient	Database;	ICD-9-CM,	

International	Classification	of	Diseases,	Ninth	Revision,	Clinical	Modification;	IQR,	

interquartile	range;	ARIC,	Atherosclerosis	Risk	in	Communities	Study;	MESA,	Multi-Ethnic	

Study	of	Atherosclerosis		
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INTRODUCTION	

Asthma	and	cardiovascular	diseases	are	major	public	health	problems	in	the	U.S.(1,2)	

Approximately	26	million	Americans	have	asthma.(1)	Asthma	exacerbations	account	for	a	

substantial	proportion	of	the	personal	and	societal	burden,	leading	to	approximately	

340,000	hospitalizations	annually.(3)	In	parallel,	cardiovascular	disorders	contribute	to	

610,000	acute	myocardial	infarction	hospitalizations	and	480,000	ischemic	stroke	

hospitalizations	in	2014.(3)		

Studies	have	shown	that	patients	with	asthma—along	with	chronic	obstructive	pulmonary	

disease	(COPD)	and	interstitial	lung	diseases—have	a	higher	incidence	of	cardiovascular	

diseases	(e.g.,	acute	myocardial	infarction,	ischemic	stroke)(4–8)	through	chronic	

activation	of	proinflammatory	cytokines	with	resultant	systemic	and	vascular	

inflammation.(5,9)	Additionally,	acute	inflammatory	processes	(e.g.,	bacteremia,(10)	

pneumonia,(11)		influenza	virus	infection,(12)	Streptococcal	infection,(13)		and	acute	

exacerbation	of	COPD(14))	have	been	linked	to	acute	cardiovascular	outcomes.	However,	

despite	the	clinical	and	research	importance	of	asthma	exacerbations,	little	is	known	about	

its	acute	effect	on	cardiovascular	outcomes.		

To	address	the	knowledge	gap,	using	a	large	population-based	database	of	adults	with	

asthma	from	three	diverse	U.S.	states,	we	investigated	the	association	of	asthma	

exacerbation	with	the	incidence	of	acute	myocardial	infarction	and	ischemic	stroke.	We	

hypothesized	that	asthma	exacerbations	would	be	associated	with	an	acute	increase	in	

cardiovascular	risk.	A	better	understanding	of	the	role	of	asthma	exacerbation	in	the	

development	of	cardiovascular	events	could	inform	preventive	strategies	during	hospital	

discharge.	 	



�

�

� �	�

METHODS	

Design	and	Setting	

We	performed	a	self-controlled	case	series	study	using	the	Healthcare	Cost	and	Utilization	

Project	(HCUP)	State	Inpatient	Database	(SID).	We	compared	each	patient’s	incidence	of	

cardiovascular	outcomes	during	sequential	periods	after	asthma	exacerbation.	The	self-

controlled	case	series	design	is	particularly	suitable	to	estimate	the	effect	of	transient	

exposures	(e.g.,	asthma	exacerbation)	on	acute	outcomes	(e.g.,	cardiovascular	events)	

within	the	same	subject.(15,16)	By	performing	intra-person	comparisons	in	subjects	with	

both	the	exposure	and	outcome	of	interest,	each	subject	functions	as	her/his	own	control,	

and	hence	no	separate	controls	are	required.	The	major	advantage	of	this	design	is	that	

time-invariant	confounders—regardless	of	measured	or	unmeasured—are	implicitly	

controlled,	thereby	minimizing	unmeasured	confounding,	which	is	an	inherent	problem	in	

conventional	cohort	and	case-control	studies.		

We	used	the	SID	from	three	geographically-diverse	states—Florida,	Nebraska,	and	New	

York—from	January	2011	through	December	2014.	The	SID	includes	all	inpatient	

discharges—regardless	of	payer	or	disposition—from	short-term,	acute-care,	nonfederal,	

general,	and	other	specialty	hospitals	within	the	study	states.(17)	These	three	states	were	

chosen	for	their	high	data	quality	in	addition	to	geographical	diversity	and	chiefly	because	

their	data	included	unique	encrypted	patient	identifiers	that	enable	longitudinal	follow-up	

of	specific	patients	across	years.	The	details	of	SID	may	be	found	elsewhere.(17)	The	

institutional	review	board	of	Massachusetts	General	Hospital	waived	review	of	this	study.		

	

Study	Sample	
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Within	these	states,	we	first	identified	all	adults	aged	≥40	years	with	at	least	one	

hospitalization	for	asthma	exacerbation	by	using	International	Classification	of	Diseases,	

Ninth	Revision,	Clinical	Modification	(ICD-9-CM)	diagnosis	code	for	asthma	(493.00,	

493.01,493.02,493.10,	493.11,	493.12,	493.20,	493.21,	493.22,	493.81,	493.82,	493.90,	

493.91,	and	493.92)	in	the	primary	diagnosis	field,	or	those	with	a	primary	diagnosis	of	

respiratory	failure	(518.81,	518.82,	518.84,	and	799.1)	plus	a	secondary	diagnosis	of	

asthma.(14,18,19)	We	used	this	case	definition	to	focus	on	adults	with	poorly-controlled	

asthma	with	high	morbidity	rather	than	well-controlled	asthma.	Then,	among	these	

patients,	we	further	identified	patients	with	a	first	event	of	acute	myocardial	infarction	

(410,	410.01,	410.1,	410.11,	410.2,	410.21,	410.3,	410.31,	410.4,	410.41,	410.5,	410.51,	

410.6,	410.61,	410.7,	410.71,	410.8,	410.81,	410.9,	and	410.91)	or	ischemic	stroke	(433.01,	

433.11,	433.21,	433.31,	433.81,	433.91,	434.01,	434.11,	434.91,	and	436).(14,20)	We	used	

only	the	first	episode	because	the	study	design	assumes	that	recurrent	events	within	each	

patient	are	independent.(13)		We	excluded	out-of-state	residents	(300	patients),	those	with	

myocardial	infarction	or	ischemic	stroke	as	known	comorbidities	(244	patients)	to	ensure	

that	patients	did	not	have	an	outcome	before	the	study	period,	and	patients	who	died	

within	28	days	from	the	first	hospitalization	for	asthma	exacerbation	(47	patients).		

	

Measurements		

The	SID	databases	contain	information	on	the	patients’	characteristics,	including	

demographics	(age,	sex,	and	race/ethnicity),	primary	insurance	type	(e.g.,	Medicare,	

Medicaid,	private	sources),	quartiles	for	estimated	household	income,	ICD-9-CM	diagnosis	

and	procedures,	comorbidity	measures,	hospital	length-of-stay,	and	disposition	(including	
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inhospital	deaths).(17)	The	baseline	patient	characteristics	were	determined	at	the	time	of	

first	hospitalization	for	asthma	exacerbation.	Race/ethnicity	was	categorized	into	non-

Hispanic	white,	non-Hispanic	black,	Hispanic,	and	other.	Primary	insurance	types	were	

categorized	into	Medicare,	Medicaid,	private	sources,	and	other.	We	also	included	the	

baseline	characteristics	of	quartile	classifications	of	the	estimated	median	household	

income	of	residents	in	the	patient’s	ZIP	code.		

	

Outcome	Measures	

The	primary	outcome	was	a	composite	of	acute	myocardial	infarction	or	ischemic	stroke.	In	

secondary	analyses,	we	separately	examined	the	acute	myocardial	infarction	and	ischemic	

stroke	outcomes.	

	

Statistical	Analysis	

We	used	conditional	Poisson	regression	to	compare	each	patient’s	incidence	rate	of	

outcomes	occurring	in	the	three	consecutive	risk	periods	(1-7,	8-14,	and	15-28	days)	after	

hospitalization	for	asthma	exacerbation,	compared	with	the	non-risk	period—the	

reference	period	(Figure	1).(13)	We	have	chosen	these	risk	periods	based	on	previous	

studies	and	the	number	of	outcome	events.(12,13)	Because	each	patient	was	matched	to	

her/his	risk	and	reference	periods,	the	incidence	rate	ratios	from	the	conditional	

regression	were	equivalent	to	person	fixed	effects.	Therefore,	the	estimates	are	adjusted	

incidence	rate	ratios	(aIRRs).	For	each	patient	with	multiple	hospitalizations	for	asthma	

exacerbation	within	28	days,	we	employed	the	earliest	date	of	hospitalization	as	the	

exposure.(13)		
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To	examine	the	robustness	of	our	inference,	we	performed	several	sensitivity	analyses.	

First,	we	stratified	the	analysis	by	age	(<65	vs	≥65	years),	sex,	race/ethnicity,	primary	

insurance,	household	income	quartile,	and	state	of	hospitals.	We	assumed	that	the	age	

effect	of	each	patient	is	time-invariant	since	we	followed	the	maximum	duration	of	four	

years.	Second,	we	repeated	the	analysis	excluding	the	patients	with	concurrent	COPD	(ICD-

9-CM	code	of	491.21,	491.22	491.8,	491.9,	492.8,	493.20,	493.21,	493.22,	or	496)	as	an	

ancillary	diagnosis	even	though	ICD-9-CM	codes	for	asthma	have	a	high	specificity.15		Third,	

we	excluded	the	pre-exposure	(0-14	days	before	asthma	exacerbation)	period	from	the	

reference	period	because	developing	cardiovascular	events	during	this	pre-exposure	

period	may	affect	the	subsequent	probability	of	asthma	exacerbation	(Figure	1E)(15)	(e.g.,	

the	use	of	#-blocker	may	trigger	asthma	exacerbation,	more-intense	care	may	increase	or	

decrease	the	probability	of	subsequent	hospitalization	for	asthma	exacerbation),	which	

could	violate	one	of	the	assumptions	in	the	self-controlled	case	series	design.	Fourth,	we	

also	excluded	the	patients	who	died	within	30	days	of	outcome	because	the	study	design	

assumes	that	the	outcome	should	not	censor	the	study	follow-up.(15)		Lastly,	we	also	

repeated	the	analysis	excluding	the	patients	with	a	prolonged	hospitalization	(hospital	

length-of-stay	>14	days)	for	asthma	exacerbation	which	may	affect	the	probability	of	

developing	an	outcome	during	the	risk	periods.	All	P-values	were	2-sided,	and	a	level	of	

<0.05	was	considered	significant.	Analyses	were	performed	using	Stata	15	(Stata	Corp,	

College	Station,	TX)	and	R	3.5.1.	 	
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RESULTS	

	 Using	the	population-based	data	from	three	U.S.	states,	we	identified	4,607	patients	

hospitalized	for	asthma	exacerbation	who	also	had	first	acute	myocardial	infarction	or	

ischemic	stroke	during	2011-2014.	The	baseline	patients’	characteristics	are	summarized	

in	Table	1.	Overall,	the	median	age	was	70	years	(IQR	60-80);	most	patients	were	female	

(68%)	and	non-Hispanic	white	(51%).	Additionally,	most	patients	had	risk	factors	for	

cardiovascular	diseases,	such	as	hypertension	(80%)	and	diabetes	(46%).	

	 The	risk	of	developing	an	acute	myocardial	infarction	or	ischemic	stroke	(composite	

outcome)	during	the	reference	period	and	the	consecutive	three	risk	periods	is	shown	in	

Figure	2	and	Table	2.	During	the	reference	period,	the	incidence	rate	was	25.0/100	

person-years.	In	the	subsequent	risk	period	of	1-7	days	after	asthma	exacerbation,	the	

incidence	rate	significantly	increased	to	129.1/100	person-years	with	a	corresponding	

aIRR	of	5.04	(95%	CI,	4.29-5.88).	In	the	subsequent	risk	periods,	the	incidence	rate	

decreased	but	remained	high—50.1/100	person-years	with	a	corresponding	aIRR	of	1.96	

(95%	CI,	1.51-2.48)	during	8-14	days	after	asthma	exacerbation,	and	38.0/100	person-

years	with	a	corresponding	aIRR	of	1.48	(95%	CI,	1.20-1.81)	during	15-28	days	after	

asthma	exacerbation.	

	 Looking	at	the	two	outcomes	separately,	we	observed	a	similar	temporal	pattern	

(Figure	2	and	Table	2).	Compared	to	the	reference	period,	the	incidence	rate	of	acute	

myocardial	infarction	significantly	increased	during	the	first	risk	period	(1-7	days	after	

asthma	exacerbation)—aIRR	of	5.75	(95%	CI,	4.75-6.90),	followed	by	aIRR	of	1.98	(95%	CI,	

1.43-2.66)	and	1.38	(95%	CI,	1.05-1.78)	in	the	two	subsequent	risk	periods.	Likewise,	the	

incidence	rate	of	ischemic	stroke	also	increased	after	asthma	exacerbation—aIRR	of	3.82	
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(95%	CI,	2.80-5.07)	in	the	first	risk	period,	followed	by	aIRR	of	1.91	(95%	CI,	1.23-2.81)	

and	1.67	(95%	CI,	1.19-2.25)	in	the	two	subsequent	risk	periods.	

The	sensitivity	analyses	demonstrated	consistent	results.	Indeed,	similar	temporal	

patterns,	particularly	the	high	incidence	rates	in	the	first	7-day	period,	were	found	in	the	

stratified	analyses	by	age	(<65	and	≥65	years;	Table	E1),	sex	(Table	E2),	race/ethnicity	

(Table	E3),	primary	health	insurance	(Table	E4),	household	income	quartile	(Table	E5),	

and	state	of	hospitals	(Table	E6),	despite	the	limited	statistical	power	for	these	stratified	

analyses	and	ischemic	stroke	outcome.	Likewise,	the	subgroup	analysis	excluding	the	

patients	with	concurrent	COPD	also	demonstrated	a	consistent	temporal	pattern	(Table	

E7).	Furthermore,	we	yielded	similar	inferences	across	the	sensitivity	analyses	that	

address	possible	violations	of	the	analytic	assumptions—i.e.,	the	exclusion	of	the	pre-

exposure	(0-14	days	before	asthma	exacerbation)	period	from	the	reference	period	(Table	

E8),	exclusion	of	the	patients	who	died	within	30	days	of	outcome	(Table	E9),	and	

exclusion	of	the	patients	with	prolonged	hospitalization	for	asthma	exacerbation	(Table	

E10).	 	
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DISCUSSION	

By	applying	the	self-controlled	case	series	design	to	the	population-based	data	of	4,607	

patients	with	asthma,	we	found	that	asthma	exacerbation	was	associated	with	a	

significantly	increased	incidence	of	acute	myocardial	infarction	and	ischemic	stroke—

particularly	in	the	first	1-week	period.	The	observed	patterns	were	consistent	across	

several	different	patient	subgroups—e.g.,	younger	age	group	and	patients	without	

concurrent	COPD—and	with	different	statistical	assumptions.	This	is	the	first	study	that	

has	investigated	the	acute	effect	of	asthma	exacerbation	on	the	risk	of	cardiovascular	

events.	

The	results	are	consistent	with	previous	cohort	studies	that	demonstrated	that	patients	

with	chronic	asthma	have	a	higher	incidence	of	cardiovascular	events.	For	example,	in	the	

Atherosclerosis	Risk	in	Communities	(ARIC)	Study,	compared	to	adult	women	(age	45–64	

years	)	without	asthma,	women	with	adult-onset	asthma	had	a	1.8-fold	higher	hazard	for	

incident	coronary	heart	disease.(6)	In	a	different	analysis	of	the	ARIC	data,	patients	with	a	

self-reported	history	of	asthma	had	a	1.5-fold	higher	hazard	of	stroke.(4)		Additional	

studies	have	also	reported	that	the	severity	of	chronic	asthma	is	proportional	to	the	risk	of	

developing	cardiovascular	events.(22,23)	In	the	Multi-Ethnic	Study	of	Atherosclerosis	

(MESA),	compared	to	adults	without	asthma	and	those	with	intermittent	asthma,	patients	

with	persistent	asthma	had	a	higher	C-reactive	protein	level	and	higher	hazard	for	

developing	cardiovascular	diseases.(22)	Interestingly,	previous	studies	also	reported	that	

the	association	between	chronic	asthma	and	cardiovascular	outcomes	is	more	evident	in	

women	compared	to	men	(6,24)	while	no	obvious	between-sex	differences	were	found	in	

the	current	study	except	for	the	apparently	smaller	effect	size	in	men	for	the	ischemic	
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stroke	outcome.	The	apparent	discrepancies	may	be	attributed	to	the	differences	in	study	

population	(i.e.,	patients	with	asthma	exacerbation),	settings	(i.e.,	the	use	of	population-

based	data),	design	(i.e.,	self-controlled	case	series	design	that	accounts	for	all	time-

invariant	confounders),	outcomes,	or	any	combination	of	these	factors.	In	addition,	

stratified	analyses	in	the	subgroup	of	age<65	(Table	E1),	men	(Table	E2),	and	highest	

household	income	quartile	(Table	E5)	demonstrated	non-significantly	higher	aIRRs	for	the	

ischemic	stroke	outcome	during	the	1-7	days	period.	While	potential	heterogeneity	of	the	

effect	is	possible,	these	non-significant	findings	are	attributable,	at	least	partially,	to	the	

limited	statistical	power	in	these	strata	particularity	with	a	fewer	number	of	stroke	

outcomes.	Regardless,	the	current	study	builds	on	these	earlier	reports,	and	extends	them	

by	demonstrating	the	effect	of	asthma	exacerbation—	acute	inflammation	on	chronic	

disease	processes—on	cardiovascular	events	in	a	large	population-based	sample	of	

patients	with	asthma.	

The	validity	of	our	findings	is	buttressed	by	the	application	of	self-controlled	case	series	

design.	In	this	design,	each	patient	functions	as	the	control	for	herself/himself.	Therefore,	

any	time-invariant	confounders—regardless	of	measured	or	unmeasured—are	cancelled	

out,	thereby	yielding	robust	causal	inference.	This	design	also	is	more	efficient	than	other	

study	designs	because	inter-person	variations	are	removed,	and	hence	the	estimates	of	

effects	can	be	more	precise.	Furthermore,	the	current	study	with	the	use	of	asthma	

exacerbation	as	the	(transient)	exposure	and	cardiovascular	events	as	the	(acute)	

outcomes	meets	the	required	assumptions	of	self-controlled	case	series	design.	

There	are	several	potential	mechanisms	linking	asthma	exacerbation	to	the	increased	

incidence	of	cardiovascular	events.	The	most	common	cause	of	asthma	exacerbation	is	
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acute	respiratory	infections,(25,26)		leading	to	an	activation	of	inflammatory	pathways	and	

cytokines	(e.g.,	CXCL-10,	interleukin-5,	interleukin-6,	tumor	necrosis	factor-α)(27,28)		and	

resultant	systemic	vascular	inflammation	with	platelet	activation,	inhibition	of	fibrinolysis,	

and	elevation	of	C-reactive	protein	levels.(9,29–31)	High-sensitivity	C-reactive	protein—an	

established	biomarker	for	cardiovascular	outcomes—upregulates	other	inflammatory	

regulators,	leading	to	the	adhesion	of	leukocyte	to	arterial	endothelium.(32)	Platelet	

activation	and	endothelial	dysfunction	cause	arterial	thrombosis.	Specifically,	in	acute	

inflammation,	thin-cap	atheroma	in	coronary	arteries	ruptures	and	releases	inflammatory	

cells,	causing	acute	accumulation	of	platelets,	neutrophils,	and	fibrin	as	well	as	trapping	of	

red	blood	cells,	which	are	characteristics	in	type	1	myocardial	infarction.(11)	This	potential	

mechanism	is	supported	by	the	finding	from	an	analysis	of	the	Nurses’	Health	Study,	which	

showed	that	the	patients	with	persistent	asthma	who	use	inhaled	corticosteroids	had	a	

lower	incidence	of	cardiovascular	disease	compared	to	those	who	did	not	use.(33)	This	

finding	suggests	that	a	potential	role	of	anti-inflammatory	effects	(and	that	of	improved	

asthma	control)	in	cardiovascular	event	risks	among	patients	with	asthma.	Another	

potential	mechanism	is	the	mismatch	of	oxygen	demand	and	supply	in	myocardium,	

specifically	characterized	by	type	2	myocardial	infarction.	During	the	process	of	acute	

inflammation,	interleukin-1,	tumor	necrosis	factor-α,	and	catecholamines	are	released,	

thereby	increasing	the	body	core	temperature,	heart	rate,	afterload,	and	oxygen	demand.	

Additionally,	patients	with	asthma	exacerbation	often	experience	hypoxemia,	resulting	in	

insufficient	oxygen	supply	to	myocardium.	Consequently,	the	metabolic	demand	of	

myocardium	exceeds	the	supply	of	oxygen	from	coronary	arteries.	In	addition,	vasospasm	

from	vascular	smooth	muscle	cell	contraction	and	endothelial	dysfunction	could	also	
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contribute	to	acute	myocardial	infarction	in	patients	with	asthma.	Both	asthma	and	

coronary	vasospasm	share	common	pathobiologies	(e.g.,	autonomic	dysfunction,	histamine	

provocation).(34)	Furthermore,	management	for	asthma	exacerbation	(e.g.,	excessive	use	

of	#2-agonists,(35)	discontinuation	of	#-blockers,(36)	discontinuation	of	aspirin	in	patients	

with	aspirin-exacerbated	respiratory	disease)	may	have	attributed	to	the	subsequent	

cardiovascular	event	risks.	Moreover,	these	mechanisms	are	not	mutually	exclusive.	

Notwithstanding	the	complexity,	the	identification	of	the	asthma	exacerbation-

cardiovascular	event	link	is	an	important	finding.	Our	finding	should	advance	the	research	

into	the	development	of	preventive	strategies	for	cardiovascular	morbidities	(e.g.,	targeting	

systemic	inflammation	among	patients	with	high	inflammatory	markers(37))	in	patients	

with	asthma.	

This	study	has	several	potential	limitations.	First,	our	population-based	study	is	potentially	

limited	by	not	being	a	random	sample	of	the	nationwide	asthma	populations.	However,	we	

used	the	population-based	data	from	the	selected	racially/ethnically-	and	geographically-

diverse	states	which	comprise	13%	of	U.S.	population.(38)	Second,	we	identified	the	study	

sample	from	administrative	data	with	possible	misclassification	of	hospitalizations	for	

asthma	exacerbation.	Yet,	HCUP	data	are	accurate,	rigorously	tested,	and	widely	used	to	

estimate	diagnoses(18,19,39)	and	the	ICD-9-CM	codes	for	asthma	are	known	to	have	high	

specificity	(98%).(21)	Additionally,	our	sensitivity	analysis	demonstrated	consistent	

results	even	after	excluding	the	patients	with	concurrent	COPD.	Third,	misclassifications	of	

outcomes	are	also	possible.	However,	the	literature	has	shown	that	the	ICD	9-CM	coding	of	

these	outcomes	are	accurate	(specificity	of	89%-99%	for	acute	myocardial	infarction	and	

95%	for	ischemic	stroke).(20,40–42)	Fourth,	we	were	unable	to	differentiate	the	subtypes	
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of	myocardial	infarction	(i.e.,	type	1	and	type	2	myocardial	infarction)	using	ICD-9-CM	

codes.	However,	both	types	of	myocardial	infarction	can	be	explained	by	activated	cytokine	

response	and	other	pathobiology	caused	by	asthma	exacerbation.	In	addition,	the	increased	

risk	of	ischemic	stroke	also	supports	the	possibility	of	thromboembolic	pathobiology	rather	

than	demand	ischemia.	Fifth,	SID	do	not	have	some	helpful	clinical	data.	For	example,	the	

differentiation	between	type	1	and	type	2	myocardial	infarction	may	be	helpful	for	

understanding	the	exact	mechanisms	linking	asthma	exacerbation	to	the	outcome.	Sixth,	

we	excluded	patients	who	died	within	28	days	from	the	first	hospitalization	for	asthma	

exacerbation	as	these	patients	did	not	have	a	risk	period	and	an	adjusted	incidence	rate	

ratio	could	not	be	computed.	Additionally,	due	to	the	lack	of	out-of-hospital	mortality	data	

in	SID,	we	were	not	able	to	account	for	the	competing	risk	of	mortality.	However,	these	

mechanisms	should	have	biased	the	inferences	toward	the	null	through	excluding	patients	

who	might	have	had	an	outcome	during	the	risk	periods	and	shortening	the	reference	

period.	Seventh,	we	did	not	account	for	time-varying	confounding	in	this	study.	For	

example,	medication	such	as	β-blockers	might	be	a	time-varying	confounder.	However,	we	

have	followed	up	patients	for	the	short	period	of	time	(i.e.,	4	years)	and	as	the	reference	

period,	we	used	summed	period	before	and	after	the	three	risk	periods.	Therefore,	we	have	

mitigated	the	effect	of	time-varying	confounding	within	a	short	duration	of	time.	Lastly,	

even	with	our	racially/ethnically-	and	geographically-diverse	population-based	sample,	we	

must	generalize	the	inferences	cautiously	beyond	patients	with	more	severe	asthma	

exacerbations.	Still,	the	data	remain	highly	relevant	for	340,000	hospitalized	adults	each	

year.(3)	This	population	with	large	healthcare	use	and	morbidity	burden	is	the	one	for	

which	targeted	prevention	strategies	are	most	urgently	required.	
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FIGURES	

Figure	1.	Example	self-controlled	case	series	timeline		

This	timeline	shows	the	risk	period	divided	into	three	periods:	1–7,	8–14,	and	15–28	days	

after	hospitalization	for	asthma	exacerbation.	The	orange	solid	line	represents	the	first	risk	

period;	the	green	solid	line	represents	the	second	risk	period;	and	the	blue	solid	line	

represents	the	third	risk	period.	The	grey	solid	and	dashed	lines	indicate	the	reference	

periods.	The	incidence	rate	ratio	for	the	first	acute	myocardial	infarction	and	ischemic	

stroke	occurring	within	each	risk	period,	compared	with	the	reference	period,	was	

calculated	conditioning	on	each	individual.	Patients	may	have	multiple	index	

hospitalizations	for	asthma	exacerbation.	

	

	 	



�

�

� ���

Figure	2.	Adjusted	incidence	rate	ratio	for	acute	myocardial	infarction	and	ischemic	

stroke	after	asthma	exacerbation	

The	adjusted	incidence	rate	ratios	are	demonstrated	in	a	log-scale.	The	error	bars	indicate	

95%	confidence	intervals.	
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TABLES	

Table	1.	Baseline	characteristics	of	4,607	patients	hospitalized	with	asthma	

exacerbation	

Characteristics	 n	 (%)	

Age,	median	(IQR),	years	 70	 (60-80)	

Age	≥65	years	
	

2,964	 (64.3)	

Female	sex	 3,126	 (67.9)	

Race/ethnicity	

	 	
	
Non-Hispanic	white	 2,369	 (51.4)		
Non-Hispanic	black	 988	 (21.4)		
Hispanic	 869	 (18.9)		

Others	 315	 (6.9)		

Missinga	 66	 (1.4)	

Primary	health	insurance	

	 	
	
Medicare	 3,311	 (71.9)		
Medicaid	 639	 (13.9)		
Private	 457	 (9.9)		

Self-pay	 111	 (2.4)		

Others	 90	 (2.0)	

Quartiles	for	median	household	income	

	

	
1	(lowest)	 1,681	 (36.5)		
2	 1,046	 (22.7)		
3	 998	 (21.7)		

4	(highest)	 697	 (15.1)		

Missing	 185	 (4.0)	

Selected	comorbiditiesb	
	 	

	
Hypertension	 3,701	 (80.3)		
Diabetes	 2,117	 (45.9)	

	 Congestive	heart	failure	 1,546	 (33.6)	

	 Obesity	 978	 (21.2)	

	 Renal	disease		 908	 (19.7)		

Peripheral	vascular	diseases	 349	 (7.6)	

	 Anemia	 170	 (3.7)	

	 Liver	disease	 88	 (1.9)	

State	 	 	

	 Florida	 2,454	 (53.3)	

	 Nebraska	 58	 (1.3)	

	 New	York	 2,095	 (45.5)	

Data	are	expressed	as	number	(%),	unless	otherwise	

indicated.		

IQR:	inter-	quartile	range.	

Percentages	may	not	equal	100,	because	of	rounding	

amissingness.	a	Race/ethnicity	data	were	not	available	in	Nebraska.		
b	Selected	from	29	Elixhauser	comorbidity	measures	
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Table	2.	Incidence	rate	and	adjusted	incidence	rate	ratio	(aIRR)	for	acute	myocardial	infarction	and	ischemic	stroke	in	patients	
with	asthma	exacerbation	(n=4,607)	
	

	 	

	

	

Time	interval	

Composite	outcome	 Acute	myocardial	infarctionb	 Ischemic	strokec	
Incidence	ratea	
(95%	CI)	

aIRR		

(95%	CI)	
P-value		

Incidence	ratea	
(95%	CI)	

aIRR	

(95%	CI)	
P-value		

Incidence	ratea		
(95%	CI)	

aIRR	

	(95%	CI)	
P-value	

Reference	period	
25.0	

(24.3-25.8)		
Reference	

	 25.0		

(24.1-26.0)	
Reference	

	 25.0	

(23.9-26.3)	
Reference	

	

Time	after	asthma	exacerbation:	

			1-7	days		

	

129.1	

(110.8-150.4)	

	

5.04		

(4.29-5.88)	

<0.001	

	

147.4	

(123.1-176.4)	

	

5.75		

(4.75-6.90)	

<0.001	

	

97.7	

(73.2-130.5)	

	

3.82		

(2.80-5.07)	

<0.001	

			8-14	days		
50.1	

(39.2-64.0)	

1.96		

(1.51-2.48)	
<0.001	

50.8	

	(37.4-69.0)	

1.98	

(1.43-2.66)	
<0.001	

48.9	

(32.5-73.5)	

1.91		

(1.23-2.81)	
0.002	

		15-28	days		
38.0	

(31.1-46.3)	

1.48		

(1.2-01.81)	
<0.001	

35.3		

(27.2-45.8)	

1.38		

(1.05-1.78)	
0.02	

42.5	

(31.2-58.0)	

1.67		

(1.19-2.25)	
0.002	

Abbreviations:	aIRR,	adjusted	incidence	rate	ratio;	CI,	confidence	interval	 	 	 	 	 	

a	Incidence	rate	per	100	person-years,	b	n=2,847,	c	n=1,760	 	 	 	 	 	 	 	 	
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SUPPLEMENTARY	MATERIAL	

	

Risk	of	acute	myocardial	infarction	and	ischemic	stroke	in	patients	with	asthma	exacerbation:	A	population-based,	self-controlled	

case	series	study	

	

Authors:	Yoshihiko	Raita,	MD,	MPH;	Carlos	A.	Camargo,	Jr.	MD,	DrPH;	Mohammad	Kamal	Faridi,	MPH;	David	F.	M.	Brown,	MD;	Yuichi	J.	

Shimada,	MD,	MPH;	and	Kohei	Hasegawa,	MD,	MPH		 	
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Figure	E1.	Example	self-controlled	case	series	timeline,	excluding	the	pre-exposure	(0-14	days	before	asthma	exacerbation)	period	
from	the	reference	period	

This	timeline	shows	the	risk	period	divided	into	three	periods:	1–7,	8–14,	and15–28	days	after	hospitalization	for	asthma	exacerbation.	The	
orange	solid	line	represents	the	first	risk	period;	the	green	solid	line	represents	the	second	risk	period,	the	blue	solid	line	represents	the	
third	risk	period,	and	the	blue	dashed	line	represents	excluded	time.	The	grey	solid	and	dashed	lines	indicate	the	reference	periods.	The	
incidence	ratio	for	the	first	acute	myocardial	infarction	and	ischemic	stroke	occurring	within	each	risk	period	compared	with	baseline	time	
was	calculated	for	each	individual.	Patients	may	have	multiple	index	hospitalizations	for	asthma	exacerbation.	
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Table	E1.	Incidence	rate	and	adjusted	incidence	rate	ratio	(aIRR)	for	acute	myocardial	infarction	and	ischemic	stroke	in	patients	
with	asthma	exacerbation,	stratified	by	age	(n=4,607)	

	 Composite	outcome	 Acute	myocardial	infarctionb	 Ischemic	strokec	

Time	interval	
Incidence	ratea	
(95%	CI)	

aIRR	

(95%	CI)	
P-value	

Incidence	ratea	
(95%	CI)	

aIRR		

(95%	CI)	
P-value	

Incidence	ratea	
(95%	CI)	

aIRR	

(95%	CI)	
P-value	

Age	<65	years	

(n=1,643)	

	 	 	 	 	 	 	 	 	 	

	
Reference	period	

24.8		

(26.1-26.1)	
Reference	

	 24.7		

(23.2-26.3)	
Reference	

	 25.1	

(23.1-27.2)	
Reference	

	

	 Time	after	exacerbation:	

			1-7	days		

	

110.3	

(143.0-171.3)	

	

4.48		

(3.39-5.80)	

<0.001	

	

148.5		

(112.2-196.4)	

	

6.10	

	(4.49-8.07)	

<0.001	

	

42.8	

(21.4-85.6)	

	

1.70	

	(0.77-3.21)	

0.14	

	
			8-14	days		

42.6		

(64.6-74.7)	

1.73		

(1.1-2.57)	
0.02	

39.4		

(22.9-67.8)	

1.62		

(0.88-2.68)	
0.09	

48.2	

(25.1-92.6)	

1.92		

(0.91-3.50)	
0.06	

	
		15-28	days		

28.1	

(40.4-56.7)	

1.14		

(0.77-1.62)	
0.32	

25.8		

(16.0-41.4)	

1.06		

(0.63-1.66)	
0.82	

32.1	

(18.2-56.6)	

1.28		

(0.68-2.17)	
0.41	

Age	≥65	years	
(n=2,964)	

	 	 	 	 	 	 	 	 	 	

	
Reference	period	

25.2		

(24.1-26.0)	
Reference	

	 25.3		

(24.1-26.5)	
Reference	

	 25.0	

	(23.6-26.6)	
Reference	

	

	 Time	after	exacerbation:	

			1-7	days		

	

141.9		

(124.5-176.8)	

	

5.38		

(4.40-6.50)	

<0.001	

	

146.6	

	(116-185.3)	

	

5.53		

(4.31-6.99)	

<0.001	

	

133.9		

(97.4-184)	

	

5.12		

(3.63-6.99)	

<0.001	

	
			8-14	days		

55.2		

(36.8-67.4)	

2.09		

(1.52-2.80)	
<0.001	

58.7		

(40.5-85.0)	

2.21		

(1.48-3.15)	
<0.001	

49.3		

(29.2-83.3)	

1.89		

(1.06-3.07)	
0.02	

	
		15-28	days		

44.7		

(27.6-45.9)	

1.70		

(1.32-2.14)	
<0.001	

41.9		

(30.7-57.1)	

1.58		

(1.13-2.14)	
0.004	

49.3		

(34.1-71.5)	

1.90	

(1.27-2.71)	
<0.001	

Abbreviations:	aIRR,	adjusted	incidence	rate	ratio;	CI,	confidence	intervals	 	 	 	 	 	 	

a	Incident	rate	per	100	person-years,	b	n=2,847,	c	n=1,760	 	 	 	 	 	 	
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Table	E2.	Incidence	rate	and	adjusted	incidence	rate	ratio	(aIRR)	for	acute	myocardial	infarction	and	ischemic	stroke	stratified	by	
sex	(n=4,607)	

	 Composite	outcome	 Acute	myocardial	infarctionb	 Ischemic	strokec	

Time	interval	
Incidence	ratea	
(95%	CI)	

aIRR		

(95%	CI)	
P-value	

Incidence	ratea	
(95%	CI)	

aIRR	

	(95%	CI)	
P-value	

Incidence	ratea	
	(95%	CI)	

aIRR		

(95%	CI)	
P-value	

Men	(n=1,481)	
	 	 	 	 	 	 	 	 	 	

	
Reference	period	

25.1		

(23.8-26.5)	
Reference	

	 24.9		

(23.3-26.6)	
Reference	

	 25.6		

(23.4-28.0)	
Reference	

	

	 Time	after	exacerbation:	

			1-7	days		

	

113.4		

(84.7-151.9)	

	

4.41		

(3.22-5.88)	

<0.001	

	

145.0		

(106.0-198.5)	

	

5.71		

(4.07-7.79)	

<0.001	

	

46.9		

(21.1-104.4)	

	

1.77	

(0.70-3.64)	

0.17	

	
			8-14	days		

58.0	

(38.5-87.2)	

2.26	

(1.45-3.33)	
<0.001	

66.9		

(42.2-106.3)	

2.64		

(1.59-4.08)	
<0.001	

39.1		

(16.3-93.9)	

1.48		

(0.53-3.21)	
0.39	

	
		15-28	days		

41.6		

(29.6-58.5)	

1.63		

(1.13-2.26)	
0.006	

44.6	

	(29.9-66.6)	

1.76	

	(1.14-2.58)	
0.006	

35.2		

(18.3-67.7)	

1.35		

(0.64-2.47)	
0.38	

Women	(n=3,126)	
	 	 	 	 	 	 	 	 	 	

	
Reference	period	

25.0	

(24.1-25.9)	
Reference	

	 25.1		

(24.0-26.3)	
Reference	

	 24.8		

(23.5-26.3)	
Reference	

	

	 Time	after	exacerbation:	

			1-7	days		

	

136.2		

(113.9-162.9)	

	

5.32	

(4.40-6.38)	

<0.001	

	

148.6		

(119.3-185.0)	

	

5.77		

(4.56-7.19)	

<0.001	

	

116.7		

(85.6-159.1)	

	

4.61	

(3.3-6.25)	

<0.001	

	
			8-14	days		

46.5	

(34.3-63.2)	

1.82		

(1.31-2.44)	
<0.001	

42.7		

(28.4-64.3)	

1.66		

(1.07-2.44)	
0.017	

52.5		

(33.1-83.4)	

2.08	

(1.25-3.21)	
0.002	

	
		15-28	days		

36.3		

(28.4-46.4)	

1.42		

(1.10-1.81)	
0.005	

30.6	

	(21.8-43.1)	

1.19	

	(0.82-1.65)	
0.33	

45.2	

	(31.8-64.3)	

1.79		

(1.22-2.51)	
0.002	

Abbreviations:	aIRR,	adjusted	incidence	rate	ratio;	CI,	confidence	intervals	 	 	 	 	 	 	

a	Incident	rate	per	100	person-years,		b	n=2,847,	c	n=1,760	 	 	 	 	 	 	 	
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Table	E3	Incidence	rate	and	adjusted	incidence	rate	ratio	(aIRR)	for	acute	myocardial	infarction	and	ischemic	stroke	stratified	by	
race/ethnicity	(n=4,607)	

	 Composite	outcome	 Acute	myocardial	infarctionb	 Ischemic	strokec	

Time	interval	
Incidence	ratea	
(95%	CI)	

aIRR		

(95%	CI)	
P-value	

Incidence	ratea	
(95%	CI)	

aIRR	

	(95%	CI)	
P-value	

Incidence	ratea	
	(95%	CI)	

aIRR		

(95%	CI)	
P-value	

Non-Hispanic	white					

			(n=2,369)	

	 	 	 	 	 	 	 	 	

	
Reference	period	

25.1		

(24.1-26.2)	
Reference	

	 25.2		

(23.9-26.6)	
Reference	

	 24.9		

(23.3-26.7)	
Reference	

	

	 Time	after	exacerbation:	

			1-7	days		

	

133.4	

(106.8-166.5)	

	

5.13		

(4.05-6.4)	

<0.001	

	

150.7	

(115.9-195.8)	

	

5.70	

(4.30-7.39)	

<0.001	

	

103.3		

(68.0-156.8)	

4.10		

(2.60-6.11)	
<0.001	

	
			8-14	days		

49.6	

(34.5-71.4)	

1.91	

(1.29-2.70)	
<0.001	

48.4	

(30.5-76.9)	

1.83	

(1.11-2.83)	
0.01	

51.6		

(28.6-93.2)	

2.05	

(1.06-3.53)	
0.02	

	
		15-28	days		

37.6		

(28.-50.6)	

1.45	

(1.06-1.93)	
0.02	

33.6	

(22.7-49.8)	

1.27	

(0.83-1.85)	
0.23	

44.6	

	(28.4-69.9)	

1.77	

(1.08-2.71)	
0.01	

Non-Hispanic	black	(n=988)	
	 	 	 	 	 	 	 	 	

	
Reference	period	

24.8		

(23.2-26.5)	
Reference	

	 25.0	

(22.9-27.3)	
Reference	

	 24.6	

(22.3-27.1)	
Reference	

	

	 Time	after	exacerbation:	

			1-7	days		

	

120.5		

(88.4-164.3)	

	

4.88	

(3.48-6.65)	

<0.001	

	

123.9	

(83-184.9)	

	

5.01	

(3.21-7.44)	

<0.001	

	

115.7	

(70.9-188.9)	

	

4.69	

(2.71-7.54)	

<0.001	

	
			8-14	days		

48.2		

(29.5-78.7)	

1.95	

(1.14-3.10)	
0.008	

41.3	

(20.7-82.6)	

1.67	

(0.76-3.15)	
0.15	

57.9	

(28.9-115.7)	

2.35	

(1.06-4.44)	
0.02	

	
		15-28	days		

39.2		

(26.7-57.5)	

1.59	

(1.04-2.30)	
0.02	

33.6	

(19.5-57.8)	

1.36	

(0.74-2.27)	
0.28	

47.0	

	(27.3-81.0)	

1.91	

(1.03-3.20)	
0.02	

Hispanic	(n=869)	 	 	 	 	 	 	 	 	 	

	 Reference	period	
25.2		

(23.5-27.0)	
Reference	 	

24.9	

(22.8-27.1)	
Reference	 	

25.8	

(23.0-29.0)	
Reference	 	

	
Time	after	exacerbation:	

			1-7	days	

	

143.1	

(103.7-197.5)	

	

5.47	

(3.85-7.54)	

<0.001	

	

180.6	

(127-256.8)	

	

7.14		

(4.84-10.15)	

<0.001	

	

69.1	

(31-153.7)	

2.47	

(1.09-5.59)	
0.03	

	 			8-14	days		
46.4		

(26.4-81.7)	

1.78	

(0.94-3.00)	
0.05	

52.4	

(27.3-100.8)	

2.07		

(0.99-3.78)	
0.03	

34.5	

(11.1-107.1)	

1.24	

(0.39-3.88)	
0.72	

	 		15-28	days		
31.0		

(19.0-50.5)	

1.19	

(0.69-1.89)	
0.49	

29.1	

(15.7-54.1)	

1.15	

(0.57-2.04)	
0.66	

34.6	

(15.5-77.0)	

1.26	

(0.56-2.85)	
0.57	

Abbreviations:	aIRR,	adjusted	incidence	rate	ratio;	CI,	confidence	intervals	 	 	 	 	 	 	

a	Incident	rate	per	100	person-years,	b	n=2,847,	c	n=1,760	 	 	 	 	 	 	 	
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Table	E4	Incidence	rate	and	adjusted	incidence	rate	ratio	(aIRR)	for	acute	myocardial	infarction	and	ischemic	stroke	stratified	by	
primary	health	insurance	(n=4607)	

	 	

	 Composite	outcome	 Acute	myocardial	infarctionb	 Ischemic	strokec	

Time	interval	
Incidence	ratea	
(95%	CI)	

aIRR		

(95%	CI)	
P-value	

Incidence	ratea	
(95%	CI)	

aIRR	

	(95%	CI)	
P-value	

Incidence	ratea	
	(95%	CI)	

aIRR		

(95%	CI)	
P-value	

Public	(Medicare	and		

			Medicaid)	(n=3,950)	

	 	 	 	 	 	 	 	 	

	
Reference	period	

25.2		

(24.4-26.0)	
Reference	

	 25.2	

(24.2-26.2)	
Reference	

	 25.1	

(23.9-26.5)	
Reference	

	

	 Time	after	exacerbation:	

			1-7	days		

	

126.5		

(107-149.4)	

	

4.89	

(4.09-5.78)	

<0.001	

	

144.7	

(118.8-176.2)	

	

5.60		

(4.54-6.83)	

<0.001	

	

95.8		

(70.0-131.1)	

	

3.69		

(2.63-5.02)	

<0.001	

	
			8-14	days		

50.4		

(38.7-65.6)	

1.95		

(1.47-2.52)	
<0.001	

49.7	

(35.5-69.6)	

1.92		

(1.34-2.66)	
<0.001	

51.6	

(33.6-79.1)	

1.99	

(1.25-2.98)	
0.002	

	
		15-28	days		

38.5	

(31.1-47.7)	

1.49		

(1.19-1.84)	
<0.001	

36.6	

(27.7-48.2)	

1.41		

(1.05-1.85)	
0.02	

41.8	

(29.8-58.5)	

1.62	

(1.13-2.24)	
0.006	

Private	(n=457)	
	 	 	 	 	 	 	 	 	

	
Reference	period	

24.6		

(22.4-27.1)	
Reference	

	 24.6	

(21.9-27.7)	
Reference	

	 24.6	

(21.0-28.9)	
Reference	

	

	 Time	after	exacerbation:	

			1-7	days		

	

128.4		

(78.6-209.5)	

	

5.17	

(3.00-8.27)	

<0.001	

	

140.3	

(79.7-247)	

	

5.64	

(2.97-9.67)	

<0.001	

	

102.2	

(38.4-272.4)	

	

4.16	

(1.27-9.87)	

0.005	

	
			8-14	days		

32.1		

(12-85.5)	

1.29	

(0.40-3.03)	
0.61	

35.1	

(11.3-108.8)	

1.41	

(0.35-3.70)	
0.56	

25.6	

(3.6-181.5)	

1.04	

(0.06-4.64)	
0.97	

	
		15-28	days		

40.1		

(21.6-74.5)	

1.62		

(0.80-2.87)	
0.14	

35.1	

(15.8-78.1)	

1.41	

(0.55-2.90)	
0.41	

51.1	

(19.2-136.2)	

2.08	

(0.64-4.94)	
0.15	

Abbreviations:	aIRR,	adjusted	incidence	rate	ratio;	CI,	confidence	intervals	 	 	 	 	 	 	

a	Incident	rate	per	100	person-years,	b	n=2,847,	c	n=1,760	 	 	 	 	 	 	 	
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Table	E5	Incidence	rate	and	adjusted	incidence	rate	ratio	(aIRR)	for	acute	myocardial	infarction	and	ischemic	stroke	stratified	by	
household	income	quartile	(n=4,607)	

	 Composite	outcome	 Acute	myocardial	infarctionb	 Ischemic	strokec	

Time	interval	
Incidence	ratea	
(95%	CI)	

aIRR		

(95%	CI)	
P-value	

Incidence	ratea	
(95%	CI)	

aIRR	

	(95%	CI)	
P-value	

Incidence	ratea	
	(95%	CI)	

aIRR		

(95%	CI)	
P-value	

Quartile	1	(lowest)	(n=1,681)	
	 	 	 	 	 	 	 	 	

	
Reference	period	

25.3		

(24.1-26.6)	
Reference	

	 25.2	

(23.6-26.8)	
Reference	

	 25.4		

(23.5-27.5)	
Reference	

	

	 Time	after	exacerbation:	

			1-7	days		

	

113.6		

(87.6-147.3)	

	

4.36		

(3.30-5.64)	

<0.001	

	

134.9	

(99.7-182.6)	

	

5.21	

(3.75-7.03)	

<0.001	

	

78.8		

(47.5-130.7)	

	

2.97	

	(1.69-4.82)	

<0.001	

	
			8-14	days		

37.9		

(24.2-59.4)	

1.45	

(0.89-2.22)	
0.11	

41.8	

(24.3-71.9)	

1.61	

(0.88-2.67)	
0.09	

31.5		

(14.2-70.1)	

1.19		

(0.47-2.44)	
0.67	

	
		15-28	days		

38.9		

(28.4-53.2)	

1.50	

(1.07-2.03)	
0.01	

40.2	

(27.1-59.4)	

1.55	

(1.01-2.26)	
0.03	

36.8		

(21.8-62.1)	

1.40		

(0.78-2.30)	
0.22	

Quartile	2	(n=1,046)	
	 	 	 	 	 	 	 	 	

	
Reference	period	

25.0	

(23.5-26.6)	
Reference	

	 25.1	

(23.1-27.1)	
Reference	

	 24.9		

(22.5-27.6)	
Reference	

	

	 Time	after	exacerbation:	

			1-7	days		

	

150.1	

(110.5-203.9)	

	

5.88	

(4.22-7.94)	

<0.001	

	

159.2	

(109.9-230.6)	

	

6.21	

(4.14-8.93)	

<0.001	

	

133.7	

	(77.6-230.3)	

	

5.27		

(2.87-8.8)	

<0.001	

	
			8-14	days		

51.3		

(30.4-86.6)	

2.01		

(1.13-3.27)	
0.01	

51.2	

(26.6-98.4)	

2.00	

(0.95-3.63)	
0.04	

51.4		

(21.4-123.5)	

2.03		

(0.72-4.4)	
0.12	

	
		15-28	days		

34.8	

(22.2-54.6)	

1.36		

(0.83-2.09)	
0.18	

31.3		

(17.3-56.5)	

1.22	

(0.63-2.11)	
0.51	

41.1	

	(20.6-82.3)	

1.62		

(0.73-3.05)	
0.18	

Quartile	3	(n=998)	 	 	 	 	 	 	 	 	 	

	 Reference	period	
24.6		

(23.1-26.3)	
Reference	 	

24.9		

(22.9-27.1)	
Reference	 	

24.3		

(26.9-27.6)	
Reference	 	

	
Time	after	exacerbation:	

			1-7	days	

	

143.5		

(104.4-197.2)	

	

5.72	

(4.06-7.83)	

<0,001	

	

146.4		

(98.1-218.4)	

	

5.80	

(3.73-8.56)	

<0.001	

	

138.8		

(234.3-230.3)	

	

5.60		

(3.11-9.22)	

<0.001	

	 			8-14	days		
64.2		

(39.9-103.3)	

2.56		

(1.52-4.01)	
<0.001	

73.2		

(41.6-128.9)	

2.90	

(1.54-4.92)	
<0.001	

49.6	

	(119.1-123.5)	

2.00		

(0.71-4.34)	
0.13	

	 		15-28	days		
49.1		

(33.4-72.1)	

1.96	

(1.29-2.84)	
<0.001	

36.6		

(20.8-64.4)	

1.45	

(0.77-2.46)	
0.21	

69.4	

	(117.2-82.3)	

2.80	

	(1.56-4.61)	
<0.001	

Quartile	4	(highest)	(n=697)	 	 	 	 	 	 	 	 	 	

	 Reference	period	
25.2		

(23.3-27.2)	
Reference	 	

25.1	

(22.8-27.7)	
Reference	 	

25.3		

(22.3-28.6)	
Reference	 	
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Time	after	exacerbation:	

			1-7	days	

	

118.2		

(77.1-181.3)	

	

4.53		

(2.83-6.84)	

<0.001	

	

151	

	(93.9-242.9)	

	

5.72	

(3.36-9.08)	

<0.001	

	

61.5		

(23.1-163.9)	

	

2.41	

	(0.74-5.68)	

0.08	

	 			8-14	days		
56.3		

(30.3-104.7)	

2.16		

(1.07-3.82)	
0.02	

35.5		

(13.3-94.7)	

1.35	

(0.42-3.17)	
0.56	

92.3	

	(41.5-205.4)	

3.61	

	(1.42-7.45)	
0.02	

	 		15-28	days		
31.0	

(17.2-55.9)	

1.19	

(0.61-2.05)	
0.58	

35.5		

(17.8-71.1)	

1.35	

(0.61-2.55)	
0.41	

23.1		

(7.4-71.5)	

0.90		

(0.22-2.37)	
0.86	

Abbreviations:	aIRR,	adjusted	incidence	rate	ratio;	CI,	confidence	intervals	 	 	 	 	 	 	

a	Incident	rate	per	100	person-years,	b	n=2,847,		c	n=1,760	 	 	 	 	 	 	
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Table	E6	Incidence	rate	and	adjusted	incidence	rate	ratio	(aIRR)	for	acute	myocardial	infarction	and	ischemic	stroke	stratified	by	
state	(n=4,607)	

	 Composite	outcome	 Acute	myocardial	infarctionb	 Ischemic	strokec	

Time	interval	
Incidence	ratea	
(95%	CI)	

aIRR		

(95%	CI)	
P-value	

Incidence	ratea	
(95%	CI)	

aIRR	

	(95%	CI)	
P-value	

Incidence	ratea	
	(95%	CI)	

aIRR		

(95%	CI)	
P-value	

Florida	(n=2,454)	
	 	 	 	 	 	 	 	 	

	
Reference	period	

25.1	

(24.1-26.1)	
Reference	

	 25.2	

(24.0-26.6)	
Reference	

	 24.8		

(23.2-26.6)	
Reference	

	

	 Time	after	exacerbation:	

			1-7	days		

	

127.2	

(102.5-158)	

	

4.94	

(3.93-6.13)	

<0.001	

	

127.5	

(97.2-167.4)	

	

4.91	

(3.67-6.42)	

<0.001	

	

126.7		

(88.6-181.2)	

	

5.00	

	(3.39-7.09)	

<0.001	

	
			8-14	days		

41.9	

(28.7-61.1)	

1.63		

(1.08-2.33)	
0.01	

46.6	

(29.7-73.1)	

1.79	

(1.10-2.74)	
0.01	

33.8	

(16.9-67.5)	

1.33	

(0.61-2.50)	
0.42	

	
		15-28	days		

34.9	

(26.1-46.8)	

1.36		

(0.99-1.8)	
0.04	

30.7	

(20.7-45.4)	

1.18	

(0.77-1.72)	
0.41	

42.2	

(27.2-65.4)	

1.67		

1.03-2.53)	
0.03	

Nebraska	(n=58)	
	 	 	 	 	 	 	 	 	

	
Reference	period	

24.1		

(18.4-31.5)	
Reference	

	 22.9	

(16.6-31.6)	
Reference	

	 27.3	

(16.7-44.6)	
Reference	

	

	 Time	after	exacerbation:	

			1-7	days		

	

77.8	

(11.0-552.5)	

	

3.18		

(0.18-14.53)	

0.25	
110.9	

(15.6-787.6)	

4.85	

(0.27-22.4)	
0.12	

	

0	

	

NAd	
	

NAd	

	
			8-14	days		

155.7		

(38.9-622.4)	

6.36	

(1.04-20.55)	
0.01	

221.9	

(55.5-887.2)	

9.70		

(1.57-31.8)	
0.002	 0	 NAd	 NAd	

	
		15-28	days		

77.8		

(19.5-311.2)	

3.18		

(0.52-10.28)	
0.11	

110.9	

(27.7-443.6)	

4.85		

(0.79-15.9)	
0.03	 0	 NAd	 NAd	

New	York	(n=2,095)	 	 	 	 	 	 	 	 	 	

	 Reference	period	
25.0	

(23.9-26.2)	
Reference	 	

24.9	

(23.5-26.4)	
Reference	 	

25.2		

(23.5-27.1)	
Reference	 	

	
Time	after	exacerbation:	

			1-7	days	

	

132.1	

(106.4-164.1)	

	

5.19		

(4.11-6.45)	

<0.001	
168.9	

(132.7-215)	

6.70	

(5.15-8.55)	
<0.001	

69.6	

	(42.6-113.6)	

2.69		

(1.57-4.28)	
<0.001	

	 			8-14	days		
56.4	

(40.5-78.5)	

2.21		

(1.55-3.05)	
<0.001	

51.2	

(33-79.4)	

2.03		

(1.26-3.08)	
0.002	

65.2	

	(39.3-108.2)	

2.53		

(1.44-4.07)	
<0.001	

	 		15-28	days		
40.3	

(30.5-53.2)	

1.59	

(1.18-2.08)	
0.001	

38.4	

(26.8-54.9)	

1.52		

(1.03-2.15)	
0.02	

43.5		

(28.1-67.4)	

1.70	

(1.05-2.58)	
0.02	

Abbreviations:	aIRR,	adjusted	incidence	rate	ratio;	CI,	confidence	intervals	 	 	 	 	 	 	

a	Incident	rate	per	100	person-years,		b	n=2,847,	c	n=1,760	 	 	 	 	 	 	 	

d	Nebraska	had	only	16	cases	of	ischemic	stroke	in	the	reference	period.	 	 	 	 	 	
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Table	E7.	Incidence	rate	and	adjusted	incidence	rate	ratio	(aIRR)	for	acute	myocardial	infarction	and	ischemic	stroke	in	patients	
with	asthma	exacerbation,	excluding	patients	with	concurrent	chronic	obstructive	pulmonary	disease	(n=4,030)		

	 Composite	outcome	 Acute	myocardial	infarctionb	 Ischemic	strokec	

Time	interval	
Incidence	ratea	
(95%	CI)	

aIRR	

(95%	CI)	
P-value	

Incidence	ratea	
(95%	CI)	

aIRR	

(95%	CI)	
P-value	

Incidence	ratea	

(95%	CI)	

aIRR	

(95%	CI)	
P-value	

Reference	period	
25.0	

(24.2-25.8)	
Reference	

	 25.0	

(24.0-26.0)	
Reference	

	 25.1	

(23.8-26.4)	
Reference	

	

Time	after	exacerbation:	

		1-7	days		

	

133.2	

(113.5-156.4)	

	

5.21	

(4.4-6.12)	

<0.001	

	

153.4	

(127-185.2)	

	

6.01	

(4.91-7.27)	

<0.001	

	

99.6	

(73.6-134.8)	

	

3.89	

(2.81-5.23)	

<0.001	

		8-14	days		
52.4	

(40.6-67.6)	

2.05	

(1.57-2.63)	
<0.001	

55.4	

(40.5-75.8)	

2.17	

(1.55-2.94)	
<0.001	

47.4	

(30.6-73.5)	

1.85	

(1.15-2.8)	
0.006	

	15-28	days		
38.2	

(30.9-47.2)	

1.50	

(1.20-1.84)	
<0.001	

36.2	

(27.5-47.7)	

1.42	

(1.06-1.86)	
0.01	

41.5	

(29.8-57.8)	

1.63	

(1.14-2.24)	
0.004	

Abbreviations:	aIRR,	adjusted	incidence	rate	ratio;	CI,	confidence	intervals	 	 	 	 	 	

a	Incident	rate	per	100	person-years,	b	n=2,460,	c	n=1,570	 	 	 	 	 	 	
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Table	E8.	Incidence	rate	and	adjusted	incidence	rate	ratio	(IRR)	for	acute	myocardial	infarction	and	ischemic	stroke,	excluding	the	
pre-exposure	period	from	the	reference	period	(n=4,542)	

	 Composite	outcome	 Acute	myocardial	infarctionb	 Ischemic	strokec	

Time	interval	
Incidence	ratea	
(95%	CI)	

aIRR	

(95%	CI)	
P-value	

Incidence	ratea	

(95%	CI)	

aIRR		

(95%	CI)	
P-value	

Incidence	ratea	
(95%	CI)	

aIRR	

	(95%	CI)	
P-value	

Reference	period	
25.0	

(24.3-25.8)	
Reference	

	 25.0	

	(24.1-26.0)	
Reference	

	 25.0	

	(23.8-26.2)	
Reference	

	

Time	after	exacerbation:	

		1-7	days		

	

130.8		

(112.2-152.4)	

	

5.11		

(4.35-5.97)	

<0.001	

	

149.4		

(124.8-179)	

	

5.84		

(4.82-7)	

<0.001	

	

99.1		

(74.2-132.3)	

	

3.88		

(2.85-5.15)	

<0.001	

		8-14	days		
51.1	

(40.0-65.2)	

2.00		

(1.54-2.53)	
<0.001	

51.9	

(38.2-70.5)	

2.03	

(1.46-2.73)	
<0.001	

49.6		

(32.9-74.6)	

1.94	

(1.25-2.86)	
0.002	

	15-28	days		
38.7	

(31.7-47.2)	

1.51	

(1.23-1.84)	
<0.001	

36.1		

(27.8-46.8)	

1.41	

(1.07-1.82)	
0.01	

43.1		

(31.6-58.8)	

1.69	

(1.21-2.29)	
0.001	

Abbreviations:	aIRR,	adjusted	incidence	rate	ratio;	CI,	confidence	intervals	 	 	 	 	 	 	

a	Incident	rate	per	100	person-years,	b	n=2,801,	c	n=1,741	 	 	 	 	 	 	
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Table	E9.	Incidence	rate	and	adjusted	incidence	rate	ratio	(aIRR)	for	acute	myocardial	infarction	and	ischemic	stroke,	excluding	
patients	who	died	within	30	days	of	outcome	(n=4,570)	

	 Composite	outcome	 Acute	myocardial	infarctionb	 Ischemic	strokec	

Time	interval	
Incidence	ratea	
(95%	CI)	

aIRR	

(95%	CI)	
P-value	

Incidence	ratea	
(95%	CI)	

aIRR	

(95%	CI)	
P-value	

Incidence	ratea	

(95%	CI)	

aIRR		

(95%	CI)	
P-value	

Reference	period	
25.0	

(24.2-25.7)	
Reference	

	 25.0	

(24.0-26.0)	
Reference	

	 25.0	

(23.8-26.2)	
Reference	

	

Time	after	exacerbation:	

		1-7	days		

	

127.6	

(109.4-148.9)	

	

5.02		

(4.27-5.86)	

<0.001	

	

147.1	

(122.8-176.2)	

	

5.78		

(4.77-6.94)	

<0.001	

	

94.2	

(70.1-126.5)	

	

3.71		

(2.7-4.95)	

<0.001	

		8-14	days		
50.4		

(39.5-64.4)	

1.98	

(1.53-2.52)	
<0.001	

51.1	

(37.6-69.4)	

2.01	

(1.45-2.7)	
<0.001	

49.2	

(32.7-74.1)	

1.94	

(1.25-2.86)	
0.002	

	15-28	days		
37.4	

(30.6-45.8)	

1.47	

(1.19-1.80)	
<0.001	

34.3	

(26.3-44.7)	

1.35		

(1.02-1.75)	
0.02	

42.8	

(31.4-58.4)	

1.69	

(1.21-2.28)	
0.001	

Abbreviations:	aIRR,	adjusted	incidence	rate	ratio;	CI,	confidence	intervals	 	 	 	 	 	

a	Incident	rate	per	100	person-years,	b	n=2,827,	c	n=1,743	 	 	 	 	 	 	
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Table	E10.	Incidence	rate	and	adjusted	incidence	rate	ratio	(aIRR)	for	acute	myocardial	infarction	and	ischemic	stroke,	excluding	
patients	with	prolonged	hospitalization	for	asthma	exacerbation	(n=4,398)	

	 Composite	outcome		 Acute	myocardial	infarctionb	 Ischemic	strokec	

Time	interval	
Incidence	ratea	
(95%	CI)	

aIRR	

(95%	CI)	
P-value	

Incidence	ratea	
(95%	CI)	

aIRR	

(95%	CI)	
P-value	

Incidence	ratea	
(95%	CI)	

aIRR	

(95%	CI)	
P-value	

Reference	period	
25	.0	

(24.3-25.8)	
Reference	

	 25.0	

	(24.1-26.0)	
Reference	 <0.001	

25.0	

	(23.8-26.3)	
Reference	

	

Time	after	exacerbation:	

		1-7	days		

	

127.8		

(109-149.7)	

	

4.99		

(4.22-5.85)	

<0.001	

	

145.7		

(120.9-175.7)	

	

5.70	

	(4.67-6.88)	

<0.001	

	

97.1	

	(72-131)	

	

3.78	

(2.75-5.07)	

<0.001	

		8-14	days		
47.6		

(36.7-61.7)	

1.86	

(1.41-2.39)	
<0.001	

47.7	

(34.4-66.1)	

1.87	

(1.32-2.55)	
<0.001	

47.4		

(30.9-72.8)	

1.85	

(1.16-2.77)	
0.009	

	15-28	days		
38.0	

(30.9-46.7)	

1.49		

(1.20-1.82)	
<0.001	

35.8		

(27.4-46.7)	

1.40	

	(1.05-1.82)	
0.02	

41.8		

(30.3-57.7)	

1.63	

(1.16-2.23)	
<0.001	

Abbreviations:	aIRR,	adjusted	incidence	rate	ratio;	CI,	confidence	intervals	 	 	 	 	 	

a	Incident	rate	per	100	person-years,	b	n=2,709,	c	n=1,689	 	 	 	 	 	 	
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SUMMARY	OF	PAPER	1	AND	PAPER	2	CONCLUSION	

	 In	paper	1,	based	on	the	data	from	a	multicenter	prospective	cohort	of	1,016	infants	

with	bronchiolitis,	we	developed	four	machine	learning	models	to	predict	severity	of	

illness.	By	using	prehospitalization	data	as	predictors,	these	models	consistently	yielded	

superior	performance—a	higher	AUC,	net	reclassification,	sensitivity,	and	specificity—in	

predicting	positive	pressure	ventilation	and	intensive	treatment	outcomes	over	the	

reference	model.	Specifically,	these	advanced	machine	learning	models	correctly	predicted	

a	larger	number	of	infants	with	higher	severity—with	a	fewer	number	of	false-positives—

who	would	not	be	appropriately	predicted	by	the	conventional	models.	Moreover,	the	

machine	learning	models	also	achieved	a	greater	net	benefit	across	wide	ranges	of	clinical	

thresholds.	Although	an	external	validation	is	warranted,	the	current	study	lends	support	

to	the	application	of	machine	learning	models	to	the	prediction	of	acute	severity	in	infants	

with	bronchiolitis.	Machine	learning	models	have	a	potential	to	enhance	clinicians’	

decision-making	ability	and	hence	to	improve	clinical	care	and	optimize	resource	

utilization	in	this	high	morbidity	population.	

	 In	paper	2,	in	this	self-controlled	case	series	study	using	large	population-based	

data	of	adults	with	asthma,	we	found	that	asthma	exacerbation	was	associated	with	an	

increased	incidence	of	acute	myocardial	infarction	and	ischemic	stroke—particularly	in	the	

first	1-week	period.	The	observed	patterns	were	consistent	across	the	different	patient	

subgroups	and	statistical	assumptions.	For	clinicians,	our	findings	provide	the	

opportunities	for	applying	cardiovascular	prevention	measures	to	patients	with	severe	

asthma	exacerbation	during	hospitalization	and	transition	to	outpatient	care.	Our	

observations	should	also	facilitate	further	investigations	into	the	mechanisms	linking	
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asthma	exacerbation	to	acute	cardiovascular	events,	which	could,	in	turn,	lead	to	the	

development	of	effective	preventive	strategies	in	this	large	patient	population.	
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OVERALL	DISCUSSION	AND	PERSPECTIVES	

In	paper	1,	we	applied	machine	learning	models	to	predict	high	acuity	care	among	infants	

hospitalized	for	bronchiolitis.	By	using	the	prehospitalization	data	as	predictors,	these	

models	consistently	yielded	superior	performance	in	predicting	positive	pressure	

ventilation	and	intensive	treatment	outcomes	over	the	reference	model.	In	paper	2,	we	

applied	causal	inference	approach	using	self-controlled	case	series	design	and	found	that	

asthma	exacerbation	was	associated	with	an	increased	incidence	of	acute	myocardial	

infarction	and	ischemic	stroke.	

Further,	an	integration	of	machine	learning	with	causal	inference	approach	using	multi-

omics	data	is	crucial	to	investigate	the	complex	biological	mechanisms	of	bronchiolitis	and	

asthma.	As	future	directions	of	research,	we	aim	to	delineate	the	complex	pathobiology	of	

bronchiolitis	and	childhood	asthma.	While	bronchiolitis	has	been	considered	a	single	

disease	with	similar	mechanisms,	recent	studies	have	shown	heterogeneity	in	clinical	

presentations,	chronic	morbidities	(e.g.,	subsequent	risk	of	asthma),	and	upper	airway	

microbiome,	cytokine,	and	metabolome	profiles	among	infants	with	bronchiolitis.	However,	

these	studies	have	relied	solely	on	single-level	data	(e.g.,	only	clinical	or	microbiome	data).	

To	our	knowledge,	no	study	has	used	clinical,	virus,	and	multi-level	omics	data	to	

investigate	the	endotypes	of	bronchiolitis	and	their	longitudinal	relation	with	chronic	

airway	morbidities.	The	inadequate	understanding	of	bronchiolitis	endotypes	during	

infancy—an	important	period	of	lung	development—has	hindered	efforts	to	develop	

endotype-specific	bronchiolitis	treatment	and	asthma	prevention	strategies	in	this	high-

risk	population.	By	using	unsupervised	machine	learning	models,	we	aim	to	identify	

biologically-	and	clinically-meaningful	endotypes	of	bronchiolitis	through	integrating	
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clinical,	virus,	nasopharyngeal	microbiome,	cytokine	and	metabolome	data.	Besides,	it	is	

also	crucial	to	apply	advanced	causal	inference	and	causal	discovery	approach	to	infer	

causal	relations	between	host	response,	respiratory	viruses,	and	the	microbiome.	The	

integration	of	these	two	approaches	would	enable	us	to	develop	targeted	bronchiolitis	

treatment	and	asthma	prevention	strategies	in	this	high-risk	population.	


