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Abstract  

Background: Unlike other medications, contraceptive methods are often chosen based 

on the experiences and opinions of individuals’ social networks. Though social media, 

including Twitter, increasingly influences reproductive-age people, discussion of 

contraception in this setting has yet to be characterized. Natural Language Processing 

(NLP), a type of machine learning in which computers analyze natural language data, 

enables this analysis. This study aims to use NLP to explore attitudes toward different 

contraceptive methods, including both Long- and Short-Acting Reversible Contraception 

(LARC and SARC), on Twitter since 2006. 

Methods: We collected English language tweets mentioning reversible, prescription 

contraceptive methods with typical-use Pearl Indices of <10 pregnancies per 100 

woman-years, including prescription LARC (the intrauterine device (IUD) and the 

contraceptive implant) and SARC (oral contraceptive pills; the contraceptive patch; the 

vaginal ring; and the Depo-Provera shot) between March 2006 and December 2019. 

We used the Amazon Comprehend NLP Sentiment Analysis Application Programming 

Interface to determine the sentiment of all tweets mentioning a single contraceptive 

method and evaluated the NLP algorithm’s performance based on ten human reviewers’ 

manual sentiment analysis of a random sample of 1000 tweets. All data and code to 

reproduce this analysis are available at https://github.com/hms-

dbmi/contraceptionOnTwitter, and the initial steps can be replicated by launching the 

code at https://tinyurl.com/cleanTweetsMyBinder. 

Results: The number of annual tweets mentioning contraception has increased nearly 

three hundred-fold since 2007. Out of 838,739 total filtered tweets mentioning at least 

one contraceptive method, the most commonly tweeted-about method was the IUD 

(45.9%). LARC methods were mentioned more than SARC methods (58% vs. 42%), 

and the proportion of LARC-related tweets increased over time. Out of 665,064 tweets 

mentioning a single contraceptive method, there were nearly twice as many positive 

tweets about LARC methods compared to SARC methods (19.65% vs. 10.21%, 

p<0.05), though the greatest proportion of all tweets was negative (40.66%). Observed 

trends in the number and sentiment of tweets about individual contraceptive methods 

may reflect their historical context including regulation, advertising, availability, and 

satisfaction, though we did not investigate causal relationships between historical 

events and tweet volume or content in this analysis. 

Implications: Twitter is a potentially valuable source of data for consumer-level 

discourse regarding contraception and how attitudes toward individual methods have 

evolved over the past 13 years. Tweets may improve our insight into the perspectives of 

a traditionally difficult-to-reach population, related to a topic that is often stigmatized. 

Recognizing the influence of social media on people’s lives, and potentially when 

https://github.com/hms-dbmi/contraceptionOnTwitter
https://github.com/hms-dbmi/contraceptionOnTwitter
https://github.com/hms-dbmi/contraceptionOnTwitter
https://tinyurl.com/cleanTweetsMyBinder
https://tinyurl.com/cleanTweetsMyBinder
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considering initiation of a contraceptive method, this and other social media platforms 

may allow clinicians and researchers to gather and potentially disseminate accurate 

information about contraceptive options. 
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Glossary 

Contraception-related Terms:  

 

Contraception (a.k.a. Birth Control): the deliberate use of artificial methods or other 

techniques to prevent pregnancy as a consequence of sexual intercourse.[1] 

Copper Intrauterine Device (IUD): a plastic, T-shaped birth control device containing copper 

coils that can be used for birth control and emergency contraception within five days of 

unprotected sex. Sold under the brand name ‘Paragard’, it was approved by the FDA in 1998, 

and is one of the most effective forms of birth control with a one-year failure rate around 0.8%. 

The device is placed in the uterus and lasts up to ten years. It may be used by women of all 

ages regardless of whether or not they have had children. Following removal, fertility quickly 

returns.[2] 

Depo-Provera shot (a.k.a. The Shot): an injectable form of the hormonal medication depot 

medroxyprogesterone acetate (DMPA), a progestin. It was approved by the FDA in 1992, and is 

used as a method of birth control. It is also used to treat endometriosis, abnormal uterine 

bleeding, certain types of cancer, and is used for menopausal hormone therapy. It is typically 

administered every three months, and provides 98.8% effective contraception for this duration. 

With typical use, the failure rate per year of use is approximately 5%.[2] 

Hormonal Intrauterine Device (IUD): an intrauterine device that releases the hormone 

levonorgestrel into the uterus. It is used for birth control, heavy menstrual periods, and to 

prevent excessive growth of the lining of the uterus in those on estrogen replacement therapy. 

Sold under the brand names Mirena, Liletta, Skyla, and Kyleena, LNG-IUDs are one of the most 

effective forms of birth control with a one-year failure rate around 0.2%, and have been 

available in the United States since 2000. The device is placed in the uterus and lasts three to 

seven years, depending on the brand and dose of progestin. Fertility often returns quickly 

following removal.[2] 

Implanon/Nexplanon implants (a.k.a. Contraceptive Implant) (a.k.a. The implant): a very 

small plastic rod containing the hormone etonogestrel that is inserted under the skin of a 

woman's upper arm to provide birth control. It is one of the most effective forms of birth control 

with a one-year failure rate around 0.05%, and lasts at least three years.[2] One version of 

contraceptive implant — Implanon — was first used in Indonesia in 1998 and approved for use 

in the United States in 2006. Nexplanon was developed to eliminate the problem of non-

insertion and localization of Implanon by changing the inserter device and making the rod 

radiopaque. As of January 2012, Implanon is no longer being marketed and Nexplanon is the 

only available single-rod implant.[3] 

IUD (Intrauterine Device): a small, T-shaped birth control device that is inserted into a woman's 

uterus to prevent pregnancy. IUDs are one form of long-acting reversible birth control (LARC), 

and can be comprised of copper or levonorgestrel, a progestin.[2] 

https://paperpile.com/c/Q5q4qO/ox0gA
https://paperpile.com/c/Q5q4qO/Gb0e
https://paperpile.com/c/Q5q4qO/Gb0e
https://paperpile.com/c/Q5q4qO/Gb0e
https://paperpile.com/c/Q5q4qO/Gb0e
https://paperpile.com/c/Q5q4qO/Z3Lkr
https://paperpile.com/c/Q5q4qO/Gb0e
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LARC (Long-acting reversible contraception): methods of birth control that provide effective 

contraception for an extended period without requiring user action. They include intrauterine 

devices (IUDs) and subdermal contraceptive implants. They are the most effective reversible 

methods of contraception because their efficacy is not reliant on patient compliance. Their 

'typical use' failure rates, at less than 1% per year, are the same as 'perfect use' failure 

rates.[2,4] 

Oral contraceptives (a.k.a. OCPs) (a.k.a. Birth Control Pills): medications taken by mouth to 

prevent pregnancy. Two types of female oral contraceptive pill, taken once per day, are widely 

available: the combined oral contraceptive pill, which contains estrogen and a progestin, and the 

progestogen-only pill. The first OCPs became available in the United States in the 1960s, and 

multiple generations of pills have evolved since then. With perfect use, contraceptive pills have 

a 0.3% failure rate per year of use; with typical use, this rate is approximately 7%. [2] 

Pearl Index: the number of contraceptive failures per 100 women-years of exposure. The Pearl 

Index uses as the denominator the total months or cycles of exposure from the initiation of the 

product to the end of the study or the discontinuation of the product.[2] 

The birth control patch (a.k.a. The patch): a transdermal patch applied to the skin that 

releases synthetic estrogen and progestin hormones to prevent pregnancy. The first patch 

available in the United States was the Ortho Evra patch, in 2001. The contraceptive patch has 

been shown to be as effective as the combined oral contraceptive pill with perfect use (with a 

0.3% failure rate per year of use); with typical use, this rate may be as high as 9%.[2] 

The vaginal ring (a.k.a. The ring): a polymeric drug delivery device designed to provide 

controlled release of drugs for intravaginal administration over extended periods of time. The 

first vaginal ring available in the United States was the NuvaRing, in 2001. The contraceptive 

vaginal ring is inserted into the vagina and releases etonogestrel (a progestin) and 

ethinylestradiol (an estrogen), providing contraceptive protection. Vaginal rings come in one size 

that fits most women. They have been shown to be as effective as the combined oral 

contraceptive pill with perfect use (with a 0.3% failure rate per year of use); with typical use, this 

rate may be as high as 9%.[2] 

 

 

Computation-related Terms:  

 

Amazon SageMaker: a subsidiary of Amazon Web Service, Amazon SageMaker is a fully 

managed service for developers and data scientists geared toward building, training, and 

deploying machine learning models. SageMaker provides integrated tools for the entire machine 

learning workflow in a single toolset, improving efficiency and cost-effectiveness of the machine 

learning construction process.[5] 

API (Application programming interface): an interface or communication protocol between 

different parts of a computer program intended to simplify the implementation and maintenance 

of software.[6] 

https://paperpile.com/c/Q5q4qO/00aBH+Gb0e
https://paperpile.com/c/Q5q4qO/Gb0e
https://paperpile.com/c/Q5q4qO/Gb0e
https://paperpile.com/c/Q5q4qO/Gb0e
https://paperpile.com/c/Q5q4qO/Gb0e
https://paperpile.com/c/Q5q4qO/EaGD
https://paperpile.com/c/Q5q4qO/AmUt
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AWS (Amazon Web Service): a subsidiary of Amazon that provides on-demand cloud 

computing platforms and application programming interfaces (APIs) to individuals, companies, 

and governments, on a metered pay-as-you-go basis.[7] 

GetOldTweets3: a Python program that mines a scroll loader from an internet browser Twitter 

Search page through calls to a JavaScript Object Notation (JSON) provider, allowing users to 

conduct manual searches for tweets containing specified keywords or hashtags, from certain 

usernames, and/or within specific date ranges. The Twitter Search machine harvests all tweets 

with any combination of the words and/or characters searched for, within the specified time 

frame, the tweet’s permalink, tweeter’s username, tweet text, date, number of retweets, number 

of favorites, number of mentions, and hashtags.[8] 

Jupyter Notebook: an open-source web application that allows creation and sharing of 

documents that contain live code, equations, visualizations and narrative text. Uses include data 

cleaning and transformation, numerical simulation, statistical modeling, data visualization, and 

machine learning, among others.[9] 

NLP (Natural Language Processing): a subfield of linguistics, computer science, information 

engineering, and artificial intelligence concerned with the interactions between computers and 

human languages, in particular how to program computers to process and analyze large 

amounts of natural language data.[10]  

Python: an interpreted, high-level, general-purpose programming language created by Guido 

van Rossum and first released in 1991 (www.python.org).[11]  

R: a free software environment for statistical computing and graphics. R compiles and runs on a 

wide variety of UNIX platforms, Windows and MacOS. R is widely used at universities and 

research centers for statistical data analysis, and is now one of the most used software 

platforms for omics data analysis and its visualization (https://www.r-project.org/). 

Twitter: an American microblogging and social networking service where users post and 

interact with messages known as "tweets". Registered users can post, like, and retweet tweets, 

but unregistered users can only read them (www.twitter.com).  

  

https://paperpile.com/c/Q5q4qO/pGfzf
https://paperpile.com/c/Q5q4qO/7bNeE
https://paperpile.com/c/Q5q4qO/jFsz
https://paperpile.com/c/Q5q4qO/Yjt9
http://www.python.org/
https://paperpile.com/c/Q5q4qO/01xb
https://www.r-project.org/
http://www.twitter.com/
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Introduction 

 

There are over 74 million women of reproductive age (15–49) in the United 

States.[12] Approximately 52 million of these (70%) are at risk of unintended 

pregnancy—that is, they are sexually active with male partners and do not want to 

become pregnant, but could become pregnant if they and their partners fail to use 

effective contraception.[13] It is thus no surprise that greater than 99% of women aged 

15–44 who have ever had sexual intercourse have used at least one contraceptive 

method,[14] and over 60% of all women of reproductive age are currently using a 

contraceptive method.[15] Even accounting for having multiple children, the average 

woman must use contraceptives for close to four decades of her life.  

The consequences of ineffective use and non-use of contraception are important: 

higher rates of unintended pregnancy are associated with increased rates of 

abortion,[16] and among continued pregnancies, with less optimal perinatal behaviors, 

adverse maternal outcomes, premature and low-birth-weight infants, and decreased 

likelihood of breastfeeding.[17–19] Though rates of unintended pregnancy and abortion 

in the United States are currently lower than they have been for several decades, even 

today, nearly half of pregnancies in the United States are unplanned or mis-timed,[16] a 

statistic that is thought to be due to inconsistent or incorrect use of contraception and an 

over-reliance on less effective contraceptive methods.[20] Indeed, the decline in 

unintended pregnancies in recent years has been credited largely to increased 

contraceptive use, particularly the increasing use of highly effective long-acting 

reversible contraceptive (LARC) methods such as intrauterine devices (IUDs) and 

implants, whose typical use and ideal use Pearl indices (i.e. the percentage of women 

https://paperpile.com/c/Q5q4qO/5eQe
https://paperpile.com/c/Q5q4qO/Mljp
https://paperpile.com/c/Q5q4qO/GYBqg
https://paperpile.com/c/Q5q4qO/uFWJ
https://paperpile.com/c/Q5q4qO/hrFAr
https://paperpile.com/c/Q5q4qO/NWxlh+GU4m+Onhww
https://paperpile.com/c/Q5q4qO/hrFAr
https://paperpile.com/c/Q5q4qO/oa3iZ
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who will become pregnant over one year of use) are equal, at 0.05-0.8, depending on 

the specific method[2]. This is compared to short-acting reversible contraceptive 

(SARC) methods such as the oral contraceptive pill (OCP), the contraceptive patch, the 

vaginal ring, and the depo shot, which have ideal use Pearl indices of less than one, but 

typical use indices of 5-9 because they require daily, weekly, or monthly action by their 

users (see Figure 1A).[2,16] Despite the greater efficacy, ease-of-use, and high 

satisfaction rates with LARC methods and relatively worse reliability of SARC methods, 

the OCP remains the most commonly-used method, and LARC remains under-utilized, 

though its use is increasing (see Figure 1B).[14,20,21] This is thought to be related to 

lack of knowledge about LARC’s risks and benefits and variations in access to it and 

attitudes toward it, potentially related to age, intrauterine contraception’s complex 

history, and sociocultural norms.[22–24]  

Importantly, contraception is unlike other classes of medications in that 

individuals’ method choice is often more strongly influenced by their social network, as 

compared to other medication decisions that factor in traditional clinical considerations 

more heavily.[25] Qualitative studies have found that social networks are often the 

dominant and most trusted source of information about contraception among United 

States women,[26,27] particularly women under age twenty.[28] Women considering 

their contraceptive options have been shown to value anecdotal information from friends 

and family over information from health professionals,[29] with many women specifically 

utilizing or rejecting methods based on opinions and experiences of members of their 

social network.[30] Furthermore, women’s contraceptive use has been shown to be 

associated with their perceptions of friends’ and family members’ contraceptive use and 

https://paperpile.com/c/Q5q4qO/Gb0e
https://paperpile.com/c/Q5q4qO/hrFAr+Gb0e
https://paperpile.com/c/Q5q4qO/GYBqg+ZArAM+oa3iZ
https://paperpile.com/c/Q5q4qO/C50x+Jr4Cd+ZZDJ
https://paperpile.com/c/Q5q4qO/W1sl
https://paperpile.com/c/Q5q4qO/OZJno+qc8zJ
https://paperpile.com/c/Q5q4qO/70Hsz
https://paperpile.com/c/Q5q4qO/VWyYW
https://paperpile.com/c/Q5q4qO/oSg4d
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attitudes,[31][32] and among adolescents, having a higher proportion of classmates 

using contraception has been associated with increased likelihood of an individual using 

contraception.[33]  

Social media now plays a prominent role in the lives and social networks of 

reproductive-age individuals in the United States and globally, including changing the 

way many young people communicate and obtain information.[34] 36% of online adults 

aged 18-29 use Twitter,[35] and because of the prevalence of this network, it offers a 

unique window into conversations reflecting social norms, behavioral intentions, and 

sentiments of the population that uses it.[36] Twitter has thus become increasingly 

recognized as an important source of data for social network analysis, in addition to 

medical topics ranging from assessing patients’ understanding of their conditions and 

therapies[37,38] to detection of illness and adverse medication effects.[39,40] 

Furthermore, in recent years, we have seen the profound power that this platform has in 

our society, from the initiation and spread of the #MeToo movement[41] to its role in 

setting the agenda for the current US government.[42,43] It is thus no surprise that 

tweets impact behavior: a significant body of marketing research has demonstrated the 

influence that “electronic word-of-mouth” and brand mentions on Twitter have on users’ 

behavior.[44–46] In one study, over half of Twitter users reported that they have taken 

action (searching for, reading about, and purchasing) after seeing brand mentions in 

Tweets.[47] And in the healthcare realm, a meta-analysis of social networking site-

based interventions found such interventions to be effective in promoting health 

behavior change.[48] 

https://paperpile.com/c/Q5q4qO/j4pvF
https://paperpile.com/c/Q5q4qO/IdFbY
https://paperpile.com/c/Q5q4qO/AM6dU
https://paperpile.com/c/Q5q4qO/1KrD
https://paperpile.com/c/Q5q4qO/FOusR
https://paperpile.com/c/Q5q4qO/f2a7k
https://paperpile.com/c/Q5q4qO/YpwO+f2QH
https://paperpile.com/c/Q5q4qO/2Nxk+hg1tQ
https://paperpile.com/c/Q5q4qO/WcDU
https://paperpile.com/c/Q5q4qO/vPG4+YSBw
https://paperpile.com/c/Q5q4qO/UZ9a+DNbM+48vr
https://paperpile.com/c/Q5q4qO/NQZs
https://paperpile.com/c/Q5q4qO/83Me


13 

Despite a well-recognized understanding of the social nature of contraceptive 

decision-making and the prominence of social media in reproductive-age individuals’ 

lives, the extent to which different contraceptive methods are discussed and how they 

are portrayed on Twitter have not been characterized. Unlike Facebook and Instagram, 

Twitter is primarily text-based and predictably-sized, with a hard character limit on each 

post (140 characters until November 2017, and now 280 characters), characteristics 

that make it well-suited for analysis of unstructured text. Natural Language Processing 

(NLP) is a type of machine learning in which computers process and analyze large 

amounts of natural language data. NLP has become a valuable tool for studying the 

sentiments of healthcare consumers: NLP sentiment analysis in particular has been 

used to study topics ranging from detection of mental illness to attitudes toward the US 

healthcare system and human papillomavirus (HPV) vaccination,[49–54] and greater 

exposure to positive sentiment in online conversations about varenicline has been 

shown to be associated with a greater likelihood that smokers will choose to use 

varenicline in a quit attempt.[55] 

Importantly, analyzing attitudes toward contraceptive methods with Twitter as a 

data source may provide improved insight into the attitudes of a population that has 

traditionally been challenging to engage in research, related to a topic that is often-

stigmatized. Indeed, social media has been used to aid in contraceptive counseling[56] 

and to elicit opinions and attitudes toward family planning among adolescents and 

young adults, and prior studies have shown that reproductive-age individuals post, seek 

and are influenced by social media content related to contraception and reproductive 

health.[57–60] Tweets provide unfiltered sentiment analysis - they may function as a 

https://paperpile.com/c/Q5q4qO/XyZc+RFxe+RzOi+kaBq+VVKU+vVNk
https://paperpile.com/c/Q5q4qO/Yia8
https://paperpile.com/c/Q5q4qO/Py0i
https://paperpile.com/c/Q5q4qO/nb44w+pT5h+nKg3+tMgsh
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proxy for the mindset of patients considering their contraceptive options, but without the 

influences or biases that may be present with more traditional research methods such 

as surveys or in-person interviews, and they are freely available to anyone with internet 

access. We therefore hypothesize that Twitter will be a valuable data source for 

analyzing large-scale attitudes toward different contraceptive methods, and that the use 

of NLP will discern the predominant sentiments associated with different methods since 

Twitter’s founding in March 2006. 

The purpose of the current study is thus to explore the attitudes toward different 

contraceptive methods on Twitter over the past 13 years (March 2006 to December 

2019). More specifically, we investigate the portrayal of reversible, prescription 

contraceptive methods with typical-use Pearl Indices of <10 pregnancies per 100 

woman-years, including LARC (the Copper IUD, Levonorgestrel IUDs, and non-

specified IUD type; and Implanon/Nexplanon implants) and SARC methods (oral 

contraceptives; the contraceptive patch; the vaginal ring; and the depo-provera 

injection) in English language tweets. 

Methods 

Tweet collection and filtering 

We searched for tweets between March 21, 2006 (the date of the first-ever tweet) 

and December 1, 2019 mentioning reversible, prescription contraceptive methods for 

which the Pearl index was less than 10%, i.e., copper and levonorgestrel IUDs; the 

contraceptive implant; oral contraceptive pills; the contraceptive patch; the vaginal ring; 

and the depo-provera shot (Figure 1A).[1] We developed a list of search terms 

https://paperpile.com/c/Q5q4qO/ox0gA
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beginning with the names of these contraceptive methods and expanded it to include 

grammatical and punctuation variations, brand names, and colloquial names for each 

method, including slang terms encountered on urbanthesaurous.org. The list of search 

terms was revised iteratively to include only terms that reliably returned tweets related 

to the desired contraceptive method. The full list of search terms used (including both 

those that were initially tried and those that were ultimately used) can be found in 

Supplementary Table 1. We searched for tweets about IUDs within three IUD 

categories (IUD, LNG-IUD, Copper IUD) because many tweets mentioned “IUD” 

keywords without specifying “copper” or “levonorgestrel/hormonal.” 

To collect tweets, we used the Python package GetOldTweets3.[8] Once the 

initial full collection of tweets about contraception was assembled, duplicate tweets, 

tweets in which the username was a keyword (e.g. @NuvaRingLawyer), and tweets 

containing the phrases “male contraception,” “male contraceptive” “male birth control,” 

“emergency contraception,” “emergency contraceptive,” and “emergency birth control” 

were removed because though some tweets harvested with our list of search terms 

discussed male contraception and emergency contraception (e.g. “when will a male 

birth control pill come out? It’s time…” and “anyone know where l can get a prescription 

for emergency contraception?”), a priori we did not intend to study these topics (Figure 

2, Steps B-E). The number of tweets within each of the eight categories (IUD, LNG-IUD, 

Copper IUD, Implant, Pill, Patch, Ring and Shot) was quantified at this point of the 

analysis (Figure 2, Step E). Note that tweets mentioning more than one method 

counted toward each mentioned method’s total tweet count, meaning that a single tweet 

could contribute to multiple method classes (for example, the tweet “Have had my IUD 

https://paperpile.com/c/Q5q4qO/7bNeE
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for 2 years now and never going back! So much better than the pill” counted toward 

both “IUD” and “Pill”). Mann Kendall non-parametric tests were used to test for 

monotonic trends in the number of tweets about each contraceptive method over time. 

Automated sentiment analysis 

Amazon Comprehend is an NLP service that uses machine learning to find 

insights and relationships in text using pre-trained models.[61][62] The Sentiment 

Analysis API interprets unstructured text and returns the overall sentiment of a text 

(positive, negative, neutral, or mixed) with a confidence score (0-1, 1 being 100% 

confident) for that sentiment and tweet. To enable automated sentiment analysis of 

tweets about each birth control method, we narrowed our collection of tweets to include 

only tweets mentioning a single contraceptive method (Step F in Figure 2). This was 

done because automated analysis of tweets mentioning more than one method, such as 

"the hormonal IUD is amazing!! Way less hormones than the pill and they’re localized so 

much lower chances of side effects" would recognize that this tweet was positive, but 

would not enable us to discern whether the tweeter felt positively about either or both 

methods mentioned in the tweet; thus, such tweets were removed by deleting all tweets 

containing keywords from more than one category (see Supplementary Table 2). We 

used Chi square tests to compare proportions of positive, neutral and negative tweets. 

To examine the sentiments with respect to each contraceptive method over time, we 

grouped tweets within each contraception category by year and used Mann Kendall 

non-parametric tests for monotonic trends in the number of positive, neutral and 

negative tweets over time.  

https://paperpile.com/c/Q5q4qO/VyJQG
https://paperpile.com/c/Q5q4qO/Ca7vv
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Manual validation of automated sentiment analysis 

In order to test the accuracy of our NLP sentiment analysis on our collection of 

tweets, we created a “gold standard” collection of tweets based on manual sentiment 

analysis of tweets by a group of human reviewers (see Figure 3, Steps 1-2 and 

Supplementary Figure 1). 1000 tweets were randomly selected from the collection of 

tweets eligible for sentiment analysis (i.e. all filtered, non-duplicate, single-method 

tweets). Two groups of five female medical student reviewers each manually analyzed 

the sentiment of 500 tweets following the guide in Supplementary Document 1. 

Independently and blinded from one another, reviewers determined whether each 

tweeter felt positively, negatively, neutral, or had mixed emotions about the birth control 

method mentioned in the tweet. Reviewers also had the option of marking a tweet as a 

“false positive,” meaning that the tweet did not actually mention contraception at all (e.g. 

“I love going to home depo bc they have free wifi,” which was harvested because it 

contained the search term “depo bc,” a term that predominantly returned tweets about 

the depo shot; another ‘false positive’ example is the tweet “I think she has Parkinson's 

disease bc pill rolling tremors are part of that disorder,” which was harvested because it 

contained the search term “bc pill,” a term that predominantly returned tweets about the 

birth control pill). During this manual curation process, we detected two classes of 

tweets, one related to male contraception and other related to emergency 

contraception, which were outside of the scope of this project. We thus decided to 

include an additional filter to exclude these classes of tweets from the entire collection 

(steps B and C in Figure 2). Because these steps were added after the random 
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extraction, this narrowed the 1000 tweet sample validation to 973 (485 tweets in one 

group and 488 in the other).  

The results of the two groups’ manual analysis were consolidated, and if at least 

three out of five reviewers labeled a tweet as the same sentiment, that result was 

deemed the “gold standard.” The gold standard tweet collection thus included all tweets 

deemed “positive,” “negative,” “neutral,” or “mixed emotion,” with respect to the 

contraceptive method mentioned in the tweet, in addition to tweets deemed “false 

positive” (meaning the tweet was not about contraception) by the majority of reviewers 

(i.e. at least three out of five agreed). Tweets about which a majority of reviewers did 

not agree on the sentiment were not included in the gold standard. For example, if all 

five reviewers deemed the tweet “I love my nexplanon!” positive, it would be considered 

to be positive and be included in the “gold standard” set of tweets. By contrast, if the 

tweet “birth control pill got me feelin feels” was deemed mixed by two reviewers, neutral 

by two reviewers, and positive by one reviewer, it was not included in the “gold 

standard” set of tweets due to lack of agreement on its sentiment. 

Interrater reliability (via Fleiss’ Kappa score) and observed agreement were 

calculated to assess agreement among each group of five reviewers. We then 

compared the NLP-generated categorization to our “gold standard” set of tweets, and 

derived the sensitivity and specificity of the automated sentiment analysis at different 

confidence levels (all levels, 80%, 90%, and 95%) for detecting positive, neutral, mixed, 

and negative sentiments toward the contraceptive method mentioned in a tweet.  
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Workflow, data sharing and IRB exemption 

Our overall study workflow is outlined in Figure 3. Tweet extraction was done 

with Python 3, and tweet filtering and analyses were done with R version 3.6.1. Tweets 

were collected, grouped, and cleaned in an Amazon Sagemaker notebook instance 

using Jupyter notebooks. All tweets were stored in an Amazon S3 bucket. The data and 

analysis code are available at https://github.com/hms-dbmi/contraceptionOnTwitter, and 

the initial steps of our analysis can be replicated by launching the code here: 

https://tinyurl.com/cleanTweetsMyBinder.  

This study was reviewed and deemed IRB-exempt by the Harvard Medical 

School Institutional Review Board on the basis of its being non-human-subjects 

research. 

Results 

Tweet collection, filtering, and characterization 

The initial harvest of tweets containing any search term yielded 989,627 tweets 

between March 21, 2006 and December 1, 2019 (Figure 2, Step A). This collection of 

tweets was narrowed to 838,739 total tweets mentioning at least one contraceptive 

method after removing tweets mentioning male contraception, emergency 

contraception, tweets that were collected because the username contained a search 

term, and duplicate tweets (out of which the earliest tweet was maintained in the 

collection) (Figure 2, Steps B-E). The number of tweets removed from each 

contraceptive class at each filtering step are displayed in Supplementary Table 3. 

https://github.com/hms-dbmi/contraceptionOnTwitter
https://tinyurl.com/cleanTweetsMyBinder
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The 838,739 total tweets mentioning at least one contraceptive method were 

produced by 424,439 users. The median number of tweets mentioning contraception 

per user was 1 (IQR 1-2), and 123 users tweeted about contraception more than 100 

times. The most commonly tweeted-about method was the IUD (47.4%), followed by the 

shot (15.4%), the pill (11.6%), the implant (11.2%), the ring (7.7%), the copper IUD 

(2.9%), the patch (2.0%), and lastly, LNG-IUDs (1.9%); LARC methods were mentioned 

more than SARC methods (58%, vs. 42%) (Figure 4A).  

The number of tweets about contraception generally increased over time, with 

the smallest number of tweets in 2007 (35, 0.004 % of all tweets) and the largest in 

2019 (187,612, 22.4% of all tweets) (Table 1, Figure 4B). Out of all tweets collected, 

the proportion of tweets mentioning LARC methods (all IUDs and the implant) generally 

increased over time, with the smallest proportion in 2009 (1,460, 22.4%), and the 

largest proportion in 2019 (143,101, 76.3%). Conversely, the proportion of tweets 

mentioning SARC methods (pill, patch, ring and shot) was greatest in 2009 (5,055, 

77.6%) and smallest in 2019 (44,511, 23.7%) (Figure 4C). With respect to individual 

methods, the number of tweets per year mentioning all LARC methods and the pill 

trended up over time (all p< 0.05), while there was no monotonic upward or downward 

trend in the number of tweets about the patch, the ring or the shot over time (all p>0.05) 

(Table 1). 

Manual validation of automated sentiment analysis 

There were 889 of the 973 manually reviewed tweets (91.4%) that had 

agreement of ≥3 reviewers and were included in the gold standard collection, which is 

publicly available and can be downloaded at https://github.com/hms-

https://github.com/hms-dbmi/contraceptionOnTwitter/blob/master/finalGoldStandard.csv
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dbmi/contraceptionOnTwitter/blob/master/finalGoldStandard.csv. In 403 (45.3%) of the 

889, all 5 reviewers agreed on the tweet’s classification; 4 reviewers agreed about 229 

tweets (25.8%); and 3 agreed about 257 (28.9%). 331 (37.2%) of tweets in the gold 

standard collection were neutral, 249 (28.0%) were negative, 185 (20.8%) were 

positive, 95 (10.7%) were mixed, and 29 (3.3%) were false positives. Interrater reliability 

between the five reviewers in each group was moderate to substantial, with Fleiss’ 

Kappa scores of 0.632 and 0.534 for the two groups. Based on the gold standard 889 

tweets’ sentiments, the sensitivity and specificity of Amazon Comprehend’s sentiment 

analysis results with 95% confidence were 67% and 92%, 74% and 88%, 83% and 

72%, and 0% and 98% for detection of positive, neutral, negative, and mixed sentiments 

toward the contraceptive method mentioned in a tweet, respectively (Table 2). 

Automated sentiment analysis 

Out of the 838,739 tweets mentioning at least one contraceptive method, a total 

of 665,064 tweets mentioned a single contraceptive method and were thus eligible for 

sentiment analysis. To characterize trends in attitudes toward each contraceptive 

method over time, we looked at tweets interpreted as positive, neutral, or negative by 

Amazon Comprehend with ≥95% confidence based on our finding that this confidence 

level led to optimal sensitivity and specificity for the true sentiment toward the 

contraceptive method mentioned in a tweet (see Table 2). Because Amazon 

Comprehend did not detect mixed emotion tweets reliably (0% sensitive based on our 

manual gold standard) and because they made up a small proportion of all tweets with 

sentiment (10.7% of tweets in the gold standard collection), mixed emotion tweets were 

excluded from our analysis of trends in sentiments over time.  

https://github.com/hms-dbmi/contraceptionOnTwitter/blob/master/finalGoldStandard.csv
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Of the 160,713 tweets with ≥95% confidence score sentiment (24.17% of all 

tweets subjected to sentiment analysis), the greatest proportion (40.66%) was negative 

(Table 3). With respect to individual methods, the greatest proportion of positive tweets 

occurred in tweets about the Copper IUD (3,091, 30.37%) while the smallest occurred in 

tweets about the Patch (335, 7.3%). The greatest proportion of negative tweets 

occurred in tweets about the Shot (18,805, 61.49%) while the smallest occurred in 

tweets about hormonal IUDs (590, 15.82%). Overall, there were significantly more 

positive tweets about LARC methods compared to SARC methods (19.65% vs. 10.21%, 

p<0.05) (Table 3, Supplementary Tables 5-6). 

In terms of changes and trends over time, there were significant upward trends in 

the number of both positive and negative tweets about all LARC methods and the pill. 

There were less clear trends in the number or proportion of positive, neutral or negative 

tweets about non-LARC methods, though there was a trend toward increasing numbers 

and proportions of positive tweets about the ring in 2018-2019, and tweets about the 

shot were predominantly and overall relatively stably negative over time (Figure 5).  

  

Discussion 

Many factors have been shown to influence the popularity of different 

contraceptive methods, including product-related factors (for example, availability, 

marketing, and media coverage of adverse effects and complications), provider-related 

factors (for example, provider attitudes toward different methods and prevalence of 

clinicians trained to insert and remove LARCs), and patient-related factors (for example, 

direct-to-consumer marketing, access, and word of mouth).[24,63] Importantly, the 

https://paperpile.com/c/Q5q4qO/xCHs+ZZDJ
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‘word of mouth’ piece is influenced by all of the others in the list preceding it: for 

example, FDA approval of a new LARC device, a conversation with a healthcare 

provider, or a commercial advertising the NuvaRing may all trickle down into consumer 

discussion, and a significant body of research has shown that such discussion often 

heavily influences patients’ contraceptive decision-making.[25–33] 

This study describes a novel data source in this regard: Twitter offers a window 

into the minds of its users discussing contraception in a social setting that has become 

increasingly influential for reproductive-age individuals in the 21st century. We collected 

English language tweets mentioning reversible, prescription contraceptive methods 

between March 2006 and December 2019 and found that the number of tweets 

mentioning contraception each year has increased nearly three hundred-fold since 

2007. Furthermore, we found that the proportion of tweets about LARC compared to 

SARC methods has gradually increased over time since 2009, and in sentiment 

analysis, there were significantly more positive tweets about LARC methods compared 

to SARC methods, though the greatest proportion of all tweets about contraceptive 

methods was negative.  

Importantly, we observed patterns in both the overall numbers and in the 

proportions of positive vs. negative tweets that we believe may reflect the regulation, 

advertising, availability, use, and satisfaction rates of individual methods, though we did 

not investigate causal relationships between historical events and tweet volume or 

content in this analysis. Regarding the overall number of tweets about all contraceptive 

methods, the number of annual tweets mentioning a contraceptive method gradually 

increased between 2006 and 2011, peaking in 2012 before leveling off for several years 

https://paperpile.com/c/Q5q4qO/70Hsz+W1sl+OZJno+qc8zJ+VWyYW+oSg4d+j4pvF+IdFbY+AM6dU
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(Table 1, Figure 4B). Though the peak in contraception-related tweets in 2012 is likely 

multifactorial, we believe that it could be at least in part related to the passage of the 

“contraception mandate” - the provision of the Affordable Care Act (ACA) requiring 

private health plans to cover contraceptive methods without copayments, deductibles or 

other out-of-pocket costs which subsequently took effect for millions of Americans in 

January 2013[64]. In 2018-2019, the annual number of tweets mentioning all methods 

of contraception increased substantially once again (Table 1, Figure 4B). Shortly 

before this surge, in October of 2017, the Trump administration expanded exemptions 

to the contraceptive mandate, restricting coverage of contraception[65]; shortly 

thereafter, blocks to funding for Title X Family Planning Programs [66] and Planned 

Parenthood [67] further aimed to restrict access to contraception and family planning 

services, all contributing to increasing political tension surrounding access to women’s 

reproductive healthcare and the growth of a global movement for women’s 

empowerment and gender equity. This growing modern feminist movement spread 

widely among younger generations - particularly on social media - in 2018-2019, with 

2018 having been called “the year of the woman.”[68] Contraception has played a 

central role in women’s empowerment movements throughout history, and it is 

reasonable to imagine that this surge in online discourse about it is attributable - at least 

in part - to the current larger movement for gender equity. To this end, the number of 

tweets about the IUD in particular has surged dramatically over the past several years; 

that the IUD has become a symbol of the modern feminist movement[69] lends further 

creed to the notion that the surge in tweets about contreception in recent years may be 

related to this global phenom. Also interestingly, the number of tweets specifically 

https://paperpile.com/c/Q5q4qO/aG5R
https://paperpile.com/c/Q5q4qO/cST4
https://paperpile.com/c/Q5q4qO/pIGb
https://paperpile.com/c/Q5q4qO/2dms
https://paperpile.com/c/Q5q4qO/7v1I
https://paperpile.com/c/Q5q4qO/0NEx
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mentioning the contraceptive pill roughly mirrors the number of tweets about all 

contraceptive methods, with a peak in 2012, nadir in 2015, and significant upward trend 

in 2017-2019. This pattern could be reflective of the broader historical context above, 

considering that the pill is often thought of as the quintessential contraceptive method, 

with “birth control” often being equated with “the pill” colloquially. 

With respect to tweets about specific contraceptive methods, especially LARC, 

there are additional observations we believe could be related to method availability, 

advertising, use and satisfaction. The increasing number of tweets and increasing 

proportions of both positive and negative tweets about LARC methods (Table 1, Figure 

4C, Figure 5) can likely be attributed to increasing LARC use over the past decade[15]; 

it logically follows that if more people are using a method, they are more likely to (a) 

tweet about it, and (b) share their opinions - both good and bad. Several factors 

underlying increasing LARC use include increasing availability of LARC methods,[13,15] 

increasing numbers of providers who are trained to insert LARC methods,[24,70–72] 

and increases in direct-to-consumer advertising of LARC methods, with LARC 

surpassing the OCP to become the most heavily-promoted class of contraception in 

2012.[73] Perhaps related to these phenomena, the number of annual tweets 

mentioning OCPs peaked in 2012 and then gradually declined for several years 

following, while 2013 saw a spike in tweets mentioning LNG IUDs and a steady 

increase in mentions of all LARC methods in subsequent years (Table 1, Figure 4B-C). 

Looking at hormonal IUDs specifically, the increasing number and proportion of positive 

tweets in recent years (the LNG-IUD and the vaginal ring were the only methods for 

which the number of positive tweets ever surpassed both neutral and negative; see 

https://paperpile.com/c/Q5q4qO/uFWJ
https://paperpile.com/c/Q5q4qO/Mljp+uFWJ
https://paperpile.com/c/Q5q4qO/ZZDJ+qLjX+05VY+LRi3
https://paperpile.com/c/Q5q4qO/3R3D
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Figure 5) could be related to their increasing availability, use, and likability: the lower-

cost 52mg levonorgestrel IUD (Liletta) was approved in 2015, and drove the cost of 

competitor LNG-IUDs down, increasing accessibility of these methods.[74] 

Concomitantly, hormonal IUDs have the highest satisfaction rates (70% “very satisfied”) 

and lowest one-year discontinuation rates (12.5%) of all reversible contraceptive 

methods.[75]  

Patterns in tweets about the ring, patch and shot (Figure 5) may also reflect 

historical events and consumers’ experiences. In 2011, the FDA issued a black box 

warning for thrombotic risk associated with the Ortho Evra patch[76], and in this same 

year, both the overall number and the number of negative tweets about the patch 

peaked. In an opposite trend, in 2018, the FDA approved a new 1-year contraceptive 

ring - Annovera[77] - and in that same year, the number of positive tweets mentioning 

contraceptive rings increased substantially, subsequently surpassing the numbers of 

neutral and negative tweets in 2019. Finally, the stably negative majority of tweets about 

the shot can be understood in the context of well-characterized dissatisfaction with the 

depo-provera injection: with a 43% one-year discontinuation rate, this method is 

consistently associated with the most side effects and the lowest satisfaction of all 

reversible contraceptive methods.[75,78]  

In addition to the major findings with respect to individual methods described 

above, the high prevalence of negative tweets about all contraceptive methods is 

striking. This may be due in part to a negativity bias related to individuals’ experiences 

with contraception and contemplation of their contraceptive options. Negativity bias is 

the notion that, even when of equal intensity, things of a more negative nature (for 

https://paperpile.com/c/Q5q4qO/rh3S
https://paperpile.com/c/Q5q4qO/jYw2
https://paperpile.com/c/Q5q4qO/DfbQ
https://paperpile.com/c/Q5q4qO/qDR1
https://paperpile.com/c/Q5q4qO/jYw2+VEpa
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example, unpleasant thoughts or emotions, or harmful/traumatic events - perhaps 

cramping, heavy bleeding, a painful procedure, or the prospect of an unintended 

pregnancy, in this case) have a greater effect on one's psychological state and 

processes than neutral or positive things.[79] Across an array of psychological 

situations and tasks, adults display a propensity to attend to, learn from, and use 

negative information far more than positive information[80] and neurophysiologically, 

event-related potential and functional magnetic resonance imaging studies have shown 

stronger neural responses to negative stimuli compared to positive ones.[81–83] Our 

finding that negative tweets such as “I hate the stupid depo shot, I’ve gained 20 lbs in 6 

months and I cry all the time now” are more common than tweets such as “I’ve been 

happy with the depo shot so far!” is in keeping with our human tendency to be aware of 

and share more negative experiences than positive ones. Furthermore, negativity bias 

has been shown to be particularly relevant in decision-making: when presented with the 

prospect of either gaining or losing something, potential costs are often more heavily 

considered than potential gains; in other words, people fear the consequences of the 

negative outcome more than they desire the potential positive outcome, even when the 

two possibilities are equivalent.[84] In the case of womens’ contraceptive experiences 

and decision-making as portrayed on Twitter, this bias is manifested insofar as tweets 

such as “Terrified about my nexplanon appointment tomorrow. May or may not go.” and 

“I want an IUD but I heard it hurts a lot...so no” were far more common than tweets such 

as “Sure, taking a pill every day is annoying, but I’m glad I don’t have to worry about 

pregnancy!” Related to our human negativity bias more broadly, it is worth noting the 

possibility that Twitter as a platform highlights negative attitudes more than positive 

https://paperpile.com/c/Q5q4qO/erkZ
https://paperpile.com/c/Q5q4qO/ObR7
https://paperpile.com/c/Q5q4qO/WOUi+cZdi+bEk9
https://paperpile.com/c/Q5q4qO/pGTX
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ones, not just about contraception, but in tweets more broadly; though this has not been 

explicitly investigated with tweets, there is evidence that negative valence is associated 

with increasing virality of online content.[85] Finally, it is also worth noting that based on 

our manual gold standard collection of tweets, the sensitivity of our NLP algorithm for 

negative sentiment toward a method was 83%, compared to only 67% for positive 

sentiment toward a method. It is thus possible that our NLP analysis over-estimated the 

proportion of negative tweets, although among the 889 tweets in the gold standard 

collection, a greater proportion of tweets were negative compared to positive (28% vs. 

20.8%). 

Finally, an additional prominent trend in our sentiment analysis was a regression 

toward greater proportions of tweets with emotional valence over time (i.e. more positive 

and negative, fewer neutral) among nearly all contraceptive methods. Several 

hypotheses could explain this observation: first, in our increasingly polarized world, 

social media sites are becoming recognized as “echo chambers” in which individuals 

post more and more polarized content generally, ranging from the political to the 

personal.[86] This ‘echo chamber’ phenomenon may be related to the idea of emotional 

contagion, or the notion that one person's (or post’s) emotions directly trigger similar 

emotions and behaviors in others; indeed, prior experimental research using Facebook 

has shown that when users are exposed to more negative posts, their own posts 

become more negative, and vice versa.[87] Recognizing that either or both of these 

phenomena is potentially at play, the clear trend toward more tweets with emotional 

valence about all contraceptive methods becomes more understandable.  

https://paperpile.com/c/Q5q4qO/xd24
https://paperpile.com/c/Q5q4qO/SrQt
https://paperpile.com/c/Q5q4qO/OJC0
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In considering the potential impact of this work, it is important to acknowledge its 

limitations. First, we by no means collected all tweets that mention the contraceptive 

methods we studied: we were unable to harvest tweets with certain brand names of 

medications due to their also being names, thus returning many tweets unrelated to 

contraception (e.g. “Yasmin”), or tweets with mis-spelled terms (e.g. birht control pill). 

Second, a small percentage of tweets were not actually about contraception: 

extrapolating from the 3.3% of the 973 tweets that were manually reviewed that were 

false positives, we estimate that approximately 27,000 tweets out of our greater-than-

838,000-tweet collection are not actually about contraception. Third, we were not able to 

include tweets’ images, gifs or linked web pages in our sentiment analysis. Fourth, our 

data may be subject to bias in that Twitter users are predominantly democratic, and a 

minority of users account for the majority of tweets.[88] Regarding the former point, we 

do not have demographic or political information for our users, as this information is not 

typically posted on users’ profiles, making interpretation of the potential generalizability 

of our results challenging. Regarding the latter, however, we do know that the median 

number of tweets per user in our sample was 1 (IQR 1-2), dampening any potential 

concern that a small number of users could be heavily biasing our sample. Finally, our 

NLP sentiment analysis was limited: to look at sentiments toward specific methods, we 

excluded all tweets mentioning more than one method; only 24% of tweets had NLP-

assigned sentiments with ≥95% confidence (though this was still more than 160,000 

tweets, this sample is significantly smaller than our complete sample of tweets); and our 

sentiment analysis program had a sensitivity and specificity of only 67% and 92%, 74% 

and 88%, and 83% and 72% for detection of positive, neutral, and negative sentiments 

https://paperpile.com/c/Q5q4qO/rBkZ


30 

toward the contraceptive method mentioned in a tweet, respectively. Factors underlying 

these less-than-perfectly accurate categorization methods include the program’s 

inability to detect sarcasm (e.g. “just got my birth control shot directly on my sunburn.. 

Lovely!” was interpreted as positive, though we can tell the true sentiment of this tweet 

is probably negative), in addition to its inability to distinguish between the attitude 

toward the method mentioned in the tweet and the tweet’s overall sentiment (e.g. “I’m 

so excited to get my nexplanon out and reset my body” was interpreted as positive, 

though we can tell that the sentiment toward the nexplanon is negative). As discussed 

above, it is possible that our NLP analysis over-estimated the proportion of negative 

tweets based on its greater sensitivity for negative sentiment toward a contraceptive 

method, though the gold standard collection had a greater proportion of negative tweets 

compared to positive (28% vs. 20.8%). 

Despite these limitations, this study has several notable strengths. First and 

foremost, to our knowledge, it is the first large-scale study of the portrayal of reversible, 

prescription contraceptive methods on any form of social media, a potentially significant 

influential factor in contraceptive decision-making for reproductive-age individuals. 

Second, we validated the performance of Amazon Comprehend’s NLP sentiment 

analysis algorithm for our data based on a gold standard manual sentiment analysis by 

ten human reviewers, among whom agreement was very good (91.4% of tweets had 

majority agreement). Third, its broad scope enables the investigation of not just a single 

contraceptive method or class of methods, but all of the reversible, prescription 

methods. Fourth, traditional research methods investigating attitudes toward treatment 

options such as focus groups and face-to-face interviewing are time consuming, 
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vulnerable to bias depending on the fellow group members and/or interviewers, and 

costly. By contrast, tweets are free from potential influence of interviewers or group 

members and are readily available for free. To this end, we have made our database of 

tweets publicly available, setting up future investigators to build upon our work. Broadly 

speaking, mining and interpreting tweets is a way for researchers to be front-facing with 

contraceptive users - key stakeholders in contraceptive development and satisfaction. 

This could be an important way for researchers and clinicians to better understand the 

needs, desires, and frustrations of contraceptive methods, potentially guiding future 

research directions and programs. 

Along these lines, this work sets the stage for several potential areas of future 

investigation. First, analyzing the geographic distribution of tweets in our sample would 

be enlightening: though tweets’ locations were not available, the location information of 

approximately 60% of the twitter users in our sample can be collected from their 

profiles, and we are in the process of collecting this data. Second, the ideal goal of this 

research would be to discern whether method-mentions and sentiments correlate with 

or influence real-world method use by the tweeters. To this end, we could, after 

collecting the geographic data described above, correlate tweets produced by users 

from specific geographic regions with method use in those regions based on insurance 

claims data; or, for that matter, one could tweet at the tweeters directly and ask about 

their contraceptive use. Third, a more advanced NLP model could better characterize 

and interpret the tweets about contraception. Feasible analysis goals could include 

distinguishing between provider- vs. consumer-produced tweets, recognizing attitudes 

toward different contraceptive methods with greater nuance and accuracy than simply 
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“positive, negative or neutral”, interpreting tweets mentioning more than one method, 

and detecting sarcasm, as prior work has done.[89] Fourth, one of the prominent 

observations in this study was the regression toward increasing emotional valence (i.e. 

both positive and negative) in all tweets about contraception over time. It is unclear 

whether this trend reflects polarization among Twitter users discussing contraception, or 

if Twitter as a whole has become more polarized. An additional route of investigation 

could include performing sentiment analysis on a random sample of tweets about an 

unrelated topic to determine whether similar trends are seen in tweets unrelated to 

contraception. Finally, beyond these information-gathering routes, this work sets the 

stage for potential interventions: knowing that consumers discuss contraception on 

twitter, can we use this information to help individuals discover methods that better suit 

their needs? Indeed, prior research has demonstrated that a facebook-based guide 

about contraception as an adjunct to in-office counseling increased patient preference 

for LARC.[56] Smartphones are now able to detect depressive symptoms in their users 

and suggest mental health hotlines[90]; what if your smartphone detected that you were 

dissatisfied with your contraceptive method and asked if you’d heard of specific 

alternative options?  

 In conclusion, our findings suggest that tweets about contraception are a 

previously-unexplored, easily accessible, and valuable source of data reflecting 

attitudes toward contraceptive methods and how they have evolved over the past 13 

years. Bearing in mind the limitations of this work, its implications are far-reaching. 

Particularly considering the potential links between observed trends in tweet volume 

and sentiment and their historical context, our findings suggest that using Twitter as a 

https://paperpile.com/c/Q5q4qO/gY39
https://paperpile.com/c/Q5q4qO/Py0i
https://paperpile.com/c/Q5q4qO/FpiW
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data source may be (1) a valid means of assessing individuals’ experiences of different 

contraceptive methods, and (2) a valuable tool for dissemination of accurate information 

about individuals’ contraceptive options with the potential to help people find methods 

that will best suit their needs and priorities. Our methods and their application to other 

consumer-generated media have the potential to vastly improve our insight into the 

attitudes of a population that has traditionally been challenging to engage in research, 

related to a topic that is often-stigmatized. If indeed we feel that messaging surrounding 

contraception is important as a way to minimize unintended pregnancies, what can we 

do at the level of twitter, and social media more broadly, to potentially affect public 

opinion so that individuals’ contraceptive needs are better met? Recognizing that 

patients have more negative than positive things to say about their contraception, could 

we more effectively message positive aspects of our various contraceptive methods? 

Could mining and interpreting tweets about contraception help us identify patients who 

need improved reproductive healthcare provision? Many people have created 

tremendously powerful movements via Twitter - from #MeToo to Donald Trump. Could a 

similar movement about contraception impact individuals’ attitudes? This work 

represents a first step toward a better understanding of the role of social media in 

contraceptive decision-making, potentially setting the stage for an entirely new realm of 

investigation and intervention in family planning. 
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Summary  

We used Natural Language Processing to explore attitudes toward different 

contraceptive methods on Twitter since 2006. We collected 989,627 English language 

tweets mentioning reversible, prescription contraceptive methods with typical-use Pearl 

Index of <10 pregnancies per 100 woman-years, including prescription LARC (IUDs and 

the contraceptive implant) and SARC (oral contraceptive pills; the contraceptive patch; 

the vaginal ring; and the depo-provera shot) between March 2006 and December 2019. 

The most commonly tweeted-about method was the IUD (45.9%), and LARC methods 

were mentioned more than SARC methods (58% vs. 42%). In NLP sentiment analysis 

validated by a manual sentiment analysis involving ten human reviewers, there were 

nearly twice as many positive tweets about LARC methods compared to SARC 

methods (19.65% vs. 10.21%, p<0.05), though the majority of tweets was negative 

(40.66%). We observed potential links between trends in tweet volume and sentiment 

and their historical context, including their regulation, advertising, availability, and 

satisfaction. Our findings suggest that using Twitter as a data source may be (1) a new 

means of assessing individuals’ experiences of different contraceptive methods, and (2) 

a valuable tool for dissemination of accurate information about individuals’ contraceptive 

options with the potential to help people find methods that will best suit their needs and 

priorities.  
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Tables and Figures  

Table 1: Number of tweets about each method per year with Mann Kendall statistics showing trend in numbers over time  

 

Method 

Number of tweets 

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Tau (p-value)* 

IUD 16 333 676 9369 18439 28018 26317 34099 33238 39508 29712 68742 108762 0.87 (4.36E-05) 

LNG-IUD 0 7 199 476 574 1068 2004 1065 1008 1268 1672 2480 3699 0.82 (0.000121) 

Copper IUD 0 6 133 512 789 1977 1630 1306 1438 2146 2999 3991 7195 0.87 (4.36E-05) 

Implant 0 20 452 1485 5120 6957 6956 7009 7529 8708 10967 15467 23445 0.97 (4.77E-06) 

LARC 

Combined 
16 346 1008 10357 19802 31063 29951 36470 35684 42922 34383 75213 119656 0.87 (4.36E-05) 

Pill 14 120 1478 5262 8202 10301 8343 6066 5971 6817 9656 15516 19822 0.69 (0.001) 

Patch 2 89 470 1934 3969 2317 1555 1318 758 614 797 945 1745 0.18 (0.428) 

Ring 0 50 1556 4105 6279 10587 5531 7731 5089 6928 4396 5200 7195 0.33 (0.15) 

Shot 3 54 1551 4729 12517 20516 17987 13838 10628 10260 9442 11751 15749 0.39 (0.08) 

SARC 

Combined 
19 313 5055 16030 30967 43721 33416 28953 22446 24619 24291 33412 44511 0.51 (0.02) 

All methods 35 679 6515 27872 55889 81741 70323 72432 65659 76249 69641 124092 187612 N/A 

* Mann Kendall test for monotonic trend 
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Table 2: Sensitivity and specificity of automated sentiment analysis in detection of sentiment toward the contraceptive method 

mentioned in a tweet, based on manual gold standard sentiment analysis 

 
Sentiment 

 
Statistic 

Amazon Comprehend Confidence Score (%) 

All 80 90 95 

Positive Sensitivity (%) 36 43 49 67 

Specificity (%) 85 91 91 92 

Negative Sensitivity (%) 66 82 84 83 

Specificity (%) 60 65 67 71 

Neutral Sensitivity (%) 64 76 77 74 

Specificity (%) 63 76 81 88 

Mixed Sensitivity (%) 14 0 0 0 

Specificity (%) 96 97 98 98 

 

  



45 

Table 3: Numbers of positive, negative and neutral tweets about each contraceptive method 

 

 
Method 

Total 
tweets 

Number of tweets 
with ≥95% confident 

sentiment (n, %)* 

Positive tweets 

(n, %)☨ 

Negative tweets 

(n, %)☨ 

Neutral tweets 

(n, %)☨ 

P 
(positive vs. 
negative) ∮ 

P 
(positive vs. 

neutral) ∮ 

P 
(negative vs. 

neutral) ∮ 

IUD 280037 60277 (21.52%) 10602 (17.59%) 25039 (41.54%) 20314 (33.7%) 2.2e-16 2.2e-16 2.2e-16 

LNG-IUD 11500 3729 (32.43%) 920 (24.67%) 590 (15.82%) 2071 (55.54%) 2.2e-16 2.2e-16 2.2e-16 

Copper 
IUD 

17577 4580 (26.06%) 1391 (30.37%) 1492 (32.58%) 1371 (29.93%) 0.06 0.70 0.02 

Implant 76356 22724 (29.76%) 5026 (22.12%) 8628 (37.97%) 8015 (35.27%) 2.2e-16 2.2e-16 2.02e-06 

LARC 
Combined 

385470 91310 (23.69%) 17939 (19.65%) 35749 (39.15%) 31771 (34.79%) 2.2e-16 2.2e-16 2.2e-16 

Pill 90836 20848 (22.95%) 1679 (8.05%) 5670 (27.2%) 12792 (61.36%) 2.2e-16 2.2e-16 2.2e-16 

Patch 14568 4586 (31.48%) 335 (7.3%) 1455 (31.73%) 2663 (58.07%) 2.2e-16 2.2e-16 2.2e-16 

Ring 56283 13389 (23.79%) 1928 (14.4%) 3660 (27.34%) 6353 (47.45%) 2.2e-16 2.2e-16 2.2e-16 

Shot 117907 30580 (25.94%) 3144 (10.28%) 18805 (61.49%) 7698 (25.17%) 2.2e-16 2.2e-16 2.2e-16 

SARC 
Combined 

279594 69403 (24.82%) 7086 (10.21%) 29590 (42.64%) 29506 (42.51%) 2.2e-16 2.2e-16 0.73 

All 
methods 

665064 160713 (24.17%) 25025 (15.57%) 65339 (40.66%) 61277 (38.13%) 2.2e-16 2.2e-16 2.2e-16 

* % of all tweets mentioning method 

☨ % of tweets with ≥95% confident sentiment; note that percentages do not add up to 100 because mixed tweets were excluded from 

analysis on the basis of Amazon Comprehend’s 0% sensitivity for detecting mixed emotion based on our manual gold standard 
analysis. 
∮ Chi Square test of proportions for the numbers of positive vs. negative; positive vs. neutral; and negative vs. neutral tweets 

mentioning each method and method class. 
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Figure 1: Reversible, prescription contraceptive methods (A) and Percent of women using different contraceptive methods in the 

United States based on estimated from the National Survey of Family Growth, 2006 - 2017 (B) 

 

A         B 

 

 

 
Figure 1 Legend: (A) Reversible, prescription contraceptive methods, adapted from 

https://www.cdc.gov/reproductivehealth/UnintendedPregnancy/PDF/effectiveness_of_contraceptive_methods.pdf. *Percentages 

indicate Pearl Index, i.e. number out of 100 women who experienced unintended pregnancy within the first year of typical use of each 

contraceptive method. (B) Percent of women using different contraceptive methods in the United States based on National Center for 

Health Statistics data, 2006 - 2017. 2006-2010 data are based on a sample of 12,279 women interviewed in 2006–2010; 2011-2013 

estimates are based on data from the 5,601 women in the female respondent file of the 2011–2013 National Survey of Family 

Growth (NSFG); 2015-2017 estimates are based on data from the 5,554 women in the female respondent file of the 2015–2017 

NSFG. No data were available for 2014 or 2018-2019. For the 2006-2010 data collection period, the implant, lunelle (1 month 

https://www.cdc.gov/reproductivehealth/UnintendedPregnancy/PDF/effectiveness_of_contraceptive_methods.pdf
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injectable) and patch were grouped together; for the purposes of this graphic, it was assumed that 1/3 of this group used each 

method.  
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Figure 2: Tweet filtering and removal of irrelevant text 

 

Figure 3: Workflow of data extraction, processing and analysis  
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Figure 2 Legend: Workflow of tweet filtering and 
removal of irrelevant text A. Tweets were harvested 
using Python GetOldTweets3. 8 classes of 
contraception included IUD, Copper IUD, LNG-IUD, 
Implant, Pill, Patch, Ring, and Shot; see 
Supplementary Table 1 for list of keywords used to 
harvest tweets; A-B: Remove 12,628 tweets containing 
the phrases “male contraception”, “male contraceptive”, 
and “male birth control”; B-C: Remove 4,799 tweets 
containing the phrases “emergency contraception”, 
“emergency contraceptive”, and “emergency birth 
control”; C-D: Remove 57,760 tweets where username 
contained a keyword (e.g. username 
@NuvaRingLawyer); see Supplementary Table 1 for 
complete list of keywords; D-E: Remove 75,701 
duplicate tweets, keeping the earliest one; E-F: Remove 
173,675 tweets mentioning more than one contraceptive 
method to enable automated sentiment analysis. 

 

Figure 3 Legend: General workflow of data extraction, processing, and 
analysis. A. Tweets were harvested using Python GetOldTweets3. 8 
classes of contraception included IUD, Copper IUD, LNG-IUD, Implant, 
Pill, Patch, Ring, and Shot; see Supplementary Table 1 for list of 
keywords used to harvest tweets. B. Removal of tweets about 
emergency contraception, male contraception, tweets harvested 
because the twitter username contains a keyword (e.g. 
@NivaRingLawyer), and duplicate tweets (see Figure 3). Tweet 
description included quantifying the number of tweets per contraception 
class, tweets per year, tweets per contraception class per year (see 
Figure 4), number of users, and number of tweets per user. Sentiment 
analysis was conducted to answer the question: is each tweet 
mentioning a single contraceptive method (n=665,064) positive, 
negative, neutral, or mixed emotion? D. Amazon Comprehend 
Sentiment Analysis API was used for automated sentiment analysis. 1. 
Manual analysis of random sample of 973 tweets by two groups of five 
reviewers; interrater agreement calculated with a Kappa statistic (see 
Supplementary Figure 1). 2. 889 tweets with agreement of ≥ 3 out of 5 
reviewers make up "Gold Standard" sentiment analysis. E. We 
calculated the sensitivity and specificity of Amazon Comprehend for 
detection of positive, neutral, and negative sentiment regarding the 
contraceptive method mentioned in a given tweet based on manual 
Gold Standard from (1-2). F. Optimal sensitivity and specificity for 
correct tweet sentiment occurred at Amazon Comprehend’s 95% 
confidence score (see Table 2). G. Analysis of trends of number of 
positive, neutral and negative tweets about each contraceptive method 
between 2006 and 2019 (see Figure 5). 
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Figure 4: Number of tweets mentioning each class of contraception since 2006, in aggregate (A), per year (B), and per year, adjusted 

for the total number of mentions of contraception per year (C)  

 

Figure 4 Legend: Number of filtered, non-duplicate tweets (Step E in Figure 2) mentioning each class of contraception since 2006, 

in aggregate (A), per year (B), and per year, adjusted for the total number of mentions of contraception per year (C). Black bars in 

(B) and (C) represent division between SARC (below) and LARC (above). Tweets mentioning multiple contraceptive methods count 

toward each method class once, meaning that a single tweet can contribute to multiple categories. 
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Figure 5: Trends in the proportion and number of positive, negative and neutral tweets about each contraceptive class per year since 

2006 

 

Figure 5 Legend: Trends in the proportion and number of positive, negative and neutral tweets about each contraceptive class per 

year since 2006. Bars represent proportions and lines represent numbers of tweets in each sentiment category. Mixed emotion 
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tweets were excluded due to NLP algorithm’s 0% sensitivity in detecting mixed emotions toward a contraceptive method based on  

our gold standard manual sentiment analysis. Mann Kendall Tests were used to test for monotonic trends in number of tweets, with * 

denoting p<0.05, ** p<0.005, and *** p<0.0005. For tweets mentioning the IUD, the number of negative tweets in 2018 and 2019 

were 5158 and 8654, respectively. 
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Appendix  

Supplementary Table 1: Complete list of Twitter search keywords used and not used to 

harvest tweets about contraceptive methods 

Contraceptive 
method 

Search keywords 

Intrauterine 
device (IUD) 

Terms used Number of 
Tweets 

Terms not used 

 Intrauterine device  
IUD 
Intrauterine system 
Uterine jewelry 
 
Total pre-filtering* 
Total without male BC, EC, 
duplicates, or keyword in 
username 

3978 
483085 
819 
6 
 
483402 

397229 
 

IUS ☨ 

Underbling ☨ 

Copper IUD Terms used  Terms not used 

 Copper-T 
Cu-IUD 
Paragard 
Paraguard 
Copper IUD 
Copper IUS 
Copper Intrauterine device 
Copper T birth control  
Copper T contraceptive  
 
Total pre-filtering* 
Total without male BC, EC, 
duplicates, or keyword in 
username 

337 
39 
9163 
5630 
12083 
2 
249 
6 
3 
 
25800 
24122 

Copper T ☨ 

Cu T ☨ 

Cu-T ☨ 

Copper Intrauterine System∮ 

Copper T contraception∮ 

Levonorgestrel 
IUD 

Terms used  Terms not used 

 Hormonal IUD  
Hormone IUD 
Hormonal IUS  
Hormone IUS 
Hormonal Intrauterine device  
Hormone Intrauterine device 
Hormonal Intrauterine system  
Progesterone IUD 
Progesterone IUS 
Progestin IUD 
Levonorgestrel IUD 
Levonorgestrel IUS 

3298 
219 
35 
4 
49 
2 
8 
90 
7 
101 
156 
17 

Mirena ☨ 

Skyla ☨ 

Skyla IUS∮ 

Liletta ☨ 

Liletta IUS∮ 

Kyleena ☨ 

Kyleena Intrauterine Device∮ 

Kyleena Intrauterine System∮ 

Progesterone Intrauterine 
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Levonorgestrel Intrauterine device 
Levonorgestrel Intrauterine 
system 
LNG-IUD 
LNG-IUS 
LNG IUD 
LNG IUS 
Mirena IUD 
Mirena IUS 
Mirena Intrauterine device 
Mirena Intrauterine system 
Skyla IUD 
Skyla Intrauterine device 
Skyla Intrauterine system 
Liletta IUD 
Liletta Intrauterine device 
Liletta Intrauterine system 
Kyleena IUD 
Kyleena IUS 
 
Total pre-filtering* 
Total without male BC, EC, 
duplicates, or keyword in 
username 

62 
160 
 
36 
233 
42 
78 
12004 
218 
25 
11 
784 
2 
5 
284 
5 
3 
457 
1 
 
16935 
15520 

device∮ 

Progesterone Intrauterine 

system∮ 

Progestin Intrauterine device∮ 

Progestin Intrauterine system∮ 

Progestin IUS∮ 

Hormone Intrauterine system∮ 

Implant Terms used  Terms not used 

 Nexplanon 
Implanon  
Arm Implant 
BC Implant  
B.C. Implant 
Birth Control Implant  
Contraception Implant  
Contraceptive Implant  
Birth Control Rod  
Contraception Rod 
Contraceptive Rod 
 
Total pre-filtering* 
Total without male BC, EC, 
duplicates, or keyword in 
username 

44249 
31787 
8591 
1952 
43 
13742 
366 
11731 
590 
19 
89 
 
100552 
94131 

The rod ☨ 

The implant ☨ 

Pill Terms used  Terms not used 

 OC pill 
O.C. pill 
BC pill 
B.C. pill 
Birth control pill 
Contraceptive pill 
Oral contraceptive 
Oral contraception 
Oral birth control 

131 
4 
17198 
675 
32125 
63767 
25789 
8262 
2028 

The pill ☨ 

OCP ☨ 

BCP ☨ 

CHCP ☨ 

COCP ☨ 

Placebo period ☨ 

Fake period ☨ 

Faux period ☨ 
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Combined hormonal 
contraceptive 
CHC pill 
COC pill 
Combined BCP 
Combined OCP 
Combined B.C.P. 
Progestin only pill 
Progestin OCP 
 
Total pre-filtering* 
Total without male BC, EC, 
duplicates, or keyword in 
username 

98 
 
2 
39 
13 
44 
1 
314 
1 
 
125934 

99538 

Placebo week ☨ 

C.H.C. pill** 
C.O.C. pill** 

Combined O.C.P. ∮ 

Progestin BCP ∮ 

Progestin B.C.P. ∮ 

Progestin O.C.P. ∮ 

Brand names (Alesse, Apri, 
Aranelle, Aviane, Enpresse, 
Estrostep, Lessina, Levlen, 
Levlite, Levora, Loestrin, 
Mircette, Natazia, Nordette, 
Lo/Orval, Ortho-Novum, Ortho 
Tri-Cyclen, Yasmin, Yaz, 
Seasonique, Seasonale, 
Jolessa, Qualsense, Lybrel, 
Camila, Errin, Jolivette, 

Micronor) ☨ 

Patch Terms used  Terms not used 

 BC patch 
Birth control patch 
Contraceptive patch 
Contraception patch 
Ortho evra 
Xulane 
 
Total pre-filtering* 
Total without male BC, EC, 
duplicates, or keyword in 
username 

1957 
13362 
240 
3175 
3191 
610 
 
19656 

16513 

The patch ☨ 

B.C. patch ☨ 

Ring Terms used  Terms not used 

 Nuva ring 
Nuvaring 
Nuva-ring 
Vaginal ring 
Contraceptive ring 
Contraception ring 
Birth control ring 
Annovera 
 
Total pre-filtering* 
Total without male BC, EC, 
duplicates, or keyword in 
username 

37068 
22319 
29400 
15909 
1078 
194 
1313 
314 
 
72886 
64663 

The ring ☨ 

Nuveen ☨ 

B.C. ring ☨ 

BC ring ☨ 

Shot Terms used  Terms not used 

 Birth control shot 35010 The shot ☨ 
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Contraceptive shot 
Contraception shot 
Birth control injection 
Contraceptive injection 
Contraception injection 
Depo provera 
Depo-provera 
Depo shot 
Depo injection 
Depo BC 
Depo birth control 
Depo contraception 
Depo contraceptive 
DMPA 
Medroxyprogesterone acetate 
Depot provera 
Depot shot 
Depot injection 
Depot birth control 
Depot contraception 
Depot contraceptive 
 
Total pre-filtering* 
Total without male BC, EC, 
duplicates, or keyword in 
username 

800 
74 
2032 
711 
594 
22270 
21829 
72423 
2559 
525 
1160 
39 
89 
5137 
883 
106 
1353 
988 
16 
31 
46 
 
144462 
129050 

Depo B.C. ☨ 

Depot B.C. ☨ 

Depot BC ☨ 

Depo ☨ 

BC shot ☨ 

B.C. shot ☨ 

 

BC: Birth Control; EC: Emergency Contraception. 

* Initial non-duplicate tweets, i.e. total harvested tweets in method class after removing duplicate 

tweets. For example, “loving my nexplanon contraceptive implant” was harvested twice because 

it contains two search phrases (“nexplanon” and “contraceptive implant”); only one copy 

counted toward the total initial tweet count. 

☨ Keywords did not reliably return tweets related to birth control. 

∮ Keywords returned 0 tweets. 
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Supplementary Table 2: Keywords used to distinguish between Birth Control Categories. 

Category  Keyword 

IUD  IUD 
Intrauterine Device 
Intrauterine System   
Uterine jewelry 

Copper IUD  Copper 
Copper-T 
Copper-IUD 
Cu-IUD 
Paragard  
Paraguard  
Copper IUD 
Copper IUS 
Copper Intrauterine device  
Copper Intrauterine system  
Copper T birth control  
Copper T contraception  
Copper T contraceptive 
Non-hormonal 

LNG-IUD Hormonal IUD 
Hormone IUD 
Hormonal IUS 
Hormone IUS 
Levonorgestrel IUD 
Levonorgestrel IUS 
Levonorgestrel Intrauterine device 
Levonorgestrel Intrauterine system 
Progesterone IUD 
Progesterone IUS 
Progestin IUD 
LNG IUD 
LNG IUS 
LNG-IUD 
LNG-IUS 
Mirena IUD  
Mirena IUS 
Mirena Intrauterine device 
Mirena Intrauterine system 
Skyla IUD  
Skyla IUS 
Skyla Intrauterine device 
Skyla Intrauterine system 
Liletta IUD  
Liletta IUS 
Liletta Intrauterine device 
Liletta Intrauterine system 
Kyleena IUD  
Kyleena IUS 
Kyleena Intrauterine device 
Kyleena Intrauterine system 
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Mirena 
Kyleena 
Skyla 
Liletta 

Implant Nexplanon 
Implanon 
Arm implant 
BC implant 
B.C. implant 
Birth control implant  
Contraceptive implant  
Contraception implant 
Implant 

Shot Birth control shot  
Contraceptive shot  
Contraception shot  
Birth control injection  
Contraceptive injection  
Contraception injection  
Depo provera 
Depo shot 
Depo injection 
Depo BC 
Depo birth control 
Depo contraception 
Depo contraceptive 
DMPA 
Medroxyprogesterone acetate 
Depot provera 
Depot shot 
Depot injection 
Depot bc 
Depot birth control 
Depot contraception 
Depot contraceptive 
Shot 
Depo 
Depot 
Injection 

Pill Pill 
OC pill 
B.C. pill 
BC pill 
Birth control pill 
Contraceptive pill 
Oral contraceptive 
Oral contraception 
Oral birth control 
Combined hormonal contraceptive 
CHC pill 
COC pill 
Combined BCP 
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Combined OCP 
Progestin only pill 
Progestin BCP 
Progestin OCP 

Ring Nuva ring 
Nuvaring 
BC ring 
Vaginal ring 
Contraceptive ring 
Contraception ring 
Birth control ring 
Ring 
Nuveen  
Annovera 

Patch Patch 
BC patch 
Birth control patch 
Contraceptive patch 
Contraception patch 
Ortho evra 
Xulane 
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Supplementary Table 3: Number of tweets in each contraceptive method class at each stage of filtering 

 

Method 

Class 

Initial Tweets* 

(n, %) ^ 

Tweets not 

mentioning 

male 

contraception 

(n, %) ☨ 

Tweets not 

mentioning 

emergency 

contraception 

(n, %) ☨ 

Tweets where 

username does 

not contain a 

keyword 

(n, %) ☨ 

Tweets without 

duplicate text 

(e.g. retweets) 

(n, %) ☨ 

Tweets 

mentioning 

only 1 

category 

(n, %) ∮ 

IUD 483402 (48.85) 483158 (99.95) 481290 (99.56) 427515 (88.44) 397229 (82.17) 280037 (70.50) 

Copper 

IUD 
25800 (2.61) 25795 (99.98) 25373 (98.34) 24923 (96.60) 24122 (93.50) 17577 (72.87) 

LNG-IUD 16935 (1.71) 16932 (99.98) 16923 (99.93) 16751 (98.91) 15520 (91.64) 11500 (74.10) 

Implant 100552 (10.16) 100514 (99.96) 100498 (99.95) 100495 (99.94) 94115 (93.60) 76356 (81.13) 

Pill 125934 (12.73) 116562 (92.56) 114123 (90.62) 113887 (90.43) 97568 (77.48) 90836 (93.10) 

Patch 19656 (1.99) 19583 (99.63) 19579 (99.61) 19569 (99.56) 16513 (84.01) 14568 (88.22) 

Ring 72886 (7.36) 72868 (99.98) 72852 (99.95) 72261 (99.14) 64647 (88.70) 56283 (87.06) 

Shot 144462 (14.60) 141587 (98.01) 141562 (97.99) 139039 (96.25) 129025 (89.31) 117907 (91.38) 

Total 989627 (100) 976999 (98.72) 972200 (98.24) 914440 (92.40) 838739 (84.75) NA 

* Initial non-duplicate tweets (i.e. total harvested tweets in method class after removing duplicate tweets; e.g. “loving my nexplanon 

contraceptive implant” was harvested twice because it contains two search phrases (“nexplanon” and “contraceptive implant”; only 

one copy counted toward the total initial tweet count) 

^ % of all harvested tweets 

☨ % of tweets in contraceptive class 

∮ % of filtered, non-duplicate tweets (i.e. the column “Tweets without duplicate text (e.g. retweets)”) 
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Supplementary Table 4: Sentiment analysis results for all methods combined 

 

Year 
Total 

tweets 

Number of 

tweets with 

≥95% confident 

sentiment (n, 

%)* 

Positive tweets 

(n, %)☨ 

Negative tweets 

(n, %)☨ 

Neutral tweets 

(n, %)☨ 

Mixed tweets 

(n, %)☨ 

2007 31 5 (16.13%) 1 (20%) 0 (0%) 4 (80%) 0 (0%) 

2008 552 120 (21.74%) 11 (9.17%) 39 (32.5%) 63 (52.5%) 7 (5.83%) 

2009 5890 1554 (26.38%) 145 (9.33%) 377 (24.26%) 962 (61.9%) 70 (4.5%) 

2010 24099 6006 (24.92%) 646 (10.76%) 1410 (23.48%) 3656 (60.87%) 294 (4.9%) 

2011 48441 11841 (24.44%) 1250 (10.56%) 3686 (31.13%) 6351 (53.64%) 554 (4.68%) 

2012 69507 16903 (24.32%) 1852 (10.96%) 6752 (39.95%) 7459 (44.13%) 840 (4.97%) 

2013 59175 15020 (25.38%) 1726 (11.49%) 5965 (39.71%) 6713 (44.69%) 616 (4.1%) 

2014 59339 15013 (25.3%) 1621 (10.8%) 5366 (35.74%) 7454 (49.65%) 572 (3.81%) 

2015 51962 13125 (25.26%) 1526 (11.63%) 4393 (33.47%) 6720 (51.2%) 486 (3.7%) 

2016 61690 14333 (23.23%) 2137 (14.91%) 5320 (37.12%) 6112 (42.64%) 764 (5.33%) 

2017 56003 13503 (24.11%) 2444 (18.1%) 5811 (43.03%) 4454 (32.99%) 794 (5.88%) 

2018 92630 21577 (23.29%) 4509 (20.9%) 10346 (47.95%) 5185 (24.03%) 1537 (7.12%) 

2019 135745 31713 (23.36%) 7157 (22.57%) 15874 (50.06%) 6144 (19.37%) 2538 (8%) 

Total 665064 160713 (24.17%) 25025 (15.57%) 65339 (40.66%) 61277 (38.13%) 9072 (5.64%) 

* % of all tweets in that year  

☨ % of tweets with ≥95% confident sentiment 
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Supplementary Table 5: Sentiment analysis results, all LARC methods combined 

 

Year 
Total 

tweets 

Number of 

tweets with ≥95% 

confident 

sentiment (n, %)* 

Positive tweets 

(n, %)☨ 

Negative tweets 

(n, %)☨ 

Neutral tweets 

(n, %)☨ 

Mixed tweets 

(n, %)☨ 

2007 13 2 (15.38%) 1 (50%) 0 (0%) 1 (50%) 0 (0%) 

2008 296 56 (18.92%) 7 (12.5%) 19 (33.93%) 25 (44.64%) 5 (8.93%) 

2009 1172 325 (27.73%) 39 (12%) 61 (18.77%) 214 (65.85%) 11 (3.38%) 

2010 9060 2242 (24.75%) 380 (16.95%) 557 (24.84%) 1205 (53.75%) 100 (4.46%) 

2011 19740 4886 (24.75%) 728 (14.9%) 1196 (24.48%) 2767 (56.63%) 195 (3.99%) 

2012 28332 6742 (23.8%) 1130 (16.76%) 2154 (31.95%) 3143 (46.62%) 315 (4.67%) 

2013 27598 7247 (26.26%) 1132 (15.62%) 2225 (30.7%) 3621 (49.97%) 269 (3.71%) 

2014 32467 7967 (24.54%) 1037 (13.02%) 2143 (26.9%) 4470 (56.11%) 317 (3.98%) 

2015 31356 7748 (24.71%) 1126 (14.53%) 2136 (27.57%) 4174 (53.87%) 312 (4.03%) 

2016 38995 8515 (21.84%) 1615 (18.97%) 3094 (36.34%) 3306 (38.83%) 500 (5.87%) 

2017 34144 8030 (23.52%) 1766 (21.99%) 3384 (42.14%) 2335 (29.08%) 545 (6.79%) 

2018 63754 14643 (22.97%) 3447 (23.54%) 7100 (48.49%) 2861 (19.54%) 1235 (8.43%) 

2019 98543 22907 (23.25%) 5531 (24.15%) 11680 (50.99%) 3649 (15.93%) 2047 (8.94%) 

Total 385470 91310 (23.69%) 17939 (19.65%) 35749 (39.15%) 31771 (34.79%) 5851 (6.41%) 

* % of all tweets in that year  

☨ % of tweets with ≥95% confident sentiment 
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Supplementary Table 6: Sentiment analysis results, all SARC methods combined 

 

Year 
Total 

tweets 

Number of 

tweets with ≥95% 

confident 

sentiment (n, %)* 

Positive 

tweets (n, %)☨ 

Negative 

tweets (n, %)☨ 

Neutral tweets 

(n, %)☨ 

Mixed tweets 

(n, %)☨ 

2007 18 3 (16.67%) 0 (0%) 0 (0%) 3 (100%) 0 (0%) 

2008 256 64 (25%) 4 (6.25%) 20 (31.25%) 38 (59.38%) 2 (3.12%) 

2009 4718 1229 (26.05%) 106 (8.62%) 316 (25.71%) 748 (60.86%) 59 (4.8%) 

2010 15039 3764 (25.03%) 266 (7.07%) 853 (22.66%) 2451 (65.12%) 194 (5.15%) 

2011 28701 6955 (24.23%) 522 (7.51%) 2490 (35.8%) 3584 (51.53%) 359 (5.16%) 

2012 41175 10161 (24.68%) 722 (7.11%) 4598 (45.25%) 4316 (42.48%) 525 (5.17%) 

2013 31577 7773 (24.62%) 594 (7.64%) 3740 (48.12%) 3092 (39.78%) 347 (4.46%) 

2014 26872 7046 (26.22%) 584 (8.29%) 3223 (45.74%) 2984 (42.35%) 255 (3.62%) 

2015 20606 5377 (26.09%) 400 (7.44%) 2257 (41.98%) 2546 (47.35%) 174 (3.24%) 

2016 22695 5818 (25.64%) 522 (8.97%) 2226 (38.26%) 2806 (48.23%) 264 (4.54%) 

2017 21859 5473 (25.04%) 678 (12.39%) 2427 (44.34%) 2119 (38.72%) 249 (4.55%) 

2018 28876 6934 (24.01%) 1062 (15.32%) 3246 (46.81%) 2324 (33.52%) 302 (4.36%) 

2019 37202 8806 (23.67%) 1626 (18.46%) 4194 (47.63%) 2495 (28.33%) 491 (5.58%) 

Total 279594 69403 (24.82%) 7086 (10.21%) 29590 (42.64%) 29506 (42.51%) 3221 (4.64%) 

* % of all tweets in that year  

☨ % of tweets with ≥95% confident sentiment 
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Supplementary Table 7: Sentiment analysis results, IUD 

 

Year 
Total 

tweets 

Number of 

tweets with ≥95% 

confident 

sentiment (n, %)* 

Positive tweets 

(n, %)☨ 

Negative 

tweets (n, %)☨ 

Neutral tweets 

(n, %)☨ 

Mixed tweets 

(n, %)☨ 

2007 13 2 (15.38%) 1 (50%) 0 (0%) 1 (50%) 0 (0%) 

2008 265 52 (19.62%) 7 (13.46%) 19 (36.54%) 23 (44.23%) 3 (5.77%) 

2009 509 131 (25.74%) 16 (12.21%) 29 (22.14%) 81 (61.83%) 5 (3.82%) 

2010 7021 1692 (24.1%) 300 (17.73%) 466 (27.54%) 841 (49.7%) 85 (5.02%) 

2011 14268 3417 (23.95%) 542 (15.86%) 900 (26.34%) 1820 (53.26%) 155 (4.54%) 

2012 20051 4441 (22.15%) 762 (17.16%) 1364 (30.71%) 2082 (46.88%) 233 (5.25%) 

2013 19026 4548 (23.9%) 762 (16.75%) 1461 (32.12%) 2128 (46.79%) 197 (4.33%) 

2014 24814 5439 (21.92%) 710 (13.05%) 1482 (27.25%) 2998 (55.12%) 249 (4.58%) 

2015 23265 5170 (22.22%) 729 (14.1%) 1435 (27.76%) 2775 (53.68%) 231 (4.47%) 

2016 29167 5611 (19.24%) 997 (17.77%) 2035 (36.27%) 2201 (39.23%) 378 (6.74%) 

2017 21518 4355 (20.24%) 799 (18.35%) 2036 (46.75%) 1181 (27.12%) 339 (7.78%) 

2018 47036 9955 (21.16%) 1988 (19.97%) 5158 (51.81%) 1883 (18.92%) 926 (9.3%) 

2019 73084 15464 (21.16%) 2989 (19.33%) 8654 (55.96%) 2300 (14.87%) 1521 (9.84%) 

Total 280037 60277 (21.52%) 10602 (17.59%) 25039 (41.54%) 20314 (33.7%) 4322 (7.17%) 

* % of all tweets in that year  

☨ % of tweets with ≥95% confident sentiment 
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Supplementary Table 8: Sentiment analysis results, LNG-IUD 

 

Year 
Total 

tweets 

Number of tweets 

with ≥95% 

confident 

sentiment (n, %)* 

Positive tweets 

(n, %)☨ 

Negative 

tweets (n, %)☨ 

Neutral tweets 

(n, %)☨ 

Mixed tweets 

(n, %)☨ 

2008 6 1 (16.67%) 0 (0%) 0 (0%) 0 (0%) 1 (100%) 

2009 174 53 (30.46%) 5 (9.43%) 8 (15.09%) 37 (69.81%) 3 (5.66%) 

2010 381 106 (27.82%) 18 (16.98%) 15 (14.15%) 69 (65.09%) 4 (3.77%) 

2011 481 123 (25.57%) 10 (8.13%) 17 (13.82%) 92 (74.8%) 4 (3.25%) 

2012 890 267 (30%) 15 (5.62%) 62 (23.22%) 183 (68.54%) 7 (2.62%) 

2013 1658 684 (41.25%) 41 (5.99%) 71 (10.38%) 569 (83.19%) 3 (0.44%) 

2014 839 351 (41.84%) 27 (7.69%) 34 (9.69%) 287 (81.77%) 3 (0.85%) 

2015 731 253 (34.61%) 41 (16.21%) 31 (12.25%) 178 (70.36%) 3 (1.19%) 

2016 945 280 (29.63%) 62 (22.14%) 43 (15.36%) 167 (59.64%) 8 (2.86%) 

2017 1235 355 (28.74%) 98 (27.61%) 51 (14.37%) 183 (51.55%) 23 (6.48%) 

2018 1686 499 (29.6%) 219 (43.89%) 101 (20.24%) 145 (29.06%) 34 (6.81%) 

2019 2474 757 (30.6%) 384 (50.73%) 157 (20.74%) 161 (21.27%) 55 (7.27%) 

Total 11500 3729 (32.43%) 920 (24.67%) 590 (15.82%) 2071 (55.54%) 148 (3.97% 

* % of all tweets in that year  

☨ % of tweets with ≥95% confident sentiment 
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Supplementary Table 9: Sentiment analysis results, Copper IUD 

 

Year 
Total 

tweets 

Number of tweets 

with ≥95% 

confident 

sentiment (n, %)* 

Positive tweets 

(n, %)☨ 

Negative 

tweets (n, %)☨ 

Neutral tweets 

(n, %)☨ 

Mixed tweets 

(n, %)☨ 

2008 6 1 (16.67%) 0 (0%) 0 (0%) 0 (0%) 1 (100%) 

2009 97 18 (18.56%) 7 (38.89%) 2 (11.11%) 8 (44.44%) 1 (5.56%) 

2010 384 95 (24.74%) 17 (17.89%) 16 (16.84%) 58 (61.05%) 4 (4.21%) 

2011 582 121 (20.79%) 30 (24.79%) 18 (14.88%) 67 (55.37%) 6 (4.96%) 

2012 1473 381 (25.87%) 76 (19.95%) 140 (36.75%) 137 (35.96%) 28 (7.35%) 

2013 1160 289 (24.91%) 63 (21.8%) 75 (25.95%) 138 (47.75%) 13 (4.5%) 

2014 933 250 (26.8%) 50 (20%) 44 (17.6%) 146 (58.4%) 10 (4%) 

2015 1023 260 (25.42%) 64 (24.62%) 62 (23.85%) 114 (43.85%) 20 (7.69%) 

2016 1589 384 (24.17%) 110 (28.65%) 90 (23.44%) 154 (40.1%) 30 (7.81%) 

2017 2316 645 (27.85%) 163 (25.27%) 179 (27.75%) 258 (40%) 45 (6.98%) 

2018 2861 747 (26.11%) 284 (38.02%) 267 (35.74%) 129 (17.27%) 67 (8.97%) 

2019 5153 1389 (26.96%) 527 (37.94%) 599 (43.12%) 162 (11.66%) 101 (7.27%) 

Total 17577 4580 (26.06%) 1391 (30.37%) 1492 (32.58%) 1371 (29.93%) 326 (7.12%) 

* % of all tweets in that year  

☨ % of tweets with ≥95% confident sentiment 
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Supplementary Table 10: Sentiment analysis results, Implant 

 

Year 
Total 

tweets 

Number of tweets 

with ≥95% 

confident 

sentiment (n, %)* 

Positive tweets 

(n, %)☨ 

Negative 

tweets (n, %)☨ 

Neutral tweets 

(n, %)☨ 

Mixed tweets 

(n, %)☨ 

2008 19 2 (10.53%) 0 (0%) 0 (0%) 2 (100%) 0 (0%) 

2009 392 123 (31.38%) 11 (8.94%) 22 (17.89%) 88 (71.54%) 2 (1.63%) 

2010 1274 349 (27.39%) 45 (12.89%) 60 (17.19%) 237 (67.91%) 7 (2.01%) 

2011 4409 1225 (27.78%) 146 (11.92%) 261 (21.31%) 788 (64.33%) 30 (2.45%) 

2012 5918 1653 (27.93%) 277 (16.76%) 588 (35.57%) 741 (44.83%) 47 (2.84%) 

2013 5754 1726 (30%) 266 (15.41%) 618 (35.81%) 786 (45.54%) 56 (3.24%) 

2014 5881 1927 (32.77%) 250 (12.97%) 583 (30.25%) 1039 (53.92%) 55 (2.85%) 

2015 6337 2065 (32.59%) 292 (14.14%) 608 (29.44%) 1107 (53.61%) 58 (2.81%) 

2016 7294 2240 (30.71%) 446 (19.91%) 926 (41.34%) 784 (35%) 84 (3.75%) 

2017 9075 2675 (29.48%) 706 (26.39%) 1118 (41.79%) 713 (26.65%) 138 (5.16%) 

2018 12171 3442 (28.28%) 956 (27.77%) 1574 (45.73%) 704 (20.45%) 208 (6.04%) 

2019 17832 5297 (29.71%) 1631 (30.79%) 2270 (42.85%) 1026 (19.37%) 370 (6.99%) 

Total 76356 22724 (29.76%) 5026 (22.12%) 8628 (37.97%) 8015 (35.27%) 1055 (4.64%) 

* % of all tweets in that year  

☨ % of tweets with ≥95% confident sentiment 
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Supplementary Table 11: Sentiment analysis results, Pill 

 

Year 
Total 

tweets 

Number of 

tweets with ≥95% 

confident 

sentiment (n, %)* 

Positive 

tweets (n, %)☨ 

Negative 

tweets (n, %)☨ 

Neutral tweets 

(n, %)☨ 

Mixed tweets 

(n, %)☨ 

2007 14 2 (14.29%) 0 (0%) 0 (0%) 2 (100%) 0 (0%) 

2008 114 21 (18.42%) 0 (0%) 6 (28.57%) 15 (71.43%) 0 (0%) 

2009 1423 354 (24.88%) 17 (4.8%) 49 (13.84%) 280 (79.1%) 8 (2.26%) 

2010 5092 1354 (26.59%) 65 (4.8%) 129 (9.53%) 1129 (83.38%) 31 (2.29%) 

2011 7686 1906 (24.8%) 103 (5.4%) 337 (17.68%) 1392 (73.03%) 74 (3.88%) 

2012 9770 2228 (22.8%) 124 (5.57%) 545 (24.46%) 1468 (65.89%) 91 (4.08%) 

2013 7941 1920 (24.18%) 103 (5.36%) 406 (21.15%) 1353 (70.47%) 58 (3.02%) 

2014 5697 1381 (24.24%) 89 (6.44%) 276 (19.99%) 972 (70.38%) 44 (3.19%) 

2015 5591 1444 (25.83%) 74 (5.12%) 268 (18.56%) 1068 (73.96%) 34 (2.35%) 

2016 6404 1525 (23.81%) 99 (6.49%) 319 (20.92%) 1066 (69.9%) 41 (2.69%) 

2017 9093 1971 (21.68%) 187 (9.49%) 601 (30.49%) 1107 (56.16%) 76 (3.86%) 

2018 14197 3124 (22%) 371 (11.88%) 1186 (37.96%) 1461 (46.77%) 106 (3.39%) 

2019 17814 3618 (20.31%) 447 (12.35%) 1548 (42.79%) 1479 (40.88%) 144 (3.98%) 

Total 90836 20848 (22.95%) 1679 (8.05%) 5670 (27.2%) 12792 (61.36%) 707 (3.39%) 

* % of all tweets in that year  

☨ % of tweets with ≥95% confident sentiment 
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Supplementary Table 12: Sentiment analysis results, Patch 

 

Year 
Total 

tweets 

Number of tweets 

with ≥95% 

confident 

sentiment (n, %)* 

Positive tweets 

(n, %)☨ 

Negative 

tweets (n, %)☨ 

Neutral tweets 

(n, %)☨ 

Mixed tweets 

(n, %)☨ 

2007 2 0 (0%) 0 (NaN%) 0 (NaN%) 0 (NaN%) 0 (NaN%) 

2008 43 16 (37.21%) 0 (0%) 1 (6.25%) 15 (93.75%) 0 (0%) 

2009 418 134 (32.06%) 7 (5.22%) 38 (28.36%) 84 (62.69%) 5 (3.73%) 

2010 1749 562 (32.13%) 19 (3.38%) 102 (18.15%) 427 (75.98%) 14 (2.49%) 

2011 3447 1099 (31.88%) 21 (1.91%) 247 (22.47%) 812 (73.89%) 19 (1.73%) 

2012 2036 630 (30.94%) 28 (4.44%) 262 (41.59%) 322 (51.11%) 18 (2.86%) 

2013 1434 419 (29.22%) 24 (5.73%) 185 (44.15%) 196 (46.78%) 14 (3.34%) 

2014 1228 472 (38.44%) 31 (6.57%) 135 (28.6%) 297 (62.92%) 9 (1.91%) 

2015 692 222 (32.08%) 16 (7.21%) 84 (37.84%) 116 (52.25%) 6 (2.7%) 

2016 548 170 (31.02%) 18 (10.59%) 83 (48.82%) 63 (37.06%) 6 (3.53%) 

2017 722 207 (28.67%) 32 (15.46%) 83 (40.1%) 87 (42.03%) 5 (2.42%) 

2018 798 223 (27.94%) 47 (21.08%) 93 (41.7%) 74 (33.18%) 9 (4.04%) 

2019 1451 432 (29.77%) 92 (21.3%) 142 (32.87%) 170 (39.35%) 28 (6.48%) 

Total 14568 4586 (31.48%) 335 (7.3%) 1455 (31.73%) 2663 (58.07%) 133 (2.9%) 

* % of all tweets in that year  

☨ % of tweets with ≥95% confident sentiment 
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Supplementary Table 13: Sentiment analysis results, Ring 

 

Year 
Total 

tweets 

Number of 

tweets with ≥95% 

confident 

sentiment (n, %)* 

Positive 

tweets (n, %)☨ 

Negative 

tweets (n, %)☨ 

Neutral tweets 

(n, %)☨ 

Mixed tweets 

(n, %)☨ 

2008 49 17 (34.69%) 4 (23.53%) 9 (52.94%) 2 (11.76%) 2 (11.76%) 

2009 1451 359 (24.74%) 49 (13.65%) 127 (35.38%) 143 (39.83%) 40 (11.14%) 

2010 3829 768 (20.06%) 85 (11.07%) 221 (28.78%) 344 (44.79%) 118 (15.36%) 

2011 5813 1175 (20.21%) 121 (10.3%) 396 (33.7%) 473 (40.26%) 185 (15.74%) 

2012 9879 2501 (25.32%) 148 (5.92%) 732 (29.27%) 1340 (53.58%) 281 (11.24%) 

2013 5147 1112 (21.6%) 106 (9.53%) 300 (26.98%) 552 (49.64%) 154 (13.85%) 

2014 6873 1579 (22.97%) 146 (9.25%) 453 (28.69%) 856 (54.21%) 124 (7.85%) 

2015 4356 935 (21.46%) 105 (11.23%) 306 (32.73%) 437 (46.74%) 87 (9.3%) 

2016 6267 1594 (25.43%) 146 (9.16%) 252 (15.81%) 1105 (69.32%) 91 (5.71%) 

2017 3646 977 (26.8%) 179 (18.32%) 260 (26.61%) 444 (45.45%) 94 (9.62%) 

2018 3936 976 (24.8%) 286 (29.3%) 270 (27.66%) 320 (32.79%) 100 (10.25%) 

2019 5037 1396 (27.71%) 553 (39.61%) 334 (23.93%) 337 (24.14%) 172 (12.32%) 

Total 56283 13389 (23.79%) 1928 (14.4%) 3660 (27.34%) 6353 (47.45%) 1448 (10.81%) 

* % of all tweets in that year  

☨ % of tweets with ≥95% confident sentiment 
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Supplementary Table 14: Sentiment analysis results, Shot 

 

Year 
Total 

tweets 

Number of 

tweets with ≥95% 

confident 

sentiment (n, %)* 

Positive 

tweets (n, %)☨ 

Negative tweets 

(n, %)☨ 

Neutral tweets 

(n, %)☨ 

Mixed tweets 

(n, %)☨ 

2007 2 1 (50%) 0 (0%) 0 (0%) 1 (100%) 0 (0%) 

2008 50 10 (20%) 0 (0%) 4 (40%) 6 (60%) 0 (0%) 

2009 1426 382 (26.79%) 33 (8.64%) 102 (26.7%) 241 (63.09%) 6 (1.57%) 

2010 4369 1080 (24.72%) 97 (8.98%) 401 (37.13%) 551 (51.02%) 31 (2.87%) 

2011 11755 2775 (23.61%) 277 (9.98%) 1510 (54.41%) 907 (32.68%) 81 (2.92%) 

2012 19490 4802 (24.64%) 422 (8.79%) 3059 (63.7%) 1186 (24.7%) 135 (2.81%) 

2013 17055 4322 (25.34%) 361 (8.35%) 2849 (65.92%) 991 (22.93%) 121 (2.8%) 

2014 13074 3614 (27.64%) 318 (8.8%) 2359 (65.27%) 859 (23.77%) 78 (2.16%) 

2015 9967 2776 (27.85%) 205 (7.38%) 1599 (57.6%) 925 (33.32%) 47 (1.69%) 

2016 9476 2529 (26.69%) 259 (10.24%) 1572 (62.16%) 572 (22.62%) 126 (4.98%) 

2017 8398 2318 (27.6%) 280 (12.08%) 1483 (63.98%) 481 (20.75%) 74 (3.19%) 

2018 9945 2611 (26.25%) 358 (13.71%) 1697 (64.99%) 469 (17.96%) 87 (3.33%) 

2019 12900 3360 (26.05%) 534 (15.89%) 2170 (64.58%) 509 (15.15%) 147 (4.38%) 

Total 117907 30580 (25.94%) 3144 (10.28%) 18805 (61.49%) 7698 (25.17%) 933 (3.05%) 

* % of all tweets in that year  

☨ % of tweets with ≥95% confident sentiment 
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Supplementary Figure 1: Workflow of manual sentiment analysis for validation of NLP algorithm 

 
 

Figure Legend: Workflow of manual sentiment analysis for validation of NLP algorithm. 27 

tweets were excluded from agreement analysis because in manual curation of tweets during 

review, we detected two classes of tweets, one related to male contraception and other related 

to emergency contraception, which were outside of the scope of this project. We thus decided to 

include an additional filter to exclude these classes of tweets from the entire collection (steps B 

and C in Figure 3). Tweets with majority (≥3 out of 5 reviewers) agreement on tweeter’s 

sentiment toward contraceptive method mentioned in tweet were included in the Gold Standard 

collection, which was then used to calculate the sensitivity and specificity of the Amazon 

Comprehend Sentiment Analysis API.  
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Supplementary Document 1: Tweet Interpretation Guide 

Introduction 

Welcome to the ‘Birth Control Attitudes on Twitter’ research team! The aim of this project 

is to explore the attitudes toward different contraceptive methods (specifically reversible, 

prescription contraceptive methods resulting in <10 undesired pregnancies/year, i.e., the shot; 

oral contraceptives; the vaginal ring; the patch; the Copper IUD, Levonorgestrel IUDs; and 

Implanon/Nexplanon implants) as presented on Twitter since it was founded in 2006. 

 

The broader purposes and implications of this work are to (1) better understand what is 

said on Twitter about contraceptive methods and how this has changed over the last 13 years 

because this has not been characterized at all in the literature, (2) better anticipate and address 

patients’ concerns about specific birth control methods (based on the fact that twitter provides 

unfiltered information from patients compared to potentially biased information in surveys from 

researchers), and (3) be able to inform dissemination of accurate information about 

contraception via social media. 

Methods 

We have collected English language tweets that mention any one of the birth control 

methods listed above and are using computer programs to analyze the predominant emotions 

that can be detected in each individual tweet. By aggregating this data, we can look at the 

predominant sentiments toward different methods over time. For example, of the 99,712 tweets 

mentioning birth control pills since 2006 (when Twitter was founded), 8% are strongly positive 

and 27% are strongly negative.  

 

To test how well the machine is working, we need to compare its performance to a 

human. This is where YOU come in! The ultimate goal is for each member of the ‘human 

analysis team’ to read and interpret the emotions in 500 tweets. More specific instructions for 

how to do this are detailed below. We will start with a set of 20 tweets as a trial run, and then 

we’ll debrief to see how it’s going. Once we’ve debriefed together, I will send each of you a 

google sheet containing 500 tweets that you’ll read and interpret. You will be working blinded 

from one another, and then we’ll compare your results to each other with a kappa statistic. The 

final aggregated results of this analysis will serve as the ‘gold standard’ sentiment analysis. 

Ultimately, we’ll calculate the sensitivity and specificity for emotion detection of the computer 

program based on this gold standard generated by your human analysis.  

 

The text that follows contains a guide for tweet interpretation. It is VERY IMPORTANT 

that you follow this guide CLOSELY. As you can imagine, interpreting the emotions in tweets 

could be very subjective and vary significantly between people. Our goal is to standardize it 

somewhat while still allowing for the subjectivity that makes us human.  

Sentiment Analysis Instructions 
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Our goal is to determine each tweet’s emotional valence, if any is present, with respect 

to the birth control method it mentions. Your task is to figure out whether each tweet is positive, 

negative, neutral, or mixed with respect to the method it mentions, OR if it’s a false 

positive (i.e. it isn’t actually about birth control). Each tweet can only fall into one category. In 

simpler terms, when you read a tweet, ask yourself: “Is this person saying something good 

about this method, or something bad?” If the tweet doesn’t have any emotional valence (e.g. 

“ladies, what do you think of nexplanon?”), mark it as neutral. If the tweet has mixed emotions 

(e.g. “i didn’t have weight gain or skin issues with the nexplanon arm implant but it fucked my 

period up. it’s not terrible though, better than nothing”), mark it as mixed. If it’s not clear, it’s 

always okay to say that it’s mixed. A list of examples (straightforward and complex) is included 

below in Tables 1 and 2 for further guidance. 

 

Table 1: Straightforward tweets 

 

Tweet Polarity 

this is why i’m so happy with my contraceptive arm implant. i get no 

period which is a big improvement from the constant bleeding, leaking 

and non existent cycle i used to have 

Positive 

i have nexplanon (arm implant) and i love it. Positive 

i would like to know more! had the arm implant and am having it 
removed because i hate it! 

Negative 

the arm implant terrifies me i’ve read so many horror stories Negative 

tell me about your experience with the birth control arm implant Neutral 

nexoplanon, the arm implant hehe Neutral 

i have the nexplanon arm implant thingy, and i haven't had any issues. 
the first week i was a lil crazy and had a headache, but i think it was 
my hormones in general leveling out post partum (i got it 6 weeks after 
delivery) 

Mixed 

isnt there another way? the arm implant? so you dont have to put 
metal in your twat thats a choice you made genius 

Mixed 

i think she has parkinsons bc pill rolling tremors are part of that 

disorder 

False Positive 

 

 

Much of the time, humans and the computer will agree. For example, “f*ck you 

nexplanon.” is interpreted by the computer as NEGATIVE, and probably most humans would 

agree. Another example: “so glad i got my nexplanon implant today. if anyone is considering it i 



75 

seriously recommend it.” is interpreted by the computer as POSITIVE, and again, probably most 

humans would agree.  

 

However, there are instances when the computer falls short. We want to know the 

attitude toward the birth control method mentioned in the tweet, which is sometimes different 

from the attitude of the tweet in general. A shortcoming of the computer is that it only detects the 

attitude of the tweet in general. For example, “ugh, i just want nexplanon. but it's so expensive.” 

is interpreted by the computer as NEGATIVE. But we can tell that the tweeter actually seems to 

feel positively about Nexplanon; they just aren’t able to afford it. Overall, the emotions in this 

tweet are mixed. 

 

Sometimes, it’s just not really clear if a tweet is saying anything positive or negative 

about the birth control method it mentions. For example, the tweet “i had a friend that had an 

arm implant and it traveled and was messing up her hormones and she started losing her sight 

and bleeding non-stop. that’s what’s crazy about the human body, everyone experiences things 

differently, but it’s great that we have so many options nowadays!” is interpreted by the 

computer as POSITIVE, but it seems to me that this tweeter is expressing multiple emotions - 

they’re sharing negative sentiments regarding their friend’s experience with Nexplanon, but they 

seem to have a positive outlook overall, so ultimately, from a human perspective, this tweet is 

mixed. 

 

Some tweets are replying to other twitter users, and include copied text from other 

tweets. Our code that ‘cleans’ the tweets and leaves us with only text that can be interpreted for 

sentiments can’t distinguish that there are two voices in a tweet. For example, in the tweet “ i've 

had it for 3 years and i'm so scared right now. consider nexplanon! it goes in your arm instead,” 

the tweeter has first copied the text of the tweet they’re responding to, and then responded to it. 

This tweet is interpreted by the computer as NEGATIVE, but it sounds like the tweeter is 

responding to another person who is scared of their non-Nexplanon LARC and feels positively 

about Nexplanon. So ultimately (after this mental gymnastics), a human would probably 

consider this to be ‘positive’ about Nexplanon from the perspective of the tweeter.  

 

Another shortcoming of the computer is that it can’t detect sarcasm. For example, “got 

my nexplanon rod taken out and they gave me no pain meds for the hole in my arm.. so that's 

good” is interpreted by the computer as POSITIVE, but we as humans will probably recognize 

that it’s sarcastic, and the true sentiment is negative. 

 

Finally, a small number of the tweets we collected are not actually about birth control. 

This is because to collect tweets, we searched for keywords like “nexplanon” and “birth control 

pill.” We also included abbreviations like “bc pill” which, most of the time, returns tweets about 

birth control pills, but every once in a while, returns a tweet like “i think she has parkinsons bc 

pill rolling tremors are part of that disorder”. This would be a ‘false positive.’ 

 

Table 2: Confusing tweets 
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Tweet Computer Human Comments 

ugh, i just want nexplanon. but 

it's so expensive 

Negative we can tell that the tweeter actually seems to 

feel positively about Nexplanon; they just 

aren’t able to afford it. Overall, the emotions in 

this tweet are mixed. 

i had a friend that had an arm 

implant and it traveled and was 

messing up her hormones and 

she started losing her sight 

and bleeding non-stop. that’s 

what’s crazy about the human 

body, everyone experiences 

things differently, but it’s great 

that we have so many options 

nowadays! 

Positive it seems to me that this tweeter is expressing 

multiple emotions - their friend’s experience 

with Nexplanon was clearly bad, but they 

seem to have a positive outlook overall, so 

ultimately, from a human perspective, this 

tweet is mixed. 

i've had it for 3 years and i'm 
so scared right now. consider 
nexplanon! it goes in your arm 
instead 

Negative it sounds like the tweeter is responding to 
another person who is scared of their non-
Nexplanon LARC and feels positively about 
Nexplanon. So ultimately (after these mental 
gymnastics), a human would probably 
consider this to be ‘positive’ about Nexplanon 
from the perspective of the tweeter. 

got my nexplanon rod taken 
out and they gave me no pain 
meds for the hole in my arm.. 
so that's good 

Positive This is SARCASM! The computer can’t detect 
sarcasm, but we as humans do, and 
recognize that the true sentiment is negative. 

i think she has parkinsons bc 

pill rolling tremors are part of 

that disorder 

Neutral False positive! This tweet is not actually about 
birth control 

 

 

Ultimately, we’ll compare the human analysis to the computer’s in order to calculate the 

computer’s sensitivity and specificity for a tweet’s polarity with respect to the birth control 

method it mentions.  

Working in Google Sheets  

To actually analyze the tweets, you will work in google sheets. I will email each of you 

the link to a folder containing two google sheets that are unique to you. The first row will be filled 

in as an example, and highlighted in green. Before you start an “analysis session,” browse 

through a chunk of tweets to get a ‘lay of the land’ prior to assigning sentiments - you may find 

that after reading a bunch of tweets, what you first thought was positive’ feels more like ‘mixed’ 
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after reading more. I will also have access to it so that we can download its contents for analysis 

once you’ve finished. It is VERY IMPORTANT that you work in the google sheet in order to 

avoid compatibility issues between different computer operating systems, versions of excel, 

numbers, etc. for when we ultimately consolidate all of the results to run statistical analyses in 

R. 

 

For the polarity analysis, the blank google sheet will look like this:  

 

Figure 1: Blank polarity google sheet 

 

 
 

You will put a “1” in the appropriate column for each tweet, and leave the other cells with dashes 

(i.e. don’t change them), like this:  

 

Figure 2: Completed polarity google sheet 

 

 


	Abstract
	Table of Contents
	Glossary
	Acknowledgments
	Introduction
	Methods
	Tweet collection and filtering
	Automated sentiment analysis
	Manual validation of automated sentiment analysis
	Workflow, data sharing and IRB exemption

	Results
	Tweet collection, filtering, and characterization
	Manual validation of automated sentiment analysis
	Automated sentiment analysis

	Discussion
	Summary
	References
	Tables and Figures
	Table 1: Number of tweets about each method per year with Mann Kendall statistics showing trend in numbers over time
	Table 2: Sensitivity and specificity of automated sentiment analysis in detection of sentiment toward the contraceptive method mentioned in a tweet, based on manual gold standard sentiment analysis
	Table 3: Numbers of positive, negative and neutral tweets about each contraceptive method
	Figure 4: Number of tweets mentioning each class of contraception since 2006, in aggregate (A), per year (B), and per year, adjusted for the total number of mentions of contraception per year (C)
	Figure 5: Trends in the proportion and number of positive, negative and neutral tweets about each contraceptive class per year since 2006

	Appendix
	Supplementary Table 1: Complete list of Twitter search keywords used and not used to harvest tweets about contraceptive methods
	Supplementary Table 2: Keywords used to distinguish between Birth Control Categories.
	Supplementary Table 3: Number of tweets in each contraceptive method class at each stage of filtering
	Supplementary Table 4: Sentiment analysis results for all methods combined
	Supplementary Table 5: Sentiment analysis results, all LARC methods combined
	Supplementary Table 6: Sentiment analysis results, all SARC methods combined
	Supplementary Table 7: Sentiment analysis results, IUD
	Supplementary Table 8: Sentiment analysis results, LNG-IUD
	Supplementary Table 9: Sentiment analysis results, Copper IUD
	Supplementary Table 10: Sentiment analysis results, Implant
	Supplementary Table 11: Sentiment analysis results, Pill
	Supplementary Table 12: Sentiment analysis results, Patch
	Supplementary Table 13: Sentiment analysis results, Ring
	Supplementary Table 14: Sentiment analysis results, Shot
	Supplementary Figure 1: Workflow of manual sentiment analysis for validation of NLP algorithm
	Supplementary Document 1: Tweet Interpretation Guide
	Introduction
	Methods
	Sentiment Analysis Instructions
	Working in Google Sheets



