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Abstract 

Inducing production of fetal hemoglobin (HbF) is a promising therapeutic approach to 

ameliorate disease severity in -thalassemia and sickle cell disease. While studies have 

characterized individual genetic factors affecting fetal hemoglobin levels and begun to 

elucidate some underlying mechanisms, a complete understanding of how these 

elements interact to influence overall fetal hemoglobin expression levels has yet to be 

achieved. We hypothesize that varying range of fetal hemoglobin expression in the 

human population is the result of complex genetic architecture involving the interaction 

between multiple common and rare genetic variants. To interrogate the underlying genetic 

architecture of this complex and clinically-relevant trait, we have performed large 

genome-wide association study (GWAS) from two distinct study populations ascertained 

in different ways: a Thai population and a Swedish population. We genotyped all samples 

and implemented standard quality-control measures. From the samples and genotypes 

that passed quality control, we performed an association study for HbF levels using a 

linear mixed model instantiated through the BOLT-LMM tool. Our initial results have 

replicated known loci above genome-wide significance levels, including BCL11A, HBS1L-

MYB, and HBB. Moreover, several novel loci and rare variants, including unique structural 

variants, appear to be present in our study. We are integrating whole genome sequencing 

on a subset of samples and in general population controls to better define these loci using 

imputation approaches, and we will account for the aggregate contribution of rare variants 

with large effects, including the structural variants we have identified. This work has 

tremendous promise to improve our understanding of how HbF levels can vary in 

populations, characterize underlying mechanisms by which this clinically important factor 
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is regulated, and more generally elucidate how a range of allelic variants can collectively 

contribute to the genetic architecture of a complex trait. 
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Chapter 1: Introduction 

Fetal hemoglobin (HbF) has been an exciting and promising therapeutic target since the 

discovery that increased HbF expression in patients with -thalassemia and sickle cell 

disease (SCD) leads to a milder clinical phenotype. While much work has been done to 

characterize the genetic factors affecting HbF levels and underlying mechanisms, an 

integrated understanding of how these elements interact with each other to influence 

overall HbF expression levels has yet to be achieved. We hypothesize that HbF is the 

result of complex genetic architecture involving the interaction between multiple common 

and rare genetic variants. To this end, we have designed a series of experiments and 

analyses to identify loci that contribute to HbF expression. In this study, I perform 

common- and rare-variant genetic analysis incorporating blood samples from several 

study populations. To frame these analyses, I will briefly describe the landscape of 

research supporting HbF as a potential therapeutic target for hemoglobinopathies and 

introduce the state of complex trait genetics. This discussion will clarify the importance of 

dissecting the genetic architecture of HbF to further inform future studies surrounding its 

use in the clinical setting. 

 

The burden of hemoglobin disorders 

Sickle cell disease and -thalassemia are two prevalent and important diseases of -

hemoglobin. Sickle cell disease is one of the most common monogenic diseases in the 

world, with an annual incidence of 2,600 in North America alone1, and is characterized by 

deformation of red blood cells under stress, which can precipitate events such as 

hemolysis, vaso-occlusive (pain) crises, and other dangerous clinical consequences2. -
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thalassemia is closely related and results from genetic variants which cause a quantitative 

defect in the -globin protein; the subsequent imbalance in - and -globin causes 

symptomatic anemia that often requires lifelong blood transfusions3. 

Sickle cell disease and thalassemia are common in developing countries. 

However, affordable management of these diseases has yet to be established, 

particularly for those with poor access to medical care; as a result, diseases of 

hemoglobin are a major cause of morbidity and mortality worldwide – particularly in Africa, 

the Mediterranean region, and regions in South and East Asia. In fact, a 2001 estimate 

demonstrated that in Sri Lanka alone, the cost of properly treating all people with 

thalassemia would account for 10% of the country’s healthcare expenditures4. Although 

the economic and health burden of thalassemia and sickle cell disease continues to be 

understudied, the burden can reasonably be estimated to be similarly large in other 

developing nations where diseases of hemoglobin are common5. Fortunately, growing 

access to genetic tools and databases has allowed for fruitful study of these disorders. 

As a result, the past several decades have seen rapid improvement in our understanding 

of mechanisms of SCD and thalassemia, yielding several promising avenues of gene-

targeted treatment.  

  

Preclinical evidence of the therapeutic role for fetal hemoglobin induction 

Adult human hemoglobin is formed as a tetramer composed of two α-globin polypeptide 

chains and two -like globin polypeptides. Prior to roughly a year of age in humans, -

globin is not yet expressed; fetal hemoglobin instead consists of two α chains and two γ 

chains (Figure 1). The persistence of fetal hemoglobin into adulthood has been shown to 



 8 

be a key modifier of the major -hemoglobin disorders – sickle cell disease and -

thalassemia – where it is able to ameliorate symptoms through replacement of the 

mutated adult -hemoglobin6. Although HbF was found to be highly heritable7, little was 

known about its precise genetic modifiers. In late 2007 and 2008, two genome-wide 

association studies (GWAS) in non-anemic individuals identified three loci associated with 

variation in fetal hemoglobin levels8,9. These loci were also shown to be important in 

ameliorating the severity of symptoms in patients with sickle cell disease and -

thalassemia9,10. Among these was a locus on chromosome 2 within the BCL11A gene, 

which had been well-studied for its role in B lymphopoiesis and neurodevelopment, yet a 

role in hemoglobin switching had not been appreciated. As a result, initial functional 

studies revealed a key role for BCL11A in silencing of HbF11. In addition, BCL11A was 

shown to be a critical regulator of fetal hemoglobin switching in humans and mice12,13. 

Recent studies of rare individuals haplo-insufficient for BCL11A have provided additional 

insights into its critical in vivo role in silencing HbF in humans14,15. These findings have 

led to a considerable effort to target BCL11A to achieve HbF induction in patients with the 

-hemoglobin disorders.  

Considerable efforts have been undertaken over the past decade to elucidate the 

factors that regulate BCL11A. Studies of BCL11A regulation have revealed its interactions 

with transcription factors GATA1, SOX6, and ZFPM1/FOG111,16. Furthermore, there 

appear to be long-range interactions between BCL11A and regions throughout the -

globin locus, which alters the conformation of the locus and its proximity to enhancer 

regions17. Recent research also indicates that BCL11A is regulated at the level of 

translation by RNA-binding protein LIN28B, illuminating a new mechanism of BCL11A 
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control18. BCL11A has emerged as a particularly interesting target for the development of 

gene therapies. These efforts include delivery of short-hairpin RNAs (shRNAs) targeting 

BCL11A and efforts to target an erythroid enhancer of BCL11A using genome editing 

approaches19. However, though numerous factors have been elucidated in the regulation 

of BCL11A, the relative contribution of genetic variation within each factor to the ultimate 

expression level of HbF has yet to be clarified. Developing a deeper understanding of the 

interplay of common and rare variants that affect HbF expression could lead to the 

identification of more therapeutic targets for gene therapies.  

 

Figure 1. The switch from fetal to adult hemoglobin. The top panel depicts sites of -like 
globin production. This figure is adapted from Sankaran and Orkin (2013)20.  

Importantly, many of the studies that characterized fetal hemoglobin as a 

therapeutic target were largely informed by cases of extremely rare variants causing 

hereditary persistence of fetal hemoglobin (HPFH)21. While these studies have been 

enormously informative to elucidate the underlying mechanisms of fetal hemoglobin 
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regulation, the complex interplay of common and rare genetic variants – and the effect 

sizes of genetic contributors on fetal hemoglobin expression – has not yet been clearly 

elucidated. There remains a great need to apply population-based genetic studies to this 

trait in order to better understand fetal hemoglobin in the context of its genetic 

background.  

 

Recent advancements in genetic analysis 

There has been a rapid adoption of techniques for genetic analyses in the field of biology. 

With decreasing costs of genotyping and sequencing technologies, a sudden explosion 

of freely available genetic information has prompted the development of new tools to 

interpret large-scale data. Emerging efforts to combine rare and common genetic studies 

have begun to elucidate a broader understanding of biological systems such as 

hematopoiesis. The following section provides a brief framework of human genetic 

studies and how they have the potential to unlock a more holistic understanding of human 

health and disease. 

 Human genetic studies can broadly be divided into common (allele frequency > 

1%) and rare (allele frequency < 1%) variant association studies, each employing different 

approaches to work up their variants of interest. Common variant association studies 

(CVAS) usually take the form of genome-wide association studies (GWAS), in which 

individuals are genotyped using arrays that capture mostly higher-frequency variants. 

Statistical analyses can then be used to determine whether each variant is associated 

with a continuous or binary phenotype of interest. CVAS focus on traits with polygenic 

architectures comprised of many variants with small individual effects and usually include 
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a large proportion of healthy individuals in the study population. However, current 

limitations include high multiple testing burden from evaluating millions of variants, its 

inability to capture a substantial portion of heritability, and the difficulty of functionally 

characterizing association signals22. 

 Rare variant association studies (RVAS) require alternative analytical methods, 

since single-variant analysis are  underpowered to detect associations if the individual 

mutation is too rare in the study population. To counteract this, burden tests have been 

developed, which collapse many variants within a gene or region into a single risk score. 

This approach thus performs a per-gene or per-region association study as opposed to 

per-variant association tests in GWAS23,24.  

Importantly, GWAS and RVAS also generally employ different technologies for the 

identification of genetic variants. GWAS typically employ single nucleotide polymorphism 

(SNP) arrays to directly genotype up to a few million common variants. Millions of 

additional variants can then be inferred via imputation, which is the process of using 

linkage patterns in a more densely sequenced reference panel to predict unobserved 

genotypes in the study dataset. However, these methods are ineffective for identifying 

extremely rare variants – especially those in low linkage with other variants – and  

impossible for novel genetic variants25. Therefore, RVAS typically use targeted 

sequencing, whole-exome sequencing (WES), or whole-genome sequencing (WGS), 

which allow for unbiased variant calling to identify rare or novel variants that would not 

have been included on genotyping arrays or that are not confidently imputed26. In addition, 

RVAS study populations are on average smaller than in CVAS and are more enriched for 

disease cases due to the increased costs associated with these technologies. In addition 
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to cost, RVAS are limited in that they can miss noncoding associations due to exclusion 

(WES) or low sequencing depth (WGS), and they require assumptions about the 

underlying genetic model when aggregating variants27.   

 

Summary of planned investigations 

The goal of this study is to approach HbF expression through the lens of population 

genetics, using some of the analytic tools mentioned above. Thailand has implemented 

a screening program given the high prevalence of thalassemia carriers. We have gained 

access to blood samples from a population of over 86,000 from Thailand. I aim to use 

genotyping data from this population to identify common genetic variants that may explain 

variant in HbF expression. Furthermore, we are privileged to have access to a randomly-

ascertained cohort of blood samples from blood donors in Sweden, which will be useful 

to supplement our GWAS and provide further statistical power to our study of HbF. This 

study will evaluate the relative contributions of both common and rare variants in the final 

expression level of HbF, and may contribute substantially to our overall understanding of 

HbF regulation. 

 As the distribution of HbF in our Thai population suggests that there are rare, large-

effect variants that may explain the upper tail of the HbF distribution, we will select a 

subset of Thai individuals to whole-genome sequence. Subsequent analysis will allow us 

to examine the presence of variants in the -globin locus. Gene-based burden testing will 

allow us to increase power in detecting rare variants found in genes that may be 

associated with elevated HbF. 
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 These investigations will form a suitable foundation for understanding the complex 

genetics that influence HbF expression. Eventually, integration of common and rare 

variant analyses may lead to better predictive tools for clinical outcomes, as well as a 

method to identify suitable therapeutic targets for patients with hemoglobinopathies.  
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Chapter 2: Methods 

 

Collection and processing of Thai GWAS data 

Collection and genotyping of patient samples 

Peripheral blood samples were collected from 1,443 individuals selected from a 

population of over 86,000 patients seen at the Siriraj Hospital in Bangkok. Specifically, 

448 samples were selected from those individuals with HbF levels > 2%, and 995 

individuals were selected which had HbF levels measured < 2%. A subset of samples 

underwent multiplex ligation-dependent probe amplification (MLPA) to test for presence 

of deletions within the -globin locus. These samples were subsequently genotyped with 

the Illumina MEGA array, which calls > 1.7 million variants genome wide. Single 

nucleotide polymorphisms (SNPs) were called using the Illumina auto call genotype-

calling software, then mapped to the GRCh37 human reference genome. 

 

Figure 1. Schematic of Thai GWAS. Of 86,000 healthy individuals with known HbF levels, 
1,443 individuals were selected for our study. They were genotyped, and a subset of them 
were further whole-genome sequenced. 
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HPFH deletion calling and validation 

As only a subset of samples were tested for HBB-spanning deletions, we used the 

software package pennCNV28 to both validate MLPA calls and de novo determine 

whether or not deletions existed in the untested samples.  Deletions were called in two 

ways: de novo and validation-based wherein the known HPFH deletions endemic to the 

Thai population were validated. 

 

Variant calling and annotation 

Following sequencing, reads were aligned to the hg19 reference genome with BWA29, 

and GATK v3.2 was applied. Base quality score recalibration, indel realignment, and 

duplicate removal were applied according to GATK Best Practices recommendations30,31. 

Variant call files (VCF) were processed using Tabix v1.332 and Bcftools v1.233. Following 

variant calling, variants were annotated for functional effect using Variant Effect Predictor 

v7734. Variants were also annotated for allele frequencies from gnomAD v2.0.235. For 

gnomAD, minor allele frequencies (MAF) from each of the ancestries within gnomAD 

were added, and MAF filtering was based on the highest MAF from each of the gnomAD 

populations. 

 

Sample quality control 

We used PLINK36 to compute the proportion of missing genotype calls, sample 

heterozygosity, and relatedness through identity-by-descent. For each pair of samples 

with identity-by-descent calculated to be > 0.125, we selected one sample to exclude from 
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further analysis. We further excluded samples with greater than 2% missingness, as well 

as those samples with a heterozygosity score > 3 standard deviations from the mean. 

 

Gender determination 

We used PLINK to infer sex based on homozygosity across the sex chromosomes. For 

those samples which did not have confidently called sexes, we used reported data from 

anonymized patient records to assign the sample sex. We excluded samples with did not 

have either a PLINK-called sex or a reported sex. 

 

Principal component analysis 

We used PLINK to intersect the 1000 genomes37 and our samples by variant. We filtered 

for variants that were common to both datasets and defined by the same alternate and 

reference alleles at identical genome coordinates. We then merged our genotyped data 

with the 1000 genomes, and pruned the resulting PLINK .bed file. Afterward, we 

calculated eigenvectors and plotted the first 2 principal components. Visual assessment 

discerned no obvious outliers; therefore, we did not exclude any samples based on 

principal component analysis. 

 

SNP quality control 

Using PLINK, we calculated minor allele frequency, missingness, and a P-value for 

Hardy-Weinberg equilibrium. We set a threshold of 5% SNP missingness, and 1x10-10 for 

Hardy-Weinberg P-value. We also excluded all but one of each set of duplicate SNPs. 
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Imputation against Genome Asia Pilot 

We decided to use the Genome Asia Pilot38 as an initial reference panel for imputation. 

Though we initially considered using the 1000 genomes reference panel (which does 

include two East Asian populations), Asia has a high degree of population diversity. The 

Thai population in particularly is poorly covered in the 1000 Genomes Asian populations 

and has been shown to be better covered by the Genome Asia Pilot reference panel39. 

We used the Michigan Imputation Server40 to perform our imputation, and Eagle 2.441 for 

haplotype phasing. Imputation results were filtered for r2 score of 0.3, 0.5, and 0.8. 

 

Genome-wide association studies 

Associations were performed using BOLT-LMM42, an algorithm for mixed model 

association testing. Covariates included age, age squared, sex, presence of known -

globin deletions, and the top 10 principal components. HbF was normalized using box-

cox normalization. Manhattan plots were produced using R and qqman43, as well as 

Locuszoom44. 

 

Whole-genome sequencing 

198 samples were selected to undergo whole-genome sequencing for further analyses. 

Samples were selected by balancing across three priorities: 1) representation of known 

globin locus deletions, 2) samples with potential novel globin deletions and/or high HbF 

(>25%), and 3) control samples to build an imputation reference panel for the full array 

genotype dataset.  
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Collection and processing of Swedish GWAS data 

Collection and genotyping of patient samples 

Via collaborators in Sweden, the Sankaran lab has attained access to a cohort of Swedish 

individuals with available genotyping data and measured HbF levels. The cohort is 

composed of 4,018 blood donors who were randomly ascertained independently of any 

phenotype. These donors include participants from a population-based study of 

immunoglobin levels45. Of these donors, 50 individuals were found to have HbF 

exceeding 2%. Genotyping was performed using the Human-Omni-1 Quad and the 

InfiniumOmniExpress-24 beadchips, which capture > 1.1 million SNPs per sample. 

 

Pre-GWAS quality control 

We used PLINK36 to compute the proportion of missing genotype calls, sample 

heterozygosity, and relatedness through identity-by-descent. For each pair of samples 

with identity-by-descent calculated to be > 0.125, we selected one sample to exclude from 

further analysis. We further excluded samples with greater than 2% missingness, as well 

as those samples with a heterozygosity score > 3 standard deviations from the mean. 

These thresholds are identical to those imposed in the sample quality-control pipeline for 

our Thai cohort. 

 

Imputation 

Genotypes were submitted to the Michigan Imputation Server for imputation40. Eagle 2.441 

was used for haplotype phasing. The 1000 genomes Imputation results were filtered for 
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r2 score of 0.3, 0.5, and 0.8. SNPs with minor allele frequencies < 1% were removed from 

analysis. 

 

Genome-wide association studies 

Associations were performed using BOLT-LMM42, an algorithm for mixed model 

association testing. Sex was included as a covariate. Phenotypes were normalized using 

box-cox normalization. Manhattan plots were produced using R and qqman43; higher-

resolution plots were produced with LocusZoom44. 

 

GWAS meta-analysis 

GWAS summary statistics for Thai and Swedish cohorts were further annotated with 

sample size of each study (1394 for the Thai study, and 3187 for the Swedish study). 

Meta-analysis was performed using METAL, a tool commonly employed for combining 

multiple GWAS using p-values and taking sample size and direction of effect into 

account46. In meta-analyzing the Thai and Swedish cohorts, consistent quality control 

thresholds, imputation R2 thresholds, and minor allele frequency cutoffs were applied to 

each set of GWAS summary statistics prior to utilizing METAL. 

 

Imputation analysis 

Analysis of imputation accuracy 

To assess the accuracy of imputed genotypes, we treated our genotyping arrays as our 

truth set. From our quality-controlled genotyping arrays, we randomly removed 10% (or 

11,416) of SNPs on chromosome 2 (leaving 102,739 of 114,155 variants). The remaining 
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90% SNPs were then sent to the Michigan Imputation Server for imputation against 

several reference panels.  

 

Rare variant gene-based burden tests 

Quality control 

We used Bcftools to ascertain sample missingness, sample depth of coverage, single 

nucleotide variants (SNVs) per sample, indels per sample, singletons per sample, and 

transition/transversion ratios per sample. We used PLINK to determine sample 

heterozygosity and sample relatedness. We removed outliers of each analysis, defined 

as those with parameters values that exceeded 3 standard deviations from the mean. 

Furthermore, we filtered our SNVs to include only those that lie within 1000 base pairs of 

an exon, for file size management. We then removed variants for which the total depth 

(represented in a variant call file as the “DP” field) did not exceed 10 in at least 90% of 

our samples. 

 

Burden analysis 

We annotated our VCF with the Variant Effect Predictor (VEP)34, after which we removed 

all variants with minor allele frequency of > 1% in any database. We further filtered for 

only those rare variants whose consequence is a nonsynonymous variant. Next, we 

performed a Box-Cox normalization of the % HbF phenotype of our samples, controlling 

for β-globin, sex, age, and top 3 principal components47. We additively aggregated all 

rare variants by gene. We then performed a linear regression over all genes. 
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Structural variant analysis 

Structural variant analysis of whole-genome sequenced samples 

We developed an ensemble method of 3 existing tools – Lumpy, MANTA, and Delly – in 

order to confidently assign structural variants. Briefly, we followed established protocols 

to run these packages, and then jointly assessed the evidence that a structural variant 

was called by at least two of these packages and of the same type (i.e. inversion, 

duplicate, deletion).  In particular, flexible endpoints within a 50-bp window were allowed, 

as each algorithm was found to categorize these slightly differently when unable to 

identify precise breakpoints.  Finally, for the globin locus, HPFH deletions were manually 

validated and found to be accurate using this ensemble method. 

 For the gene conversion event, we utilized a tool called Parasol – a paralogue-

aware SNP and indel caller – in collaboration with the McCarroll lab. 
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Chapter 3: Genome-wide association study of fetal hemoglobin expression in a 

Thai and Swedish population 

Abstract 

Prior genome-wide association studies have been performed in populations with 

hemoglobinopathies, revealing several loci that significantly associate with fetal 

hemoglobin expression. We performed a genome-wide association study in a healthy 

Thai population in collaboration with the Siriraj Hospital in Bangkok, Thailand, which offers 

a study population that has not been adequately represented in prior genome-wide 

association studies of this phenotype. Our results replicated three loci that have been 

previously identified – namely HBS1L-Myb, BCL11A, and HBB. We furthermore 

performed a follow-up association study in a healthy Swedish population, which yielded 

further support for our results, and suggests an additional genome-wide significant locus.  

  



 23 

Contributions 

Aaron Cheng1,2, Jeffrey M. Verboon1,2, Bob Handsaker2, Steve McCarroll2, Ellinor 

Johnsson3, Bjorn Nilsson3, Vijay G. Sankaran1,2  

1Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School 

and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical 

School 

2Broad Institute of Harvard and MIT 

3Lund University, Lund, Sweden 

 

ANC performed genome-wide association studies. ANC and JMV performed quality 

control of Thai and Swedish cohorts. ANC and JMV prepared the manuscript. BH and SM 

led structural variant analysis. EJ and BN provided Swedish cohort. VGS supervised all 

aspects of this study.  

 

Note: The authors thank members of the Sankaran laboratory for valuable discussions. 

Work in our laboratory was supported by the New York Stem Cell Foundation and 

National Institutes of Health Grant R01 DK103794. VGS is a New York Stem Cell 

Foundation—Robertson Investigator. ANC received support from the Howard Hughes 

Medical Institute Medical Fellows Program. 

 

  



 24 

Introduction 

Prior genome-wide association studies performed in healthy individuals and patients with 

sickle cell disease and beta thalassemia have elucidated loci associated with HbF 

expression9,10,48–52. In particular, these GWAS have identified variation within 

chromosome 11p (HBB locus), chromosome 2p (BCL11A), and chromosome 6q (HBS1L-

MYB) as important regulatory regions affecting fetal globin expression and disease 

severity in sickle cell disease and thalassemia. However, these studies principally 

investigated genetic variation in African, European, and admixed American populations. 

We performed a GWAS in 1,443 healthy individuals in Thailand selected from a cohort of 

over 86,000 individuals to validate and identify new genetic loci associated with HbF 

levels, and followed up with a GWAS of blood samples collected from healthy Swedish 

blood donors. 

 

Results 

Collection and analysis of Thai and Swedish cohort samples 

We collaborated with the Siriraj Hospital in Bangkok, Thailand and screened over 86,000 

individuals. Of these individuals, 1,443 samples were selected for use in our GWAS. 

Specifically, 448 samples were selected from those with the highest HbF levels, while 

995 were selected from individuals with HbF levels in the normal range, defined as < 2% 

HbF as measured by high performance liquid chromatography (HPLC) (Figure 1).  
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Figure 2. Density plot showing the distribution of HbF levels in Thai and Swedish cohorts. 
Horizontal axis indicates HbF% measured by HPLC.  

A subset of samples underwent multiplex ligation-dependent probe amplification 

(MLPA) to test for presence of deletions within the -globin locus (Figure 2). Samples 

were genotyped with the Illumina MEGA array, which calls > 1.7 million variants genome 

wide. Single nucleotide polymorphisms (SNPs) were called using the Illumina auto call 

genotype-calling software, then mapped to the GRCh37 human reference genome. MLPA 

called deletions within the -globin locus were validated with pennCNV, and untested 

samples were screened for these deletions as well. 

We additionally gained access to a cohort of 4,018 Swedish blood donors who 

were randomly ascertained independently of any phenotype. These donors included 
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participants from a study of immunoglobin levels45. 50 individuals were found to have HbF 

levels exceeding 2%, a distribution that is consistent with previously characterized 

populations which are not under selective pressure (Figure 1).
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Figure 2. Deletions in Thai cohort. Samples suspected to have possible deletions in -globin underwent multiplex PCR to 

identify deletion status for 8 previously characterized deletions in the -globin locus. Scatterplot and box-and-whisker plot 
on right indicate HbF distribution in individuals based on their deletion status.
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Pre-GWAS sample and SNP quality control of Thai samples 

Genotype data of the Thai cohort was processed by filtering SNPs based on missingness 

(proportion of individuals missing genotype information at that site) and Hardy-Weinberg 

equilibrium p-value. A kinship coefficient was calculated for each pair of individuals, and 

one of each pair whose identity-by-descent (IBD) coefficient exceeded 0.125 was 

excluded from analysis. Finally, population substructure was estimated through principal 

component analysis projected onto the 1000 Genomes Project; there were no outliers, so 

no further individuals were removed based on principal component analysis (Figure 3). 

We only included autosomal content (chromosomes 1-22) for further analysis. 

 

Figure 3. Principal component analysis of Thai cohort against 1000 Genomes. Individuals 
in Thai cohort are blue. AFR: African, EAS: East Asian, EUR: European, SAA: South 
Asian, OURS: our samples 

 Imputation was subsequently conducted using the Michigan Imputation Server. 

Specifically, Eagle v2.3 was used to phase input haplotypes, and Minimac4 was used for 

imputation. We used the Genome Asia Pilot reference panel for imputation; this reference 
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panel has been shown to enable genetic discoveries in specific Asian populations that 

have historically been underrepresented in genetic studies53 (see chapter 4 for a deeper 

discussion on population representation in genetic studies). Imputed SNPs were 

subsequently filtered for R2 > 0.8 to prune low-confidence calls. 

Genome-wide association study of Thai cohort  

BOLT-LMM was used to perform mixed model association testing, and accounted for age, 

sex, top 10 principal components, and presence of known -globin locus deletions as 

determined by MLPA in the covariates. The resulting association statistics were filtered 

for SNPs with minor allele frequency (MAF) > 0.01, then plotted (Figure 4). Peaks 

exceeded the genome-wide significance threshold (p < 5x10-8) at three loci: chromosome 

2, chromosome 6, and chromosome 11. The genomic inflation factor (GC) was 

9.979515e-01, indicating no evidence of overdispersion.  

 

Figure 4. Manhattan plot of Thai GWAS. Dashed line: p = 5x10-8. Peaks exceeding this 
line indicate genome-wide significance of association. Q-Q plot shown in upper right, with 
grey line indicating expected chi square distribution. 

BCL11A 

HBS1L-MYB 

HBB 
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 The sentinel SNPs at each peak are described in Table 1. All three sentinel SNPs 

lie within genes that have previously been identified in GWAS of distinct study populations 

to associate with HbF expression.   

Table 1. Sentinel SNPs in Thai GWAS. BP: base position, Ref: reference allele, Alt: 
alternate allele, Ref allele freq: reference allele frequency, S.E.: standard error 

Chromosome 
and locus 

BP Ref Alt Ref allele 

freq 

Beta S.E. p-value 

2 (BCL11A) 60713235 A G 0.760981 -0.43867 0.0785655 2.4x10-8 

6 (HBS1L-
MYB) 

135450755 T C 0.415366 -0.393298 0.0715301 3.8x10-8 

11 (HBB) 5525654 C T 0.408265 0.388278 0.0711725 4.9x10-8 

 

Genome-wide association study in Swedish cohort 

After applying similar pre-imputation quality control steps to the Swedish cohort (as 

described in the Methods section), we imputed the genotypes to the 1000 genomes using 

the Michigan Imputation Server. Eagle v2.3 was used to phase input haplotypes, and 

Minimac4 was used for imputation. Afterward, imputed results were filtered for those with 

R2 > 0.8. We used BOLT-LMM to perform association testing on the remaining SNPs, 

with only sex as a covariate.  

 The resulting association study identified four peaks which exceeded genome-

wide significance (p = 5x10-8) (Figure 5). The genomic inflation factor (GC) was 1.0, 

indicating no evidence of overdispersion. Three of the four peaks are consistent with 
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previously validated loci and correspond to variants within BCL11A, HBS1L-MYB, and 

HBB (Table 2). One additional peak was identified at chromosome 15 with a sentinel SNP 

at position 98,190,432 (-log10p = 7.481) (Figure 6).   

 

Figure 5. Manhattan plot of Swedish GWAS. Dashed line: p = 5x10-8; peaks exceeding 
this line indicate genome-wide significance of association. 

 

Table 2. Sentinel SNPs in Swedish GWAS. BP: base position, Ref: reference allele, Alt: 
alternate allele, Ref allele freq: reference allele frequency, S.E.: standard error 

Chromosome 
and locus 

BP Ref Alt Ref allele 

freq 

Beta S.E. p-value 

2 (BCL11A) 60718043 T G 0.848386 -0.258141 0.0128474 8.5x10-90 

6 (HBS1L-MYB) 135418916 A G 0.267436 0.190469 0.0106551 1.8x10-71 

11 (HBB) 5271063 C T 0.295538 0.0958744 0.0102938 1.2x10-20 

15 (ARRDC4) 
98190432 T C 0.161512 0.0715621 0.0129481 3.3x10-8 

 
 

BCL11A 

HBS1L-MYB 

HBB 
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Figure 6. Close-up of chromosome 15 locus. Coordinates are in hg19. LD information uses all subpopulations of 1000 
genomes. 

 

Finally, we performed a GWAS meta-analysis using METAL, a tool commonly used 

to combine summary statistics of multiple common variant studies. Meta-analyses are a 

useful tool to increase sample size by incorporating samples across numerous genetic 

studies; this increases statistical power and often allows the detection of associations with 
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smaller effect sizes54. This approach is particularly useful in investigating complex traits 

that are likely to be influenced by multiple variants of small effect size. Furthermore, meta-

analyses can be useful in evaluating the consistency or heterogeneity of results across 

multiple datasets55.  

We took care to apply identical quality control thresholds to the Thai and Swedish 

populations; the only differences in the two studies was the reference panel used during 

imputation, and the covariates used during association. The meta-analysis replicated the 

three loci at chromosomes 2, 6, and 11 as previously identified in the Thai and Swedish 

GWAS; the chromosome 15 locus fell under the genome-wide significance line but 

remained suggestive of a significant association (p = 6.5x10-7) (Figure 7). 

 

Figure 7. Meta-analysis of Thai and Swedish cohorts. Dashed line indicates genome-
wide significance at p = 5x10-8.  
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Discussion 

This collection of genome-wide association studies constitutes one of the largest genetic 

studies of HbF to date. The GWAS of a healthy Thai population is particularly valuable as 

it incorporates a population that has been classically underrepresented in population-

based genetic studies. The combination of the Thai and Swedish cohort allows for a study 

that benefits from the novelty of understudied populations and the statistical power 

conferred by including a large number of individuals. 

 In this study, we collaborated closely with the Siriraj Hospital in Bangkok to identify 

a cohort of 1,458 adults for a GWAS. These individuals were carefully chosen to include 

people found to have abnormally high levels of HbF in adulthood (defined as those with 

HbF of > 2%) and a 2:1 ratio of controls to cases. After these individuals were identified, 

quality control was carefully performed to include only SNPs and samples that passed 

stringent quality thresholds. These steps yielded a high-quality GWAS with minimal 

genomic control inflation, suggesting that we properly accounted for confounding from 

population structure.  

 Each sample within our Thai cohort underwent analysis for 8 known deletions 

within the -globin locus. Because these deletions are known to influence HbF levels, we 

included each deletion as a binary covariate in our model, along with standard covariates 

(age, age squared, sex, and top 10 principal components). Our common variant analysis 

study replicated genome-wide significant associations at three loci – BCL11A, HBS1L-

MYB, and HBB – and did not identify any additional signals. It is possible that our study 

was underpowered to detect weaker but significant signals, or that the reference panel 

used for imputation could be further improved to better represent our study sample. It is 
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also possible that conditional analysis at the three significant loci may reveal independent 

signals. 

 We followed up our Thai study with a GWAS using over 3,800 Swedish blood 

samples, which have had HbF levels measured. The absence of other phenotypic 

information limited the number of covariates we could include in our analysis; the 

association only included sex as an additional covariate. The resulting GWAS again 

replicated similar findings, but also demonstrated a small but genome-wide significant 

peak at chromosome 15, suggesting a new locus that may be relevant in HbF expression. 

Exploration of this locus revealed that the cluster of significant SNPs lie within a region 

encoding a long intergenic non-coding RNA (lncRNA).  

 Finally, we used METAL to conduct a meta-analysis of the two GWAS. We ensured 

that the SNPs and samples in each analysis were subject to the same quality-control 

thresholds, and that post-imputation results were filtered using the same R2 and MAF, to 

ensure consistency across studies. In our meta-analysis, the three aforementioned peaks 

– at BCL11A, HBS1L-MYB, and HBB – were replicated, though the chromosome 15 peak 

no longer reached genome-wide significance. It is possible that this peak confers a 

population-specific effect on HbF that is unseen in the Thai population; combining studies 

may thus suppress a GWAS peak that otherwise would reach significance in only a 

specific population. It is also possible that the Thai cohort is too small to adequately 

capture new signals, or that improvements in covariates may reveal additional loci that 

have not yet been seen. 

 In summary, our GWAS have replicated three loci previously known to associate 

significantly with HbF levels. Additionally, a new signal at chromosome 15 has been 
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identified in a healthy Swedish population, suggesting a possible new factor involved in 

HbF regulation. 

 

Future directions 

To more completely assess the GWAS results in this study, we will perform conditional 

analyses to identify independently associated variants56. Furthermore, we aim to 

incorporate summary statistics from other HbF GWAS to better power our meta-analyses, 

as variants with low effect sizes require much larger sample sizes to reveal. Finally, we 

aim to identify causal variants using statistical fine-mapping methods in order to prioritize 

SNPs for further study. 
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Chapter 4: Assessing the influence of reference panels on imputation and genome-

wide association studies 

Abstract 

Imputation refers to the process of utilizing linkage patterns in a more densely sequenced 

reference panel to predict unobserved genotypes in the study dataset. In performing the 

genome-wide association studies described previously, we had to make careful decisions 

about the reference panels we used to perform our genetic imputations. Because Asians 

have historically been poorly represented in whole-genome sequencing databases, 

imputation of our Thai cohort against a reference panel with poor Asian representation 

risks missing associations that can only be elucidated by using population-specific linkage 

information. In this chapter, I discuss the process of selecting and evaluating reference 

panels and measuring their effects on GWAS results. 
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Introduction 

Imputation is a statistical technique which uses haplotype patterns in a reference panel 

to predict unobserved genotypes in a study dataset. Recent technological advances have 

allowed for denser imputation reference panels and more accurate imputation algorithms. 

Larger reference panels such as the UK10K Project, Haplotype Reference Consortium 

(HRC), and TOPMed feature substantially more variants than older panels, and include 

far more rare variants57–59. Imputation is particularly useful for association studies 

because typical GWAS contain incomplete genetic information. As an example, the 

genotyping arrays used in the prior chapter contained information at just over 1 million 

variants. For the vast majority of SNPs, observations exist for the reference panel (which 

are typically whole-genome or whole-exome sequenced and thus contain far more 

genetic information). Using the pattern of linkage disequilibrium (LD), one can impute 

missing genotypes, and use these imputed genotypes in association tests to improve 

statistical power in a cost-efficient manner. 

 Until now, most GWAS have been performed in populations that are well 

represented by reference panels. However, understudied populations – such as Asia and 

Africa – pose an important problem in GWAS39. Several studies have demonstrated that 

inclusion of specific populations in reference panels can increase the imputation 

accuracy60–62. In particular, Asian populations are characterized by high levels of 

population-specific variation which is incompletely captured by preexisting reference 

panels such as the 1000 genomes. Similar problems exist for other ethnicities as well. 

The Genome Asia Pilot study has also revealed that allele frequencies of variants differ 

between populations; by using population-specific allele frequencies that better represent 



 40 

the East Asian population structure, a greater number of variants were correctly identified 

as pathogenic when using Asian allele frequencies for cutoffs instead of the 1000 

genomes and other preexisting databases53. Furthermore, more inclusive panels are 

particularly useful in imputing variants with lower minor allele frequencies. In some cases, 

ancestry-specific associations have revealed new genetic associations that were 

previously unknown63,64. 

 In performing our GWAS, we had to make careful choices about the reference 

panels we used during genotype imputation. In this chapter, I discuss our rationale for 

selecting reference panels, as well as several methods for evaluating imputation quality. 

 

Results 

The GenomeAsia Pilot dataset 

The GenomeAsia consortium has released a valuable dataset consisting of 1,739 

individuals from 219 population groups across Asia; these samples have been specifically 

chosen to emphasize population groups that are underrepresented in previous genetic 

studies53. In deciding which reference panels to use for our GWAS, we devised a method 

of comparing imputation accuracy with different reference panels. 

 Using chromosome 2, we randomly removed 10% of SNPs (after pre-GWAS 

quality control as described in Methods) on the genotyping array using PLINK. The 

resulting 90% of SNPs were then submitted to the Michigan Imputation Server where 

Eagle v2.4 and Minimac 4 were used for haplotype inference and imputation, respectively. 

We performed this analysis using the 1000 genomes as well as the GAsP dataset as 

reference panels.  
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 Afterward, we compared the resulting imputed genotypes with the SNPs that were 

removed from the earlier step. For each sample, accuracy of imputation was calculated 

with the following formula: 
# SNPs with correct dosage

# total removed SNPs
. The resulting analysis demonstrated that 

for 99.85% (or 1392 out of 1394) of samples, imputation accuracy was higher using the 

GAsP reference panel when compared to the 1000 genomes (Figure 1A,B). 

 

Figure 1. Schematic of imputation accuracy. A) Histogram of individuals versus 1000 
genomes:GAsP imputation accuracy ratio. <1 indicates greater accuracy in GAsP 
reference panel. B) Scatterplot of 1000 genomes imputation accuracy versus GAsP 
imputation accuracy. Each dot corresponds to an individual sample. Points above solid 
line indicate greater accuracy after imputation to GAsP reference panel compared to 1000 
genomes reference panel. 

Merging reference panels 

Prior to the release of the GAsP, we employed a different strategy for evaluating 

imputation quality. We selected 198 individuals in our Thai cohort to undergo whole-

genome sequencing in order to build a panel of controls, verify -globin deletions, and 

identify new variants that may explain elevated HbF levels in individuals without a known 

deletion in the -globin locus. 
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 Recognizing that Asia is the most populous continent with considerable population 

substructure, we decided to combine our whole-genome sequenced samples with the 

1000 genomes reference panel in order to make a more representative reference panel 

for the remainder of our genotyped samples. Indeed, this strategy has been utilized in 

studies of samples with high degrees of relatedness; this allows low-coverage sequencing 

data to serve as a high-density reference for individuals with similar haplotypes that do 

not have any sequence data65,66. Furthermore, merging reference panels has been shown 

to improve the accuracy of imputation, particularly when reference panels are created 

from multiple different populations67.  

 We used a tool called IMPUTE2, which allows merging multiple reference panels 

in addition to performing genotype imputation68. Briefly, this method identifies variants 

unique to reference panel 1, imputes these genotypes in reference panel 2, then performs 

the same procedure for reference panel 2, thereby creating a large reference panel 

composed of the sum of samples in both panels, which is equally dense across all 

samples (Figure 2). 
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Figure 2. Schematic of merging reference panels using IMPUTE2, taken from 
https://mathgen.stats.ox.ac.uk/impute/impute_v2.html#merging_panels. SNPs from one 
reference panel are imputed onto the other reference panel; this is then repeated in the 
reverse direction to create a combined reference panel that is composed of more SNPs 
and samples than either one panel alone. 

 We then performed genome-wide association studies instantiated through BOLT-

LMM, using the same covariates and settings for each reference panel, to compare the 

outcomes of each association. Each association study replicated 3 genome-wide  

significant peaks at identical loci (at chromosome 2, 6, and 11) (Table 1). At two of the 

loci, the p-value of sentinel SNPs was lower using the merged reference panel compared 

to using either the 1000 genomes or the 198 whole-genome sequenced Thai samples in 

isolation.  
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Table 1. Comparison of p-values at sentinel SNPs of GWAS performed with different 
reference panels. The three reference panels used were the 1000 genomes, our study’s 
198 whole-genome sequenced individuals, and the combination of the two sets of 
genomes. 

Chromosome 1000 

genomes 

minimum 

p-value 

WGS 

minimum 

p-value 

Merged 

panel 

minimum 

p-value 

2 9.2x10-13 2.90x10-13 3.1x10-12 

6 3.0x10-14 3.10x10-15 3.5x10-16 

11 6.80x10-69 6.70x10-83 1.1x10-83 

 

Discussion 

In performing our GWAS with Thai samples, we needed to make careful decisions about 

the reference panels we selected for our analysis. Initially, prior to the 2019 release of the 

GAsP reference panel, we used SHAPEIT69 for haplotype inference and IMPUTE2 for 

imputation. We evaluated the impact of three reference panels on our GWAS: 1) the 1000 

genomes, 2) a subset of 198 Thai samples which were whole-genome sequenced, and 

3) a reference panel composed of both the 1000 genomes and our whole-genome 

sequenced Thai samples. For the three loci that are genome-wide significant, we 

discovered that the reference panel composed of our Thai samples resulted in greater 

statistical significance at the sentinel SNPs compared to the 1000 genomes. Furthermore, 

the combined reference panel yielded greater statistical significance at two of the three 

loci compared to either reference panel alone. It is important to note that the lower p-

values at these sentinel SNPs should not be interpreted as improved imputation accuracy; 

however, as these loci are known to be important modulators of HbF in prior studies, the 

improved statistical significance at the sentinel SNPs is suggestive that a combined 
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reference panel may be more appropriate in detecting significant associations compared 

to either reference panel alone.  

 In 2019, the Genome Asia Pilot reference panel was released. The reference panel 

includes a much higher density of underrepresented Asian populations compared to 

previous panels. As a result, we decided to use the GAsP for our Thai cohort. We used 

the Michigan Imputation Server in order to perform haplotype inference and imputation, 

and compared the imputation quality using the 1000 genomes and GAsP as reference 

panels. For this measurement, we removed 10% of our sample genotypes (which we 

treated as the truth set), and used the remaining SNPs for imputation. We then compared 

the resulting imputed genotypes against the truth set and found that for all individuals 

except two, using the GAsP as a reference panel yielded greater accuracy in imputed 

results compared to using the 1000 genomes. These results suggest that selection of a 

reference panel with higher representation of individuals that are ethnically similar to the 

study samples allows for greater accuracy in imputed genotypes.  

Future directions 

Analyses of imputed results are ongoing. In comparing the 1000 genomes and GAsP as 

imputation reference panels, it will be important to investigate whether imputation quality 

is affected by minor allele frequency. Furthermore, we are in the process of merging the 

GAsP with 1000 genomes and with our whole-genome sequenced samples to produce a 

larger and denser reference panel. It will be interesting to determine whether using this 

new reference panel will yield even higher accuracy, and whether this will be important in 

the GWAS results.  
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 We have also considered the strategy of using our subset of whole-genome 

sequenced individuals as the “truth set” of genotypes when calculating imputation 

accuracy. However, we had difficulties in performing the conversion from hg19 to hg38 (a 

necessary step as our genotyped samples were called in hg19 coordinates, while our 

WGS samples were called in hg38 samples) given a large rate of SNP dropout and mis-

mapping. We will continue to investigate this method as a potential method of measuring 

imputation quality. 
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Chapter 5: Rare variant analysis and identification of novel deletion in Thai cohort  

Abstract 

The distribution of HbF in our Thai cohort (described in Chapter 1) suggested that there 

were rare large-effect variants that could be treated as covariates in our GWAS. To further 

characterize these variants, we selected a set of 198 individuals to undergo whole-

genome sequencing, as described in Chapter 4. These sequenced samples permitted us 

to perform a rare variant burden test, in order to identify genes that may relate to HbF 

expression. Our burden test identified HBB as the top candidate. Careful examination of 

the HBB locus suggested that HBE is a suitable covariate to include in our GWAS, as 

HBE is known to modulate HbF levels. Furthermore, we identified one novel conversion 

event involving HBG1 and HBG2 which appears to influence HbF expression as well.   
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Introduction 

While genome-wide association studies are appropriate tools for investigating the 

contributions of common variants to a phenotype of interest, rare variant studies require 

a different approach. In this chapter, we introduce our implementation of a rare variant 

burden test as applied to our Thai cohort. A rare variant burden test typically involves 

higher-density sequencing (such as whole exome sequencing or whole genome 

sequencing) to call extremely rare variants (typically defined as < 1% minor allele 

frequency) with higher confidence. A “collapsing function” – which aggregates rare 

variants by gene or by region – is then applied to the genetic data. A per-gene (or per-

region) association test can then be performed, as compared to per-variant association 

tests in GWAS. We implemented a rare variant burden test on our cohort of 198 

sequenced Thai samples, revealing HBB to be significantly associated with HbF 

expression. Close inspection of the HBB locus identified two variants – HBE and a novel 

structural variant – which appear to influence HbF levels. 

 

Results 

Rare variant burden test in Thai cohort 

As described in Chapter 4, we whole-genome sequenced a subset of 198 of our Thai 

samples. We then annotated all variants using Variant Effect Predictor (VEP)34, after 

which we removed all variants with minor allele frequency of > 1% in any database. We 

further filtered for only those rare variants whose consequence is a nonsynonymous 

variant. Next, we performed a Box-Cox normalization of the % HbF phenotype of our 

samples, controlling for -globin, sex, age, and top 3 principal components47. We 
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additively aggregated all rare variants by gene. We then performed a linear regression 

over all genes. The resulting association identified HBB as the only gene whose burden 

of rare variants was significantly associated with HbF expression after Bonferroni 

adjustment (Table 1).  

Gene Beta p-value (unadjusted) 

HBB 1.48 3.65x10-12 

HBG1 -0.81 1.61x10-4 

NBPF10 0.17 4.07x10-4 

GUF1 -3.21 4.20x10-4 

GLB1 -3.64 8.57x10-4 

SMARCA4 2.46 1.22x10-3 

ZNF585B -1.02 1.85x10-3 

 

HBE and its influence of HbF expression 

One of the top candidate SNPs in the -globin locus is the Hemoglobin E variant, an 

abnormal HBB gene carrying a single missense mutation. We find that this variant confers 

increased fetal hemoglobin, both in the presence and absence of an additional HBB-

spanning deletion (Figure 1). Of note, without measurements of the absolute 

measurements of hemoglobin in grams per deciliter (g/dL) it is unclear if these increases 

in fetal hemoglobin are due to increases in γ-globin production, impaired -globin 

production, or a combination of both.  
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Figure 1. The presence of the HbE SNP influences HbF expression, in both samples with 
and without known β-globin deletions. Left panel shows samples without a β-globin 
deletion; right panel shows samples with β-globin deletion.  

 

Whole-genome sequencing reveals a gene conversion event involving HBG1 and HBG2 

In investigating the HBB locus, we identified an interesting pattern of decreasing coverage 

within the HBG1 and concurrent increase in HBG2 that occurred in 62 of 157 (41.9%) 

analyzed whole-genome sequenced Thai individuals (Figure 2A). In order to better 

understand this locus, we collaborated with the McCarroll lab which has developed a  new 

tool called Parasol, a copy-number- and paralog- aware SNP and indel variant caller. 

Using this tool, we determined that samples with the pattern of coverage in HBG1 and 

HBG2 (Figure 1) actually demonstrate a gene conversion event wherein HBG1 is being 

converted to HBG2. Importantly, while this gene conversion is correlated with increased 

fetal hemoglobin, this relationship only occurs in genetic background of individuals who 

also have a beta globin deletion (Figure 2B).  
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Figure 2. Novel variant appears to be common within our cohort, and correlates with HbF expression. A) Sequencing 
reads demonstrate a variant involving HBG1 and HBG2. Image obtained from IGV70 of a representative sample. B) 
Side-by-side comparison of gene conversion dosage vs. HbF % in samples with concurrent HBB deletion and samples 
without.  

 

Discussion and Future Directions 

In this analysis, we performed a rare burden analysis on our whole-genome sequenced 

Thai individuals, using a standard additive aggregating function to count the number of 

rare variants present in each gene and subsequently performing a linear regression over 

all genes. Our results preliminarily demonstrate that HBB is the top candidate for a gene 

whose burden of rare variants is associated with HbF expression levels. 
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 In carefully investigating the HbF locus, we identified a variant that causes 

Hemoglobin E disease which has been previously shown in other populations to correlate 

with HbF levels. We found a similar trend within our own Thai cohort, and found that HbF 

% increases with the HbE SNP regardless of the presence or absence of a co-occurring 

deletion within the beta globin gene. These results suggest that our GWAS could be 

further refined by treating the HbE variant as a covariate. 

 In collaboration with the McCarroll lab, we have also identified a novel gene 

conversion event wherein HBG1 is converted to HBG2. This variant is common within our 

WGS cohort and appears to confer higher HbF levels when a beta globin deletion is 

concurrent. Efforts are ongoing to further characterize this variant, interrogate other 

population databases for this conversion event, and ultimately recapitulate the conversion 

in hematopoietic stem cells to better assess its role in HbF regulation.  
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Chapter 6: Discussion and Future Directions 

In the work contained within this thesis, we have performed common and rare variant 

analysis on fetal hemoglobin expression. Specifically, we performed genome-wide 

association studies in a Thai and Swedish cohort; these studies have replicated 

associations at loci known to modulate HbF levels (at the BCL11A, HBS1L-MYB, and 

HBB loci), and have identified one more genome-wide significant signal at chromosome 

15 in the Swedish population which may reveal a new association. Our group will continue 

to follow up on these results with meta-analyses of multiple populations to improve 

statistical power, and perform variant-to-function analyses with statistical tools such as 

fine-mapping in order to more precisely identify top candidates of our new association. 

 As our Thai population contained individuals with hereditary persistence of fetal 

hemoglobin (HPFH), we continued our investigation of this cohort by performing a rare 

variant burden test, as we suspected there were large-effect rare variants that could be 

driving this distribution of HbF, and implicated HBB as a gene in which a high burden of 

rare variants could produce an important correlation with HbF. Further analysis is ongoing 

and will employ additional covariates and different aggregating functions to our model in 

order to better assess the contribution of rare variants to HbF expression in this cohort. 

We carefully investigated the HBB locus and nearby genes, and identified several other 

interesting findings. First, Hemoglobin E is present in many of our samples, and may be 

an appropriate covariate for our GWAS and rare burden tests in future analyses, as it 

appears to correlate with HbF levels and is known to modulate HbF levels in other studies. 

Second, we identified a conversion event within HBG1 and HBG2 which appears to affect 
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HbF expression levels. Future studies will aim to recapitulate this variant in hematopoietic 

stem cells to determine its effect on HbF expression. 

 In performing these studies, we found that selecting appropriate reference panels 

was crucial for high-quality association tests and imputation accuracy. Because we 

studied samples from Thailand, a population generally underrepresented in preexisting 

genetic databases, we experimented with several imputation tools and developed several 

metrics to determine quality of output. We found that merging whole genomes from a 

subset of our samples with the 1000 genomes reference panel appeared to improve the 

quality and significance of our genome-wide association study. Furthermore, we found 

that the recently-released GenomeAsia reference panel led to higher imputation accuracy 

when compared to the 1000 genomes. These results validate our intuition that larger 

reference panels that contain more representative samples improve GWAS results. 

Future studies will analyze the effects of merging the 1000 genomes with the GAsP 

reference panels on imputation accuracy and GWAS.  
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Glossary: Abbreviations 

CVAS: common variant association study 

DNA: deoxyribonucleic acid 

DP: total read depth 

GAsP: GenomeAsia Pilot 

GWAS: genome-wide association study 

HbE: hemoglobin E 

HbF: fetal hemoglobin 

HPFH: hereditary persistence of fetal hemoglobin 

HPLC: high performance liquid chromatography 

HRC: Haplotype Reference Consortium 

IBD: identity by descent 

LD: linkage disequilibrium 

lncRNA: long non-coding RNA 

MAF: minor allele frequency 

MLPA: multiplex ligation-dependent probe amplification 

RNA: ribonucleic acid 

RVAS: rare variant association study 

SCD: sickle cell disease 

shRNA: short-hairpin RNA 

SNP: single nucleotide polymorphism 

SNV: single nucleotide variant 

VCF: variant call file 
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VEP: variant effect predictor 

WES: whole-exome sequencing 

WGS: whole-genome sequencing 


