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RESEARCH ARTICLE

Reductive and Emergent Views on Motor Learning
in Rehabilitation Practice
Ludger van Dijk, Corry van der Sluis, Raoul M. Bongers
University of Groningen, University Medical Center Groningen, the Netherlands

ABSTRACT. To allow different views on motor learning to
inform rehabilitation research, the authors aimed to explicate a fre-
quently missed yet fundamental difference in starting point of such
views. By considering how rehabilitation in practice answers the
question of what parts an activity consists of, reductive and emer-
gent approaches to motor learning are identified and traced
throughout rehabilitation practice. The authors show that when a
task is cut up along reductive dimensions while also apparently
relying on emergent components, this unequally favors the reduc-
tive approach and acts to limit the views on motor learning avail-
able. By showing the approaches in practice, the authors hope to
inspire an awareness that brings both approaches the opportunity
to independently inform research so that new theories and practi-
ces can proliferate.

Keywords: activities of daily living, body functions, emergence,
motor skills, reduction, transfer of training

The ultimate goal of rehabilitation is to improve a

patient’s activities in daily life (ADL). To guide reha-

bilitation toward this goal there are many, and sometimes

conflicting, theories of motor (re)learning (e.g., Newell,

Liu, & Mayer-Kress, 2001; Wolpert, 1997). Having multi-

ple differing theories available enables researchers and

practitioners to take different perspectives and come up

with new and fruitful ways of approaching rehabilitation

problems.1 Such plurality should therefore be cherished. As

we argue, however, the practical implementation of theories

in rehabilitation unequally favors one perspective on motor

learning and thus threatens this plurality. In this article we

aim to start alleviating this threat by explicating two funda-

mentally different approaches to motor learning and the

way each is implemented in rehabilitation. By doing so we

hope to inspire awareness in the field to these differences

and to explain the importance of allowing both views the

autonomy to flourish and independently inform rehabilita-

tion research.

To guide our discussion we will look at a practical question

that any clinician has to consider: the question of whether an

activity should be practiced as a whole or whether it should

be practiced in parts. When (re)learning an activity, a patient

will often not be able to perform the task in one go. The task

can for example be too complex or a certain part of the task

might be too painful or difficult. Thus, in therapeutic exercise

the question of whether an activity should be practiced in

parts or as a whole is an important one. Central to our discus-

sion moreover, will be to consider along which dimensions to

cut up an activity if it needs to be practiced in parts—that is,

the question of what we count as a part of an activity. A

reasonable approach to the problem can be found in many

undergraduate textbooks (e.g., Edwards, 2010; Magill, 2003;

see also Naylor & Briggs, 1963). Many have suggested that

one practices an activity as a whole if it does not have mean-

ingful parts with attainable subgoals and one can practice an

activity in parts when it does. For example, in cyclic activities

such as walking or cycling, and more generally, in any activ-

ity where there is a strong temporal relationship between the

movements making up the activity, the activity should be

practiced as a whole. In this approach the parts are thus identi-

fied by the dynamics of the activity and its subgoals. Subse-

quently we will identify this view as implying an emergent

approach to motor learning.

Informed by the anatomical and physiological underpin-

nings of the movements that make up an activity, a more

analytic approach compartmentalizes an activity in terms of

underlying structures and aims to practice those parts in iso-

lation before transferring them to the activity. For example,

in rehabilitation following an upper limb amputation,

patients often first learn to control their myoelectric (elec-

tromyography [EMG]) signals on a computer screen, before

they apply this control to a myoelectric prosthesis (Dawson,

Carey, & Fahimi, 2011). When patients are unable to per-

form a temporally tightly coupled activity this approach to

the part-whole relationship is often chosen. For example,

robot-assisted stepping aims to practice the whole activity,

by targeting its underlying stepping motions. We explicate

this view as taking a reductive approach to motor learning.

Although the emergent and reductive approaches to the

part-whole relationship will equally stress their commit-

ment to improving activities in daily life, they approach the

problem of how to do so completely differently.

We aim to show that if we, in rehabilitation, remain

unaware of this fundamental distinction and its implications

and therefore cut up activities along reductive dimensions

while also apparently relying on emergent components, in

practice we de facto apply only the reductive approach. If

choosing the appropriate parts is just a pragmatic choice
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this would be no problem. However, as we will argue, both

views on the part-whole relationship imply fundamentally

different perspectives on motor learning and each enables a

multitude of distinct ways of furthering the approach of

rehabilitation problems. Although the perspectives that we

wish to explicate only show in practice, one could call them

metatheoretical so as to discern them from the explicitly

formulated methods, ideas and hypotheses of the scientific

or therapeutic work itself.

A perspective, an angle of approaching motor learning

problems in rehabilitation, enables and constrains the theories

and practices that are available. Because of this constraining

function that our perspective brings to both scientific and ther-

apeutic practices we contend that it is imperative that both

views are given equal room to develop. Although the reduc-

tive approach is a viable view and should be pursued as far as

it can be taken, when applied without constraint, it risks

drowning out equally viable alternatives. In the following,

our main goal is to inspire an awareness of the two principally

different approaches as they are applied to rehabilitation prob-

lems in order to make room for each to develop its ideas as far

as they can be taken. We aim to inspire such awareness in all

those participating in the field of motor rehabilitation—theo-

rists, researchers, and practitioners alike. We do so by first

explaining and exemplifying both approaches in theories and

their implementation, and then comparing the perspectives

on rehabilitation research directly. Before starting on this

however, we start with defining some concepts that both

approaches share.

COMMON GROUND: CLASSIFICATION
OF FUNCTION

In the International Classification of Functioning, Dis-

ability and Health (ICF) body function denotes the proper-

ties of anatomical parts of the human body (World Health

Organization, 2015). For example, the elbow’s function is

to flex and extend and a muscle’s function is to contract. To

improve motor control in ADL, rehabilitation training fre-

quently targets these body functions. From this point of

view training programs aim at the movements of body parts

rather than on activities such as putting on a shirt. These

training strategies have also been applied in training muscle

force to improve climbing stairs (Skelton, Young, Greig, &

Malbut, 1995), using robotic guidance to go through the

arm motions of reaching (Kwakkel, Kollen, & Krebs,

2007), or training myocontrol for using a hand prosthesis

(Smurr et al., 2008). Functions pertaining to aspects of

movements (e.g., force, coordination or control), or their

anatomical counterparts, (e.g., the joints and muscular tis-

sue), will therefore be called body functions here.

On the other hand, training can focus on everyday tasks.

Such training would be categorized in the ICF as activities.

Examples of activities are picking up a cup or buttoning up

a coat. Here, function pertains not to bodily movements,

but to the task that the patient aims to accomplish with its

activity. Patients practice goal-directed actions rather than

perform (repetitive) movements (i.e., displacement of body

parts). For example, teaching a prosthesis user to pick up a

cup, by having him pick up cups (Romkema, Bongers, &

van der Sluis, 2013) or training laparoscopic surgery by

simulating a surgical task (Torkington, Smith, Rees, &

Darzi, 2001; see also Haque & Srinivasan, 2006). Activities

we therefore define here as the adaptive coordination of the

whole body to attain the goal of a task (cf. Bernstein, 1996;

Gibson, 1979; Reed, 1996; Newell & Vaillancour, 2001;

Warren, 2006).

TWOWAYS OF RELATING BODY FUNCTIONS
AND ACTIVITIES

Having introduced our two basic concepts, we need to look

at the relation between them to identify a reductive and an

emergent approach. If we look closely at motor learning in

rehabilitation, we can discern two different ways of dealing

with the relation between body functions and activities. First,

activities can be taken to be reducible to body functions. That

is, activities can be said to be explained by describing the

totality of the body functions that underlie it. For example,

body functions can be considered the cause of activities or

activities can be considered to be made up of (constituted of)

underlying body functions. Second, activities can be said to

be emergent on body functions. In that case body functions

and activities are considered to be nonreductively related.

Body functions and activities can for example be considered

as mutually constraining each other. Or they can be under-

stood as different aspects of the same rehabilitation problem

(see alsoMeijer & Roth, 1988).

Both the reductive and the emergent view on motor

learning assume a layered structure in which activities

belong to a higher level than the underlying body functions

do.2 In general, taking a reductive stance on a subject mat-

ter then means that we understand or explain the behavior

of a system at one level by looking at the basic underlying

components and the relations between these components at

a level below (Silberstein, 2002; for comparative issues

within medical science see Ahn, Tewari, Poon, & Philips,

2006; Engel, 1977). By contrast, an emergent stance claims

that the higher level has its own intrinsic dynamics that

deserves attention in its own right. It denies that under-

standing the behavior of the underlying components is

enough to understand the behavior at the level of the activ-

ity. Thus it aims to understand activities by looking at the

dynamic at the level of activities itself. Thus, in this view,

the underlying level may constrain the behavior at the

higher level, but it does not dictate, prescribe, or explain it.

To phrase the two ways of relating the level of body func-

tions and the activity level in terms of practicing an activity in

parts: just as anatomical parts may be considered the proper

parts of a human body, so too can body functions be consid-

ered the proper parts of the motions of a human body (e.g.,

the possible displacements of its body parts). In as much as an
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activity is reduced to nothing but a moving body, body func-

tions can therefore also be considered the proper parts of an

activity. Learning an activity by cutting it up into body func-

tional units and training these units outside the context of the

activity is thus consistent with a reductive approach. The

proper parts of an activity can also be considered to be them-

selves smaller activities, with their own (sub)goals. That is,

the component parts of an activity are then considered to be

functional units of action that nest into one another to form

the whole activity. Learning an activity by cutting the activity

up into smaller units of action and practicing their goal attain-

ment is consistent with an emergent approach. Note that the

emergent view does not deny that body functionsmay be con-

sidered component parts of a (moving) body, it only denies

that they are the relevant components to focus on when

describing an activity.

We get into the details of the two different approaches

and exemplify them both with respect to the part-whole

relationship in the following two sections. The main point

of these sections is to show how these different approaches

to motor learning bear on theories and practices of rehabili-

tation and to show that in practice activities are often cut up

into both body functional units and units of action. Through

examples of therapeutic and research practices, in the sub-

sequent section the implications of focusing on activities

while actually cutting these activities up along body func-

tional dimensions will be dealt with.

THE REDUCTIVE PERSPECTIVE: FOCUSING ON
BODY FUNCTIONS

In this section we consider in some detail the reductive

approach to the question of what counts as a part by looking

at reductive theories and training programs. A reductive

approach attributes the improvements at the level of activi-

ties to changes at the underlying level of body functions.

Therefore the reductive approach to motor learning targets

body functions, even though its therapeutic goal is to

(re)learn an activity (i.e., at the level of ADL). This per-

spective on motor learning boils down to two assumptions:

(a) activities are actually merely a collection of body func-

tions and (b) motor learning is learning to control these

body functions. Together these assumptions imply a hierar-

chy in structure (see Figure 1). This body-oriented perspec-

tive on learning motor skills thus in principle cuts up the

task along a vertical axis, along the arrows of Figure 1. Fol-

lowing the arrows the explanation of learning an activity is

reduced to describing the behavior at lower levels of

description.

The Reductive Approach in Practice

The reductive perspective is actually the most dominant

approach to motor learning in rehabilitation. To draw out

the intricacies of the approach we will now highlight some

examples of its theories and research areas within rehabili-

tation. First we discuss a general class of motor control

theories that find application in rehabilitation. We will then

offer two examples of the practices of reductive research

programs: the field of robot-assisted walking and the field

of serious gaming.

Internal Models

A particularly dominant reductive approach to motor

learning is the approach that stems from motor program

theories (e.g., Keele, 1968; Schmidt, 1975) that grew out of

reflex arc concept of the nineteenth century and the com-

puter metaphor of the 1950s. In this approach goals and

activities are valued greatly, but only as representations in

the minds of the patients. According to such theories (e.g.,

Krakauer, 2006; Wolpert, 1997), motor control is a (compu-

tational) process of planning a series of movements based

on this represented goal-state. That is, after an environmen-

tal goal has been internalized, the (neural) system

FIGURE 1. The reductive perspective. The activity of
picking up a cup using a prosthesis is considered to reduce
to a set of body functions. For example, a collection of
muscles, tendons, joints, and a certain EMG signal with
properties such as speed (v), force, and direction. Learning
to coordinate all these body functions is subsequently con-
sidered to be reducible to acquiring a control system that
coordinates the body functions.

L. van Dijk et al.
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assembles the appropriate anatomical components (the

muscles, the joints, or the limbs) and plans and monitors a

movement pattern (i.e., sets and adjusts the appropriate

velocity, torque, or power) that will move the body from its

current position to the target position. At that point the cur-

rent position will be identical to the represented goal state

and therefore the activity has been performed. The activity

in this view thus does not play a direct role in control, rather

it supervenes on the underlying mechanism and the body

functions it controls until the goal-state is reached.

This model of motor control has been extended and

refined, but the premise is the same: activities are explained

by their underlying components and interactions. A control

system (e.g., an internal model) chooses and coordinates

body functional parameters so that the body changes posi-

tion in such a way that a goal is reached. Thus, it admits of

a strongly reductive and hierarchical approach. The underly-

ing body functions and the control system that coordinates

them are together sufficient for accounting for motor con-

trol. Even the environmental goal of the activity is reduced

to an internal (input) state for the underlying control system.

By extension, motor learning is also approached in a

strongly reductive manner. The key is to acquire a motor

plan that chooses and coordinates the body functions appro-

priately (e.g., Dosen et al., 2015). Therefore, in this view

the relevant parts of activities are their underlying body

functions. Accordingly, motor learning would be fostered by

interventions aimed at improving these body functions and,

as we shall see, this is the approach employed.

Robot-Assisted Treadmill Walking

In rehabilitation following a spinal cord injury, a stroke

or cerebral palsy, a patient’s walking ability can be trained

on a treadmill while an exoskeleton (a robot) supports the

weight of the patient and guides her stepping movements

(Duncan et al., 2011). The aim of such training programs is

to improve a patient’s walking ability in daily life. To do

so, the training program adopts many thoroughly reductive

tenets. First, it is assumed that the goal of a walking activity

is circumstantial and can be dispensed with. That is, the

patient simply does not need to go anywhere in the real

world while on the treadmill. Rather the activity is taken to

be reducible to its underlying stepping movements. Further-

more, it is assumed that it is inconsequential to the basic

activity that these stepping movements neither generate nor

make use of the perceptual (optic, proprioceptive) flow that

accompanies walking in real life.

The robotic system treats any of these perceptual-motor

dynamics as well as the (environmental) goal of the activity

as if they are irrelevant to the basic activity. Furthermore,

by having the robot do much of the work, many new per-

ceptual-motor interactions are being introduced (Dobkin &

Duncan, 2012). For example, even if the (perceptually

impaired) patient can sense whether the robot is moving her

leg or whether she is doing it herself, the patient’s goal is

now to get the leg moving correctly by learning to coordi-

nate her effort in collaboration with the robot. As long as a

stepping pattern is retained, however, the reductive logic of

the training system implies that these added perceptual-

motor dynamics are just as irrelevant to the activity as the

dynamics they have replaced. In other words, the coordi-

native dynamics at the level of the activity itself is taken to

be inconsequential to learning an activity—they can be dis-

pensed with or can even be replaced, without changing the

essence of the activity: its body functions.

Recently, Dobkin and Duncan (2012) published a critical

review on robot-supported and related training systems.

They conclude that despite more than 20 years of develop-

ment, the effect of robot supported treadmill training has

been slim to none and go on to identify several possible rea-

sons for this. Apart from the fact that the importance of cen-

tral pattern generators (i.e., an underlying control system

mentioned previously) in humans is questionable, they

pointed out that the adaptive coordination at the level of the

activity that is required for working the treadmill is

completely different from that of walking in daily life. In

terms of the part-whole relationship, despite the best efforts

to maintain the whole activity, by simulating only the step-

ping movements used in daily life, the approach has cut the

activity (i.e., walking) up along a body functional dimen-

sion and reduced it to an underlying part (i.e., stepping

movements). Focusing on the task-specific dynamics at the

level of activity shows that robot-assisted walking has

reduced the activity so strongly that it has come to have

very little to do with the original activity its sets out to

improve.

Serious Gaming for Rehabilitation

A field that is heading in a similar direction is that of seri-

ous gaming for rehabilitation. Serious games are (video)

games that are fun to play and offer challenging goals while

supplying players with skills useful in reality (Graafland,

Schraagen, & Schijven, 2012). Serious games are basically

designed so that a body function used in ADL is given a

fun and motivating role in a computer task. For example,

when targeting the Center of Pressure (COP) that is found

to be important in walking or sitting. In such games, the

players need to actively displace their COP to pop virtual

balloons (Gil-G�omez, Llor�ens, Alca~niz, & Colomer, 2011).

Likewise, the EMG signals required for using a myoelectric

prosthesis are targeted and used to make players hit musical

notes (Armiger & Vogelstein, 2008). Thus, the method of

serious gaming in rehabilitation embodies the body-ori-

ented approach.

Despite the fact that serious games aim to offer therapy

by offering an activity, the logic of current serious gaming

is thoroughly reductive and body function oriented. First,

as in the robot-assisted stepping, a body function needed in

an ADL task is taken out of that context and is practiced in

a different (new and fun gaming) task. This step again

2017, Vol. 49, No. 3 247
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crucially assumes that by isolating the underlying body

function of an activity, the essence of that activity is

retained. This reduction implies a hierarchy in which activi-

ties are the resultant of body functions, but body functions

are not the resultant of activities. For example, one can sit

or walk because the COP is adequately displaced, rather

than vice versa. Second, assuming the reductive hierarchy,

serious games can simply add a new and fun gaming goal

to training the body functions. This step assumes that motor

learning is a matter of learning to control these body func-

tions—independently of the task or the goal for which they

are used. The goal is merely an addition to the underlying

control of body functions.

Using such serious games in therapeutic practice exem-

plifies a reductive view. In this view, the context in which a

task is performed is considered to be incidental rather than

essential to the activity that is learned. Thus for example,

one can acquire an underlying faculty called balance con-

trol (Gil-G�omez et al., 2011) or the control of an EMG sig-

nal (myocontrol; Dawson et al., 2011; Dupont & Morin

1994; Gordon & Ferris, 2004) independently of the task in

which such control is exhibited. This underlying faculty is

assumed to allow for transfer of performance across activi-

ties. Implicitly thus, in these practices the part-whole rela-

tionship is again cut along hierarchical lines: the activity is

taken to reduce to its underlying body functions and its con-

trol system.

In sum, to improve activities in daily life the reductive

approach to motor learning cuts up the activities it aims to

promote along its underlying componential structure. As

we have seen in our examples of robot-assisted walking

and serious gaming, such orientation toward underlying

body functional components is not without consequences

for the way training programs are designed. As an alterna-

tive, we will now look at the emergent view as an activity

centered approach to motor learning. To answer the ques-

tion of what a system’s parts are, the approach does not cut

up the activity into underlying elements, but into goal-

directed units at the level of the activity itself.

THE EMERGENT APPROACH: KEEPING AN EYE
ON ACTIVITIES

Our question of whether there are discernible parts to an

activity and how to discern them can also be answered in

another way. The intuition not to cut up cyclic or otherwise

tightly coupled temporal processes, such as reaching and

grasping during prehension shows this. It shows that the

dynamics of the activity itself may be essential to learning

that activity. The emergent view on motor learning

expresses the conviction that when we artificially break up

coordinative structures by stripping activities of the relation

to their goal, and furthermore strip the bodily coordination

down to some of its components to arrive at body functions,

we do not get to the essence of the activity, but we lose it. In

other words, the explanation of learning an activity is not

sought below but within the activity’s level of description.

It implies therefore, that we ought to stick to the level of

activities and try to establish what perceptual-motor

dynamics align the patient to the environmental goal of the

activity she performs and to what extent the activity can be

meaningfully cut up into shorter bouts of activity with their

own subgoals.

The Emergent Approach in Practice

To see how this emergent and thus activity-oriented per-

spective approaches motor learning and to further clarify

the approach let us look at some examples of emergent the-

ories and practices. We start this discussion with a brief

overview of action system theory (Reed, 1982), and

dynamic systems approaches to motor learning (e.g.,

Newell et al. (2001). After that, we turn to the well-known

task-oriented approach to stroke rehabilitation. As we

argue, although this latter approach is sometimes misunder-

stood its background lies in the emergent view on motor

learning.

The Theory of Action Systems

According to the theory of action systems (Reed, 1982,

1988), when a patient is learning to perform a task, she is

forming an action system. In forming an action system she

learns to coordinate her body to attain a specific goal in the

environment. Action systems are thus not defined by their

anatomical parts, but rather by their overall goal. Because of

that, an action system is flexible and made up of nested units

of perceiving and acting—each of which has its own sub-

goals. Learning an action system requires assembling and fine

tuning the relations between these cycles of perceiving of,

and acting on, environmental aspects relevant to the task at

hand (Bingham, Coats, & Mon-Williams, 2007; Jacobs &

Michaels, 2007). Because an action system emerges from tun-

ing the relations between perceiving and acting on particular

task aspects, the system becomes highly dependent on the

structure of the task (Van Dijk & Bongers, 2014). Fine-tuning

actions to this task structure is called calibration. In action

system theory, transfer from one task to another is expected

based on the ability to recalibrate an established action system

to fit a novel task structure.

To give an example of the importance of maintaining the

goal-relevant perceptual-motor dynamics, in a series of

studies Rieser, Pick, Ashmead, and Garing (1995) demon-

strated calibration of action systems by having people walk

on a treadmill that was being pulled by a tractor. When

walking under these conditions the environment seems to

move, or flow, past at a greater speed than would be

expected during normal walking conditions. When partici-

pants are subsequently asked to walk (on the ground) to a

target without using vision, they undershoot their target.

That is, the tight temporal coupling between perceiving

and acting is transferred from one situation to the next.
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Importantly, this effect of the calibration of action to

the perceived rate of (optic) flow, transfers to tasks with

similar goals such as side stepping, but not to tasks with a

different goal such as turning in place or throwing a ball

(Rieser et al., 1995). Action systems, in this case a system

for locomotion, are thus calibrated to adapt to the specific

way perception and action are attuned and, importantly,

this calibration is specific to the goal of the activity and

not specific to the underlying body functional structures

(for further examples see e.g., Bingham et al., 2007;

Bruggeman & Warren, 2010; Withagen & Michaels, 2002).

Because action systems are highly context sensitive and

assembled relative to a goal, when a task or activity is too

complex to perform at once, action system theory will pref-

erably cut up the activity into subtasks. The performance of

any of these subtasks needs to be relatively independent

from the whole in terms of their dynamics, but not in terms

of their goal. For example, in natural prehension, there is a

tight coupling between reaching and grasping and for that

reason these two aspects of performance should not be

trained in isolation (Jeannerod, 1984). However, when

looking at prehension as part of the activity of tooth brush-

ing, getting the tooth paste can be practiced independently

of unscrewing the lid or brushing the teeth (Reed, Mont-

gomery, Palmer, & Pittenger, 1995). As Reed et al. exem-

plified, many activities in daily life can be cut up into

shorter, yet meaningful, units of activity. When an aspect

of an action system needs to be performed by different

means, for example when prehension needs to be achieved

using a myoelectric interface, these means need to be incor-

porated into such meaningful units. Action systems are not

constituted by body functional units (i.e., by their [anatomi-

cal] means) but by the goal-directed dynamics of perceiving

and acting. Therefore the theory suggests that incorporating

these novel means into the original goal directed activity

will lead to the biggest transfer effects on activities with

similar (sub)goals. Hence the largest improvement in ADL

too is expected when training goal-directed actions while

incorporating novel means.

Dynamic System Approaches

Out of the insights that also fueled action system theory

(Gibson, 1979) and combined with the theory of nonlinear

dynamics (e.g., Kelso, 1997), dynamic system approaches

to motor learning were born (Davids, Button, & Bennett,

2008; Newell et al., 2001; for similar developments, see

also Carr & Shepherd, 1989; Law et al., 1996). These

approaches also acknowledge the emergence of a coordi-

nated activity, but stress how this coordination emerges

from the self-organizing nonlinear dynamics of the interac-

tion between patient, the task, and the environment. The

interaction of these three aspects leads to a dynamic percep-

tual-motor landscape of possible movement patterns that

allows the patient to attain the goal and, depending on the

phase of learning, this landscape has different regions in

which the movement patterns for attaining the goal of the

activity are most stable (attractor states). Learning an activ-

ity is conceptualized as taking place through self-organiza-

tion in which exploring and moving around will organize

the dynamics of the interactions between patient, the task,

and the environment until it stabilizes around such a stable

attractor state. Thus, the performance of the activity

emerges from the dynamics of the patient-task-environment

system (Newell, 1986, 1996).

Now, because the activity is a self-organizing property

that emerges from these interacting dynamics, in practice

aspects of either the task, the environment or the patient act

to constrain or enable certain dynamics, but they do not dic-

tate them (cf. the reductive, body-oriented approach). When

learning, the dynamics of the patient-task-environment sys-

tem need to organize itself within the boundaries set up by

the constraints in order to reach the goal of the activity. The

job of the therapist is thus to shape any of these aspects so

as reshape the constraints which nudges the self-organizing

system toward stable regions.

Important to dynamic system approaches is that the train-

ing process itself is part of the dynamics and therefore mod-

ulates and changes the perceptual-motor landscape over

time (Newell et al., 2001). That is, previous learning expe-

rience will continuously alter the shape and regions of sta-

bility in the landscape. Thus, the type and intensity of

training will constrain the opportunities for learning. In

fact, the dynamics of patient-task-environment of any per-

formance are nested within the larger scale dynamics of

learning and development. An interesting implication of

this is that, although body functions do not dictate perfor-

mance, they can be made to (appear to) do so. For example,

when training to isolate EMG patterns for learning to use a

myoelectric prosthesis, this experience carves out an

attractor in the perceptual-motor landscape that will con-

strain subsequent prosthesis performance. This of course

offers opportunities for application, but should also give us

pause: If we choose to target aspects based on body-ori-

ented rather than activity-oriented considerations, we may

end up with a system that performs great on body-oriented

outcome measures but that is better adapted to the narrow

confines of the lab than to the ever-changing and context-

sensitive reality of activities in daily life.

Task-Oriented Training

Based on the previously mentioned theories and ideas

very close to them, the emergent approach to motor learn-

ing has found practical application in the form of task-ori-

ented training (e.g., Winstein & Wolf, 2009). This training

form has gained popularity in the field of neurorehabilita-

tion—especially in rehabilitation training after a stroke.

Task-oriented training brings some of the insights of action

system and dynamic system theories to rehabilitation and

centers on the idea that limitations in activity need to be tar-

geted rather than impairments of body functions. That is, it
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aims to improve the attainment of the goal of a task, rather

than a focus on the bodily means to do so. For example, a

task-oriented training program for improving the ability to

reach for objects following a stroke showed that goal

directed grasping to reach objects led to improved reaching

performance as shown by arm kinematics and on an activ-

ity-level questionnaire. By contrast, resistance training that

displaced the arm across similar distances did not lead to

improved reaching performance (Thielman, Dean, & Gen-

tile, 2004). In task-oriented training practitioners aim to

challenge patients into achieving real, ADL-like, goals.

The training program thus favors activities over body func-

tions. Although not widely applied outside stroke rehabili-

tation and easily recast or applied in reductive terms (for

this worry, see also Winstein & Wolf, 2009), the effects of

task-oriented training have been promising (e.g., Rensink,

Schuurmans, Lindeman, & Hafsteinsdottir, 2009; Wevers

et al., 2009).

What all these examples of approaching motor learning

share from an emergent viewpoint is an assumption that the

coordination found at the level of activities is an emergent

property that can only be understood by looking at the

dynamics of the unfolding activity itself. That is, activities

cannot be reduced to underlying structures and their rela-

tions. In terms of the part-whole relationship: the parts of

an activity are functional units at the level of the activity

rather than the movements of underlying anatomical com-

ponents. If research resists focusing on body functions in

favor of explaining motor learning in terms of the coordi-

native dynamics of the activity itself, we propose it takes an

emergent perspective. An emergent perspective attributes

the improvements in performance of an activity to changes

in its dynamics at the level of activities itself. So, while the

reductive approach is shaped by a belief that in the end,

activities will reduce to body functions, the emergent

approach takes this belief to be unfounded (Silberstein,

2002). From such a perspective, the level of activities needs

to be studied in its own right—by looking at the details of

the dynamical relations between parts of the body and their

relation to the goal that should be achieved. If an activity

needs to be cut up for training purposes, it needs to be com-

partmentalized in units of goal-directed actions.

TOWARD PLURALITY IN METHODS

The question of what the relevant parts of an activity are,

as we have seen, is not just a pragmatic question, but it is a

deep conceptual issue of which the answer has far reaching

consequences for approaching rehabilitation problems. As

we have seen from our examples of theories and training

methods, any rehabilitation training program has dealt,

explicitly or implicitly, with the question. We have argued

that a reductive view approaches this question hierar-

chically and goes down a level to identify parts of the

whole, while the emergent view approaches the question by

looking around at the level of activity itself to identify its

parts. Having exemplified both views, we can see how both

approaches view each other’s methods. This will show why

the reductive view easily dominates the context sensitive

emergent perspective.

Reduction Dominant Methods

We have seen that the reductive view is a viable view and

that it should be pursued as far as it can be taken—and so

should the emergent view. However, there is a strong asym-

metry between both views that should be avoided. This

asymmetry in practice causes the reductive approach to

drown out the emergent approach. Thus an apparent focus

on training an activity combined with a body functional

decomposition (e.g., robot-assisted treadmill walking), is

actually only a reductive program. To see this, consider

that with respect to the part-whole relationship, a reductive

analysis can always be applied—there is no activity that

will not submit to body functional decomposition. In the

emergent view on the other hand, activities that have no

subgoals or form a temporally tightly coupled whole cannot

be decomposed. Despite this, as we have seen in serious

gaming and robot-assisted stepping, in such cases the

reductive approach is applied anyway.

Importantly, stripping an activity, any activity, from its

unfolding perceptual-motor dynamics in this way, means

that from an emergent point of view the essence of the

activity is not retained, but it is lost. The asymmetry lies in

the fact that while the activity-oriented compartmentaliza-

tion preferred by the emergent approach does not conflict

with reductive thinking (at worse it may be criticized for

not probing deep enough), the body-oriented compartmen-

talization does conflict with that of the emergent view.

From an emergent perspective, when one creates an activity

to target body functions more efficiently, one is not getting

to the essence of the original activity, but one is introducing

a new, and quite possibly, irrelevant one (e.g., robot-

assisted stepping or serious gaming). For this reason, an

awareness of the fundamental differences in points of view

is of primary importance for rehabilitation practice. Consid-

ering the part-whole relationship in practice, when appar-

ently applying the compartmentalization along both the

reductive and the emergent dimensions, from the emergent

perspective this equates to applying only the reductive

approach. Doing so, in other words, creates a rehabilitation

program that can only be made sense of from within the

reductive perspective.

This asymmetry can perhaps be further illustrated by

considering how to measure training effects in terms of

body functions. In Figure 2A, the conceptualization of such

a measurement is depicted. Here, for characterizing a

change in performing an activity with a myoelectric pros-

thesis, myoelectric control is gauged through a computer

task where the goal for the patient is to match a real-time

representation of the myoelectric signal to a predetermined
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point on a screen (see e.g., Anderson & Bischof, 2014; Gor-

don & Ferris, 2004). The asymmetry lies in the fact that

while the reductive approach will interpret the results of

such a test as evidence for the underlying body function

(e.g., myocontrol), the emergent approach will not. First,

with respect to the performance of the test, according to the

emergent view, performing the test should be considered as

an activity in its own right. Thus, one should look at the

behavioral goal of the test and the perceptual-motor dynam-

ics involved to find out what activity was being performed.

Crucially, this step reconceptualizes the test not at a level

below the original ADL performance, but next to it, at the

same level (Figure 2B). This begs us to consider the valid-

ity of such a testing performance.

Second, with respect to the outcome-measure extracted

from the test, considered as an activity the chosen outcome

measure may now no longer be best suited to characterize

the performance of the test (let alone the performance of

ADL). For example, upon training a serious game to

improve myoelectric prosthesis use, Anderson and Bischof

(2014) reported only the amount of co-contraction during a

computer task. In this task the object was to match a myoe-

lectrically controlled line to a predetermined point to char-

acterize their improvement. But the outcome measure made

no reference to the goal of the activity that the participant

was performing. To do that, the amount of myosignal

would for example have to be related to the accuracy of

matching (i.e., the goal of the activity). In other words, any

measure of an absolute body function reported from per-

forming an activity, in an emergent view, lacks the theoreti-

cal importance it has to the reductive approach. Such

measures can for example simply be considered a by-prod-

uct, a consequence of rather than the cause of performing

the activity (see e.g., Reed, 1988). The adopted perspective

changes the framework that determines what counts as rele-

vant and irrelevant to measure, target and improve.

Against this background, the importance of having the

emergent view keep its independence relative to the reduc-

tive perspective becomes clear. The dominant reductive

approach enthusiastically cuts up all tasks along hierarchi-

cal dimensions and makes research focus on body func-

tional measures that admit only of a straightforward

interpretation within the reductive framework. That is, the

inclusion of body functional methods and the tendency to

design training tools to target body functions makes it

increasingly hard to escape the reductive framework and

thus drowns out the development of other perspectives.

Rehabilitation practices, methods and theories get increas-

ingly forced to adhere to the reductive point of view at the

expense of other, fundamentally different, ways of

approaching the problems. What we need therefore, is to

allow emergent perspectives to keep informing research.

Keeping an Open Mind: Start With a Focus on Transfer

The principle tool that the emergent view brings to reha-

bilitation research is that of studying transfer. That is, quan-

tifying the effect the performance (or training) of one

activity has on the performance of another activity. Tradi-

tionally, the reductive view assumes that a transfer effect

shows that across activities a common underlying body

function is shared. But as improvement of such a body

function can be measured more accurately by laboratory

testing (Figure 2A), testing for transfer is often omitted in

favor of measuring this improvement in body function

directly (this is especially true in the formative period of

novel training programs, see Dobkins & Duncan, 2012;

Goble, Cone, & Fling, 2014; Primack et al., 2012; Van

FIGURE 2. (a). From a reductive perspective, the improvement in motor learning is measured by gauging body functions. Thus,
the assumption is that one measures at the level of the underlying structure. This is indicated by the thought bubble. However, an
emergent view (b) does not idealize the activity by neglecting the specific environmental coordination, goals and constraints
involved in testing. The test for body functions is therefore not positioned below the level of activity, but next to it at the same
level. (see text for details).
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Diest, Lamoth, Stegenga, Verkerke, & Postema, 2013). As

we have seen previously, from the emergent view, such

omission is both unwarranted and a fiction.

From an emergent point of view, any test (and training

task for that matter) is an activity—thus any performance

measure is related to another measure in terms of a transfer

effect (see Figure 2B). In this view two activities relate to

each other, not by an assumed underlying structure, but

only because both are performed by the same, learning and

developing patient. A transfer effect thus does not admit of

a similarity per se, but it reflects the amount of continuity

in the perceptual-motor dynamics from activity to activity.

Such a reinterpretation of transfer enables us to reinterpret

any (body functional) test in emergent terms. Importantly

moreover, it calls attention to the importance of focusing

on transfer to ADL in the early stages of developing a train-

ing program. That is, rather than having transfer to ADL be

the icing on the cake after all developments have been con-

cretized, it suggests transfer to ADL tasks (rather than labo-

ratory tests) should guide the development of training

programs from the start.

CONCLUDING REMARKS

Starting with the practical question of how to cut up

activities when training for their improvement we uncov-

ered two fundamentally different understandings of the

part-whole relation stemming from two fundamentally dif-

ferent approaches to motor learning. As we aimed to show,

both approaches emphasize very different aspects of perfor-

mance and design, and measure the effect of their training

programs very differently. Our analysis of the background

assumptions underlying the reductive and the emergent

approach showed that they looked for parts of the whole

along different dimensions. While the reductive approach

looks along the hierarchical levels, the emergent approach

looks at the level of the activity itself for identifiable subac-

tions. We have been stressing that the emergent view there-

fore resists compartmentalization where reduction can

always proceed. There are however many reasons why

tasks cannot be practiced in one go even when an activity-

oriented analysis suggests the task cannot be further decom-

posed, so it would be a major practical shortcoming if the

emergent view has nothing to offer in such situations.

However, that the emergent approach has not been

brought to bear on the problem does not mean it cannot

cope with it. One possible way of offering activity-oriented

practices in such circumstances is to practice activities in

artificially simplified or augmented environments, such as

in virtual reality or in serious gaming environments. Cru-

cially however, the task that is recreated there should

closely simulate those dynamical aspects that are found to

be relevant to the activity in daily life. For example, recre-

ating optic flow when walking around in a virtual scene or

retaining and augmenting the perceptual-motor relation

between the actions of a prosthetic hand and the relevant

characteristics of the goal of grasping (Van Dijk, Van der

Sluis, & Bongers, in press). To emphasize however, for

such approaches to offer an alternative to the many body

functional initiatives, it needs to be understood in emergent

terms. And the value of emergent training programs, as any

training program, should be quantified in terms of transfer

effects.

As our examples showed, many of the newest develop-

ments in rehabilitation research—especially those that are

inspired by novel technological developments, such as

rehabilitation robotics, virtual or augmented reality, or seri-

ous gaming—are still strongly drawn toward a reductive,

body functional, approach. This might be due in part to the

success of reductive approaches in the field of mechanical

and computer engineering. As we have argued, a learning

patient does not need to be conceptualized in the same

terms. It is our hope that an awareness of the different

points of views that are implicit and explicit in motor learn-

ing theories, rehabilitation programs and outcome meas-

ures, will help give the emergent approach the room to

flourish. Thus we hope it can contribute to the plurality in

views on motor learning in rehabilitation and help to inspire

new ways of making creative and fruitful use of the full

potential technological innovation offers.

NOTES

1. It should be noted that here we do not consider the therapeu-
tic approaches of practitioners who base their methods on practical
experience, and the way such approaches may affect the advance-
ment of knowledge. It is for example interesting to consider that
such practice might offer a way of exploring for novel and fruitful
approaches that do not (yet) conform to any of the established
perspectives.

2. Note that there are many varieties of reduction and emer-
gence (e.g., Kim, 2003; Silberstein, 2002; Silberstein & McGe-
ever, 1999). To make our point this most basic distinction will
suffice.
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