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Abstract 

The advantages and disadvantages of the two major categories of numerical 

methods, deterministic and stochastic approaches, in polymer reaction engineering 

are discussed. Combinations of methods are suggested in order to take advantage of 

both techniques. A hybrid deterministic/stochastic approach and a combined 

stochastic/stochastic method are developed to represent two polymerization 

systems of interest.  

The distribution of functional groups in polymer chains produced in radical 

copolymerization by starved-feed semibatch operation is simulated using three 

different methodologies.  A deterministic model is formulated to separately track 

the homopolymer chains that are produced without the desired functionality, a 

Monte Carlo (MC) model is written to represent the system, and a hybrid 

deterministic/MC approach is taken using new capabilities within the software 

package PREDICI.   

Two Monte Carlo algorithms (dynamic and static) are combined in order to model 

and simulate the branch distribution and topology of polymer chains synthesized in 

hyper-branched polymerization of polyethylene with Pd-diimine catalysts. A 

sensitivity analysis is conducted in order to investigate the impact of kinetic and 

stochastic parameters on the branch distribution as well as average chain length. 

Simulated results show excellent agreement with experimental observations. 
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Chapter 1 

Introduction 

The development of models to represent the kinetics and mechanisms of 

polymerization has helped scientists achieve increased understanding of the 

reaction systems and consequently, to improve process operation and product 

properties. Advances in computer hardware with greater capacity and speed have 

enabled simulations with fewer computational restrictions. Thus, the creation of 

new or improved kinetic models remains of interest to researchers in polymer 

reaction engineering.  

Full molecular weight distributions of the growing polymer, conformation of the 

branched-polymer, or the sequence of monomers in copolymerization create high-

dimensional systems of differential equations that cannot be solved analytically. 

Using non-analytical solutions often requires model reductions and simplifying 

assumptions for feasible solutions, leading to the development of numerical 

methods for application to polymer systems. These numerical methods can be 

placed in two major categories: I. Deterministic methods to solve the resulting set of 

equations (e.g., discrete weighted Galerkin and discrete Fourier transforms) that, for 

a specific given input, always return specific results; II. Stochastic (e.g., Monte Carlo) 

methods that rely on repeated random sampling to obtain a representation of the 

system.  
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A simplified radical polymerization system, consisting of initiation, propagation, and 

termination, demonstrates the problems of using an analytical solution (Equations 

(1.1) to (1.3)):1 

     
             
→        (1.1) 

      
              
→           (1.2) 

       
              
→          (1.3) 

To track the concentration profiles of all the species in the system and reaction rate 

coefficients, the system of differential equation can be written as: 

 
 [ ]

  
     [ ][ ] (1.4) 

 
 [ ]

  
     [ ][ ]    [ ]∑ [   ] (1.5) 

 
 [  ]

  
   [ ][ ]    [ ][  ]    [ ][  ] ∑ [   ] (1.6) 

 
 [  ]

  
    [ ] [  ]  [    ]    [  ] ∑ [   ]            (1.7) 

 
 [  ]

  
  

 

 
  ∑ [  ][    ]

   
    (1.8) 

Concentration profiles for the initiator   and monomer   as well as the chain length 

distributions of    and    have to be calculated (Equations (1.4) to (1.8)). An 

analytical solution is, however, available for only a few situations e.g., living 
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polymerization (no termination), and polymerizations in which the quasi-steady-

state assumption (QSSA) is made.2 Significant computing time may be required for a 

numerical algorithm to solve the non-linear differential equations in the realistic 

dimension. Additionally, one may need the analysis of temperature, volume, type of 

reactor and feeding, and/or a description of polymeric structure such as grafting, 

branching and cross-linking; consideration of some of these factors in the model will 

add a new differential or an algebraic dimension to the system that increases the 

complexity.3  

Although deterministic methods are helpful tools to overcome some of these 

complexities, they often require simplifying assumptions, and/or the achieved 

results do not contain the desired information in sufficient detail. Monte Carlo 

methods (MC) can provide more detailed information of a system, but often with 

increased computational effort. More recently, the important features of both 

techniques have been captured in combined methods (MC/MC or 

MC/deterministic), which not only has made efficient modeling of some systems 

possible for the first time, but also provides a deep insight into characteristics of the 

final molecules.  
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Thesis Objective and Outline 

The primary goals of this work are to study the combination of MC and 

deterministic methods (the so-called hybrid-model), and to apply MC methods to 

the study of polymerization kinetics of a hyperbranched system.  

Chapter Two presents a short comparison between deterministic and MC methods, 

and illustrates the necessity of MC method to obtain certain types of detailed results 

not possible deterministically. The advantages and disadvantages of MC methods 

are outlined, and its potential and applications in polymer reaction engineering are 

reviewed. The chapter finishes by reviewing Gillespie’s algorithm, which is the heart 

of this thesis, and introducing Escobedo’s algorithm used for the hyperbranched 

system described in Chapter Four.  

Chapter Three, which is already published, demonstrates the capabilities of a 

hybrid-model implemented in the new version of the software package PREDICI, 

and compares the MC and deterministic methods by modeling of the functional 

group distribution in radical copolymerization of butyl methacrylate (BMA) and 

glycidyl methacrylate (GMA) in starved-feed semibatch operation.4 It is shown that 

the hybrid-model successfully takes the advantages of a MC method while 

decreasing simulation time by considering a deterministic representation in 

parallel.   
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Chapter Four illustrates the advantages of combining two different MC algorithms, 

Escobedo’s and Gillespie’s algorithm, in order to study the branch distribution and 

kinetics of ethylene polymerization with a Pd-diimine catalyst. The effect of input 

variables on the branch distributions, average chain length, and total number of 

branches are studied in a parameter sensitivity analysis. 
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Chapter 2 

Literature Review 

Deterministic and stochastic methods, as two major streams of numerical methods, 

are required to solve mathematical problems for which analytical solutions do not 

exist. The method of moments is one of the deterministic numerical techniques 

commonly used to represent polymerization systems, reducing the infinite set of 

equations by employing the chain length distribution averages.1 While a limitation 

of this method is that only weighted averages of the molecular weight distribution 

(MWD) are defined, the representation is usually adequate for most cases. Although 

still one of the most popular approaches to model polymerization and define 

polymer product, more details may be demanded in the kinetic investigations of 

some systems; for example, in studying the combined effect of chain-scission and 

long-chain branching on polymer architecture.2 Therefore, if full MWDs or higher 

distributed quantities (e.g., long chain branching (LCB) as a second distribution) are 

required, one must search for an alternative method. In addition, the moment 

method requires extra assumptions when implemented for some systems for which 

a closed form of the moment equations cannot be formulated. 

Some of the disadvantages of the method of moments have been resolved by 

application of the discrete Galerkin h-p-method to polymer systems, as 

implemented in the commercial software package PREDICI. The package has gained 
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widespread use in industry and academia due to its modular approach and 

flexibility in allowing users to construct complete kinetic models from available 

reaction step patterns and its ability to represent complete MWDs. The full 

description of advantages of this method is out of scope of this study and can be 

read at ref 3. It suffices to mention that although the package reduces the 

computational effort dramatically and can describe a second distributed quantity 

such as branching or composition as an average quantity with respect to chain 

length,4,5 a full description of bivariate distributions, even if available with an 

extended Galerkin h-p method, has only been used in special projects.6  

The Monte Carlo method (MC) is a stochastic numerical approach to model 

polymerization that can provide detailed information of all the species in the 

system, allowing the calculation of full MWD and higher order distributions. “Monte 

Carlo” typically refers to a class of methods in which simulations are run many times 

over in order to obtain the distribution of an unknown probabilistic entity.7 The 

technique was first introduced in 1946, a year after the first electronic computer, by 

S. Ulam and then further developed by Nicolas Metropolis.8 The term “Monte Carlo” 

is general, encompassing various algorithms developed for more specific 

applications. In 1976, Daniel T. Gillespie proposed a MC algorithm for coupled 

chemical reactions with stochastic time evolution, now recognized as Gillespie’s 

algorithm.9 The main concept is to assume a sample size so small such that the 



 

8 

 

number of molecules in the system is a finite value. Therefore in Gillespie’s 

algorithm, the numbers of molecules are used instead of molar concentrations. 

All of the interactions between the molecules in the system are defined based on the 

reaction probability density function. Each time a reaction happens, the number of 

affected molecules must be updated and stored for post-processing, if necessary. 

Considering the simple radical polymerization system consisting of initiation, 

propagation and termination (Equations (1.1) to (1.3)) as an example; if initiation 

happens (Equation (1.1)), the “number” of initiators and monomers in the system 

will be reduced each by one, the “number” of polymer radicals will be increased by 

one, and the respective chain length will be set to one. Similarly, if propagation 

(Equation (1.2)) occurs to one of the randomly selected polymer radicals in the 

system, the “number” of monomers will decrease by one unit as well as the chain 

length of that radical will increase by one. The next event chosen and the time 

interval between updates are selected by generating uniformly distributed random 

numbers. Implementation of this technique will be fully discussed in later chapters.   

In contrast to deterministic numerical methods, the Gillespie MC technique 

considers the evolution time of a system as a discrete and stochastic process rather 

than a continuous parameter. Unlike advanced numerical methods such as the 

Galerkin h-p algorithm, MC methods are simple in concept and easy to implement, 
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requiring only basic mathematic knowledge even for problems with high 

complexity.10 

Furthermore, MC methods are easily parallelizable. Parallelization refers to 

computer processes in which a simulation/calculation is performed on multiple 

CPUs/computers at the same time.11 In some algorithms such as Gillespie’s, 

parallelization can also be done by running a set of simulations with identical 

starting conditions for smaller population and taking the average of quantities, in 

order to reduce the simulation time of a single simulation with large population.12 In 

addition, it is possible to employ the MC method to model a system in which some or 

all kinetics parameters are unknown, but the fixed probabilities of each happening 

in the system can be estimated.13  

MC methods, however, have some disadvantages. Sample sizes (number of reactant 

molecules) in the order of millions or even billions are required to obtain results 

within an acceptable precision. Despite the improvements in both computer 

software (programming) and hardware over the past decade, the intensive 

calculations happening to the large number of molecules reduces the speed of 

simulation drastically compared to deterministic methods. This deficiency has 

eliminated the MC method as a suitable technique for real-time simulation and 

online control, as they require quick response to the changes in the inputs/system. 
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In addition, MC methods are step-wise procedures, with the probability of the next 

event dependent on the previous event in the system. They act similar to a black 

box; i.e., if one wants to change the input(s), a complete new simulation run from 

beginning to end will be inevitable.11  

MC methods are widely used in engineering, from microelectronics to autonomous 

robotics. In the field of polymer reaction engineering, MC methods have been 

applied to various polymerizations including free radical14 and controlled/living15–

18 systems, in order to provide a deeper insight into the polymeric microstructure of 

each macromolecule. The in-depth information provided by MC method has helped 

scientists and researchers to investigate different aspects of polymerization. For 

example, Chen et al. developed a kinetic MC method to study the relation between 

topology of isolated molecules produced by chain walking polymerization to their 

molecular size and conformation,13 while Hamzehlou et al. applied MC method in 

order to investigate the microstructure of acrylic functional copolymers, considering 

all complexities of acrylate kinetics.19 

The MC method not only can be used as an individual tool to model and simulate 

polymerization, but has recently been implemented in combination with a 

deterministic method. Schütte and Wulkow introduced a novel “hybrid” algorithm, 

utilized in the new version of the software package PREDICI, which uses MC 

alongside a deterministic approach.20 The hybrid algorithm solves the full 
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deterministic system using the Galerkin h-p approximation method for chain length 

distributions (CLDs), and in parallel applies the MC technique to simulate single 

realizations of the stochastic process underlying chain growth, taking advantage of 

both modeling approaches. As another example of deterministic/MC method 

combination, a hybrid simulation approach was developed by Neuhaus et al. to 

combine the advantages of deterministic and stochastic modeling of complex 

polymerization networks of LDPE in tubular and autoclave reactors.21 The fast 

deterministic simulation solves the heat and pressure balances and the stochastic 

simulation provides detailed information about the polymeric microstructure. 

Another MC algorithm utilized in this research, termed the Escobedo’s algorithm, 

was developed by Chen et al.13 Also a MC method-based algorithm, it uses fixed 

probabilities, unlike Gillespie’s algorithm which tracks changing probabilities over 

the course of a dynamic simulation. This MC algorithm was developed to simulate 

the topology and conformational behavior of hyperbranched chains formed by 

polymerization of ethylene using a Pd-diimine catalyst. While the technique was 

developed specifically for the Pd-diimine-catalyzed ethylene polymerization, it can 

be considered as a class of MC methods to model other hyperbranched systems, 

such as polymerization using α-diimine catalysts,22,23 or to study the phase behavior 

of hyperbranched polymers.24  

In this thesis, combinations of Gillespie’s MC algorithm with a deterministic method, 

and with Escobedo’s MC algorithm will be presented. It will be shown that the 
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combined methods provide enhanced capabilities to efficiently describe polymer 

systems.  
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Chapter 3 

Modeling of Functional Group Distribution in Copolymerization: A 

Comparison of Deterministic and Stochastic Approaches 

With collaboration of Dr. Michael Wulkow from CiT GmbH, Harry-Wilters Ring 27, 26180 Rastede, 
Germany; and Mr. Iurii Kozhan from FU Berlin, Institute of Mathematics, Arnimallee 6, 14195 Berlin, 

Germany. 

 

3.1 Introduction 

Over a third of synthetic polymers are produced via free radical polymerization 

(FRP), with products ranging from high volume materials such as low-density 

polyethylene and polystyrene to medium and high value products such as solvent-

borne or waterborne automotive coatings and water-soluble polymers for 

pharmaceuticals and cosmetics. A mixture of monomers can be selected to achieve 

desired end-use properties via the production of copolymer chains with a 

heterogeneous distribution of repeat units along the backbone. However, while FRP 

offers great versatility in producing copolymers, the sequencing of monomer units 

along each chain is stochastically controlled by the random addition of monomers to 

the growing chain. In some applications, monomer sequencing can have a 

substantial influence on end-use properties, especially when the copolymers are 

used as dispersants or surfactants to prepare products such as paper and 

automotive coatings, personal care products, detergents, inks, pharmaceuticals, etc.1 
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While there is significant research in applying controlled/living free radical 

polymerization to synthesize block and comb copolymers for these applications, 

many commercial dispersants are still synthesized by FRP using a functional 

comonomer such as glycidyl methacrylate, (meth)acrylic acid or 2-hydroxyethyl 

(meth)acrylate. An example presented by Barrett2 is the copolymerization of a small 

amount of glycidyl methacrylate (GMA) with an alkyl methacrylate, followed by 

esterification of the polymeric epoxide with methacrylic acid to produce pendant 

unsaturated groups. The resultant macromer is a reactive polymeric stabilizer that 

can produce graft copolymer in situ by copolymerization with other acrylic 

monomers as part of a non-aqueous dispersion. A similar approach is described in a 

patent, with the precursor polymer chains produced via starved-feed semibatch 

polymerization and the functional monomer added so that, on average, each chain 

produced contains one functional unit.3 This production strategy serves as a basis 

for the copolymerization example of the current simulation study. 

The issue specifically addressed here is the distribution of the functional 

comonomer units among the polymer chains. As concisely stated in the 1973 paper 

by Barrett:2 “However, the overall efficiency of these types of graft copolymers is 

still defective due to the random nature of the polymerisation process used in their 

preparation. This inevitably leads to the simultaneous formation of polymers which 

either have too many reactive groups or none at all and at best only about half of the 

material produced functions as a dispersant.” Stockmayer4 derived an equation to 
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describe the instantaneous distribution of chain compositions and chain lengths in 

radical copolymerization under the long-chain hypothesis, an approach generalized 

by Tobita5 to N monomers. However, these derivations are valid only for cases in 

which the long chain hypothesis (LCH) and the quasi-steady state approximation 

(QSSA) hold, and are difficult to apply over the course of a dynamic batch or 

semibatch polymerization with changing conditions. 

With the increased speed of computing, a number of research groups have turned to 

Monte Carlo (MC) methods to simulate polymer architecture, including comonomer 

sequencing. For example, Al-Harthi et al. simulate the molecular weight and 

copolymer composition distributions formed by batch and semibatch atom transfer 

radical polymerization (ATRP).6 Van Steenberge et al. also apply MC modeling to 

represent gradient copolymers produced by ATRP and derive an index to represent 

gradient quality from the reaction history of all macromolecular species.7 In a work 

related to the current publication, Hamzehlou et al. use MC techniques to compare 

batch and semibatch FRP of n-butyl acrylate (BA) with 1 mol% of the functional 

monomer 2-hydroxyethyl methacrylate (HEMA), simulating the effect of operating 

conditions on the distribution of the HEMA units among the high MW polymer 

chains; in addition, the distribution of branchpoints arising from BA side reactions is 

also tracked.8  
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Earlier application of MC techniques to the modeling of polymerization kinetics 

focused on representation of the complete polymer molecular weight distribution 

(MWD). However, efficient numerical techniques have been developed to solve the 

set of deterministic equations describing polymerization kinetics including the full 

MWD, as described by Wulkow9 and Saldívar-Guerra et al.10 In particular the 

software package PREDICI®, employing the discrete Galerkin h-p algorithm, has 

gained widespread use due to its modular approach and flexibility in allowing users 

to construct complete kinetic models from available reaction step patterns.9 While 

the package can describe a second distributed quantity such as branching or 

composition as an average quantity with respect to chain length,11,12 a full 

description of bivariate distributions, even if available with an extended Galerkin h-

p-method, has only been used in special projects.13 Typical reasons for this are that 

the computation time increases by each added dimension, and that even a bivariate 

treatment is not enough for real-life problems. Moreover, all of the required 

balances related to polymerization kinetics (masses, reactor operation, etc.) cannot 

be handled easily in higher dimensions. Thus, Schütte and Wulkow have recently 

developed a method to combine the Galerkin h-p method with MC stochastic 

techniques.14 As described in more detail below, this new “hybrid” version of PREDICI 

has been utilized to calculate the distribution of functional groups among low MW 

polymer chains. 
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It should be noted that others have developed numerical techniques to describe 

bivariate MW and chemical composition distributions in dynamic systems using 

deterministic methods. Some of the earlier efforts are described by Krallis et al.,15 

who compare performance of a MC algorithm to a numerical solution of the 

discretized bivariate population balance equations using a two-dimensional fixed 

pivot technique; it was concluded that an efficient MC technique was easier to 

implement and also required less computational effort. Recently, Brandolin and 

Asteasuain16 present a method to transform population balances using 2D 

probability generating functions, followed by an a posteriori recovery of the 

distribution from the transform domain by numerical inversion. However, the 

technique is also rather complex. 

In this work, the distribution of functional groups in polymer chains produced by 

radical copolymerization by starved-feed semibatch operation is simulated using 

three different methodologies. Monte Carlo code has been developed for a stochastic 

simulation of the process, a deterministic model is formulated in PREDICI to 

separately track the homopolymer chains that are produced without the desired 

functionality, and the new hybrid deterministic/MC approach in PREDICI is utilized. 

While the particular copolymerization test case is straightforward, it allows for a 

good comparison of the advantages and disadvantages of the three simulation 

approaches. 
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3.2 Copolymerization Recipe and Kinetic Model 

The test case is a simplified version of a recipe from Barsotti et al.,3 scaled to be 

produced in a 1 L vessel. A mixture of n-butyl methacrylate (BMA), functional 

comonomer glycidyl methacrylate (GMA), and tert-butyl peracetate (TBPA) initiator 

is fed at a constant rate over a 4 h period into a reactor controlled at 138 °C 

containing xylene solvent. The initial mass of xylene is 200 g and the total mass of 

monomer/initiator fed to the reactor is 500 g such that the final polymer content in 

the reactor (assuming full conversion) is 71%. The comonomer mixture contains 5 

mol% GMA, with the amount of initiator adjusted to result in a final number-average 

degree of polymerization (DPn) of 20 such that there is, on average, one GMA unit 

per chain. The details of the test case recipe (component amounts and densities) are 

summarized in Table 3-1.  As the polymer formed is denser than the reacting 

monomers, all models described below consider the volume contraction of 

polymerization as well as the increasing reactor volume from the semibatch feed. 

The set of copolymerization mechanisms in the model, along with corresponding 

rate coefficients at 138 °C, is summarized in Table 3-2. The BMA rate coefficients 

provide a good description of BMA homopolymerization17 and co- and 

terpolymerization18 experiments conducted under similar starved-feed semibatch 

operation. To simplify this study it is assumed that GMA has identical propagation, 
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termination and transfer kinetics to BMA and that no depropagation occurs; while 

depropagation has some effect on methacrylate free monomer levels at 138 °C,17 it 

will have negligible effect on copolymer composition for this 

methacrylate/methacrylate polymerization. The terminal model of 

copolymerization kinetics is assumed, with reactivity ratios set to unity. Thus at all 

times during the reaction, the monomer and polymer compositions are identical at 5 

mol% GMA, as set by the feed composition.  

 

Table 3-1. Semibatch recipe for copolymerization of butyl methacrylate and 

glycidyl methacrylate. Density values from Wang et al.17 

Component Initial Mass 
(g) 

Mass Fed  
over 4 h (g) 

  MW  
(gmol–1) 

Density at 
138 °C (gmL–1) 

Xylene 200     106 0.713 

Butyl methacrylate     454.1 142 0.786 

Glycidyl methacrylate       23.9 142 0.786 a 

TBPA initiator       22.0 132 0.885 

Polymer          1.078 

a GMA density assumed equal to BMA. 
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Table 3-2. Kinetic mechanisms of butyl methacrylate (BMA) /glycidyl 

methacrylate (GMA) copolymerization. Values of BMA rate coefficients from 

Wang et al.,17 with GMA assumed to have equal reactivity. 

  Value at 138 °C 

Initiation 
d

p,ii

1

2
k

k i

i

I fI

I M P



 



 
 

1 3

d s( ) 1.32 10 ; 0.515k f     

Propagation p,ij

1

ki j

n j nP M P 

   1 1 3

p,ij L mol s( ) 4.67 10 ; , 1,2k i j 
      

Chain transfer  
to monomer 

mon
tr,ij

1

ki j

n j nP M P D     1 1mon

tr,ij L mol s( ) 0.266 ; , 1,2k i j 
     

Chain transfer to solvent s,i p,iiC ki

n nP S I D     4

s,i 3.54 10 ; 1,2C i    

Termination  

   by combination: 
t,cop(1 )ki j

n r n rP P D
 

   
1 1 7

t,cop L mol s( ) 4.89 10

0.65

k



 
   


 

   by disproportionation: t,copki j

n r n rP P D D
     

 

 

3.3 Methodology 

Deterministic Model (PREDICI) The copolymerization mechanisms and rate 

coefficients for the model summarized in Table 3-2 have been entered in PREDICI. 
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Monte Carlo Simulation The classic MC algorithm introduced by Gillespie19 has 

been implemented, following the methodology described by others.7,8,20 The method 

demands conversion of macroscopic, or experimental, reaction rate coefficients 

(    ) to microscopic reaction rate coefficients (   ) according to the following, 

with   =Avogadro’s number, and     the MC reaction control volume, calculated as 

discussed later. 

          for first order reaction (3.1) 

     
    

     
 for bimolecular reactions between different species (3.2) 

     
     

     
 for bimolecular reactions between identical species (3.3) 

The MC rate of  th reaction,   , is given by:  

           (3.4) 

where    is the number of possible combinations between reactants engaged in the 

νth reaction. For example,    for the second (initiation) reaction from Table 3-2 is 

calculated as: 

    (   

 
)(   

 
)            

 (3.5) 

where     and    
 are the number of primary radical and monomer 1 molecules in 

the system, respectively. The probability of each reaction, Pν, is defined as:19 

    
  

∑   
    
   

 (3.6) 

where      is the total number of reactions in the polymerization mechanistic set of 

Table 3-2. Two uniformly distributed random numbers,    and   , are generated to 
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determine the reaction that occurs at the polymerization time and the time step, 

respectively. Reaction   happens if the following inequality is satisfied:  

 ∑   
   
       ∑   

 
    (3.7) 

with the time step,  , calculated as:  

   
 

∑   
    
   

  (
 

  
) (3.8) 

An important aspect of the MC technique is the choice of    , the control volume 

size, which should be large enough to produce statistically-valid results. Radicals are 

the species with the lowest concentration in the system, and it was found that 

choosing a volume that allowed the fluctuation of the number of radicals to include 

zero generated error in the results. To avoid this problem, the average radical 

concentration was chosen as a basis to determine an appropriate control volume 

size, based upon a concentration (
tot[ ]P ) estimated assuming the quasi-steady state 

assumption: 

0.5
2

d
tot

1 1 t,cop

2 [ ]
[ ] [ ]i

n

i n

fk I
P P

k

 

 

 
    

 
   (3.9) 

where [ ] is calculated based upon initiator concentration in the feed stream. The 

initial MC control volume        is then calculated based upon the desired number 

of radicals in the system (    ): 

rad
MC

A tot

(0)
[ ]

n
V

N P
   (3.10) 



 

25 

 

For semibatch polymerization, the volume constantly increases as the result of 

adding the feed stream, and is also affected by the difference between polymer and 

monomer density. The feed rate of monomer and initiator molecules,  ̇  (molecules 

of species   per unit time), into the MC control volume is calculated by considering 

the total amount of material fed (           ) into the actual semibatch system with 

initial volume              over feeding time      :  

 ̇   
  

                            

                        
                 (3.11) 

where   
     and     are the mass fraction of species   in the feed stream and 

molecular weight of species  , respectively. The total volume is updated in each 

iteration based upon the total number of molecules of each species present in the 

system and assuming volume additivity, thus automatically correcting for volume 

contraction due to polymerization. Values for    s, dependent on volume, are also 

updated.  

The algorithm was implemented in MATLAB, taking advantages of the package’s fast 

indexing and built-in functions to find and change specific properties in the system, 

and to handle matrices. Simulation output includes dead polymer and radical 

matrices which deliver information about the chain-length and the number of M1 

and M2 units in each chain, and profiles matrices that store changes of each variable 

in the system as a function of reaction time. To minimize computer memory usage 

and simulation time, all other calculations (such as MW averages) are completed in 



 

26 

 

the post-processing treatment of the results. The Monte Carlo and all other 

simulations described in this paper were done using a PC with an Intel® Core™-i7 

3.4 GHz processor and 8.00 GB memory.  

Deterministic “Counters” Model (PREDICI) An alternative way to track the 

placement of functionality among the polymer chains is to increase the set of 

distributed species that are tracked in the deterministic model, as summarized in 

Table 3-3. For this representation we define distributed species D0 as polymer 

chains that contain no GMA units (i.e., BMA homopolymer chains), D1 as those that 

contain a single GMA unit, and D as chains that contain multiple (two or more) GMA 

units. In order to track the production of these species, it is also necessary to expand 

the number of radical distributions in the model to include 10P   (radicals of 

homopolymer BMA), and 1iP   (radicals ending in unit   that contain a single GMA 

unit) as well as iP  , radicals ending in unit   that contain two or more GMA units. 

Thus, the total number of distributed species tracked by the model increases from 3 

to 8.  

The set of mechanisms that needs to be considered also increases significantly, as 

summarized in Table 3-3. The radical fragment I   can react with BMA (M1) to form 

1

10P  , a new homopolymer chain of length 1, or it can react with GMA (M2) to form 

2

11P  , a new chain of length 1 that already contains a single GMA unit. Propagation of 
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chain 10nP   with BMA leads to extension of the homopolymer chain, while addition of 

GMA leads to the formation of a GMA-ending radical of length n+1 that contains one 

GMA unit, 2

11nP 


. Similarly, propagation of chain 1i

nP   ( =1 or 2) with BMA keeps the 

resulting radical in the P1 distribution (product 1

11nP 


), while reaction with GMA 

moves the radical into the P distribution (product 2

1nP 


 now containing two GMA 

units).  

Care must be taken when considering the formation of dead polymer chains. For 

termination by disproportionation or chain transfer, the resulting dead polymer 

chain contains the same number of GMA units as the reacting radical; i.e., 10nP   is 

transformed to 0nD , 1i

nP   is transformed to 1nD  and i

nP   is transformed to 
nD . 

However, for termination by combination, the product molecule formed contains 

the total number of GMA units in both reacting radicals. Finally, it is important to 

track the identity of the new radical formed by chain transfer to BMA monomer 

(product radical 1

10P  ) or by chain transfer to GMA monomer (product radical 2

11P  ). 

Table 3-3. Kinetic mechanisms of butyl methacrylate (BMA, 1) /glycidyl 

methacrylate (GMA, 2) copolymerization for expanded deterministic 

“counters” model. (See text for definition of radical and polymer 

distributions.) 
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   by disproportionation: t,cop

t,cop

t,cop

1 1

1

1

0 0 0 0

0 1 0 1

0 0

k

n r n r

ki

n r n r

ki

n r n r

P P D D

P P D D

P P D D







 

 

 

  

  

  

 

t,cop

t,cop

1 1 1 1

1 1

ki j

n r n r

ki j

n r n r

P P D D

P P D D





 

 

  

  
 

t,copki j

n r n rP P D D
     

 

Hybrid MC/Deterministic (PREDICI) The hybrid deterministic Monte Carlo 

algorithm14 implemented in PREDICI is based on the idea of splitting the underlying 

chemical master equation into the well-known kinetic rate equations coupled to 

properties better realized within a stochastic treatment (Equations (13,14) in ref14). 

The particular benefit of this splitting is that within the stochastic part one can make 

use of concentrations and reaction rates obtained by the deterministic method. This 

means that the rates as mentioned in the section about the pure MC method can be 

employed in a very exact manner without requiring too many realizations or 

molecules. As a consequence, the hybrid method performs a Gillespie-like algorithm 

in parallel to the deterministic method. However, there are some special aspects of 

this hybrid approach: 

 The deterministic method proposes natural outer step lengths    and 

reaction rates valid for this time interval. The hybrid MC method then 
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performs all necessary steps (single step lengths as given in Equation (3.8)) 

within    to realize the number of events based on the given rates. 

 Since the whole MC process works in parallel to one deterministic simulation, 

we do not want to repeat the treatment very often. Instead, a certain constant 

ensemble size of molecules is used in order to represent one population of 

polymer chains. This number is defined by the modeler. Since the 

computation time is mainly related to the ensemble size, it should be as small 

as possible but as large as necessary. Usually one will use smaller numbers 

for species with short lifetimes (i.e., radicals) and/or at a low concentration 

level and larger numbers for the long-living or product species. Due to the 

hybrid character of the method a direct error estimate is available (see 

Equation (30) in ref14), and thus adjustments of the ensemble sizes can easily 

be done for each distributed species. The following ensemble sizes for 1P  -

2P  -D have been used: 20-20-2000 and 100-100-5000. This choice leads to 

uniform errors of about 1-5%, based on the full number or weight chain 

length distributions, as shown in Figure 3-1 for the 20-20-2000 ensemble; 

the MW and composition averages considered (Mn, Mw, GMA fraction, etc.) 

are much more accurate. More details regarding error analysis may be found 

in the original description of the hybrid approach by Schütte and Wulkow.14 

 A major task for the implementation of the hybrid method within the PREDICI 

context is its modularity. Whenever a special MC method is implemented for 
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a concrete and fixed model system, the underlying data structures as well as 

all properties under consideration can be created around the actual 

requirements. In a general program package it is necessary to define abstract 

properties related to the single steps forming a kinetic scheme. In the present 

implementation of PREDICI such an abstract property is called the “Monte 

Carlo index”; by operation of a single reaction this particular index of a chain 

is changed (usually increased by 1).  

A chain of the hybrid MC method can also store all single events as a list e.g., leading 

to the sequence of monomer units along the backbone, or track topology (for 

branched systems). All reaction steps of PREDICI prepared for MC treatment can be 

assigned to one or more indexes. However, in this article we only make use of the 

basic property indices related to composition, with index 1 for incorporation of BMA 

and index 2 for GMA. 
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Figure 3-1. Time evolution of error determined by comparing deterministic 

and Monte Carlo-based dead polymer number () and weight () chain 

length distributions for an ensemble size of 2000 chains. The dotted lines are 

linear trend lines representing an averaged error. 

 

3.4 Results and Discussion 

The model described in Table 3-2 was run with the recipe specified in Table 3-1 

using both the MC and basic deterministic formulations. The two models show exact 

agreement when examining output such as profiles of monomer concentrations, 

total radical concentration and number-average (Mn) and weight-average (Mw) 

polymer molecular weights (MWs), as shown in Figure 3-2. The noisiness of the 

radical concentration profile from the MC output results from the fact that the 

concentration (number) of radicals is the lowest of any species in the MC volume, 
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and thus shows the most fluctuation due to stochastic variation. However, the 

sample size selected (    =40) is large enough to provide an accurate measure of 

reaction rate and MW averages, as seen in the negligible fluctuations relative to the 

mean values of these quantities, and the exact agreement with the deterministic 

model output. 

The effect of sample size on the MC simulation output can also be seen in by 

examining the full polymer chain-length distribution (CLD), shown in Figure 3-3a, 

plotted using the customary logarithmic scale as would be measured by gel 

permeation chromatography (GPC). While the MC code provides an exact 

representation of the total number and weight of polymer chains in the system (and 

thus the Mn and Mw averages), the number of chains of a particular length is lower 

and hence more subject to fluctuations. Nonetheless, the agreement with the PREDICI 

output is excellent, as shown in Figure 3-3a. While the distribution shown is for the 

final polymer product, the evolution over the entire semibatch reaction period is 

tracked and can be examined, as done by Hamzehlou et al.8  
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Figure 3-2. A comparison of standard output from the deterministic () 

and MC () simulations of the copolymerization system described in Tables 1 

and 2: (a) [BMA] vs time, (b) [GMA] vs time, (c) total radical concentration vs 

time, (d) number-average (deterministic:  ; MC: ) and weight-average 

(deterministic:  ; MC ) MWs vs time.  

 

The effect of MC sample size on simulated CLDs is shown in Figure 3-3b; Table 3-4 

summarizes the corresponding simulation and CPU times required. Although the 
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concentration and average MW profiles are identical for simulations with      

values of 10 and greater, the output selected for presentation is calculated with 

    =40. As the initial control volume (calculated according to the desired value of 

     according to Equation (3.10)) is increased, the distribution becomes smoother 

and less susceptible to stochastic variation; however the simulation time also 

increases substantially. Since the control volume increases with time due to 

semibatch operation, the simulation also becomes slower towards the end of the 

feed period; Table 3-4 summarizes the final MC volume sizes for the simulations, 

also accounting for volume contraction during polymerization. As expected, the total 

time required for the PREDICI simulation is much reduced, in the order of seconds 

(10s) compared to over an hour for the MC simulation output shown in Figure 3-3a; 

the time required to set up and check the deterministic model is also significantly 

reduced. However, the extra information derived from the MC simulation not 

possible with the deterministic model is the distribution of the GMA units among the 

chains, as discussed below. 
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Figure 3-3. (a) A comparison of the final ( =14400 s) polymer chain-length 

distribution (GPC scale) from the deterministic () and MC () 

simulations of the copolymerization system described in Tables 1 and 2. (b) 

The effect of MC sample size on polymer GPC chain-length distributions.  
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Table 3-4. Initial and final MC volumes and simulation times for execution of 

MC code as a function of number of radicals.  

Number of  
Radicals 

VMC(0) (L) VMC(14400s) 
(L) 

Simulation  
time (min) 

CPU time 
(hh:mm:ss) 

  5 3.070×10-18 7.922×10-18   9 0:08:37 

10 6.140×10-18 1.585×10-17 17 0:18:15 

15 9.211×10-18 2.377×10-17 25 0:44:37 

20 1.228×10-17 3.170×10-17 33 1:19:29 

25 1.535×10-17 3.963×10-17 41 2:03:17 

30 1.842×10-17 4.755×10-17 49 2:55:39 

40 2.456×10-17 6.340×10-17 66 4:05:33 

 

The profiles shown in Figure 3-2 are typical of starved-feed operation: monomer 

concentrations remain low and polymer average MWs quickly attain constant values 

due to the fixed ratio of initiator to monomer that is fed.18 The feeding strategy 

minimizes copolymer composition drift, with the instantaneous composition of the 

polymer formed controlled by the monomer ratios in the feed. Thus, as shown in the 

kinetic MC study by Hamzehlou et al.,8 the composition of copolymer produced with 

a small amount (1 mol%) of functional monomer is kept uniform as a function of 

chain length and reaction time, in contrast to batch operation. In the example 

examined here, monomer reactivity ratios are unity such that monomer and 

copolymer composition control is perfect throughout the reaction with 
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   =   =0.05. In addition, with identical propagation rate coefficients assumed for 

GMA and BMA, the radical fraction is also constant at the same value: 
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  (3.12) 

However, even with perfect control of overall copolymer composition, the low target 

chain length (DPn=20) combined with the low GMA content in the copolymer 

(   =0.05) leads to a significant population of chains without functionality. This 

quantity, as well as how the unfunctionalized (homopolymer) chains are distributed 

across the polymer MWD, cannot be followed using a conventional deterministic 

model, but is information easily tracked by the MC technique. 

Figures 3-4 and 3-5 plot some of the information that can be processed from the MC 

output, which tracks the composition of every chain produced in the sample volume. 

Figure 3-4a shows the full CLD on a GPC scale, with the chains containing zero, one, 

and two GMA units shown as subdistributions. (The subdistributions are subject to 

stochastic noise at the tails of the distribution, leading to significant noise on the 

high MW-side when examined on the GPC scale.) Full information (i.e., distributions 

with three, four, etc. units per chain) is also available from the output, but has not 

been included in the plot for clarity. It is clear that a significant fraction of the chains 

produced do not contain the desired functionality (despite an average functionality 

of one unit per chain), and that most of the chains without functionality are, not 
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surprisingly, at the low MW side of the distribution. This latter result is seen more 

clearly in Figure 3-5a, which shows the fraction of chains containing zero, one, two, 

three, and more than three (four or greater) GMA units plotted as a linear function 

of chain length, as calculated from the MC output. As summarized in Table 3-5, the 

total number fraction of non-functional chains is quite high, approaching 50%, while 

the fraction of chains containing the desired single GMA unit is only 27%. The 

corresponding weight fraction of polymer without a GMA unit is lower at 25%, but 

still quite significant. 

 

 

 

 

 



 

40 

 

 

 

Figure 3-4. Full polymer chain-length distributions (GPC scale) ( ) showing: 

(a) subdistributions of chains with zero GMA units (), one GMA unit (·····), 

and two GMA units (···) simulated by MC; (b) subdistributions of chains with 

zero GMA units () and one GMA unit (·····) simulated by deterministic 

“counters” model. 
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Similar information can be obtained with the “counters” deterministic model, 

formulated to track the chains that contain zero and one GMA units, as well as those 

that contain two or more. With eight distributed species to track, the model takes 

slightly longer (90 sec) to run using PREDICI compared to the base deterministic 

model (10 sec, with three distributed species) but is much faster than execution of 

the MC code (66 min for     =40). The standard output from the model (i.e., Figure 

3-2 plots) matches that of the base deterministic model exactly. In addition, the 

model generates information regarding the distribution of GMA among the polymer 

chain, as shown in the plots of polymer CLD (Figure 3-4b) and fractional GMA 

composition as a function of chain length (Figure 3-5b), with output in agreement 

with the MC results. Table 3-5 compares the calculated distribution of GMA among 

the polymer chains from the two models. While the output from the deterministic 

model can be considered as exact, the MC sample size is large enough to provide 

excellent agreement. 

 

 



 

42 

 

 

 
 

Figure 3-5. (a) Fraction of polymer molecules at each chain length with zero 

(), one (·····), two (···), three (), and four or more GMA units ( ) 

calculated from MC simulation output. (b) Fraction of polymer molecules at 

each chain length with zero (), one (·····), and two or more GMA units ( ) 

simulated by deterministic “counters” model. 
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Table 3-5. Distribution of GMA units among polymer chains calculated by 

various modeling approaches for a perfectly controlled copolymerization 

system with DPn=20 and FGMA=0.05.  

 Number fraction of polymer chains containing: 

Model 0 GMA 1 GMA 2 GMA 3 GMA  4 GMA 

Monte Carlo (    =40) 0.488 0.263 0.128 0.062 0.030 

Deterministic 
Counters  

0.486 0.264 n.d. n.d. n.d. 

Hybrid PREDICI  
(2000 chains) 

0.492 

0.484 

0.486 

0.258 

0.262 

0.260 

0.128 

0.129 

0.131 

0.062 

0.064 

0.066 

0.035 

0.031 

0.033 

Hybrid PREDICI 
(5000 chains) 

0.489 

0.493 

0.491 

0.259 

0.259 

0.252 

0.126 

0.125 

0.137 

0.062 

0.059 

0.060 

0.033 

0.033 

0.031 

     n.d.: not determined 

 

So which modeling methodology can be considered as superior? The answer, not 

surprisingly, is that both approaches have strengths and weaknesses. While the 

simulation time for the deterministic counters model is significantly shorter, a 

certain level of expertise with model formulation and careful checking is required to 

expand the mechanistic set from Table 3-2 (base model) to Table 3-3 (expanded 

model) in PREDICI. While it is possible to extend the “counters” treatment to consider 

distributions with two, three, and more GMA units per chain, there will be a 
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concurrent increase in the set of mechanisms and the number of distributions to be 

tracked. This task will quickly rise in difficulty as the number of monomers and/or 

mechanisms (e.g., methacrylate depropagation, formation and reaction of midchain 

radicals in the presence of acrylate monomers18) in the base model increases. The 

resulting deterministic model, as formulated, provides an exact measure of the 

distributions of chains with zero or one unit per chain. While this output may be 

sufficient to develop new insights into the production of functional dispersant by 

free radical polymerization, it does not contain the details of the MC output which 

tracks the complete distribution of GMA units. This major advantage of the MC 

model is partially offset by the longer simulation time required to generate output, 

and the expertise required to formulate and check the computer code (usually 

against output generated by a deterministic model), including the influence of the 

simulation volume. 

The “hybrid” concept of Schütte and Wulkow14 was developed to provide the 

benefits of both modeling approaches, combining the convenience and flexibility of 

model formulation and solution in PREDICI with the extra information provided by 

the MC approach. As described in that publication, the hybrid algorithm solves the 

full deterministic system using the Galerkin h-p approximation method for chain-

length distributions and in parallel uses the MC technique to simulate single 

realizations of the stochastic process underlying chain growth. Thus, the basic 

model formulation in PREDICI (summarized by Table 3-1 and Table 3-2) can be used, 
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with a relatively small number of chains simulated stochastically in order to track 

the distribution of GMA units among the chains.  

Example output from the hybrid model is shown in Figure 3-6 for a MC ensemble 

size of 2000 molecules for the dead polymer chains. Figure 3-6a plots the 

composition of each chain in the ensemble as a function of chain length. At longer 

chain lengths, the points converge toward the average GMA composition (0.05), but 

the composition of the shorter chains show much greater variability: while there are 

chains containing greater than average GMA incorporation, a significant number of 

chains containing no GMA units is also observed (points along the x-axis). The 

output can be sorted to provide a breakdown of the number chain-length 

distribution into chains containing 0, 1, 2, and 3 or more GMA units, as shown in 

Figure 3-6b; as for the MC simulation, full information (i.e., chains with three, four, 

etc. units per chain) is also available from the output, but is not included in the plot 

for clarity. The results are presented as a bar chart to illustrate the stochastic 

variability that results from the smaller sample size (2000 chains) used in the 

hybrid simulation. Note that species concentrations and average polymer MWs as 

well as the full MWD match exactly the previous output shown in Figures 3-2 and 3-

3, as these quantities are calculated using the deterministic algorithm contained in 

PREDICI. 
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Figure 3-6. (a) GMA fraction in each chain and (b) overall number chain-length 

distribution, showing the chains with zero, one, two, and three or more GMA 

units, calculated for an ensemble size of 2000 molecules using the hybrid 

PREDICI model. 

 

The fraction of total chains with a certain number of GMA units can also be plotted 

as a function of time, as compared to the deterministic “counters” model output 

(zero and one GMA units only) in Figure 3-7. The transients that occur over the first 

hour (e.g., lower value of total chains with zero GMA units) of the simulated reaction 
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are caused by the increased MW averages produced during that time period (see 

Figure 3-2d).  

The selected outputs from the hybrid model (Figures 3-6 and 3-7) differ from those 

shown from the other modeling approaches (Figures 3-4 and 3-5) to provide 

another perspective on the distribution of the GMA functional groups. The 

numerical agreement between the methods is excellent, as summarized in Table 3-5 

for the final polymer product (after 4 h). Output from three repeat runs using the 

hybrid model is included in the tabulated results to illustrate the stochastic 

variability for ensembles of 2000 (total simulation time of 10 min) and 5000 chains 

(total simulation time of 46 min). The results compare well with those generated 

from the other modeling approaches, with scatter in the third decimal place due to 

the smaller MC ensemble size.  
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Figure 3-7. Fraction of total chains with zero, one, two, and three GMA units 

plotted against reaction time, calculated from simulation output from the 

hybrid (solid lines) and deterministic “counters” model (dotted lines, tracked 

for zero and one GMA units only).  

 

3.5 Conclusions 

Three modeling approaches have been used to simulate the distribution of GMA 

functional groups within the polymer molecular weight distribution produced by 

semibatch free-radical polymerization. Although perfect control of overall 

copolymer composition (5 mol% GMA incorporation) is achieved for this idealized 

case study, the low target chain length (DPn=20) means that only a quarter of the 

chains produced have the desired functionality of one GMA unit per polymer 

molecule, with close to half of the chains produced containing no functional groups. 

This result from the MC formulation is compared to that from an extended 
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deterministic model implemented in PREDICI. The simulation time for the MC 

treatment (just over 1 h) was much greater than that of the deterministic “counters” 

model (1-2 min), although both models tracked the distributions of chains 

containing zero and one GMA units. While the MC simulation provides a full 

description of the 2D composition and chain length distributions not possible with 

the deterministic approach, care must be taken to ensure that the MC control 

volume is sufficiently large such that fluctuations in the concentrations of scarce 

species (in this case, the growing radicals) do not skew the results. 

Both the MC and deterministic “counters” approaches require a certain level of 

expertise in model formulation, with the implementations verified against 

concentration and polymer MW profiles generated by a “basic” deterministic model. 

The new hybrid approach14 combines the basic model formulation and solution in 

PREDICI with the stochastic simulation of a small number of chains, providing a 

means to examine the distribution of a second quantity (comonomer composition in 

this case) as a function of chain length. The simulation times are between those of 

the deterministic and MC approaches and accurate results can be generated with no 

extra programming by the user. While it will not replace the utility or functionality 

of MC code written for specific applications, the hybrid formulation opens up the 

power of stochastic simulation to the casual model user.  
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Chapter 4 

Modeling of Branch Distribution in Chain Walking Polymerization: 

Combination of two Monte Carlo Techniques 

 

4.1 Introduction 

Demands for special properties have inspired scientists to form polymers with new 

chain architecture or topology that influences the rheology and end application of 

the polymer.1 Dendritic polymers, a new category of polymer architecture including 

dendrimers and hyperbranched polymers, have been of interest to researchers for 

more than two decades now.1–6  

In comparison to traditional chain-growth polymerizations (e.g., free radical, ionic, 

cationic, coordination, group transfer), where the addition of the monomer usually 

occurs at the chain end to form linear polymers,7 during synthesis of dendritic 

polymers the catalyst center moves along the chain to form branched polymers. A 

three-dimensional spherical architecture is introduced in dendritic polymers, 

bringing advantages such as good stability, low melt/solution viscosity, and 

abundance of reactive sites or functionalities.2,8 In contrast to the dendrimers that 

need complicated multi-step synthesis, hyperbranched polymers, which have 

similar structure to dendritic architecture, are usually produced in more convenient 

single-step processes. This feature of hyperbranched polymers empowers mass 
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production and various industrial applications, from catalyst support to drug-

delivery to coatings.8 Hyperbranched polyethylene synthesized with chain walking 

polymerization has potential application as shear-stable lubricant viscosity 

additives and polymer processing aids.9 

In order to synthesize hyperbranched polymerization, a strategy for designing 

branched structures in polyolefin was introduced in 1999 by Guan et al. in which 

hyperbranched polyethylene was synthesized by a novel chain walking 

polymerization (CWP) system that uses Brookhart’s Pd-diimine catalyst.10 Many 

developments have been since achieved to advance the synthesis of hyperbranched 

polymerization with Pd-diimine catalyst.11–13 The branching density of 

polyethylenes produced using this catalyst (~100 branches/ 1000 carbons) is far 

higher than the branching density of LDPE synthesized via the high-temperature 

high-pressure radical processes.14   

The catalyst controls the position of the next monomer insertion at any position 

along the chain, unlike other systems that introduce branching by monomer 

structure. The catalyst center, the metal site in this polymerization, walks randomly 

along the polymer chain. Therefore during propagation, the next monomer unit can 

be inserted anywhere along the polymer backbone instead of the chain end, as 

shown in Figure 4-1.15  
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Figure 4-1. A schematic representation of ethylene polymerization with 

branch formation occurring after “chain walking” of the catalyst center along 

the chain. The two branched structures indicate the effect of changing 

polymerization conditions (redrawn from ref12). 

 

The materials are generally produced by semibatch polymerization at constant 

ethylene pressure, as described by Ye et al.16 In brief, the polymerization at ethylene 

pressure of 1 atm is carried out in a 500 mL glass reactor. Dichloromethane (100 

mL) is injected to the flame-dried reactor under protection of   . After equilibrium 

for 10 min in an oil bath, a certain amount of catalyst stock solution is injected into 

the reactor in order to start polymerization. Polymerizations at 6.5 and 30 atm are 

conducted in a 1 L Autoclave stainless steel reactor. A mixture of dichloromethane 

(300 mL) and certain amount of catalyst stock solution are injected to the reactor 

under protection of   . After 10 min of stirring and being heated to the reaction 
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temperature, the reactor is pressurized by ethylene gas to begin polymerization. 

The fluctuation of reactor pressure is eliminated by continuous feeding of ethylene 

gas from a cylinder. 

Changing polymerization conditions, such as ethylene pressure, govern the polymer 

chain topology by shifting the competition between propagation and chain walking, 

two fundamental processes regulating the nonlinear chain growth. The difference in 

dependencies of ethylene concentration on chain propagation rate (   , where the 

rate reflects the combination of trapping and insertion elementary reactions, and 

chain walking rate (     ), makes ethylene pressure an easily-adjustable parameter 

to mediate the two competing rates.9 Studies show that the    is basically 

independent of ethylene pressure and the       is, in contrast, an inverse first-order 

function of ethylene pressure (  ).10,17,18 Therefore, a high branching density with 

extensive branch-on-branch structure is achieved in low pressure in which       is 

much faster than   . On the other hand, linear polymers with mainly short branches 

will be synthesized in high pressure when    is notably greater than      .9 

Consequently, an increase in ethylene pressure means an increased intrinsic 

viscosity at equal molecular weights to those polymers synthesized at lower 

pressure.10,19 

In addition to chain walking and propagation (also known as insertion) reactions, 

Johnson et al. proposed two other basic mechanisms.14 Absorption of the ethylene 

molecule on the catalyst, called association or trapping, creates a condition where 
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insertion can take place. In this situation, chain walking cannot happen and the 

catalyst site is considered to be in the “resting state”. The absorbed monomer has a 

possibility of leaving the metal site by dissociation, causing the “active state” of the 

catalyst to be resumed, in which chain walking is probable to take place.  

Thus, these four steps are occurring during formation of a hyperbranched chain. 

After the monomer dissociates from resting state   , the metal site walks along the 

chain (or branches on the chain) through β-hydride elimination,   ,         (see 

Figure 4-2). This step can be repeated several times until the catalyst associates 

with another ethylene molecule, resulting in a new resting state   . By insertion of 

the ethylene molecule, a new branch is created. As mentioned previously, the chain 

walking distance (the number of carbons the metal site walks through before 

insertion of the next monomer) is affected by ethylene pressure,   . At higher   , 

trapping occurs at a faster rate, and the average walking distance is comparatively 

short. At low   , the catalyst may walk through many carbons before inserting new 

monomer, forming branch-on-branch topology.10 
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Figure 4-2. Mechanistic model for ethylene polymerization with Pd-diimine 

catalyst. Kinetics are (1) dissociation of monomer, (2) chain walking, (3) 

trapping of monomer (association), and (4) insertion of monomer.      
  

  
  

is the equilibrium rate coefficient for trapping/dissociation, and      and    

are the rate coefficient for insertion, and chain walking (1 for forward and -1 

for backward chain walking), respectively (adopted from ref 12). 

 

Numerous Monte Carlo studies have been done for branched molecules such as 

dendrimers and hyperbranched polymers,20–23 focused mainly on conformational 

properties e.g., radius of gyration. They have investigated the effect of different 

topological parameters such as generation (branch level) as a function of spacer 

length (linear section of the molecule) on the radius of gyration, or solvent type on 

dendritic molecule size and shape. The effect of branching topology on the branch 

distribution is, however, still not perfectly studied. The simulation study of 

randomly branched molecules developed by Chen et al.24 illustrates the topology 
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and conformational behavior of hyperbranched polymers as well as the effect of 

changing reaction fixed probabilities on branch distribution. While the study 

successfully describes the effect of branching on polymer conformation and the 

radius of gyration (  ), it does not consider two important factors: the time 

evolution of structure that is crucial for polymerizations in which conditions (e.g., 

pressure) vary with time; and reaction rates of the events in the system. Gillespie’s 

algorithm, which is a well-known Monte Carlo method for tracking the reaction time 

in coupled chemical reactions, can be merged with Escobedo’s algorithm developed 

by Chen et al., leading to a more comprehensive representation of hyperbranched 

polymerization by taking into account all reaction rates and related rate coefficients, 

as well as the polymerization time.  

 

4.2 Methodology 

4.2.1 Escobedo’s Algorithm  

A dynamic kinetic Monte Carlo model of Chain Walking Polymerization has been 

developed in order to simulate polymerization of ethylene with Pd-catalyst, as 

investigated experimentally in Ye’s lab at Laurentian University. The model is a 

combination of algorithms developed by Chen et al.24 (Escobedo’s algorithm) and 

the Gillespie’s algorithm for coupled chemical reactions.  
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In Escobedo’s algorithm, intermolecular and intramolecular interactions of a 

growing polymer are neglected. The competition between chain walking and 

ethylene trapping at an active state is considered as an input parameter, the 

probability of chain walking   . As the schematic flowchart Figure 4-3 shows, a 

uniformly random number (    ) is generated to choose between chain walking 

and trapping reactions, the two competing events for a chain in active state. 

If        , chain walking will happen, otherwise the chain converts to the resting 

state by trapping an ethylene molecule at the metal site.    is a function of ethylene 

pressure,   , since the trapping reaction rate is first order based on ethylene 

concentration (ethylene pressure). The following equation expresses the relation 

between    and   : 

    
  

     
 

  

       
 (4.1) 

where   ,   , and    are the rate of chain walking, the rate of ethylene trapping, and 

the rate coefficient for ethylene trapping (expressed with respect to ethylene 

pressure), respectively.   
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Figure 4-3. Flowchart showing the order of events in MC simulation of Pd-

diimine-catalyzed chain walking polymerization, Escobedo’s algorithm.24 

 

There is also a competition between insertion and dissociation after the catalyst has 

trapped a monomer. Therefore a second parameter,     , is introduced to account 

for the probability of insertion. A new random number (    ) is compared 

with     ; if          , then the trapped ethylene will be inserted into the chain, 

otherwise it will dissociate from the metal site to convert the chain back to the 

resting state.  
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Due to steric effects, Chen et al. assumed that the probability of insertion at chain 

ends,     
   , must be higher than the probability of insertion at inner points,     

     ; 

having more mobility and consequently exploring more space, segments at a chain 

end have a higher chance of insertion compared to the inner segments. Therefore, it 

is necessary to distinguish the probability of insertion at the chain end from that at 

the inner points.  

In addition, steric effects cause more difficulty in insertion of a monomer when the 

insertion occurs closer to a branch point. To consider this effect, the parameter,  , 

was introduced by Chen et al. as a correction factor for     : 

         (4.2) 

Therefore the adjusted insertion probability is a function of distance from a branch 

point: 

     
         (4.3) 

where   is the number of sites between the insertion point and the closest branch 

point. If the insertion point is at or adjacent to the branch point (i.e.,    ),   will be 

0 and subsequently no insertion will happen. Experimental observation from 13C 

NMR studies of polymerization catalyzed by Ni catalyst supports that no adjacent 

branching occurs, and also that no quaternary carbons are observed.25,26   increases 

exponentially to 1 when   increases from 0 to 4, so practically   is 1 for    . The 

factor   applies to both probabilities of insertion (inner or end), but an additional 
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factor must also be considered for probability of insertion at the carbon adjacent to 

the chain end. The methyl bias factor,  , has been introduced in simulations of Ni-

catalyzed polymerization, as it has been experimentally observed that methyl 

branches predominate over longer branches.27 This predominance of methyl 

branches indicates a shift in the insertion-dissociation equilibrium toward insertion 

when the catalyst center is on the adjacent carbon to the chain end. In this situation, 

the insertion probability is adjusted as: 

     
               

                (4.4) 

Chen et al. adjusted the simulation parameters (  ,     
   ,     

     , and  ) in order to 

match experimental short chain branch distributions. Branch distributions are 

measured experimentally by 13C NMR, which cannot distinguish branch lengths if 

they are longer than 6C units. The parameters for the simulation were adjusted until 

the simulated short chain branch distribution was consistent with experimental 

results, as summarized in Table 4-1: 
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Table 4-1. Short chain branch distribution for the best set of simulation 

parameters of Escobedo’s algorithm, and experimental branch distribution. 

Me, methyl; Et, ethyl; Pr, propyl; Bu, butyl; Am, amyl; Hx+, hexyl and longer 

branches.24 

 Simulation Parameters  Number of branches per 1000 CH2 

Entry        
        

         Me Et Pr Bu Am Hx+ Total 

1 Experimental results28  37.0 25.0 3.0 12.0 1.0 37.0 115.0 

2 0.9 0.9 0.02 3  33.4 26.4 1.8 15.4 1.4 34.4 112.6 

 

4.2.2 Implemented Gillespie’s Algorithm 

In order to track structure as a function of polymerization time, Escobedo’s 

algorithm as described above is combined in this work with Gillespie’s algorithm. 

Gillespie’s algorithm requires the absolute reaction rates of all events in the system, 

unlike Escobedo’s method which is based on relative rates. While chain transfer also 

occurs in some CWP systems,29 the mechanism is omitted from the current 

implementation  as it has no influence on the chain topology.10 Table 4-2 lists all the 

reactions used by Chen et al. and the respective reaction rate expressions. 

Among the four reaction rates in the system, the insertion rate changes dependent 

upon the position of the catalyst center on the chain. For example, the probability of 

insertion for a chain in the resting state,      is different when the catalyst center is 
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located at the adjacent carbon to the chain end that is 2 carbons away from the 

nearest branch,    
       

, than compared to when insertion takes place at the 

catalyst center adjacent to the end carbon with    ,    
       

. Thus, the insertion 

event is split into 12 reactions, covering all of the possible insertion situations. 

These 12 insertion reactions are organized in three categories: insertions at the 

chain end, insertions at the adjacent carbon to the chain end, and insertions at other 

inner segments. The rates of chain walking, trapping, and monomer dissociation, on 

the other hand, are not affected by the position of the catalyst center; if chain 

walking happens to a chain in the active state,     will change to    
  to indicate 

that the position of the catalyst center has shifted;   is not shown as part of the 

mechanism, although is tracked internally. The direction of chain walking is also 

chosen randomly. 
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Table 4-2. Kinetic mechanism of ethylene polymerization with Pd-diimine 

catalyst. Catalyst center is moved in the species specified with asterisk.  

Chain walking  

1        
                           
→             

       [   ] 

Insertion   

2,3,4    
                 

             
→                                

             
   [   

       ] 

5    
                      

         
→                 

            
   [   

       ] 

6,7,8    
                

           
→                                

       
       

     [   
       

] 

9    
                      

           
→                   

       
      

     [   
       

] 

10,11,12    
   

         
           

→                                   
         

     [   
   ] 

13    
   

               
           

→                  
        

     [   
   ] 

Dissociation  

14     
                           
→                      [   ] 

Trapping  

15      
                           
→                    [   ][ ] 
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Initial estimates for the possible range of the rate coefficients were provided 

through email correspondence with Dr. Zhibin Ye, as summarized in Table 4-3.  

 

Table 4-3. Values of ethylene chain walking polymerization rate coefficients 

reported from Dr. Zhibin Ye’s lab. 

Rate coefficient (unit) Range or value 

       
    0.1 – 2 

     
    20 

    
  

  
       ⁄  10-3 – 10-4 

         104 – 105 

 

In Escobedo’s algorithm,     
      and     

    are adjusted to match available 

experimental data.24 To reduce the number of parameters that are independently 

varied to match experimental results, as well as to utilize the probability values 

introduced by Chen et al. as variables, a cascade procedure for varying parameter 

values has been established. The basic idea is to specify     
    and     (      ), and 

then calculate    and    from Escobedo’s probabilities.  

     
    

     
   

     
       

 (4.5) 

Given     
    and     

   ,    is calculated from Equation (4.5). Then,     
      is computed 

based on a similar equation to Equation (4.1): 
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       (4.6) 

After calculating    with the given value of    ,    is calculated using the value of 

ethylene concentration estimated as a function of ethylene pressure (as described 

later): 

       [ ]  
  

     
 (4.7) 

Hence, the cascade calculation provides values for   ,   ,     
     , and    by using 

input values of     
   ,    ,     

   ,     
     ,   , and [ ]. Once    is fixed, the probability 

of chain walking will change as    varies. 

As described above, the classic MC algorithm introduced by Gillespie30 has been 

combined with Escobedo’s algorithm. Thus, macroscopic, or experimental, reaction 

rate coefficients (    ) must be converted to microscopic reaction rate coefficients 

(   ) according to the following, with     the MC reaction control volume, 

calculated as discussed later. 

           (4.8) 

for first order reaction, and  

     
 
   

     
 (4.9) 

for bimolecular reactions between different species. 
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The MC rate of the  th reaction,   , is given by:  

           (4.10) 

where    is the number of possible combinations between reactants engaged in the 

 th reaction. For example,    for the trapping reaction from Table 4-2 is calculated 

as: 

     (
    

 
)(  

 
)       

      (4.11) 

where     
 and    are the numbers of chains at resting state and monomer 

molecules in the system, respectively. The probability of each reaction,   , is defined 

as: 

    
  

∑   
    
   

 (4.12) 

where      is the total number of reactions in the polymerization mechanistic set 

summarized in Table 4-2. Two uniformly distributed random numbers,    and   , are 

generated to choose the reaction that takes place at the polymerization time and the 

time step, respectively. Reaction   happens if the following inequality is satisfied:  

 ∑   
   
       ∑   

 
    (4.13) 

with the time step,  , computed as:  

   
 

∑   
 
   

  (
 

  
) (4.14) 
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    is the only rate coefficient corresponding to trapping second order reaction. 

Therefore: 

   
   

  
   

     
 (4.15) 

   and    both represent the rate coefficient of trapping reaction. For Gillespie’s 

algorithm, monomer concentration, [ ]  is needed (hence rate is proportional to 

  [ ]), whereas Chen et al. expressed ethylene concentration in term of gas phase 

ethylene pressure,   . Therefore, we need to convert    to monomer concentration 

according to: 

    
  
   

[ ]

  
 (4.16) 

The relationship between [ ] and    is captured according to Raoult's law, as 

described later.  

In order to calculate the MC control volume,    , the number of catalyst molecules 

in the MC system,    , is set to obtain a sufficient “sample” of the polymer chains, 

since               . Then the ratio of            is fixed based on experimental 

conditions,  

                             (4.17) 

where        is the number of catalysts molecules in the actual experiment 

(                ). Therefore, the sample volume size (   ) would be: 
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                            (4.18) 

with      the volume of experimental system. The volume expansion or reduction 

due to constant addition of monomer and propagation of the chains is not 

considered in this model, since the amount of dissolved polymer in the solvent is 

kept low and has a negligible impact on the volume.   

A vapour liquid equilibrium relationship is needed in order to estimate the 

dissolved amount of monomer in the liquid phase from the ethylene pressure in the 

gas phase. In this study, Raoult’s law is an applicable choice because  the operational 

condition of the system is at low to moderate pressures (1 to 30 atm) and low 

temperatures (0 to 35°C) such that the liquid phase can be considered as an ideal 

solution31 due to the low solubility of ethylene in the solvent (e.g., chlorobenzene). It 

is assumed that the vapour phase contains purely ethylene gas, therefore the 

method only demands for the saturation vapour pressure of ethylene at the 

operating temperature, regardless of solvent type. Vapour pressure of ethylene is 

calculated from an equation fitted to experimental data by Michels and Wassenaar.32 

If      and     
    are respectively mole fraction of ethylene in the gas phase and 

vapour pressure of ethylene, therefore the mole fraction of ethylene,     , in the 

liquid phase is calculated as follows, leading to the value of monomer concentration 

used in Equation (4.16): 

       
        

    
       (4.19) 
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The overall simulation algorithm proceeds as follows: First the Gillespie’s 

probabilities are calculated based on all reaction rates and the number of each 

species in the system. Chains in the active and resting states are considered as 

distinguished species in order to calculate reaction rates. Similarly, chains with the 

same catalyst center condition (e.g., catalyst center on adjacent carbon to the chain 

end) are also treated as the same species. Three uniformly random numbers are 

generated to select the next reaction, to compute the time interval, and to choose a 

chain among eligible chains for the selected reaction. After the randomly selected 

reaction takes place, the affected molecule numbers as well as the topology 

information of the chosen chain are updated. While the stop condition (which can be 

either the polymerization end time or the specific average chain length) is not 

satisfied, the loop continues.  

 

4.3 Results and Discussion 

A sensitivity analysis was done before adjusting the input parameters to match 

available experimental data.    ,     
   ,     

   ,     
     ,   , and   were varied 

systematically to examine their effect on branch distribution, average chain length, 

and total number of branches; during the analysis of a factor, all other parameters 

were fixed, since the input parameters are independent of each other. Three 



 

71 

 

simulation end times were selected to find the effect of the changing parameter at 

early, middle, and final stages of polymerization.  

 

4.3.1 Sensitivity Analysis: Average Chain Length 

The effect of the parameters on average chain length is summarized in Figure 4-4, 

with output calculated for reaction times of 1000, 3000, 5000, and 7000 s. Longer 

polymerization duration increases the average chain length for all parameter values, 

as there is no termination taking place in this system. An increase in     
    (that 

consequently leads to increased   ) or     
      (see Equation (4.6)), results in longer 

average chain lengths due to the increased rate of monomer insertion.     
    has a 

reverse relation to   : higher     
    causes a decrease in     (Equation (4.5))  such 

that the dissociation of the monomer is more probable, decreasing the average chain 

length of the final polymer. 
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Figure 4-4. Effect of varying values of     
   ,     

   ,     
     ,   ,  , and     on 

average chain length for  reaction times of 1000s (), 3000s (), 5000s (), 

and 7000s (). 

Keq 
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An increased value of    means higher    (Equation (4.7)) and thus more chain 

walking events and more branching, leading to shorter average chain lengths 

(decreased monomer insertion) for the same reaction time. As methyl branches are 

the shortest alkyl group, an increase in its population (resulting from an increased 

value of  ) does not change average chain length significantly. An increase in     

when     is fixed leads to a smaller value for    that leads to a decrease in average 

chain length. This decline, however, is not very significant due to large difference in 

the magnitudes of    and   . 

 

4.3.2 Sensitivity Analysis: Total Number of Branches 

The effect of the input parameters on the total number of branches (calculated per 

1000 C-atoms) is shown as Figure 4-5. The values of     
    and     do not effect 

either the total number of branches or the branch distribution, as these quantities 

are only affected by the relative probability parameters defined by Chen et al. The 

branching density increases with increasing values of      
     ,   , and  . An increase 

in    indicates that chain walking takes place more often between insertions, 

resulting in more branches. The higher probability of monomer addition at inner 

segments of the chain, a consequence of an increase in     
     , also leads to more 

branched topology, and an increase in    increases the total number of branches by 

increasing the number of methyl branches significantly. An increase in     
   , on the 
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other hand, indicates that insertion at the chain end is more probable, which leads 

to formation of longer monomer runs at the chain end and a decrease in the total 

number of branches. 

 

Figure 4-5. Effect of increase in values of     
     ,     

   ,   , and   on average 

total number of branches per 1000 C of chains for  reaction times of 1000s 

(), 3000s (), 5000s (), and 7000s (). 
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The density of total branches reaches equilibrium very early in polymerization, as 

seen by the low sensitivity of the Figure 4-5 results to reaction time.  As shown in 

Figure 4-6, the average number of branches per 1000 carbon remains constant after 

about 50s of polymerization, independent of branch length. 

 

Figure 4-6. Branch density profiles in early stages polymerization. Left figure 

shows profiles for shorter branches and right figure presents profiles for Hx+ 

and total number of branches.  

 

4.3.3 Sensitivity Analysis: Branch Distribution 

The sensitivity of the distribution of branch lengths to various parameters is 

summarized by the bar graphs shown as Figure 4-7. Not surprisingly, an increase in 

    
    (more monomer insertion at the chain ends) decreases all branch populations, 

except for the longer branches (Hx+). On the other hand, higher     
      increases the 

density of shorter branches in the chain and decreases the population of Hx+.  

Am 
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The effect of    on branch distributions is more complex. The density of methyl 

groups is not affected considerably by   ; the small fluctuations seen are the natural 

result of randomness behavior of MC method. Ethyl and butyl group populations, 

however, increase at higher   . This observation is in agreement with results 

generated with Escobedo’s algorithm by Chen et al.: “It is observed that for 

increasing   , the population of branches with even number of carbon atoms 

increases, while that of branches with odd number of carbon atoms decreases.”24  

Finally, it is seen that the number of methyl branches increases significantly for 

larger   values. Formation of more methyl groups also provides a situation for ethyl 

branches to be created. Therefore, higher   will lead to formation of more methyl 

and ethyl branches.    
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Figure 4-7. Effect of increase in values of     
   ,     

     ,   , and   on branch 

distribution per 1000 C of chains. Branch type: Me (▪), Et (▪), Pr (▪), Bu (▪), Am 

(▪), and Hx+ (▪). 

 

The results of the entire sensitivity analysis are summarized in Table 4-4, which was 

used to guide the adjustment of input parameters to match experimental results. For 

example, if simulated density of longer branches (Hx+) is greater than found 



 

79 

 

experimentally,    or     
    will be decreased or     

      will be increased, depending 

on the required density of the shorter branches. 

 

Table 4-4. The effect of input variables on average chain length, total number 

of branches and branch distribution for ethylene Pd-diimine-catalyzed 

polymerization, as determined by a sensitivity analysis. Symbols indicate: 

increase (+), decrease(-), and no change (o). Double symbols show high 

sensitivity.  

Parameter 

Effect of increase in the parameters on: 
Average 

chain 
length 

Tot. no. 
of 

branches 

Branch distribution 

Me Et Pr Bu Am Hx+ 

    - o o o o o o o 

    
    ++ o o o o o o o 

    
    -- -- -- -- - - - + 

    
      ++ ++ ++ ++ + + o -- 

   -- ++ o + -- + - ++ 

  - ++ ++ + - o - -- 

  

4.3.4 Comparison to Experimental Data 

The model described above was run according to the experimental recipes specified 

in Table 4-5. The combined Escobedo/Gillespie algorithm developed in this study 

was used in order to consider the experimental polymerization time as well as the 

polymer structure. Table 4-6 shows the base set of parameters used in the 

simulations.  
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Table 4-5. Polymerization conditions of ethylene polymer experiments set by 

Ye et al. with Pd-catalysts.16 

Polymer 
Catalyst 
amount 
(μmol) 

Ethylene 
pressure 

(atm) 

Temperature 
(°C) 

Time 
(h) 

Solvent  
(mL CH2Cl2) 

1 100 1 35 18 100 
2 100 1 25 18 100 
3 100 6.5 25 19 300 
4 90 30 25 5 300 

 

Table 4-6. Set of parameters for simulation of polymerization in Table 4-5. 

Input variables   Calculated parameters 

       
        

      
    

    

(   ) 

    

(mol/L) 
  

    

(   ) 

  
   

 

(L/mol.s) 

    
      

(   ) 

0.9 0.9 0.02 50        3                  0.1134 

 

The model shows excellent representation of the distribution of branch-lengths as 

well as the total number of branches found experimentally for all conditions in 

Table 4-5, as shown in Table 4-7 and Figure 4-8. The simulated results are average 

values of branching levels per 1000 C atoms for 100 sample chains in the system. An 

increase in ethylene pressure from 1 to 30 atm (polymer 2 to polymer 4) leads to a 

decrease in the simulated total number of branches, in agreement with the 

experimental results. Without further knowledge about the system, rate coefficients 

in the simulation were assumed to be independent of temperature. This assumption 

seems justified within the narrow temperature range examined experimentally, as a 
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10 °C decrease in temperature (polymer 1 to polymer 2) has only a negligible effect 

on both the simulated and experimental branch distributions. In the simulation, 

temperature has a slight effect on results due to its influence on monomer 

concentration in the solvent.  

 

Table 4-7. Polymer short chain branching distribution and total number of 

branches per 1000 C from experimental data (measured by 13C NMR in CDCl3 

at 30 °C)16 and simulation results.  

Polymer Me Et Pr Bu Am Hx+ Total 

1 
Exp 33.7 24.2 2.4 11.5 2.9 37.2 112 
Sim 33.9 22.9 2.6 11.4 2.7 39.5 112 

2 
Exp 32.9 23.8 2.2 11.4 2.7 37.7 111 
Sim 33.4 23.1 2.6 11.4 2.7 38.2 111 

3 
Exp 33.0 23.1 3.1 11.3 3.1 35.5 109 
Sim 34.1 22.4 2.9 10.8 3.0 35 108 

4 
Exp 32.0 19.3 3.5 9.4 3.5 34.2 102 
Sim 33.7 20.0 3.2 10.7 2.9 33.5 104 
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Figure 4-8. Comparison of branch distributions from experimental data (▪) 

and simulation results (▪) for each polymer in Table 4-7.  

 

However, the simulation was unable to match the experimental chain lengths 

attained in the reported polymerization times using the single set of parameters in 

Table 4-6. It was necessary to adjust     
    , a coefficient that effects average chain 

length (Section 4.3.1) but not branching density (Section 4.3.2) of the polymer. The 

final values used in order to match the simulated degree of polymerization to that 

for experiments are summarized in Table 4-8.  The value of     
    was more than 
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doubled in order to match the rate of chain growth at 30 atm (polymer 4) compared 

to 1 atm (polymer 2), even with the value of [ ] also being higher at the higher 

pressure (0.5647 compared to 0.0189 mol/L at 1 atm). The required change in     
    

with pressure, however, was not systematic, as the value was lowered in order to 

match the experimental results at 6.5 atm (polymer 3). Further investigation is 

necessary to determine if this parameter adjustment required indicates a deficiency 

in the set of mechanisms developed to describe the system, or is just a reflection of 

typical experimental variation. Note that this mismatch would not be captured by 

application of the Escobedo’s algorithm, which only calculates final polymer 

structure.  

 

Table 4-8. Comparison of experimental16 and simulated chain length 

according to the value of     
   . 

Polymer 
No. of 

Catalyst 
molecules  

Ethylene 
pressure 

(atm) 

Temp. 
(°C) 

Time 
(h) 

   
       

   
 

    
    

(   ) 

1 100 1 35 18 2759 2738 7.0 
2 100 1 25 18 2414 2418 6.0 
3 100 6.5 25 19 2175 2182 4.3 
4 100 30 25 5 2079 2083 14.8 

 

In order to provide a sample visualization of hyperbranched polymers at different 

conditions, structural information generated by the model (see appendix for more 

details) was translated to “Simplified Molecular-Input Line-Entry System (SMILES)” 
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notation, a standard input for molecular mechanics modeling software.34,35 In this 

study, Avogadro’s open-source molecular editor was chosen to visualize the chain 

conformations. Visualization was finalized after implementation of built-in auto 

optimization tool in Avogadro’s software. The toolbox optimised the bond energies 

by considering the force fields of atoms in the chain and rendered the chain 

conformations. In the 3D conformations shown in Figure 4-9, branches with the 

same index number (e.g., same branch level) are distinguished by different colors. It 

is observed in Figure 4-9 that polymers formed at lower reactor pressure are more 

branched and have more compact topology.   

The visualization and MC conformational studies done by Chen et al.24 are different 

from the visualization method described above. In that work, the topology was built 

based on solid volume of hard spheres with a specified diameter. During 

conformation optimization, a randomly selected bead is displaced in a random 

direction and if no overlapping occurs and all influenced bonds satisfy the bond-

length constraints, the new position of the bead was accepted. Despite this 

difference in approach, the results of the visualization were the same, with 

decreased pressure leading to a more highly branched and compact structure. 
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Figure 4-9. Sample snapshots of the conformations of polymer macromolecule 

in Table 4-5. Each polymer consists of 1500 carbons. Each color represents a 

 

(1) 

(2) 

(3) 

(4) 
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branch index (branching level). Plots (1) to (4) are related to polymer 1 to 4 in 

Table 4-5, respectively.  

 

4.3.5 Effect of Changing Pressure During Polymerization 

In order to investigate the effect of changing pressure during polymerization to tune 

the chain topology, two different scenarios were studied. In the first scenario, 

polymerization is started with low pressure to form a hyperbranched topology, and 

then at a specific time, pressure is increased suddenly to create a more linear chain 

section. In the second scenario, the linear section is formed at the high pressure 

first, followed by a sudden drop in pressure to allow hyperbranched material to be 

formed. Figure 4-10 shows the topology visualization of a sample chain for the two 

scenarios before the pressure change and at the end of polymerization. 
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Figure 4-10. Sample snapshots of the chain produced in two scenarios: (a) 

chain formed initially at 1 atm (a.1)  followed by further chain growth at 100 

atm (a.2); and (b) chain formed initially at 100 atm (b.1)  followed by further 

chain growth at 1 atm (b.2). 

 

As seen in Figure 4-10a, the chain formed by the first scenario consists of two 

different topological sections in which one end is more hyperbranched and the 

other is more linear. The sudden increase in the pressure after the formation of the 

hyperbranched structure leads to formation of a more linear section in which 

 

(a.2) 

(b.2) 

(a.1) 

(b.1) 
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branch-on-branch structure is reduced due to the higher concentration of monomer 

and consequently, higher probability of dissociation that favors insertion over chain 

walking. On the other hand, for the second case, a linear section is formed initially at 

high pressure. Upon reduction of the pressure, the chain spends more time in the 

active state, favoring chain walking over insertion; as seen in Figure 4-10b, the 

increased branching that occurs is distributed over the entire chain (including the 

original more linear portion), as the catalyst center can move back and create 

branches on the part of the chain formed at high pressure. These qualitative results 

from simulation are comparable with experimental observation.33 Xiang et al. 

discovered an alternative way to tune the topology of the hyperbranched polymers 

and eliminate the phenomenon simulated in scenario 2 by adding aliphatic rings to 

the system (provided by a comonomer) to block metal site migration; simulation of 

this innovation will be left for future studies. 

 

4.4 Conclusion 

Four major events in polymerization of ethylene with Pd-diimine catalyst were 

introduced. A hybrid model was developed combining Escobedo’s and Gillespie’s 

algorithms. The new model had the ability to track chain growth as a function of the 

polymerization time by considering the absolute values of coefficients and reaction 

rates. A sensitivity analysis of input variables (   ,     
   ,     

   ,     
     ,   , and    
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demonstrated that an increase in     
   or     

      causes longer average chain length 

while an increase in other input parameters leads to shorter average chain length. It 

was also seen that the total number of branches increases for higher values of 

    
     ,   , and   and for lower values of     

   . The model was utilized to simulate 

the branch density profile for early stages of polymerization. 

The input parameters were set at values that provided a good description of the 

experimental studies of Ye et al. The simulated results were compared to 

experimental results at four different conditions and excellent agreement between 

results in branch distribution was achieved. In addition and in contrast to 

Escobedo’s algorithm, the overall evolution of chain length with time was captured, 

which allows the consideration of reaction scenarios such as the change in pressure. 

Sample snapshots of final chain topologies for each of the comparing conditions 

were rendered by employing the molecular editor software package, Avogadro. 

  



 

90 

 

References 

(1)  Webster, O. W. Science 1991, 251, 887–893. 

(2)  Bosman, A. W.; Janssen, H. M.; Meijer, E. W. Chem. Rev. 1999, 99, 1665–1688. 

(3)  Fischer, M.; Vögtle, F. Angew. Chemie Int. Ed. 1999, 38, 884–905. 

(4)  Fréchet, J. M. Science 1994, 263, 1710–1715. 

(5)  Fréchet, J. M.; Henmi, M.; Gitsov, I.; Aoshima, S.; Leduc, M. R.; Grubbs, R. B. 
Science 1995, 269, 1080–1083. 

(6)  Kämpfen, Y. Biomed. Tech. (Berl). 1975, 20, 150–154. 

(7)  G. Odian. Priniciples of Polymerization; WILEY: New York, 1991. 

(8)  Kim, Y. H. J. Polym. Sci. Part A Polym. Chem. 1998, 36, 1685–1698. 

(9)  Dong, Z.; Ye, Z. Polym. Chem. 2012, 3, 286. 

(10)  Guan, Z. .; Cotts, P. M. .; McCord, E. F. .; McLain, S. J. Science. 1999, 283, 2059–
2062. 

(11)  Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem. Rev. 2000, 100, 1169–1204. 

(12)  Guan, Z. .; Cotts, P. M. .; McCord, E. F. .; McLain, S. J. Science. 1999, 283, 2059–
2062. 

(13)  Ye, Z.; Li, S. Macromol. React. Eng. 2010, 4, 319–332. 

(14)  Johnson, L. K.; Killian, C. M.; Brookhart, M. J. Am. Chem. Soc. 1995, 117, 6414–
6415. 

(15)  Usami, T.; Takayama, S. Macromolecules 1984, 17, 1756–1761. 

(16)  Ye, Z.; Zhu, S. Macromolecules 2003, 36, 2194–2197. 

(17)  Johnson, L. K.; Killian, C. M.; Brookhart, M. J. Am. Chem. Soc. 1995, 117, 6414–
6415. 



 

91 

 

(18)  Tempel, D. J.; Johnson, L. K.; Huff, R. L.; White, P. S.; Brookhart, M. J. Am. Chem. 
Soc. 2000, 122, 6686–6700. 

(19)  Cotts, P. M.; Guan, Z.; McCord, E.; McLain, S. Macromolecules 2000, 33, 6945–
6952. 

(20)  Mansfield, M. L.; Klushin, L. I. Macromolecules 1993, 26, 4262–4268. 

(21)  Kłos, J. S.; Sommer, J.-U. Macromolecules 2013, 46, 3107–3117. 

(22)  Kłos, J. S.; Sommer, J.-U. Macromolecules 2009, 42, 4878–4886. 

(23)  Wawrzyńska, E.; Eisenhaber, S.; Parzuchowski, P.; Sikorski, A.; Zifferer, G. 
Macromol. Theory Simulations 2014, 23, 288–299. 

(24)  Chen, Z.; Gospodinov, I.; Escobedo, F. A. Macromol. Theory Simulations 2002, 
11, 136–146. 

(25)  Galland, G. B.; de Souza, R. F.; Mauler, R. S.; Nunes, F. F. Macromolecules 1999, 
32, 1620–1625. 

(26)  Jurkiewicz, A.; Eilerts, N. W.; Hsieh, E. T. Macromolecules 1999, 32, 5471–
5476. 

(27)  Simon, L. .; de Souza, R. .; Soares, J. B. .; Mauler, R. . Polymer (Guildf). 2001, 42, 
4885–4892. 

(28)  McLain, S. J.; McCord, E. F.; Johnson, L. K.; Ittel, S. D.; Nelson, T. J.; Arthur, S. D.; 
Halfhill, M. J.; Teasley, M. F. Polym. Prep. 1997, 38, 772. 

(29)  Möhring, V. M.; Fink, G. Angew. Chemie Int. Ed. English 1985, 24, 1001–1003. 

(30)  Gillespie, D. T. J. Comput. Phys. 1976, 22, 403–434. 

(31)  Smith, J. M.; Van Ness, H. C.; Abbott, M. M. Introduction to chemical engineering 
thermodynamics; McGraw-Hill: New York, 2005; Vol. 27, pp. 350–356. 

(32)  Michels, A.; Wassenaar, T. Physica 1950, 16, 221–224. 

(33)  Xiang, P.; Ye, Z.; Morgan, S.; Xia, X.; Liu, W. Macromolecules 2009, 42, 4946–
4949.  



 

92 

 

(34)  Weininger, D. J. Chem. Inf. Model. 1988, 28, 31–36. 

(35)  Weininger, D.; Weininger, A.; Weininger, J. L. J. Chem. Inf. Model. 1989, 29, 97–
101.  

 

 

  



 

93 

 

Chapter 5 

Conclusions and Future Work 

The Monte Carlo method, a stochastic technique, was shown to be a powerful tool to 

simulate polymerization kinetics in which randomness is a natural behavior. It 

provides detailed information of the distributions of chain microstructure and is 

conceptually straight forward to implement, at the expense of long computing time. 

The Gillespie MC method was combined with a deterministic technique in a hybrid 

algorithm in order to investigate the distribution of functional groups within the 

polymer molecular weight distribution produced by semibatch free radical 

polymerization. The deterministic methods examined, either original or extended 

counters model, were unable to track chains with a higher level of functional groups. 

The MC method, however, provided the full molecular distribution of chains with 

any number of functional groups. Implementing the MC technique, it was observed 

that only a quarter of the chains produced have the desired composition of a single 

functional group per polymer molecule and that approximately half of the chains 

synthesized containing no functional groups. The hybrid model, implemented in 

PREDICI11, has the advantages of both simulation methods. It benefits from the 

simple basic model formulation and short simulation time of the Galerkin-h-p 

deterministic technique (applied in the software package PREDICI); and also 

provides the detailed information of the polymer chain microstructure generated by 

the MC approach.  
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Another example of combined MC methods was formulated to simulate the ethylene 

polymerization with Pd-diimine catalyst, wherein hyperbranched molecules are 

synthesized through a chain-walking mechanism. One MC approach based on fixed 

probabilities, Escobedo’s algorithm, was implemented in order to study the 

conformations of isolated molecules to relate molecular shape and topology. 

However, as Escobedo’s algorithm was constructed using relative probabilities, it 

was unable to simulate chain growth as a function of polymerization time or 

changing reaction conditions. Thus, Escobedo’s algorithm was extended with a well-

known MC technique, Gillespie’s algorithm to consider absolute rates of reactions.  

The effect of input variables on the chain distribution, average chain length, and 

total number of branches was then examined in a sensitivity study. It was observed 

that after fewer than 100 seconds, the branch distribution of the chains reaches to 

equilibrium and does not change with time, and that an increase in ethylene 

pressure caused less branched polymer chains as expected. The dynamic 

capabilities of the new algorithm were demonstrated by considering scenarios 

where ethylene pressure underwent a step change during polymer chain formation.  

As a possible extension of the modeling described in Chapter 3, one can add kinetics 

complexities such as acrylate backbiting and reactions of macromonomers, taking 

advantage of the capabilities of the software package PREDICI to completely 

describe high temperature polymerization of multimonomer systems.1   With the 

MC capabilities of the hybrid technique, the program can still calculate functional 
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group incorporation as a function of chain length for complex systems.  Thus, the 

model can be used to simulate the distribution of functionalities during production 

of reactive dispersants used to stabilize nanoparticles produced by non-aqueous 

dispersion polymerization, in support of the experimental investigation by PhD 

candidate Weiwei Yang in Prof. Hutchinson’s group. 

In ethylene hyperbranched polymerization, the model can be used as a basis to 

consider situations of interest to Prof. Ye’s group, including the possible extension to 

copolymerization or to investigate the effect of adding a blocking unit to the recipe. 

In addition, the model can be extended in order to calculate molecular properties 

such as radius of gyration. 
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Appendix 

The algorithms describing the polymerizations discussed in Chapters 3 and 4 of this 

research are implemented in the programming software, MATLAB® 2013b, and 

2014a. Although in comparison to other programming languages/software such as 

C/C++, FORTRAN, and Visual Basic, simulation time in MATLAB® may be longer, the 

package provides a robust platform for systems for which fast-indexing and 

handling matrices are required. In addition, user-friendly command window and no 

need to call function libraries are advantages of programming in MATLAB®.  

The programming of simulation of hyper-branched polymerization, described in 

Chapter 4, demands a solution for labeling carbons in the chain in order to 

reconstruct the branching structure. The common method for labeling branched 

polymerization is to label each monomer. With this method, it is possible to store 

the number of the starting monomer of a branch, as a branch number, into a matrix. 

By adding the length of branch to the respective branch number, one can have 

topology information of a branched chain while consuming only small amount of 

memory. In other words, each monomer has its own number, but it is not stored; 

only the monomer number of parent branch at connection point and respective 

branch length are saved. For example, Figure A-1 shows the schematic topology of a 

chain with length of 80: 
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Figure A-1. Sample schematic chain topology of a chain with length of 80. 

Numbers in the circle show the label of the parent monomer, and numbers 

without symbols display the branch length.  

 

The structure information of the chain is stored in the matrix (A.1): 

           [

   
  
    
    

]      (A.1) 

where the first column is the branch number (the label of parent monomer) and the 

second column is the length of branch.  

It was seen that these two indexes are not enough to track the topology changes in 

chain walking polymerization since the catalyst center moves along all of the 

branches (and the backbone). If the catalyst center is on inner segments and 

insertion happens, the labeling of a new branch number would be an issue because: 

first, the monomer label where the catalyst center is located, is not stored in 
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advance and cannot be calculated later; and second, the label of the new monomer is 

incompatible as a label for new branch.  

Hence, a new parameter was introduced to resolve this issue. “Last monomer label 

of the branch” or “last monomer label” in short, helps to find the label of the 

monomer where the catalyst center is located. Without this factor, it was not 

possible to find the branch containing the catalyst center which is required in order 

to calculate  ,   (correction factors in Chapter 4) and the next potential location of 

the catalyst center if chain walking occurs. Moreover, last monomer label helps to 

determine the sequence of branch creation, which is an important key in 

visualization of the chain.  

By adding a new parameter, the Figure A-1 and its corresponding matrix convert to 

Figure A-2 and matrix (A.2): 
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Figure A-2. Sample schematic chain topology of a chain with length of 80. 

Numbers in the circle show the label of the parent monomer, numbers in the 

box show the last monomer label, and numbers without symbols display the 

branch length. 

 

           [

     
    
      
      

]     (A.2) 

Therefore, it is possible to find the label of every monomer in the chain and 

sequence of branch creation. For instance in the example chain, first branch 29 has 

been created, followed by formation of branch 18 and finally branch 8.  


	Chapter 1  Introduction
	Thesis Objective and Outline
	References

	Chapter 2   Literature Review
	References

	Chapter 3  Modeling of Functional Group Distribution in Copolymerization: A Comparison of Deterministic and Stochastic Approaches
	3.1 Introduction
	3.2 Copolymerization Recipe and Kinetic Model
	3.3 Methodology
	3.4 Results and Discussion
	3.5 Conclusions
	References

	Chapter 4  Modeling of Branch Distribution in Chain Walking Polymerization: Combination of two Monte Carlo Techniques
	4.1 Introduction
	4.2 Methodology
	4.2.1 Escobedo’s Algorithm
	4.2.2 Implemented Gillespie’s Algorithm

	4.3 Results and Discussion
	4.3.1 Sensitivity Analysis: Average Chain Length
	4.3.2 Sensitivity Analysis: Total Number of Branches
	4.3.3 Sensitivity Analysis: Branch Distribution
	4.3.4 Comparison to Experimental Data
	4.3.5 Effect of Changing Pressure During Polymerization

	4.4 Conclusion
	References

	Chapter 5  Conclusions and Future Work
	References

	Appendix

