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ABSTRACT 

Concrete has been used in dams, bridges, and highway pavements in which freeze-thaw 

process and cyclic loading are important factors affecting its mechanical behavior. Damage caused 

by frost expansion is a primary concern when designing concrete structures in cold regions. The 

onset of damage within concrete can be accelerated when a freeze-thaw cycle occurs while a 

structure is subjected to an external loading. Also, concrete under fatigue loading gradually loses 

its strength with an increase in the number of load cycles. It is widely accepted that concrete shows 

more flexible behavior under freeze-thaw process and fatigue loading due to wide-spread 

microcracks occurred during both conditions. Therefore, concrete deteriorates under such 

processes and its mechanical properties such as strength, stiffness, and ultimate strain will change. 

In order to predict the mechanical behavior of concrete under such circumstances, a rate 

independent model is extended to cover fatigue loading and freeze-thaw cycles. 
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CHAPTER 1. INTRODUCTION 

Concrete is a composite material, which has been widely used as a construction material in 

many types of infrastructures in the past few decades due to possessing various useful properties. 

Some of the properties that make concrete a preferable material compare to other materials in 

construction are as follows: ease of production, economically appropriate, formability to any 

shapes, relatively high compressive strength, and resistance to extreme environmental conditions 

such as moisture.  Concrete is used as the primary material in structures such as: dams, bridges, 

airports/highway pavements, and power plants. Concrete in these structures is generally subjected 

to different loads such as axial, bending, and torsional loadings, which affect its mechanical 

behavior and its strength capacity. Therefore, behavior of concrete and changes in its mechanical 

properties due to the application of various types of loadings are important factors that could have 

significant impacts on the design of structures. Researchers have attempted to understand the 

complex behavior of concrete by developing new models. Although various models have been 

proposed thus far, there is still no comprehensive model that could predict the behavior of concrete 

thoroughly. 

Concrete has some unique mechanical properties compare to other construction materials 

such as metal. Concrete is almost ten times stronger under compressive loading than under tensile 

loading. Its strength and stiffness are dependent on the stress state that concrete is subjected to. 

One could say that concrete’s strength and deformational capacities under biaxial compressive 

loading are enhanced compared to uniaxial loading. In general, it has been shown experimentally 

that strength and ductility of concrete increase under confining pressure.  

Structural analysis of bridge decks and pavements show that bi-axial stress states are the 

dominant form of load paths in such structures. Based on such analysis and information, many 
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experimental researches have been done on the mechanical behavior of concrete under monotonic 

and fatigue uniaxial, biaxial, and some triaxial loading and subsequently many theoretical models 

have been proposed.  

Moreover, many bridges and pavements are constructed in regions with extreme cold 

climates, like North Dakota, where freeze and thaw process becomes an important factor in 

influencing the mechanical behavior of concrete. Voids and microcracks are intrinsic parts of the 

concrete that let the water and moisture enter the concrete. In warm seasons, water and moisture 

infiltrate the material and fill up the voids and microcracks and during cold seasons, the entrapped 

water freezes. The result of this process is the generation of internal hydraulic pressure, which 

induces tensile stresses inside the concrete microstructure. Since concrete has a low tensile 

strength, it cracks and additional microcracks and voids are formed letting more water to infiltrate. 

Repeating these cycles over a period of time would cause damage to increase and the strength of 

the concrete gradually to decrease to the point where sudden failure due to applied service loads 

would occur. 

Since fatigue loading and freeze-thaw processes are important factors in the design life of 

concrete in bridges and pavements, the need for a model that could predict the behavior of concrete 

under these conditions has become more paramount. 

This research attempts to develop a rigorous mathematical model based on a class of 

continuum damage mechanics. In this approach, concrete is a composite material which is 

comprised of cement paste phase and aggregates. Since it is a nonhomogeneous material, its 

mechanical properties are direction dependent. Concrete under loading shows a nonlinear behavior 

due to two different microstructural changes. These changes are due to formation of microcracks 

and occurrence of plastic flow. Microcracks nucleate and propagate upon the application of loads 
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on concrete. Microcracks result in an irreversible process in concrete named damage. Damage is 

an anisotropic process which depends on the direction in which loads are being applied. The plastic 

flow which is not studied in this research, happens when a significant confining pressure state is 

present. The plastic flow is the dislocation process of aggregates field that occurs along slip planes 

under internal shear stresses during loading. When the dislocation happens, the number of bonds 

that are destroyed are the same as the number of bonds that are created. Therefore, in this case no 

damage occurs into the concrete and consequently no strength and stiffness reduction will happen 

(Reberg, 2013). 

In the next chapter the mechanical behavior of concrete under different loading paths and 

freeze-thaw processes will be discussed. In chapter 3, the thermodynamics and damage mechanics 

concepts will be explained. In chapter 4, the literature review will be provided. In chapter 5, the 

new model is proposed in order to predict the stress-strain behavior of concrete under freeze-thaw 

cycles accurately. The model will be capable of predicting the reduction in modulus of elasticity 

and increase in the ultimate strain, strain at which failure occurs, as the number of cycles of freeze 

and thaw (CFT) increases.  In chapter 6, a new model for concrete under fatigue loading will be 

developed by incorporating a new factor into the softening function in order to take the effect of 

mean stress into consideration. Conclusion and future work will be presented in chapter 7, 

followed by a list of references.  
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CHAPTER 2. REVIEW OF MECHANICAL BEHAVIOR OF 

CONCRETE 

2.1. Introduction 

To model the behavior of concrete under loading, a thorough understanding of damage 

processes, which lead to changes in the mechanical properties of the material is needed. The 

complexity of concrete characterization has amplified the need for experimental studies. In this 

chapter, the effects of monotonic and cyclic multiaxial loading as well as freeze-thaw process on 

the mechanical behavior of concrete are presented. In order to do so, a literature review has been 

done on multiaxial experimental tests on concrete for monotonic and fatigue loading followed by 

an investigation on influence of CFT on concrete properties. The results have been used to develop 

two anisotropic models, which could capture the behavior of concrete under fatigue loading with 

various mean stresses as well as freeze and thaw process. 

The complex behavior of concrete is attributed to its microstructure, which is composed of 

different phases. The linear or nonlinear behavior of concrete depends on the amplitude of applied 

loading. Basically, increase in amplitude of loading would lead to further nonlinearity of concrete 

behavior. From experimental investigation, it is observed that at stress levels of about 15-30% of 

the uniaxial compressive strength, the occurrence of microcracking results in nonlinear inelastic 

response (Karnawat, 1997). 

However, microcracks are also the intrinsic features of concrete. It means that prior to any 

external loading, microcracks exist within the concrete. These microcracks could be found in the 

cement paste and/or at cement matrix/aggregate interface as well (Dhir and Sangha, 1974; Mehta 

and Monteiro, 2006). By applying loading on concrete, the preexisting microcracks start to 
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propagate to the cement paste and the ones that already exist in the cement paste would propagate 

until they reach surrounding aggregates. In addition, new microcracks may nucleate and propagate 

in the concrete as well. This process continues by increasing the amplitude of loading until a point 

at which microcracks form a macro scale crack. At this point, the cracks may coalesce and form 

major crack which finally results in material failure. 

There are a number of key experimental tests that are used throughout this research study 

to calibrate the theoretical model or used to compare with model results. These are summarized 

here including any relevant discussion or observation. 

2.2. Behavior of Concrete under Monotonic Loading 

2.2.1. Monotonic Uniaxial Tension 

A schematic stress-strain curve for uniaxial tension is shown in Figure 2.1.The stress-strain 

curve obtained from this experiment is similar to the one obtained from uniaxial compression. The 

peak stress is designated by ft, which is known as the tensile strength of concrete. Concrete 

possesses a relatively low tensile strength compare to its compressive strength. Its compressive 

strength is almost 10 to 20 times greater than its tensile strength. This could be attributed to the 

different process of nucleation and propagation of microcracks under tension versus compression. 

In tension, microcracks nucleate and propagate in the perpendicular direction to the loading and 

result in splitting the specimen in relatively short intervals, Figure 2.2. By increasing 

microcracking, the available load-carrying area decreases, which results in an increased stress 

concentration close to the tip of the cracks. As a result, the cracks coalesce together and lead to 

material failure. 

For stress amplitude less than 60% of tensile strength, the nucleation and propagation of 

microcracks are quite small and the stress-strain behavior of concrete is approximately linear. But 
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as the stress amplitude reaches 75% of the ultimate strength, the microcracks propagation becomes 

significant resulting in a nonlinear stress-strain behavior. As more microcracks form upon further 

loading of the concrete, the strain increases. It could be noticed that the stiffness of material E 

decreases with increasing the strain demonstrating the effect of microcracks and damage on the 

modulus of elasticity (Evans and Marathe, 1968). Upon unloading the concrete, there is always 

irreversible deformation present, which is called inelastic damage. This inelastic strain is due to 

irrecoverable damage occurred in concrete (Gopalaratnam and Shah, 1985; Reinhardt et al., 1986).  

Uniaxial tensile strength, ft, ultimate (failure) tensile strain, εu, Young’s modulus, E0, and 

Poisson’s ratio, ν, are some of the mechanical material properties that could be obtained from 

uniaxial tension experiment. 

 

Figure 2.1. Schematic stress-strain curve for uniaxial tension 

 

Figure 2.2. Microcracks nucleation pattern under uniaxial tension 
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2.2.2. Monotonic Uniaxial Compression 

Monotonic uniaxial compression test is the most common test carried out on concrete 

specimens. This test could be carried out either on cylindrical or cubic specimens. Figure 2.3 shows 

a schematic stress-strain curve for uniaxial compression. The peak stress point on the curve is 

denoted as fc which represents the compressive strength of concrete. In general the test could be 

run at an imposed stress rate or an imposed displacement rate with the latter allowing the post-

peak regime of the response to be obtained (Torrenti et al., 2010). The stress-strain curve obtained 

from uniaxial compression test can be considered to be composed of several regions. At early 

stages of loading, at which stress does not exceed 30% of compressive strength, concrete displays 

a linear relation between stress and strain indicating that microcracks are unaffected by loading. 

In other words, the preexisting microcracks normally do not propagate and new microcracks do 

not form at this stage. At stress levels between 30% and 50%, concrete shows nonlinearity in its 

stress-strain behavior. In this range, the stress at the interface of aggregates and the cement paste 

reaches the interfacial bond strength between them and results in formation of new cracks at the 

interface. Microcracks do not however propagate into the matrix paste since matrix paste has a 

higher fracture toughness. The third stage occurs when the stress level is between 50% and 75% 

of compressive strength. At this stage, cracks appear and propagate into the mortar matrix. Stress 

redistribution occurs and as a result the stiffness of material is reduced and the material becomes 

more compliant. In the fourth stage at which the stress level is greater than 75% of compressive 

strength, the cracks continue to nucleate and propagate at a greater rate. These cracks start to 

coalesce and form bigger cracks and consequently reduce the load-bearer section of the material. 

Finally, at a specific point concrete loses all its strength and fractures abruptly. 
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Figure 2.3. Schematic stress-strain curve for uniaxial compression 

The last part of stress-strain curve is the descending branch of the behavior following the 

peak point and is called strain softening. This part depends on various factors such as loading rate, 

stiffness characteristics of the loading machine, size of the test specimen, localization of the 

microcracks, etc. (Karnawat, 1997). Many researchers have claimed that the softening part is 

structural dependent rather than material dependent (Van Mier, 1984; Pijaudier-Cabot and Bazant, 

1987; Schreyer, 1995). For concrete, the ultimate strain (strain at which failure occurs) under 

compressive loading is greater than the one under tensile loading. This could be attributed to the 

microcracks formation type (damage) which is different for each of the loadings. Modeling of the 

softening behavior of concrete that considers localization is beyond the scope of this research and 

will not be considered. 

Microcracks formed during the processes of compressive loading alter the mechanical 

properties of concrete such as Young’s modulus, E0, and Poisson, ν. Many researchers have 

investigated the type of crack formation due to uniaxial compression and concluded that the 

microcracks are formed parallel to the direction of the applied load. This type of crack formation 

is referred to as mode-II type cracks (Wastiels, 1979; Ashby and Amp, 1986; Horii and Nemat-
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Nasser, 1986). At the crack interfaces, shear stresses causes shear sliding and crack separation, 

Figure 2.4. 

 

Figure 2.4. Microcracks nucleation pattern under uniaxial compression 

When the stress level exceeds the point at which microcracks appear in concrete and 

damage occurs, permanent deformation will be generated. The permanent deformation, also 

referred to as inelastic strain, is due to misfit of crack faces or development of crack tip process 

zone (Krajcinovic, 1985). Also it is observed that the slope of unloading curve is not the same as 

the initial slope of stress-stain curve which represents the initial modulus of elasticity and this is 

due to the degradation occurred due to nucleation and propagation of microcracks into the 

concrete.  

2.2.3. Monotonic Biaxial Compression 

Biaxial stress state represents the condition at which concrete is under loading in two 

orthogonal directions. To design structures such as pavements, bridges, shells, and plates, a study 

of biaxial stress on concrete is required. It has been reported by several researchers that concrete 

shows enhancement in both stress and strain behavior under biaxial compression. The strength 

enhancement of concrete under biaxial compression depends on the biaxial stress ratio 
𝜎1

𝜎2
. Figure 
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2.5 shows the compressive strength of concrete under different load paths presented by (Lee et al., 

2004). One can see that the maximum strength of concrete under compressive loading is at the 

stress ratio of 0.5. It could be seen from the experimental data that the strength of concrete under 

this load ratio increases about 20% to 30% of its uniaxial compressive strength. 

 

Figure 2.5. Biaxial strength envelope of concrete (Lee et al., 2004) 

Concrete under biaxial compression also shows more ductile behavior than uniaxial 

compression due to the more confining effects of pressure. Under uniaxial compression, 

microcracks form more or less parallel to the direction of loading and the crack opening happens 

in the perpendicular direction to loading. Under biaxial compressive state, with the addition of 

confining load in an orthogonal direction, crack opening is inhibited that requires larger loads to 

cause a crack to form. As a result, concrete under biaxial compression displays a more strength 

and ductile behavior than during uniaxial compression. Figure 2.6 shows the stress-strain behavior 

of concrete under various biaxial stress ratio as well as uniaxial provided by Shang and Song 
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(2006). In this figure, horizontal axis represents the strain and the vertical axis represents the 

normalized stress with respect to uniaxial strength of concrete. The symbol ξ is the stress ratio 

(ratio of vertical stress to horizontal stress). This figure confirms the features discussed before 

about the behavior of concrete under multiaxial loading. It can be observed that the strength and 

deformational capacity of concrete increases by increasing stress ratio as confining pressure is 

provided. 

2.2.4. Monotonic Biaxial Tension 

Microcracks propagation in biaxial tension is not inhibited as it is in compression. 

Therefore, microcracks propagate rapidly and form major cracks leading to a sudden rupture. 

Concrete behaves in the same way as in uniaxial tension and its ultimate strength is almost the 

same as its uniaxial tensile strength. It has been reported that the failure behavior of concrete under 

biaxial tension is the same as its behavior under uniaxial tension. In other words, a failure plane 

perpendicular to the direction of the largest tensile stress is formed (Kupfer et al., 1969). 

Krajcinovic (1985) argues that, however, the crack propagation is even more unstable in the biaxial 

tension loading than uniaxial loading. 

 

Figure 2.6. Stress-strain curves of concrete under uniaxial and biaxial loading, data by 

(Shang and Song, 2006) 



 

12 
 

2.2.5. Monotonic Biaxial Tension-Compression 

Concrete under biaxial tension-compression shows less compressive strength than under 

uniaxial compression. Concrete behavior under this type of load state is a transition from behavior 

under uniaxial compression to behavior under uniaxial tension. When the magnitude of tensile 

loading decreases, the concrete stress-strain behavior is more like its behavior under uniaxial 

compression. By increasing the tensile stress level, cracks occurred in the perpendicular direction 

of loading influence the behavior of the material. 

2.3. Behavior of Concrete under Fatigue Loading 

Fatigue is a process of deterioration of a material under repeated loading. This deterioration 

is generally due to nucleating and propagating of microcracks which progresses with the number 

of applied loading cycles. This irreversible process changes the mechanical properties of the 

material and leads to the failure at a level of loading much lower than the material static strength. 

 

Figure 2.7. Schematic representation of stress-strain diagram of concrete under fatigue and 

monotonic loading 
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Figure 2.7 shows the schematic stress-strain curve of concrete under fatigue loading as well 

as monotonic loading. Shown in the figure, fc is the static strength of concrete, εu is the monotonic 

failure strain, σmax is the maximum fluctuating stress of cyclic loading and also is the stress at 

which failure will occur after a specific number of cycles, σmin is the minimum fluctuating stress 

which is zero in this case, Δσ is the stress range (σmax- σmin), εmin is the strain corresponding to the 

minimum fluctuating stress, εmax is the strain corresponding to the maximum fluctuating stress, εf
u 

is the cyclic failure strain. It is observed that irreversible strain will be accumulated after each 

cycle due to the occurrence of microcracks during the fatigue process. Therefore, the material 

becomes more compliant under fatigue loading and as a result, failure strain becomes greater than 

the failure strain under monotonic loading as shown in Figure 2.7.  

 

Figure 2.8. Damage accumulated versus fatigue life ratio 

Generally, microcracks formed during the process of fatigue have the same nature as the 

ones formed under static loading. However, microcracks are more numerous and more widely 

spread under the cyclic loading than under the static loading. Fatigue microcracks occur around 
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the aggregates and in the mortar matrix. Similar to the case of static loading, the favored direction 

of microcracks formation under compression is parallel to the direction of loading and for the case 

of tensile loading it is perpendicular to the loading direction.  

 

Figure 2.9. Strain versus fatigue life ratio, data by (Song et al., 2005) 

Fatigue microcracking is a progressive irreversible phenomenon that deteriorates the inner 

structure of the material. Damage occurred during the fatigue process in concrete is known to 

consist of three stages. Figure 2.8 is a schematic representation of damage occurred during the 

cyclic loading. In this figure, vertical axis, shown as D, represents the damage occurred in the 

material during the process of fatigue loading and horizontal axis, shown as 𝑛 𝑁𝑓⁄ , represents the 

ratio of number of cycles of loading to number of cycles to failure. It shows the existence of three 

phases in the process of the fatigue of concrete: 1) the initial phase, during which, damage occurs 

into the concrete at a higher rate as preexisting cracks in the interface zone propagate until they 

reach a stable phase. This phase covers about 5 to 10% of the whole fatigue life of concrete. 2) the 

second phase, during which, the rate of damage is stabilized corresponding roughly to the plateau 

part of the graph shown in Figure 2.8. It is thought that at this phase, the stronger mortar phase 
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arrests the rapid propagation of the interface cracks. This part covers up to 80 to 90% of the whole 

fatigue life of concrete. 3) the final phase, during which, the rate of damage is progressively 

accelerated due to the propagation of unstable cracks and finally leads to the failure. This part 

constitutes almost 5 to 10% of concrete fatigue life. The same behavior for strain is reported by 

Song et al. (2005) which is shown in Figure 2.9. 

One of the most common ways to represent the fatigue data of concrete is S-n curves. In 

this type of curves, y-axis represents the strength of the material and x-axis represents the number 

of load cycles. Consequently, each data point on the curves denotes the fatigue life of the material 

under a specific stress level. Concrete under cyclic loading loses its strength gradually with 

increase in the number of load cycles no matter if the loading is uniaxial or multiaxial. In contrast 

to steel, no fatigue limit of concrete has been found. This means that no stress level is known below 

which the fatigue life will be infinite (Holman-1979). During the cyclic loading, microcracks 

nucleate and grow to a stage at which they coalesce and form major cracks that reduce the carrying 

load section tremendously. At this point, the strength of the material has decreased and become 

equal to the amplitude of the cyclic loading, which will cause a sudden rupture in the material.  It 

has been argued that at any given cycles, the fatigue strength of concrete under biaxial compression 

is greater than that under uniaxial compression (Su and Hsu, 1988; Lu et al., 2007). This is the 

result of the confinement provided in the biaxial loading state. This confinement restricts the 

nucleation and propagation of microcracks by applying load in the perpendicular direction. Figures 

2.10 – 2.12 show  S-n curves for various load paths presented by Yin and Hsu (1995). Fatigue tests 

are generally very scattered. In the case of concrete, the fatigue life for a given stress level may 

vary in the ratio of 1 to 100. Therefore, the fatigue strength is not defined by one single average 
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value. A correct representation must include a notion of probability (Holmen, 1982; Siemes, 1982; 

Yang, 1994).  

 

Figure 2.10. S-n curve of plain and fiber concrete under uniaxial compression, data by (Yin 

and Hsu, 1995) 

In addition to strength reduction, cyclic loading affects the modulus of elasticity and 

deformation capacity of concrete as well. Awad (1971) and Gao and Hsu (1998) have investigated 

the effects of fatigue loading on ultimate strain of concrete (strain at which failure occurs) and 

concluded that this strain increases under the cyclic state compare to the one under monotonic 

state. Figure 2.13 shows the increase in failure strain by increasing the number of cycles to failure. 

Each data on the graph represents a specific fatigue loading with different amplitude. The data on 

the graph, from left to right correspond to the monotonic and fatigue loading with the maximum 

fluctuating stresses of 0.95, 0.9, 0.85, and 0.5, respectively. Awad (1971) has concluded that 

ultimate strain and irreversible strain, accumulated after each cycle prior to failure, depend on the 

number of cycles that load is being applied.   
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Figure 2.11. S-n curve of plain and fiber concrete under biaxial compression with stress ratio 

of 0.5, data by (Yin and Hsu, 1995) 

 

Figure 2.12. S-n curve of plain and fiber concrete under equal biaxial compression, data by 

(Yin and Hsu, 1995) 

In addition to maximum stress, Aas-Jakobsen and Lenschow (1973) and Hsu (1981) have 

shown that stress range also has significant effects on the fatigue life of concrete. In order to show 

the stress range influence on fatigue life, the term stress ratio, R, is used. R is the ratio of minimum 

fluctuating stress to maximum fluctuating stress. The range of R is between 0, corresponding to 

minimum fluctuating stress of zero, to 1 corresponding to sustained loading at which the maximum 

and minimum fluctuating stresses are the same. Figure 2.14 schematically shows the effect of R 

on the fatigue life in S-N diagram. It has been shown that by keeping the maximum stress 
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unchanged and decreasing the stress range (increasing R), the number of cycles to failure will 

increase. Therefore, maximum stress and stress range are the factors that affect the ultimate and 

irreversible strain. These results, have been investigated by Awad (1971) and their validation has 

been shown. 

 

Figure 2.13. Failure strain versus number of cycles to failure, data by (Awad, 1971) 

Gao and Hsu (1998) have argued that the fatigue strain of concrete is comprised of three 

parts: irreversible strain caused by cyclic creep under the action of average stress; irreversible 

strain caused by fatigue cracks; and fatigue strain range. Also, Gao and Hsu (1998) have reported 

that the modulus of elasticity of concrete degrades during fatigue process due to damage 

accumulation as a result of microcracking. 

The fatigue behavior of concrete depends on the characteristics of the material, the type 

and level of loading, the frequency and shape of the cycle, and the environmental conditions. In 

fact, the fatigue strength of concrete depends on the same parameters that affect its static strength 

such as nature and type of the aggregates, aggregate mixture grading, proportion of cement, water 

to cement ratio, porosity, and method of casting and curing (Raithby and Galloway, 1974; Klcriber, 

1982; Petkovic et al., 1990; Kim and Kim, 1996; Ahmed et al., 1999). In addition to the material 
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parameters, concrete fatigue strength also depends on the loading specifications such as: amplitude 

of stress, mean stress, stress range, load path (biaxial stress ratio), and loading frequency (Antrim 

and Mclaughlin, 1959; Assimacopoulos et al., 1959; Karsan and Jirsa, 1969; Tepfers and Kutti, 

1979; Hsu, 1981; Qiao and Yang, 2006). The effects of first three will be discussed when the model 

is demonstrated. The description of the fatigue loading contains two time-related parameters, 

namely the frequency and the shape of the cycle. The influence of these two factors are moderate 

in the case of low-level cyclic loading at which the maximum stress level is less than 80% of the 

static strength. 

 

Figure 2.14. Schematic representation of S-N curves for various values of R 

In the case of concrete, for higher level of loading, the process of damage is governed by 

the duration of process more than its cyclic nature. It has not been established yet whether concrete 

exhibits fatigue limit. 

The S-N curves introduced previously, are established just for the case of identical loading 

cycles. In reality, fatigue loading consists of cycles of loading with various amplitudes and stress 

ranges. To predict the fatigue life of concrete due to variable cyclic loading, two solutions have 

been proposed; rule of linear accumulation and rule of non-linear accumulation. These methods 
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consist of quantifying the evolution of fatigue process by means of a rule of damage accumulation. 

The most common method used for the linear cumulative damage is Palmgren-Miner (Miner, 

1945). Figure 2.15 is an illustration of the linear Palmgren-Miner law for the amount of damage 

accumulated into the concrete due to fatigue loading. In these figures, S represents the strength of 

the material, 𝑁𝐹 is the number of cycles of loading to failure, D is the damage occurred in the 

material due to cyclic loading, and δ is the ratio of number of cyclic loading to the number of 

cycles of loading to failure. 

 

Figure 2.15. Illustration of the linear Palmgren-Miner law 

An efficient model, which could capture the behavior of concrete is needed due to the fact 

that fatigue loading has a significant influence on concrete serviceability, and that concrete failure 

under this loading condition is an abrupt phenomena with serious consequences. 

2.4. Freeze-Thaw Process 

In recent years, studying the freeze-thaw processes on concrete has developed considerably 

due to its significant effects on mechanical properties of concrete such as stiffness, deformation 

capacity, and strength. Concrete is a porous material that can absorb water and moisture into its 

intrinsic pores and previously formed shrinkage cracks. Therefore, concrete is a susceptible 
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material to freeze-thaw processes and its mechanical properties deteriorate during this process. 

The amount of water absorbed by concrete depends on different parameters such as concrete 

mixture proportions, degree of saturation, presence of chemical admixtures, physical 

characteristics of the cement and aggregates, and its air contents. Basically, freeze-thaw process 

can be thought of as a complex form of fatigue loading. The damage happened due to freeze-thaw 

process into the concrete could be accelerated in the presence of significant external loading (Miao 

et al., 2002).  

Damage occurred in the concrete during the process of freeze-thaw could be categorized 

into three types explained in the following sections. 

2.4.1. Types of Freeze-Thaw Damages in the Concrete 

2.4.1.1. D-cracking 

D-cracking is a form of concrete deterioration due to freeze-thaw process associated with 

the use of coarse aggregates that disintegrate when they become saturated. Typically, D-cracking 

occurs around joints and edges of pavement where concrete is exposed to wet and dry cycles at 

both the top surface and sides of slab. In addition, curling and warping would induce stress 

concentration at corners and edges of the concrete slab, making this region of slab more susceptible 

to D-cracking. Figure 2.16 shows the D-cracking in concrete pavement due to freezing-thawing. 

 

Figure 2.16. D-cracking in concrete pavement 
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2.4.1.2. Crumbling 

Crumbling or scaling is a type of concrete deterioration due to freeze-thaw process. It 

appears as a separation of a thin layer of the top surface from the body of concrete. The separated 

thin brittle layer then crumbles under traffic and leaves underneath aggregates exposed. Parts of 

concrete exposed to pond of water and salt solution or continuous wetting are susceptible to this 

type of damage. Figure 2.17 illustrates various examples of crumbling in concrete sidewalks. 

 

Figure 2.17. Crumbling in concrete 

2.4.1.3. Internal Cracking 

Hydraulic pressure and ice accretion are two mechanisms that cause internal damage in 

concrete (Detwiler et al., 1989). As mentioned earlier, water and moisture exist in concrete’s voids 

and pores. As temperature drops below 0 °C, water in capillary pores freezes and it expands almost 

8 to 9% of its water phase volume. If the required space due to expansion is more than the space 

provided by the pores and voids of concrete, the excess volume of frozen water induces hydraulic 

pressure on the cement paste. The magnitude of this hydraulic pressure depends on the 

permeability of the cement paste, the degree of saturation, the distance to the nearest unfilled void, 

and the rate of freezing. If the induced pressure exceeds the tensile strength of the cement paste at 

any point, it will cause local cracking at that point. Afterwards, during the thawing portion of this 

process more water enters the cracks; by repeating this cycle, deterioration in concrete progresses. 

This process typically does not occur at relatively low freezing rates. 
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In the case of low freezing rate, the hydraulic pressure is not great enough to damage the 

cement paste, but still pressure may be produced because of ice accumulation in the capillary pores. 

According to Cordon (1966), water in the gel pores freezes at almost -78 °C. This is due to the 

small radius of gel pores which form strong surface tension forces applied on the surface of the 

water. Therefore, when the temperature drops below 0 °C, the water in the gel pores remains in a 

liquid state but becomes supercooled. Since it has a higher free energy than the ice in the 

capillaries, it moves from gel pores into the capillaries where it is more likely to freeze (Detwiler 

et al., 1989). As a result, the volume of concrete in the form of gel pores decreases and the volume 

of the capillaries increases due to expansion of water. During the thawing process, some of the 

water return to the gel pores, but the original state of the material will not be obtained as this 

process is not reversible. 

2.4.2. Physical Effects of Deicers on Concrete 

In winter, under snow and ice condition, in order to maintain the serviceability of roads, 

various ways are utilized to remove the ice and snow from the surface of pavements. Application 

of anti-icing and deicing chemicals is one of these ways. However, these chemicals can have 

negative effects on concrete pavements. Deicers can increase the damage induced in concrete due 

to freeze-thaw cycles.  

Most damage occurred in concrete due to deicers is the result of physical processes. This 

damage is manifested in terms of salt scaling and microcracking. Various mechanisms have been 

presented to describe the phenomenon of salt scaling such as thermal shock, growth of salt crystals, 

and osmotic pressure. 

Thermal shock is one of the consequences of application of deicers to the concrete surface. 

Utilizing deicers results in reduction in melting point of the ice. If the melting point of ice reduces 
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to a temperature less than ice temperature, the ice starts to melt. The energy needed for melting is 

provided by the concrete surface. This processes causes rapid cooling in concrete surface. 

Therefore, a temperature gradient formed in concrete. As a result, the surface of the concrete 

experiences tensile stress that may cause small cracks and scaling of the concrete surface. 

Salt scaling is another problem caused by application of deicers to the concrete surface. 

The formation of salt crystals in concrete voids and pores can generate tensile stress in surface of 

concrete. By applying deicers to concrete, the concentration of salt ions on the surface of the 

concrete increases that generally exceed the concentration of salt ions within the pores of concrete, 

Therefore, the extra salt ions on the surface causes a downward diffusion of salt into concrete. 

During the drying period, the concentration of salt ions in the concrete pores increases due to 

evaporation of water. Salt then transform from solution to crystals within the pores. Overtime, 

deicing chemicals become concentrated in concrete pores. The larger salt concentration influences 

the osmotic pressure generated during the freezing period in concrete. When the pore water freezes, 

salt ions are excluded from the ice and are then concentrated in the remaining pore water in a 

supercooled state. The development of these ion concentrations produces concentration gradients 

in the pore water system causing water molecules in areas of lower concentration to move towards 

areas of higher concentration. The osmotic pressure generated by this water diffusion causes 

tensile stress in concrete, especially close to the surface where salt concentration is high.    

2.4.3. Making Durable Concrete to Freeze-Thaw Process 

Thus far, it has been pointed out that concrete is susceptible to cycles of freeze-thaw. Its 

mechanical properties deteriorate gradually as number of freeze-thaw cycles increases. In order to 

improve the concrete resistance to freeze-thaw cycles, different approaches could be utilized which 

will be discussed in the following (Detwiler et al., 1989): 



 

25 
 

2.4.3.1. Air Entrainment 

There are two kinds of air bubbles in concrete: entrapped and entrained. Entrapped air 

bubbles are unintentionally generated into the cement paste during the process of mechanical 

mixing, whereas entrained air bubbles are intentionally incorporated by adding chemical 

admixtures.  

The factor which has the most influence on the durability of concrete in freezing and 

thawing process is providing a system of well-distributed entrained air voids in concrete. It is 

believed that entrained air voids reduce the hydraulic pressure by providing free space for frozen 

water to flow in. Induced hydraulic pressure due to freeze-thaw process increases with distance 

from a void. The magnitude of hydraulic pressure is less than tensile strength of cement paste in 

the specific radius of air voids. The enclosed zone by this radius could be assumed the protection 

zone for the cement paste. Therefore, in order to reach this protection zone all over the cement 

paste, a system of well-distributed air voids is needed. As result, during freezing time, ice can 

accumulate in the air voids without building up excessive pressure. The maximum acceptable air-

void spacing factor recommended by ACI is 200 µm. 

2.4.3.2. Water-Cement Ratio 

Decreasing the water-cement ratio has a significant influence on the freeze-thaw durability 

of concrete. A low water to cement ratio makes a cement paste with higher tensile strength which 

can withstand the pressure imposed by hydraulic pressure better. Furthermore, less water-cement 

ratio will cause in less initial freezable water in the concrete voids. Finally, less water-cement ratio 

decreases the permeability of concrete which is an advantage in moist environment water will enter 

the concrete. Therefore, the lower the permeability, the longer it takes to reach the critical level of 

degree of saturation. 
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2.4.3.3. Aggregates 

Like cement paste, aggregates absorb water and may be subject to hydraulic pressure. 

Aggregates that absorb enough water and reach the critical degree of saturation may expand due 

to frozen water expansion. Unlike the cement paste, aggregates possess high tensile strength, 

therefore, they may not fracture, but their expansion will cause distress in the surrounding paste 

which results in cement paste deterioration. 

2.4.3.4. Curing 

Another factor, which affects the concrete durability, is curing. The greater the degree of 

hydration, the lesser freezable water in concrete pore structures and the higher is the tensile 

strength of cement paste. Adequate time for curing will let the pore structures in concrete to be 

well spread out. In addition, if the concrete sufficiently dries out during the process of curing, it 

will be less susceptible to the freeze-thaw damages. 

2.4.4. Freeze-Thaw Durability Estimation Test 

The most common test, which has been used to estimate the durability of concrete under 

freeze-thaw cycles, is ASTM C 666, “Resistance of Concrete to Rapid Freezing and Thawing”. 

This test could be done through two different procedures to determine the effects of variations in 

both properties and conditioning of concrete in resistance to freezing and thawing cycles. In 

procedure A, rectangular prisms of concrete are frozen and thawed in water, while in procedure B, 

specimens are frozen in air and thawed in water. In each cycle of freeze-thaw the specimens will 

be cooled from 40° to 4° F and then warmed to 4° F within 2 to 5 hours. In the end, relative dynamic 

of modulus of elasticity and durability factor will be calculated. In addition, two other tests ASTM 

C 671, “Critical Dilation of Concrete Specimens Subjected to Freezing” and ASTM C 682, 

“Evaluation of Frost Resistance of Coarse Aggregates in Air-Entrained Concrete by Critical 
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Dilation Procedure” are being used to determine the durability of concrete. None of the tests 

mentioned is intended to provide a quantitative measure of the length of the service of concrete. 

2.4.5. Mechanical Changes in Concrete Due to Freeze-Thaw Processes 

In order to quantitatively investigate the effects of freeze-thaw processes on mechanical 

properties of concrete several research studies (Hasan et al., 2004; Shang and Song, 2006; Hasan 

et al., 2008; Shang et al., 2008; Duan et al., 2011; Liu and Wang, 2012) have been done on 

concrete. These studies have reported similar results obtained from experiments run on concrete 

under freeze-thaw. Shang and Song (2006) investigated the stiffness, strength and deformation 

performance of concrete after 25, 50, and 75 freeze-thaw cycles subjected to biaxial compression. 

Experimental data reported by Shang and Song (2006) show that concrete loses its strength 

by applying freeze-thaw cycles. They used 100 mm  cubic and 100 mm×100 mm×400 mm prism 

specimens in their studies. The cubes were used to measure the strength and strain, and the prisms 

were used to measure the weight loss and the relative dynamic modulus of elasticity. All specimens 

were removed from the molds 24 h after casting and then cured in a normal condition of 20 ± 3 ºC 

and 95 % relative humidity. Some specimens were immersed in water for 4 days before the 

application of freeze-thaw cycles. Other specimens were cured in a normal condition up to 28 days 

and were used to measure the strength and strain prior to application of freeze-thaw cycles. Shang 

and Song (2006) used GBJ82-85 test which is similar to ASTM C 666 to perform freeze-thaw 

cycle tests. In their tests, the temperature of the specimens cools from 6 ºC to -15 ºC and warms to 

6 ºC within 2.5-3 hours. After application of freeze-thaw on concrete specimens, they performed 

mechanical tests utilizing triaxial testing machine. The loads and deformations in the two principal 

directions under biaxial compression were obtained after 0, 25, 50, and 75 cycles of freeze-thaw. 

Figure 2.18 illustrates the effects of freeze-thaw cycles on the strength of concrete under various 
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load paths. Loading in direction 3, 𝜎3, is the primary loading direction while 𝜎2 is the lateral 

loading. As Figure 2.18 shows, the strength of concrete, regardless of the load path, decreases due 

to microcracks formed during the freeze-thaw process. Likewise, it can be inferred from 

experimental data that the rate of decrease in strength is not the same for different load paths and 

is path dependent. The highest rate is for uniaxial loading while the lowest is for biaxial with the 

stress ratio of 0.75. Similar results were reported for concrete under triaxial loading state by Shang 

et al. (2008). Shang and Song (2006) emphasized that confining loads reduce the damage caused 

by freeze-thaw cycles. They also claimed that the effect of freezing and thawing cycles on plain 

concrete does not change the failure mode under biaxial compression. It means that damage mode 

occurred in the form of crack opening and shear sliding under compressive loading will remain 

unchanged after cycles of freeze and thaw are applied. 

 

Figure 2.18. Strength versus number of CFT for various load paths, data by (Shang and Song, 

2006) 

Similar conclusion could be drawn for deformation characteristic of concrete under freeze-

thaw cycles by studying the experimental data reported by Shang and Song (2006). The influence 

of freeze-thaw cycles on the principal 𝜀3 under biaxial compression for various load paths is shown 
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in Figure 2.19 by Shang and Song (2006). It could be seen from Figure 2.19 that the principal 

strains 𝜀3 under biaxial compression with the same stress ratio increases as the freeze-thaw cycles 

are applied. This could be attributed to the formation of microcracks during the process of freeze-

thaw which result in the concrete being more compliant and having a higher strain failure. One can 

note that the principal strain under biaxial loading state is greater than that under uniaxial loading 

for the same number of freeze-thaw cycles. This shows that concrete behaves more ductile under 

biaxial compressive loading than uniaxial loading due to the occurrence of crack opening in the 

perpendicular direction for uniaxial compressive loading. In the case of biaxial loading, crack 

opening in the perpendicular direction to loading is inhibited by the opposing compressive load in 

the corresponding direction. It also should be noted that the rate of increase in ultimate strain due 

to freeze-thaw cycles depends on the load path applied on the concrete. This rate is higher for 

biaxial loading than uniaxial. 

 

Figure 2.19. Ultimate strain versus number of CFT, data by (Shang and Song, 2006) 
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Figure 2.20. Young's modulus versus number of CFT, data by (Liu and Wang, 2012) 

According to the data published by Shang and Song (2006) and Liu and Wang (2012), 

modulus of elasticity of concrete decreases as the cycles of freeze-thaw increases. Figure 2.20 

illustrates the experimental data obtained by Liu and Wang (2012) for changes of modulus of 

elasticity by applying freeze-thaw cycles . When freeze-thaw is applied on a concrete specimen, 

new cracks nucleate and propagate into the concrete. By repeating this process, more cracks will 

be generated while the existing cracks becomes bigger. As a result, concrete becomes soften and 

its modulus of elasticity decreases. 

As a result, it could be noticed that freeze-thaw has a significant influence on strength, 

deformation, and stiffness of the concrete. Based on the experiments done by Shang and Song 

(2006), all these effects could be summarized in the stress-strain curves of the concrete after freeze-

thaw cycles. Figures 2.21 – 2.23 show the stress-strain curves of concrete under various load path 

after different number of cycles of freeze-thaw. These figures show that freeze-thaw process 

decreases the strength of the concrete by developing new microcracks into the material. Also, it 

can be observed from the figures that the ultimate strain of the concrete increases by applying 
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freeze-thaw cycles. Decrease in strength and increases in flexibility depends on the number of 

cycles of freeze-thaw applied. As the number of freeze-thaw cycles increases the strength 

decreases while ultimate strain increases. 

 

Figure 2.21. Stress-strain curves after freeze-thaw under uniaxial loading, data by (Shang and 

Song, 2006) 

 

Figure 2.22. Stress-strain curves after freeze-thaw under biaxial loading with ratio of 0.5, 

data by (Shang and Song, 2006) 
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Figure 2.23. Stress-strain curves after freeze-thaw under biaxial loading with ratio of 1, data 

by (Shang and Song, 2006) 
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CHAPTER 3. THERMODYNAMICS AND DAMAGE 

MECHANICS 

3.1. Introduction 

Thermodynamics is a branch of science used to describe the thermodynamical processes 

of a system such as mechanical, electrical, and chemical in equilibrium and relate properties to the 

changes in the energy of the system. Processes in thermodynamics are reversible and irreversible. 

The reversible processes related to solid mechanics are the ones with perfectly elastic deformation. 

In a reversible process, a single kinematic variable could be used to describe the state of a solid 

material by relating the stresses and strains. However in real cases, the solid material will 

experience inelastic deformation which is counted as an irreversible process. In order to describe 

the state of the material under such processes, a single variable will not be sufficient. Therefore, a 

set of variables will need to be defined in order for the changes in material due to irreversible 

processes to be captured.  

The approach of the thermodynamics of irreversible processes is used in this research. In 

the following, the formulation will be cast within the framework of the internal variable theory of 

thermodynamics (Coleman and Gurtin, 1967; Kestin and Rice, 1969; Lubliner, 1972; Krajcinovic 

and Fonseka, 1981; Truesdell and Baierlein, 1985) and continuous damage mechanics is used to 

describe the damage occurred within concrete during loading. Also, concrete is assumed to be rate-

independent and a single phase material that could be modeled as a continuum. 

3.2. Cauchy’s First Law of Motion 

The total force acting on a continuum body is assumed to be composed of a body force 𝒇𝑏 

and a contact force 𝒇𝑐: 



 

34 
 

𝒇 = 𝒇𝑏 + 𝒇𝑐 (3.1) 

Also it is assumed that the body force could be computed by taking the integral of a vector 

field 𝒃(𝒓, 𝑡) over its volume: 

𝒇𝑏 = ∫𝒃(𝒓, 𝑡)𝜌𝑑𝑉

𝑉

 (3.2) 

where, V is the volume of the body, ρ is the density of the material, r is the position vector with 

respect to the origin in Eulerian coordinates, and t is time. 

Similarly the contact force is defined by integrating a vector field 𝒕(𝒓, 𝒏) acting on the 

body surface. 

𝒇𝑐 = ∫𝒕(𝒓, 𝒏)𝑑𝑠

𝜕𝑅

 (3.3) 

where, n is the unit normal and ds is the infinitesimal surface of the material. 

The total force on the body causes the body to move with an acceleration a, therefore: 

𝒇 = ∫𝒂𝜌𝑑𝑉

𝑉

 (3.4) 

Thus the relationship mentioned earlier for total force will become: 

∫𝒂𝜌𝑑𝑉

𝑉

= ∫𝒃(𝒓, 𝑡)𝜌𝑑𝑉

𝑉

+ ∫𝒕(𝒓, 𝒏)𝑑𝑠

𝜕𝑅

 (3.5) 

According to Cauchy’s fundamental theorem, at the boundary surface of the body: 

𝒕 = 𝝈. 𝒏 (3.6) 

where, 𝝈 is the Cauchy stress tensor. By substituting Equation 3.6 into Equation 3.5 and applying 

the divergence theorem the surface integral becomes as a volume integral: 

∫𝒂𝜌𝑑𝑉

𝑉

= ∫𝒃(𝒓, 𝑡)𝜌𝑑𝑉

𝑉

+ ∫𝝈.𝛁𝑑𝑉

𝑉

 (3.7) 
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where, 𝛁 is the divergence operator. Utilizing the equation above, Cauchy’s first law of motion 

will become: 

𝒂𝜌 = 𝒃𝜌 + 𝝈. 𝛁 (3.8) 

3.3. Thermodynamic Formulation 

3.3.1. The First Law of Thermodynamics 

The first law of thermodynamics is about the conservation of energy in a system. In solid 

mechanics, the total energy is a summation of mechanical energy and heat energy. The 

mathematical representation of total energy is illustrated as follows: 

𝐸̇ = 𝑃𝑖𝑛𝑝𝑢𝑡 + 𝑄𝑖𝑛𝑝𝑢𝑡 (3.9) 

In the equation above, 𝑃𝑖𝑛𝑝𝑢𝑡 is the energy input due to mechanical work and 𝑄𝑖𝑛𝑝𝑢𝑡 is the 

rate of change of heat of system. 𝑃𝑖𝑛𝑝𝑢𝑡 could be defined as the following: 

𝑃𝑖𝑛𝑝𝑢𝑡 = ∫𝒃𝜌. 𝒗𝑑𝑉 + ∫𝒗. 𝝈. 𝒏𝑑𝑆

𝑆𝑉

 (3.10) 

where, 𝒗 is the velocity vector. Using divergence theorem, the equation above becomes: 

𝑃𝑖𝑛𝑝𝑢𝑡 = ∫𝒃𝜌. 𝒗𝑑𝑉 + ∫(𝒗. 𝝈). 𝛁𝑑𝑉

𝑉𝑉

 (3.11) 

𝑄𝑖𝑛𝑝𝑢𝑡 is the sum of the heat rate of internal source of the system and the heat flux through 

the boundary of the system, therefore it could be written as: 

𝑄𝑖𝑛𝑝𝑢𝑡 = ∫𝑟

𝑉

𝑑𝑉 − ∫𝒒. 𝒏𝑑𝑆

𝑆

 (3.12) 

Using the divergence theorem, Equation 3.12 becomes: 

𝑄𝑖𝑛𝑝𝑢𝑡 = ∫𝑟

𝑉

𝑑𝑉 − ∫𝒒. 𝛁𝑑𝑉

𝑉

 (3.13) 

Considering Equation 3.11 and by working on the right hand side, it becomes: 
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(𝒗. 𝝈). 𝛁 = 𝒗. (𝝈. 𝛁) + 𝑇𝑟((𝒗𝛁). 𝝈) (3.14) 

𝑇𝑟((𝒗𝛁). 𝝈) is the trace operation. It reflects the summation of diagonal components of a 

tensor. Utilizing the Cauchy’s law of motion equation the following is obtained: 

𝑃𝑖𝑛𝑝𝑢𝑡 = ∫𝜌𝒂. 𝒗𝑑𝑉 + ∫𝑇𝑟((𝒗𝛁). 𝝈)𝑑𝑉

𝑉𝑉

 (3.15) 

𝑃𝑖𝑛𝑝𝑢𝑡 = ∫𝜌𝒗̇. 𝒗𝑑𝑉

𝑉

+ ∫𝑇𝑟((𝒗𝛁). 𝝈)𝑑𝑉

𝑉

 (3.16) 

By substituting the equations above into Equation 3.9, it will be represented as: 

𝐸̇ = ∫𝜌𝒗̇. 𝒗𝑑𝑉 + ∫𝑇𝑟((𝒗𝛁). 𝝈)𝑑𝑉 + ∫𝑟

𝑉

𝑑𝑉 − ∫𝒒. 𝛁𝑑𝑉

𝑉𝑉𝑉

 (3.17) 

Also, the total energy of a system could be written as a summation of total kinetic energy 

and internal energy: 

𝐸 = ∫
1

2
𝜌(𝒗. 𝒗)𝑑𝑣

𝑉

+ ∫𝜌𝑢𝑑𝑉

𝑉

 (3.18) 

where 𝑢 is the specific internal energy where the word “specific” means per unit mass. By 

differentiating the equation above with respect to time, the rate form of total energy becomes as: 

𝐸̇ =
𝑑

𝑑𝑡
(∫

1

2
𝜌(𝒗. 𝒗)𝑑𝑣

𝑉

+ ∫𝜌𝑢𝑑𝑉

𝑉

) = ∫𝜌𝒗̇. 𝒗𝑑𝑉

𝑉

+ ∫𝜌𝑢̇𝑑𝑉

𝑉

 (3.19) 

Combining Equations 3.17 and 3.19, the result will be: 

𝜌𝑢̇ = 𝑇𝑟((𝒗𝛁). 𝝈) + 𝜌𝑟 − 𝒒. 𝛁 (3.20) 

By decomposing matrix 𝒗𝛁 into symmetric and anti-symmetric matrices, the rate of 

deformation tensor, D, and rate of rotation tensor, W, is obtained as follows: 

𝑫 =
1

2
(𝒗𝛁 + (𝒗𝛁)𝑻) (3.21) 
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𝑾 =
1

2
(𝒗𝛁 − (𝒗𝛁)𝑻) (3.22) 

Since in this project, the deformations induced in concrete due to fatigue loading as well 

as monotonic loading after cycles of freeze-thaw are significantly small, therefore, the rate of 

deformation tensor D is assumed to be equal to the rate of strain tensor. As a result, the Equation 

3.20 will become as follows: 

𝜌𝑢̇ = 𝝈: 𝜺̇ + 𝜌𝑟 − 𝒒. 𝛁 (3.23) 

In the equation above ‘:’ represents the tensor contraction operator. One could notice that 

the rate of change of the internal energy per unit volume is comprised of three parts. 𝝈: 𝜺̇ represents 

the mechanical work input in the system, 𝜌𝑟 incorporates the changes in heat due to internal heat 

source, and 𝒒. 𝛁 represents the heat flow through the boundary of the system. 

3.3.2. The Second Law of Thermodynamics 

The first law of thermodynamics stated that the total energy in a system is constant and 

energy can transform/convert from one form to another without any energy dissipation. However, 

this is not a true fact in reality and energy could dissipate through different irreversible processes 

like friction. Therefore, to capture such irreversible processes, the second law of thermodynamics 

has been used. 

The second law of thermodynamics states that the rate of change of entropy in a system 

must be equal to or greater than the rate at which entropy is added by heat flux through the 

boundaries of the system and by the external heat source. Therefore, the Clausius-Duhem 

inequality is represented as follows:  

𝑑

𝑑𝑡
∫𝜌𝑠𝑑𝑉

𝑉

≥ ∫
𝜌𝑟

𝜃
𝑑𝑉

𝑉

−∫
𝒒

𝜃
. 𝒏𝑑𝑆

𝑆

 (3.24) 
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In the equation above “s” represents the entropy and “𝜃” is the absolute temperature. If the 

inequality above becomes equal then it implies a reversible process. By applying the divergence 

theorem on the Clausius-Duhem inequality, it changes to: 

∫𝜌𝑠̇𝑑𝑉

𝑉

≥ ∫
𝜌𝑟

𝜃
𝑑𝑉

𝑉

− ∫
𝒒

𝜃
. 𝛁𝑑𝑉

𝑉

 (3.25) 

𝜌𝑠̇ ≥
𝜌𝑟

𝜃
−
𝒒

𝜃
. 𝛁 (3.26) 

By introducing 𝜂̇ representing the rate of internal entropy production, the inequality shown 

above changes to the form below. This equation could be interpreted as additional entropy 

produced in a different way than internal heat source or heat flux through boundaries of the system.  

𝜌𝜂 =̇ 𝜌𝑠̇ −
𝜌𝑟

𝜃
+
𝒒

𝜃
. 𝛁 ≥ 0 (3.27) 

With some mathematical manipulation, the equation above becomes: 

𝜌𝜂 =̇ 𝜌𝑠̇ −
𝜌𝑟

𝜃
+
(𝛁. 𝒒)

𝜃
−
(𝛁θ). 𝒒

𝜃2
≥ 0 (3.28) 

Moreover, by incorporating the rate of change in internal energy of the system and some 

modifications, the equation above could be re-written in the format below: 

𝜂 =̇ 𝑠̇ −
𝑢̇

𝜃
+
𝝈: 𝜺̇

𝜌𝜃
−
(𝛁θ). 𝒒

𝜌𝜃2
≥ 0 (3.29) 

3.3.3. Thermodynamic Potentials and Damage Mechanics 

In order to obtain thermodynamic potentials including Gibbs Free Energy (G), Helmholtz 

Free Energy (A), and Enthalpy (h), Legendre Transformation is used. The relationship between 

thermodynamic potentials is defined as follows: 

𝑢 − 𝐴 + 𝑔 − ℎ = 0 (3.30) 

Utilizing the Legendre Transformation lead to the following functional forms: 
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𝐴 = 𝑢(𝑠, 𝝂𝑖) − 𝜃𝑠 (3.31) 

ℎ = 𝑢(𝑠, 𝒖𝑖) − 𝝉𝑖𝝂𝑖 (3.32) 

𝑔 = ℎ(𝑠, 𝝉𝑖) − 𝜃𝑠 (3.33) 

𝐺 = −𝑔 (3.34) 

In the equations above, 𝝂𝑖 is a set of internal parameters used to describe the state of a 

material. For small deformation, the relationship between Gibbs Free Energy, Helmholtz Free 

Energy, and internal energy are defined as: 

𝐴(𝜺, 𝜃) = 𝑈(𝜺, 𝑠) − 𝜃𝑠 (3.35) 

𝐺(𝝈, 𝜃) = 𝝈: 𝜺 − 𝐴(𝑏, 𝜃) (3.36) 

where 𝝂𝑖 are interpreted as components of the strain tensor and 𝝉𝑖 are interpreted as the components 

of the Cauchy stress tensor. The following equations can be obtained as: 

𝑢 = 𝝈: 𝜺 + 𝜃𝑠 − 𝐺 (3.37) 

𝑢̇ = 𝝈̇: 𝜺 + 𝝈: 𝜺̇ + 𝜃̇𝑠 + 𝜃𝑠̇ − 𝐺̇ (3.38) 

By plugging the equations above into Clausius-Duhem inequality, we will have: 

𝐺̇ − 𝝈̇: 𝜺 − 𝜃̇𝑠 −
𝒒. 𝜃𝛁

𝜃
≥ 0 (3.39) 

The Gibbs free energy could be written as a function of stress, absolute temperature, and 

damage parameter. 

𝐺̇(𝝈, 𝜃, 𝑘) =
𝜕𝐺

𝜕𝝈
: 𝝈̇ +

𝜕𝐺

𝜕𝜃
𝜃̇ +

𝜕𝐺

𝜕𝑘
𝑘̇ (3.40) 

Inserting the above equation into Equation 3.39 results in: 

(
𝜕𝐺

𝜕𝝈
− 𝜺) : 𝝈̇ + (

𝜕𝐺

𝜕𝜃
− 𝑠) 𝜃̇ +

𝜕𝐺

𝜕𝑘
𝑘̇ −

𝒒. 𝜃𝛁

𝜃
≥ 0 (3.41) 

Since the equation above should hold true for any value of 𝝈̇ and 𝜃̇, the following 

conclusion could be drawn: 
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𝜕𝐺

𝜕𝝈
− 𝜺 = 0 (3.42) 

𝜕𝐺

𝜕𝜃
− 𝑠 = 0 (3.43) 

𝜕𝐺

𝜕𝑘
𝑘̇ −

𝒒. 𝜃𝛁

𝜃
≥ 0 (3.44) 

Equation 3.44 is called dissipation inequality and represents the dissipative mechanism. If 

in a system no damage occurs, then the first term in the Equation 3.44 which is a representation of 

damage rate will be zero and the second term should be negative in order to satisfy the Equation 

3.44. This complies with the principle of thermodynamics which argues that heat travels from high 

to low temperature. The following results also could be concluded from Equation 3.42 and 3.43: 

𝜕𝐺

𝜕𝝈
= 𝜀 (3.45) 

𝜕𝐺

𝜕𝜃
= 𝑠 (3.46) 

Equations above show that by differentiating Gibbs Free Energy with respect to stress and 

absolute temperature, the results will be strain and entropy, respectively. Also it could be further 

assumed that by taking the second derivative of Gibbs Free Energy with respect to stress and 

absolute temperature, the material compliance C and Specific heat ζ can be obtained, respectively. 

The mathematical representations of the definitions mentioned above with the definition of thermal 

expansion tensor β are shown in the following equations. 

𝜕2𝐺

𝜕𝝈2
= 𝑪(𝑘) (3.47) 

𝜕2𝐺

𝜕𝝈𝜕𝜃
= 𝜷(𝑘) (3.48) 

𝜕2𝐺

𝜕𝜃2
= 𝜁(𝑘) (3.49) 
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In this research work the effects of temperature on modeling the behavior of concrete under 

loading have been ignored. The general form of the Gibbs Free Energy could be obtained in the 

form of below as a function of stress, temperature, and damage: 

𝐺(𝝈, 𝑘, 𝜃) =
1

2
𝝈: 𝑪(𝑘): 𝝈 + 𝝈: 𝜺𝑖(𝑘) + 𝝈:𝜷(𝑘)(𝜃 − 𝜃0) − 𝐴

𝑖(𝑘) (3.50) 

In the equation above, 𝝈 is the stress tensor, 𝑪(𝑘) is compliance tensor, 𝜺𝑖(𝑘) is the plastic 

strain tensor which represents the irreversible deformation, 𝜷(𝑘) is the thermal expansion tensor, 

𝜃0 is the reference temperature, and 𝐴𝑖(𝑘) is Helmholtz Free Energy. By assuming that the effects 

of temperature is negligible in the process of damaging the concrete, the Gibbs Free Energy could 

be written as the following: 

𝐺(𝝈, 𝑘, 𝜃) =
1

2
𝝈: 𝑪(𝑘): 𝝈 + 𝝈: 𝜺𝑖(𝑘) − 𝐴𝑖(𝑘) (3.51) 

This is the general form of Gibbs Free Energy used by Yazdani (1993) and Wen et al. 

(2012) in order to describe the behavior of concrete under biaxial monotonic and cyclic loading. 

3.4. Damage Surface and Constitutive Relation 

The dissipation inequality, which was a result of second law of thermodynamics, is 

expressed here again based on Gibbs Free Energy as: 

𝛹(𝝈, 𝑘)𝑘̇ ≥ 0 (3.52) 

Where 

𝛹(𝝈, 𝑘) =
𝜕𝐺(𝝈, 𝑘)

𝜕𝑘
 (3.53) 

Since the damage occurred during the process of loading into the concrete is an irreversible 

process, no healing can happen in damaged concrete, therefore, it could be assumed that: 

𝑘̇ ≥ 0 (3.54) 
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As a result, the following observation could be drawn using the assumption made above 

and incorporating it into dissipation inequality. 

𝑖𝑓 𝛹 < 0     𝑡ℎ𝑒𝑛     𝑘̇ = 0 (3.55) 

𝑖𝑓 𝛹 ≥ 0     𝑡ℎ𝑒𝑛     𝑘̇ ≥ 0 (3.56) 

Equations 3.55 and 3.56 represent the necessary condition for the onset of damage, but not 

sufficient. One could say that 𝛹 < 0 is associated with a condition at which material has an elastic 

behavior. 𝛹 < 0 represents an elastic region which is surrounded by a damage surface defined by 

𝛹 = 0. To provide sufficient condition; the loading-unloading criteria are stated: 

𝛹 = 0 ,
𝜕𝛹

𝜕𝝈
: 𝝈̇ > 0     →      𝑘̇ > 0 (3.57) 

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     𝑘̇ = 0 

To progress further, it is assumed that the deformation can be decomposed into three parts: 

𝜺 = 𝜺0 + 𝜺𝐷 + 𝜺𝑖 (3.58) 

where 𝜺0 is the elastic part of the deformation which occurs before any damage takes place and is 

associated with the initial or undamaged compliance tensor. 𝜺𝐷 is the strain that occurs due to 

damage happening into the material and is called elastic damage. This process represents a 

reversible deformation associated with the formation of perfect fracture surfaces. The last term in 

the equation above is 𝜺𝑖 which represents the inelastic strain and is caused by misfit of crack 

surfaces. 

The following equations represent the concepts of initial compliance tensor, added 

flexibility, and the relation with the components of the strain tensor. 

𝑪(𝑘) = 𝑪0 + 𝑪𝑐(𝑘) (3.59) 

𝜺0 = 𝑪0: 𝝈 (3.60) 
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The rate forms of the damage strain tensor and the added flexibility tensor are also 

shown as: 

𝜺̇𝐷 = 𝑪̇𝑐(𝑘): 𝝈 (3.61) 

𝑪̇𝑐(𝑘) is defined by a fourth order response tensor as the following: 

𝑪̇𝑐(𝑘) = 𝑘̇𝑹(𝝈) (3.62) 

The definition of the terms mentioned above was explained in the previous chapter and 

will be illustrated again in the following chapters. Setting 𝛹(𝝈, 𝑘) = 0, a surface is defined using 

a damage function, 𝑡(𝝈, 𝑘).Incorporating the terms defined above into the damage surface equation 

results in the following equation: 

𝛷(𝜎, 𝑘) =
1

2
𝝈:
𝜕𝑪𝑐(𝑘)

𝜕𝑘
: 𝝈 +

𝜕𝜺𝑖(𝑘)

𝜕𝑘
: 𝝈 −

1

2
𝑡2(𝝈, 𝑘) = 0 (3.63) 

The thermodynamics principles illustrated in this chapter will be used in the following 

chapters in order to develop models to predict the changes in the behavior of concrete under fatigue 

loading as well as freeze-thaw process. 

3.5. Strain Based Damage Model 

Thus far, the formulation has been presented in stress space. However, Thapa and Yazdani 

(2008) developed the formulation in both stress and strain space and proved that both approaches 

are equivalent. 

For strain space, they started with Helmholtz free energy (HFE) for small deformations 

and isothermal as follows: 

𝐴(𝜺, 𝑘) =
1

2
𝜺:𝑬(𝑘): 𝜺 + 𝐴𝒊(𝑘) (3.64) 

where, 𝜺 represents the strain tensor, k is the scalar damage variable representing dissipation of 

energy, E is the stiffness tensor, and 𝐴𝒊(𝑘) is the inelastic component of the HFE associated with 
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the surface energy of microcracks. The dependency of stiffness tensor on damage parameter, 

allows the model to capture the anisotropic nature of induced damage through the components of 

stiffness tensor. 

In their work, Thapa and Yazdani (2008) assumed the following decomposition for the 

material stiffness tensor as: 

𝑬(𝑘) = 𝑬0 + 𝑬𝐷(𝑘) (3.65) 

where,  𝑬0 is the stiffness tensor for undamaged material and 𝑬𝐷 is the reduced stiffness due to 

microcracks occurred during the damage process. 

Utilizing the Clausius-Duhem inequality followed by standard thermodynamic arguments, 

the dissipation inequality becomes: 

𝑑𝑠 = −(
𝜕𝐴

𝜕𝑘⁄ )𝑘̇ ≥ 0 (3.66) 

where, 𝑑𝑠 is the dissipating rate. 

The substitution of Equations 3.64 and 3.65 into Equation 3.66 results in: 

𝑑𝑠 = −(
1

2
) 𝜺: 𝑬̇𝐷: 𝜺 − 𝐴̇𝑖 ≥ 0 (3.67) 

For a given material under a specified load path, the equation above must give the same 

result as what is obtained from dissipation inequality from stress space. Considering the 

constitutive relation as follows: 

𝝈 = 𝑬(𝑘): 𝜺 (3.68) 

and comparing the dissipation inequalities obtained from both stress and strain spaces, the 

following equation will be obtained: 

𝝈: 𝑪̇𝑫: 𝝈 = 𝜺: 𝑬̇𝑫: 𝜺 (3.69) 

which shows the equivalency of both stress and strain approaches.  
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CHAPTER 4. LITERATURE REVIEW 

4.1. Modeling of Concrete under Fatigue Multiaxial Loading 

In order to describe the behavior of concrete under multiaxial loading, different approaches 

have been used. Each approach is used for different scale of damage. There are three types of 

damage that could be modeled using different approaches: 

1. Describing damages corresponding to atomic voids and crystalline defects using material 

science models at atomic scale. 

2. Damages on scales of microcracks and microvoids. Continuum damage mechanics is a 

good approach to describe such damages. 

3.  Damages on a scale of macro cracks. Fracture mechanics could be used to model the 

behavior of material on such a scale. It studies the behavior of the material based on 

propagation of a discrete crack. 

In addition, based on the different parameters, modeling the mechanical behavior of 

concrete under fatigue loading could be categorized into three groups: fatigue life models, 

phenomenological residual strength/stiffness models, and progressive damage models. 

4.2. Fatigue Model Categories 

4.2.1. Fatigue Life Models 

The earliest and simplest form of fatigue modeling is fatigue life modeling. In this type of 

modeling, fatigue damage accumulation during the fatigue process is not considered and therefore, 

it does not give any information regarding the fatigue damage development into the material and 

the state of the material in terms of stiffness and deformation at any specific cycles. However, due 

to its simplicity, it is widely used in industry. Thus, this type of modeling is vastly incorporated 

into finite element software such as ANSYS, and in many engineering standards.  
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Fatigue life models give information about fatigue life of concrete by representing the 

strength versus number of cycles of loading as so-called “S-N” curves. “S-N” curves can be 

presented in the forms of power and logarithm functions. 

The power function can be shown in the form of: 

𝑒𝑎𝑆𝑁 = 𝑐 (4.1) 

where “a” and “c” are material parameters determined by conducting fatigue experimentation and 

are functions of material characterization, specimen configuration, and loading methods; “e” is the 

base of natural logarithm; “S” in the applied stress; and “N” is the fatigue life of corresponding 

applied load.  

The logarithm function can be presented as: 

𝑆𝑎𝑁 = 𝑐 (4.2) 

where “a” and “c” are material parameters, “S” is the material strength, and “N” is the number of 

cycles of loading corresponding to the strength of the concrete. 

Based on these two forms, various models with different material parameters have been 

proposed. In addition to loading amplitude and number of cycles of loading, those models have 

taken other factors affecting the fatigue life of concrete such as stress range, mean stress, and stress 

ratio (load path) into account. 

Aas-Jakobsen and Lenschow (1973) proposed a model that considers the effect of stress 

range in terms of stress ratio “R” (minimum to maximum fluctuating stress) under compressive 

loading. They derived the following relationship for S-N curves: 

𝜎𝑚𝑎𝑥
𝑓𝑐

= 1 − 𝛽(1 − 𝑅)𝑙𝑜𝑔𝑁 (4.3) 

where  𝜎𝑚𝑎𝑥 is the maximum applied stress, 𝑓𝑐 is the strength of concrete under monotonic loading, 

“β” is the material parameter representing the slope of the S-N curve when R=0 that was given as 
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0.064, and “N” is the fatigue life. By conducting their own tests and utilizing other tests results 

reported in the literature, Tepfers and Kutti (1979) calculated β to be 0.0685. 

Although equation 4.3 was a big step towards development of the S-N Curves, it had two 

shortcomings. First, when R becomes one, 
𝜎𝑚𝑎𝑥

𝑓𝑐
=1 and  𝜎𝑚𝑎𝑥 becomes a constant. Theoretically, 

this is incorrect. Rusch (1960) has shown that the sustained strength of concrete is time dependent 

and the long-time strength can reach approximately 75 percent of concrete’s monotonic strength. 

Second, equation 4.3 does not include the rate of loading (frequency) in the model even though 

this parameter has significant effects on fatigue life of concrete especially in the case of low-cycle 

fatigue range. Therefore, Hsu (1981) introduced a new parameter, T, that is the period of the 

repetitive loads expressed in second per cycle and proposed new equations for S-N curves that 

included T and R and also overcame the shortcomings noted in previous models. By the work of 

(Hsu, 1981), the concept of three dimensional S-N-R curves which was proposed earlier by Aas-

Jakobsen and Lenschow (1973) changed to four dimensional S-N-R-T curves. 

4.2.2. Phenomenological Models 

Phenomenological models also known as Continuum Damage Mechanics (CDM) models 

are categorized into to subsections: residual strength models and residual stiffness models. 

The residual strength models study the fatigue process by looking at the changes occurred 

into the strength of the material and assume that the material fails when the residual strength 

reaches the applied stress. 

In this class of modeling, the residual strength is a function of various factors such as: 

amplitude of loading, number of cycles of loading, loading range, loading ratio, and material 

characterization. Therefore, utilizing the residual strength function, the initial (monotonic) strength 

of the material decreases by increasing the number of cycles. This process continues to the point 
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at which the number of cycles of loading reaches the number of failure. At this point, the material 

fails and will not sustain any additional loads. Wen et al. (2012) and Reberg (2013) have utilized 

this approach to capture the effects of fatigue loading on woven fabric composites and concrete. 

Since this research project is based on residual strength models, it will be discussed further in 

details in the end of this chapter. 

The residual stiffness models incorporate the damage occurred during the fatigue process 

into the elastic properties of material. The nucleation and propagation of microcracks in the 

material due to cyclic loading is then accompanied by a decrease in the longitudinal modulus of 

elasticity as well as increase in the irrecoverable (plastic) strain after unloading (Alliche and 

Frangois, 1992; Gao and Hsu, 1998).  

Under uniaxial fatigue loading, one definition for damage is given as: 

𝐷 = 1 −
𝐸

𝐸0
 (4.4) 

where D is the damage variable occurred in the material, E0 is the initial or undamaged Young’s 

modulus, and E is the modulus of elasticity of the material after the application of fatigue loading. 

In this approach D is defined as a damage variable. However, these models do not take the actual 

directionality of damage into consideration. They use a macro scale mathematical modeling to 

describe the damage rate as dD/dN. Although describing the fatigue behavior of materials by 

developing models based on individual cracks might be more accurate, it becomes impossible in 

the case of concrete due to heterogeneity of the material. In other words, although in metals that 

crack propagation pattern is based on a single crack propagation in general, in concrete, it is a 

problem of numerous crack propagation and interaction. Therefore, the macro scale mathematical 

modeling of damage will be a good approach to simulate the fatigue process in concrete (Wen, 

2011).  
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4.2.3. Progressive Damage Models 

In this approach the damage variables utilized to develop the models are different from 

what were chosen in the previous approaches. In these models damage variables such as strain 

energy release rate, damage area, and crack surface are chosen as study parameters to address the 

degradation of the materials. 

Natarajan et al. (2005) proposed a model based on internal strain energy release rate to 

describe the fatigue response of fabric-reinforced polymeric composites. They proposed the energy 

release rate equation as follows: 

𝑑𝑈

𝑑𝑁
= 𝑎 (

𝜀𝑚𝑎𝑥
𝜀𝑢𝑙𝑡

)
𝑏

 (4.5) 

where εmax is the maximum strain, εult is the maximum strain at which the material fails under 

monotonic loading, and “a” and “b” are the material parameters. 

Based on the energy release rate equation, Natarajan et al. (2005) proposed the following 

equation to predict the failure life of the material: 

𝑁𝑓 =
0.5𝑈0

𝑎(𝜀𝑚𝑎𝑥/𝜀𝑢𝑙𝑡)𝑏
 (4.6) 

where U0 is the initial internal strain energy. Although this model shows a good correlation with 

experimental data, for different loading types, different formulas of strain energy will be needed. 

Among all these three types of modeling, the fatigue life models are simple and easy to 

use, however they do not provide all information about changes occurred in material due to fatigue 

loading. This information includes change of modulus of elasticity and deformation 

characterization of the material.  

The progressive damage models are good to incorporate new damage variables. However, 

since the propagation of cracks and microcracks forms the major part of fatigue life of concrete, 
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therefore, this approach has to study the fatigue behavior of material by modeling the details of 

evolution and propagation of every microcracks individually. As a result, due to scattering and 

widely spread nature of microcracks in concrete, it is obvious that modeling the behavior of every 

macrocrack becomes a tedious task, if not an impossible one. 

The phenomenological models provide information essential to designing purposes while 

avoid the formidable task of studying each crack individually. Therefore, the phenomenological 

models are convenient to be utilized for modeling the fatigue life of concrete and brittle materials 

and is the chosen approach in this research study to model the behavior of concrete under fatigue 

loading as well as freeze-thaw process. In the following the fundamental concepts of this approach 

will be discussed further in detail.  

4.3. Continuum Damage Mechanics 

Among all these approaches, continuum damage mechanics is the approach utilized in this 

research study. This approach macroscopically studies the changes in the mechanical behavior of 

materials such as concrete by introducing an internal variable called the ‘damage variable’ to 

describe the changes in the material. The models proposed in the framework of continuum damage 

mechanics are based on the thermodynamics of irreversible processes.  

In the following the bases of continuum damage model proposed by Wen et al. (2012), 

which predicts the behavior of woven fabric composites under monotonic multiaxial loading as 

well as fatigue loading will be explained. In the next chapters, two models will be proposed based 

on Wen’s (2012) model to predict the behavior of concrete under fatigue loading and freeze-thaw 

processes and the results will be compared with the data obtained from literature. 
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4.3.1 Wen Damage Mechanics Model (2012) 

Wen (2012) has proposed a damage mechanics model based on Yazdani (1993) model in 

order to predict the changes in mechanical behavior of woven fabric composite under multiaxial 

fatigue loading. Wen’s model differs from Yazdani (1993) model in several ways such as response 

tensors describing the strain, damage function which is used to describe the onset of damage or 

the limit surface, and the incorporation of softening function in order to account for fatigue type 

of loading. Although Wen (2012) model has been proposed to capture the changes in the 

mechanical behavior of woven fabric composite under fatigue loading, we will use the same 

approach to describe changes in the mechanical behavior of concrete under fatigue loading as well 

as freeze-thaw process in the next chapters. 

The form of Gibbs Free Energy used in this model is shown below: 

𝐺(𝝈, 𝑘) =
1

2
𝝈: 𝑪(𝑘): 𝝈 + 𝝈: 𝜺𝑖(𝑘) − 𝐴𝑖(𝑘) (4.7) 

Wen et al. (2012) have used the same form of compliance tensor proposed by Ortiz (1985) 

which is: 

𝑪(𝑘) = 𝑪0 + 𝑪𝑐(𝑘) (4.8) 

In the equation above, 𝑪0 is the initial compliance tensor of the material before any damage 

occurred and 𝑪𝑐(𝑘) is added flexibility due to damage occurred during loading. Differentiating the 

Gibbs Free Energy with respect to stress, the following relationship for strain will be obtained: 

𝜺 = 𝑪0: 𝝈 + 𝑪𝑐(𝑘): 𝝈 + 𝜺𝑖(𝑘) (4.9) 

Equation above shows that the total strain is comprised of three terms. The first term is the 

elastic strain, the second term is the recoverable strain, which is due to elastic damage 

(microcracking), and the third term is the inelastic (plastic) strain which is the permanent 

deformation in the material. Wen et al. (2012) have defined the additional flexibility 𝑪𝑐(𝑘) 
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composed of two terms. Each term has been defined for one type of damage mode caused by 

compressive or tensile loading. Microcracking due to compressive loading occurs parallel to the 

direction of loading while under tensile loading it occurs in perpendicular direction. Therefore, 

Wen et al. (2012) have introduced the additional flexibility in the form below: 

𝑪𝑐 = 𝑪𝐼
𝑐 + 𝑪𝐼𝐼

𝑐  (4.10) 

Wen et al. (2012) have defined the response tensors in order to predict the direction at 

which damage occurs. The rate independent form of damage in compliance tensors have been 

defined as: 

𝑪𝐼
𝑐̇ = 𝑘̇𝑹𝐼                  𝑪𝐼𝐼

𝑐̇ = 𝑘̇𝑹𝐼𝐼 (4.11) 

For irreversible damage, 𝑘̇ ≥ 0. 

Moreover, Yazdani and Karnawat (1996) have proposed the rate form of inelastic strain as 

the following: 

𝜺𝑖̇ = 𝑘̇𝑴 (4.12) 

where M is a response tensor to describe the plastic strain. The following equation has been 

introduced in order to represent the scalar function 𝐴𝑖. 

𝑡2(𝑘) = 2
𝜕𝐴𝑖

𝜕𝑘
 (4.13) 

By utilizing the Gibbs Free Energy and the equation above, Wen et al. (2012) have 

calculated the damage surface equation as the following: 

𝛹(𝜎, 𝑘) =
1

2
𝝈+: 𝑹𝐼: 𝝈

+ +
1

2
𝝈−: 𝑹𝐼𝐼: 𝝈

− + 𝝈:𝑴 −
1

2
𝑡2(𝝈, 𝑘) ≥ 0 (4.14) 

𝝈+ and 𝝈− are the positive and negative cones of stress tensor. This equation represents 

the damage surface and is true when the damage occurs. If no damage occurs in the material, it 

means that the material is in elastic state and the elastic region is enclosed by the damage surface 
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defined by the aforementioned equation. Two conditions should be met in order for damage to 

occur in the material. First, the point of stress must fall on the damage surface described by the 

equation above and second, the stress increment should point outside the damage surface. These 

two conditions could be stated as below: 

𝛹(𝝈, 𝑘) = 0            
𝜕𝛹

𝜕𝝈
: 𝝈̇ > 0 (4.15) 

Wen et al. (2012) have proposed their model for biaxial tension load path. Therefore, in 

this case, just the response tensor for tension mode of damage has been proposed in the form of: 

𝑹𝐼 =
𝝈+⨂𝝈+

𝝈+: 𝝈+
− 𝛼(𝑰 − 𝒊⨂𝒊) (4.16) 

where I and i are the fourth and second order identity tensors, respectively and α is the material 

parameter that could be obtained by utilizing experimental data. The second part brought in the 

response tensor is used in order to predict the changes in Poisson’s Ratio once damage 

accumulates.  

The second order response tensor M used to describe the inelastic strain is proposed in the 

form shown below: 

𝑴 = 𝛽𝝈 (4.17) 

β is also a material parameter which could be obtained experimentally. 

Thus far, the response tensors for elastic and inelastic strains have been introduced. 

Strength of woven fabric composites differs in various directions. In addition, material strength 

will be reduced by applying cyclic loading. Therefore, Wen et al. (2012) proposed a new damage 

function which incorporates all these features. 

In order to incorporate all these features into the model, Wen et al. (2012) used a bounding 

surface approach. Bounding surface approach states that a loading point in stress space is enclosed 
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by a surface called strength surface. This surface represents the strength of the material either under 

monotonic loading or under cyclic loading. By utilizing this approach, Wen et al. (2012) have 

proposed his model for 2-D stress space under biaxial fatigue loading. In Wen model, limit surface 

is a surface at which the material fails under monotonic loading. In other words, limit surface is a 

special condition at which the number of loading is equal to one. In the case of fatigue loading, by 

increasing the number of loading, the limit surface collapses towards inside and forms smaller 

surfaces called residual strength. By continuing the loading, this shrinkage continues to a point at 

which the material fails. At this point, a surface will be formed which represents the failure surface. 

Figure 4.1. shows the schematic representation of bounding surface approach utilized by Wen et 

al. (2012). 

Utilizing the formulation presented thus far, and incorporating a softening function in order 

to capture the strength loss in material due to cyclic loading could form the bounding surfaces 

under fatigue loading. In the following, the bounding surface approach, the damage function, and 

the softening function proposed by Wen et al. (2012) will be explained in detail. In the end, the 

results from the model will be compared with the experimental data by Smith and Pascoe (1989). 

 

Figure 4.1. Schematic representation of bounding surface approach 
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The formulation that has been presented so far for fatigue life of woven fabric composites 

is valid for small deformations and negligible thermal effects. Therefore, these assumptions are 

valid just in the low frequency fatigue loading.  

Wen et al. (2012) proposed the damage function in terms of strength function and shape 

function in the form of the following: 

𝑡(𝝈, 𝑘) = 𝐿(𝝈)𝑞(𝑘) (4.18) 

𝑞(𝑘) is a shape function which has the value of 1 at the failure surface and 𝐿(𝝈) is a strength 

function which has the following form: 

𝐿(𝝈) =
𝝈: 𝑺

𝑡𝑟(𝝈)
 (4.19) 

𝑺 is a strength tensor, and stress tensor and its trace are used to describe the strength in the 

proper direction for a given load path. 

𝑺 = [
𝐹𝑡1
𝐹𝑡2
𝐹𝑡3

] (4.20) 

Each component of strength tensor represents the strength of the woven fabric composite 

in a specific direction. These components could be determined by performing monotonic uniaxial 

tension load tests in the corresponding directions. 

By incorporating the response tensors and damage function introduced into the damage 

surface equation, it becomes: 

𝛹(𝝈, 𝑘) = 𝝈: 𝝈(1 + 𝛼 + 2𝛽) − 𝛼𝑡𝑟2(𝝈) −
1

2
(
𝝈: 𝑺

𝑡𝑟(𝝈)
𝑞(𝑘))

2

= 0 (4.21) 

To determine the components in strength function, we can introduce uniaxial loading in 

direction 1. Therefore, the damage surface equation will become: 
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𝛹(𝝈, 𝑘) = [
𝜎1
0
0
] : [
𝜎1
0
0
] (1 + 𝛼 + 2𝛽) − 𝛼𝑡𝑟2 ([

𝜎1
0
0
]) −

1

2

(

 
 
 
 [
𝜎1
0
0
] : [

𝐹𝑡1
𝐹𝑡2
𝐹𝑡3

]

𝑡𝑟 [
𝜎1
0
0
]

𝑞(𝑘)

)

 
 
 
 

2

= 0 (4.22) 

Then it becomes: 

(1 + 2𝛽)𝜎1
2 − 𝐹𝑡1

2 𝑞2(𝑘) = 0 (4.23) 

Under monotonic loading and at the limit surface (damage surface) shape function becomes 

1, 𝑞(𝑘) = 1, and applying stress becomes the tensile strength of the material in that direction, 𝜎1 =

𝑓𝑡1. Therefore, the first component in the strength tensor becomes: 

𝐹𝑡1 = 𝑓𝑡1√1 + 2𝛽 (4.24) 

Other components of the strength tensor could be obtained by using the same experimental 

data but for different directions. Other components of the strength tensor are as follows: 

𝐹𝑡2 = 𝑓𝑡2√1 + 2𝛽             𝐹𝑡3 = 𝑓𝑡3√1 + 2𝛽 (4.25) 

In order to capture the strength reduction in the material due to cyclic loading, Wen et al. 

(2012) introduced the softening function in the form of power function into the model as the 

following: 

𝐹(𝑛) = 𝑛𝐴 (4.26) 

where n is the number of cycles of loading and A is the material parameter. Incorporating the 

softening function into the damage function, the damage surface equation becomes: 

𝛹(𝝈, 𝑘) = 𝝈: 𝝈(1 + 𝛼 + 2𝛽) − 𝛼𝑡𝑟2(𝝈) −
1

2
(
𝝈: 𝑺

𝑡𝑟(𝝈)
𝑛𝐴𝑞(𝑘))

2

= 0 (4.27) 

By utilizing a fatigue uniaxial tensile loading the material parameter A could be obtained. 

Therefore, A could be obtained by the following equation: 
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𝐴 =
𝑙𝑛 (

𝜎1
𝑓𝑡1
)

ln (𝑛)
 

(4.28) 

Also the material parameter α could be calculated by performing a monotonic equal biaxial 

tension test in directions 1 and 2. α could be obtained by the following equation: 

𝛼 = 1 −
1

8
(

𝜎0
𝑓𝑡1 + 𝑓𝑡2

)
−2

 (4.29) 

where 𝜎0 is the applied stress in directions 1 and 2. 

In order to show the capabilities of the model to describe the behavior of woven fabric 

composites under fatigue biaxial loading, experimental data obtained by Smith and Pascoe (1989) 

are used to compare with the results calculated from the model. Material parameters could be easily 

calculated based on the equations provided before.  

Figures 4.2 – 4.4 show the S-N curves of a woven fabric composite under various fatigue 

load paths. As it is shown, the model predicts the reduction in strength of the material due to cyclic 

loading very well.  

 

Figure 4.2. S-N curve for woven fabric composite under uniaxial fatigue loading, data by 

(Smith and Pascoe, 1989) 
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Figure 4.3. S-N curve for woven fabric composite under biaxial fatigue loading with stress 

ratio of 0.5, data by (Smith and Pascoe, 1989)  

 

Figure 4.4. S-N curve for woven fabric composite under biaxial fatigue loading with stress 

ratio of 1, data by (Smith and Pascoe, 1989) 

Furthermore, Figure 4.5 shows the failure surfaces of the material in the biaxial stress 

space. The bounding surface concept is noticed in this figure. That is, by applying the fatigue 

loading, the limit surface collapses and forms smaller surfaces called failure surfaces as shown in 

the figure. The results obtained by the model show good correlation with the experimental data 

obtained by Smith and Pascoe (1989)  
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Figure 4.5. Failure surfaces for monotonic and fatigue loading in biaxial stress space, (Smith 

and Pascoe, 1989) 
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CHAPTER 5. ANISOTROPIC DAMAGE MODELING OF 

CONCRETE SUBJECTED TO FREEZE-THAW PROCESS 

5.1. Introduction 

In recent years an increased focus is being given to the effects of freeze-thaw cycles on the 

stiffness and strength properties of concrete as a structural material. Damage caused by frost 

expansion is a primary concern when designing concrete structures in cold weather regions. It has 

been shown (Miao et al., 2002; Shang and Song, 2006; Shang and Song, 2008) that the onset of 

damage within concrete can be accelerated when a freeze-thaw cycle occurs while a structure is 

subjected to an external loading. This behavior was further investigated by researchers (Hasan et 

al., 2002; Hasan et al., 2003; Hasan et al., 2008; Shang et al., 2008) showing that the mechanical 

properties of concrete were adversely affected by the CFT. In all these studies, it was 

experimentally demonstrated that the strength of concrete decreased substantially with increase in 

freeze-thaw cycles. Furthermore, further experimental investigations indicated a more compliant 

concrete behavior under loading after the application of CFT (Song and Ou, 2008; Duan et al., 

2011; Liu and Wang, 2012). 

It is generally agreed upon that there are two forms of freeze-thaw damage. The first is 

caused by hydraulic pressure and is much more prevalent during rapid freezing processes. During 

this process, water that has been absorbed into the capillary pores of the cement matrix expands 

once frozen. If the required volume that is needed for expansion is not available, the excess frozen 

water is transported away by internal pressure. The magnitude of pressure created, as well as the 

resulting damage, is related to the permeability of cement matrix, the rate of freezing, the degree 

of saturation, and the location of the nearest unfilled void within the cement matrix (Pigeon et al., 
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1985; Detwiler et al., 1989). Localized cracking will take place if the resultant pressure exceeds 

the tensile strength of the concrete mix. Progressive damage occurs within concrete because with 

cracking, more volume is available for water to infiltrate and freeze, causing the existing cracks to 

propagate. 

The second form of freeze-thaw damage is termed ice accretion and is more prevalent 

during long freeze periods and when the rate of freezing is relatively slow. Water in gel pores 

requires a much lower temperature to freeze, -78 °C according to Cordon (1966). This is due to 

the surface tension forces present in these regions of extremely small radii. For most realistic 

applications water in the gel pore zones will remain in a liquid state while it remains in the gel 

pore. As temperature drops below 0 °C, the water in the gel pores becomes supercooled and has a 

higher free energy than the ice in the capillaries which allows the water to move from the gel pores 

into the capillaries where it is more likely to freeze (Song and Ou, 2008). The overall effect of this 

processes is a reduced volume of the concrete in the form of gel water and an increase in the 

volume of the capillaries due to expansion of frozen water. Upon thawing, some of the water may 

return to the gel pores, but the original state of the material will not be obtained as this process is 

not reversible. 

From the experimental data presented by Shang and Song (2006), Shang et al. (2008), and 

Shang and Song (2008) and the discussion presented by Cordon (1966), it is clear that a meaningful 

constitutive model needs to be developed to help predict the behavior and performance of concrete 

under combined freeze-thaw and applied load conditions. The design life of concrete needs to be 

taken into consideration so a more efficient, yet safe, design can be obtained. 

This chapter presents a damage mechanics approach to modeling freeze-thaw processes for 

concrete. Using the bounding surface approach, a limit surface, representing the monotonic 
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strength of concrete is developed. This surface is allowed to contract as the number of freeze-thaw 

cycles start to increase. This is similar to the isotropic-softening plasticity used in the modeling of 

inelastic behavior of materials. The resulting residual strength surface represents the strength of 

the concrete for various load paths after freeze-thaw processes. Along with proposing softening 

function during CFT, changes in ultimate strain (strain at which failure occurs) are also addressed. 

Consequently, stress-stain curves are obtained that describe the behavior of concrete under 

different proportional load paths. 

5.2. General Formulation 

The general formulation presented here follows the basic principles of mechanics and 

internal variable theory of thermodynamics. The intent is to present a model that although is 

rigorous in theory, it lends itself well to computational efforts and engineering applications. 

Guided by the work of Ortiz (1985) and Wen et al. (2012) and for small deformation, the general 

form of Gibbs Free Energy as a state function is given as: 

G(𝛔, k) =
1

2
𝛔: 𝐂(k): 𝛔 − Ai(k) (5.1) 

where, C is the compliance tensor, σ is the stress tensor, k is a scalar damage parameter, and Ai (k) 

is a scalar function associated with the surface energy of microcracks. The symbol “:” represents 

a tensor contraction operation. A class of constitutive model that is considered appropriate for 

brittle solids such as concrete is given as: 

𝛆 = 𝐂(k): 𝛔 (5.2) 

where, ε represents the strain tensor. The compliance tensor, C, is assumed to take an additive 

decomposition form as: 

𝐂(k) = 𝐂0 + 𝐂c(k) (5.3) 
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where, C0 and Cc are the initial undamaged and the added flexibility tensors, respectively. Because 

of nonlinearity of constitutive relations caused by damage, the rate form of the flexibility tensor is 

considered as: 

𝐂̇(k) = 𝐂ċ(k) = k̇𝐑 (5.4) 

The response tensor, R, is used to specify the direction of the induced damage. The 

Clausius-Duhem inequality can be shown to yield the internal dissipation inequality which in terms 

of the Gibbs Free Energy becomes: 

∂G(𝛔, k)

∂k
k̇ ≥ 0 (5.5) 

It is assumed that damage is irreversible and that no healing can take place; that is: 

k̇ ≥ 0 (5.6) 

By combining Equations 5.1 through 5.4 and in the absence of any viscosity considered, 

the general form of the damage surface is given by: 

Ψ(𝛔, k) =
1

2
𝛔:𝐑: 𝛔 −

1

2
t2(𝛔, k) = 0 (5.7) 

where t(σ,k) is regarded as the damage function. The condition Ψ(σ,k)<0 represents an elastic 

domain, and the condition Ψ(σ,k)>0 is not allowed for rate independent processes.  

Guided by the experimental work by Smith and Young (1955), the following form for the damage 

function was proposed by Ortiz (1985) as: 

t(𝛔, k) = fce
ln (1 + E0k)

(1 + E0k)
 (5.8) 

where fc is the strength of concrete under uniaxial compression, E0 is the initial modulus of 

elasticity, and e represents the natural number. 

To progress further, specific form of the response tensor R must be stated. It is argued that 

CFT make no changes on the failure mode of plain concrete (Shang and Song, 2006; Song and Ou, 
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2008). In this paper only the compression mode of damage is considered. The damage mode is 

presented by the response tensor R as:  

𝐑 =
𝛔−⊗𝛔−

𝛔−: 𝛔−
+ αH(−λ)(𝐈 − 𝐢 ⊗ 𝐢) (5.9) 

where “⊗” is the tensor product operator, 𝛔− represents the negative cone of the stress tensor,  

H(−λ) is the Heaviside function and λ denotes the maximum eigenvalue of 𝛔−. The fourth and 

second identity tensors are given by I and i, respectively. 

The concept of negative cone of stress tensor is defined in (Ortiz, 1985) and will not be 

repeated here. In short, 𝛔− is a stress tensor incorporating only the negative eigenvalue of σ. 

5.3. Bounding Surface Approach for Modeling Freeze-Thaw Processes 

The concept of bounding surface theory and its application to fatigue type process is a 

novel one and was recently proposed by Wen et al. (2012). In this approach, the limit surface (LS) 

is considered to be a special case when the number of freeze-thaw cycles is zero. 

To illustrate this further, consider a material element shown in Figure 5.1 and its 

corresponding limit surface (LS) in biaxial stress space shown in Figure 5.2. The LS corresponds 

to monotonic strength of the material unaffected by the freeze-thaw damage. As the number of 

freeze-thaw cycles increases, the strength of the material is expected to decrease, which is 

represented by the reduction, or inward collapse of the LS. The collapsing of the LS creates new 

residual strength surfaces (RS) depending on the number of CFT. At some point the reduction in 

strength of the material will result in failure from CFT and under external loading. This is shown 

in Figure 5.2 as surface “FS” with the corresponding number of freeze-thaw cycles, Nf. 



 

65 
 

 

Figure 5.1. Material element with loading directions 1 and 2 

To incorporate the effects of the freeze-thaw damage, the damage function t(σ,k) is 

modified to be given by the product of two functions F(n) and F(σ,k) as: 

t(𝛔, k(n)) = Fσ(n). F(𝛔, k) (5.10) 

where, Fσ(n) is interpreted as the softening function due to CFT and F(σ,k) is the strength function 

associated with monotonic loading. The softening function Fσ(n) must be formulated in such a way 

so that the original formulation is retained when CFT is set to zero. 

There are two distinct observation that one could make by considering the experimental 

work of CFT damage (Shang and Song, 2006; Shang et al., 2008). First is that the changes of 

concrete strength are nearly linear with respect to numbers of freeze-thaw cycles; and second is 

that the strength reduction is path dependent. The experimental work also indicates that the least 

damage is to occur under biaxial compression paths with stress ratio of between 0.75 and 1.0 

(Shang and Song, 2006). Guided by these studies and observations, the following form of the 

softening function is proposed as: 

Fσ(n) =
σ

fc
= 1 − B [

𝛔: 𝛔

tr2(𝛔)
]
C

n (5.11) 

where, B and C are materials parameters. These parameters can be obtained by utilizing two 

uniaxial and biaxial compression tests after CFT, respectively.  
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Figure 5.2. Schematic representation of bounding surfaces in biaxial stress space  

Thus far, the discussion and formulations have been centered on stress and strength 

properties of the material. To predict the behavior of concrete under CFT, the deformational 

characteristics of concrete under CFT also needs to be addressed. In the work presented by Wen 

et al. (2012), it was assumed that the failure strain, εu, remains unchanged under fatigue loading. 

In the case of concrete under CFT, this assumption will not result in accurate stress-strain behavior 

since the ultimate strain has been reported to change. A schematic stress-strain behavior of 

concrete under CFT and consistent with experimental results (Shang and Song, 2006; Shang et al., 

2008; Song and Ou, 2008; Duan et al., 2011; Liu and Wang, 2012) is illustrated in Figure 5.3. It 

shows reduction of strength and subsequently increase in strain for a given CFT. 

Figure 5.4 summarizes the experimental data reported by Shang and Song (2006) on 

changes in the ultimate strain due to CFT with different stress ratios ξ=σ1/σ2. In this figure, a value 

of ξ=0 corresponds to the case of uniaxial compression path. For the equal biaxial load path, ξ 

becomes equal to 1.0. Figure 5.4 shows that ultimate strains increase with CFT and that the 

increase is somewhat linear. This increase is attributed to the continuous deformation and 

propagation of microcracks during CFT process. 
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Figure 5.3. Schematic representation of stress-strain curves for concrete before and after 

applying CFT 

Considering the experimental data summarized in Figure 5.4, the following function is 

postulated as a softening function for the ultimate strain as: 

Fε(n) =
εf
εu
= 1 + H [

𝛔: 𝛔

tr2(𝛔)
]
Q

n (5.12) 

where, εf is the ultimate strain after CFT, εu is the monotonic ultimate strain, and H and Q are 

material parameters. H and Q are obtained by utilizing uniaxial and biaxial compression tests after 

specified number of freeze-thaw cycles, respectively. The motivation for the type of equation 

shown in Equation 5.12 arises from the observation that it is reasonable to make the softening 

function linear with “n” as evidenced in Figure 5.4. Also since the rate of change in strain is path 

dependent, the path dependency is also captured by the use of invariant shown in the bracket. 

5.4. Simulation and Discussion 

In this section the predictive capabilities of the model with respect to freeze-thaw processes 

is demonstrated in detail for various load paths and number of freeze-thaw cycles. There are a total 

of five material parameters in the model. Strength parameters are α, B, and C whereas H and Q are 

deformational parameters. The strength parameter α can be obtained from a monotonic biaxial 

strength test. To obtain parameters B and C, uniaxial and biaxial strength tests after a set number 
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of CFT are required. During the same set of CFT tests, the parameters H and Q could also be 

obtained by taking strain measurements corresponding to the peak stresses. 

Based on the experimental data provided by Shang and Song (2006), the following values 

for parameters are obtained: α=0.645, B=5.223E-03, C=0.944, H=0.0102, and Q=0.359. These 

values are used to predict material responses for various other load paths. Figure 5.5 represents the 

biaxial residual strength envelopes where the limit surface and the subsequent residual strength 

curves are plotted against the experimental data by Shang and Song (2006). The agreement with 

the experimental data is quite satisfying considering the simplicity of the softening function used 

(Equation 5.11). 

 

Figure 5.4. Influence of CFT on the principal ε3 under various stress ratios (ξ=σ1/σ2 ) (Shang 

and Song, 2006) 

The strength dependency on the number of freeze-thaw cycles, n, is also shown in Figure 

5.6 and is compared with the available experimental data. The load path dependency of damage is 

clearly indicated in this figure where the rate of change of strength reduction is different for 

different load path groups. 

 



 

69 
 

 

Figure 5.5. Residual strength surfaces for various number of CFT in biaxial compression 

space (Shang and Song, 2006) 

 

Figure 5.6. Residual strength versus number of CFT in biaxial compression (Shang and Song, 

2006) 

A significant improvement of the proposed model over the existing models is its ability to 

capture the deformational characteristics of concrete behavior in addition to the stress reduction. 

These are shown in Figures 5.7, 5.8, and 5.9 where the stress strain responses are predicted for 
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ξ=0, ξ=0.5, and ξ=1.0 and under different number of freeze-thaw cycles. Stress reduction as well 

as increase in strain are clearly shown in these figures with excellent correlation to experimental 

data. Also reflected in these figures is the reduction in the stiffness of the material due to freeze-

thaw damage. This change of the elastic stiffness is shown in Figure 5.10 for the case of uniaxial 

compression and compared with the experimental data reported by Liu and Wang (2012). 

 

Figure 5.7. Stress-strain curves under uniaxial compression after different CFT (Shang and 

Song, 2006) 

 

Figure 5.8. Stress-strain under biaxial compression (ξ=0.5) after different CFT (Shang and 

Song, 2006) 
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5.5. Conclusion 

In this chapter the effects of freeze-thaw processes on concrete performance is modeled 

using a novel bounding surface approach. In this approach, the limit surface that is developed for 

monotonic loading is allowed to contract as damage takes place with increasing freeze-thaw 

cycles. 

 Stress and strain softening functions are postulated guided by the available experimental 

data. These softening functions are linear with respect to the cycles of freeze-thaw and are 

structured in such a way to provide load path dependency. 

The model was then calibrated with respect to available experimental data and compared 

to other load paths to show strength reduction, stress-strain curves, and changes of the modulus of 

elasticity. The model predictions were shown to be satisfactory with respect to salient features of 

material behavior. 

 

Figure 5.9. Stress-strain under biaxial compression (ξ=0.75) after different CFT (Shang and 

Song, 2006) 
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Figure 5.10. Modulus of elasticity versus number of CFT for uniaxial compression (Shang 

and Song, 2006)  
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CHAPTER 6. ANISOTROPIC DAMAGE MECHANICS 

MODELING OF CONCRETE UNDER BIAXIAL FATIGUE 

LOADING 

6.1. Introduction 

The fatigue behavior of concrete has received a considerable attention among researchers 

in the past two decades. This can be attributed to the increasing use of concrete as a construction 

material. Concrete has been used in various structures due to its unique features such as high 

compressive strength, good resistance to aggressive and moist environments compare to some 

other construction materials, and enhancement in strength and deformation capacity under 

confining stresses. Concrete has been used in dams, bridges, and highway pavements in which 

cyclic loading is considered as one of the factors affecting its mechanical behavior during its 

service life. Various research studies have been published on the effects of fatigue loading on the 

mechanical behavior of concrete in terms of strength, deformation characterization, and modulus 

of elasticity. Most of these studies were conducted on the uniaxial loading of the material (Awad, 

1971; Aas-Jakobsen and Lenschow, 1973; Hsu, 1981; Holmen, 1982; Petkovic et al., 1990; 

Hordijk and Reinhardt, 1993; Kim and Kim, 1996; Zhang et al., 1996; Paskova and Meyer, 1997; 

Gao and Hsu, 1998), while only a few studies could be found in the literature on the effects of 

biaxial stress state loading (Buyukozturk and Tseng, 1984; Nelson et al., 1988; Su and Hsu, 1988; 

Yin and Hsu, 1995; Lu et al., 2007).  

It is generally accepted that concrete under cyclic loading loses its strength gradually with 

an increase in the number of load cycles regardless of the loading path (uniaxial or biaxial). The 

strength loss during the fatigue process is due to nucleation and propagation of microcracks. 
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During cyclic loading, these microcracks increase and grow to a stage in which major cracks are 

formed and reduce the load carrying area tremendously. At that point the strength of the material 

is decreased substantially and approaches the amplitude of the cyclic loading. This results in 

sudden rupture. It has been argued that at any given cycle, the fatigue strength of concrete under 

biaxial compression is greater than that under uniaxial compression (Su and Hsu, 1988; Lu et al., 

2007). This is the result of the relative confinement provided in the biaxial loading state. This 

confinement restricts the nucleation and propagation of microcracks by applying load in two 

perpendicular directions. 

In addition to the strength reduction, fatigue loading affects the modulus of elasticity and 

the deformational capacity of concrete as well. Awad (1971) and Gao and Hsu (1998) have 

investigated the effects of fatigue loading on the ultimate strain of concrete (strain at which failure 

occurs) and have concluded that the strain increases under cyclic loading state compared to 

monotonic state. Awad (1971) has shown that the ultimate and the irreversible plastic strains 

accumulated after each cycle prior to failure, depend on the number of cycles that have been 

applied. In addition to the maximum stress, it has also been shown that stress range has significant 

effects on the fatigue life of concrete (Aas-Jakobsen and Lenschow, 1973; Hsu, 1981). By keeping 

the maximum stress unchanged and decreasing the stress range, the number of cycles to failure 

will increase. These results, have also been investigated and validated by Awad (1971).  

According to Gao and Hsu (1998) the fatigue strain of concrete is comprised of three parts: 

irreversible strain caused by cyclic creep under the action of average stresses; irreversible strain 

caused by fatigue cracks; and fatigue strain range. In the same study (Gao and Hsu, 1998), it was 

reported that the modulus of elasticity of concrete degrades during fatigue process due to damage 

accumulation which happens as a result of microcracking.   
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Realizing the fact that fatigue loading has a significant influence on concrete serviceability 

and may lead to an abrupt material failure, an accurate and efficient model which could capture 

the behavior of concrete is needed. 

In this paper, an approach based on continuum damage mechanics is proposed to model 

the behavior of concrete under fatigue loading. The general theory of bounding surface approach 

proposed by Wen et al. (2012) is utilized here in order to capture the strength reduction in concrete 

due to cyclic loading. In the bounding surface approach, the limit surface is allowed to contract to 

form smaller surfaces, called residual strength surfaces, as the fatigue loading is applied. A 

softening function for the loss of strength based on the maximum stress, stress range, and load path 

is proposed. These features are considered a significant improvement and extension to the work 

reported by Wen et al. (2012). To capture the effects of fatigue on deformational characterization 

and material stiffness, two additional softening functions have been proposed to predict the 

ultimate and plastic strains in the last cycle of loading under any arbitrary fatigue loading. These 

additional features of the formulation are considered novel enhancing the predictive capability of 

the model. At the end, results are compared with experimental data showing a good correlation. 

6.2. General Formulation 

The general formulation shown in the following is based on the damage mechanics 

approach and follows the framework of the internal variable theory of thermodynamics. For 

isothermal and small deformations, the Gibbs Free Energy is obtained as follows (Ortiz, 1985; 

Yazdani, 1993): 
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𝐺(𝝈, 𝑘) =
1

2
𝝈: 𝑪(𝑘):𝝈 − 𝐴𝑖(𝑘) (6.1) 

where C is the compliance tensor, σ is the stress tensor, k is a scalar damage parameter, and Ai(k) 

is a scalar function associated with the surface energy of microcracks. The symbol “:” represents 

a tensor contraction operation. A constitutive relation for concrete like materials is used as: 

𝜺 = 𝑪(𝑘): 𝝈 (6.2) 

where ε represents strain tensor. The compliance tensor, C, is assumed to take an additive 

decomposition form as: 

𝑪(𝑘) = 𝑪0 + 𝑪𝑐(𝑘) (6.3) 

where C0 and Cc are the initial undamaged compliance tensor of the material and the added 

flexibility tensor associated with the accumulation of damage, respectively. Due to the nonlinearity 

behavior between stress and strain for brittle materials, the rate form of the flexibility tensor must 

be considered as: 

𝑪̇(𝑘) = 𝑪𝑐̇(𝑘) = 𝑘̇𝑹 (6.4) 

In Equation 6.4, the response tensor, R, determines the direction at which damage occurs. 

For isothermal and small deformation, the internal dissipation inequality can be represented by 

Gibbs Free Energy as: 

𝜕𝐺(𝝈, 𝑘)

𝜕𝑘
𝑘̇ ≥ 0 (6.5) 

It is also assumed that the damage is an irreversible phenomenon in which, 𝑘̇ ≥ 0. By 

combining Equations 6.1 through 6.5, the general form of the damage surface is given by: 

𝛹(𝝈, 𝑘) =
1

2
𝝈: 𝑹: 𝝈 −

1

2
𝑡2(𝝈, 𝑘) = 0 (6.6) 



 

77 
 

where t(σ,k) is called the damage function. The Condition Ψ(σ,k)<0 describes the elastic condition 

for the material which is enclosed by the damage surface Ψ(σ,k)=0. The condition Ψ(σ,k)>0 is not 

allowed for rate-independent processes.  

Guided by the experimental data (Ortiz, 1985), the following form for the damage function 

is postulated as: 

𝑡(𝝈, 𝑘) = 𝑓𝑐𝑒
ln (1 + 𝐸0𝑘)

(1 + 𝐸0𝑘)
 (6.7) 

where fc is the compressive strength of concrete, E0 is the initial stiffness, and “e” represents the 

natural number. In this paper only the compression mode of damage is considered. Guided by work 

of Wen et al. (2012) and Saboori et al. (2014), the damage mode is identified by the response 

tensor R given as:  

𝑹 =
𝝈−⊗𝝈−

𝝈−: 𝝈−
+ 𝛼𝐻(−𝜆)(𝑰 − 𝒊⊗ 𝒊) (6.8) 

where “⊗” is the tensor product operator, 𝝈− represents the negative cone of the stress tensor, 

H(−𝜆) is defined as the Heaviside function of the maximum eigenvalue of 𝝈−, and I and i are the 

fourth and second order identity tensors, respectively. The material parameter, α, shown in 

Equation (6.8) is a strength rated parameter and can be obtained by a biaxial monotonic loading 

test. 

6.3. Bounding Surface Approach 

The bounding surface approach for fatigue was proposed by Wen et al. (2012) in order to 

predict the behavior of woven fabric composites under fatigue loading. This surface is shown 

schematically in Figure 6.1. In the case of fatigue loading, as cyclic loading is applied, the limit 

surface is allowed to contract and to form residual strength curves. This reduction in strength is 

caused by damage and microcracks generated during the fatigue process. As the number of load 

cycles increases, the strength continues to decrease further and the residual surfaces also shrink. 
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The reduction in strength continues to a point at which the residual strength becomes equal to the 

magnitude of loading. At this point, failure surface is formed and the material cannot withstand 

any additional cycles resulting in failure. 

In order to capture the described behavior of concrete under cyclic loading, an evolutionary 

equation is needed to predict the failure surface. To accomplish this task, the damage function is 

restructured to be the product of two functions as shown below: 

𝑡(𝝈, 𝑘, 𝑛, 𝑟) = 𝐹(𝑛, 𝑟). 𝑡( 𝝈, 𝑘) (6.9) 

where F(n,r) is regarded as the strength softening function. The number of cycles of loading to 

failure is given by “n” and “r” is the stress ratio (ratio of minimum stress to maximum stress). The 

dependency of the function, t(σ,k), on “n” and “r” is supported by the experimental observation 

described in the previous section. 

 

Figure 6.1. Schematic representation of bounding surfaces in biaxial stress space 

By considering a fatigue uniaxial compression path and substituting Equation 6.9 into 

Equation 6.6, the following form is obtained for the softening function: 

𝐹(𝑛, 𝑟) =
𝜎

𝑓𝑐
 (6.10) 
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where σ is the residual strength of the concrete after specific number of cyclic loading. Equation 

6.10 is a representation of so-called S-n curves. Based on the researches reported in (Aas-Jakobsen 

and Lenschow, 1973; Hsu, 1981; Qiao and Yang, 2006), amplitude of loading, σmax; stress ratio, 

r; and finally the load path all contribute to the fatigue life of concrete. While the fatigue life of 

concrete is adversely affected by the amplitude of loading, Aas-Jakobsen and Lenschow (1973) 

reported that increasing stress ratio results in a greater fatigue life at a given stress. Moreover, 

considering the data provided by Yin and Hsu (1995), it is apparent that the rate of reduction in 

concrete strength is not the same for different load paths. Guided by these findings, the following 

softening function is proposed in this paper as: 

𝐹(𝑛, 𝑟) = 𝑛
[𝐴(1−𝑟)(

𝑡𝑟2(𝝈)
𝝈:𝝈

)
𝐵

]

      
(6.11) 

where n is the number of cyclic loading and “A” and “B” are material parameters. Utilizing this 

softening function and incorporating it into the Equation 6.6, residual strength surfaces could be 

obtained under various load paths. The inclusion of the first and second invariants of the stress 

tensor allows the formulation to model load path dependency observed in fatigue testing. 

In Figure 6.2, a schematic representation of stress-strain behavior of concrete which is 

consistent with the experimental data (Awad, 1971) is illustrated. The applied stress is signified as 

σmax and the fatigue failure strain in uniaxial compression is given by εuf. The figure shows the 

reduction in strength due to fatigue while the failure strain increases under cyclic loading compared 

to monotonic loading state. 

To fully describe the stress-strain behavior of concrete under fatigue loading, four factors 

including reduction in strength, increase in ultimate strain, plastic strain after each cycle, and 

reduction in modulus of elasticity need to be addressed. The reduction in strength has been already 

addressed by the strength softening function; Equation 6.11. For deformation, as was discussed 
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earlier, concrete under fatigue loading fails at an ultimate strain greater than the one under 

monotonic loading state. Awad (1971) reported that by increasing the stress ratio, both ultimate 

and plastic strain increases and therefore results in a more flexible concrete. Awad (1971) also 

showed that amplitude of loading adversely affects both ultimate and residual strains. In order to 

capture such effects on the mechanical characteristics of concrete two strain softening functions 

are presented as follows: 

𝐹𝜀
𝑡 =

𝜀𝑢
𝑓

𝜀𝑢
= 𝑛𝛽(1+𝑟)      (6.12) 

𝐹𝜀
𝑝
=
𝜀𝑓
𝑝

𝜀𝑢
= 𝑛𝛾(1+𝑟)   (6.13) 

where Fε
t is regarded as the ultimate strain softening function, Fε

p is residual strain softening 

function, εu
f is the ultimate strain under cyclic loading, εu is the ultimate strain under monotonic 

loading, and εf
p is the residual strain under fatigue loading prior to last cycle. The number of cycles 

of loading to failure is given by “n”. The dependency of ultimate and residual strain under fatigue 

loading reported by Awad (1971) on loading amplitude as well as loading range are addressed by 

incorporating n and r into Equations 6.12 and 6.13. Utilizing these softening functions, stress-

strain curves could be obtained under various load paths.  The new proposed model presented 

by Equations 6.9 and 6.11 for the strength reduction, Equations 6.12 and 6.13 for deformation 

characterization, and the inclusion of the stress ratio, r, are all new and considered as significant 

enhancement of the model compared to the paper by Wen et al. (2012).  
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Figure 6.2. Schematic representation of stress-strain of concrete under monotonic and cyclic 

loading 

6.4. Numerical Example 

In this section, results predicted by the model are compared with the experimental data 

obtained from literature.  Material parameters α, A, B, β, and γ are calculated based on the 

experimental data presented.  

 

Figure 6.3. Residual strength surfaces for various number of cyclic loading, experimental 

data by (Nelson et al., 1988) 
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Figure 6.3 shows the prediction results of residual strength surfaces in biaxial stress space 

against experimental data work of Nelson et al. (1988). The damage surfaces show a good 

correlation for monotonic loading when n=1 as well as for fatigue loading when n=10, 100, and 

1000 with experimental data. For Figure 6.3, following material parameters are used: α=0.587, 

A=-0.0445, and B=1.521. 

Figures 6.4, 6.5, and 6.6 show the strength versus number of loading cycles for concrete 

under cyclic uniaxial and biaxial paths with stress ratios of 0.5 and 1.0. These figures show that 

the strength of concrete materials would decrease with increase in the number of cycles, n. The 

rate of strength reduction for these three figures are different, meaning that the strength loss is also 

dependent on the load path. This is consistent with the experimental data and is captured by the 

proposed model. For Figures 6.4, 6.5, and 6.6, the following material parameters are used: 

α=0.745, A=-0.0431, and B=0.552.   

 

Figure 6.4. S-n curve for concrete under uniaxial cyclic loading, experimental data by (Yin 

and Hsu, 1995) 
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Figure 6.5. S-n curve for concrete under biaxial cyclic loading with stress ratio 0.5, 

experimental data by (Yin and Hsu, 1995) 

 

Figure 6.6. S-n curve for concrete under biaxial cyclic loading with stress ratio 1.0, 

experimental data by (Yin and Hsu, 1995) 

Figure 6.7 illustrates the comparison between the experimental data provided by Awad 

(1971) and S-n curves obtained by the model for three uniaxial fatigue loading with different stress 

ratios. As shown, this model captures the effect of stress range on fatigue life of concrete. It can 

be seen that for any constant stress amplitude, the model predicts a greater fatigue life for a stress 

range of 0.65-0.68 than a stress range of 0.41-0.47 and 0 which is in consistent with the 
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experimental data in the literature. For the following figures, the material parameters used are: 

α=0.94, A=-0.0263, β=0.0787, and γ=0.1241. 

Figures 6.8 and 6.9 represent the capability of the model in predicting the ultimate strain 

and residual strain of concrete under uniaxial fatigue loading after different cycles of loading. The 

model predicts higher range of ultimate and residual strain for fatigue loading with lower 

amplitude. This is in conformity with the discussion that was presented earlier and implies that 

concrete becomes more flexible under fatigue loading with lower amplitude. Also, Figure 6.9 

shows the increase in residual strain by increasing the stress range. That is, for a given “n”, the 

residual strain increases with increasing stress range.  

 

Figure 6.7. S-n curves for concrete under uniaxial loading with various stress ranges, 

experimental data by (Awad, 1971) 

Figures 6.10 and 6.11 show the stress-strain curves of concrete under uniaxial monotonic 

and fatigue loading with amplitudes of 0.95fc and 0.9fc. The reduction in strength and longitudinal 

modulus and increase in ultimate strain are predicted by the model. It can also be noticed that the 

ultimate and residual strain predicted by the model for fatigue loading with 0.9fc amplitude is 
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greater than the ones for 0.95fc that follows the arguments discussed earlier in the paper. Not all 

of the cycles to failure are shown in Figure 6.11 for clarity. 

 

Figure 6.8. Ultimate strain versus number of cycles for concrete under uniaxial cyclic 

loading, experimental data by (Awad, 1971) 

 

 

Figure 6.9. Plastic strain versus loading cycles under uniaxial cyclic loading with various 

stress ranges, experimental data by (Awad, 1971) 
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Figure 6.10. Stress-strain curves under cyclic (σmax/fc=0.95) and monotonic uniaxial 

loading, experimental data by (Awad, 1971) 

 
Figure 6.11. Stress-strain curves under cyclic (σmax/fc=0.9) and monotonic uniaxial loading, 

experimental data by (Awad, 1971) 

6.5. Conclusion 

An anisotropic model is utilized to predict the strength behavior of concrete under biaxial 

compressive fatigue loading. Under cyclic fatigue loading, the limit surface is allowed to contract 

and form new surfaces identified as residual strength surface. This is accomplished by proposing 

a softening function that is based on amplitude, stress ratio, and load path. By including these 
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parameters, the effects of strange range and the load paths on the fatigue life of concrete are studied 

and predicted. Furthermore, to capture the effects of fatigue loading on stress-strain behavior of 

concrete, two additional strain softening functions are proposed for changes in ultimate and 

residual (plastic) strains. The influencing factors on ultimate and plastic strains such as amplitude, 

load path, and load range are incorporated into the proposed softening functions. At the end, the 

results obtained from the model are compared with the experimental data in the literature showing 

a good comparison.  



 

88 
 

CHAPTER 7. CONCLUSION AND FUTURE WORK 

7.1. Conclusion 

Fatigue failure can be named as one of the major failures that happens in concrete structures 

such as bridges and pavements. Also, in cold regions like North Dakota that temperature reaches 

to the level of freezing, freeze-thaw process can be implied as a destructive process in concrete 

that induces significant changes in mechanical properties of concrete and its serviceability. 

However, in both phenomena, not many tests exist to rely on to propose a comprehensive model 

that takes all the effective factors into consideration. In the case of fatigue loading, although many 

fatigue tests have been performed, a small portion of those are dedicated to multi axial loading. 

This could be attributed to the difficulties that exist in such tests. Also, such shortcomings exist in 

the case of freeze-thaw process as well. In the many freeze-thaw tests that can be found in the 

literature, the effects of effective factors such as temperature range, frequency of temperature 

fluctuation, and the duration of the process are not studied even though they have considerable 

effects on concrete properties. 

To model these two processes, in this research, the approach is founded on the first 

principle of mechanics and thermodynamics. Continuum damage mechanics is also utilized to 

describe the behavior of concrete under such processes since it is a suitable approach for the crack 

size smaller that the size of the volume element of a specific material. For brittle and quasi-brittle 

material like concrete, the main part of fatigue life deals with the first and second stage of the 

fatigue process which contains small distributed microcracks. Also, based on the literature, freeze-

thaw process does not change the damage process into the concrete and therefore, this approach is 

still valid. 
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To capture induced damage occurred in the concrete, a response tensor R is used. Since the 

behavior of concrete under compressive loading is studied, the second form of damage is 

considered. In the case of compressive loading, damage only occurs in the perpendicular direction 

to the loading direction. Also, concrete strength enhances under biaxial loadings and the damage 

happens in the loading direction as well as non-loading direction.  

In order to capture the strength loss in concrete due to fatigue loading and freeze-thaw 

process, bounding surface approach is used. In this approach limit surface represents the strength 

of the material. In the case of fatigue loading, limit surface is a condition at which the number of 

cyclic loading is equal to one. Applying cyclic loading results in degradation in the material in the 

form of well-spread microcracks and consequently loss of strength which ultimately collapses the 

limit surface and forms new surfaces called residual strength. In order to capture such a behavior, 

a specific form of the softening function was obtained based on S-N curves available in the 

literature. Also, due to microcracks happened during the cyclic loading, concrete becomes more 

compliant that as a result, its failure strain increases compared to failure strain under monotonic 

loading. Therefore, another softening function for ultimate strain is proposed to capture such a 

behavior. 

In the case of freeze-thaw process, the limit surface is defined as a condition at which the 

number of applied freeze-thaw cycles is zero. By applying freeze-thaw cycles to concrete, the limit 

surface collapses and forms new surfaces called residual strength. Since, the mechanism of 

generating cracks and damage into concrete in freeze-thaw process is similar to what is happened 

under fatigue loading, the same approach is utilized to describe such a process. The difference 

between freeze-thaw model and fatigue model in this study is the formulation of their softening 

functions.   
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 Finally, the models predictions are compared to the experimental data available in the 

literature. The results show a good correlation between experimental data and what were obtained 

from the models. Therefore, it shows that the models are capable of capturing the changes in the 

mechanical properties of concrete due to both processes well.  

7.2. Future Work 

Although the models proposed in this research have shown a good correlation with the 

experimental data, there are still some aspects in the models which can be improved. 

In this research, the fatigue loading was assumed to be low frequency. Therefore, the thermal 

effects were neglected in the formulation. It is known that frequency has significant effects on 

fatigue behavior of concrete and although the assumption of low frequency loading is still valid in 

many engineering conditions, there are some high frequency loading conditions that the effects of 

frequency and the heat generated during the process of loading cannot be ignored. Consequently, 

incorporating the frequency parameters into the model could improve the accuracy of the results. 

In the case of freeze-thaw process, due to lack of experimental data on the effects of 

different factors such as temperature range, frequency of temperature fluctuation, and duration of 

the process on mechanical properties of concrete, their effects were not considered in the modeling 

formulation. Therefore, to improve the model, new experiments can be done to measure the effects 

of these factors quantitatively and then modify the model accordingly. 
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