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RESEARCH ARTICLE

Effect of tDCS on Fine Motor Control of Patients in Subacute
and Chronic Post-Stroke Stages
E. L. Pavlova1, R. V. Semenov2, A. B. Guekht2,3
1Department of Clinical Sciences Karolinska Institute, Danderyd University Hospital, Stockholm, Sweden. 2Moscow
Research and Clinical Center for Neuropsychiatry of the Healthcare Department of Moscow, Moscow, Russian
Federation. 3Russian National Research Medical University, Moscow, Russian Federation.

ABSTRACT. In this study we compared the effects of transcra-
nial direct current stimulation (tDCS) in the subacute and chronic
stages of post-stroke recovery. Anodal/sham tDCS was applied
to the primary motor cortex of stroke patients in these stages of
recovery in a cross-over design. The Jebsen–Taylor hand func-
tion test was employed. The repeated-measure ANOVA showed
significant influence of the stimulation type and test performance
time (during/after tDCS) with no overall influence of recovery
stage. The interaction TYPE�TIME�STAGE was significant.
The effect after anodal tDCS in the subacute stage was signifi-
cantly higher compared to the effects in all relevant conditions
including the chronic stage. Therefore, tDCS treatment in the
subacute stage of recovery can be superior, at least for some
patients, to treatment in the chronic stage.

Keywords: tDCS, stroke, Jebsen–Taylor Hand Function
Test, timing

Introduction

T ranscranial direct current stimulation (tDCS) is a
noninvasive brain stimulation technique, which mod-

ulates cortical excitability and activity; it has been
explored as a treatment option for various neurological
conditions (Brunoni, Nitsche, & Loo, 2016; Lefaucheur
et al., 2017). Influence of tDCS on recovery after stroke,
particularly on the motor function, has been examined in
numerous studies (Kang, Summers, & Cauraugh, 2016;
Nowak, Grefkes, Ameli, & Fink, 2009; Triccas et al.,
2016). They report 10% to 30% improvement of forearm
motor function in stroke patients. One possible way to
increase the effect could be through earlier intervention
after disease onset, as neuroplastic changes are more
likely to occur at the earlier stages of recovery after
stroke (Biernaskie, Chernenko, & Corbett, 2004; Hara,
2015). However, which stage of recovery is most recep-
tive for tDCS application has not yet been delineated. In
this study, we address this question and compare effects
of tDCS in subacute and chronic stages of recovery
post-stroke.
For rehabilitation after stroke, anodal tDCS of the pri-

mary motor cortex (M1) on the lesioned side or cathodal
stimulation of M1 on contralateral side is usually employed
(Nowak et al., 2009). Anodal stimulation leads to the
increase in cortical excitability and activity, while cathodal
stimulation – decreases it (Utz, Dimova, Oppenlander, &

Kerkhoff, 2010). Direct current results in subthreshold
polarity-specific polarization of neuronal membranes
(Bikson et al., 2004; Nitsche & Paulus, 2000; Purpura &
McMurtry, 1965). After several minutes of stimulation,
excitability changes last after the end of the session
(Nitsche & Paulus, 2000, 2001; Nitsche et al., 2003b).
These changes are related to glutamatergic plasticity
(Nitsche et al., 2003a), presumably gated by GABAergic
downregulation (Stagg et al., 2009). This plasticity is con-
sidered to be similar to neurophysiological correlate of
learning – long-term potentiation (LTP) and long-term
depression (LTD) – since it is associated with N-methyl-D-
aspartate (NMDA) receptors, calcium channels and protein
synthesis (Fritsch et al., 2010; Nitsche et al., 2003a). In add-
ition to inducing changes to brain regions under the electro-
des, tDCS also influences functional connectivity and
activity in the remote areas (Polania, Nitsche, & Paulus,
2011a; Polania, Paulus, Antal, & Nitsche, 2011b).
Most of the tDCS studies are performed in the chronic

stage of recovery post-stroke when functions are stabi-
lized. Although chronic stroke is defined as > 1month
after stroke, in these studies patients with stroke older
than 6months are usually investigated. Yet, neuroplastic-
ity is likely to be greater at the earlier stages of recovery
(acute: 1 day – 1week, subacute: 1week – 1month after
stroke). As shown in animal models, focal ischemic dam-
age is accompanied by several weeks window of
increased plasticity (Biernaskie et al., 2004). This corre-
sponds to the fact that almost all recovery from impair-
ment in humans occurs in the first three months.
Accordingly, early rehabilitation facilitates motor recov-
ery after stroke more efficiently (Kwakkel et al., 2004).
It is also known that re-learning of the lost motor func-

tions after stroke is accompanied by plastic functional
reorganization of brain circuits (Pellegrino et al., 2012;
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V�arkuti et al., 2013). It can therefore be suggested that
modulation of the brain excitability with tDCS can be
more efficient in the early stages of recovery after stroke.
Most of the studies, investigating tDCS influence in

the acute and subacute stage of recovery post-stroke
showed beneficial effects (Alber, Moser, Gall, & Sabel,
2017; Berretta, Tzeng, & Clarkson, 2014; Chang, Kim,
& Park, 2015; Lee & Chun, 2014; Stinear & Byblow,
2014; Wang et al., 2014). In the study by Chang et al.
(2015), improvement in low limb function and higher
cortex excitability in the anodal group compared to sham
was observed when 24 subacute stroke patients received
10 sessions of anodal/sham tDCS combined with conven-
tional physical therapy. Another investigation revealed
significantly greater recovery of visual fields in seven
homonymous hemianopia subacute stroke patients treated
with anodal tDCS and vision restoration training com-
pared to controls (Alber et al., 2017). A plateau in recov-
ery was achieved faster in acute stroke patients after
bilateral priming combined with physiotherapy in the
study by Stinear and Byblow, (2014).
Yet, other studies have not shown any additional

improvement from tDCS (Hesse et al., 2011; Kim et al.,
2014; Leon et al., 2017; Mazzoleni, Tran, Iardella,
Dario, & Posteraro, 2017; Rossi, Sallustio, Di Legge,
Stanzione, & Koch, 2013; Triccas et al., 2015). No group
difference was revealed when bilateral movement therapy
was combined with anodal, cathodal or sham tDCS in
severe impaired subacute stroke patients (Hesse et al.,

2011). In another study (Rossi et al., 2013) no improve-
ment of motor recovery after 5-day anodal tDCS to acute
stroke patients was obtained.
In a Cochrane review (Elsner, Kugler, Pohl, &

Mehrholz, 2013) no effect of different stages of recovery
post-stroke (acute, subacute and chronic) was found. Yet,
a tendency to greater clinical effects in a sub-group of
patients in the subacute stage of recovery after stroke
with time from the stroke not more than four weeks was
observed when patients were stimulated with cathodal
tDCS or cTBS (Nicolo et al., 2018).
These studies therefore do not allow concluding which

stage of recovery post-stroke is preferential for the stimula-
tion. Absence of the effects of tDCS in the early stages in
some studies can depend on other factors than stage of recov-
ery. For example, in the study by Hesse et al. (2011) severity
of stroke could be a limiting factor. On the other hand, pres-
ence of the effects in the acute/subacute stage does not pro-
vide enough information about possible effects of the same
treatment in the chronic stage. Also, since tDCS effects in
stroke population has a high inter-individual variability
(Pavlova et al., 2017), we wanted to investigate tDCS effects
in the same patients in cross-over design and directly com-
pare motor effects of anodal tDCS of the primary motor cor-
tex in different stages of recovery post-stroke. The study
includes subacute (from two to four weeks after stroke) and
chronic stages (> six months after stroke). We hypothesized
that the effect of the stimulation in the subacute stage
exceeds the one obtained in the chronic stage.

FIGURE 1. (A) Time course of the study. (B) Time course of one study session. JTT – Jebsen–Taylor Hand function test.
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Method

Patients. 16 subacute stroke patients (9 women; mean
age 67.7 ± 3.4 years, mean time from stroke
24.5 ± 2.9 days) were enrolled in the study. Inclusion cri-
teria were: stroke 2-4weeks prior to the study, age
18–75 years, moderate/mild paresis of the hand, ability to
understand the instruction/to communicate. Exclusion cri-
teria: metallic implants in the head or heart, epilepsy,
skin irritation, alcohol and/or drug dependence, other
neurologic, psychiatric or severe somatic disorders, preg-
nancy/lactation. All patients were out-patients; the study
was performed at the Moscow Research and Clinical
Center for Neuropsychiatry of the Healthcare Department
of Moscow.
All patients gave an informed consent. The study was

approved by the ethical committee of the Moscow
Research and Clinical Center for Neuropsychiatry of the
Healthcare Department of Moscow.
Three patients dropped out of the study before partici-

pation during the chronic stage – one died and two
refused to participate due to fatigability. Thirteen patients
were included in the analysis.

Experimental Protocol and Design

This cross-over balanced randomized single-blinded
study covered two periods for each patient: subacute
(2–4weeks) and chronic (>6months after stroke). Each
patient participated in a preliminary training session and
four stimulation sessions (one anodal and one sham ses-
sion in each stage of recovery post-stroke). Clinical
evaluation of the degree of hand paresis was done by
neurologist at each stage of recovery (before first and
third tDCS sessions) with help of 0–5 scale (0-no move-
ment, 5-full recovery). The order of sessions was con-
stant for each patient in the two recovery stages and
balanced between participants (Figure 1A). One week
interval was present between sessions of tDCS to minim-
ize carryover effects.
JTT was performed 10 times during the training ses-

sion to ensure stable results. During stimulation sessions,
JTT was performed once for familiarization, three times
– before tDCS (baseline), three times – immediately after
switching on the stimulator (during tDCS) and three
times – immediately after tDCS (Figure 1B; Fregni
et al., 2005, Hummel et al., 2005). Performing JTT three
times (18 items altogether) took approximately
10minutes since the patients needed rest between items,
and the next item had to be positioned on the table. At
the end of each session, the patients were asked whether
they received the real or sham stimulation.
The trial was single-blinded due to the limitations of

the employed tDCS equipment which did not allow the
performance of double-blinded trials. Randomization and

tests sessions were conducted by the non-
blinded researcher.

Transcranial Direct Current Stimulation

Bipolar stimulation was delivered by a battery-driven
electrical stimulator Reamed-polaris (Vozrojdenie,
Russia), developed for the transcranial micropolarization
– method of noninvasive brain stimulation with direct
current and, when similar parameters of stimulation are
applied, is an analog to tDCS. The device is approved
for the clinical use in Russia. Iron electrodes, covered
with a saline-soaked sponge were placed on the primary
motor cortex (size of the sponge electrode was
3.5� 5 cm). Localization of the position of the primary
motor cortex electrode was determined with transcranial
magnetic stimulation (TMS) via defining the hot spot of
the first dorsal interosseous muscle (FDI) contralateral to
the performing hand. The reference electrode was placed
above the contralateral orbit (size of the sponge electrode
was 5� 7 cm). For active conditions tDCS intensity was
0.5mA (resulting in current density of 0.0286mA/cm2 in
active electrode). It is worth noting that the current was
reduced from the most commonly used 1mA to 0.5mA
to compensate for the electrode size and to keep current
density constant (0.5mA/17.5 cm2 ¼ 0.0286mA/cm2).
Stimulation was applied during 10minutes in active con-
ditions. In the sham conditions, tDCS stimulation was
performed for 30 seconds only.

Transcranial Magnetic Stimulation (TMS)

TMS was performed using a standard double (‘figure-
of-eight’) coil connected to a biphasic MagPro stimulator
(MagVenture GmbH, Willich, Germany). The coil was
placed tangentially to the scalp, with the handle pointing
posterolaterally at a 45� angle from the midline. Surface
electromyography was recorded from both right and left
FDI by use of surface electrodes. The site at which TMS
of slightly suprathreshold intensity consistently elicited
the largest MEP in the FDI muscle was marked as the
motor hotspot.

Jebsen–Taylor Hand Function Test

The Jebsen–Taylor Hand function test (JTT) is widely
used to evaluate fine hand motor function (Jebsen,
Taylor, Trieschmann, Trotter, & Howard, 1969). The test
assesses a wide range of daily hand functions and
included initially seven items. The test has been shown
to be valid and reliable (Ferreiro, Santos, & Conforto,
2010; Jebsen et al., 1969; Stern, 1992). As previously
suggested, one of the items (writing a sentence) was
excluded since some of the patients used their non-dom-
inant hand for writing (Boggio et al., 2007; Fregni et al.,
2005; Hummel et al., 2005). Six items were included in
the test: turning cards, picking up small objects, picking
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up beans with a spoon to simulate feeding, stacking
checkers, and lifting light and heavy cans. Patients were
instructed to perform task as quickly and accurately
as possible.

Data Analysis
The results were analyzed with MATLAB R2012b. To

evaluate the blindness of patients to tDCS type and pos-
sible change of the clinical status of the patients between
subacute and chronic stages, sign test was performed.
Performance time during the training of the JTT and the
baselines of each tDCS experiment were assessed by the
repeated-measure ANOVA. The inverted percent change
of the total JTT time relative to the baseline was a pri-
mary outcome measure of the study and was used as a
measure of improvement in the test (positive values rep-
resent improved performance). Improvement during and
after anodal/sham tDCS was evaluated with the repeated-
measure ANOVA with three factors (STAGE, TYPE and
TIME). The factor STAGE compared the values between
subacute and chronic stages, factor TYPE – different
tDCS conditions (anodal vs sham) and factor TIME –

performance during or after the stimulation. Post-hoc
analysis was performed with the Fisher LSD test. This
data were found to be normally distributed (evaluated
through the Kolmogorov-Smirnov test). The time taken
for the performance of each item and the percent change
of the item performance time during/after tDCS relative
to baseline was calculated. The improvement (the inverse
of the percent change) was assessed with the repeated-
measure ANOVA in order to evaluate the impact of
tDCS on individual items and, eventually, the types of
movements most sensitive to stimulation.
Since two distinct patterns of effects were seen after

anodal stimulation in the subacute stage – an improve-
ment of more than 7% or no distinct increase – the
patients were distributed into two groups based on the
observed patterns. Repeated-measure ANOVA with the
additional factor GROUP and relevant post-hoc Fisher
LSD tests were performed.

Results

No adverse events/side-effects were observed. Participants
could poorly distinguish between real and sham stimulation
conditions (according to the results of the questionnaire)
(Sign Test, z¼ 1.77, p¼ 0.08). The mean time between
stroke and the beginning of the study was 24.6 ±2.6 days.
The mean time between stroke and the second part of the
study (chronic stage) was 232.3± 59.1 days. The degree of
hand paresis improved from the subacute to chronic stage in
7 of 13 subjects. No change was seen on the group level
(Z¼ 1.22, p¼ 0.22). All patients could perform the
Jebsen–Taylor test. Performance of the test during prelimin-
ary training session for 10 times lead to stabilization of

performance already after the fifth time (F(9,135) ¼ 12.07,
p¼ 0.00000; Figure 2). Baseline performance during four
tDCS sessions did not change (F(3,36) ¼ 0.23, p¼ 0.87; not
shown; for mean baseline values see Table 1). Baseline clin-
ical data are presented in Table 1. All patients reported as
being right-handed before stroke. All patients had MEPs as
revealed with TMS so that the exact position of the M1 could
be defined.
The repeated-measure ANOVA showed significant

influence of the stimulation type (anodal or sham) (factor
TYPE; F(1,12) ¼ 9.99, p¼ 0.008), of the Jebsen–Taylor
test performance time relative to stimulation (during or
directly after tDCS) (factor TIME, F(1,12) ¼ 15.11,
p¼ 0.002), but no influence of the stage of recovery
post-stroke (subacute or chronic) (factor STAGE; F(1,12)
¼ 1.49, p¼ 0.25). The interaction between type of stimu-
lation, stage of recovery and time of the test performance
(but not pairwise interactions between factors) was sig-
nificant (F(1,12) ¼ 7.39, p¼ 0.02; Table 2, Figure 3),
meaning that outcome of stimulation depended on all
three factors, including stage of recovery. Post-hoc com-
parisons showed a significantly higher effect (p¼ 0.03)
in the subacute stage after the stimulation compared to
chronic stage. The comparison between anodal and sham
stimulation showed significant difference after tDCS in
the subacute (p¼ 0.0001) but not in the chronic stage
(p¼ 0.39); the effect of anodal tDCS was higher after
the stimulation compared to concurrent stimulation in the
subacute stage (p¼ 0.001, Figure 3).
The interaction STAGE�TIME�TYPE�SUBTEST was

not significant (F(5,60) ¼ 0.78; p¼ 0.57), meaning that
there was no detectable differential effect of tDCS on the
individual subtests (Table 3).
Note, that individual patients’ results showed consider-

able variability (Figure 4). One can see some clear

FIGURE 2. The mean total time of Jebsen–Taylor
Hand function test during ten sessions of training. -
mean, vertical bars denote 0.95 confidence intervals.
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responders with improvement of the test performance
after the anodal stimulation in the subacute stage (Group
1) and non-responders with no improvement in this con-
dition (Group 2). Six patients were classified as Group 1
(patients 3, 7, 8, 9, 10, 11; Figure 4). No difference
between Groups 1 and 2 was seen in the degree of par-
esis in any of recovery stages (one-way ANOVA;
F(1,11) ¼ 0.62, p¼ 0.45 and F(1,11) ¼ 0.28, p¼ 0.61,
respectively), in the type (chi-sqare, 0.75), location of
stroke (chi-sqare, 0.31) and age (t¼ 0.26). Yet, all Group
1 patients were women; six men and one woman
belonged to the Group 2 (chi-sqare, 0.002).
In the Group 1, post-hoc comparisons obtained from

the interaction STAGE�TIME�TYPE�GROUP revealed
significant differences between anodal and sham tDCS

both during and after stimulation in the subacute stage
and during stimulation in the chronic stage. The effect of
the anodal stimulation was highest in the subacute stage
after stimulation (Figure 5A).
Despite minor effects of tDCS in the Group 2, the dif-

ferences between anodal and sham tDCS were significant
both during and after stimulation but, on contrast to the
Group 1, only in the chronic stage; the effect of anodal
tDCS after the stimulation was significantly higher in the
chronic compared to subacute stage (Figure 5B).

Discussion

The aim of our study was to directly compare the
motor effects of single-session anodal tDCS in subacute
and chronic stages in a cross-over design. It was revealed
that the effect of tDCS depends on several factors,
including the stage of the recovery. The highest effect is
shown for the anodal tDCS in the subacute stage of
recovery when assessed after the end of stimulation.

Post-Stroke Recovery Stages and tDCS

Some positive effects of tDCS on stroke patients have
been described from acute to chronic recovery stages
(Henrich-Noack, Sergeeva, & Sabel, 2017). Yet, the mecha-
nisms of this influence can be different. Upregulation of N-
methyl-D-aspartate receptors (Que, Schiene, Witte, &
Zilles, 1999), cortical disinhibition and dysregulation of
GABAergic neurotransmission (Buchkremer-Ratzmann &
Witte, 1997; Redecker, Wang, Fritschy, & Witte, 2002) are
observed after stroke. Along with this, neuronal excitability
is increased in the early stages of recovery post-stroke.

TABLE 1. Clinical characteristics of the patients.

Sex Age
Pares
side

Days after
strokea

Paresis degree
subacuteb (0–5)

Paresis degree
chronicb (0–5)

Total JT
baselinec

Stroke type
(Cortical/Subcortical

Patient 1 F 62 L 22 4.5 4.5 33.7 ischemic (C)
Patient 2 M 65 R 23 4.0 4.5 43.8 hemorrhagic (S)
Patient 3 F 66 L 20 3.5 4.0 59.1 ischemic (S)
Patient 4 M 70 L 23 4.5 4.5 29.0 ischemic (C)
Patient 5 M 74 L 25 3.5 4.5 43.6 ischemic (C)
Patient 6 M 69 L 27 4.0 4.5 38.3 ischemic (S)
Patient 7 F 72 L 26 4.5 4.5 27.8 ischemic (S)
Patient 8 F 62 L 24 4.5 4.5 26.8 ischemic (C)
Patient 9 F 68 L 26 4.5 4.0 34.9 hemorrhagic (S)
Patient 10 F 65 L 28 3.5 4.0 54.6 hemorrhagic (S)
Patient 11 F 72 L 23 4.5 4.5 28.8 ischemic (S)
Patient 12 M 68 R 27 4.0 4.5 44.4 ischemic (S)
Patient 13 M 67 L 22 3.5 4.0 55.9 hemorrhagic (S)

aDays after stroke at the beginning of the study.
b0 – no movement, 5 – full recovery; assessed before first session.
cMean total baseline JT time; was calculated for four baseline times in four sessions: (B1 þ B2 þ B3 þ B4)/4.

TABLE 2. Results of ANOVA.

d.f. F-value p-value

STAGE 1 1.49 0.25
TYPE 1 9.99 0.008�
TIME 1 15.10 0.002�
TIME�TYPE 1 4.20 0.06
TIME�STAGE 1 3.76 0.08
STAGE�TYPE 1 1.71 0.22
STAGE�TYPE�TIME 1 7.39 0.02�

The repeated-measure ANOVA of the inverted percent
change of the total JTT time relative to baseline.
Asterisks indicate significant results (p< 0.05). d.f. –

degrees of freedom.
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Theoretically, anodal tDCS applied in the acute stage bears
the risk of further neural damage, since this stage is charac-
terized by excitotoxicity when neurons can be damaged by
excessive excitatory stimulation. Yet, improvement from
anodal stimulation is shown in this period, probably, due to
the vascular mechanisms (Kurimoto et al., 2010).
In the subacute stage repeated tDCS can recruit neuro-

protective and anti-inflammatory mechanisms, as well as
promote neural growth (Brus-Ramer, Carmel, Chakrabarty,
& Martin, 2007; Corredor & Goldberg, 2009; Henrich-
Noack et al., 2005). Single-session anodal tDCS could
make local reduction of GABA concentration observed
after stimulation (Stagg et al., 2009) relatively more visible
since the baseline GABAergic neurotransmission initially
decreased in early stages of recovery (Buchkremer-
Ratzmann & Witte, 1997; Redecker et al., 2002). Among
others, this mechanism could potentially increase the effect
of tDCS compared to the chronic stage even if only single-
session stimulation is applied.
In our study, a significantly greater effect is seen in

the subacute stage (compared to the chronic stage) after
stimulation with anodal tDCS to the primary motor cor-
tex; however, mean values did not exceed 10% in either
condition. The latter fact can be compared with several
other studies investigated the effect of single-session
tDCS measured with the Jebsen–Taylor test in the
chronic stage (Boggio et al., 2007; Fregni et al., 2005;
Hummel et al., 2005). 9% improvement was observed in

the study by Hummel et al. (2005), when anodal stimula-
tion was applied to M1, 7% and 12% – in the study by
Fregni et al. (2005) when anodal tDCS of the affected
hemisphere or cathodal tDCS of unaffected hemisphere,
respectively, was employed. Repetitive stimulations (five
daily sessions of cathodal stimulation) in the study by
Boggio et al. (2007) resulted in 17% improvement.
Therefore, the mechanisms which define the effects of
single-session tDCS do not seem to play a substantial
role for the eventual additional benefits of stimulation in
the subacute stage of recovery.
In addition to plasticity mechanisms engaged in a sin-

gle-session tDCS, long-term treatment can support the
rescue of the neurons in the immediate vicinity of stroke
site (prenumbra), which undergoes apoptosis in subacute
stage of recovery post-stroke (Corredor & Goldberg,
2009; Guglielmo et al., 1998), as well as re-activate
functionally inactive neurons in areas remote from the
damage (Henrich-Noack et al., 2005). Electrical activity
also modulates plasticity mechanisms which mediate
rewiring of neural connections (Brus-Ramer et al., 2007).
Accordingly, some studies investigating tDCS effects

after repetitive sessions in the subacute stage show
higher effects (Kim et al., 2010; You, Kim, Chun, Jung,
& Park, 2011). In the study by You et al. (2011), effect
of 10 sessions of cathodal tDCS of the right Wernicke's
area of subacute stroke patients is 25% bigger than in
sham tDCS in auditory motor comprehension. In the

FIGURE 3. Inverted mean percent change of the total JTT time relative to baseline (positive values represent improved
performance). Significant interaction between type of stimulation, stage of stroke and time of the test performance was
observed (repeated-measure ANOVA, F(1,12) ¼ 7.39, p¼ 0.02). Relevant post-hoc comparisons (Fisher LSD test) are shown.� p< 0.05. ��p< 0.01, ���p< 0.001.
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study by Kim et al. (2010), effect of 10 sessions of cath-
odal tDCS of M1 in subacute stroke patients exceeds the
effect of sham tDCS by 87% and effect of anodal tDCS
exceeds the effect of sham by 93% on follow-up when
measured by Fugl-Meyer Assessment.

Assessment during and after tDCS

Among other factors, timing of tDCS application is an
important factor for the size and direction of stimulation
effect (Ziemann & Siebner, 2008). In our study, the sub-
acute stage of recovery after stroke is associated with
significantly greater effects after tDCS compared to con-
current stimulation. Training during the stimulation has
also been shown to lead to improvement in performance
(Reis et al., 2009; Reis & Fritsch, 2011; Stagg et al.,
2011). On the other hand, deterioration of performance is
observed when both anodal and cathodal tDCS are

applied prior or after motor task (Stagg et al., 2011). The
former is explained by gating mechanisms when shift in
membrane polarization causes strengthening of synapsis
and latter – by homeostatic metaplasticity which stabil-
izes the system after previous too high activity.
Depolarization which leads to subsequent LTP can be

achieved either by disinhibition or by direct activation
(Ziemann & Siebner, 2008). It was shown that after anodal
tDCS local concentration of GABA is decreased and con-
centration of glutamate did not increase significantly (Stagg
et al., 2009). Yet, relative contribution of GABA/glutamate
in response to anodal tDCS can vary during vs after the
stimulation, interact with the baseline neurotransmission
and eventually lead to differential motor responses.
In addition to the timing of test, other factors includ-

ing stimulation protocol and exact learning task can also
influence the effect of stimulation. For example, effect of
tDCS on the subsequent task learning was shown for

TABLE 3. Mean time and percent of improvement of the subtests performance in different conditions.

Baseline
During tDCS After tDCS

Subtest sec (SD) sec (SD) % change sec (SD) % change

Subacute stage
Sham tDCS
Turning cards 6.44 (2.41) 6.27 (2.36) 2.81 6.22 (2.28) 3.28
Picking up small objects 9.31 (2.22) 9.21 (2.17) 1.00 9.25 (2.15) 0.43
Stacking checkers 6.28 (1.97) 6.21 (1.96) 1.11 6.15 (2.01) 2.40
Picking up beans 9.28 (2.65) 9.29 (2.56) �0.41 9.38 (2.52) �1.74
Lifting light cans 5.68 (1.76) 5.56 (1.66) 1.88 5.53 (1.57) 1.65
Lifting heavy cans 5.53 (1.71) 5.45 (1.66) �0.76 5.45 (1.67) 0.95
Anodal tDCS
Turning cards 5.97 (2.28) 6.00 (2.01) �2.40 5.86 (2.03) 0.60
Picking up small objects 9.19 (2.15) 8.79 (2.22) 4.70 8.51 (2.45) 8.41
Stacking checkers 6.14 (1.83) 5.91 (1.84) 4.10 5.74 (1.98) 7.70
Picking up beans 9.23 (2.43) 9.09 (2.44) 1.76 8.93 (2.44) 3.57
Lifting light cans 5.70 (1.69) 5.54 (1.70) 3.16 5.36 (1.76) 6.69
Lifting heavy cans 5.37 (1.66) 5.31 (1.67) 1.22 5.07 (1.66) 5.90
Chronic stage
Sham tDCS
Turning cards 6.49 (2.14) 5.96 (2.05) 7.57 5.81 (2.01) 9.61
Picking up small objects 9.04 (1.90) 8.61 (2.17) 5.14 8.52 (2.25) 6.26
Stacking checkers 6.04 (1.75) 5.93 (1.76) 1.92 5.80 (1.74) 4.08
Picking up beans 9.00 (2.09) 8.86 (2.10) 1.59 8.77 (2.05) 2.39
Lifting light cans 5.47 (1.62) 5.32 (1.58) 2.51 5.34 (1.53) 1.98
Lifting heavy cans 5.27 (1.59) 5.22 (1.57) 0.80 5.19 (1.64) 1.62
Anodal tDCS
Turning cards 5.80 (2.06) 5.59 (2.05) 3.96 5.60 (2.06) 3.79
Picking up small objects 8.50 (2.20) 8.16 (2.19) 4.10 8.22 (2.11) 2.88
Stacking checkers 5.74 (1.84) 5.51 (1.80) 4.28 5.43 (1.85) 5.87
Picking up beans 8.67 (2.15) 8.40 (2.12) 3.20 8.37 (2.14) 3.55
Lifting light cans 5.27 (1.69) 5.05 (1.69) 4.49 5.08 (1.69) 3.86
Lifting heavy cans 5.10 (1.72) 4.94 (0.47) 3.18 4.93 (1.67) 3.33
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explicit but not implicit task (Stagg et al., 2011). JTT
employed to assess tDCS effects in our study has been
used in the number of studies (Boggio et al., 2007;
Fregni et al., 2005; Hummel et al., 2005). In the study
by Hummel et al. (2005) performed in the chronic stage
of recovery post-stroke, the decrease in the JTT time per-
formance was shown both during and after anodal stimu-
lation. The effects were also significant both during and
after cathodal stimulation (Boggio et al., 2007; Fregni
et al., 2005). Yet, in the study by Fregni et al. (2005)
anodal tDCS was associated with significant effects
when the JTT was performed after but not during the
stimulation.
The effect was also revealed during tDCS in other stud-

ies, using different tests (like the Strength-Dexterity task as
in the study by Pavlova, Kuo, Nitsche, and Borg (2014)).

Comparison of Group 1 and Group 2

Group 1 showed a significant difference between
anodal and sham tDCS both during and after stimulation
in the subacute stage and significant decrease in the
chronic stage. This pattern was opposite to the one of
the Group 2: Though the effects of tDCS for this group

were very small (only 1–1.3% higher improvement in
anodal than in sham tDCS in the chronic stage), these
differences both during and after tDCS were significant,
moreover, significantly higher effects in the chronic
compared to subacute stage were observed. Therefore,
the possibility that for some patients tDCS treatment in
chronic stage can be superior compared to subacute
stage, cannot be ruled out. Further studies with optimal
parameters of stimulation (for example, stronger current,
see Study Limitations) and sufficiently big sample size
should be used to address this issue.
Group 1 and 2 patients did not differ in degree of par-

esis, level or type of stroke. Surprisingly, all Group 1
patients were women whereas six of seven Group 2
patients were men. Although such dramatic difference in
tDCS responses between genders was not reported previ-
ously, stronger modulatory effects of tDCS in women
has been observed in some previous studies (Chaieb,
Antal, & Paulus, 2008; Kuo, Paulus, & Nitsche, 2006).
In the study by Chaieb et al. (2008), a higher excitability
in women compared to men in response to the excitatory
anodal stimulation of visual cortex was observed. On the
other hand, stronger/longer inhibitory effects in response
to cathodal tDCS of the motor cortex were obtained in

FIGURE 4. Inverted percent change of the total JTT time relative to baseline (positive values represent improved
performance) in individual patients (eight measurements with JTT in four sessions).
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women in the study by Kuo et al. (2006). These effects
can be attributed to the impact of female gonadal sex
hormones which influence cortical plasticity: Estrogens
enhance neuronal excitability, in particular, by acting on
the NMDA receptors while progesterone diminishes it
(B€ackstr€om, 1976; Inghilleri et al., 2004; Lee et al.,
2018; Smith, Adams, Schmidt, Rubinow, &
Wassermann, 2002; Woolley & McEwen, 1992). Since
NMDA-receptors are upregulated early after stroke (Que
et al., 1999), gender-related factors can interact with cur-
rent brain plasticity status and play a role in shaping
responses to tDCS in relation to the time-window for
stimulation after the stroke.

Study Limitations

The study was single-blinded due to the tDCS device
characteristics. This could potentially cause bias in the
sessions’ conductance. Another limitation of the present
study is a small sample size. Only mechanisms which
can be revealed in a single-session tDCS were investi-
gated in the study. In our study, current was decreased to
0.5mA to compensate for the smaller electrode size and
keep the current density 0.029mA/cm2. However, in
some studies current of 2mA with density 0.057mA/cm2

were shown to be beneficial for the stroke recovery

(Khedr et al., 2013). Therefore, the low current may
have contributed to the relatively small effect size of this
study, especially in its chronic stage part.
Also, since our data were acquired in stroke patients

with mild/moderate upper limb paresis and preserved
MEP, the obtained information can be applicable only to
this patient group. Presence of MEPs on the early stage
of recovery post-stroke (<7 days) is a good predictor of
the recovery, especially in severe stroke patients (Stinear,
2017). Yet, in our study an improvement in the paresis
degree from subacute to chronic stage was not seen on
the group level (was observed only in seven patients)
despite of the presence of the MEPs in the subacute
stage in all patients. This could be due to the milder
stroke of our patients, insufficient sensitivity of the clin-
ical scale or the timing of MEP assessment – instead of
the first seven days as specified by Stinear (2017), in our
study the mean time was 24.6 days after the stroke.

Conclusions

Many factors interact to determine the motor effects of
a single-session of anodal tDCS to the primary motor
cortex, such as: the stage of recovery post-stroke, type of
stimulation, timing of the assessment and factors related
to gender. Among all investigated conditions, the highest

FIGURE 5. Inverted mean percent change of the total JTT time relative to baseline in Group 1 (A) and Group 2 (B).
Repeated-measure ANOVA with factors STAGE, TYPE; TIME and GROUP (F(1,11) ¼ 35.4; p¼ 0.0001). Relevant post-hoc
comparisons (Fisher LSD test) are shown. �p< 0.05. ��p< 0.01, ���p< 0.001.
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effect of tDCS was seen in the subacute stage when it
was assessed after the end of anodal stimulation.
Therefore, tDCS treatment in the subacute stage of
recovery can be superior over the treatment in the
chronic stage. Yet, some patients did not respond to
tDCS in the subacute stage (Group 2). Their effect of
stimulation increased significantly in the chronic stage
though stayed negligibly small. Post-hoc analysis
revealed the gender difference between groups. The
Group 1 which defined the noticeable response in the
subacute stage included only women, whereas Group 2
consists mostly of men. No difference in other clinical
parameters was seen.
The study underlies vulnerability of tDCS to the num-

ber of factors and importance of methodological issues
in tDCS application. Gender should be taken into
account when planning tDCS studies, especially involv-
ing different stages of recovery post-stroke. Another fac-
tor is timing of the assessment; this issue is directly
connected to the mechanisms of tDCS action which still
needs to be resolved. Also the exact test which is sup-
posed to reveal the effect and previous activity would
play a role. The eventual additional benefits of stimula-
tion in the subacute stage of recovery post-stroke (neuro-
protection, promotion of neuronal growth, anti-
inflammatory properties) should be investigated in the
further studies in which repeated sessions of tDCS would
be employed.
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