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Abstract

Process monitoring and controller performance assessment are essential tools for en-

suring that manufacturing processes operate safely, predictably, meet quality targets

and operate profitably. Efficient techniques for process analysis and controller assess-

ment facilitates are important for identifying areas for process and control improve-

ment. Sheet- and film-forming processes pose special challenges for these techniques,

because they often have periods of non-steady-state operation, and can exhibit both

spatial and temporal variations. Existing process evaluation and analysis method-

ologies are oriented primarily for processes under steady operation, and focus on

temporal variations.

New tools are proposed to address limitations on the application of minimum-

variance-based controller performance assessment to metal rolling processes. Exten-

sions are proposed which address: 1) non-constant deadtime that arises from changes

in rolling speed during startup, steady operation and wind down in the rolling process;

2) constraints on control actions; and 3) different sampling intervals for the manipu-

lated variable input and the process output. The efficacy of the proposed extensions

are demonstrated using an aluminum rolling mill and simulation examples.

Singular Spectrum Analysis (SSA) is a promising technique for analyzing time

series that decomposes data into a number of interpretable frequency components.
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New filtering and spectral interpretations of SSA are proposed in this work, includ-

ing a modification to the computational procedure that produces a filter with zero-

phase lag. Links between SSA are made to other signal processing and time series

techniques. The potential for SSA in analyzing chemical manufacturing processes is

demonstrated using an extended analysis of a two-tank process under periodic oper-

ation. An SSA-based approach is proposed for computing minimum-variance-based

controller performance assessment, and as illustrated using an example. This tech-

nique has potential for providing more detailed diagnosis of elements causing poor

controller performance.

The effectiveness of a recently proposed two-dimensional SSA (2D-SSA) algorithm

is investigated for the analysis of two-dimensional problems that frequently arise in

sheet forming processes. The use and interpretation of this algorithm is demonstrated

using two simple examples of rolling processes with known defects in the roll. 2D

spectra are computed using the 2D-SSA algorithm, and are interpreted.
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ỹk+1 equally-spaced length-sampled data
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Chapter 1

Introduction

1.1 Background

In industry, customer/producer demands are ever-increasing, including more critical

safety and environmental policies, improved product quality, increased product accep-

tance, higher production rate, and reduced material and energy assumption. To meet

customer/producer demands and eventually fulfill the need of profit maximization,

process analysis, control, monitoring, and optimization tools are applied to achieve

these goals. Process analysis is often considered as a pre-step for control design, while

process monitoring and optimization are post-steps after control implementation. In

this work, the research focuses on two areas: process monitoring and analysis.

Typical monitoring techniques are classified into two groups – controller perfor-

mance assessment (CPA) and statistical process monitoring (SPM). CPA techniques

are often identified as diagnosis tools and are used to assess controller performance.

When there is a significant performance degradation in a control system, the plant

personnel must be notified, and effective monitoring techniques are expected to locate
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potential root-causes. SPM techniques are not totally separated from control moni-

toring activities, meaning that they are a complement to each other as summarized

in [1]; they are capable of detecting and diagnosing faults in processes, specifically

in process variables, sensors, actuators and equipment. Cinar [1] points out that

before implementing control monitoring, the aforementioned process faults can be

eliminated by performing process monitoring. Details on two types of monitoring

will be provided in Chapter 2.

This thesis is focused on CPA techniques in particular. While the CPA technique

has been applied to many different industries, the lack of the applications in sheet

forming processes motivates the research in this thesis. Sheet forming processes cover

a wide range of industrial processes such as paper-making, metal rolling, and coating.

This thesis makes a contribution to address practical issues in CPA applications of

metal rolling processes.

While process monitoring helps the investigation of sheet forming processes, there

is need for the understanding of complex chemical processes. Analysis techniques are

used to summarize data information and understand a process in this thesis. Process

modelling is a standard way to do process analysis. The modelling techniques are of-

ten classified into two different categories: parametric and nonparametric techniques.

In this work, nonparametric techniques are suggested because they are data-driven,

and routine process data are always available and not costly. Moreover, there is no

need to interrupt a process when preparing the data for analysis, and this is a signif-

icant benefit to the industry. Among a large number of nonparametric techniques, a

newly developed technique – Singular Spectrum Analysis (SSA) – is proposed. The

research described in this thesis makes two significant contributions to the SSA area:
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1) a more thorough understanding of this methodology from a filtering and frequency

perspective; 2) the promotion of this novel technique to process analysis in the chem-

ical industry.

1.2 Motivations and Contributions

Effective control is the means by which safe operation is ensured, and profitability

is maximized. Process monitoring, analysis, and optimization tools assist in control

design, and in process operation. Two challenges are regularly encountered in con-

trolling industrial processes: unsuccessful or poorly performing control schemes, and

inadequate process models. Questions that arise can include:

• What are the most effective techniques for identifying problems and root causes in

the performance of controllers?

• What practical limitations are there on controller performance assessment tools,

and can these be alleviated? To what extent do they arise from the type of process

being considered (e.g., sheet forming).

• What tools, in addition to those of conventional system identification, can be de-

ployed to provide a better understand of the process behaviour?

• What tools exist to deal with process monitoring and controller performance as-

sessment when there are both temporal and spatial elements to the behaviours

that are being assessed? Are there tools that can capture directionality of higher

dimensional control problems?

The areas of process monitoring and analysis have been introduced to answer the

above questions. Two promising tools – Controller Performance Assessment (CPA)

3



and Singular Spectrum Analysis (SSA) – are proposed to help realize the goals.

1.2.1 Why Controller Performance Assessment (CPA)?

Bialkowski [2] has claimed that 60% of industrial controllers are non-optimal. Con-

troller performance assessment performance assessment (CPA) techniques are pro-

posed for fault detection and diagnosis of control schemes. In a recent summary of

industrial implementations of CPA methods, Jelali [3] states that controller perfor-

mance assessment (CPA) — benchmarked by Minimum Variance Control (MVC) [4]

— is implemented in approximately 60% of the case studies. Note that not much work

has been done in the applications of process monitoring in sheet forming processes,

especially the metal rolling industry. This shortage motivates CPA applications in

batch rolling processes. Three industrial concerns for CPA implementation in rolling

processes have been discussed in detail in Chapter 3. Modified CPA algorithms have

been proposed for each issue and validated by case studies. The intention of this

work is to draw more attention to the need of process monitoring in sheet forming

processes. Although proposed CPA algorithms in this thesis have been limited to a

simple system — a feedback control system with or without a feedforward control

— it is possible to extend these ideas to a system having similar issues with more

advanced control strategies, e.g., cascade control and model-predictive control.

1.2.2 Why Singular Spectrum Analysis (SSA)?

Process analysis can play a key role in the root cause analysis and performance

improvement of control systems. The more characteristics known about a process,

the better control can be achieved. Nonparametric methods for analysis offer the
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advantage that they can be executed in a more economical way. It must be stressed

though that the results are based on the data considered, and that extrapolation

outside the range in which the data are collected must be done carefully, and may

lead to inconsistent results. In this work an established time-series analysis method

in signal processing, singular spectrum analysis (SSA), has been chosen. Diverse

SSA applications have proven a promising future of SSA in data analysis. However,

SSA techniques have not been applied to manufacturing plant data [5, 6, 7]. The

aim of this research is to introduce this innovative signal processing technique to

process analysis and monitoring in chemical and sheet forming industries. The SSA

approach complements existing techniques from time-series analysis and multivariate

statistics. One characteristic that arises commonly in the sheet forming industry is

behaviour in both temporal and spatial directions. In this thesis, an extension of SSA

to two-dimensional analysis and monitoring is proposed. The SSA technique is mainly

motivated by the featured decomposed components in analyzed data. The results in

this thesis emphasize understanding of the algorithm itself, features of decomposed

components, and interpretation in industrial applications.

1.3 Thesis Overview

This thesis is organized as follows:

• Chapter 2 reviews two categories of process monitoring techniques: controller per-

formance assessment (CPA) and statistical process monitoring (SPM). Techniques

in these two categories are complementary to each other and can work together in

order to provide comprehensive information about a process.
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• Chapter 3 examines applications of the controller performance assessment (CPA)

technique in metal-rolling processes, and provides solutions for three practical issues

for CPA implementation in metal rolling: 1) changes in time delay from changing

rolling speed during startup, steady operation, and wind down of the roll; 2) con-

straints on control actions; and 3) different output sampling intervals and control

intervals. Because a conventional CPA cannot be implemented directly, modified

CPA algorithms are proposed to address these issues. Furthermore, industrial

aluminum-rolling examples are provided to prove the effectiveness and efficiency of

the proposed extensions.

• Chapter 4 briefly reviews process analysis techniques in two groups — parametric

and nonparametric methods. A nonparametric method, singular spectrum analysis

(SSA), is chosen in this work. The history and advantages of the SSA technique are

presented. Applications of SSA in different areas motivate this research. The aim

of the research is to promote this novel tool in the process analysis of manufacturing

processes.

• Chapter 5 starts with an introduction of a basic SSA algorithm with some vari-

ations, followed by new filtering and spectral interpretations of SSA. It is shown

that the variables reconstructed from diagonal averaging of reduced rank approxi-

mations to a trajectory matrix can be obtained from a non-causal convolution filter

with zero-phase characteristics. The reconstructed variables are readily made using

a two-pass filtering algorithm that is well known in the signal processing literature.

When the number of rows in the trajectory matrix is much larger than the number

of columns, many results reported in the literature can be used to derive properties

of the resulting filters and their spectra. New features of the reconstructed series
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are revealed using these results. Two examples illustrate the derived results.

• Chapter 6 promotes the SSA application to the chemical process analysis. One

simulation example is investigated for demonstration. Moreover, a new controller

performance monitoring extension based on SSA is derived. Linear regression the-

ory and properties of symmetric Toeplitz matrices form the foundation of the new

developed performance assessment measure. Together with structural insights into

reconstructed components, Chapter 6 evaluates the feasibility of the proposed tech-

nique in both performance assessment and process analysis.

• Chapter 7 extends the use of 1D-SSA in one-dimensional analysis to two-dimensional

analysis in sheet forming processes. Before introducing the selected two-dimensional

analysis tool, 2D-SSA, conventional multiple regression methods, multivariate time

series methods, and reduced-rank techniques are reviewed. In comparison with

other techniques, the ones based on data-driven basis functions are the focus of

this thesis. Among data-driven methods, only 2D-SSA provides 2D insights from

a windowing perspective. Together with 2D periodogram, 2D-SSA is proposed to

implement 2D process analysis. Preliminary results on filtering interpretations of

2D-SSA and meaningful physical interpretations of industrial processes are demon-

strated via case studies.

• Chapter 8 concludes this work with the research contributions. Potential research

directions are recommended for future study.
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Chapter 2

Literature Review on Process

Monitoring Techniques

Process monitoring encompasses both monitoring of process behaviour - in either

open-loop or closed-loop form - and monitoring of controller performance. The range

of process monitoring techniques is quite broad, and approaches can be found that

use mechanistic models, or empirical models in both parametric and non-parametric

forms. This review will focus on two classes of monitoring techniques: control and

statistical monitoring techniques. Controller performance monitoring has grown as a

new field in process control community over the last two decades. Control monitoring

techniques are often identified as diagnosis tools and are used to assess controller per-

formance. When there is a significant performance degradation in a control system,

the plant personnel are notified, and various techniques are used to locate potential

root-causes. Statistical monitoring techniques complement control monitoring activ-

ities [1], and are capable of detecting and diagnosing faults in processes, specifically

in process variables, sensors, actuators, and equipments. Cinar [1] recommends that
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before implementing control monitoring, process faults can be eliminated by per-

forming process monitoring. More broadly, statistical process monitoring and control

monitoring schemes should be implemented together. In the event that a controller

performance problem is detected, the statistical process monitoring system can be

used as part of the root-cause detection step. In addition, the statistical process

monitoring system should be implemented so that it can alarm independently on

process faults, on a continuing online basis.

A literature review on control monitoring and statistical process monitoring is

now provided.

2.1 Controller Performance Assessment (CPA)

Bialkowski [2] reports that up to 60% of industrial controllers often do not perform

well. To diagnose root causes and improve performance of degraded control systems,

over the past two decades, the area of controller performance assessment (CPA) in

both industry and academia has attracted significant attention. CPA covers tech-

niques available for monitoring control loop performance. In a recent summary of

industrial applications of CPA methods, Jelali [3] draws the following observations:

1) approximately 60% of case studies apply minimum variance control (MVC) bench-

marking [8];

2) about 25% of case studies use oscillation detection methods [9];

3) roughly 10% of case studies implement advance benchmarking methods [10];

4) the remaining 5% employ other techniques [11].

9



The most widely used measures implement an optimal performance benchmark asso-

ciated with unconstrained minimum variance control (MVC). Note that MVC-based

CPA techniques are often referred to as control performance monitoring (CPM) ap-

proaches in the literature. The terms ‘CPM’ and ‘CPA’ are often used interchange-

ably. In this thesis, the term ‘CPA’ is used primarily.

2.1.1 MVC-benchmarking CPA

Minimum variance controllers for linear discrete time processes were first proposed

by Åström [12]. MVC controllers provide the best control in the mean square sense

for all linear feedback controllers for a process [4, 13]. Further reduction in the

process output variance is not achievable via re-tuning the existing control strategy or

applying a more sophisticated linear feedback controller; instead, this is only possible

via process modifications, e.g., the reduction of the inherent variability or deadtime,

as well the implementation of a new feedforward controller or another manipulated

variable [4]. Harris [4] proposed using MVC as a basis for CPA because of this

optimality property. Note that in industry MVC is not implemented that frequently

because the resulting control action is often too aggressive. However, MVC represents

the best possible control when there are no constraints on the manipulated variable

action, and provides a useful best case benchmark for determining whether current

controllers are working well or not. In the conventional CPA approach, a normalized

performance index is typically computed to assess the performance of the overall

control scheme. One appealing aspect of the conventional CPA approach is that

only routine operating data and a process delay are required; additionally, process

perturbations are not required.
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Desborough and Harris [14] defined the standard MVC-benchmarking CPA for

single-input single-output (SISO) feedback control systems. Different MVC-benchmarking

CPA techniques have been developed for industrial use, and are often implemented

as a screening tool to identify loops requiring attention [3, 8]. Various extensions of

standard MVC-benchmarking CPA have been reported dealing with different process

systems: 1) multi-input single-output (MISO) systems [15] - The MVC-benchmarking

is extended to feedback control systems with feedforward controllers. An analysis of

variance method is proposed to take into consideration the contribution to the min-

imum variance term from different resources, i.e., the feedback controller or feedfor-

ward controllers. Priori system knowledge required in MISO applications are minimal,

i.e., only the process time delay and individual feedforward delays. 2) multi-input

multi-output (MIMO) systems [16, 17, 18, 19, 20, 21] - The framework of MVC-

benchmarking CPA is extended to multivariate systems. The primary issue in this

extension is that it requires the time delay structure of the system, i.e., an interactor

matrix. The construction of an interactor matrix demands essentially the knowledge

of the process impulse response. Various methods have been proposed to construct the

interactor matrix in different forms. The computation and interpretation of MVC-

based CPA is much more difficult for MIMO problems. 3) time-varying systems

[22, 23, 24, 25, 26, 27, 28] - Developments have enabled MVC-benchmarking CPA to

be extended to monitor time-varying systems. The problem is motivated by the obser-

vation of time-varying disturbance dynamics. Note that in this application the type

of disturbance is often required to be specified. 4) nonlinear systems [29, 30, 31, 32] -

Harris and Yu and his co-workers develop the MVC-benchmarking CPA for a class of

nonlinear systems. Non-linear autoregressive moving average with exogenous inputs
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(NARMAX) models are used to fit models for closed-loop routine operating data and

then calculate the MVC benchmark. Harris and Yu state in [29] that challenges in

this research come from: (a) the complexity of non-linear behaviour; (b) system and

disturbance representation; (c) efficiency of the model fitting.

Additional details on recent CPA developments can be found in a number of

excellent review papers [3, 8, 10, 33, 34, 35].

2.1.2 Other CPA Techniques

Besides the conventional MVC-benchmarking CPA technique, a number of other CPA

techniques have been proposed in the last few decades from both academic and indus-

try researchers. A number of these techniques are summarized below, and additional

details can be found in the review papers of Jelali [3, 36] and the citations contained

therein.

1) Modified versions of MVC benchmarking

Instead of MVC, advanced controllers, such as GMV (Generalised Minimum Vari-

ance), MPC (Mode Predictive Control), and LQG (Linear Quadratic Gaussian) con-

trollers, are considered to be optimal linear controllers in terms of both input and

output variance. Straightforward extensions of MVC benchmarking have been pro-

vided using GMV [37], MPC [38, 39], and LQG [40] benchmarking. Similar to MVC

benchmarking, these techniques do not require the implementation of the optimal

controllers. Rather, performance bounds and more realistic performance indices are

introduced.

Optimal PID benchmarking for performance assessment has been proposed [41,

42], motivated by the widespread use of PID controllers in industry. The key feature
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of this benchmarking is to provide a performance bound in terms of variance, which

is possibly achievable by a PID controller. Another benefit from this approach is that

optimal PID parameters can be obtained as a by-product of the computation.

2) Fault detection methods

Poor control performance may be arise from different sources, such as system non-

linearity, disturbances, and system changes. Detection measures have been proposed

for each of these areas:

a. Non-linearity detection (NLD);

A linearity assumption is used in most CPA methods; however, non-linearity does

exist in processes and may induce severe performance problems, e.g., oscillations.

Measures of nonlinearity have been proposed by a number of authors, including

Stack and Doyle [43], Haber and Keviczky [44], Guay and co-workers [45, 46], and

Liu et al. [47].

b. Oscillation detection;

In industry, closed-loop oscillations can occur fairly often. The main causes are

typically aggressive control, disturbances, and non-linearity. A key feature of os-

cillation is that it can be propagated from one control loop to others. A number of

oscillation detection methods have been presented for different purposes. Hägglund

[48] has introduced a detection method to identify oscillation due to high friction in

control valves. Horch [49] has proposed two approaches to verify oscillation due to

valve stiction, while Thornhill and her co-workers [50, 51, 52] have published a se-

ries of papers from an experimental and practical perspective addressing problems

of oscillation assessment and root-cause diagnosis.
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c. Sluggish control;

When controllers are retuned after operating conditions change, the issue of slug-

gish control often occurs. Moreover, very often no further retuning will be imple-

mented again even if controllers are tuned conservatively. This oversight can result

in large deviations from set point, and can potentially lead to decreased product

quality. Hagglund [53, 54] finds that control performance and product quality can

be crucially improved by locating and retuning sluggish control loops; further, an

idle index, which expresses the relation between the times of positive and nega-

tive correlation between the process output and controller output increments, is

proposed to define the sluggishness of control loops.

3) User-defined metrics

User-defined metrics have been proposed for different goals. For instance, a control

performance benchmark using historical data from a well-tuned control system is

defined by control and maintenance engineers [55, 56]. Higher-level metrics from a

business/operational perspective on a plant-wide basis can be established to assess

overall control performance of a plant (see, for example, [57, 58]).

2.2 Statistical Process Monitoring (SPM)

In the 1930s Shewhart [59] proposed the concept of being in a state of statistical con-

trol. Statistical control refers to a process with only common-cause variation, while

out-of statistical control indicates special-cause variation. Statistical process monitor-

ing (SPM) or statistical process control (SPC) refers to statistical methods in process
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monitoring. Recent overview papers [1, 60, 61, 62] cover SPM research and applica-

tions in the areas of fault detection, diagnosis, estimation, and reconstruction. SPM

detects abnormal events and diagnoses root causes. To improve a process, these root

causes are removed instead of compensated. Note that SPM is essentially different

from automatic feedback control, as stated by MacGregor and Kourti [63]. Feedback

controllers adjust manipulated variables to compensate for disturbance effects in key

process variables [64]. Accordingly, disturbance variability is only transferred to less

important variables, but not essentially removed. In the next section univariate and

multivariate SPM are discussed; additionally more attention is paid to multivariate

SPM techniques due to the multivariate nature of most processes.

2.2.1 Univariate SPM

Univariate SPM techniques monitor a single quality variable at a time. Control charts

are used to provide a visual means of monitoring process variables. The most com-

mon control charts are Shewhart [59], CUSUM (Cumulative Sum) [65] and EWMA

(Exponentially-Weighted Moving Average) [66, 67] charts.

These SPM techniques are well established, and discussions can be found in many

engineering statistics texts (see for example, [68]). Cinar [1] and MacGregor [63] pro-

vide discussions of univariate control charts from a control context. Shewhart charts

can be used to monitor attributes such as the mean, range, and standard deviation

of a process over given time. CUSUM charts monitor accumulated differences from

target in order to detect small sustained process shifts. EWMA charts represent a

weighted average of several consecutive observations, and are designed to account for

serial time correlation in the measurements used to compute the charted statistics.
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To identify process shifts, univariate control charts typically keep watch on a very

small group of key product/quality variables.

Martin et al. [69] summarize major drawbacks of univariate charts: 1) lack of

full product/quality information: a small number of key variables may not be able

to fully define quality information, and quality variables tend to not be as available

on a frequent basis; 2) failure to account for quality variable interaction: quality

variables are often dependent, which makes process monitoring and diagnosis more

difficult and may lead to false results; 3) incomplete use of process data: any special

event in a process is likely to have a footprint in both process and quality variables,

while charts based in particular on single quality variables will not be able to assess

this footprint. In our current data-rich society, massive amounts of process data

are routinely collected and available for use. Consequently, univariate charts are

inadequate for processes with multivariate and highly correlated nature. Multivariate

SPM techniques address many of the limitations of univariate techniques. The key

feature in multivariate techniques is to take into account all variables of interest

simultaneously; hence, distinct behaviour of each variable together with interaction

behaviour between variables is accounted for, resulting in more comprehensive and

accurate process information. [60] provides a thorough discussion on univariate and

multivariate SPM.

2.2.2 Multivariate SPM

Multivariate SPM provides an effective means for making use of the large number of

measurements available for most manufacturing processes.
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2.2.2.1 Multivariate Control Charts Based on Original Variables

Natural multivariate extensions can be developed for univariate control charts by

taking into account the multivariate distribution of the monitored variables ‘within

sample’. As reviewed in [70, 71, 72], Hotelling T 2, multivariate CUSUM, and mul-

tivariate EWMA control charts are direct extensions of univariate control charts,

respectively. Multivariate charts monitor several quality characteristics simultane-

ously, condensed to a single charted statistic. Note that key assumptions of using

all these charts are that observations are multivariate normally distributed with a

within-sample covariance matrix at a given point in time, and are independent be-

tween samples in time. The covariance matrix can be used to check these assumptions

and to calculate control limits (see for example, [71]).

Multivariate control charts have been proposed to address the issues in a univari-

ate context, however a number of challenges can remain: 1) even though several key

quality variables are summarized in a multivariate form, there may be instances where

certain quality variables are infrequently collected; 2) the assumptions of multivariate

normality and temporal independence only hold for certain processes. Strictly speak-

ing, these charts cannot be applied to temporally correlated processes, however cor-

relation naturally occurs in many processes. The multivariate EWMA chart accounts

for temporal correlation, while the CUSUM chart will account for non-stationary

behaviour.

2.2.2.2 Multivariate Control Charts Based on Latent Variables

As an alternative to multivariate control charts based on original variables, Jackson

[72] proposed forming multivariate charts based on latent variables. The original

17



quality or process variables are transformed into new orthogonal latent variables, i.e.,

principal components. The resulting transformed charted variables are independent

because of the orthogonality between the principal components.

The latent variable approach provides the means of combining different types of

data - e.g., quality variables measured less frequently and online variables measured

more frequently - and of finding significant relationships buried within large num-

bers of monitored variables that have a strong association with the quality variables

of interest. In addition, latent variable techniques provide an effective approach for

dealing with missing data, and for collapsing high-dimensional data down to manage-

able dimensions [60].

Latent variable methods rely on multivariate projection to lower dimensional sub-

spaces. The most widely used approaches are Principal Component Analysis (PCA)

[72], Canonical Correlation Analysis (CCA) [73], Reduced Rank Regression [74], and

Projection to Latent Structures or Partial Least Squares (PLS) [75]. Dimension re-

duction is the foundation of these projection methods. Note that the discussion below

focuses on PCA and PLS, because they dominate the application literature in process

monitoring.

PCA and PLS are based on eigen-decomposition of XTX or Singular Value De-

composition (SVD) of the data matrix X, and extract significant principal components

in terms of variance explained. For process data matrixX and quality data matrix Y ,

where each column in two matrices represents a process or quality variable, and each

row represents an observation at a given time, PCA concentrates on a decomposition

of X, while PLS conducts a decomposition of both X and Y . After decomposition,

the original variables are projected into lower dimension spaces formed by orthogonal
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latent variables. PCA and PLS models for future monitoring are built via latent

variables for existing datasets. Reference models can be established using process

data with or without quality data from in-control processes, i.e., well-operated and

high-quality product making processes. Consequently, multivariate control charts can

be constructed for the nominal operating region and applied to on-line monitoring

and fault diagnosis.

Typical monitoring charts for latent variable approaches include T-score plots,

P-loading plots, Hotelling’s T 2 charts, and Squared Prediction Error (SPE) charts.

These charts can detect faulty processes and poor-quality products at an early stage

through on-line monitoring. Additionally, aforementioned work has been extended to

areas such as fault diagnosis [76, 77] and fault reconstruction [78, 79]. For instance,

when an out-of-control situation is identified, a contribution plot is often used to

diagnose root causes. Note that many successful applications of these control charts

can be found in continuous processes [76, 80]. Furthermore, Nomikos and MacGregor

[81, 82, 83] extend the idea of multivariate process monitoring to batch and semi-batch

processes, i.e., multiway PCA and PLS. Additionally, Kramer [84] has presented a

concept of nonlinear principal component analysis. Successful industrial applications

can be found in overview papers [1, 61, 63] and references therein.

Multivariate control charts based on latent variables have a better chance of pro-

viding an earlier fault warning than univariate ones, because co-dependencies in the

multivariate data have been taken into account. Mass balance, energy balance, and

other process constraints introduce within sample dependencies, which can be inferred

through variable correlations.

Latent variable charts have some limitations as well: 1) Interpreting multivariate
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charts is not as straightforward as univariate ones, because latent variables may not

have any physical meaning; and 2) there is some information loss due to orthogonal

projection and dimension reduction, particularly if the number of latent variables

retained is much smaller than the number of original variables.

2.3 Summary

Statistical Process Monitoring (SPM) complements Controller Performance Assess-

ment (CPA) by focusing on the behaviour of the process. SPM can identify the

occurrence of faults, such as failure of actuators, or excessive fouling in a heat ex-

changer. Later in this thesis, Singular Spectral Analysis will be proposed both for

SPM, as well as for CPA. Practical applications of CPA in metal rolling processes are

discussed in the next chapter.
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Chapter 3

Applications and Extensions of

Controller Performance

Assessment (CPA) To

Metal-Sheet-Forming Processes2

3.1 Introduction

Initial work on data-driven controller performance assessment (CPA) can be traced to

Åström ([12]) and Devries and Wu ([85]). Åström [12] first proposed the Minimum-

Variance Control (MVC) strategy for systems described by the superposition of a

2The work summarized in this Chapter has been submitted to The Canadian Journal of Chemical
Engineering (CJChE). Drs. James McLellan and Thomas Harris were co-authors of this research
work. Please refer to the preface for the nomenclature used in this Chapter.
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discrete-linear dynamic model and an additive unmeasured disturbance that is mod-

elled by a linear transfer function driven by white noise. Åström showed that a nec-

essary and sufficient condition for the process to be achieving its minimum-variance

bound is that the closed-loop output is a moving average process of finite order b. b

is directly related to the process delay and control interval. Åström noted that the

autocorrelation function of the closed-loop output could be used to test for minimum

variance performance. Devries and Wu [85] defined an effectiveness index as the ratio

of the variance of the one-step-ahead prediction error to the variance of the measured

output.

The minimum-variance bound can be estimated from routine operating data by

fitting a linear time-series model to the output [4]. The minimum-variance bound can

also be interpreted as the variance of the b-step ahead minimum-variance prediction

error. Since then, CPA has received considerable academic and industrial attention,

with the development of enhancements to the variance-based methods, and the de-

velopment of alternate data-driven techniques that address for example deterministic

performance monitoring, the response speed, ‘sluggishness’, settling time, overshoot

and damping ratio, stability margin, and the detection of oscillations. To distin-

guish variance-based methods from many other techniques, we will use the acronym

CPA-MVB for Controller Performance Assessment - Minimum-Variance Bound.

The main attraction of most CPA-MVB performance measures is that only routine

closed-loop data and knowledge of the process delay are required for the performance

assessment. Controller performance can be assessed without disturbing the process.

The CPA-MVB does not account for controller structure limitations, e.g., a feed-

back system with or without a feedforward controller. The excessive control action
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associated with minimum-variance control is typically not desirable in practice, and

so realizing the minimum-variance bound may not be a desirable control objective.

This does not invalidate its utility as a performance monitoring technique [14]. Sim-

ple modifications have been proposed to overcome the controller structure limitation

[86]. An important point that is often overlooked is that the estimated lower bound

may not be sufficient to meet economic, safety or environmental requirements. In

these cases process modifications, such as reducing the dead-time, reconfiguring the

controller to use a different manipulated variable, or attenuating the disturbances

through process improvements must be contemplated. When one is able to identify a

model for the dynamics and disturbances, more CPA tools can be implemented [19].

CPA-MVB applications have been reported for a range of process control prob-

lems for single-input single-output (SISO) systems [14, 27], multi-input single-output

(MISO) systems [15, 87], and multi-input multi-output (MIMO) systems with lin-

ear, nonlinear, feedback, feedforward, model-based and MPC controllers, and both

constant and time-varying disturbances [16, 28, 88, 89]. Recent developments have

enabled variance-based methods to be extended to a class of nonlinear systems [29,

30, 31, 32]. Developments in CPA-MVB have been covered in detail in a number of

review papers [3, 8, 10, 33, 34, 35, 90].

Different CPA indices have been developed for industrial uses [18]. MV-based

CPA typically serves as a first-pass monitoring layer. One single CPA technique

cannot provide sufficient information for monitoring purposes, which is why dif-

ferent techniques are investigated and typically combined for practical use. Jelali

[3] reported that CPA-MVB benchmarking had been applied to about 60% of the

case studies in industrial applications. Mature application areas include oil refineries
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[38, 87], petrochemical and chemical sectors [9, 91], and the pulp and paper industry

[41, 48, 49, 54, 92, 93, 94, 95, 96].

Relatively little work has been reported in the metal-processing industry with

the exception of [36, 97]. A number of issues can arise that require modifications to

conventional CPA-MVB methods. First, rolling mill speeds may be variable, moving

from startup to steady operation to roll wind down. In addition, constraints on control

action (e.g., the hydraulic actuators of the roll stand) are often imposed to avoid

excessive wear and resonance. Finally, the rapid sampling rates sometimes require

that outputs and inputs are sampled and/or stored at different intervals because

of control system limitations. CPA-MVB methods are valuable in analyzing rolling

systems, as the dead time is often a significant portion of the process settling time

and are therefore an important limitation on achieving desired performance.

In this thesis we develop extensions to traditional CPA-MVB methods to address

these issues. The application and efficacy of the solutions are illustrated using actual

data and simulated data from an industrial aluminum-rolling process. A number of

key results make use of developments in econometrics.

The work is organized as follows. First, metal sheet-forming processes are briefly

described, with an emphasis on Automatic Gauge Control (AGC) systems in alu-

minum cold rolling mills. This is followed by a brief review of the CPA-MVB method.

The three challenges to industrial implementation in metal rolling are discussed, and

modified CPA-MVB techniques for process monitoring are proposed. Finally, case

studies are presented for each challenge to demonstrate the utility of the proposed

techniques.
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3.1.1 Sheet-Forming Processes

Sheet- and film-forming processes, also called web-forming processes, cover a wide

class of industrial processes, including paper-making, polymer film extrusion, steel/metal

rolling, coating, laminating, and plate glass manufacturing [98]. There is signifi-

cant industrial interest in developing identification, parameter estimation, control,

and monitoring techniques for these processes, which exhibit both time-varying and

spatially-varying behaviour. Effective control can mean improved product quality,

including spatial uniformity, increased product acceptance, higher production rates,

and reduced material and energy consumption. The control objective is always to

maintain uniform flat profiles in both the Machine Direction (MD) and Cross Direc-

tion (CD). The machine direction refers to the direction in which the sheet is moving,

while cross direction is the direction across the sheet, perpendicular to the machine

direction. In this thesis, the focus will be on gauge control of metal-rolling processes.

3.1.2 Aluminum-Rolling Process

Gauge is critically important to customers of rolled metal products [99]. In this thesis,

gauge is defined as the centreline thickness in the MD. Automatic Gauge Control

(AGC) systems are implemented to minimize an exit sheet thickness deviation. As

it is difficult to remove disturbances once they are imprinted into a metal, AGC

systems are used to eliminate disturbances caused by roll eccentricities in present

or previous passes, tension variations, hardness variations, or vibrations. Different

control schemes can be implemented to achieve this goal. The AGC system considered

here comprises a feedback and a feedforward controller. Other control strategies, such

as tension control, mass flow control, and roll eccentricity compensation, are beyond
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the scope of this thesis. Additional details can be found in [36].

Figure 3.1 illustrates an AGC control system that incorporates both feedback

and feedforward control. An exit thickness measurement is compared to a target

thickness, and a tracking error is used to adjust a hydraulic gap controller, i.e., an

actuator, usually in a cascade-controller arrangement. The AGC sends a set-point

target to the gap position controller (not shown), which adjusts the hydraulic jacks.

Clearly, a time delay is present since there is a distance between the output (gauge

measurement) and the actuator (hydraulic gap), and this time delay has an impact

on a feedback controller performance. To make a feedback AGC more effective, it

is better to place the gauge sensor closer to the roll stand. Feedforward control is

also used to provide a faster response relative to feedback control. An entry thickness

gauge is tracked, and a controller is tuned to make necessary corrective actions to

offset thickness variations entering the mill.

Figure 3.1: Automatic gauge control system (after [99])
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The block diagram for the AGC system is shown in Figure 3.2, assuming linear

models for the process and disturbances. yt and ut are the process output and input

at time t, respectively. The process is subject to both unmeasured (Dt) and measured

(D1,t) disturbances. These disturbances in turn are represented as time-series models

driven by random shocks at and a1,t, passing through dynamic elements Gd(q
−1) and

Gd1(q
−1), respectively. GD(q−1) is a disturbance transfer function representing the

impact of D1,t on the output, while GP (q−1) is the process transfer function. The con-

trol input is computed by feedback and feedforward controllers Gfb(q
−1) and Gff (q

−1)

respectively. The symbol q−1 denotes a backwards shift operator, i.e., q−1yt = yt−1.

Figure 3.2: AGC system block diagram
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3.2 Review of Controller Performance Assessment

3.2.1 CPA-MVB Benchmarking

Many industrial processes can be described by the superposition of discrete-time

transfer function models of the form:

yt = y1,t + y2,t + y3,t

= GP (q−1)ut +Dt +GD(q−1)D1,t

= GP (q−1)(ufbt + ufft ) +Dt + Zt

= [GP (q−1)ufbt +Dt] + [GP (q−1)ufft + Zt]

where:

GP (q−1) =
ω(q−1)q−b

δ(q−1)
and GD(q−1) =

η(q−1)q−b1

γ(q−1)

ut = ufbt + ufft

Dt = Gd(q
−1)at =

θ(q−1)

φ(q−1)∇d
at

D1,t = Gd1(q
−1)a1,t =

θ1(q−1)

φ1(q−1)∇d1
a1,t and Zt = GD(q−1)D1,t

Note that

• at and a1,t are a sequence of independent and identically distributed (i.i.d) random

variables with zero mean and variances σ2
a, σ

2
a1, respectively.

• b and b1 are delays for the process and measured disturbance transfer functions, re-

spectively (by definition b ≥ 1 and b1 ≥ 1). Delay b influences the feedback (FB)

controller performance, while delay b1 influences the feedforward (FF) controller per-

formance.

• {ω(q−1), η(q−1)} are polynomials in the backshift operator q−1, {δ(q−1), γ(q−1), θ(q−1),
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φ(q−1), θ1(q−1), φ1(q−1)} are monic polynomials in q−1, ∇ is the backward difference

operator (1− q−1), and {d, d1} are non-negative integers (typically 0, 1, or 2).

As shown in [15], the closed-loop output can be written as:

yt+b = [ω(q−1)
δ(q−1)

ufbt + D̂t+b|t + et+b|t] + [ω(q−1)
δ(q−1)

ufft + Ẑt+b|t + e1,t+b|t]

= [et+b|t + e1,t+b|t] + [ω(q−1)
δ(q−1)

ufbt + D̂t+b|t + ω(q−1)
δ(q−1)

ufft + Ẑt+b|t] (3.1)

where D̂t+b|t is the b-step ahead minimum-variance forecast for the unmeasured dis-

turbance, and et+b|t is the associated b-step ahead forecast error. Ẑt+b|t is the b-step

ahead minimum-variance forecast for the effect of the measured disturbance on the

process output, and e1,t+b|t is the associated b-step ahead forecast error. The develop-

ment of the minimum-variance forecasts is standard, which uses well-known methods

from time-series analysis (see [15] for more details).

The key points that follow from Equation (3.1) are:

• The forecast errors, i.e., {et+b|t, e1,t+b|t}, are contemporaneously and serially uncorre-

lated with each other. As well, {et+b|t + e1,t+b|t} are contemporaneously and serially

uncorrelated with the right-bracketed expression in Equation(3.1). This latter term

can be interpreted as the minimum-variance forecast for yt+b given information avail-

able up to and including time t, i.e., ŷt+b|t.

• The minimum-variance forecast errors are of the form:

et+b|t = ψmv(q−1)at+b = [1 + ψ1q
−1 + · · ·+ ψb−1q

−(b−1)]at+b

e1,t+b|t = ψmv1 (q−1)q−ma1,t+b

= [ψ1,0q
−m + ψ1,1q

−(m+1) + · · ·+ ψ1,b−m−1q
−(b−1)]a1,t+b

where m = min[b, b1], ψmv(q−1) is a monic polynomial of order (b−1), and ψmv1 (q−1) is
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a polynomial of order (b−b1−1) when b > b1. When b ≤ b1, e1,t+b|t = 0 , i.e. it is the-

oretically possible to eliminate the effect of the feedforward disturbance before it ap-

pears in the feedback loop. The coefficients of the polynomials {ψmv(q−1), ψmv1 (q−1)}

are obtained as the coefficients of q−k, k = 0, · · · , b − 1, in the series expansion

of the polynomials θ(q−1)
φ(q−1)∇d and η(q−1)q−b1

γ(q−1)
· θ1(q−1)

φ1(q−1)∇d1
, respectively. The coefficients of

these polynomials are identical with the impulse response coefficients of the respective

transfer functions.

• Under minimum-variance control the feedback and feedforward control actions are

chosen to set the forecast ŷt+b|t to zero, i.e.,

ufbt = − δ(q
−1)

ω(q−1)
D̂t+b|t and ufft = − δ(q

−1)

ω(q−1)
Ẑt+b|t

resulting in the closed-loop output:

ymvt+b = et+b|t + e1,t+b|t

• Under minimum-variance control, the process variance is given by:

σ2
mv = var(et+b|t) + var(e1,t+b|t)

This variance serves as a lower bound on the theoretically achievable performance

that can be obtained. All other controllers must result in a variance-based perfor-

mance that exceeds this bound. The minimum-variance controller, and some trivial

modifications, are also optimal for a wide class of symmetric and nonsymmetric cost

functions [100].

σ2
mv serves as a minimum-variance benchmark for this feedforward/feedback control

system and can be used to compute the minimum-variance-based controller perfor-

mance index between 0 and 1 [15]. Note that when computing this index in practice
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it is more useful to apply a mean square error (mse) instead of an output variance:

η =
σ2
mv

mse(yt)
=

σ2
mv

σ2
y + µ2

y

where σ2
y denotes an output variance, µy denotes an output mean, and a mean square

error is a summation of σ2
y and µ2

y. Values of η close to 1 indicate that opportunities

for variance reductions are limited.

• In many cases, the implemented feedforward/feedback controller will not be of minimum-

variance design, and the closed-loop can be written as:

yt+b = [et+b + e1,t+b] + [
B0(q−1)

F0(q−1)
yt +

B1(q−1)

F1(q−1)
D1,t

+
B2(q−1)

F2(q−1)
ufbt +

B2(q−1)

F2(q−1)
ufft ] (3.2)

The transfer functions Bi(q
−1)

Fi(q−1)
, i = 0, 1, 2, are obtained from algebraic manipulation

of the system transfer functions and transfer functions obtained in constructing the

various forecast errors. If linear controllers are used, the right-bracketed term in

Equation (3.2) can be written solely in terms of transfer functions involving the

output yt and the feedforward variable D1,t.

The key result from [4, 14, 15] was to show that the minimum-variance perfor-

mance bound could be estimated from routine operating data by using standard

time-series methods with a knowledge of {b, b1}. In these papers, it was assumed that

linear controllers were used. Consequently only records of the process output and

measured disturbance were needed to construct the variance bound.

31



3.3 Industrial Considerations for Rolling Mills

A number of practical issues arise when implementing the CPA-MVB analysis in

rolling mills. In the discussion that follows, three potentially limiting issues are

described in detail, and solutions are proposed to overcome these challenges. The

solutions for the second and third issues are applicable for other methods of data-

driven analysis for industrial processes.

3.3.1 Non-constant Time Delay Horizon Due to Changing

Speed

Metal-coil rolling is a batch process, and a typical batch consists of a startup phase

where a sheet is fed to the bite of the roll stand and the speed accelerates to a steady

operating point. As the batch nears the end of the coil, the roll speed decreases.

Since the thickness gauge is a fixed distance from a roll gap, the time delay between

the point of actuation (the roll gap) and the point of measurement changes with roll

speed. Uniform time steps no longer correspond to uniform increments in sample-

strip length as the speed changes. These changes in the time delay occur primarily

at the start and end of a rolling batch, and violate the usual constant time delay

assumption for many controller performance and assessment methods.

One solution to this problem is to compute a CPA-MVB index exclusively using

data from the period of steady operation in the middle of a batch. This will not pro-

vide any information about how well a controller is performing during acceleration and

deceleration phases. An alternative approach is to convert data from a non-uniform

time-based setting to a constant length-based setting, motivating the development of
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a length-based CPA-MVB index. A length-based CPA-MVB was first proposed by

[97] for metal processing, however very little information is provided about how to

implement such a measure. In this thesis the derivation of a length-based CPA-MVB

is provided in Section 3.4, and the approach is demonstrated using mill data.

3.3.2 Constraints on Controller Outputs

The second issue is how best to deal with constraints implemented on controller ac-

tions. Several types of constraints can be encountered. Maximum-change constraints

typically limit the change in a controller output to a prescribed fraction of the total

controller range (e.g., from zero position to saturation or full actuation). If the con-

straint is active, the controller output is assigned a fixed value. The second type of

constraint is a thresholding or dead-band constraint, in which the calculated control

action is not sent to the actuator unless it exceeds a minimum threshold. If this

threshold is not exceeded, the control action sent to the plant is held at its previous

value. Such dead-band constraints are often implemented in order to avoid excessive

actuator manipulation that can cause premature wear, or can lead to resonance be-

haviour. Another type of threshold constraint occurs when the manipulated variable

is only adjusted when the process output exceeds a pre-defined value. In all cases,

the controller is also prevented from attempting to implement control moves that are

outside of the physical range for the output.

In these cases, a standard MVC controller will not necessarily be able to cancel

the effect of the predicted disturbance at the time delay horizon because constraints

limit control actions that would otherwise cancel this portion of the disturbance.

Fundamentally however, the overall best achievable control performance is still the
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variance associated with unconstrained minimum-variance controller, which is again

the prediction error over the time delay horizon. Constraints pose potential challenges

for conventional CPA-MVB calculations because they introduce a nonlinear element

into the control loop. Consequently, the standard AR or ARMA linear time-series

transfer function model for the closed-loop tracking error cannot be used to com-

pute the minimum-variance bound. A modified CPA-MVB algorithm is presented

to address this issue which sidesteps the problem of determining a time-series model

for the tracking error by using the manipulated or controller variables to construct

the minimum-variance bound. By directly accounting for the manipulated variable

actions as implemented in the plant, it is possible to avoid problems associated with

introducing the thresholding element in the closed-loop expression.

3.3.3 Unequal Output Sampling Intervals and Control Inter-

vals

Metal-rolling processes are inherently high-speed processes requiring rapid sampling.

Consequently, a large amount of data is recorded during the rolling of a coil. To

increase data storage efficiency, process outputs are sometimes down-sampled, leading

to differences between process output sampling intervals and control intervals. Often,

output measurements are available more frequently than control movements. Finally,

control intervals will sometimes be longer than output sampling intervals to enable

the control system to operate in real time. The challenge from a CPA standpoint

is how to best accommodate the different sampling intervals while making the most

effective use of the information available.

The key concept for CPA is to focus on what a controller sees and does, i.e., using a
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sampling interval for an output measurement that corresponds to the control interval.

Two scenarios arise: i) the output sampling interval exceeds the control interval, and

ii) the process output is measured more frequently than the control interval. The

latter situation is easily remedied. To address the theoretical and practical issues

associated with the first situation, we utitlize results from the econometrics literature.

3.4 Length-based CPA-MVB

In this section, detailed steps for implementing a new length-based CPA-MVB algo-

rithm are described. Note that in the discussion that follows, the subscript t is used

to denote a point in the time domain, and the subscript l is used to denote a point

in the length domain. For the presentation below, we consider that we have a sample

of time data {t, yt}, t = 1, 2, · · · , N . This sample would typically be the start-up or

slow-down phase of the batch. We could also take the entire time series across the

batch, comprising both transient and steady operation, and convert to a length basis

to calculate an overall CPA-MVB for the batch.

3.4.1 Proposed Algorithm

• Step 1: Conversion of Time-Based Observations to Length-Based Observations {t, yt} −→

{l, yl}

Figure 3.3: Equally-spaced time-based data
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Given measurements of a mill speed vt, time-based output measurements yt can be

converted to observations at equivalent length-based intervals. Assuming that the

sampling interval is ∆t, and the speed is constant over a given sampling time interval,

we obtain:

lj = lj−1 + ∆t · vj−1, j = 2, 3, · · · , N, l1 ≡ 0

The length lj is used to define the equivalent length index for the observation at the

time tj.

Figure 3.4: Unequally-spaced length-based data

The observation yl corresponds to yt. Note that in Figure 3.4, the observations are

not equally-spaced since the speed is changing in the transient parts.

• Step 2: Conversion to Equally-Spaced Length-Based Observations {l, yl} −→ {l̃k, ỹk}

Figure 3.5: Equally-spaced length-based data

In this step, the N unequally-spaced length-based data are converted to Nl+1 equally-

spaced points using linear interpolation in the length index. (More sophisticated
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interpolation methods, such as splines could be used.) The length interval ∆l must

be specified. If fewer interpolated points are required to reduce the computational

load for performance monitoring and analysis, then a larger length sampling interval

∆l can be specified. Note that sampling is typically in the millisecond range, and

large amounts of data can accumulate quickly. However, aliasing problems can occur

if ∆l is too large. Thus, there is a tradeoff in specifying ∆l. Here we use the maximum

length interval from the conversion of the time sampling to length sampling:

∆l = max{lj − lj−1, j = 2, 3, · · · , N}

(Nl + 1) data points will be calculated where Nl = int( lN
∆l

), and int(·) is the integer

part of (·) with (Nl + 1) ≤ N .

When linear interpolation is used, the equally-spaced length-sampled data are calcu-

lated recursively as:

l̃k+1 = k∆l

ỹk+1 = yj +
l̃k+1−lj
lj+1−lj (yj+1 − yj)

k = 1, 2, · · · , Nl

with initial conditions determined by

ỹ1 = y1

l̃1 = l1 = 0

where the index j is such that lj ≤ l̃k+1 ≤ lj+1 In the general case, it is possible for the

sampling intervals of mill speed and output to be different, i.e., ∆tv 6= ∆ty (= ∆t)

and often ∆tv > ∆ty. The calculations for lj, lj+1 are modified as follows:

lj =
k∑
i=1

∆tv · vi, k = round(
(j − 1) ·∆ty

∆tv
) + 1

lj+1 =
n∑
i=1

∆tv · vi, n = round(
j ·∆ty

∆tv
) + 1
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where round(·) returns the nearest integer to (·).

• Step 3: CPA-MVB Analysis

The conventional CPA-MVB analysis algorithm for time-based data can be applied

directly to the equally-spaced length-based data, using a ‘time’ delay expressed in

terms of the number of length sample intervals (yielding what is really a ‘length

delay’). If the sensor is located at a distance ls from the roll gap, the delay required

for the CPA-MVB calculation is int(ls/∆l) + 1. Interpretation remains the same as

in the time-based case.

3.4.2 Case Study

To illustrate the effectiveness of the proposed length-based CPA-MVB algorithm, in-

dustrial data from a rolling mill under the control of an AGC system of the type shown

in Figure 3.1 are considered. The data have been scaled to maintain confidentiality.

The first panel in Figure 3.6 provides a mill speed plot, including a steady-state

segment in the centre, and acceleration and deceleration transient segments during

the startup and wind-down phases of the batch respectively.

The second panel gives performance index plots for time- and length-based CPA-

MVB. The CPA-MVB index values are computed by partitioning the coil data into

30 segments of equal time duration. Some of the segments are contained entirely

within the steady operation part of the batch, while others lie in the ramp-up and

ramp-down transients. Some intervals also contain observations lying in the transient

phase and in the steady operation phase. A number of interesting observations can

be made:
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Figure 3.6: (a) Mill speed plot; (b) Time- and length-based CPA-MVB re-
sults

• In the central steady-state part of the batch, in which the mill speed is approximately

constant, the time- and length-based CPA-MVB results are in good agreement. This

is expected since the speed is constant and hence the time delay is constant. In

addition, the nominal time delay specified in calculating the time-based CPA-MVB

is based on the typical mill speed in the steady operating part of the batch. The

length delay is computed as the distance between the sensor and the roll gap divided

by the length-sample interval, and is inherently fixed by the physical configuration of

the mill. The rolling speed appears indirectly in the length-based CPA-MVB during

the conversion of the time-based to length-based data.

• In transient parts with changing mill speed, the time- and length-based CPA-MVB

39



results no longer match, with the time-based CPA-MVB indices generally being lower

than the corresponding length-based values. This makes sense from a process stand-

point as the mill speed in the transient portions is slower than the nominal speed

during the steady operation portion, resulting in a larger time delay. While the time-

based CPA-MVB index is being calculated based on a nominal time delay which is

smaller than the actual one, the estimated minimum-variance bound will be smaller

than the true benchmarking value. Consequently, the time-based CPA-MVB index

will be lower, i.e., the length-based CPA-MVB index is larger and more accurate.

• Once the steady-operating region is reached, the time- and length-based indices match

very quickly. At the start of the batch, both the time- and length-based CPA-MVB in-

dices are small, suggesting that the controller is not providing very good performance

at the very slow speed associated with the start of the batch.

3.5 Constraints on Manipulated Variables

Constraints on manipulated variables are often encountered, and they can be treated

as input nonlinearities. Calculation of the CPA-MVB relies on the concept of a

feedback invariant, which is not affected by this type of nonlinearity [29]. However,

this benchmarking calculation is only possible if a record of the manipulated or control

variable is available in addition to the record of the output variable. Calculation of

the CPA-MVB is illustrated using maximum-change and dead-band constraints in

this thesis.
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3.5.1 Maximum-change Constraints

To avoid control saturation or aggressive control moves, maximum-change constraints

are often employed:

∇ut =

 ∇ũt, |∇ũt| < c

sign(∇ũt) · c, otherwise

where ∇ũt is the control change computed by the controller, ∇ut is the control move

implemented in the plant, and the constraint c (typically a constant) is specified by

the control engineer. Note that sign(·) is the operation of extracting the sign of a real

number (·).

3.5.2 Dead-band Constraints

To prevent frequent actuator movements and equipment wear, dead-band constraints

are often imposed on the controller outputs in rolling mill applications. The dead-

band constraints are the dual problem to the maximum-change constraints discussed

above:

∇ut =

 ∇ũt, |∇ũt| > c

0, otherwise

where in this instance c is the dead-band limit.

3.5.3 MV Performance Bounds for Systems with Constraints

Harris and Wu [29] exploited the fact that the unconstrained CPA-MVB is a feedback

invariant performance bound, to extend this concept to classes of nonlinear stochas-

tic systems which include the type of input considered in this thesis. A constraint is

fundamentally a nonlinear element, and it cannot be expressed in transfer-function
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form. Regardless of the type of constraint imposed, it will not be possible to reduce

the output variance beyond the CPA-MVB over the time delay horizon, meaning

that this CPA-MVB value represents the minimum-variance benchmark for the con-

strained case as well. Since there is no transfer-function representation for a nonlinear

constraint the CPA-MVB cannot be computed by using a transfer-function form that

includes output measurements only. The feedback invariant is the prediction error

for the b-step ahead prediction. This can be estimated using a model that takes

into account the control actions that have actually been implemented. This can be

accomplished using a closed-loop predictor of the ARX form:

A(q−1)yt = B(q−1)ut−b + at (3.3)

where {A(q−1), B(q−1)} are polynomials in the back-shift operator q−1, and at is

a white noise element [14, 29]. The actual values of the manipulated variable are

used when constructing the closed-loop predictor. When an ARX model is used, the

feedback invariant is obtained by computing the impulse response coefficients from

the estimated transfer function 1
A(q−1)

and the estimated noise variance for σ2
a. When

feedforward variables are presented, they are treated as exogenous variables in the

time-series model.

3.5.4 Case Study: An AGC Control System

An open-loop step test has been done in an AGC control system of a rolling process,

and step response data have been collected. The sampling interval used in the system

is 1 ms, and the process delay is 15 ms. The discrete process transfer function is
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modelled as:

GP (q−1) =
ω(q−1)

δ(q−1)
q−b =

0.1945 + 0.1506q−1

1− 1.263q−1 + 0.4661q−2
q−16

assuming a zero-order hold is used for the control input.
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Figure 3.7: Step response

The step response for the discrete-time process is shown in Figure 3.7 and displays

second-order process characteristics including overshoot. The deadtime is a significant

component of the settling time - a common characteristic in many rolling processes.

To evaluate the proposed methodology, the additive disturbance is represented as

an autoregressive process with root close to the unit circle. This allows for consider-

able meandering or nearly nonstationary behaviour in the absence of control:

Dt = GD(q−1)at =
1

1− φq−1
at =

1

1− 0.98q−1
at

where the driving force at is i.i.d. with mean 0 and variance 0.1188, which results in

a variance of 3 for the disturbance Dt.
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The closed-loop system with no control constraints can be expressed as:

yt = GP (q−1)ut +GD(q−1)at =
0.1945 + 0.1506q−1

1− 1.263q−1 + 0.4661q−2
ut−16 +

1

1− 0.98q−1
at

For this example, the disturbance can be expressed as:

Dt+16 = D̂t+16|t + et+16|t =
0.9816

1− 0.98q−1
at + (1 + 0.98q−1 + · · ·+ 0.9815q−15)at+16

= 0.9816Dt + (1 + 0.98q−1 + · · ·+ 0.9815q−15)at+16

The resulting CPA-MVB is calculated as:

σ2
mv =

1− φ32

(1− φ2)
σ2
a = 1.4284

The variance ratio of best-achievable control to no control is:

σ2
mv

var(Dt)
= 1− φ32 = 0.4761

3.5.5 Constrained MVC Controller Design

The unconstrained MVC is given by the expression:

ũt = − δ(q
−1)

ω(q−1)
D̂t+16|t (3.4)

= − δ(q
−1)

ω(q−1)
φ16 ·Dt = − δ(q

−1)

ω(q−1)
φ16 · (yt −

ω(q−1)

δ(q−1)
ũt−16)

= φ16ũt−16 − φ16 1− 1.263q−1 + 0.4661q−2

0.1945 + 0.1506q−1
yt

The unconstrained MVC has an unacceptably large input variance. To moderate

the control action and to enable constraints, we will use the most elementary extension

of model predictive controller which was proposed by Clarke and Hastings-James

[101]. The controller is designed to minimize E(y2
t+b + λt∇u2

t ), which is equivalent

to minimizing the one-step criterion ŷ2
t+b|t + λt∇u2

t . The manipulated variable is

calculated at each time step by setting the expectation to zero and solving for ut.
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MacGregor and Tidwell [102] noted that a one-stage constrained MVC with fixed

λ is not usually optimal from a variance perspective. By contrast, an infinite-stage

constrained MVC is guaranteed to provide an input variance that is less than or equal

to that obtained from the one-stage optimal controller for the same output variance.

The use of a fixed penalty parameter, however, does not allow for incorporation

of hard constraints. To enable enforcement of hard constraints, the penalty weight

is chosen to ensure that the control action from the constrained MVC law does not

exceed the constraint. If the unconstrained control action |∇ũt| < c, the penalty

weight λt = 0, while if |∇ũt| ≥ c, then the input is fixed at the appropriate constraint.

The constrained MVC implementation would use a very large (tending to infinite)

value of λt when |∇ũt| ≤ c, and a penalty λt = 0 when |∇ũt| > c. For either type of

constraint, when the constraint is active, this corresponds to using a non-zero, finite

value for λt.

3.5.6 PI Controller Design

A PI controller is also used for the case study. The PID Tuner GUI in MATLABTM

is used to design a PI controller in velocity form. To optimize the closed-loop con-

troller performance the integral of squared error (ISE) is used as a tuning criterion

to calculate PI controller parameters [103]:

∇ũt = P · ∇et + I · et = −(0.27 · (yt − yt−1) + 0.027 · yt)

Note that the setpoint ysp in this example is zero. The velocity form avoids problems

with integral windup and enables easy implementation of input constraints.
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3.5.7 Simulation Results for Systems with Maximum-change

Constraints

The closed-loop behaviour of the process example under the MVC and PI controllers

described above is simulated for the maximum-change constraint scenario. An ac-

tuator always has a physical limit, and another hard constraint is imposed to avoid

aggressive behaviour in both cases:

ut =

 ũt, |ũt| < 2

sign(ũt) · 2, otherwise

The process is simulated for N = 10, 000 observations, which leads to data records

typically encountered in rolling-mill operations. A range of constraint values are

imposed, and the results are shown in Figures 3.8 and 3.9 for the constrained im-

plementation of MVC and PI cases, respectively. The horizontal axes represents the

constraint limit c, while the vertical axes represents the CPA-MVB, the output (yt)

and input (ut) variances, and performance indices, respectively. The CPA-MVB is

calculated two ways: using an ARX model that incorporates the implemented control

action, and using an AR model which explicitly ignores the input constraints. The

minimum-variance bound (MVB) required for the performance bound is computed

in each case from Equation (3.3), i.e., the variance of the b-step ahead prediction er-

ror. The dotted lines show the theoretical MVB, which is calculated using the ARX

approach.

A number of observations can be made:

• The MVB calculated using an ARX model has almost no dependency on the con-

straint imposed on the control action and has a value of approximately 1.52, whereas

the true value is 1.43. Note that this is not really a bias; rather, the time series is one
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Figure 3.8: CPA results for MVC controller with maximum-change con-
straints

47



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
1.2

1.4

1.6

1.8

2

constraint

Estimated Minimum Variance (PI)

 

 

ARX

AR

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
1

2

3

4

constraint

Output Variance (PI)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.5

1

constraint

Input Variance (PI)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.4

0.6

0.8

1

constraint

Performance Index (PI)

Figure 3.9: CPA results for PI controller with maximum-change constraints
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realization of the true process, and the MVB is calculated for the actual realization.

When the number of samples is increased to 100,000, then the calculated MVB value

converges to the true value.

• The top panels in Figures 3.8 and 3.9 show the CPA-MVB values calculated using

AR and ARX models. In comparison, inclusion of inputs gives better results in both

PI and MVC cases. When inputs are not included, the results are not as good and

depend on the controller type, i.e., the top lines in the first panels differ. These

plots reveal the effectiveness of including all available information when forming the

prediction equation. The calculated MVB is close to its theoretical value when the

system is highly constrained, i.e., c is very small. In these constraint regions, the

control action has a limited effect on reducing the output variance. The closed-loop

dynamics are dominated by the disturbance and the inclusion of the control inputs

in the model is of no value. When the constraint is relaxed, i.e., c is increased, the

controller dynamics are more important relative to the disturbance dynamics and

the inclusion of the constrained manipulated variable in the prediction equation is

essential. In either case, the modelling effort is comparable to that of fitting an

autoregressive model to the output alone.

• Decreasing trends in output variance and increasing trends in input variance are

observed as the constraint is relaxed, as expected. When the maximum-change con-

straint c is 0, the actuator is held constant; when the maximum change constraint c

is large, the performance of the constrained MVC is close to that of an unconstrained

MVC system. For both constrained MVC and PI control asymptotes are reached

for the output variance. The dotted lines show the theoretical MVB for the uncon-

strained MVC. In this example the MVC controller gives better performance, i.e.,
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smaller output variances, with less control effort than the PI controller for any given

constraint limit c over 0.05. Note that this is not generalizable. For this example,

re-tuning the PI controller does not improve its performance; there are many ‘rea-

sonable’ values for the gain and integral time that lead to worse performance than

no control at all. Moreover, the variance of the input and output monotonically ap-

proach their limits. Again, this is not generalizable. Moden and Soderstrom [104]

have established conditions for the one-step constrained MVC with a fixed penalty

parameter to have monotonic behaviour.

• The last panels of Figures 3.8 and 3.9 present performance index plots, and the impact

of the constraint on closed-loop performance can be clearly seen, especially when the

imposed constraint is small. Jelali [97] has commented that the control performance

can be claimed to be practically optimal when the performance index is great than 0.8.

Note that, due to the imposed hard constraint on the actuator, performance index

does not approach to 1 even under MVC with no constraints. From a production

standpoint, both controllers are optimal when the constraint is relaxed, e.g., any c

exceeding 0.12. The controllers are already operating very close to minimum variance,

and retuning the controllers will not bring appreciable performance benefits. For this

rolling-mill analysis, further potential performance improvement may be achieved via

modifying the process itself, for example, 1) reducing the process delay, or 2) reducing

the disturbance variability, or 3) implementing a feedforward controller.

• Moden and Soderstrom [104] have introduced a diagram to describe the input and

output variances for stochastic systems, which is used for analysis of regulators for

stochastic systems from an energy saving or profit perspective. This idea has been

employed in drawing Figure 3.10. Two curves for the MVC and PI controllers show
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Figure 3.10: Input-output energy plot

the variance of the manipulated variable (input energy) as function of the variance

of controlled variable (output energy). Note that by letting the value of output

energy be the same, the value of input energy associated with the MVC controller is

smaller than the one associated with the PI controller, which implies that the MVC

controller in this example is more effective than the PI controller from an energy

saving standpoint.

Similar results are obtained when dead-band constraints on the control action are

applied (not shown here). The calculated MVB indicates that feedback control alone

will not enable the process to meet its quality constraints and feedforward control

must be implemented, as in standard industrial practice.
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3.6 Dealing with Differences in Sampling Rates -

Resampling

In rolling mill control systems the sampling and control rates are typically in the

millisecond range because of the high-speed nature of the process. As a result, large

amounts of data can be obtained. To reduce data storage costs and to free up com-

puting cycles for real-time control systems, process variables are sometimes down-

sampled, wherein output measurements may be recorded less frequently than control

actions. For example, a mill controller receives observations and computes control

actions at 1 ms intervals, and output measurements are only written to storage at

5 ms intervals. It is important to remember that the controller is seeing output

measurements every 1 ms and computing actions on this basis, however the output

observations are being recorded in the data historian less frequently.

The challenge is how to obtain meaningful estimates of the CPA-MVB in this

scenario. There are two general approaches: 1) use only output measurements to

construct an appropriate estimate of the CPA-MVB, or 2) utilize controller inputs as

well to construct this estimate. In both cases, we cannot theoretically provide as good

an estimate as when down-sampling is not used. It is difficult to predict the loss of

accuracy a-priori by using down-sampled data. However, the examples shown below

demonstrate that very credible estimates can be obtained. The use of down-sampled

data has been studied in the econometrics literature to study prediction effectiveness

[105, 106, 107, 108]. Again, the research findings support similar conclusions to what

are found in this thesis. The use of down-sampled data for determining the optimal

control interval is discussed in [109].
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We first note that the autocorrelation test for minimum-variance performance can

be applied when the output is sampled less frequently than the control interval. Re-

call that if a process is achieving minimum-variance performance, its autocorrelation

function is a moving average process of order (b − 1), where b is the discrete-time

delay that is given by:

b = 1 + int(
Td
T

)

where int(·) denotes the integer portion of the requisite term, Td is the process delay

in time, and T is the control interval. If a process is moving average of order (b− 1)

at control interval T , then the down-sampled process at a sampling interval of KT is

moving average of order int( b−1
K

), K ≥ 1 [106, 110].

We will consider the situation where we wish to estimate the CPA-MVB where

the controller is implemented at control interval T , the manipulated variables are all

recorded at this interval, and the controller variable is sampled at integer multiples of

this interval, denoted by KT , K > 1. Note that the proposed idea can be extended to

a process with both feedforward and feedback control systems. We need to ascertain

whether this data will enable the construction of the minimum-variance forecast error

at horizon (b−1), where the forecast horizon refers to the control interval. Intuitively

the answer to this question is no. One would anticipate a loss in forecast efficiency or

accuracy. This problem has been studied extensively in the econometrics literature

under the framework of systematic sampling and aggregation of time series.

To develop these ideas, first consider the open-loop system:

Process output : yt = GP (q−1)ut +Dt

Disturbance : Dt = GD(q−1)at
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where the random shocks at for the disturbance are i.i.d. (0, σ2
a). To justify the

approaches that we will take, we need to understand how the system dynamics

and disturbances are affected by down-sampling. This is sometimes referred to as

decimation in the signal-processing literature. The notation is that the time in-

dex, {t = 0, 1, 2, · · · }, refers to the input data collected at the control interval, and

{Kt = 0, K, 2K, · · · } refers to the sample times at which the output data is recorded.

Consider a disturbance model Dt that can be described as the output of an Au-

toregressive Integrated Moving Average - ARIMA(p,d,q) process:

DKt =
θ(q−1)

φ(q−1)(1− q−1)d
aKt (3.5)

It is known that the time-series representation at sampling intervals Kt can be written

in terms of p lagged values of {DKt, DKt−K · · · } and q + (K − 1)× (p+ d) values of

past shocks {aKt, aKt−1 · · · }, as [106]:

DKt =
ζ(q−1)θ(q−1)

φ?(q−K)(1− q−K)d
aKt (3.6)

ζ(q−1) and φ?(q−K) are obtained from the roots of the polynomial φ(q−1) and ∇.

First, factor φ(q−1) as:

φ(q−1) =

p∏
i=1

(1− βiq−1)

then

φ?(q−K) =

p∏
i=1

(1− βKi q−K)

and

ζ(q−1) =

(
p∏
i=1

(
1− βKi q−K

1− βiq−1
)

)
(
1− q−K

1− q−1
)d

To verify that ζ(q−1) is a polynomial in q−1 of order (K − 1)× (p+ d), we note that:

1− βKi q−K

1− βiq−1
= 1 + βiq

−1 + β2
i q
−2 + · · · + βK−1

i q−(K−1)
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The model described by Equation (3.6) expresses the output in terms of down-sampled

disturbance values {DKt, DKt−K · · · }, and random shocks that occur at each sampling

interval {Kt,Kt − 1, · · · } Using fundamental results from time-series analysis, it is

known that ζ(q−1)θ(q−1)aKt can be expressed as:

ζ(q−1)θ(q−1)aKt = θ?(q−K)a?Kt

where a?Kt is i.i.d. (0, σ2
a?), and is only defined at sampling intervals {Kt,Kt−K, · · · }.

Note that a?Kt is not obtained by simply sampling the white noise sequence at. The

parameters of θ?(q−K) and σ2
a? are nonlinear functions of the parameters of φ(q−1),∇d,

θ(q−1) and σ2
a and are obtained through a straightforward application of a spectral-

factorization algorithm. The disturbance is then represented at the down-sampled

interval as:

DKt =
θ?(q−K)

φ?(q−K)(1− q−K)d
a?Kt (3.7)

The polynomials φ?(q−K) and θ?(q−K) are of order (p?, q?) in the shift operation q−K

[106, 107], where:

p? = p and q? ≤ int([p+ d] + [q − p− d]/K)

Furthermore, σ2
a? > σ2

a. It is more convenient to write Equation (3.7) in the equivalent

form:

D?
t? =

θ?(q−1)

φ?(q−1)(1− q−1)d
a?t? (3.8)

whereD?
t? , t

? = {0, 1, 2, · · · } represents the disturbance at sampling interval {Kt,Kt−

K,Kt − 2K · · · }, a?t? represents the i.i.d random sequence at the same sampling

intervals, and the backshift operator q−1 is understood to operate as follows:

q−1D?
t? = D?

t?−1 = DKt?−K and q−1a?t? = a?t?−1 6= aKt?−K
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It is known that the effect of less-frequent sampling may make the underlying dis-

turbance structure unobservable due to aliasing effects [108]. This is more pronounced

when the more rapidly-sampled series has periodic components. The forecasting ef-

ficiency of less-frequently sampled time series was studied in [107]. In the examples

studied, there was little loss in forecasting efficiency when the sampled series was

“sufficiently long”.

To include the effects of down-sampling on the dynamics, assume that the linear

dynamics can be written in the form:

Gp(q
−1) =

ω(q−1)

δ(q−1)
q−b

where the orders of the numerator and denominator are (r, s), respectively. δ(q−1) is

a monic polynomial. The overall down-sampled model is of the form:

yKt =
ω′(q−1)

δ?(q−K)
)uKt−b +DKt

where:

ω′(q−1) = ω(q−1)
s∏
i=1

(1 + αiq
−1 + α2

i q
−2 + · · · + αK−1

i q−(K−1))

δ(q−1) has been factored as:

δ(q−1) =
s∏
i=1

(1− αiq−1) and δ?(q−K) =
s∏
i=1

(1− αKi q−K)

The order of numerator dynamics is inflated from r to r + (K − 1)s. ω′(q−1) can

be written as:

ω′(q−1)q−b =
K−1∑
i=0

ω′i(q
−K)q−(b−i)

where each of the terms, ω′i(q
−K), is a polynomial at most of r?, where:

r? ≤

 s− 1 + ceil( r−s+1
K

), s ≥ 1

ceil( r+1
K

)− 1, s = 0


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ceil(·) denotes the ceiling function, or the least integer greater than or equal of the

argument (·). The down-sampled output can be written as:

y?t? =

∑K−1
i=0 ω′i(q

−K)

δ?(q−K)
uKt?−b−i +D?

t? (3.9)

where q−1y?t? = y?t?−1 = yKt?−K ,and q−1ut = ut−1. The down-sampled output is

expressed as a function of past down-sampled outputs and disturbances, and inputs

that affect the process at the base-sampling interval.

Assume, without loss of generality, that the setpoint ysp is 0. There are several

approaches that can be used for CPA-MVB analysis.

• Approach 1: Fit an ARMA or AR model to the sampled outputs alone:

A?(q−1)y?t? = C?(q−1)a?t? (3.10)

The notation is that the values at the more slowly-sampled intervals are denoted

by the superscript ?, and that the backshift operator q−1 is understood to provide

the appropriate time shift to the more slowly-sampled value. This approach assumes

that the manipulated variable is generated by a linear feedback controller of the form

ut = −GC(q−1)yt and is no constraints on the manipulated variable are imposed. In

these circumstances, the closed-loop is described by:

yt =
Dt

1 +GP (q−1)GC(q−1)
= ψ(q−1)at

where ψ(q−1) is ratio of polynomials in the back-shift operator. The down-sampled

system will be represented by the theory for time-series only models presented earlier,

and a regression model of the form Equation (3.10) is the appropriate model for

estimation.
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• Approach 2: Fit an ARMAX or ARX model using the actual controller inputs:

A?(q−1)y?t? =
K−1∑
i=0

Fi(q
−1)Xi,t? + C?(q1)a?t?

where Xi,t? is the exogenous sequence Xi,t? = {uKt?−b−i}. This regression model

follows directly from Equation (3.9). In this approach all of the actual inputs are used.

The parameters can be estimated in MATLABTM by treating this as an ARMAX or

ARX model with K inputs. This method allows for the proper incorporation of the

controller inputs, and does not presume that they are generated by a linear feedback

controller. The disadvantage to this approach is that the model may be very much

over-parameterized as K increases as seen from Equation (3.9).

• Approach 3: Fit an ARMAX or ARX model using an aggregated or averaged input:

A?(q−1)y?t? = B?(q−1)u?t?−b? + C?(q−1)a?t?

where b? = 1 + int( b−1
K

). u?t? is the averaged input:

u?t? =
1

K

K−1∑
i=0

uKt?−Kb?+m′K+i

with m′K = Kb?K − b.

This approximate regression model follows directly from Equation (3.9) by inserting

u?Kt for the average of K controller inputs. When the re-sampled delay b? is an

event multiple of the original delay b,Kb? = b,m′K = 0 and ut? is the average of the

controller inputs in the interval [Kt? − b,Kt? − b + K − 1]. The concept of using

the average value of the inputs is similar to the concept of aggregating (or summing)

time-series values. As one might anticipate, this scheme will work best when the

manipulated variable is not changing rapidly, otherwise model inaccuracy will be a

potential problem.
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In each of these cases the estimated CPA-MVB can be written as:

σ2
mv? = (1 + [ψ?1]2 + · · ·+ [ψ?b?−1]]

2)σ2
a?

where ψ?j , j = 1 · · · b?−1 are calculated from the series expansion of ψ?(q−1) = C?(q−1)
A?(q−1)

.

The methods described in this section can only be used when the output sampling

interval is an even multiple of the control interval. When the desired prediction

horizon does not align with any available prediction horizons in the slowly-sampled

system, the CPA-MVB can be estimated by interpolation of CPA-MVB values at

nearby prediction horizons. When the process time delay is less than the down-

sampled output period from the data historian, it is not possible to obtain a reliable

estimation of the CPA-MVB.

3.6.1 Simulation Results

To illustrate the proposed approaches, the system described in Section 3.5 is used

to study the down-sampling effect on the CPA-MVB. The output is now sampled at

K = 1, 2, 4, 8. Note that the base sampling rate is 1 ms, and K is the multiple of

the base sampling period, which is dimensionless. Before analyzing the results of the

simulation study, we consider the theoretical results where the manipulated variable

is generated by a linear feedback controller, and the case where all of the previous

values of the manipulated variable are used in the regression analysis. The closed-loop

transfer function is calculated for K = 1 and the sampled versions for K = 2, 4, and

8 using the method described. The spectral-factorization algorithm of Wilson [111]

is used. Clearly, the results in Table (3.1) show a modest loss of efficiency.

In the second scenario, the sampled version of the disturbance model is required

for K = 2, 4, and 8. For an AR(1) model, the sampled version is also an AR(1)
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Table 3.1: PI control with no constraints imposed (Theoretical CPA-MVBs)

Multiple of base sampling time (1 ms) 1 2 4 8

CPA-MVB 1.42 1.42 1.44 1.50

model, with autoregressive parameter, φK [107]. The variance of the driving force

a?Kt is readily calculated as 1−φ2K
1−φ2 σ

2
a. For an AR(1) model, in theory, there is no loss

in efficiency by down-sampling.

Tables 3.2-3.5 present the simulation results for the PI and MVC controllers with

maximum-change constraint c = 0.1 imposed as well as the hard constraint of 2 on

the actuator as described in in Section 3.5.7. For this constraint value, approximately

40% of the control moves are constrained. In addition to a sample size N = 10, 000,

results are reported for N = 100, 000. Due to the characteristics of fast sampling in a

rolling process, this latter value of N is several times larger than the one encountered

in a typical data analysis. The effect on sample size on the calculatged value for the

CPA-MVB is also investigated.

Table 3.2: PI control with maximum-change & hard constraint (N = 10, 000)

Multiple of base Theoretical AR Model ARX Model ARX Model
sampling time (1 ms) CPA-MVB (Approach 1) (Approach 2) (Approach 3)

1 1.43 1.69 1.54 1.54

2 - 1.70 1.52 1.52

4 - 1.69 1.54 1.52

8 - 1.67 1.60 1.57

The results are shown in Tables 3.2-3.5, and the following observations can be

made:

• As expected, the two approaches using ARX models, which include the manipulated

variable, outperform the AR model. This indicates that inclusion of the input infor-

mation in formulating the predictive models essential.
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Table 3.3: PI control with maximum-change & hard constraint (N =
100, 000)

Multiple of base Theoretical AR Model ARX Model ARX Model
sampling time (1 ms) CPA-MVB (Approach 1) (Approach 2) (Approach 3)

1 1.43 1.55 1.43 1.43

2 - 1.56 1.43 1.43

4 - 1.56 1.44 1.43

8 - 1.55 1.46 1.46

Table 3.4: MVC control with maximum-change & hard constraint (N =
10, 000)

Multiple of base Theoretical AR Model ARX Model ARX Model
sampling time (1 ms) CPA-MVB (Approach 1) (Approach 2) (Approach 3)

1 1.43 1.59 1.53 1.53

2 - 1.59 1.52 1.52

4 - 1.59 1.54 1.55

8 - 1.63 1.63 1.59

Table 3.5: MVC control with maximum-change & hard constraint (N =
100, 000)

Multiple of base Theoretical AR Model ARX Model ARX Model
sampling time (1 ms) CPA-MVB (Approach 1) (Approach 2) (Approach 3)

1 1.43 1.48 1.43 1.43

2 - 1.48 1.43 1.44

4 - 1.50 1.44 1.45

8 - 1.55 1.49 1.51

• The ARX approach using averaged inputs gives essentially the same results as the

ARX implementation using all of the inputs. In theory one might have anticipated

the latter approach to do better. For this constraint value, the inputs are constrained,

and the average values of the inputs over the down-sampled interval do not differ much

from the actual values. One might also anticipate that the over parametrization of

the model that uses all of the input data detracts from the performance of this model.

• The large sample results, N = 100, 000, show that the CPA-MVB does not converge
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to the theoretical value 1.43, when K > 1 and the manipulated variable information

is excluded from the model. When the inputs are included, the results only show

a small improvement compared to the case when N = 10, 000. In addition, while

the sampling interval is large, e.g., K = 8, the use of aggregated or averaged input

(Approach 3) still gives more accurate results than when all controller inputs are used

(Approach 2).

Sometimes mill control systems sample an output more frequently than a control

interval. In this instance, it is important to remember that the CPA-MVB evaluates

what a controller sees and does. In other words, a controller receives observations

and computes control actions only at control intervals. Unless a controller has some

special output averaging element that is used for collecting observations, a controller

is essentially using output observations at control intervals to determine next moves.

Consequently, more frequent output data should be down-sampled to obtain output

observations at the same intervals as the control actions. The conventional CPA-MVB

algorithm can then be readily applied to these down-sampled output observations.

3.7 Conclusion

Variance-based controller performance assessment (CPA-MVB) has been applied suc-

cessfully to metal-rolling processes. These methods have great utility for the efficient

allocation of resources for controller maintenance and development. Three modifica-

tions to implementing CPA in rolling mills have been resolved. While these modifi-

cations are not limited to rolling processes, they are major concerns in sheet-forming

processes. In order to address changing speed during a rolling batch, the length-based

CPA first introduced by Jelali [97] has been fully developed and evaluated. Next, the
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incorporation of constraints - either on maximum changes to control inputs, or dead-

bands requiring a minimum change - has been described, and a solution for computing

the CPA-MVB has been proposed. A third problem arise when the input and out-

put are not sampled at the basic control intervals. The CPA-MVB can be estimated

using simple modifications to the basic methodology. Analogies from the economet-

rics literature were used to develop the background theory for the latter two issues.

The proposed approaches are illustrated using a range of examples using mill and

simulation data.

One of the goals of this thesis is to draw more attention to the increasing need for

controller and process monitoring in sheet-forming processes. While the applications

have addressed feedback control systems with or without feedforward control, it is

possible to extend these solutions to systems having more advanced control configu-

rations including cascade and model-predictive control.
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Chapter 4

Overview of Methods for Process

Analysis

Process control, monitoring and diagnostics play an important role in ensuring that

manufacturing industries operate safely, ensure environmental compliance, meet con-

sumer demands, and are financially viable. Process understanding is central to meet-

ing these objectives. Process analysis techniques are employed to answer questions

concerning process understanding, and to monitor performance including the effec-

tiveness of control systems. The phrase “process analysis” may refer to distinct

terminologies in different areas, e.g., process modelling in the chemical industry and

time series analysis in economics. Research is continuously underway to develop new

analysis techniques, and to apply these techniques to industrial processes. These

techniques can be data driven (empirical - e.g., multivariate statistical techniques),

or mechanistic (making use of parameterized fundamental models). In Chapter 2,

an overview was provided of techniques for assessing the performance of controllers,

using data from closed-loop operation. In the current chapter, the focus is process
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analysis, and the data are either open-loop or closed-loop. The underlying process

is assumed to be continuous time, represented in either continuous time or discrete

time (sampled data) forms. The purpose of the chapter is to provide a brief overview

of approaches to process analysis and monitoring, in order to set the stage for the

later chapters detailing the Singular Spectrum Analysis (SSA) approach.

Parametric approaches to process analysis and monitoring involve examining the

values of parameters in models to infer changes in the condition of a process (e.g.,

fouling in a heat exchanger), and changes in dynamic behaviour (e.g., onset of oscil-

latory behaviour). The models are often mechanistic, derived from first-principles,

however it is also possible to use parametric empirical models as well (e.g., transfer

functions). The principle of parsimony is important - models should contain sufficient

complexity to capture the important physical behaviour, without being unnecessarily

complex. Overly complex models become difficult to solve numerically, particularly

in real time, while excessive parameterization can negatively influence the precision

of model predictions. The principle of parsimony is well established in time series

model (see for example, [112]).

Non-parametric techniques do not require the specification of dynamic structures,

although a few parameters, such as a maximum lag, must be sometimes specified.

These techniques can be applied readily to plant data without the development of

model equations. Amongst this class of techniques are multivariate statistical tech-

niques (e.g., Principal Component Analysis (PCA), and Partial Least Square (PLS))

[113], frequency domain methods [114], as well as impulse response methods.
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4.1 Parametric Modelling Methods

Parametric methods in process analysis characterize a system using model equations,

with a limited set of parameters. The most well-known approaches in the process

control community consist of mechanistic (first principles) modelling and system iden-

tification techniques applied to transfer function models.

4.1.1 Mechanistic Modelling

Mechanistic modelling, also described as first principles modelling or fundamental

modelling, refers to physical modelling with differential or differential-algebraic equa-

tions. These equations are derived from conservation balances (e.g., mass, energy, and

momentum balances) and constitutive equations (e.g., special physical relationships

such as gas laws) [115]. Most applications lie in the field of engineering and science.

While mechanistic modelling requires more effort up front, it does have many advan-

tages including: 1) first principle models generally require less data, compensating

instead by the specification of dynamic model structures; 2) fewer parameters need

to be estimated; 3) models are more robust to process changes, and 4) models are

easily converted to transfer function and state-space models for various purposes, e.g.,

control design, process monitoring, and optimization. Note that this modelling tech-

nique typically involves prior system knowledge from the engineering science fields

such as transport phenomena, chemical kinetics, and thermodynamics. The underly-

ing physical and chemical principles may not be thoroughly understood for a given

process, making first principle models being less often available for industrial use.

Model complexity can have an impact on numerical solution, as well as parameter

estimation, both of which are concerns in practical use.
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Parameters in mechanistic models typically appear nonlinearly in chemical pro-

cess models, necessitating the use of nonlinear regression techniques (e.g., Least

Squares, Maximum Likelihood, or Bayesian estimation [116]). Numerical optimiza-

tion techniques are required, ranging from Gauss-Newton iteration to constrained

nonlinear programming techniques (e.g., conjugate gradient or interior point meth-

ods [117, 118]). Basis function approaches, in which functions such as B-splines [119]

are used to formulate the solution of differential equation models, can also be used

to help regularizing the numerical solution and avoiding numerical difficulties.

4.1.2 System Identification Techniques

System identification refers to the process of estimating dynamic models, typically

from input-output data [114, 120]. Strictly speaking, system identification comprises

both parametric and non-parametric techniques, however for the purposes of the

discussion in this chapter, we use the term to refer to parametric models. System

identification models in the process control community are very often transfer function

models in either discrete- or continuous-time forms, but state-space models are also

included. In statistical society system identification techniques often refers to time

series models (also named Box-Jenkin models [112]), which can be easily converted to

transfer functions and state-space models. The advantage of using these parametric

methods are: 1) less detailed information about process mechanisms is required,

usually comprised of the dynamic order of a model; 2) only measured observations

are required to identify mathematical models.

One common assumption for all of these methods is the existence of causal re-

lationship between inputs and outputs. Prior knowledge of processes is needed to
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specify model structures. To obtain good models, system identification methods re-

quire process data of high quality; accordingly, experimental design techniques are

often introduced to prepare data for system identification, e.g., pseudo-random bi-

nary sequences (PRBSs), or other pulse response tests in open-loop. Experimental

data for pulse experiments (pseudo-random binary or other types of pulse tests) can

also be used to estimate non-parametric finite impulse response (FIR) and finite step

response (FSR) models, and transfer function models estimated from data can also be

used to generate FIR and FSR models. These models can be used for estimating var-

ious types of controllers, including Proportional-Integral-Derivative (PID) controllers

and model predictive controllers (MPCs). Experimentation can be in either open- or

closed-loop operation, depending on whether process regulation close to a setpoint

is required (e.g., in the case of open-loop unstable processes, or processes requiring

control to meet product specifications).

4.2 Non-parametric Modelling Methods

Non-parametric models differ from parametric models by not requiring a model struc-

ture (or prior process knowledge) to be specified (e.g., dynamic order). With no

structure being specified, non-parametric models are characterized by large numbers

of parameters (e.g., impulse response coefficients), in contrast to parametric models

which have many fewer parameters to estimate. Within a statistical context, non-

parametric models refer to distribution-free models in which it is not necessary to

specify the nature of a probability distribution for a population being studied (e.g.,

Normal or Weibull). In this instance, non-parametric methods are sometimes referred

to as distribution-free methods. Within system identification, non-parametric models
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are sometimes referred to as black box models (e.g., see [114]), while hybrid models

- consisting of both mechanistic elements and empirical elements - are sometimes

referred to as grey-box models.

Prior process knowledge is often required by parametric methods, e.g., the dy-

namic order of a process, or the range of time delays. Non-parametric methods do

not require model structure specification (beyond maximum lag information), and

offer the following benefits: 1) they are model-free, i.e., no prior knowledge is needed

for implementation. With limited knowledge of the underlying structure of a pro-

cess, non-parametric methods are still applicable. Many non-parametric methods are

easy to apply and to understand. Additionally, we are not constrained to making as

many assumptions about the population that we are working with as what we have

to make with a parametric method. 2) They are data-driven and can be more readily

applied to process data without the development of model equations. Highly auto-

mated industrial processes provide massive amounts of routine process data, which

can be either open- or closed-loop, and there is a strong need to acquire useful process

information from recorded plant data. Non-parametric methods are growing in pop-

ularity and influence for the reasons discussed above. In this section non-parametric

methods are discussed briefly in the scope of time and frequency domains.

4.2.1 Multivariate Analysis Techniques

In the time domain, multivariate analysis refers to any statistical technique examin-

ing multiple variables for process analysis purposes. One common use of multivariate

analysis is to extract valuable process information through investigating the obser-

vations in a lower dimension space, i.e., the projection space formed by the original
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process data. Often a projection space is of reduced dimension and can be constructed

via a small number of basis functions. That is why many multivariate analysis tech-

niques are referred to as reduced-rank techniques. Typical reduced-rank techniques

can be classified into two groups in terms of different types of basis functions [113]: 1)

predefined (user-defined) basis functions, e.g., square impulse functions [121], orthog-

onal polynomials [122, 123], splines [124], Fourier series [121], and wavelets [125]; 2)

data-driven basis functions based on Karhunen−Loève decomposition, e.g., Multiple

Linear Regression (MLR) [126], Principal Component Analysis (PCA), and Partial

Least Squares (PLS) [72]. These latter techniques decompose the covariance struc-

ture of the data to produce basis vectors that are linear combinations of the original

process variables. Note that both open- and closed-loop data can be analyzed via

multivariate analysis techniques.

4.2.2 Frequency Domain Methods

In the past few decades, two different but mathematically equivalent approaches,

the time domain and frequency domain approaches, have been used for the current

development of time series analysis. Ljung [114] demonstrates that time domain

and frequency domain identification approaches are complementary. While time do-

main approaches are generally associated with parametric models, frequency domain

approaches are associated with spectral analysis. Spectral analysis essentially decom-

poses the variation in a time series or process data into different frequency compo-

nents. Readers are referred to some pioneering work in spectrum estimation done

by Bartlett [127] and Blackman and Tukey [128]. The most well-known frequency

domain methods are Fast Fourier Transform (FFT) and Discrete Fourier Transform
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(DFT) applied to data. Generally, it can be assumed that frequency-dependent varia-

tions in many data demonstrate the primary characteristics of interest. Furthermore,

a good understanding of periodic or systematic sinusoidal variations may yield more

information about underlying physical mechanisms, which makes frequency domain

methods more useful and practical.

4.3 Singular Spectrum Analysis

Singular spectrum analysis (SSA) is a non-parametric technique for process analysis

that offers an alternative to established non-parametric techniques (e.g., multivari-

ate statistical techniques such as PCA) for building models and performing process

analysis. Conventional approaches such as PCA apply a covariance decomposition to

data matrices consisting of lagged time series data for one or more process variables

under consideration. Barkhuizen [7] have noted that a single time series typically

contains information about key dynamics and properties of a process, because the

time-evolution of the system leaves a footprint in the process output. In this the-

sis, instead of multivariate analysis, a time series analysis tool, Singular Spectrum

Analysis (SSA), is proposed for process analysis. Recall that the property of dimen-

sionality reduction in multivariate analysis often helps in dealing with masses of data.

Similar to other data-driven multivariate analysis techniques, e.g., Principal Compo-

nent Analysis (PCA), and Partial Least Square (PLS), SSA is also a reduced-rank

technique based on Karhunen− Loève decomposition of a specially-structured data

matrix.

Aldrich and co-workers [5, 6, 7] have outlined clearly the feasibility of applying

SSA analysis to plant data. Barkhuizen [7] has illustrated the application of SSA

71



to examples in the chemical and metallurgical engineering systems. The current

thesis reports the promotion of the techniques to chemical process analysis. The

promising properties and successful applications of the SSA technique detailed below

motivate its use for performing process analysis and identifying the key features of the

process through examining system outputs, and for performing minimum-variance-

based controller performance assessment.

4.3.1 Brief Historical Remarks

In [129] it is claimed that the first appearance of Singular Spectrum Analysis (SSA)

can be dated back to 1795 by Prony [130]. The first report of the basic SSA algorithm

often refers to the publications by Pike [131], Broomhead and King [132, 133], and

Fraedrich [134]. It is also worthwhile to mention the other version of SSA - the

‘Caterpillar’ method - developed by a research group at St. Petersburg University

[135]. Golynandia et al. [129] states that the main difference between the Caterpillar

and conventional SSA methods are in the research focus, instead of in the algorithm

itself. While the Caterpillar SSA focuses attention on the separability concept, the

conventional SSA emphasizes its dedication to the model building in signal-plus-noise

structure. Regarding the widespread use of SSA, Vautard, Ghil, and their coworkers

[136, 137, 138, 139] have published a series of SSA papers demonstrating the potential

of SSA that have attracted significant attention.

The basic elements of SSA and some variations are described in detail in [140,

141]. Golyandina [129] provides an up-to-date summary of the SSA methodology,

and additional details are provided in recent review papers in [142, 143, 144, 145].

The major research groups in the field of SSA are located in St. Petersburg University

72



in Russia, Cardiff University and Bournemouth University in the UK, and University

of California, Los Angeles in the USA, where Professors Nina Golyandina, Anatoly

Zhigljafsky, Hossein Hassani, and Michael Ghil are the key active contributors.

4.3.2 Advantages of SSA

Hassani [142, 143] summarizes a number of advantages of SSA that motivate its use:

1. SSA is a nonparametric technique. There are no statistical or distributional as-

sumptions in the application of SSA, such as stationarity of an analyzed series and

normality of a residual.

2. SSA can deal with seasonal, stationary, and non-stationary time series. Unlike

conventional Autoregressive Integrated Moving Average (ARIMA) models, differ-

encing is not required for SSA. SSA can accommodate non-stationary, integrating

time series.

3. SSA decomposes a series into interpretable components, such as trends, harmonic

series, and residuals. Additionally, these decomposed components can be used for

time-series analysis, data forecasting, and process monitoring.

4. SSA can be applied to short time series, meaning that process information can be

extracted without requiring many data. The requirement of a small data size in

analysis is especially beneficial to nonlinear dynamics analysis.

Process analysis is often considered as a prerequisite for modelling and forecasting

[139]. With the fact that nonlinear processes are abundant in reality, the extension

of successful linear dynamic analysis techniques to understand nonlinear processes

is a natural move. Vautard comments in [138] that as least tens of thousands of
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data points are required to get truly nonlinear information in nonlinear dynamics.

Instead of a great number of quality lab experiment data, observations of physi-

cal systems are often applied to find numerical solutions of differential equations,

ordinary and partial; however, shorter and noisier data in nature increase the dif-

ficulties encountered in applications. Traditional time series analysis techniques

have been introduced to study nonlinear dynamic systems. In this thesis the data-

adaptive SSA technique is promoted due to the success of applications in nonlinear

geophysics systems [136].

Without prior knowledge of physical dynamics, SSA extracts reliable information

from short and noisy data. Vautard et al. [138] demonstrates that SSA can pro-

vide nonlinear physical insights via using only few hundred data points typically

available for geophysical and other natural systems. As well, given short data, SSA

is proven to be an efficient noise reduction methodology, especially in the analy-

sis of nonlinear processes with a large quasi-periodic component or an oscillation.

Notice that singular spectrum analysis, similar to principal component analysis, is

essentially a linear technique, which may result in overlooked nonlinear dynamics

in analysis [7]. Nonlinear principal component analysis (NLPCA) and nonlinear

singular spectrum analysis (NLSSA) are developed to broaden the application of

data-adaptive methods in nonlinear dynamic systems [146, 147]. So far the ap-

plications of NLPCA and NLSSA have been applied mainly to geophysical time

series.
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4.4 Summary

This chapter presents a brief review of process analysis techniques, categorized into

parametric and non-parametric groups. A state-of-the-art time series analysis tech-

nique, Singular Spectrum Analysis (SSA), is introduced, together with a brief overview

of the history and advantages of this technique, and the motivation for using it to

perform process analysis. In subsequent chapters, the SSA work will focus on: 1)

understanding the algorithm from a filtering and frequency viewpoint; 2) applica-

tions in process analysis and controller performance assessment; 3) extension to two-

dimensional analysis; and 4) industrial applications in the chemical process industries

and sheet-forming processes.
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Chapter 5

Filtering and Frequency

Interpretations of SSA3

5.1 Introduction

Singular Spectrum Analysis (SSA) has proven to be a flexible method for the analysis

of time-series data. Applications are reported in diverse areas such as climate change

and geophysical phenomena [136, 138, 149], mineral processing [5] and telecommuni-

cation applications [150, 151]. The basic SSA method has been combined with the

maximum entropy method (MEM) [152] and with multi-taper methods [153] to en-

hance the spectral analysis of data. Extensions to cope with missing data [154] and

multi-scale applications have also been developed [155].

The basic elements of SSA were first reported in [131, 132]. Widespread use of SSA

followed a series of papers by Vautard and Ghil [136] and Vautard et al. [138]. The

3This chapter has been published in Physica D: Nonlinear Phenomena, 239:1958-1967, 2010
[148]. Please refer to the preface of the thesis for the nomenclature used in this Chapter.
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monograph by Golynandia et al. [141] describes the basic algorithm plus a number

of variations. A recent overview is given in [142].

The purpose of this paper is to give a number of interpretations of SSA from

a signal processing perspective by addressing issues related to filtering interpreta-

tions, spectrum evaluation and recovery of harmonic signals. In particular, in the

case where the trajectory matrix has many more rows than columns, the eigenvalues

and eigenvectors are nearly identical to those of an associated symmetric Toeplitz

matrix. The eigenvalues and eigenvectors of this latter matrix are highly structured

[156, 157, 158]. These structured properties lead to a number of interesting filtering

interpretations. Additionally, we note that the reconstruction phase in SSA can be

interpreted as a forward and reverse filtering of the original data. This provides for a

number of additional interpretations for the filtered series and their spectra.

The paper is organized as follows. In the next section we state the basic SSA

algorithm and some variations. This is followed by filtering and spectral interpreta-

tions of the SSA algorithm. These interpretations make extensive use of symmetry

properties of the eigenfilters that are used in the filtering. These in turn are derived

from symmetry properties of the eigenvectors of the trajectory matrix. Two examples

are then analyzed to illustrate the theoretical results.

5.2 Basic SSA and Some Variations

5.2.1 Basic SSA Algorithm

The basic SSA algorithm consists of the following steps [132, 136, 138].

1. Choose an embedded dimension K and define L = N + 1−K, where N is the
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number of observations in the time series.

K should be long enough to capture the transient response of a process (i.e.,

the memory of a process). For example, if there is prior operating experience

indicating the settling time of the process, this can be used to come up with

a suitable value for K. Alternatively, historical knowledge of the approximate

time constant for the process can also be used, and K could be chosen to

4 time constants (for example). Another consideration that can be used is

the knowledge of typical frequencies presented in the process. K should be

sufficiently long to capture a full period of the slowest sinusoid.

These guidelines make reference to historical understanding of the process in a

manner similar to the considerations often used to select a sampling period.

2. Form the L×K Hankel matrixA using mean-corrected data, yt, t = 1, 2, · · · , N .

A = [y1,y2,y3, · · · ,yK ] =



y1 y2 y3 · · · · · · yK

y2 y3 y4 · · · · · · yK+1

y3 y4 y5 · · · · · · yK+2

...
...

...
...

yL yL+1 yL+2 · · · · · · yK+L−1


where yi = (yi, yi+1, · · · , yi+L−1)T . This matrix A is often referred to as the

trajectory matrix. In most applications of SSA, L > K [141, 136].

3. Determine the eigenvalues and eigenvectors of ATA. Denote the eigenvalues

by λ1 ≥ λ2 ≥ · · · ≥ λK ≥ 0. For each eigenvalue λi there is a corresponding

eigenvector vi.

(ATA)vi = λivi (5.1)
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4. Define K new series, wi = Avi, i = 1, 2, · · · , K. Each series is of length L.

Once the new series are constructed, the analysis then focuses on the new series,

which are sometimes referred to as the latent variables. The individual series

may be analyzed, or subsets may be grouped together.

The utility of the method is derived from the following properties and interpre-

tations of the eigenvalue analysis:

(a) The eigenvectors vi are orthonormal, i.e., vTi vj = 0 (i 6= j) and vTi vi = 1.

(b) The latent variables wi are orthogonal, and

‖wi‖2 = wT
i wi = (Avi)

TAvi = vTi (ATA)vi = vTi λivi = λi (5.2)

(c) Consequently,

K∑
i=1

wT
i wi =

K∑
i=1

wT
i

K∑
i=1

wi =
K∑
i=1

λi (5.3)

Often, the interesting features of a time series are found by analyzing the first few

latent variables. A number of methods have been proposed to choose the number

of latent variables for analysis. Most often, the construction of a scree plot [159],

which is a plot of λi versus i, will indicate a knee or bend. This can be used to select

the number of latent variables. Other methods have been proposed when the break

points are not clear [160].

Scree plots are also useful for identifying harmonics in the data. As discussed

in [132, 142, 136], if N and L are large enough, each harmonic results in two eigen-

values that are closely paired for a purely harmonic series. A harmonic component

may produce a periodic component in the autocorrelation and partial autocorrelation

function. However, the number of periodic components cannot be easily extracted

from these functions. In addition, a slowly decreasing sequence of eigenvalues can
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be produced by a pure noise series [141, 142]. These two observations suggest that

a break or knee in the scree plot can be used to separate the signals that arise from

harmonics and signals from noise or aperiodic components [141].

The eigenvalues ofATA are most often calculated by undertaking a singular value

decomposition (SVD) of A. The right singular vectors of A are identical with the

eigenvectors of ATA and the eigenvalues of this latter matrix are the squares of the

corresponding singular values of A [141, 161].

5.2.2 Variation: Toeplitz Approximation to ATA

ATA is symmetric and positive semi-definite. It can be written as

ATA =



yT1 y1 yT1 y2 · · · yT1 yK

yT2 y1 yT2 y2 · · · yT2 yK
...

...
...

yTKy1 yTKy2 · · · yTKyK


In situations when L >> K, we have

1

L
yT1 y1 '

1

L
yT2 y2 '

1

L
yT3 y3 ' · · · '

1

L
yTKyK '

1

N

N∑
t=1

y2
t = c0

1

L
yT1 y2 '

1

L
yT2 y3 ' · · · '

1

L
yTK−1yK '

1

N − 1

N−1∑
t=1

ytyt−1 = c1

...

1

L
yT1 yK =

1

L

L∑
t=1

ytyt−(K−1) = cK−1
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where ci is the sample autocovariance at lag i (We have previously assumed that the

data have been mean corrected). Consequently

ATA

L
' C =



c0 c1 · · · cK−1

c1 c0 · · · cK−2

...
...

...

cK−1 cK−2 · · · c0


where C is the sample covariance matrix of the observations. The sample autocorre-

lation matrix R = C/c0 is often used instead of C for analysis. This is appropriate

when the data have been centered and normalized [132, 139].

5.2.3 Variation: Hankel Approximation and Diagonal Aver-

aging

A singular value decomposition of the matrix is undertaken

A =

µ∑
i=1

X i =

µ∑
i=1

√
λiuiv

T
i (5.4)

where µ = min(L,K), λi and vi are the eigenvalues and eigenvectors of ATA as

described in Equation (5.1), and ui are the eigenvectors of AAT , i.e., the solution to

[162]

(AAT )ui = λiui (5.5)

The orthogonal vectors ui and vi are related by

Avi =
√
λiui, i = 1, 2, · · · , µ (5.6)

where the singular values of A are
√
λi, i.e., the square root of the eigenvalues of

ATA. Clearly, ui = wi/
√
λi.

Each of the X i in Equation (5.4) is of rank 1. A new series xi of length N is
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reconstructed by averaging each of the N anti-diagonals in X i. Attention is then

focused on the new series xi, or groupings of these series. Guidelines for grouping of

variables are typically based on the clustering and separation of the eigenvalues. A

‘separability index’ has been proposed in [142] to assist with grouping.

This diagonal averaging is computationally equivalent to calculating xi using [163]

xi = D−1W ivi (5.7)

where

W i =



w1 0 · · · · · · · · · 0

w2 w1 0 · · · · · · 0

w3 w2 w1 0 · · · 0

...
...

...
...

wK−1 · · · w3 w2 w1 0

wK · · · · · · w3 w2 w1

wK+1 · · · · · · · · · w3 w2

...
...

wL−1 wL−2 · · · · · · · · · wL−K

wL wL−1 wL−2 · · · · · · wL−K+1

0 wL wL−1 wL−2 · · · wL−K+2

...
...

...
...

0 · · · 0 wL wL−1 wL−2

0 · · · · · · 0 wL wL−1

0 · · · · · · · · · 0 wL



(5.8)
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and D is an N ×N diagonal matrix, whose diagonal elements are(
1 2 · · · µ− 1 µ · · · µ µ− 1 · · · 2 1

)
(5.9)

and wi =

(
w1 w2 · · · wL

)T
= Avi, and vi is one of the eigenvectors. To sim-

plify the nomenclature, double subscripting on wi has been avoided. It is understood

that the elements of this vector depend upon the specific eigenvector used in the

reconstruction.

Recall that N = L + K − 1 and µ = min(L,K) = K in most SSA applications.

Then there are N − 2(K − 1) = 2L − N ‘complete’ rows with diagonal elements µ

in D. The matrix W i is of dimension N × K. The first and last K − 1 rows are

‘incomplete’, which leaves N − 2(K − 1) ‘complete’ rows.

The latent variables wi are orthogonal, and have squared norm ‖ wi ‖2
2 = λi. The

squared norm of a reconstructed series using diagonal averaging is

‖ xi ‖2
2 = ‖D−1W ivi ‖2

2

≤ ‖D−1 ‖2
2 ·trace(W T

i W i)

= K ‖D−1 ‖2
2 · ‖ wi ‖2

2

= Kλi ‖D−1 ‖2
2

=
Kλi

2(1 + 1/4 + 1/9 + · · · 1/(K − 1)2) + (2L−N)/K2

' K

π2/3 + (2L−N)/K2
λi, L� K (5.10)

and

‖
d∑
i=1

xi ‖2
2 6=

d∑
i=1

‖ xi ‖2
2 (5.11)

Calculations indicate that the upper bound may be quite conservative. The recon-

structed series xi are not orthogonal making it impossible to calculate the variance
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of grouped variables from the variance of the individual-reconstructed series.

The use of reduced-rank approximations to assist in the extraction of harmonic

signals from additive noise has been considered extensively in the signal processing

literature [164, 165, 166]. The trajectory matrix has a central role in these algo-

rithms. Extensive research indicates that extraction of these signals is considerably

enhanced when the trajectory matrix is replaced by a structured-low rank approxi-

mation [167, 168]. The SVD leads to an unstructured approximation, because the X i

are not Hankel. A structured-approximation is obtained when the trajectory matrix

is calculated using the reconstructed series (or groupings of variables). While the

SVD does not preserve the Hankel structure, the Hankel matrix constructed from the

reconstructed series does not preserve the rank property. Cadzow [169] developed

a simple iterative algorithm to preserve both the rank and Hankel structure. He

has shown that this iteration will converge to reduced-rank approximation that has

the Hankel structure for certain classes of signals including sinusoids and damped

sinusoids corrupted by white noise. The reconstruction of the xi corresponds to

one iteration of Cadzow’s algorithm. Other approaches for obtaining reduced-rank

approximations with appropriate structure involve the use of structured total least

squares [170, 171]. These methods are computationally intense, requiring the use of

a nonlinear optimizer in high dimension.

5.3 Filtering Interpretation of SSA

Before discussing filtering interpretations, we state a number of definitions and prop-

erties.
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Definition 1. A column vector c of length n is symmetric if c equals the vector

obtained by reversing the rows of c, i.e., ci = cn+1−i, i = 1, 2, · · · , n. Mathematically,

c is symmetric, if Jc = c, where J is a n × n matrix with ones on the main anti-

diagonal. J is known as the exchange matrix.

A vector c is skew-symmetric if the vector obtained by reversing the rows of c

equals −c, i.e., ci = −cn+1−i, i = 1, 2, · · · , n. A skew-symmetric vector satisfies

Jc = −c.

Definition 2. An n× n matrix X is persymmetric if it is symmetric about both its

main diagonal and main anti-diagonal. A symmetric Toeplitz matrix is persymmetric.

Property 1. If a persymmetric matrix has K distinct eigenvalues, then there are

[(K + 1)/2] symmetric eigenvectors, and [K/2] skew-symmetric eigenvectors, where

[x] denotes the integer part of x [156, 157, 158, 172]. The eigenvectors appear in the

pattern shown in Table 5.1.

K symmetric eigenvector skew-symmetric eigenvector

odd
(
αTi J α0 αTi

)T (
−βTi J 0 βTi

)T
even

(
αTi J αTi

)T (
−βTi J βTi

)T
Table 5.1: Eigenvector patterns for persymmetric matrices. J is the [K/2]×

[K/2] exchange matrix.

Property 2. The eigenvectors of a persymmetric matrix X can be computed from

matrices of lower dimension [156, 157]. For K even, X can be written as

X =

 X11 JX21J

X21 JX11J

 (5.12)

where X11 and X21 are [K/2]× [K/2] and XT
11 = X11, X

T
21 = JX21J .
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[K/2] eigenvalues pi, and associated symmetric eigenvectors α̃i, are obtained from

the eigenvalue problem

(X11 + JX21)α̃i = piα̃i (5.13)

αi in Table 5.1 is given by αi = 1√
2
α̃i and i = 1, 2, · · · , [K/2].

The remaining [K/2] skew-symmetric eigenvectors β̃i, and corresponding eigen-

values qi, are determined from the eigenvalue problem

(X11 − JX21)β̃i = qiβ̃i (5.14)

βi in Table 5.1 is obtained from βi = 1√
2
β̃i and again i = 1, 2, · · · , [K/2].

The eigenvectors have considerable structures. This structure will be exploited in

Section 5.3.2. Expressions for K odd can be found in [156].

Definition 3. Let b(x) be a polynomial of the form b(x) =
∑n

k=1 bkx
k−1. b(x) is a

palindromic polynomial if bk = bn−k+1, k = 1, 2, · · · , n. b(x) is an antipalindromic

polynomial if bk = −bn−k+1, k = 1, 2, · · · , n [173].

Definition 4. For a polynomial b(x) with real coefficients, the reciprocal polyno-

mial of b(x) =
∑n

k=1 bkx
k−1 is obtained by reversing the coefficients, i.e., b̃(x) =∑n

k=1 bn−k+1x
k−1.

Definition 5. An eigenfilter is a polynomial formed filter whose polynomial coeffi-

cients are obtained from an eigenvector. Denoting an eigenvector by v the associated

eigenfilter is v(z−1) =
∑K

k=1 vkz
−(k−1), where z−1 is interpreted as the backshift oper-

ator, i.e., z−1yt = yt−1.

Property 3. The eigenfilters constructed from a persymmetric matrix are either

palindromic polynomials or anti-palindromic polynomials. This follows immediately
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from the symmetric and skew-symmetric properties of the eigenvectors of symmetric

Toeplitz matrices [Property 2].

Property 4. The roots of the eigenfilters constructed from a persymmetric matrix

have unit magnitude, or they appear in reciprocal pairs [158, 173].

Property 5. The distribution of roots at z = ±1 of the eigenfilters constructed from

a symmetric Toeplitz matrix is given in Table 5.2.

Table 5.2: Distribution of roots at z = ±1 for eigenfilters of a symmetric
Toeplitz matrix

Type Order (K-1) Root at z−1 = 1 Root at z−1 = −1
Antipalindrome Odd

√
-

Even
√ √

Palindrome Odd -
√

Even - -

These results are established by substituting z = ±1 into those palindromic and

antipalindromic polynomials. It is known that an antipalindromic polynomial always

has an odd number of roots located at z−1 = 1 [173].

Property 6. When the eigenvalues of a symmetric Toeplitz matrix are unique, the

roots of the eigenfilter associated with the minimum/maxixum eigenvalue all lie on

the unit circle. For the other eigenfilters, this property may or may not be satisfied

[158, 174].

5.3.1 Filtering Interpretation of Latent Variables

The latent variablewi is readily interpreted as a filtered value of the original variables.

To simplify the notation, let v be one of the eigenvectors and w be the corresponding
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filtered value instead of vi and wi. Then, the tth element of w can be written as

wt =
K∑
m=1

vmyt+m−1, t = 1, 2, · · · , L (5.15)

Alternatively, it can be written in the form

wt =
K∑
m=1

ṽmyt+K−m, t = 1, 2, · · · , L

where the coefficients ṽm are obtained by simply reversing the order of the coefficients

vm. This can be expressed mathematically as ṽ = Jv, where J is again a K × K

exchange matrix [Definition 1].

5.3.2 Filtering Interpretations Using the Toeplitz Approxi-

mation

Let the eigenvectors be obtained from the Toeplitz approximation to ATA, i.e., LC.

Based on the definitions, the covariance matrix C is a symmetric Toeplitz matrix

and is persymmetric. For the moment, let K be odd. From Property 1, the filtered

values for the symmetric eigenvectors can be written as

wt = α0yt+[K/2] +

[K/2]∑
m=1

αm(yt+[K/2]+m + yt+[K/2]−m), t = 1, 2, · · · , L (5.16)

The filtered values using the skew-symmetric eigenvectors are calculated as

wt =

[K/2]∑
m=1

βm(yt+[K/2]+m − yt+[K/2]−m), t = 1, 2, · · · , L (5.17)

w can be interpreted as an aligned or time-shifted value, which consists of either

a weighted average of [K/2] observed values adjacent to yt+[K/2] in the case of a

symmetric eigenvector, or as a weighted difference for a skew-symmetric eigenvector.

When plotting yt and wt, it is imperative to properly align the original data by

aligning yt+[K/2] with wt.
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The filters in Equations (5.16) and (5.17) are recognized as noncausal Finite Im-

pulse Response (FIR) filters, also called acausual or non-recursive filters [175, 176].

Equation (5.16) describes a zero-phase filter. While the filter may attenuate or am-

plify the data, it introduces no phase shift in the filtered values. If a series is described

by purely harmonic components, these will appear at the same time point in the fil-

tered data as in the original data. Equation (5.17) describes a differentiating filter.

This filter introduces a phase lag of ±π radians. In a series with purely harmonic

components, the filtered series will either lead or lag the original series. There are

many classical design techniques for zero-phase filters that act as either averaging

filters or differentiating filters [176].

The relationship between the even and odd filters can be expanded by using

the alternate calculation method for the symmetric and skew-symmetric eigenvectors

that follows from Property 2. When L >> K, the symmetric eigenvectors, and

corresponding eigenvalues, can be calculated from

C11 + JC21 '
2

L
AT

1A1 (5.18)

where A1 is the L× ([K/2] + 1) matrix.

A1 =

(
1
2
(y1 + yK) 1

2
(y2 + yK−1) · · · 1

2
(y[K

2
] + y[K

2
]+2) y[K

2
]+1

)
(5.19)

The skew-symmetric eigenvectors are obtained by replacing the sum of the variables

by their differences in Equation (5.19).

A2 =

(
1
2
(y1 − yK) 1

2
(y2 − yK−1) · · · 1

2
(y[K

2
] − y[K

2
]+2) 0

)
(5.20)

For an even K, the similar patterns can be obtained.
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5.3.3 Filtering Interpretation of Reconstructed Series

From Equations (5.7) and (5.8), we can show that

xt =
1

K

(
yt +

K−1∑
m=1

ζm(yt−m + yt+m)

)
, t = K,K + 1, · · · , N −K + 1 (5.21)

The filter coefficients are recognized as v◦ṽ
K

, where ◦ denotes convolution and ṽ is

again obtained by reversing the order of the coefficients of v.

ζ1 = v1v2 + v2v3 + · · ·+ vK−2vK−1 + vK−1vK

ζ2 = v1v3 + v2v4 + · · ·+ vK−2vK

...

ζK−1 = v1vK (5.22)

For the designated values of t, xt is obtained by weighting yt and (K − 1) values

of yt±m on either side of yt. The weights are symmetric. For values of t outside of the

indicated range, we can construct a filtering interpretation as well. However, edge

effects or end effects are observed as the filter coefficients are no longer symmetric.

Equation (5.21) is recognized as a noncausal FIR filter, sometimes referred to as an

a-casual or non-recursive filter [176]. Since the filter coefficients are symmetric, this is

a zero-phase filter as well. It is known that a zero-phase a-casual filter can be obtained

by a two-step filtering algorithm [175]. First, filter the data yt, t = 1, 2, · · · , N with

the FIR filter v(z−1) to produce the series w̃t. Second, filter the series w̃t using the

FIR filter ṽ(z−1), where ṽ = Jv. This is equivalent to reversing the order of w̃t and

filtering with ṽ, and then reversing the order of the resulting series. In both cases

the filtering algorithm uses yt = 0 when t ≤ 0 and w̃t = 0 when t > N . Once the

double-filtered series is obtained, it is multiplied by the diagonal weighting matrix

D. A very close approximation to any of the individuals via rank-1 approximations,
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xi, is obtained by using the MATLABTM command filtfilt(v,1,y) and then

multiplying the result by 1
K

. Except for a short transient at the beginning and

at the end of the reconstructed series, the results coincide with those obtained by

diagonal averaging. There are other choices for initial conditions [175] that may be

advantageous to reduce edge effect transients. However, due to the length of series

and small K value typically encountered in SSA analysis, edge effects are most often

small.

The results in this section apply only to signals reconstructed from rank-1 approx-

imations, say, X i. The grouping of several rank-1 reconstructions before averaging

is equivalent to calculating the individual averaging operators and then grouping the

resulting reconstructions. Consequently, if a rank-p approximation is desired, then p

of these filters are arranged in a parallel configuration and the results are summed

[163]. A similar idea was also developed in [177].

5.4 Spectral Interpretation of SSA

5.4.1 Spectral Interpretation of Latent Variables

The spectrum of the filtered series in Equation (5.15) is given by

Sw(f) ' |v(e−j2πf )|2 · S(f) (5.23)

where f is the normalized frequency, 0 ≤ f ≤ 0.5, S(f) is the spectrum of yt, and

| · | denotes the magnitude of the quantity ‘·’. The approximation arises from the

assumption that the spectrum of yt, t = 1, 2, · · · , N , is the same as the spectrum of

yt, t = K,K + 1, · · · , N , i.e., edge or end effects have been neglected.
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5.4.2 Spectral Interpretations Using the Toeplitz Approxi-

mation

The interesting spectral features of the filtered signals arise from the structured nature

of the eigenfilters.

Using the Toeplitz approximation, the eigenfilters are either palindromic or anti-

palindromic. Any eigenfilter v(z−1) can be factorized as [173]

v(z−1) = c(z−1 − 1)k1(z−1 + 1)k2
k3∏
i=1

(z−2 − 2cos(ωi)z
−1 + 1)

k4∏
i=1

e4(ζi, z
−1)

k5∏
i=1

e5(τi, z
−1) (5.24)

The term (z−2 − 2cos(ωi)z
−1 + 1) accounts for the complex roots (except ±1)

of unit magnitude, e4(·) accounts for all real roots except those at ±1, and e5(·)

accounts for the complex roots, which are neither purely real nor purely imaginary.

{c, ζi, ωi} ∈ R, {τi} ∈ C, and K = k1 + k2 + 2k3 + 2k4 + 4k5.

The limiting cases for the spectrum of the filtered signal w, at f = 0 and f = 0.5,

are

lim
f→0

Sw(f) ' lim
f→0
|v(e−j2πf )|2 · S(f)

= |c0k12k2
k3∏
i=1

2(1− cos(ωi))

k4∏
i=1

e4(∆i, 1)

k5∏
i=1

e5(τi, 1)|2 · S(0)

= 0, k1 > 0 (5.25)

lim
f→0.5

Sw(f) ' lim
f→0.5

|v(e−j2πf )|2 · S(f)

= |c(−2)k10k2
k3∏
i=1

2(1 + cos(ωi))

k4∏
i=1

e4(∆i,−1)

k5∏
i=1

e5(τi,−1)|2 · S(0.5)

= 0, k2 > 0 (5.26)
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Using the results in Property 5 and Table 5.2, the low and high frequency char-

acteristics of the eigenfilters are shown in Table 5.3. The frequency characteristics are

much different from typical digital filters, and are more reminiscent of the filtering

characteristics of Sleppian functions [178, 179].

Table 5.3: The frequency characteristics for eigenfilters of Toeplitz matrix

Type Order (K-1) limf→0 |v(e−j2πf )|2 limf→0.5 |v(e−j2πf )|2
Antipalindrome Odd 0 -

Even 0 0
Palindrome Odd - 0

Even - -

When v(z−1) corresponds to the minimum or maximum eigenvalue, all roots are

on the unit circle [158, 174]. Consequently, |v(e−2jπf )| will be zero at most (K − 1)

values of f in the interval 0 ≤ f ≤ 0.5, resulting in complete attenuation of Sw(f)

at these frequencies. We also note that an antipalindromic eigenfilter can always be

written as v(z−1) = (z−1 − 1)k1v(z−1), where k1 is odd and v(z−1) is a palindromic

eigenfilter [173]. Thus, an antipalindromic filter is always equivalent to palindromic

filtering of the differenced variable (z−1 − 1)k1yt.

5.4.3 Spectral Interpretation of Reconstructed Series

As shown in Section 5.3, a series produced by the diagonal-averaging approach is

fundamentally different from the latent variable. The spectral characteristic of a new

reconstructed series x follows immediately from Equation (5.21).

Sx(f) ' 1

K2
|v(e−j2πf )|4 · S(f), 0 ≤ f ≤ 0.5 (5.27)

The approximation again arises from the end or edge effects, which are expected

to be small when L � K. The spectral properties of this associated filter follow

immediately from the previous discussion.
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5.5 Examples

5.5.1 Example 1: Harmonic Series with Two Real Sinusoids

In this section, we consider the following process

yt =
2∑

k=1

αk sin(2πfkt) + ξt (5.28)

where αk = (4, 2)T , fk = (0.1, 0.4)T , and ξt ∼ N (0, 1), ξt is normally distributed

with mean 0 and variance 1. The simulated data length, N , is 1024. Both the signal

and the noise are mean-corrected for purposes of analysis. The signal-to-noise ratio

(SNR) is 10.

5.5.1.1 Scree Plot and Eigenvector Analysis

In this example, we choose K = 25. The scree plot (not shown) gives four significant

eigenvalues, grouped into two pairs. One might anticipate that these two groups of

eigenvalues arise from the presence of the two harmonics in the data that correspond

to frequencies 0.1 and 0.4. The presence of additive noise produces a large number

of much smaller eigenvalues.

We use the Toeplitz approximation ATA ' LC to calculate the SVD. This is a

reasonable assumption, as indicated by the Frobenius norm ratio.

||ATA− LC||F
||ATA||F

=
389.7− 388.2

388.2
= 0.031 (5.29)

The first four eigenvectors are shown in the first column of Figure 5.1. As discussed

in Section 5.3, all the eigenvectors are either symmetric or skew-symmetric. In this

example, there are 13 symmetric eigenvectors, and 12 skew-symmetric eigenvectors.
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Figure 5.1: Filtering and spectral interpretations of example 1 (a) First four
eigenvectors (first column); (b) Magnitude of eigenfilter spectrum (second
column); (c) Convolution filter coefficients (third column); (d) Magnitude
of convolution filter spectrum (fourth column)
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5.5.1.2 Eigenfilter Analysis

From Property 5, the eigenfilters obtained from the first four eigenvectors above

are either palindromic or antipalindromic. The magnitude of the associated spectral

windows of these eigenfilters is shown in the second column in Figure 5.1. The spectral

windows show strong peaks at the harmonic frequencies, indicating that the filtering

algorithm behaves similar to a notch-filter [176].

The roots for these eigenfilters are shown in Figure 5.2. (The first panel in Figure

5.2 corresponds to the largest eigenvalue.) The number of roots located at z−1 = ±1

for each eigenfilter is noted on the top of each subfigure. The roots at ±1 follow the

properties shown in Table 5.2. The eigenvalues are unique, so the zeros of eigenfilters

associated with the smallest and largest eigenvalues all lie on the unit circle.

5.5.1.3 Convolution Filter Analysis

The third column in Figure 5.1 depicts the convolution filter coefficients. These are

all zero-phase filters due to the symmetry of the filter coefficients. The magnitude

of the spectral windows of corresponding convolution filters is shown in the fourth

column of this figure. The peaks in these spectral plots correspond exactly to the

significant frequencies in the signal, i.e., f = 0.1 and 0.4. The properties in Table 5.3

also hold.

5.5.1.4 Reconstructed Components (RCs)

The top four panels in Figure 5.3 show the first four RCs obtained by diagonal aver-

aging. The original data is also included in each of these plots. Several observations

can be made: i) the RCs are paired, and each pair has almost the same pattern, and
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Figure 5.2: Roots for the eigenfilters of example 1. The number of roots
located at z−1 = ±1 is shown on the top of each panel

ii) the first two RCs are much larger than the second two RCs. This is expected

as the first two RCs correspond to the harmonic whose frequency is 0.1 and whose

power magnitude is four times that of the second harmonic (See Equation (6.1)).

The last panel in Figure 5.3 shows the grouped reconstructed series from the first

four RCs. The group reconstructed series closely matches the original data. There is

no discernable phase lag, which is to be expected.
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Figure 5.3: First four RCs and the grouped series (dotted line) versus orig-
inal series (solid line) of example 1
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Figure 5.4: Synthetic SSC time series
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5.5.2 Example 2: Synthetic SSC Data

As an example, we consider a synthetic suspended-sediment concentration (SSC)

series shown in Figure 5.4 and analyzed by Schoellhamer [154]. A 15-min SSC time

series with mean 100 mg/L was generated using Equations (6) and (7) in [154].

y(t) = 0.2ε(t)cs(t) + cs(t) (5.30)

and

cs(t) =100− 25 cosωst+ 25(1− cos 2ωst) sinωsnt

+ 25(1 + 0.25(1− cos 2ωst) sinωsnt) sinωat (5.31)

where εt is normally distributed random variate with zero mean and unit variance.

The seasonal angular frequency ωs = 2π/365 day−1, the spring/neap angular fre-

quency ωsn = 2π/14 day−1 and the advection angular frequency ωa = 2π/(12.5/24) day−1.

Equation (5.31) was simulated for one water year, giving 35, 040 ‘observations’ for

analysis. Prior to analysis the data was mean corrected.

5.5.2.1 Scree Plot and Eigenvector Analysis
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Figure 5.5: Scree plot of synthetic SSC series

In this example, we choose window length K = 121. We note that Schoellhamer
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[154] used K = 120. Our analysis is based on the Toeplitz matrix. This provides a

very good approximation to ATA as indicated by the Frobenius norm ratio which

has the value 0.002.

The scree plot for the eigenvalues, Figure 5.5, has been normalized by the sum

of the eigenvalues since the eigenvalues are very large. Note the log scale on the

vertical axis. The first three eigenvalues are an order of magnitude larger than the

remaining ones. The presence of many small eigenvalues suggests that the data

contains aperiodic or random components. Only one group of paired eigenvalues

is evident in Figure 5.5. One might anticipate three groups of paired eigenvalues,

given the structure of the model. An explanation for this behaviour is given in the

next subsection.

By using the Toeplitz approximation, 61 symmetric and 60 skew-symmetric eigen-

vectors are obtained. The first column of Figure 5.6 shows the first three eigenvectors.

5.5.2.2 Eigenfilter Analysis

The magnitude of the associated spectral windows of these eigenfilters is shown in

the second column in Figure 5.6. The spectral window corresponding to the largest

eigenvalue has the characteristics of a low-pass filter. The second and third eigenfil-

ters correspond to a notch-filter with normalized frequency of 0.02. This frequency

corresponds to the advection angular frequency ωa = 2π/(12.5/24) day−1. Given the

data and model, we may expect three groups of paired eigenvalues. However, by only

simulating one year’s data, the subtidal (annual) cycle shows up as a low frequency

component. Thus, this effect is captured in the first eigenfilter. However, this eigen-

filter also smooths out the effect of the fortnight component, which appears at the
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Figure 5.6: Filtering and spectral interpretations of synthetic SSC series, (a)
First three eigenvectors (first column); (b) Magnitude of eigenfilter spec-
trum (second column); (c) Convolution filter coefficients (third column);
(d) Magnitude of convolution filter spectrum (fourth column)
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normalized frequency 7.44 × 10−4. Advanced spectral methods such as Thompson’s

multi-taper method [178, 179] readily separate the fortnight/advection components.

Additional insights into the spectrum are often obtained by using several spectral

methods [180, 181]. In addition, harmonic frequencies are often specified explicitly

as a seasonal lag in seasonal time series models, while in SSA they are presented in

the coefficients of the eigenfilters.

The roots of the eigenfilters follow the same properties in Table 5.2 and example

1. Additionally, all the roots of eigenfilters related to smallest and largest eigenvalues

are located on the unit circle. Due to similarity, the root plots are not shown.

5.5.2.3 Convolution Filter Analysis

The convolution filter coefficients are shown in the third column of Figure 5.6 and the

corresponding spectral characteristics of these filters are shown in the fourth column

of this figure. The convolution filter corresponding to the largest eigenvalue has a

distinctively triangular shape and acts as a low-pass filter. The second and third

convolution filters have their power concentrated at a normalized frequency of 0.02.

5.5.2.4 Reconstructed Components (RCs)

Table 5.4: Variance summary of first three components

a λi∑K
i=1 λi

var(xi)
∑a

i=1 var(xi) var(
∑a

i=1 xi)

1 0.5011 745.1 745.1 745.1
2 0.1064 81.2 826.3 838.1
3 0.1039 79.2 905.5 1086.1

The first three RCs are plotted in the last three panels of Figure 5.7. Individually
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they account for 48.7%, 5.1%, and 5.0% of the data variation. (The data variance is

1546.7.) Table 5.4 confirms that the RCs are not orthogonal, because the sum of the

variances of the first three components is not equal to the variance of their sum.

The first RC is a very smooth signal, reflecting that it is obtained by a low-pass

filtering of the data. By comparing the patterns of the other two RCs, it is clear

that the identification of the harmonic component has been done correctly, as the

convolution filter acts like a notch filter.

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct
−100

0

100

200

S
S

C

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct
−60

−30

0

30

60

S
S

C
1

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct
−40

−20

0

20

40

S
S

C
2

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct
−40

−20

0

20

40

S
S

C
3

Figure 5.7: Synthetic SSC series along with the first three RCs
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5.6 Conclusion and Discussion

Singular spectrum analysis is a flexible and useful method for time-series analysis.

The primary contributions of this paper have been to provide additional insights into

the filtering and spectral characteristics of SSA technology and the enhancements

that arise by using diagonal averaging. These new filtering and spectral results are

derived from the properties of symmetric Toeplitz matrices and the properties of the

resulting eigenfilters and convolution filters. Filtering and spectral interpretations

for the reconstructed series from diagonal averaging were derived. The symmetric

and skew-symmetric behaviour of the eigenfilters was exploited to derive a number

of these properties. It was shown that the reconstructed series could be interpreted

as zero-phase filtered responses, obtained by a particular implementation of forward

and reverse filtering of the original data. It was also shown that whereas the latent

variables are orthogonal, the reconstructed series are not orthogonal. The results in

this paper should enable a more thorough comparison of SSA with other filtering

methods.

Multichannel extensions of SSA (MSSA) have been proposed [182, 183, 184].

MSSA produces data-adaptive filters that can be used separate patterns both in

time and space. It is necessary to construct a ‘grand’ block matrix, a multichannel

equivalent toATA/L. This matrix also has a block Toeplitz approximation. This ap-

proximation gives a symmetric, but not persymmetric grand matrix, although every

sub-block matrix is a persymmetric matrix. Exploitation of the properties of these

highly structured matrices to ascertain filtering and spectral properties, in a manner

similar to that employed in this paper, should be possible.
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Chapter 6

Application of Singular Spectral

Analysis in Chemical Processes

6.1 Introduction

As established in Chapter 5, Singular Spectrum Analysis (SSA) is a powerful and

flexible technique for time-series analysis. Pike [131] and Broomhead [132] first pro-

posed the basic SSA algorithm, while Vautard and Ghil [136, 138] published a series

of SSA papers demonstrating the applications of SSA that have attracted significant

attention. The basic SSA method with details can be found in [140] and [141], and

is summarized in the preceding chapter. A number of benefits of SSA that motivate

its use can be summarized as [143] :

1. SSA can deal with seasonal, stationary, and non-stationary time series. Unlike

conventional Autoregressive Integrated Moving Average (ARIMA) models in which

an integer degree of non-stationarity must be specified, differencing is not an issue
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for SSA.

2. SSA is a nonparametric technique with no statistical assumptions in the applica-

tion, such as stationarity of an analyzed series and normality of residuals or random

shocks.

3. SSA decomposes a series into interpretable components, such as trends, harmonic

series, and residuals. Additionally, these decomposed components can be used for

time-series analysis, data forecasting, and process monitoring.

4. SSA can be applied to short series, meaning that process information can be ex-

tracted without requiring many data. The requirement of a small data size in

analysis is especially beneficial to nonlinear dynamics analysis.

6.1.1 Applications of SSA

Given the advantages above, practical applications of SSA have been extended to

solve problems in the following.

6.1.1.1 Feature extraction

The major advantage of SSA is to decompose a time series into a number of inde-

pendent and interpretable components, e.g., a slowly varying trend, oscillatory com-

ponents and a structureless residual. With relatively little computational effort, the

SSA decomposition provides feature extraction, e.g., trend extraction [185, 186] peri-

odicity/seasonality detection [187, 188], and denoising (or prefiltering) [189, 190]. In

addition, SSA applications in feature extraction have been provided with a smoothing

and filtering interpretation [148].
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6.1.1.2 Forecasting

The attraction of SSA applications in forecasting can be outlined as: 1) In SSA there

is no statistical assumption concerning either signal or noise, while traditional time

series methods require structural and distributional assumptions, e.g., stationarity

for the data, linearity for the model, and normality for the residuals. The only

assumption adopted in SSA forecasting is to satisfy the Linear Recurrent Formulae

(LRF) summarized in [141]. 2) SSA decomposition makes it feasible to forecast

either the single component itself or the grouped reconstructed series. 3) SSA has

proven to work well in forecasting short, noisy time series [138]. Improving forecasts

via SSA is validated against time series in different areas, especially economic and

financial time series, which recently have been analyzed by Hassani and his coworkers

[143, 144, 191, 192, 193].

6.1.1.3 Gap filling

Missing data are a common problem in data analysis, and gap-free data are often

required for standard analysis tools. Modifications to SSA have been proposed to

fill in the missing data and continue the analysis procedure. The first gap-filling

approaches have been validated in the geosciences [154].

SSA-based gap-filling methods in existence can be classified into two groups:

1) Direct methods: Schoellhamer [154] and Golyandina and Osipov [194] have

proposed modified versions of SSA to fill in the missing data by means of featured

components, i.e., trends and periodic components, effectively providing an element

of interpolation based on featured components. The filled data can be viewed as a

filtered version of the original data. Golyandina and Osipov also remark that the
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SSA gap-filling technique can bring new solutions to the SSA forecasting, because

the forecasting problem can be formed in terms of missing data located in the end.

2) Iterative methods: The essential idea is that missing data follow the same

patterns in the available measurements, e.g., the trend and oscillatory modes. Two

standard steps are implemented [195, 196]: (a) missing values are filled in itera-

tively by using the leading reconstructed components and updating self-consistent

lag-covariance matrix. Note that covariance matrix represents temporal correlations

in the univariate cases and spatio-temporal correlations in the multivariate cases; and

(b) a cross-validation technique is applied to update the key parameters in the SSA

algorithm, i.e., the window length and the number of components to execute the gap-

filling. The successful implementation of this algorithm is conditional on the pattern,

the gap length, and variance fraction of missing data. Regarding the extension of this

gap-filling algorithm, Wang and Liang [197] slightly modify the iteration procedure in

order to take into account some uncertainties, while Kondrashov et al. [198] combine

extra process information, i.e., a gappy driver, to help the gap-filling application.

6.1.1.4 Change-point detection

Moskvina [199] proposes a sequential application of SSA to the problem of detecting

changes in time series. Note that one of the key features in SSA is the dimensional

reduction of the space formed by vectors in the trajectory matrix, i.e., a subspace in

a lower dimension that approximates well the above defined space and describes well

the signal in a time series. The problem of change-point detection can be considered

as the problem of outlier identification in a time series. It can be assumed that the

generation mechanism of a time series, i.e., the signal structure, stays unchanged, and
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the residual is an i.i.d. random variable. This results in reasonably small distances

between the vectors in a trajectory matrix and a reduced subspace. Whenever there

is a change in the generation mechanism, outliers appear in the time series, and the

corresponding vectors are moved out of the reduced subspace. The underlying idea is

that distances between the corresponding vectors and the reduced subspace are ex-

pected to increase, which can be used for change-point detection. Different detection

statistics are proposed based on the aforementioned distances (see Moskvina’s PhD

thesis [199] for further details). Note that standard SSA analysis is performed in an

off-line manner, while SSA-based change-point detection is implemented in an on-line

procedure. Accordingly, change-point detection can be further studied as a promising

process monitoring tool in industry.

6.1.1.5 Multi-dimension SSA

Multi-dimension SSA is a natural extension of SSA to multi-dimensional time series.

Two forms are multi-channel SSA (M-SSA) and two-dimensional SSA (2D-SSA).

The theoretical foundation of M-SSA can be traced back to [132] in the context

of nonlinear dynamics analysis. In comparison with Principal Component Analysis

(PCA) with emphasis on the temporal structure, M-SSA studies more temporal and

some spatial structures. Note that extended empirical orthogonal function (EEOF)

in the meteorological literature is synonymous with M-SSA. Two different approaches

are presented to implement M-SSA, which differs in the way of forming the multi-

channel trajectory matrix. For a more detailed description see the Toeplitz method

in [136] and the trajectory-matrix method in [132]. M-SSA has many applications,

especially in the analysis of economic and financial time series [188, 190, 193].

109



The other multi-dimension extension is 2D-SSA, which is introduced by Golyan-

dina [200, 201] with special focus on the 2D analysis and physical interpretations.

2D-SSA can decompose 2D data into low- and high-frequency components and give

temporal-spatial patterns. Applications of 2D-SSA can be found in digital terrain

analysis [201] and digital image analysis [200].

6.1.2 Motivation

Diverse SSA applications have already been demonstrated in research fields such as

meteorology, oceanology and geophysics [190]; finance, economics and business [193];

and biosciences [202]; telecommunication [203]; and image processing [204]. Successful

applications have proven a promising future of SSA-based data analysis in various

areas; however, Aldrich and co-workers [5, 6] have noted the lack of SSA analysis of

data from process plants. The SSA application to plant data in the chemical and

metallurgical engineering systems has been illustrated in Barkhuizen’s thesis [7]. In

this work SSA is further promoted to the chemical industry.

Introducing SSA techniques into the collection of techniques used for analysis of

chemical processes raises a number of questions. The first question is the difference

between SSA and other existing multivariate data analysis methods, such as dynam-

ical principal component analysis (DPCA) [205], canonical variate analysis (CVA)

[206], and spectral PCA (using power spectra or autocovariance functions) [207].

SSA is mainly used for time series analysis (or process analysis) and forecasting,

while DPCA and CVA focus on system identification and process monitoring, and

spectral PCA contributes in oscillation detection and root cause diagnosis. DPCA

implicitly estimates parametric models as linear combinations of the lagged outputs.
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The field of chemical engineering affords a tremendous amount of research pos-

sibilities to applied mathematicians. One of the main reasons is the existence of

oscillations and multiple steady states in complex chemical processes that are caused

by interactions between the transport, thermodynamic and kinetic phenomena. Pos-

sible reasons are: 1) hard constraints, e.g., dead-band and valve stiction; 2) aggressive

control effects; and 3) oscillatory disturbance. The process characteristics result in

featured data similar to the ones in aforementioned areas, e.g., geoscience, economics,

and business. Consequently, successful demonstrations motivate prospective applica-

tions of SSA in the process analysis and monitoring of chemical data.

6.2 SSA in Chemical Process Analysis

SSA analysis is mainly motivated by properties of decomposed components, which

can be interpreted from a filtering and spectrum perspective. In comparison with

other time series analysis tools, improvements of SSA in process analysis come from:

1) the filtering properties of decomposed series; 2) simpler power spectrum of decom-

posed series focusing on smaller frequency ranges; and 3) limited noise content in few

decomposed series due to the separation of signal and noise in different frequency

ranges. Further, process analysis plays a key role in the root-cause investigation and

performance improvement of control systems. The more characteristics known about

a process, the better control can be achieved. Barkhuizen [7] states that a single

time series can contain information about key dynamics and properties of a process,

because the evolution of a system leaves a footprint in the process output. The em-

phasis of this section is on promoting SSA applications to the chemical industry, and

an example below is used to demonstrate the feasibility.
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In the discussion that follows, the two tanks in series example first presented by

Aldrich and Barkhuizen [6] is revisited using the enhanced SSA algorithm described in

Chapter 5. The differences between the results in [6] and the results described below

are: 1) in the treatment of the data from the tank simulation described below, mean-

centering is applied (Aldrich and Barkhuizen [6] do not use mean-centering in their

analysis), and 2) different window lengths. Mean-centering enhances the predictive

ability of the SSA approach, because a non-zero mean not corrected will dominate

the low-frequency behaviour, resulting in a prediction of the average of the data. A

similar result is seen in time series forecasting.

6.2.1 Example 1: Flow Between Two Tanks in Series

Aldrich and Barkhuizen [6] illustrates the use of basic SSA via the flow of two non-

interacting tanks in series. The output is the measured flow out of the tank process,

while the input is the inlet flow. To show more SSA features, this flow example is

reconsidered in this work. Note that it is a second order process, and the process

transfer function can be written as:

G(s) =
1

(0.38s+ 1)(2.62s+ 1)
=

1

s2 + 3s+ 1
(6.1)

Figure 6.1 displays the process response (thin solid line) to a square signal (thick

solid line). Note that the same input signal and noise characteristics as described in

[6] are used in the simulation computing in the work presented in this chapter, and

consequently the input and output signals shown in Figure 6.1 are the very similar.

While the stimulus square signal is of a period of 100 seconds, i.e., 100 data points,

the measured flow response (‘+’ markers) is simulated with a Gaussian noise with
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zero mean and 0.1 standard deviation. The signal variance is 0.0547, and the signal-

to-noise ratio (SNR) is 5.47.
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Figure 6.1: Flow process response (after [6]): a square signal (think solid),
an actual response (thin solid), and a simulated response (‘+’
markers)

6.2.1.1 Scree Plot

The window length in this example is chosen as K = 100 (Notice that in [6] K = 23

is used). Figure 6.2 is a scree plot showing one pair of significant eigenvalues. Note

that the SSA analysis is applied to the mean-corrected process measurements. In the

scree plot the eigenvalues have been normalized by the summation, and only the first

20 eigenvalues are presented in a log scale. The first eight eigenvalues are considered

to be more significant than the remaining ones. One might anticipate that: 1) the

exceptional first two eigenvalues imply a harmonic as a pair of eigenvalues of similar
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Figure 6.2: Scree plot of Example 1

magnitude are observed; 2) eigenvalues 3− 8 present smoothing drifts in the data; 3)

a long tail of small eigenvalues indicate components with no specific patterns.

In SVD decomposition the Toeplitz approximation XTX ' sC in Chapter 5 is

used. The Frobenius norm ratio can show that this is a reasonable assumption.

||ATA− LC||F
||ATA||F

=
94.9

750.5
= 0.126 (6.2)

Note that the accuracy of Toeplitz approximation replies on the data and window

length. In this analysis the number of measurements are relatively small, i.e., N =

300, while the window length is relatively large, i.e., K = 100. However, the Frobenius

norm ratio still indicates a fairly good Toeplitz approximation.

6.2.1.2 Filtering Analysis

Chapter 5 demonstrates that by using the Toeplitz approximation the associated

eigenvectors are either symmetric or skew-symmetric; thus, there are 50 symmetric

and 50 skew-symmetric eigenvectors in this example. The first four eigenvectors are
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Figure 6.3: Filtering and spectral interpretations of Example 1 (a) First four
eigenvectors (first column); (b) Magnitude of eigenfilter spectrum (second
column); (c) Convolution filter coefficients (third column); (d) Magnitude
of convolution filter spectrum (fourth column)
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plotted in the first column in Figure 6.3, and the magnitude of the associated spectrum

plots of these eigenfilters are given in the second column. Several observations can

be made: 1) the first two panels display strong peaks at frequency 0.01, which agrees

well with the period of the stimulus square signal and the conclusion of the harmonics

in the scree plot. This information is confirmed as well in the data plots in Figure

6.4. 2) the last panels present a mix of harmonics, implying that no specific patterns

is discovered in the corresponding reconstructed components.

The convolution filter coefficients and the magnitude of the corresponding spectral

windows are plotted in the last two columns in Figure 6.3. These filter coefficients are

symmetric, which make zero-phase filters as described in Chapter 5. The frequency

information gathered in column four is similar to the one in column two.

6.2.1.3 Reconstructed Components (RCs)

For illustration the first four RCs are plotted in the top four panels in Figure 6.4. By

comparing the patterns of the first two RCs, we can conclude that the identification

of a harmonic component in the scree plot has been done correctly. Spectrum plots

in Figure 6.3 also confirm this harmonic at frequency 0.01. The third and fourth

panels cover the end effects in SSA analysis. The bottom panel of Figure 6.4 draws

the original series (solid line) versus the grouped series (dashdot line) composed of

the first eight RCs. The grouped series clearly follows the main trend in the analyzed

data. Furthermore, there is a good agreement between the grouped series and the

real process response signal (not shown here).

The difference between the results in this work and the ones in [6] comes from:

1) the mean-correction of the data in this work - mean centering was not used in [6];
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2) different window lengths, and 3) the use of the new filtering theories described in

Chapter 5. The importance of this flow example is to illustrate how periodic compo-

nents appear in SSA analysis. In situations where there are periodic components in

process data, one would expect to see pairs of eigenvalues associated with these com-

ponents. This is a more direct and straightforward way to detect such behaviour in

contrast to fitting time series models that contain ARMA and seasonal components.

While plots of power spectrum generated from estimated time series models, and the

auto-correlation function (ACF) computed directly from data, are often used for os-

cillation detection in data analysis these methods can be influenced by characteristics

such as noise and components of time-varying frequencies. In particular, oscillatory

components appearing in ACF plots can be obscured.

6.3 SSA in Chemical Process Monitoring

As demonstrated in Chapter 3, an explicit model identification procedure is a key step

in computing MVC-based benchmarks in most performance assessment approaches.

Parametric and nonparametric models are fitted in this procedure. Parametric models

often cover transfer function models and state space models, which are expected to be

of a low order [10]. Nonparametric models include impulse/step response models and

frequency-domain based models [19]. Parametric identification approaches require

the specification of model structure, which can be challenging for closed-loop data,

whereas nonparametric approaches do not have this requirement. SSA is a non-

parametric approach that offers the potential of some model reduction through the

use of singular value decomposition (SVD) of the lagged process data. In addition,

the SVD approach in SSA can deal with problems of poor numerical conditioning
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that are often encountered in conventional impulse response estimation. The central

contribution of this work is to introduce a new nonparametric SSA technique to

the area of process monitoring in chemical industry. A new approach to compute the

standard MVC performance benchmark is proposed. Besides, SSA provides a number

of orthogonal singular vectors, which are potentially helpful for further investigating

process behaviour and making predictions without much efforts. The developed SSA-

based CPA is presented below in detail.

6.3.1 Basic CPA algorithm

In this work, univariate feedback systems without feedforward controllers are dis-

cussed for demonstration. For more details regarding the standard CPA algorithm,

readers are referred to [14] and [15]. Harris [4] expresses a closed-loop system as:

yt = ψ(B)at = et|t−b + ŷt|t−b = ψ1(B)at + ψ2(B)at−b (6.3)

where the psi weights ψ(B) can be split into two parts associated with the b-step

ahead forecast error et|t−b and b-step ahead forecast ŷt|t−b, and ψ1(B) = 1 + ψ1B +

· · ·+ ψb−1B
b−1 (B is the backshift operator, i.e., Byt = yt−1).

Since the random shocks {at} are independent and identically distributed (I.I.D.),

the minimum output variance in this case is:

σ2
mv = (1 + ψ2

1 + · · ·+ ψ2
b−1)σ2

a (6.4)

where σ2
a is the variance of at.

A normalized performance index between 0 and 1 is typically used to assess the

performance of the overall control scheme, and is calculated as the ratio of the min-

imum variance to the mean square error (mse) in the data. This index can indicate
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whether the current controller is working well or not.

η =
σ2
mv

mse(yt)
=

σ2
mv

σ2
y + µ2

y

(6.5)

where σ2
y denotes the output variance, and µy denotes the output mean (non-zero in

the general case).

6.3.2 Proposed SSA-based CPA Algorithm

In practice, the linear regression approach provided in [14] is a straightforward way to

compute the MVC-based performance index. The theory is to fit an AR model to an

output data. The impulse response of the identified model can be used to calculate

the psi weights, which are used in Equations 6.4 and 6.5 to calculate the performance

index η. Since the analyzed closed-loop process is assumed to be stable (by controller

design), the impulse weights ψ decay to 0, usually within a reasonable timeframe. A

finite horizon is used for calculation, and the impulse response is truncated beyond a

minimum threshold.

Starting with the ψ weight impulse response (moving average) representation of

the output time series in Equation 6.3, yt = ψ(B)at, we have

yt−b = ψ(B)at−b ⇒ at−b =
1

ψ(B)
yt−b

Accordingly,

yt = ψ1(B)at + ψ2(B)at−b = ψ1(B)at +
ψ2(B)

ψ(B)
yt−b = et +

ψ2(B)

ψ(B)
yt−b

resulting in an autoregressive representation for the output. As noted above, the

assumption of a stable closed-loop system ensures the convergence of ψ2(B)
ψ(B)

. The

tracking error over the time delay horizon, representing the MVC tracking error, is

denoted as et = ψ1(B)at.
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The autoregressive model estimation can be posed as a lagged regression problem:

yt =
∞∑
i=1

αiyt−b−i+1 + et ≈
m∑
i=1

αiyt−b−i+1 + et

where m is the best model order when fitting an AR model to an output yt.

A matrix form yt = X ·α+ et can be rewriten as:

yt

yt−1

...

...

yb+m


s×1

=



yt−b yt−b−1 · · · yt−b−m+1

yt−b−1 yt−b−2 · · · yt−b−m
...

...
...

...
...

...

ym ym−1 · · · y1


s×m



α1

α2

...

αm


m×1

+



et

et−1

...

...

eb+m


s×1

where s = t− b−m+ 1.

By standard linear regression, the estimated parameter vector can be obtained

as α̂ = (XTX)−1XTyt. Notice that it is quite possible that XTX will be poorly

conditioned. Instead, a singular value decomposition (SVD) is applied to the matrix

X, and we have X = UΣV T =
∑m

i=1

√
λiuiv

T
i .

Note that we can use an eigenvector decomposition for XTX as well:

(XTX)vi = λivi ⇒ vi = λi(X
TX)−1vi

⇒ (XTX)−1vi =
1

λi
vi ⇒ (XTX)−1 =

m∑
i=1

1

λi
viv

T
i

With the previous results, we can obtain

ŷt|t−b = X · α̂ = X(XTX)−1XTyt

= (
m∑
i=1

√
λiuiv

T
i )(

m∑
i=1

1

λi
viv

T
i )(

m∑
i=1

√
λiuiv

T
i )Tyt

=
m∑
i=1

(uTi yt)ui = (uT1 yt)u1 + (uT2 yt)u2 + · · ·+ (uTmyt)um

121



where

(uiv
T
i )(vjv

T
j ) = uiv

T
i vjv

T
j =

 uiv
T
i , i = j

0, i 6= j
.

In addition, ŷt|t−b can be rewritten in a matrix form.

ŷt|t−b = U(m)s×mU
T (m)m×syt = U s×sI(m)s×sU

T
s×syt

where ·(m) is a rank-m matrix, and I(m)s×s is a modified identity matrix having

m non-zero entries (1) on the diagonal, with the remaining s−m diagonal elements

being set to 0.

The MVC-based CPA measure η can be computed as follows:

η = 1−
ŷTt|t−bŷt|t−b

yTt yt
= 1− y

T
t UI(m)UTUI(m)UTyt

yTt yt

= 1− y
T
t UI

2(m)UTyt
yTt UI

2(s)UTyt

= 1−
∑m

i=1(uTi yt)
2∑s

i=1(uTi yt)
2

=

∑s
i=m+1(uTi yt)

2∑s
i=1(uTi yt)

2

It is clear that the MVC index can be calculated directly in terms of the singular

vectors of the lagged output matrix X, without the need to specify any model infor-

mation beyond the time delay horizon b.

6.3.3 Discussion and Extensions

6.3.3.1 Process Analysis & Controller Performance Assessment

The basis of the SSA approach to CPA proposed in Section 6.3.2 is to expand the

prediction ŷt|t−b =
∑m

i=1(uTi yt)ui, which is a linear combination of singular vectors

ui defined by projection coefficients uTi yt, i = 1, 2, · · · ,m. The SSA is applied to the

data lagged by the delay horizon b, and the output observations yt are then projected
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onto the resulting singular value decomposition.

Information about the dynamic structure of the closed-loop process can be gleaned

from both the SSA analysis on the lagged output measurements, and the projection

of the output yt on the singular vectors resulting from the SSA. The projection

coefficients, uTi yt, provide insight into possible sub-optimal behaviour of the exist-

ing controller, because they describe couplings between output values yt and output

values beyond the time delay horizon. If the controller was a minimum variance con-

troller, there would be no such couplings because the MVC acts to eliminate these

dependencies.

As well, the SSA of the lagged data provides insight into the dynamic structure

from a process analysis perspective. If the closed-loop process is stationary, the corre-

lation structure across time of the output measurements is invariant under shift of the

absolute time index, i.e., the relationships between output measurements yt, . . . , yt−L

is the same as the relationships between output measurements yt−b, . . . , yt−b−L. Con-

sequently, the SSA can be examined for evidence of dynamic elements such as har-

monic behaviour that might indicate a poorly tuned controller such as aggressive

control effects, or a process maintenance issue such as oscillatory disturbance.

In the example that follows, we demonstrate a series of graphical tests that can be

used to diagnose dynamic behaviour. In particular, we propose the following sequence

of diagnostics:

1. Computation of the SSA on the delayed outputs and projection of yt onto the

resulting left singular vectors to compute the MVC-based performance index.

2. Normalizing the absolute value of the projection coefficients uTi yt to place them in

the range [0, 1], and plotting versus the singular vector index.
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3. Normalizing the singular values associated with the SSA and plotting in a scree

plot to depict the progression of singular values in the SSA.

4. Computation and plotting of the autocorrelation function (ACF) for the closed-

loop data;

5. Computation and plotting of the spectra of the process data yt, SSA-based pre-

diction ŷt|t−b, and associated prediction error.

This comprehensive set of plots and quantitative diagnostics provides a more

complete picture of the closed-loop controller performance.

6.3.3.2 Proposed Spectrum Analysis

The orthogonal decomposition provided by SSA makes it possible to express the

spectrum of the prediction, ŷt|t−b, as the sum of spectra associated with each of the

left singular vectors:

Sŷt|t−b
(f) =

m∑
i=1

(uTi yt)
2 · Sui

(f)

where f is the frequency, and Sui
(f) is the spectrum of ui. Note that uTi yt is a

scalar.

Since the singular vectors ui represent dynamic couplings (correlation) in the out-

put time series, the spectra associated with these singular vectors can indicate the

presence of certain periodic components and dynamic elements (e.g., low-frequency

dynamics). Insights from such spectral decompositions can be used to identify main-

tenance issues and controller tuning issues in the closed-loop process. Moreover,

if the matrix XTX is approximated by a covariance matrix, the eigenvectors have

additional filtering and spectrum properties presented in Chapter 5.
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6.3.3.3 Zero-padding Technique

In practical spectrum analysis, zero-padding is a fundamental tool. Zero-padding in

the time domain results in spectral interpolation and higher resolution of the data

spectrum. In this work, zero-padding can be used to eliminate end effects in an SSA

decomposition. If the process output data vector is padded with (m + b − 1) zeros,

the data vector becomes
[
0Tm+b−1 y1 y2 · · · yt

]T
. The matrix form yt = X ·α+et in

Section 6.3.2 can be expressed as:



yt

yt−1

...

yb+m

yb+m−1

...

yb+2

yb+1

yb
...

y1


N×1

=



yt−b yt−b−1 · · · yt−b−m+1

yt−b−1 yt−b−2 · · · yt−b−m
...

...
...

...
... y1

...
... 0

...
...

...

... y1 0

y1 0 0

0 0 0

...
...

...

0 0 · · · 0


N×m



α1

α2

...

...

αm


m×1

+



et

et−1

...

eb+m

eb+m−1

...

eb+2

eb+1

eb
...

e1


N×1

In this case, yt and ui are of size N × 1 instead of size s × 1. The zero-padding

technique is shown above for the SSA-based CPA problem. It can be used in a

similar manner in the SSA application of process analysis, in which the time delay is

not imposed.
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6.3.4 Example 2: A Feedback Control System

An example in [14] is simulated for demonstration. This example provides a progres-

sion of the types of analyses and information that can be gained from the SSA-based

performance assessment. The process is

yt = ut−b + dt = ut−b +
1− 0.2B

1−B
at

where the disturbance dt represents the effect of all unmeasured disturbances.

Using a simple controller ∇ut = −Kyt, the closed-loop system can be written as:

yt =
1− 0.2B

1−B +KBb
at

where the process delay b = 3, and the tuning parameter K = 0.1.

By long division, a psi weight polynomial is obtained:

ψ(B) = 1 + 0.80B + 0.80B2 + 0.70B3 + 0.62B4 + 0.54B5 + · · ·

data variance minimum variance performance index
True Process 4.6455 2.2800 0.4908

Conventional CPA 4.6293 2.1908 0.4732
SSA-based CPA 4.6722 2.1892 0.4686

Table 6.1: CPA results for the feedback control system

In this example the process data mean is 0. As displayed in Table 6.1, results of

the proposed SSA-based CPA give a good match with the theoretical ones of the true

process and the ones of the conventional CPA. Accordingly, this example confirms

the effectiveness of the proposed technique.

As discussed in Section 6.3.2, orthogonal components ui are computed using the

SSA technique. The prediction ŷt|t−b can be formed through a linear combination of

the first m left singular vectors ui.
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Figure 6.5: Prediction and prediction error analysis for Example 2 (a) Pre-
diction versus process data; (b) Shifted prediction versus pro-
cess data; (c) Prediction error versus process data; (d) The ACF
plot of the prediction error.
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Figure 6.6: Scree, projection coefficient, and ACF plots for Example 2

The first panel in Figure 6.5 provides a plot of the process data yt and the pre-

diction ŷt|t−b. One interesting observation is that ŷt|t−b lags yt by b, i.e., lag 3 in

this example. The ACF plot of the prediction error et|t−b in the fourth panel shows

that the prediction error is an MA process of order b − 1, as expected. Shifting the

prediction by the delay lag b produces a prediction that follows exactly the original
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data, as shown in the second panel. This indicates the reason why a low performance

index, 49.08%, is obtained. In the meanwhile, the prediction error time series is

shown in the third panel, together with the output data. Additionally, the prediction

has been expressed as a summation of orthogonal components. Theoretically, these

components can be eliminated through the manipulated variables, if under MVC.

Figure 6.6 depicts the scree, projection coefficient, and ACF plots for the SSA-

based CPA analysis. The scree plot shows a tapered profile, suggesting that the

system is not under MVC, which is further confirmed by the ACF plot which shows a

slowly decaying sequence of autocorrelation representative of an autoregressive time

series. Moreover, the projection coefficient plot indicates several fairly large values

beyond lag 3, indicating that there are still correlations beyond the delay horizon

associated with sub-MVC performance. These values are 30−50% of the largest value,

and are roughly twice the magnitude of the values that are approached asympotitically

in the projection coefficient plot.

Given the results in Section 6.3.2, the closed-loop series can be broken into a

summation of weighted singular vectors, i.e., (uTi yt)ui. The four panels in Figure 6.7

show the first four weighted singular vectors together with the original series. Several

observations can be made: 1) the first two weighted singular vectors are larger than

the second two weighted singular vectors. This implies that the magnitudes in four

plots have a good agreement with the values in the projection coefficient plot in

Figure 6.6. 2) the first two weighted singular vectors follow considerable trends in the

original series, and the vectors lag yt. This gives a good match with the prediction

plot in Figure 6.5, because the prediction is a summation of the first m weighted

singular vectors.
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Figure 6.7: First four weighted singular vectors (blue line) versus original
series (black line) of Example 2

In Figure 6.8, the spectra for the process data, prediction, and prediction error

are provided. Note that the spectra in this Figure are not smoothed. The prediction

spectrum depicts energy concentrated at the low-frequency range and only gets partial

energy in process data in this range. Meanwhile, the prediction error does catch

energy at both low-frequency and high-frequency parts. Note that the vertical axis

scales are different. Recall that the prediction error is an MA process of order b− 1

instead of a white noise. Because the decomposition is orthogonal, theoretically the

variances are additive, i.e., the areas under the spectral curves are additive.
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Figure 6.8: Amplitude spectrum plots of Example 2

6.4 Conclusion

Singular Spectrum Analysis (SSA) has been introduced as an effective technique for

process analysis, and for CPA. Specifically:

1) chemical process analysis

Structural insights of SSA in Chapter 5 are extended into elements in chemical

process data from a filtering and spectrum perspective. An example validates the

potential use of SSA in the chemical industry, and additional interpretations are

provided based on the filtering interpretations in Chapter 5. This demonstration

agrees well with the SSA work proposed by Aldrich’s group [5, 6], and complements

the work of Barkhuizen [7] .

2) controller performance assessment (CPA)

The SSA-based technique for computing the MVC-based performance index pro-

vides a direct means for calculating the CPA index from data, requiring only knowl-

edge of the delay horizon and the maximum delay to include in a trajectory matrix.

As well, structural insights into elements in the closed-loop data are presented;
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further, these elements can include dynamic coupling beyond the time-delay hori-

zon, and periodic components. The results in this work produce a link between

principal-component like analyses of process data and the MVC-based controller

performance index. The application and interpretation of the SSA-based approach

have been illustrated using an example.

Recently, a two-dimensional extension of SSA (2D-SSA) has been proposed in

[200]. Similar to the standard SSA, obtaining filtering and frequency insights of 2D-

SSA will be a natural extension. Furthermore, 2D-SSA provides process analysis in

both temporal and spatial directions. It may be possible to extend 2D-SSA to plant

data from cross-direction control systems and distributed control systems [208], e.g.,

sheet forming processes. Preliminary research results of 2D-SSA are presented in the

next chapter.
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Chapter 7

Two-dimensional SSA

Multi-dimensional SSA is a natural extension of SSA, and offers promise for mul-

tivariate analysis of manufacturing processes. Multi-dimensional SSA typically ap-

pears in two forms: multi-channel SSA (M-SSA) and two-dimensional SSA (2D-SSA).

The discussion in this chapter focuses on 2D-SSA, which was recently introduced by

Golyandina et al. in [194, 200]. This chapter is structured as follows: 1) the basic

algorithm of 2D-SSA is covered; 2) 2D-SSA is compared to other data analysis tech-

niques; 3) 2D spectral analysis is presented to assist in extracting further insights

of 2D reconstructed series by 2D-SSA; 4) Preliminary results using simulated sheet

forming data are shown to validate the feasibility of 2D-SSA analysis.

7.1 The Basic Algorithm

Golyandina and Usevich [194] first introduced the 2D extension of SSA. Recall that

the basis of 1D-SSA is the singular value decomposition (SVD) of a trajectory matrix
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that is placed in a Hankel matrix form. In 2D-SSA, a trajectory matrix is of Hankel-

block-Hankel (HbH) form.

In the discussion that follows, we will assume that there are two spatial dimensions.

Note however that 2D SSA can be applied to series having two indices, which could

be two spatial indices, or a temporal and spatial index (e.g., measurements in time

over a 1D spatial domain). In addition, terminology related to rolling operations will

be used, namely machine direction (the direction of the sheet moving through the

rolling mill), and cross-direction (the direction across the width of the sheet).

Let {y(i, j), i = 1, 2, · · · , Nr, j = 1, 2, · · · , Nc} be a 2D array. Note that each row

and column represents a series in the Machine Direction (MD) and Cross Direction

(CD), respectively.

Y t,x =



y(1, 1) y(1, 2) · · · y(1, Nc)

y(2, 1) y(2, 2) · · · y(2, Nc)

...
...

...

y(Nr, 1) y(Nr, 2) · · · y(Nr, Nc)


Window sizes (Lr, Lc) are defined for row and column series, respectively. In

addition, we have Kr = Nr − Lr + 1 and Kc = Nc − Lc + 1. An (LrLc ×KrKc) HbH

matrix can be formed:

W =



A1 A2 A3 · · · AKc

A2 A3 A4 · · · AKc+1

A3 A4 A5 · · · AKc+2

...
...

...
...

ALc ALc+1 ALc+2 · · · ANc


,
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where

Aj =



y(1, j) y(2, j) · · · y(Kr, j)

y(2, j) y(3, j) · · · y(Kr + 1, j)

...
...

...

y(Lr, j) y(Lr + 1, j) · · · y(Nr, j)


, j = 1, 2, · · · , Nc.

With an HbH matrix, SVD and grouping steps are the same as in 1D-SSA. The

only difference is in a 2D-Hankelization step.

Assume

Z =



Z1,1 Z1,2 Z1,3 · · · Z1,Kc

Z2,1 Z2,2 Z2,3 · · · Z2,Kc

Z3,1 Z3,2 Z3,3 · · · Z3,Kc

...
...

...
...

ZLc,1 ZLc,2 ZLc,3 · · · ZLc,Kc


There are two steps in a 2D-Hankelization process. First, within-block Hankelization,

which Hankelizes each block, is implemented. Second, Hankelization is applied to the

whole matrix, a process named “between-block Hankelization”. The order of these

two steps can be reversed.

HZ = H



HZ1,1 HZ1,2 HZ1,3 · · · HZ1,Kc

HZ2,1 HZ2,2 HZ2,3 · · · HZ2,Kc

HZ3,1 HZ3,2 HZ3,3 · · · HZ3,Kc

...
...

...
...

HZLc,1 HZLc,2 HZLc,3 · · · HZLc,Kc


After undertaking the SVD decomposition to the HbH matrix W , we have:

W =

µ∑
i=1

W i =

µ∑
i=1

√
λiuiv

T
i (7.1)
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where µ = min(LrLc, KrKc), λi and vi are the eigenvalues and eigenvectors ofW TW ,

and ui are the eigenvectors of WW T .

Converting the vector vi into a matrix form, a 2D eigenfilter can be obtained.

To simplify the notation, let v be one of the eigenvectors instead of vi. Then, 2D

eigenfilter coefficients can be written as:

v =



v1,1 v1,2 v1,3 · · · v1,Kc

v2,1 v2,2 v2,3 · · · v2,Kc

v3,1 v3,2 v3,3 · · · v3,Kc

...
...

...
...

vKr,1 vKr,2 vKr,3 · · · vKr,Kc


As seen, a number of 2D-arraysW i are reconstructed. The challenge is to interpret

patterns of 2D reconstructed components and associated 2D eigenfilters.

7.2 2D-SSA Compared to Other Multivariate Anal-

ysis Techniques

7.2.1 Conventional Multivariate Analysis Methods

Chemical processes are inherently multivariate by nature, with behaviours arising

from the interplay between material and energy balances, chemical reactions, and

other types of phenomena. For processes having spatially distributed behaviour, a

fundamental model will typically consist of a system of partial differential equations

(PDEs) arising from the material and energy balances. For applications in which high

fidelity is required, numerical solution of the PDE models will be necessary in most

applications. However, the computational burden of such models is in general higher,
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so for real-time applications in particular, empirical models offer an attractive alter-

native. Within the array of empirical modelling approaches available, multivariate

techniques have found widespread acceptance.

Recall that analysis of industrial processes can be often treated as a multivariate

time series problem. Assuming linear process dynamics, a typical discrete transfer

function model form is [209, 210]:

Y t = G(q−1)U t +Dt (7.2)

where Y t is a vector of n outputs, U t is a vector of m actuator effects, Dt is a

multivariate disturbance, and G(q−1) is a process transfer function matrix, where q−1

is a backshift operator, i.e., q−1Y t = Y t−1.

Figure 7.1: Multivariate linear system with disturbance

A schematic for a multivariate linear system with disturbance is illustrated in

Figure 7.1. Models of the form in Equation (7.2) can be estimated using multiple

regression and multivariate time series methods, and a range of techniques (e.g.,

subspace identification) from the system identification field.

The model Equation (7.2) contains explicit time dependence, but can be used to

describe spatial variation as well. In this instance, elements of the output vector would
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correspond to the value of a process variable at a specific location (e.g., two elements

of Y t can represent the temperature evolution in time at two different locations on an

aluminum sheet). There is only one backshift operator involved, and it is associated

with the time domain. This approach is similar to that used in nonlinear regression

of parameters in mechanistic models, where it is common to have different responses

representing concentrations at different locations, or weight fractions of polymers at

different chain lengths.

Alternatively, it is possible to incorporate both spatial and temporal variation

in a transfer function model, through the use of two (or more, depending on the

dimension of the spatial domain) backshift operators. For example, Wellstead et

al. [211] approximate PDEs as two-dimensional transfer function models, i.e., 2D-

ARMAX models, shown in Equation 7.3. Instead of only one time index in VAR

models [209, 210], both time and space indices are considered in 2D-ARMAX models.

Here the subscript t denotes the measurement location in time, and the subscript x

denotes the measurement position in the spatial direction. In addition, w−1 and q−1

are interpreted as backshift operators, i.e., w−1Y (x, t) = Y (x−1, t) and q−1Y (x, t) =

Y (x, t− 1). A 2D-ARMAX model can be expressed as:

A(w−1, q−1)Y (x, t) = q−vB(w−1, q−1)U(x, t) +C(w−1, q−1)E(x, t) (7.3)

where Y (x, t) is the output, U(x, t) is the actuator input, and E(x, t) is the distur-

bance.

2D-ARMAX models have some drawbacks. First, an underlying full-rank assump-

tion needs to be made to a measurement matrix. This may not hold when measure-

ments are strongly correlated. Even if a full-rank matrix is given, there might be

some other process constraints, arising from for example mass and energy balance
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constraints. Rapid sampling - e.g., of gauge across a sheet - may also lead to poor

conditioning and rank deficiency. Second, a large number of actuators and output

measurements in sheet forming processes make it a large scale problem. Similar

to conventional VAR models, Ramarathnam [212] comments in his thesis that 2D-

ARMAX models are computationally too expensive since too many parameters were

involved. This motivates, as well, reduced-rank approaches, which simplify problems

by dimensional reduction.

7.2.1.1 Open-Loop Data versus Closed-Loop Data

Data can be collected in industrial operations in either open-loop or closed-loop forms.

For open-loop processes, a typical model form is Y t = G(q−1)U t−b. For sheet forming

processes the elements of the output vector can represent quantities such as thick-

ness or basis weight at spatial locations across the sheet. In such a modelling ap-

proach, spatial interactions are represented by off-diagonal transfer function elements

in G(q−1). A common assumption in such models, especially for paper machines, is

to assume separability of temporal and spatial effects in G(q−1), so that we can write

G(q−1) = MG0(q−1). G0(q−1) is a common scalar temporal transfer function of a

low order, and M is an interaction matrix which describes couplings in the spatial

direction between the measurements in the output vector Y . Implicit in the form

of M is that the spatial (cross-direction) dynamics are fast relative to the temporal

(machine direction) dynamics, so thatM is a constant matrix [213]. This assumption

is typically appropriate for paper machines, in which the scanning gauge is located

further down the mill, by which time spatial dynamics have settled out. An interac-

tion matrix of a special structure, e.g., Toeplitz symmetric and circulant symmetric,
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can be given by assuming that each actuator has the same and symmetric effect. This

leads to interaction-matrix based approaches, which are dominant in spatial control

problems [121, 212, 213]. In essence, orthogonal basis functions are used to describe

an open-loop interaction matrix. The separability assumption is typically not valid for

metal-rolling processes, and consequently, a full transfer function matrix is required.

Good quality open-loop data requires testing, e.g., ‘bump’ tests and PRBS tests.

In industrial operations, these tests are likely to happen infrequently, and open-

loop data are often not available because of the need to balance production of off-

specification products against the quality of information obtained.

Under closed-loop control, the system can be expressed as

Y t = [I +G(q−1)Gc(q
−1)]−1Dt + [I +G(q−1)Gc(q

−1)]−1G(q−1)Gc(q
−1)SP t (7.4)

whereDt is a disturbance and SP t represents the setpoint. The closed-loop structure

is very likely different from the open-loop one, and how the structure changes depends

on the controller structure. To get good quality closed-loop data to estimate process

models, perturbations need to be introduced, typically in the form of dither signals

to the controller output in the closed-loop control system. Analysis tools can be ap-

plied to routine operating data, which can be collected without disturbing processes,

however in this instance, the model reflects the disturbance-output relationship.

One difference between process analysis based on open- versus closed-loop data

lies in how we interpret the results. For example, if PCA is applied to an open-loop

process where a separability assumption holds, PCA will provide information about

spatial interactions, such as on a paper machine. However, separability may not be

able to be assumed when applying PCA to closed-loop data, even if data are from

a paper machine because a control system can introduce different kinds of coupling
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between variables. Accordingly, interpretations of principal components are different

and may not be as easy as in open-loop data.

7.2.2 Reduced-Rank Techniques

Reinsel and Velu [214] introduce the idea of reduced-rank coefficient models to mul-

tiple linear regression and multivariate time series modeling. Regardless of whether

data are open- or closed-loop, reduced-rank techniques are applicable for analysis via

basis functions. In reality, basis functions can be classified into two types. One type of

is predefined, e.g., square impulse functions [121], orthogonal polynomials [122, 123],

splines [124], Fourier series[121], and wavelets [125]. The other type is data-driven,

based on Karhunen − Loève decomposition, e.g., PCA and SSA. Chapter 5 also

utilizes reduced-rank approximations to a trajectory matrix to provide filtering and

frequency interpretations of 1D-SSA.

7.2.2.1 Predefined Basis Functions

As discussed in the previous section, an interaction matrix can have some special

structures. Three matrix forms, centrosymmetric, Toeplitz symmetric and circu-

lant symmetric, are most commonly used [98, 208, 212, 213, 215]. A band-diagonal

Toeplitz symmetric form, where the same element is repeated in each matrix diago-

nal, is shown below for demonstration. One more assumption is that each actuator

has a localized spatial effect in a nearby region.
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M =



m1 m2 · · · mh 0 · · · · · · 0

m2 m1 m2 · · · mh
...

... m2 m1 m2
. . .

...

mh
... m2

. . . . . . mh 0

0 mh
. . . . . . m2

... mh

...
. . . m2 m1 m2

...

... mh · · · m2 m1 m2

0 · · · · · · 0 mh · · · m2 m1


Nc×Nc

Basis function based approaches are suggested to address a rank-reduction prob-

lem. A basis function expansion is proposed to represent an interaction matrix

[121, 122, 123]. By appropriately truncating higher order terms, spatial dynamics

can be re-described in a finite-dimensional form. Typical basis functions, which are

predefined with a prior process knowledge, cover square impulse functions, orthogonal

polynomials, splines, Fourier series, and wavelets. For illustration a brief discussion

about two basis functions is provided in this section, and the reader is referred to

[121] for more details. Note that in practise discrete basis functions are used. Below

basis functions are denoted by φi(x).

Square Impulse Functions [121]

Assume that there are Nc positions in the spatial direction, and orthogonal impulse

functions can be defined as:

φi(x) =

 1 for x = i

0 for x 6= i
i = 1, 2, · · · , Nc

Each actuator response can be expressed via defined basis functions above. A

physical plot for these basis functions is:
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Figure 7.2: Square impulse functions

If both actuator responses and output measurements are expressed by the same

basis functions, actuator setpoints can be given by solving a linear regression problem.

Orthogonal Polynomials [122, 123]

One class of discrete orthogonal polynomials that are often used in basis function

representation are the Gram polynomials [123]. A general recursive form can be

written as

φi(x) =
(Nc − 1)(2i− 1)

i(Nc − i)
(1− 2(x− 1)

Nc − 1
)φi−1(x)− (i− 1)(Nc − 1 + i)

i(Nc − i)
φi−2(x)

where the subscript i denotes a polynomial in the ith order, Nc is the number of spatial

positions, and x = 1, 2, · · · , Nc. In addition, the following basis function assignments

are made: φ0(x) = 1 and φ−1(x) = 0. An example of polynomials up to the fifth

order are plotted in Figure 7.3 for illustration, and there are 100 spatial positions in

this example.
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Figure 7.3: Gram polynomials with the order up to five

7.2.2.2 Data-driven basis functions

Data-driven basis functions have been widely used in many scientific and engineering

applications. Early users of these techniques included atmospheric, meteorologic,

and geophysical scientists. One class - the multivariate statistical approaches such as

PCA and PLS - identify linear bases by decomposing the covariance structure of the

data. The family of SSA methods - M-SSA and 2D-SSA - are little known within

the manufacturing industries, and thus it is promising to apply these methods in this

area. Four methodologies are chosen in this work for comparison, and the key features

of these methods are summarized in Table 7.1. The category ‘basis functions’ refers

to predefined functions (e.g., Gram polynomials), while the other three methods are

data-adaptive and give orthogonal basis functions, typically eigenvectors. Note that

all these reduced-rank methods presented here can be applied to both open-loop and

closed-loop data.

All methods except 2D-SSA essentially give 1D analysis and physical interpreta-

tions. 2D-SSA, which was introduced by Golyandina [194], is especially interesting
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Basis functions PCA M-SSA 2D-SSA

dimensional Yes Yes Yes Yes
reduction
emphasis spatial temporal more temporal temporal

and some spatial and spatial
problem short series short and short and short and

size long series long series long series
correlation - temporal temporal temporal
structure and spatial and spatial

prior knowledge (Yes) Yes No No No
/data-adaptive (No)

physical 1D 1D 1D 2D
interpretations

application engineering different oceanography meteorology
areas areas and meteorology

Table 7.1: Comparison table of reduced-rank methods

due to the development of 2D physical interpretations. 2D-SSA can break down 2D

data into low- and high-frequency components. Golyandina [194] applies 2D-SSA

to digital terrain analysis in order to determine the continental, regional, and local

components of a topographic surface.

Data-driven basis functions can be understood in practise in terms of a ‘window’,

conceptually similar to a window function in signal processing. The left plot in Figure

7.4 shows a comparison of PCA and SSA. Standard PCA, also named temporal PCA,

can be described as sliding a 1 × Nc window along the temporal direction. Tempo-

ral PCA thus identifies high-variance temporal patterns, i.e., Principal Components

(PCs). Spatial PCA (also named Empirical Orthogonal Functions (EOFs)) slides an

Nr × 1 window across Nc channels in the spatial direction and gives spatial patterns.

Similarly, SSA is a time series technique which considers only one channel, and an

Lr × 1 window is used to identify temporal patterns.
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(a) PCA and SSA (b) EEOF, M-SSA and 2D-SSA

Figure 7.4: Windowing interpretations of PCA, SSA, EEOF, M-SSA, and
2D-SSA. The axes are the temporal (t) and spatial (x) coordinates.

Windowing interpretations of PCA and SSA can be carried over into multi-channel

and two-dimensional cases. In the first case, we can extend temporal and spatial

PCA to multi-channel SSA (M-SSA) and extended EOF (EEOF), respectively. For

M-SSA, as shown in the right plot of Figure 7.4, an Lr × Nc window can be moved

along the t axis in order to get more temporal and some spatial patterns. By moving

an Nr×Lc window along the x axis, EEOF focuses more on spatial patterns instead.

The second conceptual route leads from SSA to 2D-SSA. To follow this route, 2D-SSA

moves an Lr × Lc window in the (t, x)-plane, which gives temporal-spatial patterns.

Windowing interpretations imply that the essential difference among these algorithms
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is the trajectory matrix formed in each technique. In comparison, 2D-SSA is the only

technique offering 2D insights into data, which has great potential to improve two-

dimensional process analysis.

7.3 2D Spectral Analysis

The techniques discussed above are fundamentally time- and spatial-domain tools.

In a manner similar to the 1D case, frequency domain approaches, i.e., 2D spectral

tools, have been defined for the 2D case as well, and can be of great benefit by pro-

viding inside into the periodicity structure in the data and process. Multidimensional

periodicity is present quite frequently in the metal rolling industry, due to a number

of factors including eccentricities in rollers, and oscillations in hydraulic controllers.

Such examples serve to motivate multivariate spectral analysis. Additional details on

multivariate spectral analysis can be found in [216] and [217].

Intuitively, 2D spectral tools might be useful for processes encountering spatial

characterizations. Garello [217] discusses 2D spectral tools, which are classified as

nonparametric and parametric. For nonparametric spectral estimators, a generalized

2D periodogram is defined as:

SY (ft, fs) =
1

NrNc

|
Nr∑
k1=1

Nc∑
k2=1

W (k1, k2)Y (k1, k2)e−j2π(k1ft+k2fs)|2 (7.5)

where Y (k1, k2) is a 2D signal, 1 ≤ k1 ≤ Nr and 1 ≤ k2 ≤ Nc; ft and fs are normalized

frequencies at temporal and spatial directions, i.e., 0 ≤ ft ≤ 0.5 and 0 ≤ fs ≤ 0.5,

and W (k1, k2) is defined as a 2D-window function.

Similar to well-known windows in 1D signal processing, such as Hanning and

Hamming windows, a 2D-window function is used to reduce the power of sidelobes and
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give a spectral estimator of higher resolution, however the cost of using a window is to

widen the main lobe, which may instead cause a spectral estimate of lower resolution.

Note that little research has been done to the area of 2D-window functions, which

makes it an interesting area to explore.

Garello also investigates some parametric 2D spectral analysis methods, which

are based on specific models, such as AR or MA models. For harmonic analysis,

parametric spectral estimators are only desirable when a precise model can be fitted

to a 2D signal; otherwise, these estimators are not reliable.

In this thesis, a 2D periodogram calculated by Equation 7.5 is used. In addition,

the simplest window with all window coefficients equal to 1 is used, i.e.,W (k1, k2) = 1.

In conjunction with prior process information, the 2D spectral technique can be used

to provide physical interpretations in industrial processes.

7.3.1 Application of 2D Techniques to Sheet Forming Pro-

cesses

Spatial characterizations are often encountered in sheet forming processes. Due to

demands on high quality products, better process understanding and process control

are required. Ammar [208] states that 30-300 actuators and 200-2000 measurements

could exist in sheet forming processes. It is clear that different sensor types make

modelling and control of systems fundamentally different. Cross-sheet sensors are

typically classified as either scanning or fixed, depending on whether the scanning

sensor remains fixed in a spatial location, or traverses the sheet. The data structure

resulting from both types of sensors are shown in Figure 7.5 [218].
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(a) The Scanning Sensor (b) The Fixed Sensor

Figure 7.5: Typical sensors (◦ = measurement, × = sensor off sheet)

As shown in Figure 7.5, scanning sensors have a number of shortcomings. With-

out data reconstruction (typically in scanning sensor applications), scanning sensors

introduce missing data and can lead to the inseparability of temporal and spatial vari-

ations. Fixed sensors have the advantage of providing a full sheet measurement profile

without missing data, which greatly reduces errors associated with process state es-

timators, at the cost of extra sensors. Accordingly, different sensors change process

analysis considerably. Scanning sensors (e.g., for thickness or basis weight) are used

frequently in paper machines. In contrast, fixed sensors are typically used in metal

rolling operations. In this work, the focus is on data obtained using fixed sensors,

consistent with the emphasis on analysis techniques for metal rolling operations.

To illustrate the capability of 2D spectral analysis for diagnosing metal rolling

manufacturing processes, two scenarios of a rolling mill are presented below. Note

that the programming code is written in MATLABTM script. The thickness values

of the rolling sheets with or without defects in examples are assigned to be 1.5 and
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2, respectively. Programming code of examples are provided in the appendix.

7.3.1.1 Example 1 - Uniform Ridge on the Work Roll

Figure 7.6: Example 1: A mill with one ridge

Figure 7.7: The sheet profile for Example 1

In this example, a mill with a uniform ridge defect across a work roll is shown in

Figure 7.6, while Figure 7.7 displays a resulted sheet profile. The ridge introduces a

temporal periodicity in the machine direction because it is uniform across the work

roll. A temporal period of 5 seconds is assumed to be present in the simulated data,

and no spatial periodicity in the machine direction should be present. The number of

150



Figure 7.8: 2D periodogram for Example 1

observations in the temporal and spatial direction are 100 and 50 respectively. With

these hypotheses in mind, a 2D periodogram is calculated using Equation 7.5 from

the simulated data, as depicted in Figure 7.8. Two peaks at normalized temporal fre-

quencies of 0.2 Hz and 0.4 Hz are observed, as expected. Temporal effects are caused

by periodic defects across the work roll. The temporal frequency at 0.2 Hz matches

the period of 5 seconds; the one at 0.4 Hz is caused by the harmonic. Note that a

spatial frequency only shows up at 0 Hz, i.e., a non-periodic component. The unifor-

mity of the ridge defect on the work roll in the mill results in a profile in the spatial

direction that is always uniform, and the results are consistent physically. These re-

sults can also be verified by theoretical derivation as well via using the mathematical

representation of the defect, and calculating the 2D spectrum from its definition in

terms of a fast Fourier transform (FFT).
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7.3.1.2 Example 2 - Non-Uniform Ridge on the Work Roll

A non-uniform ridge on the work roll is considered in this example, in contrast to the

uniform ridge of Example 1. The non-uniform ridge is illustrated in Figure 7.9. The

resulting defects on the sheet profile conceptually are presented in Figure 7.10.

A non-uniform ridge on the work roll - one that moves along the circumference of

the role as the cross-direction position changes - will still produce the same temporal

periodicity at fixed location. This is because the a ridge at an arbitrary fixed location

on the circumference of the role will cause a bump related to the rolling frequency -

regardless of its spatial location. Consequently, we should find a temporal periodic

component at the same frequency as in the previous example, and related to the roll

diameter, and the rolling speed.

At a fixed moment in time, there will not be a spatial periodicity, because if the

roll is frozen in time, there is only one bump across the roll in the cross direction.

The spatial periodicity in this instance is not separable from the temporal periodicity:

spatial periodicity occurs across time as well.

The period of a ridge defect shown in the temporal direction is assumed to be 100

seconds. For more precise results, 1000 observations in the temporal direction and 50

in the spatial direction are simulated. The calculated 2D periodogram in Figure 7.11

exhibits significant high-frequency peaks. The estimated 2D spectral information is

misleading. In addition, a smaller low-frequency peak at a temporal frequency of

0.01 Hz and a spatial frequency of 0 Hz is observed. This peak is associated with the

ridge defect, as expected. Example 2 will be rediscussed later in the application of

the 2D-SSA technique.

152



Figure 7.9: Example 2: A rolling mill with a non-uniform ridge

Figure 7.10: The sheet profile for Example 2

7.3.1.3 Discussion on 2D spectral tools

In the two examples, the 2D spectral tools do extract some useful information re-

garding synthetic rolling process data. The data considered in these examples have

been noise-free. In industrial data, this will not be the case. In general, in order

to obtain reliable spectral estimates, it will be necessary to clean the data, using

filtering techniques. Two challenges are: 1) to form efficient filters; and 2) to better

understand physical properties in processes. This motivates the combination of the

2D-SSA technique and 2D spectral tools, since 2D-SSA potentially offers 2D data

cleaning filters.
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Figure 7.11: 2D periodogram for Example 2

7.4 Preliminary Results of 2D-SSA Applications

The examples in Section 7.3.1 demonstrate some of the beneficial properties of 2D

spectral tools, but in Example 2 it is clear that these tools can sometimes provide

misleading information. 2D-SSA offers the promise of providing reconstructed com-

ponents with spectral characteristics. To illustrate the application of the 2D-SSA

technique, Example 2 is re-worked to provide continuity in discussion. The data are

placed in a HbH matrix form. An SVD decomposition in Equation 7.1 is then applied,

and the resulting singular vectors ui and vi are used to establish the reconstructed

components W i. 2D spectral tools are expected to extract more useful and accurate

information in the reconstructed components. In order to avoid computer memory

constraints, a data set at 50 temporal locations for 200 spatial scans is used.

The results of the 2D-SSA analysis are presented in Figure 7.12. The top left plot
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Figure 7.12: 2D-SSA analysis of Example 2 (a) Simulated data in Example 2
(top left); (b) The scree plot (top right); (c-f) First four reconstructed
components (second and third rows)
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Figure 7.13: 2D periodogram for original data and the first four recon-
structed components in Example 2
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charts the simulated data, the top right plot charts a scree plot, and the second and

third rows of plots graph the first four reconstructed components. From the scree plot,

only the first singular value is significant which is confirmed by the vertical axis scales

in the reconstructed component plots. 2D periodograms for the original data and the

first four reconstructed components are produced in Figure 7.13. The order of mag-

nitude shows that the first component catches significant process characteristics with

a low-frequency peak at a temporal frequency of 0.01 Hz and a spatial frequency of 0

Hz. This behaviour is expected due to the ridge defect. Insignificant high-frequency

information can be observed in other components, illustrating the potential advan-

tages of the 2D-SSA technique for providing more reliable physical interpretations of

industrial processes. As well, reconstructed components can be explained as filtered

versions of the original data.

7.5 Conclusion

In this chapter, multivariate time series tools are reviewed, setting the stage for

comparison with the 2D-SSA technique for analyzing spectra in both temporal and

spatial dimensions. In comparison with other basis function based techniques, 2D-

SSA provides 2D insights from a windowing perspective. Furthermore, 2D spectral

tools are briefly reviewed, and a 2D periodogram is suggested to be implemented

together with 2D-SSA. The decomposition feature of 2D-SSA makes it possible to

filter the original data, providing clearer results for the spectral analysis. Preliminary

results in the analysis of the simulated data demonstrate the potential contribution

of these tools in 2D process analysis.
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Chapter 8

Conclusions and Recommendations

8.1 Conclusions

The goals of this thesis are: 1) to propose extensions of minimum-variance-based

controller performance diagnostics for sheet forming processes that address a number

of limitations of existing CPA techniques, 2) to propose interpretations and modifica-

tions to singular spectrum analysis and to demonstrate their applications in analyzing

one-dimensional and two-dimensional problems, and 3) to propose an SSA-based ex-

tension of minimum-variance-based CPA that offers the promise of more detailed

diagnostics.

The following specific conclusions and contributions arise from this work:

1) Length-based CPA for batch rolling

Batch rolling process operation contains segments where the speed is constant,

and startup/shutdown segments where the speed changes. The constant time
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delay assumption on which CPA-MVB is based no longer holds during the tran-

sient parts in which speed is changing. Jelali [97] proposed a new length-based

CPA for metal processing, but with no detailed implementation information.

A length-based CPA is proposed in this thesis, with detailed implementation

steps.The key step is to convert time-based data to length-based data via linear

interpolation.

2) Constraint effects in CPA applications

Constraints on manipulated variables are often encountered, resulting in input

nonlinearities. Conventional MVC-based CPA is not applicable to systems with

nonlinear elements. Nonlinearities are introduced when the constraints are ac-

tive. Harris and Yu [29] exploited the concept of a feedback invariant, which is

not affected by certain classes of nonlinearity. A modified CPA-MVB algorithm

is proposed to construct a feedback-invariant-performance bound that accom-

modates the presence of input constraints, i.e., constraints on controller output.

A case study is presented for demonstration.

3) Resampling problem in CPA applications

Different input and output sampling intervals can make it difficult to compute

the MVC-based CPA. This work discusses in detail the concerns of implementing

conventional CPA with these data, and proposes solutions to compute CPA-

MVB values in the scenarios of different input/output sampling rate. Industrial

examples illustrate the impact of resampling on CPA.

4) Algorithm variations and interpretations of 1D-SSA
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Singular spectrum analysis (SSA) in signal processing is introduced to the prob-

lem of process analysis. The key step in 1D-SSA is a singular value decompo-

sition (SVD) on a lagged data matrix, i.e., a trajectory matrix. Eigenfilters

and convolution filters are formed based on singular vectors of a trajectory ma-

trix. This thesis proposes a modification of the trajectory matrix construction

(symmetric Toeplitz matrices) that leads to filters of special structure and hav-

ing a zero-phase lag property. New interpretations of 1D-SSA are developed

from filtering and frequency perspectives. Examples are used to illustrate the

application of these tools to process analysis problems.

5) Applications of SSA in chemical process analysis and performance assessment

The application of SSA for chemical process analysis is investigated by re-

visiting a published two-tank with periodic forcing example in more detail.

Using the structure of a linear regression problem with SVD, a new process

monitoring extension to CPA based on the SSA technique is proposed. The

performance of the new approach is compared to the standard CPA-MVB ap-

proach results. In addition to providing a new non-parametric approach for

computing the CPA index, the decomposed series provide supplementary pro-

cess information for analysis use (e.g., periodic components within the delay

horizon, or beyond the delay horizon). Extensions are identified for future

work.

6) Interpretations of 2D-SSA

A recently proposed multi-dimensional SSA algorithms from the literature is

applied to multi-dimensional data analysis. In particular, 2D-SSA is proposed
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to detect temporal-spatial features in sheet forming processes. Windowing in-

terpretations and preliminary results in case studies indicate the capability of

2D-SSA to perform 2D process analysis. Together with 2D spectral analysis

and process knowledge, a case study illustrates observed process behaviours

with physical features in reconstructed series. The final goal of 2D-SSA analy-

sis is to get some meaningful physical interpretations of the 2D processes under

investigation.

8.2 Recommendations for Future Work

Based on the work presented in this thesis, future research should include:

1) Extensions to CPA diagnostics to address industrial challenges

In Chapter 3, three practical limitations in industrial CPA applications are

addressed. Additional concerns in CPA applications include: 1) missing data

can be often encountered in industry. How robust are MVC-based measures

when dealing with missing data? 2) application results have demonstrated that

different MVC-based performance assessments work well in different industrial

processes, e.g., paper making versus chemical processes. However, few guidelines

are available to select a proper MVC-based measure for applications in different

industries.

2) One-dimensional process analysis tool

New filtering and frequency interpretations offer more understanding of 1D-SSA

and advantages for its applications. The difficulty in SSA analysis is to link

process information to interpretations from the decomposed series. Additional
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guidelines should be developed to facilitate this interpretation, leading to more

widespread use of SSA as a process analysis tool.

3) Filtering and frequency interpretations of 2D-SSA

In Chapter 5, filtering and frequency interpretations of 1D-SSA are derived from

properties of symmetric Toeplitz matrices and resulting filters. Eigenfilters and

convolution filters can be developed from eigenvectors of these trajectory ma-

trices. Golyandina [200] proposes the concept of 2D-SSA, which makes possible

process analysis in both temporal and spatial directions. Chapter 7 presents a

trajectory matrix in 2D-SSA of a Hankel-block-Hankel (HbH) matrix form. One

future direction is to investigate properties of this HbH trajectory matrix, and

develop modifications to the algorithm to make it more structured. The goal is

to restructure this matrix so that an SVD decomposition of this matrix gives

singular vectors with structural properties, e.g., symmetry and skew-symmetry,

that can be used to provide 2D-filtering in signal processing and 2D data anal-

ysis. Essentially, the aim is to develop structural modifications of a trajectory

matrix, 2D filters based on structural singular vectors, and filtering interpre-

tations for 2D-SSA in a manner analogous to the 1D-SSA case proposed in

Chapter 5 of this thesis.

4) 2D-SSA-based tools for assessing profile/flatness performance in sheet forming

processes

2D-SSA has potential for analyzing process characteristics for sheet forming

processes. It may be possible to interpret reconstructed series from the decom-

position of a 2D trajectory matrix in an HbH structure (or variations of this

162



HbH structure) in terms of characteristics in the sheet profile. For example, in

flatness control systems, eigenvector decompositions have been used as a basis

for developing more effective control systems. Such tools would complement 2D

spectral analysis for investigating the characteristics of sheet forming operation.

5) Two-dimensional CPA analysis

Hölttä [219] has introduced a new concept of 2D-CPA, however the proposed

measure is essentially an MVC-benchmarked CPA measure across the sheet

width, i.e., in the Cross Direction (CD). The work in Chapter 6 links the stan-

dard 1D-CPA benchmark with principal-component like decompositions, which

makes the 2D-CPA concept more promising. It should be possible, using the 2D-

SSA approach and keeping in mind the SSA-based computation of the 1D-CPA,

to develop a fully 2D-CPA measure for controllers regulating both temporal and

spatial properties, e.g., flatness control in sheet forming processes.

6) Application of SSA-based CPA techniques to plant and experimental data

In order to demonstrate the efficacy of SSA-based approaches for process anal-

ysis and CPA, and to provide further guidelines for interpretation, these tech-

niques should be applied to larger-scale problems incorporating temporal and

both temporal/spatial elements.
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[94] A. Ingimundarson, T. Hägglund, Closed-loop performance monitoring using

loop tuning, Journal of Process Control 15 (2005) 127–133.

[95] C. Lynch, G. Dumont, Control loop performance monitoring, IEEE Transac-

tions on Control Systems Technology 4 (1996) 185–192.

[96] A. Stenman, F. Gustafsson, K. Forsman, A segmentation-based method for

detection of stiction in control valves, International Journal of Adaptive Control

and Signal Processing 17 (2003) 625–634.

[97] M. Jelali, Performance assessment of control systems in rolling mills - applica-

tion to strip thickness and flatness control, Journal of Process Control 17 (2007)

805–816.

[98] J. VanAntwerp, Globally optimal robust control for large scale sheet and film

processes, Ph.D. thesis, University of Illinois at Urbana-Champaign (1999).

[99] Novelis, Novelis rolling course notes (2008).

[100] T. Harris, Optimal controllers for nonsymmetric and nonquadratic loss func-

tions, Technometrics 34 (1992) 298–306.

[101] D. Clarke, R. Hastings-James, Design of digital controllers for randomly dis-

turbed systems, Proceedings of the Institution of Electrical Engineers 118 (1971)

1503–1506.

[102] J. MacGregor, P. Tidwell, Discrete stochastic control with input constraints,

Electrical Engineers, Proceedings of the Institution of 124 (1977) 732–734.

175



[103] S. Skogestad, Simple analytic rules for model reduction and PID controller

tuning, Journal of Process Control 13 (2003) 291–309.

[104] P. Moden, T. Soderstrom, On the achievable accuracy in stochastic control,

Decision and Control including the 17th Symposium on Adaptive Processes,

1978 IEEE Conference on 17 (1978) 490–495.

[105] L. Telser, Discrete samples and moving sums in stationary stochastic process,

Journal of American Statistical Association 62 (1967) 484–499.

[106] W. Wei, Effect of systematic sampling on arima models, Communications in

Statistics-Theory and Methods 10 (1981) 2389–2398.

[107] B. Abraham, J. Ledolter, Forecast efficiency of sysematically sampled time se-

ries, Communications in Statistics - Theory and Methods 11 (1982) 2857–2868.

[108] C. Granger, P. Siklos, Systematic sampling, temporal aggregation, seasonal

adjustment, and cointegration theory and evidence, Journal of Econometrics 66

(1995) 357–369.

[109] J. MacGregor, Optimal choice of the sample interval for discrete process control,

Technometrics 18 (1976) 151–160.

[110] K. Brewer, Some consequences of temporal aggregation and systematic sampling

for arima and armax models, Journal of Econometrics 1 (1971) 133–154.

[111] G. Wilson, The factorization of matricial spectral densities, SIAM Journal on

Applied Mathematics 23 (1972) 420–426.

176



[112] G. Box, G. Jenkins, G. Reinsel, Time Series Analysis: Forecasting and Control,

John Wiley & Sons, 2013.

[113] T. Anderson, An Introduction to Multivariate Statistical Analysis, Wiley, 2003.

[114] L. Ljung, System Identification: Theory for the User, Prentice Hall PTR, 1999.

[115] B. Huang, Y. Qi, A. Murshed, Dynamic Modelling and Predictive Control in

Solid Oxide Fuel Cells: First Principle and Data-Based Approaches, John Wiley

& Sons, 2013, Ch. First Principle Modelling for Chemical Processes.

[116] G. Seber, C. Wild, Nonlinear Regression, Wiley, New York, 2003.

[117] J. Nocedal, S. Wright, Numerical Optimization, Springer, 2006, Ch. Conjugate

Gradient Methods.

[118] Y. Nesterov, A. Nemirovskii, Y. Ye, Interior-point Polynomial Algorithms in

Convex Programming, Philadelphia: Society for Industrial and Applied Math-

ematics, 1994.

[119] L. Schumaker, Spline Functions: Basic Theory, Cambridge University Press,

1981.

[120] K. Keesman, System Identification: An Introduction, Springer, 2011.

[121] S. Duncan, W. Heath, A. Halouskova, M. K. R., Application of basis functions to

the cross-directional control of web processes, UKACC International Conference

2 (1996) 1278–1283.

[122] W. Heath, Orthogonal functions for cross-directional control of web forming

processes, Automatica 32 (1996) 183–198.

177



[123] K. Kristinsson, G. Dumont, Cross-directional control on paper machines using

gram polynomials, Automatica 32 (1996) 533–548.

[124] A. Halouskova, M. Karny, I. Nagy, Adaptive cross-direction control of paper

basis weight, Automatica 29 (1993) 425–429.

[125] A. Cinar, A. Palazoglu, F. Kayihan, Chemical Process Performance Evaluation,

CRC Press, 2004.

[126] N. Draper, H. Smith, Applied Regression Analysis, John Wiley and Sons, 1981.

[127] M. Bartlett, An Introduction to Stochastic Processes, with Special Reference

to Methods and Applications, CUP Archive, 1978.

[128] R. Blackman, J. Tukey, The measurement of power spectra from the point of

view of communications engineering part i, Bell System Technical Journal 37

(1958) 185–282.

[129] N. Golyandina, A. Zhigljavsky, Singular Spectrum Analysis for Time Series,

Springer, 2013.

[130] B. de Prony, Essai xperimental et analytique: Sur les lois de la dilatabilit de

fluides lastique et sur celles de la force expansive de la vapeur de lalkool,a

diffrentes tempratures., Journal De Lcole Polytechnique 1 (1795) 24–76.

[131] E. Pike, J. McWhirter, M. Bertero, C. Mol, Generalized information theory

for inverse problems in signal-processing, Communications, Radar and Signal

Processing, IEE Proceedings F 131 (1984) 660–667.

178



[132] D. Broomhead, G. King, Extracting qualitative dynamics from experimental

data, Physica D 20 (1986) 217–236.

[133] D. Broomhead, G. King, On the qualitative analysis of experimental dynamical

systems, Nonlinear Phenomena and Chaos 113 (1986) 114.

[134] K. Fraedrich, Estimating the dimensions of weather and climate attractors,

Journal of the Atmospheric Sciences 43 (1986) 419–432.

[135] D. Danilov, A. Zhigljavsky, Principal Components of Time Series: The ‘cater-

pillar Methods, University of St. Petersburg, 1997.

[136] R. Vautard, M. Ghil, Singular spectrum analysis in nonlinear dynamics, with

applications to paleoclimatic time series, Physica D: Nonlinear Phenomena 35

(1989) 395–424.

[137] M. Ghil, R. Vautard, lnterdecadal oscillations and the warming trend in global

temperature time series, Nature 350 (1991) 324–327.

[138] R. Vautard, P. Yiou, M. Ghil, Singular-spectrum analysis: A toolkit for short,

noisy chaotic signals, Physica D: Nonlinear Phenomena 58 (1992) 95–126.

[139] M. Ghil, M. Allen, M. Dettinger, K. Ide, D. Kondrashov, M. Mann, A. Robert-

son, A. Saunders, Y. Tian, F. Varadi, P. Yiou, Advanced spectral methods for

climatic time series, Reviews of Geophysics 40 (2002) 1–41.

[140] J. Elsner, A. Tsonis, Singular Spectrum Analysis: A New Tool in Time Series

Analysis, New York: Plenum Press, 2010.

179



[141] N. Golyandina, V. Nekrutkin, A. Zhigljavsky, Analysis of Time Series Structure:

SSA and Related Techniques, Chapman & Hall / CRC, 2001.

[142] H. Hassani, Singular spectrum analysis: Methodology and comparison, Journal

of Data Science 5 (2007) 239–257.

[143] H. Hassani, A. Zhigljavsky, Singular spectrum analysis: Methodology and ap-

plication to economics data, Journal of Systems Science and Complexity 22

(2009) 372–394.

[144] H. Hassani, D. Thomakos, A review on singular spectrum analysis for economic

and financial time series, Statistics and Its Interface 3 (2010) 377–397.

[145] A. Zhigljavsky, Singular spectrum analysis for time series: Introduction to this

special issue, Statistics and Its Interface 3 (2010) 255–258.

[146] W. Hsieh, Nonlinear principal component analysis by neural networks, Tellus

A 53 (2001) 599–615.

[147] W. Hsieh, A. Wu, Nonlinear multichannel singular spectrum analysis of the

tropical pacific climate variability using a neural network approach, Journal of

Geophysical Research: Oceans 107 (2002) 1–15.

[148] T. Harris, H. Yuan, Filtering and frequency interpretations of singular spectrum

analysis, Physica D: Nonlinear Phenomena 239 (2010) 1958–1967.

[149] G. Castagnoli, C. Taricco, S. Alessio, Isotopic record in a marine shallow-water

core: Imprint of solar centennial cycles in the past 2 millennia, Advances in

Space Research 35 (2005) 504–508.

180



[150] G. Tzagkarakis, M. Papadopouli, T. Panagiotis, Singular spectrum analysis of

traffic workload in a large-scale wireless LAN, Proceedings of the 10th ACM

Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Sys-

tems (2007) 99–108.

[151] M. Papadopouli, G. Tzagkarakis, T. Panagiotis, Trend forecasting based on

singular spectrum analysis of traffic workload in a large-scale wireless LAN,

Performance Evaluation 66 (2009) 173–190.

[152] C. Penland, M. Ghil, K. Weickmann, Adaptive filtering and maximum entropy

spectra with application to changes in atmospheric angular momentum, Journal

of Geophysical Research Atmospheres 96 (1991) 22659–22671.

[153] SSA-MTM group, (mostly) UCLA, SSA-MTM toolkit for spectral analysis.

URL http://www.atmos.ucla.edu/tcd/ssa/

[154] D. Schoellhamer, Singular spectrum analysis for time series with missing data,

Geophysical Research Letters 28 (2001) 3187–3190.

[155] P. Yiou, D. Sornette, M. Ghil, Data-adaptive wavelets and multi-scale singular-

spectrum analysis, Physica D 142 (2000) 254–290.

[156] A. Cantoni, P. Butler, Eigenvalues and eigenvectors of symmetric centrosym-

metric matrices, Linear Algebra and Its Applications 13 (1976) 275–288.

[157] A. Cantoni, P. Butler, Properties of the eigenvectors of persymmetric matrices

with applications to communication theory, IEEE Transactions on Communi-

cations COM-24 (1976) 804–809.

181



[158] J. Makhoul, On the eigenvectors of symmetric toeplitz matrices, Proceedings

of the Acoustics, Speech, and Signal Processing 29 (1981) 868–872.

[159] R. Catell, Scree test for the number of factors, Multivariate Behavioral Research

1 (1966) 245–276.

[160] J. Hayton, D. Allen, V. Scarpello, Factor retention decisions in exploratory

factor analysis: A tutorial on parallel analysis, Organizational Research 7 (2004)

191–205.

[161] L. Scharf, The SVD and reduced rank signal processing, Signal Processing 25

(1991) 113–133.

[162] G. Golub, C. VanLoan, Matrix Computations, John Hopkins University Press,

1996.

[163] P. Hansen, S. Jensen, FIR filter representations of reduced-rank noise reduction,

IEEE Transaction on Signal Processing 46 (1998) 1737–1741.

[164] R. Kumaresan, D. Tufts, Estimating the parameters of exponentially damped

sinusoids and pole-zero modeling in noise, IEEE Transactions on Acoustics,

Speech, and Signal Processing 30 (1982) 833–840.

[165] Y. Li, K. Liu, J. Razavilar, A parameter estimation scheme for damped sinu-

soidal signals based on low-rank hankel approximation, IEEE Transaction on

Signal Processing 45 (1997) 481–486.

[166] J. Razavilar, Y. Li, K. Liu, A structured low-rank matrix pencil for spectral

estimation and system identification, Signal Processing 65 (1998) 363–372.

182



[167] J. Razavilar, Y. Li, K. Liu, Spectral estimation based on structured low rank

matrix pencil, Proceedings of the Acoustics, Speech, and Signal Processing 5

(1996) 2503–2506.

[168] M. Chu, R. Funderlic, R. Plemmons, Structured low rank approximation, Linear

Algebra and Its Applications 366 (2003) 157–172.

[169] J. Cadzow, Signal enhancement - a composite property mapping algorithm,

IEEE Transactions on Acoustics, Speech, and Signal Processing 36 (1988) 49–

62.

[170] B. Moor, Total least squares for affinely structured matrices and the noisy

realization problems, IEEE Transactions on Signal Processing 42 (1994) 3104–

3113.

[171] I. Markovsky, J. Willems, S. Huffel, B. Moor, R. Pintelon, Application of struc-

tured total least squares for system identification and model reduction, IEEE

Transactions on Automatic Control 50 (2005) 1490–1500.

[172] S. Reddi, Eigenvector properties of toeplitz matrices and their application to

spectral anaysis of time series, Signal Processing 7 (1984) 45–56.

[173] I. Markovsky, S. Rao, Palindromic polynomials, time-reversible systems, and

conserved quantities, 16th Mediterranean Conference on Control and Automa-

tion (2008) 125–130.

[174] E. Robinson, Statistical Detection and Estimation, Halfner, 1967.

183



[175] J. Kormylo, V. Jain, Two-pass recursive digital filter with zero phase shift,

Proceedings of the Acoustics, Speech, and Signal Processing AS22 (1974) 384–

387.

[176] C. Lindquist, Adaptive & Digital Signal Processing with Digital Filtering Ap-

plications, Stewart & Sons, 1989.

[177] I. Dologlou, G. Carayannis, Physical interpretation of signal reconstruction from

reduced rank matrices, IEEE Transaction on Signal Processing 39 (1991) 1681–

1682.

[178] D. Thomson, Spectrum estimation and harmonic analysis, Proceedings of the

IEEE 70 (1982) 1055–1096.

[179] D. Percival, A. Walden, Spectral Analysis for Physical Applications: Multitaper

and Conventional Univariate Techniques, Cambridge University Press, 1993.

[180] P. Yiou, B. Baert, M. Loutre, Spectral analysis of climate data, Surveys in

Geophysics 17 (1996) 619–663.

[181] M. Ghil, C. Taricco, Past and Present Variability of the Solar-terrestrial Sys-

tem: Measurement, Data Analysis and Theoretical Models, Societá Italiana
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Appendix A

MATLABTM programming code of

examples in Section 7.3.1

A.1 Example 1 - Uniform Ridge on the Work Roll

clear all

close all

clc

N1 = 1000;

N2 = 50;

T = 5;

Y = 2*ones(N1,N2);

for i = 1:N1/T+1
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if (i-1)*T+1 > N1

break;

else

Y((i-1)*T+1,:) = 1.5;

end

end

A.2 Example 2 - Non-Uniform Ridge on the Work

Roll

clear all

close all

clc

N1 = 1000;

N2 = 50;

T = 100;

A = 2*ones(N2,N2);

for i = 1:N2

for j = 1:N2

if i == j

A(i,j) = 1.5;
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else

end

end

end

Y = 2*ones(N1,N2);

for i = 1:round(N1/T)

Y((i-1)*T+1:(i-1)*T+N2,1:N2) = A;

end
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